
HAL Id: lirmm-04638183
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04638183v1

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple-base Logarithmic Quantization and Application
in Reduced Precision AI Computations

Vassil Dimitrov, Richard Ford, Laurent Imbert, Arjuna Madanayake, Nilan
Udayanga, Will Wray

To cite this version:
Vassil Dimitrov, Richard Ford, Laurent Imbert, Arjuna Madanayake, Nilan Udayanga, et al.. Multiple-
base Logarithmic Quantization and Application in Reduced Precision AI Computations. ARITH 2024
- 31st IEEE International Symposium on Computer Arithmetic, Jun 2024, Málaga, Spain. pp.48-51,
�10.1109/ARITH61463.2024.00017�. �lirmm-04638183�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04638183v1
https://hal.archives-ouvertes.fr

Multiple-base Logarithmic Quantization and
Application in Reduced Precision AI Computations
Vassil Dimitrov∗†, Richard Ford∗, Laurent Imbert∗‡, Arjuna Madanayake∗, Nilan Udayanga∗, Will Wray∗

∗Lemurian Labs, Oakville, Canada

†University of Calgary, Calgary, Canada

‡LIRMM, CNRS, University of Montpellier, Montpellier, France

Email: firstname@lemurianlabs.com

Abstract—The power of logarithmic quantizations
and computations has been recognized as a useful tool
in optimizing the performance of large ML models.
In this article, we provide results that demonstrate
significantly better quantization signal-to-noise ratio
performance thanks to multiple-base logarithmic num-
ber systems (MDLNS) in comparison with the floating-
point quantizations that use the same number of bits.
On a hardware level, we present details about our Xil-
inx VCU-128 FPGA design for dot product and matrix-
vector computations. The MDLNS matrix-vector de-
sign significantly outperforms equivalent fixed-point
binary designs in terms of area (A) and time (T)
complexity and power consumption as evidenced by a
4× scaling of AT 2 metric for VLSI performance, and
57% increase in computational throughput per watt
compared to fixed-point arithmetic.

I. Introduction

Over the last few years, it has been recognized that
commonly used numerical data formats, like fixed-point
or floating-point representations, do not offer the best bal-
ance of efficiency and accuracy in large machine learning
(ML) models [1]. Logarithmic number systems (LNS) and
residue number systems (RNS) have become a popular tool
for implementing large scale matrix-vector products with
limited but sufficient precision. The work by Miyashita
et al. [2] should be noted as a critical milestone. The
authors pointed out that one needs fairly low quantization
resolution (e.g., 5 bits or less) to achieve good accuracy
in some commonly used ML models. They show that
logarithmic quantizations seem more suitable than fixed
or floating-point quantizations in terms of matching the
histograms of the weights and activations distributions.
In addition, they claim that the use of LNS with base√

2 is superior for those limited precision quantization and
computation applications in comparison to LNS with base
2. Vogel et al. [3] extended those results to bases like 21/4

and even 21/8. Arnold [4] and Alam et al. [5] investigated
in more detail LNS base selection. It is important to point
out that perhaps the earliest research on the base selection

of the LNS in digital signal processing (DSP) was done in
the early 1980s by Sicuranza [6].

Several publications generalized the concept of classical
logarithmic representations. Since some of these represen-
tations use the same name but have completely differ-
ent meanings it is appropriate to give brief descriptions.
The term multi-dimensional logarithmic number system
(MDLNS, see Definition 1) was introduced at ARITH-2001
by Dimitrov et al. [7], with various applications in DSP
published over the years. Dual-logarithmic representation,
introduced by Johnson (META) in his ARITH-2020 pa-
per [8], uses representations of real numbers of the form
2aeb (with e the base of the natural logarithm, a an integer,
and b a fixed-point real number). Multi-base LNS [9] is a
hybrid version of the LNS considered by Miyashita [2],
where base

√
2 is used whenever it better matches the

histogram of the corresponding weights and activations
in a particular layer of the DNN ; otherwise, classical
LNS with base 2 is used. In [10] a team from NVIDIA
uses the same term, Multi-base LNS, for a system using
separate LNSs for the integer and fractional parts of the
numbers involved in the computations. It can be viewed
as a MDLNS with bases (2, 1/2).

The aim of this paper is to introduce promising new re-
sults specifically tailored to machine learning applications
with limited precision. We show that optimized MDLNS
could lead to quantizations that outperform the best
floating-point counterparts. We present FPGA simulations
for matrix-vector products that achieve an almost 4× im-
provement of the area-time complexity over the equivalent
binary (fixed-point) designs and a 57% improvement in
throughput per watt. We also outline research directions to
explore towards further improvements in accuracy, speed
and power consumption.

II. MDLNS Quantization
Quantization is defined as the process of mapping an

infinite set of continuous values to a finite set of discrete
values. A famous example of quantization is the mapping

of the infinite set R to the set of floating points values
for arithmetic operations involving real numbers. As such,
quantization introduces limits on the precision and range
of a value, as well as various sources of errors (e.g. rounding
errors, underflow or overflow, computational noise, etc.).
In the very active area of deep neural networks, quanti-
zation has become a very popular method for accelerat-
ing inference as well as for reducing memory and power
consumption on resource-constrained devices [11]. In this
context, post training quantization consists in reducing the
precision at which neural network weights and activations
are stored and manipulated. Several approaches based on
fixed-point (integers), low-precision floating-point (FP),
and variants of Logarithmic Number Systems (LNS) have
been investigated.

Definition 1 (MDLNS). Let R = (β1, . . . , βk) ∈ (R>0)k a
finite sequence of multiplicatively independent1 positive real
numbers, W = (w1, . . . , wk) ∈ Nk, and B = (b1, . . . , bk) ∈
Zk. Let also n = 1 +

∑k
i=1 wi. Then, MDLNSn(R, W, B)

denotes the finite set of real numbers of size 2n given by (1).
When there is no ambiguity, we omit R, W and B and
simply write

MDLNSn =
{

±
k∏

i=1
βei

i ; 0 ≤ ei + bi < 2wi

}
(1)

The elements of R are called the MDLNS bases. The
exponents ei ∈ Z in (1) have bitlength wi respectively and
are biased with bias bi, i.e. the unsigned binary encoded
value êi corresponds to the integer ei = êi −bi. A bias equal
to 2wi−1 corresponds to the two’s complement notation.

An important metric that has been used to measure
the numerical fidelity of a quantization scheme is the
Quantization Signal to Noise Ratio (QSNR) introduced
in [12]. QSNR is defined as the ratio of the power of
the non-quantized signal (i.e., the original vector X =
(x1, x2, . . . , xk) ∈ Rk) to the power of the quantization
noise expressed in decibels. It is calculated as:

QSNR = −10 log10
E

(
∥Q(X) − X∥2)
E (∥X∥2)

For example, assuming N (0, 1) distribution of data the
QSNR values for the small and widely used floating point
formats FP6 (e3m2), FP8 (e4m3) and FP10 (e5m4) are
25.46 dB, 31.52 dB and 37.53 dB respectively.

A. MDLNS bases with high QSNR
In Figure 1, QSNR values for 6-bit, 8-bit and 10-

bit MDLNS formats with bases (2, β) are plotted as a
function of β. The three horizontal lines correspond to the
QSNR values obtained for FP6, FP8 and FP10 formats.
This plot clearly shows that finding MDLNS parameters
that provide the highest QSNR, amounts to finding the

1β1, . . . , βk are multiplicatively dependent iff the equation∏k

i=1 β
ei
i = 1 has a non-trivial solution in integers.

maximum of a highly non-monotonic function. Yet, the
interesting observation derived from Figure 1 is that there
are many MDLNS parameters that yield better QSNR
than floating point formats of the same size (the points
above the horizontal lines).

In Table I, we report parameters of four MDLNS6 for-
mats whose bases contain the golden ratio ϕ = (1+

√
5)/2

or its inverse, a famous irrational number known for
its many interesting properties. Asymptotically, this base
selection offers the most homogeneous distribution of the
real numbers generated by such MDLNS. In the next
section, we present implementation details and results for
the core operation of matrix-vector product with bases
[2, 2ϕ].

III. Multichannel MDLNS Matrix-Vector
Multipliers

Computation of matrix-vector products is a fundamen-
tal operation in ML algorithms where efficient multichan-
nel parallel realizations of products are building blocks for
deep convolutional networks (CNNs) for image classifica-
tion. A multichannel matrix-vector multiplier (MVM) is
the building block. A large number of MVM are summed
and applied to a non-linear block (e.g., ReLu). Taking
as inputs a matrix A = (ai,j) for 1 ≤ i, j ≤ N and
a vector x = (x1, x2, . . . , xN), an MVM computes the
vector y = (y1, y2, . . . , yN) where the k-th entry is given by
yk = ak,1x1 + ak,2x2 + · · · + ak,N xN . MVM thus consists
of N parallel vector dot products. An M -channel MVM
multiplexes M distinct matrices Aℓ, ℓ = 1, 2, . . . , M having
elements ai,j,ℓ over M consecutive input vectors denoted
xℓ = (x1,ℓ, x2,ℓ, . . . , xN,ℓ) to produce the output vector
y =

∑M
ℓ=1 Aℓxℓ.

A. Overview of 8 × 8 MVM Tile
Our design uses a MDLNS7 with bases (2, β), with

β = 3.06 ≈ 2ϕ with ϕ = (1 +
√

5)/2 the golden ratio. In
this MDLNS, numbers are represented as (−1)s2aβb with
s ∈ {0, 1}, |a| = 4 bits and |b| = 2 bits. Each MDLNS
partial-product inside a vector-vector multiplication is
easily computed by adding exponents; the partial result
2(a+c)β(b+d) is then approximated back to two’s comple-
ment format at 16-bits of precision before accumulation.
The number of channels is chosen as a power of 2 to
efficiently map to circular buffers. The output rate of the
multichannel MVM is F/M vectors, where F is the master
system clock rate, allowing up to M different streams to
be applied to a particular multi-channel MVM in the next
stage of the computation.

B. Microarchitecture of MVM Tile
The MVM design supports up to 64 channels. It is

prototyped on Xilinx VCU-128 FPGA. The number of
channels is selected as 48 to satisfy timing requirements
of an Ethernet adapter on the FPGA. In an ASIC design
the number of channels can be any number up to 64 for

0.5 1.0 1.5 2.0 2.5 3.0 3.5

15

20

25

30

35

40

QS
NR

QSNR values of MDLNS 6-, 8- and 10-bit formats with bases [2,] for 0.5 3.5 and different exponent sizes [2,3]
[3,2]
[3,4]
[4,3]
[4,5]
[5,4]
FP6 e3m2
FP8 e4m3
FP10 e5m4

Fig. 1. QSNR values for MDLNS6, MDLNS8 and MDLNS10 formats with bases [2, β] for β ∈ [0.5, 3.5] and various exponent sizes

TABLE I
Parameters for various MDLNS bases that include the golden ratio

Bases [2, 2ϕ] [2, 2ϕ] [2, 2ϕ−1] [2, 2ϕ−1] [2, 22−ϕ] [2, 22−ϕ]
Exponent sizes [2, 3] [3, 2] [2, 3] [3, 2] [2, 3] [3, 2]
Exponent biases [2, 4] [4, 2] [2, 4] [4, 2] [2, 4] [4, 2]
Min. pos. value 0.003 0.007 0.045 0.027 0.087 0.037
Max. pos. value 57.844 24.557 7.231 12.278 4.426 10.425
QSNR 20.672 23.407 26.519 24.611 27.234 24.646

Fig. 2. VCU-128 based FPGA realization of two parallel datapaths
(8-bit) having 8 × 8 MVM units. Coefficients are of 7-bit precision
for both fixed-point and MDLNS. High-speed connectivity to Linux
host achieved via Gigabit ethernet port created within the FPGA
and running UDP protocol (packet size 512 bits/frame).

M = 64. The MVM design has four main sub-systems
(A-D) described below:
A: Fixed-point to MDLNS Conversion: an 8-bit two’s

complement fixed-point to MDLNS mapper. This unit
is based on look up tables (LUTs) realized as SRAM ;

it produces two output channels corresponding to the
4-bit and 2-bit exponents of the MDLNS that update
at the master clock rate F . Including sign bit, the
total is 7 bits.

B: Commutating Coefficient Memory: a circular buffer
clocked at the system rate F . Weights repeat every
M cycles. Given M = 64, the MVM supports up to
64 different 8 × 8 coefficient matrices stored within
the computational tile using N2 number of B blocks.
The adoption of larger values of M increases mem-
ory usage but reduces power consumption incurred
in repeated movement of coefficient values from far
memory located off-chip in external RAMs. Modern
AI algorithms may require thousands of channels,
which implies MVM unit has to support efficient
memory architectures on ASIC.

C: MDLNS Based Multiplier: Let us denote the data
inputs at row k as ak(n), bk(n) and coefficients
as ck,ℓ(n), dk,ℓ(n) for ℓ = 1, 2, ..., N columns, and
k = 1, 2, ..., N rows. Since MDLNS multiplication
is achieved by exponent additions, the N2 different
multiplicative components of a MVM operate at clock
cycle n computed as 2N2 unsigned additions, of the

TABLE II
Comparisons between fixed-point and MDLNS

implementation results

Fixed-point MDLNS

Configurable logic blocks 35 659 CLBs 28 813 CLBs
Static power 3.53 W 3.22 W
Dynamic power 3.2 W 4.41 W
Maximum clock rate 312 MHz 555 MHz
Throughput 47.4 Gops/W 74.4 Gops/W

form Pak,ℓ(n) = ak(n) + ck,ℓ(n) and Pbk,ℓ(n) =
bk(n) + dk,ℓ(n) where k = 1, 2, ..., 8. These partial
components are in MDLNS format and cannot be di-
rectly added to produce the row-output of the MVM.
We convert Pak,ℓ(n) and Pbk,ℓ(n) corresponding to
matrix elements at (k, ℓ) to two’s complement format
before summation.

D: MDLNS to Fixed-point Converter: Converts a
MDLNS quantity to fixed-point format. Each D block
produces a fixed point output Pck,ℓ(n) that is applied
to a log2 N input adder tree that in turn produces
each row of the MVM for a given channel at clock
period n.

C. Implementation Results on Xilinx VCU-128
The VCU-128 was used for evaluating the resource

and power consumption, clock, and throughput of a 7-bit
MDLNS realization. For our simulations, FPGA was op-
erated with MDLNS implementation of two parallel 8 × 8
MVM units, with data connectivity to a Linux host using
1 Gbps Ethernet via user datagram protocol (UDP). A
comparison with two’s complement MVM implementation
of similar accuracy is provided in Table II. The area is
given in number of CLBs. No DSP blocks were used. As
can be seen, MDLNS enabled 57 % increase in throughput
using much lower FPGA resources. VLSI circuits are often
compared using AT 2 metric, where A is area and T is
the critical path delay. Using this AT 2 metric, our fixed-
point and MDLNS designs lead to AT 2 values of 0.37 and
0.09 respectively, that is a 4× improvement by adopting
MDLNS over fixed-point.

IV. Conclusions

The article showcases the applicability of MDLNS rep-
resentations. One advantage of MDLNS is the freedom to
choose the bases in order to optimize the quality of the
data quantizations in a way that is unachievable with other
number systems like fixed-point, floating-point or classical
logarithmic representations. Further improvements can be
obtained, for example by extending the number of bases in
the MDLNS. On a hardware level, the FPGA results have
to be extended to a VLSI level. Some of the main findings
from this paper and additional improvements are subject
to IP protection. We hope that these results will encourage
the computer arithmetic community to explore the great

potential of multidimensional logarithmic representation
in other application domains.

References
[1] Y. LeCun, “1.1 deep learning hardware: Past, present, and

future,” in 2019 IEEE International Solid-State Circuits Con-
ference - (ISSCC), 2019, pp. 12–19.

[2] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional
neural networks using logarithmic data representation,” 2016.

[3] S. Vogel, M. Liang, A. Guntoro, W. Stechele, and G. Ascheid,
“Efficient hardware acceleration of CNNs using logarithmic data
representation with arbitrary log-base,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
2018, pp. 1–8.

[4] M. Arnold, E. Chester, J. Cowles, and C. Johnson, “Optimizing
Mitchell’s method for approximate logarithmic addition via
base selection with application to back-propagation,” in 2019
IEEE Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip
(SoC), 2019, pp. 1–6.

[5] S. A. Alam, J. Garland, and D. Gregg, “Low-
precision logarithmic number systems: Beyond base-2,”
ACM Transactions on Architecture and Code Optimization,
vol. 18, no. 4, p. 1–25, Jul. 2021. [Online]. Available:
http://dx.doi.org/10.1145/3461699

[6] G. Sicuranza, “On the accuracy of 2-D digital filter realizations
using logarithmic number systems,” in ICASSP ’82. IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, vol. 7, 1982, pp. 48–51.

[7] V. Dimitrov, J. Eskritt, L. Imbert, G. A. Jullien, and W. C.
Miller, “The use of the multi-dimensional logarithmic number
system in DSP applications,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, ARITH15. IEEE Com-
puter Society, 2001, pp. 247–254.

[8] J. Johnson, “Efficient, arbitrarily high precision hardware log-
arithmic arithmetic for linear algebra,” in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH). Los Alamitos,
CA, USA: IEEE Computer Society, jun 2020, pp. 25–32.

[9] Z. Niu, T. Zhang, H. Jiang, B. Cockburn, L. Liu, and J. Han,
“Hardware-efficient logarithmic floating-point multipliers for
error-tolerant applications,” IEEE Transactions on Circuits and
Systems I Regular Papers, vol. PP, pp. 1–14, 11 2023.

[10] J. Zhao, S. Dai, R. Venkatesan, B. Zimmer, M. Ali, M. Liu,
B. Khailany, W. J. Dally, and A. Anandkumar, “Lns-madam:
Low-precision training in logarithmic number system using mul-
tiplicative weight update,” IEEE Transactions on Computers,
vol. 71, no. 12, pp. 3179–3190, dec 2022.

[11] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and
K. Keutzer, “A survey of quantization methods for efficient
neural network inference,” 2021.

[12] B. Rouhani, R. Zhao, V. Elango, R. Shafipour, M. Hall, M. Mes-
makhosroshahi, A. More, L. Melnick, M. Golub, G. Varatkar,
L. Shao, G. Kolhe, D. Melts, J. Klar, R. L’Heureux, M. Perry,
D. Burger, E. Chung, Z. Deng, S. Naghshineh, J. Park, and
M. Naumov, “With shared microexponents, a little shifting goes
a long way,” 2023.

