
HAL Id: lirmm-04645551
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04645551v1

Preprint submitted on 11 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Lexicographic Optimization for Prioritized
Robot Control and Planning
Kai Pfeiffer, Abderrahmane Kheddar

To cite this version:
Kai Pfeiffer, Abderrahmane Kheddar. Efficient Lexicographic Optimization for Prioritized Robot
Control and Planning. 2024. �lirmm-04645551�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04645551v1
https://hal.archives-ouvertes.fr

Received: Revised: Accepted:

Efficient Lexicographic Optimization for Prioritized Robot
Control and Planning

Kai Pfeiffer1 Abderrahmane Kheddar2,3

1Schaeffler Hub for Advanced Research, School of
Mechanical and Aerospace Engineering, Nanyang
Technological University, Singapore

2Joint Robotics Laboratory (JRL) UMI3218/RL,
CNRS/AIST, Tsukuba, Japan

3Interactive Digital Human, University of
Montpellier, CNRS, LIRMM, UMR5506,
Montpellier, France

Correspondence
Kai Pfeiffer.

Email: kaipfeifferrobotics@gmail.com

Abstract
In this work, we present several tools for efficient sequential hierarchical least-squares programming (S-
HLSP) for lexicographical optimization tailored to robot control and planning. As its main step, S-HLSP
relies on approximations of the original non-linear hierarchical least-squares programming (NL-HLSP) to a
hierarchical least-squares programming (HLSP) by the hierarchical Newton’s method or the hierarchical
Gauss-Newton algorithm. We present a threshold adaptation strategy for appropriate switches between the
two. This ensures optimality of infeasible constraints, promotes numerical stability when solving the HLSP’s
and enhances optimality of lower priority levels by avoiding regularized local minima. We introduce the
solver NADM2, an alternating direction method of multipliers for HLSP based on nullspace projections of
active constraints. The required basis of nullspace of the active constraints is provided by a computationally
efficient turnback algorithm for system dynamics discretized by the Euler method. It is based on an upper
bound on the bandwidth of linearly independent column subsets within the linearized constraint matrices.
Importantly, an expensive initial rank-revealing matrix factorization is unnecessary. We show how the
high sparsity of the basis in the fully-actuated case can be preserved in the under-actuated case. NADM2

consistently shows faster computations times than competing off-the-shelf solvers on NL-HLSP composed
of test-functions and whole-body trajectory optimization for fully-actuated and under-actuated robotic
systems. We demonstrate how the inherently lower accuracy solutions of the alternating direction method
of multipliers can be used to warm-start the non-linear solver for efficient computation of high accuracy
solutions to non-linear hierarchical least-squares programs.

K E Y W O R D S

optimisation, robots, nonlinear programming, hierarchical systems, discrete time systems, optimal control

1 INTRODUCTION

1.1 Context and contribution

Lexicographic multi-objective optimization (LMOO) is the hierarchical stacking of p optimization problems1 (lexmin.:
lexicographically minimize)

lexmin.
x,v

∥vC1∥g, . . . , ∥vCp∥g (LMOO)

s.t fC∪p (x) ≦ vC∪p

The symbol ≦ summarily describes equality and inequality constraints in the constraint set C. The symbol ∪ represents the union
of constraint sets from levels 1 to p as C∪p := C1 ∪ . . .Cp. The function fC(x) ∈ R|C| in dependence of the variable vector x ∈ Rn

represents the constraint set C. Such problems are characterized by the optimal infeasibility (slacks v) ∥v∗C∪l–1
∥g > 0 or optimality

v∗C∪l–1
= 0 of higher priority levels 1 to l – 1, which must be preserved by the lower priority levels l to p. The infeasibility

Abbreviations: HLSP, hierarchical least-squares programming; NL-HLSP, non-linear hierarchical least-squares programming; S-HLSP, sequential hierarchical least-squares
programming.

;:1–34 wileyonlinelibrary.com/journal/ © Copyright Holder Name 1

ar
X

iv
:2

40
3.

09
16

0v
1

 [
cs

.R
O

]
 1

4
M

ar
 2

02
4

2 Pfeiffer ET AL.

is thereby optimal / minimal with respect to some norm g ≥ 1. Our above formulation of LMOO is a modification of the
classical one as described in2 to include (feasible and infeasible) inequality constraints. A specific form of LMOO is non-linear
hierarchical least-squares programming (NL-HLSP) with g = 2. NL-HLSP’s have been commonly utilized in instantaneous robot
feed-forward3 and feed-back4 control. This enables an intuitive control formulation as no weights between different constraints
need to be tuned. Furthermore, robot safety and physical stability is enhanced as critical constraints of different importance are
strictly separated from control objectives like reaching tasks. Instantaneous prioritized robot control can be solved by a real-time
and anytime algorithm modification of sequential hierarchical least-squares programming (S-HLSP) for NL-HLSP5. It utilizes
the current hierarchical least-squares programming (HLSP) approximation of the original NL-HLSP to deduce a new robot
control step. By utilizing trust-region constraints or regularization, the validity of the approximation is maintained at the current
robot state. In the recent work6, S-HLSP has been leveraged for the resolution of NL-HLSP representing optimal control or
trajectory optimization problems. Here, not only one instance, but a longer horizon of the robot control and state is considered.
This enables robots to achieve a wide range of motions by reasoning in anticipating fashion about its physical and mechanical
limits7. In this work, we propose a fast hierarchical least-squares programming (HLSP) solver based on the alternating direction
method of multipliers (ADMM). The proposed HLSP solver is computationally more efficient than other solver methods when
the number of iterations is limited. Sparse nullspace projections are leveraged to eliminate structured constraints like dynamics
equations in optimal control scenarios. The nullspace basis is based on an efficient implementation of the turnback algorithm8

with an upper bound on the bandwidth in case of multiple-shooting transcription by Euler integration. At the same time, we are
able to handle multi-stage constraints like regularization of momentum evolution for safe robot control. This is a distinguishing
factor to recursive methods like differential dynamic programming (DDP,9). The efficiency of the proposed methods is evaluated
on non-linear test-functions and robot trajectory planning.

1.2 Non-linear programming

Non-linear programming (NLP) is a broad classification of optimization problems and includes non-linear and smooth convex
and non-convex constraints and objectives10. It is a special form of LMOO with p = 2, typically feasible constraints v1 = 0 and
|C2| = 1 such that the norm notation can be omitted. Solution approaches typically involve the repeated approximation of the
original non-linear program to a simpler one at the current working point. Inequality constraints are typically recast by including
penalty terms in the cost function. The primal-dual interior-point method is characterized by a barrier functions with primal
penalization towards the boundary of the feasible region11. Exact penalty functions like non-smooth indicator functions have
been investigated for example in the context of augmented Lagrangian methods. Here, infeasibilities are infinitely penalized
outside of the primal feasible region, and not penalized otherwise12. The augmented Lagrangian can for example be used
within the ADMM. It consists of alternating updates of the primal and the dual13. Another solution approach can be found in
sequential quadratic programming (SQP)14. The original non-linear optimality conditions are approximated to second order by
Newton’s method. The resulting quadratic program (QP) sub-problem is then iteratively solved for a primal and dual sub-step. In
all methods above, convergence relies on globalization methods to direct the approximate sub-steps in terms of infeasibility
reduction and optimality. Filter methods with trust region constraints are popular in SQP15. The trust-region constraint maintains
validity of the QP sub-problems by limiting the step-size. On the other hand, line search methods directly curtail the resulting
step in order to fulfill for example Armijo’s condition16. Line search in combination with a filter method has been proposed for
the interior-point method17.

1.3 Prioritized robot control and planning

NL-HLSP’s can exhibit sparsity patterns, for example resulting from discrete optimal control problems. We consider discretization
by direct transcription methods, namely numerical integration by the Euler method. Due to stage-wise variable dependency of
the constraints, the resulting optimality conditions exhibit block-diagonal structure. Exploiting this sparsity is critical in order to
maintain linear complexity in the control horizon length18. Differential dynamic programming methods9 are a popular tool to
leverage such sparse problem formulations. They are very efficient due to low bandwidth only dependent on the number of the
input controls. Originally developed for unconstrained systems, in recent years many developments have been proposed for
constrained ones. These include interior-point method19 and augmented Lagrangian20 based approaches. Prioritized trajectory
optimization has been treated for example in21 which solves a hierarchy of quadratic programs each projected into the nullspace

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 3

of the previous level. Sparsity of the constraints is exploited by leveraging DDP. The approach in22 explicitly considers the active
constraints in order to preserve the hierarchical ordering. Using principles from time-delay systems, linear and robust controls
result from quadratic program solutions at each instance of a model-predictive controller. Both approaches can only handle
input and state limit constraints. This is in contrast to LMOO as proposed in23, which is based on prioritized Pareto efficiency.
However, sparsity is not exploited. In this work, we propose a sparse solver for prioritized trajectory optimization cast as NL-
HLSP under multi-stage equality and inequality constraints. Constraints can involve variables from several stages, for example
regularization of the momentum evolution for safe robot control. Such problems can be solved by off-the-shelf sparse non-linear
solvers17. However, higher efficiency can be achieved with more dedicated solvers like the aforementioned prioritized solvers
based on the reduced Hessian formulation6. Here, the right choice of nullspace basis reduces the number of variables (dense
programming) or non-zeros (sparse programming). This offsets the computational burden of computing a basis of the nullspace.
Several sparsity preserving bases of nullspace have been proposed both in the communities of structural mechanics and control
theory. The authors in24 described a sparsity preserving basis based on identifying linearly independent sub-sets. These arise due
to the limited bandwidth of the blocks. Several improvements have been proposed. The work in25 proposes sparsity enhancing
improvements. A more efficient computation leveraging columns updates of the linearly independent sub-matrices is described
in6. A control theoretic approach has been developed for example in26.

1.4 Overview

This article is structured as follows. First, we describe the current state-of-the-art and our contributions in non-linear hierarchical
least-squares programming and prioritized non-linear optimal control (Sec. 2). We then introduce a heuristic for adjusting the
threshold for second-order information (Sec. 3). This promotes numerical stability when solving the HLSP sub-problems and
avoids local regularized minima of lower priority levels. We develop the HLSP solver NADM2 based on the ADMM, see Sec. 4.
We present how to tune parameters of the ADMM for algorithmic efficiency (Sec. 4.2) and make some considerations towards
warm-starting (Sec. 4.3) and the computation of dual variables (Sec. 4.4). Next, we design an efficient implementation of the
turnback algorithm for the computation of nullspace basis of banded matrices. Specifically, we consider dynamics discretized
by Euler integration and derive an upper bound on the bandwidth of the resulting nullspace basis (Sec. 5). We show that the
algorithm can be highly parallelized, which is a distinguishing factor in comparison to recursive methods like the DDP (Sec. 5.7).

NOMENCLATURE

l Current priority level
p Overall number of priority levels, excluding the trust region constraint on l = 0
n Number of variables
r Rank of matrix
nr Number of remaining variables after nullspace projections
m Number of constraints
x ∈ Rn Primal of NL-HLSP
∆x ∈ Rn Primal of HLSP
∆z ∈ Rnr Primal of projected HLSP
∆ẑ ∈ Rnr Auxiliary primal of projected HLSP
f (x) ∈ Rm Non-linear constraint function of variable vector x ∈ Rn

El Set of mE equality constraints (eq.) of level l
Il Set of mI inequality constraints (eq.) of level l
Il Set of mI inactive inequality constraints (ineq.) of level l
Al Set of mA active equality and inequality constraints of level l
E∪l (or E∪l) Set union E∪l :=

⋃l
i=1 Ei = E1 ∪ · · · ∪ El with mE∪l constraints

AE ∈ RmE×n Matrix representing a set E of mE linear constraints
bE ∈ RmE Vector representing a set E of mE linear constraints
N (AAl) Operator to compute the nullspace basis ZAl and the rank r of a matrix AAl

ZAl ∈ Rn×nr Nullspace basis of matrix AAl ∈ RmAl×n with rank r, nr = n – r and AAl ZAl = 0

4 Pfeiffer ET AL.

Nl–1 ∈ Rn×nr Accumulated nullspace basis NA∪l = ZA1 . . . ZAl

M̃ ∈ Rm×nr Matrix M̃ = MN projected into the nullspace basis N ∈ Rn×nr of a matrix A ∈ Rm×n of rank r; nr = n – r
(variable elimination)

v ∈ Rm Slack variable of NL-HLSP
v̂ ∈ Rm HLSP equivalent of slack variable
v∗ ∈ Rm Optimal slack variable
L Lagrangian
K Gradient of Lagrangian K := ∇L
Hl, Ĥl Hierarchical Lagrangian Hessian, positive definite equivalent
ρ, σ ADMM step-size parameter
λ ∈ Rm Lagrange multiplier
υ Scaled Lagrange multiplier
k Outer iteration of NL-HLSP solver
ι Inner iteration of HLSP solver
ρ Trust region radius
ν Activation threshold of inequality constraints
χ Convergence threshold of S-HLSP
ϵadaptive,l Adaptive second-order information (SOI) threshold of level l

2 PROBLEM DEFINITION AND CONTRIBUTIONS

2.1 Non-linear Hierarchical Least-Squares Programming

In this article, we consider non-linear hierarchical least-squares problems (NL-HLSP) as preemptive transcription28 of LMOO
with g = 2:

min.
x,vEl ,vIl

1
2
∥vEl∥

2
2 +

1
2
∥vIl∥

2
2 l = 1, . . . , p

s.t. fEl (x) = vEl

fIl (x) ≤ vIl

fA∪l–1 (x) = v∗A∪l–1

fI∪l–1 (x) ≤ 0 (NL-HLSP)

Each problem corresponding to the levels l = 1, . . . , p is solved in order. At convergence of each level l at the primal x∗l ∈ Rn,
the feasible v∗l ∈ Rml = 0 or optimally infeasible points v∗l ̸= 0 of the sets of equality and inequality constraints |El| = mEl and
|Il| = mIl is identified. The slack variables v∗A∪l–1

are the optimal ones identified for the higher priority levels 1 to l – 1. The active
set A∪l–1 contains all constraints that are active at convergence of levels 1 to l – 1. The active set includes all equality constraints
E∪l–1 , and furthermore all violated / infeasible (v∗ > 0) or saturated (v∗ = 0) inequality constraints of Il. In a similar vein, the
inactive set I∪l–1 contains all the remaining feasible inequality constraints (v∗ = 0) of the sets I∪l–1.

Contribution: we make some considerations towards resolving limitations of NL-HLSP’s. Specifically, we demonstrate how
we can identify local minima associated with negative function values, see Sec. 6.2.

2.2 Sequential Hierarchical Least-Squares Programming

Sequential hierarchical least-squares programming (S-HLSP) is a method to resolve NL-HLSP. Here, the NL-HLSP is linearized
around the current working point xk at every outer iteration k to a HLSP by virtue of the hierarchical Newton’s method5.

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 5

Non-linear Hierarchical
Least-Squares Program
(NL-HLSP)
L.1 f1(xk) ≦ v1

...
L.p fp(xk) ≦ vp

Linearization of each level l =
1, . . . , p

• If ∥v̂∗l,k∥2 ≥ ϵadaptive,l (Sec. 3)
· Hierarchical Newton’s

method5

· Hierarchical Quasi-Newton
method27

• Else
· Hierarchical Gauss-Newton

algorithm (Ĥl = 0)

Hierarchical Least-Squares
Program (HLSP)
L.0 –ρ ≤ ∆xk ≤ ρ

L.1 Ai
1,k∆xk + bi

1,k ≦ v̂i
1,k

...
L.p Ai

p,k∆xk + bi
p,k ≦ v̂i

p,k

∆xk

v̂∗A∪p,k

λ̂A∪p,k

x0, k = 0, ρ∪p = ρ0 As input for calculations of HLSP and HSF

Solve HLSP for ∆xk:
NADM2 (Sec. 4) based
on Turnback algorithm for
Euler integrated dynamics
(Sec. 5)

Is ∥∆xk∥2 < χ?
xk+1, ρl ←HSFl(xk + ∆xk, ρl)6

v∗l = vl, l++, if l = p + 1 exit

k++

No

Yes

F I G U R E 1 A symbolic overview of the sequential hierarchical least-squares programming (S-HLSP) with trust region
and hierarchical step-filter (HSF) based on the SQP step-filter15 to solve non-linear hierarchical least-squares program-
mings (NL-HLSP) with p levels. Our contributions, an adaptive threshold for second-order information and the HLSP
sub-problem solver NADM2 in combination with an efficient turnback algorithm for Euler integrated dynamics, are marked in
blue.

Hierarchical least-squares programs (HLSP) are problems of the form

min.
∆x,̂vEl ,̂vIl

1
2
∥v̂El∥2

2 +
1
2
∥v̂Il∥2

2 l = 1, . . . , p

s.t. AEl∆x – bEl = v̂El

AIl∆x – bIl ≤ v̂Il

AA∪l–1∆x – bA∪l–1 = v̂∗A∪l–1

AI∪l–1∆x – bI∪l–1 ≤ 0 (HLSP)

Variables ·̂ are the linear equivalents to the non-linear ones of the NL-HLSP. Notably, the problem constraints are linear. The
constraint matrices and vectors A and b represent this linearization (Jacobians and Hessians) of non-linear constraints f .

Utilizing Fletcher’s filter method, the resulting primal steps from the HLSP sub-problems are accepted or rejected, depending
on sufficient progress in terms of constraint infeasibility reduction and optimality. The HLSP sub-problems are subject to a
trust-region constraint in order to maintain the validity of the approximation. The trust-region radius is increased or decreased
depending on step acceptance and rejection, respectively. Linearization methods of the NL-HLSP to HLSP include the hierarchical
Newton’s method (using second order information (SOI) in form of the hierarchical Hessian) or the hierarchical Gauss-Newton
algorithm (no SOI)5. A switch between the two is decided upon the residual of the HLSP sub-problem.

Contribution: An overview of S-HLSP is given in Fig. 1. In this work, we propose an adaptive thresholding strategy for
SOI augmentation in the hierarchical Newton’s method (Sec. 3). This promotes numerical stability when solving the HLSP
sub-problems and enhances solution optimality of lower priority levels. Furthermore, an efficient solver for HLSP based on the
ADMM is presented (Sec. 4). As a first-order method, the solver primarily relies on matrix-vector multiplications instead of

6 Pfeiffer ET AL.

matrix factorizations as for the IPM. This solver is efficient in approximating a solution of moderate accuracy with a limited
number of iterations with respect to its IPM equivalent. The approximate primal guess then can be used to warm-start a high
accuracy solver as we demonstrate in Sec. 6.2.

2.3 Prioritized trajectory optimization

A specific form of NL-HLSP’s are prioritized non-linear trajectory optimization problems of the form

min.
xT ,v∪l,t

1
2
∥v∪l,t∥2

2 l = 1, . . . , p (PTO)

s.t. fl(xst :et) ≦ vl,t t = 0, . . . , T

f∪l–1(xst :et) ≦ v∗∪l–1,t

Here, f∪l–1 represents equality and inequality constraints of lower priority levels 1 to l – 1, which is indicated by the symbol ≦
(note that in the case of inactive inequality constraints I∪l–1, we have v∗∪l–1,t = 0). T is the length of the control horizon. The
individual time steps t = 0, . . . , T are also referred to as stages. Constraints only depend on specific variable segments / intervals
xst :et := x

[
st0 : et1

]
. The indices st0 ≤ et1 with t0 ≤ t1 are the start and end indices of the segments in x corresponding to time

steps t0 and t1. The constraint Jacobians J therefore exhibit a banded structure as follows

J =

∇x[0] f (xs0:e1) ∇x[1] f (xs0:e1) · · · 0

0 ∇x[1] f (xs1:e2) · · · 0
...

...
. . .

...
0 0 · · · ∇x[T] f (xsT–1:eT)

 (1)

[t] indicates the interval [st : et]. This optimal control problem structure handles multi-stage constraints (excluding the dynamics),
unlike DDP. Typically, we have some initial condition on parts of the variable vector x: = x:,0 with constant x:,0, which can be
seamlessly integrated as a high priority constraint.

Contribution: In this work, we present a sparse nullspace basis based on the turnback algorithm for Euler integrated dynamics
(Sec. 5). We provide an upper bound on its bandwidth. This enables us to design an efficient turnback algorithm which does not
rely on a costly initial rank-revealing matrix factorization. We demonstrate how the high degree of sparsity in the case of full
actuation can be transferred to the case of under-actuation

3 HIERARCHICAL STEP-FILTER WITH ADAPTIVE THRESHOLD FOR SECOND
ORDER INFORMATION

S-HLSP utilizes the hierarchical Newton’s method5 (or the Quasi-Newton equivalent27) or the hierarchical Gauss-Newton
algorithm to linearize NL-HLSP. Switching between the two can be based on the principle that at convergence, variables
corresponding to infeasible constraints need to be ‘locked’ in the HLSP by a full rank Hessian in order to not disturb the optimal
infeasibility of the non-linear constraints. Furthermore, in robotics constraint Jacobians in the HLSP are typically rank deficient
at infeasible points due to kinematic and algorithmic singularities29. The Newton’s method and its second-order information
(SOI) then acts as a regularization and enables a global solution to the HLSP. At the same time, deactivating SOI promotes
solution optimality. SOI is typically full-rank on the variables that the corresponding constraints occupy. Therefore, these
variables can not be used any more for the resolution of lower priority levels. If SOI is unnecessarily activated for feasible
constraints, this results in less optimal local minima for constraints on lower priority levels.

The switching method proposed in27 adheres to the following strategy

Hl = JTJ + SOIl if ∥v̂l∥2 ≥ ϵ (Newton’s method) (2)

Hl = JT
l Jl otherwise (Gauss-Newton algorithm)

SOI is defined as
SOIl := Ĥl = RT

l Rl (3)

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 7

Ĥl represents some positive definite regularization (for example Higham30 or symmetric Schur regularization31, Broyden-
Fletcher-Goldfarb-Shanno algorithm (BFGS)32, weighted identity matrices33, . . .) of the hierarchical Lagrangian Hessian of a
level l5. It involves SOI and approximate Lagrange multipliers of the levels 1 to l. ϵ is a constant threshold on the linear slacks v̂
as an indicator for constraint infeasibility. The linear slacks v̂ capture well-posed / compatible HLSP sub-problems and enable
SOI deactivation even if an iterate xk ̸= x∗. In contrast, the non-linear slack vl of feasible constraints only vanishes at convergence
x∗. Here, we propose an adaptive strategy for the SOI augmentation thresholds ϵadaptive,l of each level l in (2), see Sec. 3.2. This
avoids manual tuning of the SOI activation threshold which is oftentimes necessary for HLSP sub-problem solvers of different
accuracy and in dependency of the problem configurations. The method is based on the HSF for S-HLSP globalization, which is
recalled in Sec. 3.1.

3.1 The hierarchical step-filter

The HSF6 based on the SQP step-filter15 measures the progress in the approximated HLSP sub-problems with respect to the
original NL-HLSP. Each filter Fl of the levels l = 1, . . . , p of the NL-HLSP consists of pairs (h∪l–1, ∥f +

l ∥2
2) with

h∪l–1(xk + ∆xk) = ∥f +
I∪l–1

– v∗I∪l–1
∥1 + ∥fE∪l–1 – v∗E∪l–1

∥1 (4)

Here

f +
l :=

[
fEl

max(0, fIl)

]
(5)

h∪l–1 reflects feasibility of the constraints while ∥f +
l (xk + ∆xk)∥2

2 indicates objective optimality. As can be seen, we use the
non-linear slacks vl = f +

l (xk + ∆xk) instead of the linear ones v̂l from the HLSP.
A new point h∪l–1(xk +∆xk) and ∥f +

l (xk +∆xk)∥2
2 resulting from a new primal step ∆xk of the HLSP sub-problem is acceptable

to all filter points j ∈ Fl if sufficient progress in feasibility or optimality has been achieved:

h∪l–1 ≤ βhj
∪l–1 or ∥f +

l ∥2
2 + γh∪l–1 ≤ ∥f +j

l ∥
2
2 (6)

β is a value close to 1 and γ is a value close to zero and adhere to the condition 0 < γ < β < 1. Since the model reliably
represents the non-linear problem, the trust region radius is increased. Otherwise, the step is rejected and the trust region radius
is reduced. The HSF of level l converges once ∥∆xk∥2 < χ falls below the threshold χ. This process is repeated for each priority
level l = 1, . . . , p.

3.2 Adaptive SOI thresholding

The threshold adaptation strategy for ϵadaptive,l is outlined in Alg. 1. On each level l = 1, . . . , p and at every outer iteration, the
filter front (h∪l–1,front, ∥f +

l ∥2
2,front) is updated by adaptEps(ϵadaptive,l, (h∪l–1,front, ∥f +

l ∥2
2,front), (h∪l–1, ∥f +

l ∥2
2), cl, acceptedl, κ, ϵ, ϵ).

It represents the most optimal point by the margin δ that has been encountered so far on a level l.

Definition 1 (Filter front). A point (h∪l–1,front, ∥f +
l ∥2

2,front) is the front of a filter Fl to degree δ ≤ 1, if it dominates all points of
previous iterates xj with j = 1, . . . k according to

h∪l–1,front ≤ hj
∪l–1 and ∥f +

l ∥2
2,front < δ∥f +j

l ∥
2
2 (7)

An exemplary visualization is given in Fig. 2. The choice j = 1, . . . k (and not considering the filter elements j ∈ Fl) is
motivated by the fact that a filter Fl does not include all iterates xj with j = 0, . . . , k due to a concept referred to as f-type iteration
where the focus is put on optimality of the HSF level l, see15. Since this comes possibly at the cost of increase in constraint
violation h∪l–1, the threshold adaptation takes place on all levels including the current HSF level l. We reinitialize the filter front
of each level i = 1, . . . , p at the start of the step filter of a level l by (h∪l–1(x∗l–1), ∥f +

l (x∗l–1)∥2
2). x∗l–1 is the primal obtained at the

KKT point of the previous level l – 1. This handles cases where x0 is a feasible (f +
l = 0), but x∗l–1 is an infeasible point (f +

l ̸= 0) to
constraints, since otherwise no other filter front can be identified (since the condition ∥f +

l ∥2
2 < ∥f +

l ∥2
2,front = 0 would need to be

fulfilled).

8 Pfeiffer ET AL.

Algorithm 1 adaptEps

Input: ϵadaptive, (hfront, ∥f +∥2
2,front), (h, ∥f +∥2

2), c, accepted, κ, ϵ, ϵ

Output: ϵadaptive, (hfront, ∥f +∥2
2,front), c

1: if accepted then
2: if h ≤ hfront & ∥f +∥2

2 < δ∥f +∥2
2,front then

3: ϵadaptive ← min(ϵadaptive · κ, ϵ)
4: hfront = h
5: ∥f +∥2

2,front = ∥f +∥2
2

6: c = 0
7: end if
8: else if c > ζ then
9: ϵadaptive ← max(ϵadaptive/κ, ϵ)
10: end if
11: c← c + 1
12: return ϵadaptive, (hfront, ∥f +∥2

2,front), c

δ
∥

f+ l
∥

2 2,
fr

on
t

h∪l–1,front

∥
f+ l

∥
2 2,

fr
on

t

∥f +
l ∥2

2

h∪l–1

F I G U R E 2 Iterates (h∪l–1(xk), ∥f +
l (xk)∥2 of level l. A new filter front needs to lie within the shaded area.

The SOI augmentation threshold is relaxed / increased by a factor κ > 1 if a sub-step leads to a new filter front. For one,
progress towards feasibility ∥f +

l ∥2
2 = 0 is required. This is ensured by the degree δ ≤ 1. At the same time, the condition

h∪l–1 ≤ h∪l–1,front ensures that the current SOI sufficiently encapsulates SOI from constraints of previous levels f +
∪l–1 (since

otherwise the ill-posed HLSP sub-step may increase constraint violation h∪l–1).
On the other hand, the adaptation strategy tightens / decreases the threshold if a step is rejected according to (6). Furthermore,

ζ steps must have been accepted with the current SOI threshold. This promotes trust-region reductions without SOI augmentation
in order to escape local regularized minima. This is motivated by the analogies between trust-region methods and the Levenberg-
Marquardt method33 (smaller trust-region radius relates to higher regularization, whereby we prefer smaller trust-region radii
without regularization / SOI).

The described procedure leads to a more moderate and slower adaptation strategy than for example directly coupling SOI
activations to step acceptances and rejections. At the same time, the proposed heuristic for adapting the SOI threshold gives no
guarantee that 0 < ∥v̂l∥2

2 = ∥vl∥2
2 < ϵadaptive,l holds at an optimally infeasible KKT point x∗. This can be explained by the fact that

by virtue of the trust-region constraint, such a first-order point x∗ can always be obtained (the SQP filter convergence proof in15

only requires the norm of the Hessian ∥Ĥl∥2 to be bounded above; this is given for example for physically consistent systems

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 9

like robots with bounded Jacobians; no rank requirements are made). Nonetheless, we show on test functions (Sec. 6.2) that SOI
is reliably activated for infeasible constraints even if the initial threshold is chosen far away.

4 ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR HLSP

HLSP solvers both based on the active-set method3 and the interior-point method34 have been proposed. While the former is
very efficient with little changes of the active-set due to warm-starting capabilities, the latter one exhibits numerical stability and
constant computation times even in the case of ill-posed problem formulations. However, both methods rely on expensive matrix
factorizations in every inner iteration. In recent years, the ADMM for solving constrained optimization problems has seen a
sharp rise in popularity, for example in distribute optimization35. Here, we outline an ADMM for HLSP which mostly relies on
matrix-vector operations. Such first order methods typically approach a solution of moderate accuracy in few iterations13. The
proposed solver NADM2 is based on nullspace projections of active constraints as described in Sec. 4. We detail our choice of
the step-size parameter (Sec. 4.2) and our warm-starting strategy (Sec. 4.3). Our derivations are finally concluded with some
considerations regarding the computation of the Lagrange multipliers of the active constraints A∪l–1 (Sec. 4.4).

4.1 Reduced Hessian based ADMM for HLSP

Following the approach in36, which first proposed an ADMM based on the reduced Hessian, we introduce the change of variables

∆xl = ∆x∗l–1 + Nl–1∆zl (8)

with the overall primal solution

∆x∗ =
p∑

l=1

Nl–1∆z∗l (9)

Nl–1 is a basis of the nullspace of the active constraints A∪l–1 such that

AA∪l–1 Nl–1 = 0 (10)

and N0 = In×n. The particular solution ∆x∗l–1 (with ∆x0 = 0) fulfills the condition AA∪l–1∆x∗l–1 – bA∪l–1 – v∗A∪l–1
= 0 (and which

is obtained during the resolution of the higher priority levels). With appropriate choice of the nullspace basis N, this leads to
either a decrease in variables (dense programming) or non-zeros (sparse programming). In this work, we rely on the turnback
algorithm for the computation of sparse nullspace basis of banded matrices, see Sec. 5.

The change of variables leads to the following projected optimization problem, where Ã is the projected variable Ã = AN

min.
∆zl,∆ẑl,vEl ,vIl ,wIl ,wI∪l–1

1
2
∥vEl∥2

2 +
1
2

vT
Il
∥2

2

s.t. ÃEl∆zl – b̆El = vEl l = 1, . . . , p

ÃIl∆zl – b̆Il ≤ vIl

ÃI∪l–1∆zl – b̆I∪l–1 ≤ 0 (11)

The vector b̆Ξ represents the expression

b̆Ξl := bΞl – AΞl∆x∗l–1 (12)

with the corresponding indices Ξl = {El, Il, I∪l–1}.

10 Pfeiffer ET AL.

We introduce the slack variables wI∪l–1 and wIl , similarly to34. Furthermore, the auxiliary variable ∆ẑl is added to the problem
as in37. The HLSP then writes as

min.
∆zl,∆ẑl,vEl ,vIl ,wIl ,wI∪l–1

1
2
∥
[
vT
El

vT
Il

]T ∥2
2 + I+(wIl) + I+(wI∪l–1)

s.t. ÃEl∆zl – b̆El = vEl l = 1, . . . , p

ÃIl∆zl – b̆Il = vIl + wIl

ÃI∪l–1∆zl – b̆I∪l–1 = wI∪l–1

∆ẑl = ∆zl (13)

The slacks are penalized for negative values by the non-smooth indicator function I+

I+(wΨl) =
[

0 wΨl ≥ 0
+∞ otherwise

]
(14)

where
Ψl = {I∪l–1, Il} (15)

The augmented Lagrangian of level l of (11) writes as

L̃l(∆zl,∆ẑl, vEl , vIl , wIl , wI∪l–1) =
1
2
∥vEl∥2

2 +
1
2
∥vIl∥2

2 + I+(wIl) + I+(wI∪l–1) +
ρEl

2
∥ÃEl∆zl – b̆El – vEl + υEl∥2

2 (16)

+
ρIl

2
∥ÃIl∆zl – b̆Il – vIl – wIl + υIl∥2

2 +
ρl

2
∥ÃI∪l–1∆zl – b̆I∪l–1 – wI∪l–1 + υI∪l–1∥2

2 +
σ

2
∥∆ẑl – ∆zl + σ–1λ∆zl∥2

2

where

υ :=
1
ρ
λ (17)

The step-size parameters σ > 0 and ρ, the distinctions and choices ρEl →∞ and ρIl = ρl are further explained in Sec. 4.2. λ are
the Lagrange multipliers associated with the corresponding problem constraints Ξ. Resulting from the Karush-Kuhn-Tucker
(KKT) first order optimality conditions K̃vEl

= 0 and K̃vIl
= 0 (with K̃ := ∇L̃), we obtain the primal substitutions

vEl = ÃEl∆zl – b̆El + υEl (18)

vIl =
ρl

1 + ρl
(ÃIl∆zl – b̆Il – wIl + υIl) (19)

We then successively compute the alternating steps

∆ẑk+1
l ← arg min

ẑl

L̃l(∆zl,∆ẑl, vEl , vIl , wIl , wI∪l–1) (20)

∆zk+1
l ← α∆ẑk+1 + (1 – α)∆zk (21)

vk+1
El
← (18) (22)

vk+1
Il
← (19) (23)

ŵk+1
Il
← ÃIl∆ẑk+1 – vk+1

Il
(24)

ŵk+1
I∪l–1
← ÃI∪l–1∆ẑk+1 (25)

wk+1
Ψ ← max(b̆Ψ,αŵk+1

Ψ + (1 – α)wk
Ψ + υk

Ψ) (26)

υk+1
Ψ ← uk

Ψ + αŵk+1
Ψ + (1 – α)wk

Ψ – wk+1
Ψ (27)

υk+1
El
← uk

El
+ α(ÃEl∆ẑk+1 – vk+1

El
) + (1 – α)b̆El – b̆El (28)

The parameter α ∈ (0, 2) is the over-relaxation parameter (typically α = 1.6)38. For the computation of the primal ẑk+1, we
consider the optimality condition K̃ẑl = 0 which leads to the expression

Cl∆ẑk+1
l = rl (29)

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 11

The positive definite matrix Cl is defined as

Cl = ÃT
El

ÃEl +
ρl

1 + ρl
ÃT
Il

ÃIl + ρlÃT
I∪l–1

ÃI∪l–1 + σI (30)

I is an identity matrix. The right hand side writes as

rl =ÃT
El

(b̆El – υEl) +
ρl

1 + ρl
ÃT
Il

(b̆Il + wIl – υIl) + ρlÃT
I∪l–1

(b̆I∪l–1 + wI∪l–1 – υI∪l–1) + σzk
l (31)

Once the alternating steps of level l have converged with ∥K̃l∥2 < η, the active constraint sets Al∗ and Al corresponding to I∪l–1

and Il need to be composed. η is a positive numerical threshold. The level l∗ is referred to as ‘virtual’ priority level and maintains
the prioritization between active sets of I∪l–1 and Il

34. We use the following decision criteria to determine active constraints

wI∪l–1 < ν and λI∪l–1 > ν (32)

wIl < ν and vIl < –ν (33)

The resolution of the HLSP is then continued with the ADMM of the next level l + 1 projected into the nullspace Nl of the new
active set A∪l = A∪l–1 ∪ Al. The remaining inactive constraints are contained in the updated inactive set I∪l.

4.2 Choice of the step-size parameters ρ

Since equality constraints El are necessarily active at convergence, we choose ρEl →∞39. It can be seen that this leads to a
more efficient algorithm since the dual update υEl (28) is zero and therefore does not need to be computed.

Similarly, the choice ρIl →∞ for the inequality constraints Il would render its corresponding equation in (27) obsolete. In this
case, the inequality constraints are treated as equalities. Consequently, at ADMM convergence, feasible inequality constraints
are saturated (with ÃIl zl – b̆Il = 0) and infeasible constraints are active (vIl < 0). However, we noticed that this leads to increased
and unnecessary constraint activations due to the limited convergence accuracy of the ADMM (see also Sec. 4.3). Instead, we set
the step-size parameter ρIl = ρl according to37.

4.3 Warm-starting HLSP’s

Oftentimes, a slowly evolving sequence of programs (parametric program) needs to be resolved, for example in the context of
S-HLSP (see Sec. 2.2). In this case, and in contrast to interior-point methods, the ADMM can be easily warm-started, i.e., a
good initial guess for the primal and dual variables reduces the number of alternating iterations until convergence. We store the
optimal primal and dual values z∗l , w∗

Ψl
and υ∗

Ψl
and the step-size parameter ρ∗l after convergence of each level l = 1, . . . , p. In

the next problem instance, the primal and dual variables are then warm-started with these values. If exactly the same HLSP is
solved, our algorithm therefore converges as expected with zero iterations with ∆x∗k+1 = ∆x∗k =

∑p
l=1 Nl–1∆z∗l,k (9).

Nonetheless, we observed that by warm-starting the primal and dual variables, constraints previously activated tend to be
activated again in the next iteration. Potentially, this is caused by the inherently moderate accuracy of ADMM. This can
artificially delay convergence of outer methods like S-HLSP if these constraints are not actually active in the corresponding
non-linear program. We therefore reset the primal and dual sub-steps to zero in every new HLSP instance. One argumentation
for this procedure is that at S-HLSP convergence, the primal sub-step ∥∆x∥2 ≤ χ vanishes and therefore poses a good initial
guess when a non-linear parametric program is solved.

4.4 Lagrange multipliers of active constraints

Considering the dual ascent step υA∪l–1 = υA∪l–1 –∇υA∪l–1
L for the update of the Lagrange multipliers υA∪l–1 , we can see that

the gradient∇υA∪l–1
L = 0 since AA∪l–1∆x0 – bA∪l–1 – v∗A∪l–1

= 0 and AA∪l–1 (∆x0 + Nl–1∆z) – bA∪l–1 – v∗A∪l–1
= AA∪l–1 Nl–1∆z = 0

as well. Therefore, the Lagrange multipliers associated with the active constraints A∪l–1 (and whose nullspace the problem of
level l is projected into) are not updated.

12 Pfeiffer ET AL.

As noted in34, the Lagrange multipliers of the active constraints are not necessary as none of the other primal or dual variables
depend on it. However, the Lagrange multipliers may be needed within a non-linear solver based on Newton’s method. Here, the
Lagrange multipliers are used for the hierarchical Hessian. We use a fast conjugate gradient method to compute the Lagrange
multipliers if required by the non-linear solver. In case that we use the turnback nullspace bases (see Sec. 5), we use the L
factor of the LU decomposition of AA∪l–1 for preconditioning the CG algorithm for accelerated convergence. Note that with the
choice of other nullspace basis (for example based on the QR decomposition), matrix factorizations can be re-used for efficient
computation of the Lagrange multipliers5.

5 TURNBACK ALGORITHM FOR EULER INTEGRATED DYNAMICS

One critical element of the above nullspace method based HLSP solver is to efficiently compute a basis of the nullspace of the
active constraints. The appropriate choice of the nullspace basis N leads to either a decrease in variables (dense programming)
or non-zeros (sparse programming). In this work, we rely on the turnback algorithm for the computation of sparse nullspace
basis for banded matrices, which arise in discrete optimal control problems40. The main computational step of the turnback
algorithm is to determine linearly independent subsets in the matrix A, to which a certain number of columns of A is linearly
dependent. These columns are then used to compute a basis of the nullspace. Additionally, in our desired context of PTO, it is
important to preserve resulting banded structures of the constraints as much as possible. The turnback algorithm is able to do so
by considering nullspace vectors which are computed with respect to subsets of the block diagonal matrix instead of the whole
one. In this work, we introduce some computational shortcuts to the turnback algorithm tailored to dynamics discretized by
Euler integration. Importantly, we avoid a costly initial rank-revealing matrix factorization.

First, we formulate our system dynamics discretized by Euler integration (Sec. 5.1). We then outline the algorithmic details
of the original turnback algorithm (Sec. 5.2). It is based on identifying linearly independent column subsets in the matrix A.
In Sec. 5.3, we show how to identify these subsets in the case of Euler integrated dynamics and derive an upper bound on
the number of columns in the subsets. This enables us in Sec. 5.4 to design an efficient turnback algorithm without the need
of an expensive initial rank-revealing matrix factorization. Finally, we address the full-rank property of the resulting basis of
nullspace (Sec. 5.5), demonstrate how the high degree of sparsity in the case of full actuation can be transferred to the case of
under-actuation (Sec. 5.6) and comment on the parallelization of our algorithm (Sec. 5.7).

5.1 Euler integrated dynamics

The dynamics of a rigid-body system are described by the inverse dynamics Newton-Euler equations41

ID(q, q̇, τ , γ) := Mq̈ = STτ – V(q, q̇) + JTγ (35)

The joint torques τ ∈ Rnτ and contact forces γ ∈ Rnγ are considered the input variables of the system. S ∈ Rnτ×nq is a full-rank
selection matrix describing under-actuation of the system nτ < nq. The joint angles q ∈ Rnq , velocities q̇ ∈ Rnq̇ and accelerations
q̈ ∈ Rnq̈ describe the system state. M(q) ∈ Rnq×nq is the whole-body inertia matrix. V(q, q̇) ∈ Rnq describes linear and non-linear
force effects like Coriolis, centrifugal, gravitational and frictional forces. The Jacobian J(q) ∈ Rnγ×nq is associated with the
contact points. It has been noted in42 that the inverse dynamics form (explicit joint torques) is computationally advantageous
compared to the forward dynamics equations (in contrast to explicit joint accelerations).

In the following, for visualization purposes, we introduce the change of variables

q̃ =
1
∆t

q and τ̃ = ∆tτ (36)

The states s ∈ RTns (with ns = nq + nq̇) and controls u ∈ RTnu (with nu = nτ + nγ) are defined as

s =
[
q̃T

1 q̇T
1 · · · q̃T

T q̇T
T

]T
and u =

[
τ̃T

0 γT
0 · · · τ̃T

T–1 γT
T–1

]T
(37)

We assume known constant q̃0 and q̇0.

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 13

∇xfdyn =

. . .
. . . E3,t E4,t

. . . Fua
t Dua

3,t Dua
4,t

. . . Bt Ft D3,t D4,t

E1,t E2,t E3,t+1 E4,t+1

Dua
1,t Dua

2,t Fua
t+1 Dua

3,t+1 Dua
4,t+1

D1,t D2,t Bt+1 Ft+1 D3,t+1 D4,t+1

E1,t+1 E2,t+1 E3,t+2 E4,t+2

Dua
1,t+1 Dua

2,t+1 Fua
t+2 Dua

3,t+2 Dua
4,t+2

D1,t+1 D2,t+1 Bt+2 Ft+2 D3,t+2 D4,t+2

E1,t+2 E2,t+2
...

...
. . .

(DED)

PT
t ∇xfdynQT

t =

Bt D4,t Ft

E3,t

D1,t Bt+1 D4,t+1 D2,t Ft+1

E1,t E3,t+1 E2,t

D1,t+1 Bt+2 D2,t+1 Ft+2 D4,t+2

E1,t+1 E2,t+1 E3,t+2

Dua
4,t Fua

t

Dua
1,t Dua

4,t+1 Dua
2,t Fua

t+1
Dua

1,t+1 Dua
2,t+1 Fua

t+2 Dua
4,t+2

E1,t+2 E2,t+2
...

...
. . .

(PDXED)

PT
t ∇xfdynQT

t =

Bt D4,t D3,t Ft

E4,t E3,t

Bt+1 D4,t+1 D3,t+1 Ft+1

E4,t+1 E1,t E3,t+1

D2,t+1 Bt+2 D4,t+2 D3,t+2 Ft+2

E4,t+2 E3,t+2 E1,t+1

D2,t+2 Bt+3 Ft+3 D3,t+3 D4,t+3

E1,t+2 E3,t+3 E4,t+3

Dua
4,t Dua

3,t Fua
t

Dua
2,t Dua

4,t+1 Dua
3,t Fua

t+1
Dua

2,t+1 Dua
4,t+2 Dua

3,t+2 Fua
t+2

Dua
2,t+2 Fua

t+3 Dua
3,t+3 Dua

4,t+3

E1,t+3
...

...
. . .

(PDIED)

(34)

F I G U R E 3 Gradient and permuted gradients of the Euler integrated dynamics. The top matrix shows the un-permuted case.
Matrices which only appear in the explicit case and in the implicit case are colored in orange and in yellow, respectively. The
control matrices B are colored in blue. Matrices of full column rank according to theorem 1 are printed in bold. The middle
and bottom matrices show the permuted subsets for µ = 0 in the explicit and for µ = 1 in the implicit case, respectively. These
permuted column subsets are linearly independent to all other columns of∇xfdyn.

We discretize the dynamics by the direct multiple-shooting method43, namely by Euler integration. The resulting Euler
integrated dynamics (ED) write as

fdyn(t) =
[
f T
dyn,1(t) f T

dyn,2(t)
]T

:= st+1 – st – ∆tṡt(+1) =
[

q̃t+1 – q̃t – q̇t(+1)

Lt(q̇t+1 – q̇t) – ∆tGtID(qt(+1), q̇t(+1), τt, γt)

]
(ED)

We set Lt := Mt, Lt := I and Gt := I, Gt := M–1
t in the case of inverse and forward dynamics, respectively. The index (+1)

indicates implicit Euler integrated dynamics. In case of under-actuation nτ < nq̇, the corresponding degrees of freedom (freely
swinging pendulum or the ‘free-flyer’ / base of a humanoid robot) are described in linear coordinates (and not for example with

14 Pfeiffer ET AL.

quaternions) to facilitate the linear integration scheme above. For the remainder of this work, we therefore assume nq = nq̇.
Gimbal lock can be avoided for example as described in5.

The derivatives of ID with respect to q and q̇ can be computed according to44. Similarly, the first and second order derivatives
of a function f (q) with respect to q̃ writes as

∂f (q)/∂q̃ = ∆t∂f (q)/∂q (38)

∂2f (q)/∂q̃2 = ∆t2∂2f (q)/∂q2 (39)

This results in the partial derivatives

E1,t :=
∂fdyn,1(t)

∂qt
= –I, E2,t :=

∂fdyn,1(t)
∂q̇t

= –I, E3,t :=
∂fdyn,1(t)
∂qt+1

= I, E4,t :=
∂fdyn,1(t)
∂q̇t+1

= –I (40)

Bt :=
∂fdyn,2

∂τ̃t
=
∂fdyn,2

∂τt

∂τt

∂τ̃t
= –GtST , Ft :=

∂fdyn,2(t)
∂γt

= GtJT
t (41)

D1,t :=
∂fdyn,2(t)

∂q̃t
=
∂fdyn,2(t)

∂qt

∂qt

∂q̃t
=
∂fdyn,2(t)

∂qt
∆t, D2,t :=

∂fdyn,2(t)
∂q̇t

= Lt (–∆t · · ·) (42)

D3,t :=
∂fdyn,2(t)
∂q̃t+1

, D4,t :=
∂fdyn,2(t)
∂q̇t+1

= Lt (–∆t · · ·) (43)

It can be observed that due to the substitutions (37), ∆t does not appear as denominator. This is numerically advantageous for
small time steps ∆t≪ 1 s due to better matrix conditioning. Ruiz equilibration Â = SlASr

45 can equally be employed but comes
at a higher computational cost. The nullspace basis of the original matrix A becomes Z = SrẐ with ÂẐ = 0.

5.2 Turnback algorithm

The turnback algorithm based on the LU decomposition to compute a nullspace basis for a banded matrix A ∈ Rm×n consists of
the following steps8:

1. Compute rank revealing PTLUQT decomposition of A (rank rA). Then, rZ = n – rA.
2. Determine the index vector b ∈ RrZ , which indicates the first non-zero entry of each column of

ZLU = Q
[

–U–1
1 U2

I

]
(44)

Z is upper block triangular due to the block-diagonal structure of A.
3. Determine the turnback pivot columns π ∈ RrZ . They are the row indices of the permuted identity matrix in (44).
4. For each index i = 1, . . . , rZ in b, add columns to the sub-matrix Gi ∈ Rn×rZ to the right of column bi of A until linear

dependency is detected. The turnback pivot column π(i) is not added to the sub-matrix.
5. Compute the null-vector

zi = Q

U–1

1 u2

0π(i)–rA–1

1
0n–π(i)

 (45)

Q, U1 and u2 result from the LU decomposition of the sub-matrix Gi. u2 corresponds to the column π(i) of A.

The resulting turnback nullspace basis is full-rank since each pivot-column is chosen only once during the submatrix augmentation
and therefore has a similar structure to (44) with a permuted identity matrix ensuring full column rank.

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 15

5.3 Subset determination for turnback algorithm

In the following, we derive a conservative bound for the number of columns which are needed for linearly independent sub-sets
of the Euler integrated dynamics. We structure the permuted matrices (PDXED) and (PDIED) as

Gt :=

[
G1,t G2,t

Gua
1,t Gua

2,t

]
(46)

The operator ⌈a⌉ rounds the scalar a to its nearest upper integer.

Theorem 1. If Bt and Et (or namely, Mt and ST
t) with t = 0, . . . , T are of full column rank rBt = nτ and rEt = nq, the basis of

nullspace of A := ∇xfdyn (DED) is of rank rZ = T(nτ + nγ). The linear independent sub-sets of A are banded within width of
β ≤ (2 + µ)Tns + (3 + µ)(nτ + nγ). The subset augmentation factor µ is given by

µ =
(⌈

2nua

nq – nua

⌉)
for 0 ≤ nua < nq (47)

Proof. Full actuation First, we consider the case of computing a nullspace basis of DED in the case of full actuation (empty
matrices Gua

1,t, Gua
2,t with nua = 0). The rank of DED is rA = Tns (number of rows, with full row rank). The dimension of the

nullspace basis follows with rZ = T(ns + nτ + nγ) – Tns = T(nτ + nγ) (number of columns minus rank of matrix A). The bandwidth
can be identified by finding row and column permutations Pt and Qt, such that the column subset corresponding to time step
t is permuted to the upper left, see PDXED for explicit and PDIED for implicit Euler integrated dynamics, respectively. The
3(nτ + nq) leftmost columns G1,t are clearly full rank due to the block-diagonal consisting of full-rank elements B and E. The
rightmost nq + 3nγ columns G2,t are linearly dependent of them. The linearly independent subsets of DED are maximally of
length β = 2ns + 3(nτ + nγ). The above is successively applied to all time steps t = 0, . . . , T .

Under-actuation We now consider the case of under-actuation of degree nua > 0, such that nτ + nua = nq̇. In the following, we
do not consider turnback pivot columns corresponding to contact forces γ. These columns are already used in the nullspace basis
corresponding to the contact forces itself, while repeated use would violate the full-rank property, see Sec. 5.5.

Considering the permutations PDXED or PDIED, we see that Gt has at most rank (number of rows of the subset)

rGt = (3 + µ)(nτ + nq + nua) (48)

The subset augmentation factor µ adds additional time steps to the sub-set. The number of columns is (columns of subset minus
the pivot columns that need to be in the linear subset)

cGt = (3 + µ)nτ + (4 + 2µ)nq (49)

The maximum dimension of the nullspace of Gt is then

nGt = cGt – rGt = (1 + µ)nq – (3 + µ)nua (50)

The number of linearly dependent columns within the given subset nGt needs to be larger than the number of pivot columns (as
these are used to form the basis of the nullspace)

nGt ≥ nτ (51)

Inserting (50), the expression for µ (47) follows.
With this choice of µ, we find a subset which is linear dependent to our nτ pivot columns. The nγ columns corresponding to

the contact forces are already linearly dependent of Gt as discussed above. The bandwidth of the linearly independent matrix
sub-sets therefore becomes

β = (2 + µ)ns + (3 + µ)(nτ + nγ) (52)

The augmentation factor µ is a conservative measure since rGt is an approximation of the exact rank r̂Gt of Gt, with rGt ≥ r̂Gt

(therefore, the bandwidth is most likely smaller with nGt ≤ n̂Gt). In case of full under-actuation nua = nq̇, the nullspace basis

16 Pfeiffer ET AL.

Algorithm 2 turnbackParam
Input: T, n, nτ, nγ, ns, nua, β

Output: rA, rZ, b ∈ RT, b+ ∈ RT, π ∈ RrZ

1: rA = Tns

2: rZ = T(nτ + nγ)
3: nπ = 0
4: nb = 0
5: for t = 0 : T – 1 do
6: b(t) = nb

7: b+(t) = min(nb + β, n)
8: for j = 0 : nγ do
9: π(nπ) = nb + nτ + j
10: nπ ← nπ + 1
11: end for
12: for j = 0 : nq̇ – nua do
13: if Explicit Euler integrated dynamics then
14: π(nπ) = nb + nτ + nγ + nq + nua + j
15: else if Implicit Euler integrated dynamics then
16: π(nπ) = nb + nτ + nγ + nua + j
17: end if
18: nπ ← nπ + 1
19: end for
20: nb ← nb + nτ + nγ + ns

21: end for
22: return b, b+, π, rA, rZ

becomes dense with µ→∞ as expected. This means that the system response of each time ti is fully dependent on the system
state at any other given time tj with j ̸= i.

As we show in Sec. 5.6, the bands of the turnback nullspace basis for dynamics integrated by the Euler method exhibit internal
sparsity patterns. Still, the bandwidth β (52) is in contrast to an effective bandwidth of nτ + nγ for DDP (neglecting the cost of
the forward roll-out for the state calculation requiring operations in n2

s). In future work, we desire to incorporate DDP principles
into HLSP for further computational efficiency. Nonetheless, the computation of the nullspace basis can be highly parallelized,
as we describe in Sec. 5.7. This is not possible for DDP due to its recursive nature. Also, the backward recursion would need
to be computed for every priority level. In contrast, the projection into the nullspace of the dynamics only needs to be done
once. This might be more efficient for a high number of priority levels. Furthermore, multi-stage constraints involving states
and controls from several time steps (aside from dynamics constraints) are handled due to the broad optimization point of view.
Sparsity of such constraints is preserved by relying on less specialized formulations of the turnback algorithm as described in5.

5.4 Turnback algorithm for Euler integrated dynamics

Based on theorem 1, we can implement a computationally efficient version of the turnback algorithm. Foremost, the linearly
dependent column subsets of the matrix can be chosen according to the known bandwidth of Z. This means that an initial rank
revealing LU decomposition of the matrix is not necessary. Concretely, the indices b indicate the first and b+ = b + β the last
column of the sub-matrix of A. Furthermore, the turnback pivot columns are set as the columns corresponding to D1,t and the last
nτ columns of Mt. The reasoning is that the under-actuated part typically describes the free-flyer dynamics of the system which
are well conditioned as they represent the full linear and rotational inertia of the system. Note that in theorem 1, we assume
full-rank of M. This is typically given for physically consistent systems46. Algorithm 2 details the computation of above values.
The modified turnback algorithm then consists of following steps:

1. b, b+, π← Alg. 2.

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 17

2. For each index t = 1, . . . , T , compute the LU decomposition of the column submatrix Gt := A(Ct) of A. The column set Ct is
given by the column range from b(t) to b+(t) without the turnback pivot columns contained within. This leads to the set
Ct =

[
b(t), b+(t)

]
\ π(i) with i = t(ns + nτ + nγ) + ns, . . . , (t + 1)(ns + nτ + nγ).

3. Compute the null-vector according to (45).

In case of SOI augmentation V :=
[
∇xf T

dyn RT
]T

, where R is a factor of the hierarchical Hessian Ĥ := ∇2
x f T

dyn = RTR5, we
apply following two-step computation of a basis of the nullspace: first, Ntb,ed computes a basis of the nullspace according to the
turnback algorithm for Euler integrated dynamics described above (N∇xfdyn ← Ntb,ed(∇xfdyn)), and secondly,Ntb according to the
turnback algorithm as described in6 (N2 ← Ntb(RN∇xfdyn)). We then have VN∇xfdyn N2 = 0. Note, that Ntb does not provide any
sparsity guarantees but has been observed to reliably deliver sparse bases on a wide variety of sparsity patterns36. At the same
time, due to the high variable occupancy of the equation of motion, lower levels typically are not resolved anymore since most
variables are eliminated by the projections.

5.5 Full-rank property of turnback nullspace basis

Due to numerical inaccuracies, it can turn out that the pivot columns of a time step t are linearly independent of the corresponding
column sub-matrix A(Ct) to a small error ∥û2∥2 ≤ δ with δ ≪ 1 such that

A(Ct) = PTL
[

U1 u2

0 û2

]
QT (53)

Furthermore, nullspace vectors may have an error higher than a tolerance ∥Az∥2 > δ.
In these cases, we further augment the sub-matrix with blocks corresponding to timesteps t+ > t and t– < t to the ‘left’ and

‘right’ of stage t. The full-rank property of the resulting nullspace basis is preserved by not adding columns of A that correspond
to turnback pivot columns of lower time-steps t– < t. The basis of the nullspace then exhibits the following structure (we depict
the extreme case of full augmentation)

Ztb =

X1,1 X1,1 . . . X1,T–1 X1,T

I . . .

X2,1 X2,2 . . . X2,T–1 X2,T

X3,1 I . . .
...

...
. . .

...
...

Xn–2,1 Xn–2,2 . . . Xn–2,T–1 Xn–2,T

Xn–1,1 Xn–1,2 . . . I
Xn,1 Xn,2 . . . Xn,T–1 I
Xn,1 Xn,2 . . . Xn,T–1 Xn,T

(54)

The identity matrices correspond to the turnback pivot columns of A. These ensure full-column rank of the turnback nullspace.
Furthermore, it can be easily confirmed that the above is full-rank as

• columns to the left are not a linear combination of each of its columns to the right, as this would destroy the sparsity (green)
• columns to the right are not a linear combination of each of its columns to the left, as they can not eliminate the entries on

the same rows as the sparse rows (green).

5.6 Under-actuated systems

We consider the basis of nullspace of (PDXED) for fully-actuated systems (nua = 0) in the case of explicit Euler integrated
dynamics [

G1,t G2,t
]

Zt = 0 with Zt =
[

–G–1
1,tG2,t

I

]
(55)

Using block-wise inversion47 of the matrix G1,t with full-rank and invertible B and E (see theorem 1), we get

18 Pfeiffer ET AL.

G–1
1,tG2,t = (56)

B–1
t

E–1
3,t
Υ B–1

t+1 Υ Υ Υ

Υ E–1
3,t+1

Υ Υ B–1
t+2 Υ

Υ Υ E–1
2,t+1

D4,t Ft

D2,t

E2,t

=

B–1
t D3,t B–1

t Ft

B–1
t+1D2,t + ΥE2,t

E–1
3,t+1E2,t

ΥE2,t

ΥE2,t

Υ are place-holders for dense matrix blocks. Elements in gray are zero blocks. This means that the effective bandwidth of the
null-vectors (45) is β – ns in the case of full actuation. In contrast, such sparsity is not reproducible if B ∈ Rnu×nu–nnua is not
invertible due to under-actuation nua > 0. Instead of sparse block-wise inversion, row permutations of G1,t need to be applied in
order to permute invertible pivot elements onto the diagonal.

In order to avoid this, we adapt the robot dynamics by introducing ‘virtual’ controls u∗ such that the modified control matrix
B̂ =

[
B∗ B

]
∈ Rnq̇×nq̇ is full-rank and invertible as in the fully actuated case. At the same time, the virtual controls are set to zero

by two sets of inequality constraints |u∗| ≤ 0 in order to not influence the robot behavior. The choice of inequality instead of
equality constraints prevents that these constraints enter the active set (and create non-zero fill-in as without virtual controls
by nullspace projections). This method effectively increases the number of variables but this is offset by the reduced number
of non-zeros in the turnback nullspace. Such a scheme has been devised in the context of a sparse nullspace basis for optimal
control of linear time-invariant systems48.

5.7 Multi-threaded computation

The turnback algorithm can be highly parallelized. In fact, in the case of Euler integrated dynamics and with the availability
of T(nτ + nγ) threads, each subset of Z could be computed in parallel, casting the effective computational complexity of the
turnback algorithm to approximately O(β3 + β2) with β as defined in (52) (in detail: T subsets are factorized in parallel by T
threads, and the T(nτ + nγ) individual nullvectors of bandwidth β are then computed in parallel by T(nτ + nγ) threads). This is in
contrast to DDP, where T decompositions of complexity O((nτ + nγ)3) need to be computed in sequence. Therefore, a projector
based S-HLSP based on a sparsity retaining turnback algorithm may be preferred in the presence of high number of cores (and
high number of priority levels, as noted in Sec. 5.3).

6 EVALUATION

We use the presented solverNADM2 in combination with the turnback algorithm for Euler integrated dynamics within the solver
S-HLSP6 for NL-HLSP. The HLSP solver solves the HLSP sub-problems which arise from the linearization of the NL-HLSP at
its current working point x. First, we evaluate the efficiency of the modified turnback algorithm for Euler integrated dynamics (see
Sec. 6.1). Secondly, S-HLSP in combination with our proposed HLSP solver is run on a hierarchy composed of test-functions,
Sec. 6.2. For one, we investigate whether a high accuracy solution can be efficiently obtained by first approximating an optimal
primal point with our proposed solver of lower accuracy. We then switch to a high-accuracy sub-solver and continue the local
search. In Sec. 6.2, we can see how a high-accuracy solution of a NL-HLSP composed of test-functions is obtained with less
computational effort compared to a S-HLSP without an initial primal guess of lower accuracy. Furthermore, we evaluate the SOI
augmentation threshold strategy developed in Sec. 3. We then evaluate our methods to the following robot scenarios:

• Inverse kinematics of a humanoid robot HRP-2Kai (Sec. 6.3)
• Time-optimal control of the manipulator UR3e under multi-stage constraint

(Sec. 6.4)
• Swing-up of inverted pendulum (Sec. 6.5)
• Jump of robot dog Solo12 including multi-stage constraint (Sec. 6.6)

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 19

F I G U R E 4 Computation time ttb, number of non-zeros (nnz) and density (φ) of ZTZ of the turnback nullspace Z for Euler
integrated dynamics with nq = nq̇ = 22 and nγ = 24 in dependence of control horizon T and under-actuation nua.

The last three examples (inverted pendulum, manipulator and robot dog) are PTO where we use the turnback algorithm for
dynamics integrated by Euler integration (Sec 5). The latter two simulations are thereby concerned with under-actuated systems
where we follow the developments outlined in Sec. 5.6.

The simulations are run on an 11th Gen Intel Core i7-11800H 2.30GHz × 16 with 23 GB RAM. The implementations of
NADM2 and the turnback algorithm are based on the Eigen library49 and implemented in C++. The matrix C (30) is factorized
(O(n3)) only if the step-size parameter ρ is updated. We use a LDLT decomposition with low non-zero fill-in (for example
compared to the QR decomposition). Otherwise,NADM2 relies on matrix-vector operations (O(n2)) as a first-order method. The
HLSP solver NIPM2 based on the IPM (matrix factorizations in every iteration), which we proposed in our previous work34, is
modified by incorporating the proposed turnback nullspace basis for dynamics integrated by the Euler method. We can expect
computational advantage for NADM2 if

ιNADM2 + ιNADM2,ρ · n < ιN IPM · (1 + n) (57)

ι is the number of inner iterations of the respective solvers. ιNADM2,ρ is the number of factorization updates of NADM2. n is
the number of problem variables. In case of an increase of the KKT norm (which is not related to a change of ρ), we increase
the regularization factor σ (σ0 = 1 · 10–6) and reset ρ (ρ0 = 0.1). The number of inner iterations of NADM2 is limited to 1500,
or 2000 for the test in Sec. 6.5 . We use the analytical hierarchical Hessian5 as needed for the Newton’s method in Fig. 1. In
the robotics examples, the NL-HLSP’s and HLSP’s are computed by the pinocchio library50 and the automatic differentiation
package CppAD51. The Lagrange multipliers are computed according to Sec. 4.4 by the Conjugate Gradient solver LSQR52. The
turnback algorithm is based on the rank-revealing LU decomposition provided by the library LUSOL53. Note that we only depict
the computation times of the HLSP sub-solvers. Due to memory limitations, all simulations except for the turnback algorithm
evaluation are run on a single thread. NADM2 and NIPM2 are compared to the hierarchical versions of the off-the-shelf solvers
H-MOSEK54, H-GUROBI55 and H-OSQP37. All solvers rely on the same framework for active and inactive set composition.

6.1 Turnback algorithm for Euler integrated dynamics

First, we evaluate the computational efficiency of the turnback algorithm adapted to discrete Euler integrated dynamics. We
compose randomized matrices M, D and B in (DED). We choose nq = nq̇ = 22, nγ = 24 and nτ = nq̇ – nua with variable nua

(this corresponds to the dimensions of the robot dog Solo12 with four feet exerting forces and torques, such that nγ = 4 · 6, and
nua = 6). We use 8 threads for the parallel computations of the turnback algorithm as described in Sec. 5.7.

The results are given in Fig. 4. Depicted are the computation time and the number of non-zeros and density (φ = nnz(A)/(n ·m)
with A ∈ Rm×n) of the normal form ZTZ of the turnback nullspace depending of the time horizon T = 0, . . . , 25 and under-
actuation nua = 0, . . . , nq. We first consider the fully actuated case nua = 0. For T = 25, the turnback computation time is
ttb = 4.9 · 10–3 s. The resulting normal form ZTZ contains 103412 non-zeros with a density of 0.078. It can be observed that with
under-actuation nua > 0, there is a sharp incline in non-zeros and density of ZTZ. For example for nua = 1, the density increases
to 0.328 with four times as many non-zeros (415125). This can be explained by the higher coupling within the diagonal blocks
as demonstrated in Sec. 5.6. Nonetheless, the computation time does not increase as dramatically to ttb = 6.9 · 10–3 s. For full

20 Pfeiffer ET AL.

under-actuation nua = nq, the resulting nullspace basis is dense (φ = 1) as expected. At the same time, the increase in non-zeros
is quadratic. In contrast, for low nua, the linear increase of non-zero entries in T is clearly distinguishable.

6.2 NL-HLSP test-functions

NADM2 NADM2 → H-MOSEK H-MOSEK H-OSQP
(0.01 s) (0.01 s→0.11 s: 0.12 s) (0.19 s) (0.23 s)

l fl(x) ≦ vl ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter.

1 Disk ineq. x2
1 + x2

2 – 1.9 ≤ v1 1.0 · 10–5 6 9.8 · 10–6 1 9.8 · 10–6 12 1.0 · 10–5 7
2 Ros. eq. (1 – x1)2 + 100(x2 – x2

1)2 = v2 2.9 · 10–4 14 2.9 · 10–4 14 2.9 · 10–4 17 2.9 · 10–4 13
3 Disk eq. x2

1 + x2
2 – 0.9 = v3 1 2 1 1 1 1 1 2

4 Disk eq. x2
2 + x2

3 – 1 = v4 1.6 · 10–6 2 1.2 · 10–16 1 1.9 · 10–16 1 1.1 · 10–11 2
5 Disk ineq. x2

4 + x2
5 + 1 ≤ v5 1 1 1 1 1 1 1 1

6 Disk eq. x2
6 + x2

7 + x2
8 – 4 = v6 7.1 · 10–7 4 1.7 · 10–8 1 1.6 · 10–10 8 1.9 · 10–8 1

7 Ros. eq. (1 – x6)2 + 100(x7 – x2
6)2 = v7 4.2 · 10–4 1 7.6 · 10–8 24 7.4 · 10–8 35 1.8 · 10–4 111

8 McC. eq. sin(x9 + x10) + (x9 – x10)2 18.1 1 18.1 1 18.1 1 24.4 1
–1.5x9 + 2.5x10 + 1 + M = v8

9 Reg. eq. x1:10 = v9 2.9 0 2.9 0 2.9 0 7.8 0

Σ 31 (31→44) 75 76 138

T A B L E 1 Non-linear test functions: optimal slacks v∗ and number of outer iterations (Iter.) per priority level for a NL-HLSP
with p = 9 and n = 10. The hierarchy is composed of disk, Rosenbrock (Ros.), McCormick (McC.) and regularization (Reg.)
equality (eq.) and inequality (ineq.) constraints.

We apply NADM2 as HLSP sub-solver for S-HLSP to solve a NL-HLSP composed of test functions as listed in Tab. 1. This
problem constellation tests feasible and infeasible equality and inequality constraints. This also includes infeasibility arising
from conflict with constraints from higher priority levels. Note that the McCormick function includes a large positive offset M.
This enables S-HLSP to identify negative function minima (for example the minimum fMcC(–0.547, –1.547) + M = –1.9133 + M)
despite its least-squares formulation. This can be easily confirmed with the following theorem:

Definition 2. A factor M ≥ 0 is sufficiently large on the domain {x ∈ Rn : x ∈ S} if a function f̂ (x, M) = f (x) + M : S → R>0.

Theorem 2. If M ≥ 0 is sufficiently large on the domain x ∈ S , then first-order optimality of f̂ (x, M)2 applies at the same points
x∗ ∈ S as the twice continuously differentiable function f (x).

Proof. We consider the first-order derivative of f̂ (x, M)2 which writes as

∂ f̂ 2

∂x
= 2f̂

∂ f̂
∂x

= 2f̂
∂f
∂x

(58)

Clearly, ∂ f̂ 2/∂x has the same zeros as ∂f /∂x for f̂ (x, M) > 0 on the domain x ∈ S.

Figure 6 shows how the squared McCormick function with offset (fMcC + M)2 has the same minima (x∗9 , x∗10) as the original
function in the range x9, x10 ∈ [–5.5, 4]. Here, we choose M = 20. For even polynomials, the global value M∗, such that
f̂ (x∗, M∗) = 0, can be found by polynomial optimization56. In contrast, the squared McCormick function without offset has
additional minima at the zeros of f 2

McC, while missing any minima that are associated with negative function values fMcC < 0.
S-HLSP with NADM2 identifies the primal solution x = 0.983, 0.966, 0.257, 0,0, 1.02, 1.04, 1.37, -0.547, -1.547. The

evolution of the primal over the S-HLSP outer iterations is depicted in Fig. 7.NADM2 is able to solve the NL-HLSP to moderate
accuracy. For example, according to Tab. 1, the Rosenbrock equality on level 7 is solved to a residual error of ∥v∗7∥2

2 = 4.2 · 10–4

while H-MOSEK solves the same level to ∥v∗7∥2
2 = 7.4 · 10–8. At the same time, the previous levels are solved to comparable

accuracy (note that error comparisons in hierarchies need to consider that a higher error norm on a higher priority level can lead to
lower error norm on a lower priority level). While being less accurate,NADM2 (0.011 s) solves the problem the fastest out of all
the solvers, see Fig. 5. This is partly due to the low number of outer S-HLSP iterations (31, about half as many as for H-MOSEK

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 21

F I G U R E 5 Non-linear test functions, data for the different HLSP sub-solvers over S-HLSP outer iteration: computation
times per HLSP solve, number of inner iterations, KKT residuals and overall number of non-zeros handled throughout the whole
hierarchy.

with 76). Still, from Fig. 5, it can be observed that the HLSP sub-problems are solved in about 4 · 10–4 s. NIPM2 solves the sub-
problems slightly slower in about 5 · 10–4 s. This is in accordance with the number of inner iterations of ∼300 <∼50 · n =∼500
of NADM2 and NIPM2, respectively. In contrast, the next fastest solver H-OSQP solves the inner iterations in about 1 · 10–3 s.
This clearly demonstrates the advantage of solving the KKT system projected into the nullspace of active constraints.

We furthermore consider the combination of both the low and high accuracy solvers NADM2 and H-MOSEK. It can be
observed that a high accuracy solution is obtained when compared to the low accuracy solverNADM2 alone (level 7 at 7.6 · 10–8

compared to 4.2 · 10–4). At the same time, the computation time is lower (0.12 s) compared to the high accuracy solver H-
MOSEK alone (0.19 s). Consequently, a sub-problem solver with moderate accuracy like NADM2 can be used to warm-start the
S-HLSP with a lower accuracy primal guess. The reduced overall computation time follows due to the reduced number of high
accuracy sub-problem solutions (44 compared to 76 for H-MOSEK alone).

Finally, we evaluate the adaptive SOI thresholding strategy developed in Sec. 3. For this, we set the initial value to ϵadaptive,l =
100 (note that in all other examples, we initially set ϵadaptive,l = 1 · 10–12) and the lower limit to 1 · 10–12. The corresponding

22 Pfeiffer ET AL.

F I G U R E 6 Different formulations of McCormick function: original fMcC, ℓ2-norm
√

f 2
McC, with offset fMcC + M, ℓ2-norm

with offset (fMcC + M)2 (M = 20). Negative function values are colored in orange tones. Local minima are marked in black.

F I G U R E 7 Non-linear test functions: primal x over S-HLSP outer iteration (colored triangles) from start point (black dot) to
converged point (large red cross). Local minima are marked with black crosses.

parameters are chosen as ζ = 1 and δ = 0.95 (see Alg. 1). As can be seen from Fig. 8, a similar error reduction as in Tab. 1 is
achieved. However, more iterations are necessary (92 instead of 31) as ϵadaptive,l is adjusted to the infeasibility of the constraints.
Importantly, at convergence of the HSF of the infeasible levels l = 2, 3, 5, 8, we have ∥f +

l ∥2
2 > ϵadaptive,l and the SOI is activated.

At the same time, the heuristic relaxes the threshold for example for the infeasible Rosenbrock constraint on level 2 in instances
of sufficient progress in terms of optimality. Nonetheless, the SOI is erroneously activated for the feasible level 7. This motivates

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 23

F I G U R E 8 Non-linear test functions,NADM2: linear slacks ∥v̂l∥2, non-linear error ∥f +
l ∥2 (light color) and ϵadaptive,l (dashed)

for the levels l = 1, . . . , p over outer iteration. The initial value is chosen as ϵadaptive,l = 100. Gray background color indicates the
outer iterations where the respective level has been resolved by the HSF. Infeasible levels are indicated by light red background
color.

further investigation with respect to constraint optimality by avoiding regularized minima, for example based on machine
learning methods for feasibility detection.

6.3 Inverse kinematics of humanoid robot HRP-2

This simulation is concerned with solving an inverse kinematics problem for the humanoid robot HRP-2 with n = 38 degrees of
freedom. The corresponding hierarchy is given in Tab. 2 (p = 5). The first level limits the joint angles. The second level positions
the left and right feet and the left hand. The third level limits the CoM position to a bounding box. The fifth level positions the
right hand towards an out-of-reach target

[
–0.5 –0.5 –1

]
m below its feet. The right foot is positioned at

[
0.015 –0.1 0.1

]
m.

The z component is approximately at ground level 0.1 m. Lastly, all variables are regularized to zero.
The results are given in Tab 2. The converged robot posture for NADM2 is depicted in Fig. 10. Our proposed solver NADM2

solves the HLSP sub-problems the fastest at about 6 · 10–2 s. Fluctuations in computation time and non-zeros (Fig. 9) is due to
activation and deactivations of SOI on the second level. At the same time, moderate accuracy is achieved. For example, the
end-effector positioning of the left and right foot and the left hand on level 2 is resolved to an error of 3.1 · 10–6 m while the
error is reduced to less than 4.8 · 10–8 m (H-OSQP) for the other solvers. The right hand task on level 3 is resolved to an error of
1.04 m. While this is worse than for example NIPM2 (0.98 m), the adaptive SOI threshold strategy enables SOI deactivation on
the higher priority level 2. Without it, only manual tuning for each individual solver prevented the SOI activation which causes

24 Pfeiffer ET AL.

NADM2 NIPM2 NA. → H-M. H-MOSEK H-GUROBI H-OSQP
(0.06 s) (0.40 s) (0.06 s→0.39 s: 0.46 s) (0.59 s) (1.06 s) (0.089 s)

l fl(x) ≦ vl ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter.

1 J. lim. ineq. 5.1 · 10–5 2 3.4 · 10–8 1 3.4 · 10–5 0 0 0 0 0 0 0
2 LF, RF, LH eq. 3.1 · 10–6 14 2.6 · 10–10 18 7.8 · 10–9 10 9.9 · 10–9 9 7.4 · 10–8 27 4.8 · 10–8 6
3 CoM ineq. 4.1 · 10–6 1 1.0 · 10–8 1 1.0 · 10–5 65 1.0 · 10–5 30 0 28 2.6 · 10–6 1
4 Right hand eq. 1.04 9 0.98 128 1.02 2 1.02 56 1.13 19 0.98 12
5 Reg. eq. 5.5 10 4.40 7 4.1 0 4.98 0 4.70 0 4.39 0

Σ 37 156 (48→77) 125 95 74 19

T A B L E 2 HRP-2 inverse kinematics: optimal slacks v∗ and number of outer iterations (Iter.) per priority level for a NL-
HLSP with p = 5 and n = 38. J. lim.: Joint limits, LF: left foot, RF: right foot, LH: left hand. NA.: NADM2; H-M: H-MOSEK.

F I G U R E 9 HRP-2 inverse kinematics, data for the different HLSP sub-solvers over S-HLSP outer iteration: computation
times per HLSP solve, number of inner iterations, KKT residuals and overall number of non-zeros handled throughout the whole
hierarchy.

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 25

F I G U R E 10 HRP-2 inverse kinematics, NADM2: converged robot posture.

worse error convergence on lower priority levels due to high variable occupation. H-OSQP achieves a solution in the lowest
number of outer iterations (19 compared to 48 for NADM2) but is slower than NADM2 due to the slow resolution of the HLSP
sub-problems at about 4 · 10–2 s.

6.4 Time-optimal control of manipulator

NADM2 (4.8 s) NIPM2 (4.8 s) H-MOSEK (72.1 s) H-GUROBI (3.2 s)

l fl(x) ≦ vl ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter.

1 q, τ lim. ineq. 1.7 · 10–5 1 5.4 · 10–8 1 0 1 0 1
2 fdyn(x) = v2 4.9 · 10–8 17 1.6 · 10–4 29 2.3 · 10–9 48 8.5 · 10–8 10
3 fef,adtoc(x) = v3 0.11 87 8.1 · 10–2 320 7.8 · 10–2 317 1.8 53
4 ḣ(x) = v4 1509 1 1319 1 1363 1 211 1
5

[
q q̇

]T = v5 231 0 245 1 274 1 91 7
6 τ = v6 306 1 274 1 276 1 18 13

Σ 110 353 370 86

T A B L E 3 UR3e time-optimal control: optimal slacks v∗ and number of outer iterations (Iter.) per priority level for a NL-HLSP with p = 6 and n = 361.

In this simulation setting, we aim to identify a time-optimal control under actuation limits for a kinematic reaching task of the
fully actuated manipulator UR3e. Furthermore, we impose a regularization task of the momentum evolution for a safe robot
movement. Such a constraint includes variables from several stages, which is a form of constraint typically not handled by
recursive methods like DDP. Time-optimal control in least-squares programming can be achieved by a continuous approximation
of the discrete optimal time t∗ 5. Note that this requires a feasible ‘resting’ goal point, i.e. the robot can physically remain at this
point until the end of the control horizon T .

The PTO hierarchy with p = 6 is given in Tab. 3. It is composed of state and control limits, explicit inverse Euler integrated
dynamics, time-optimal control fdyn,adtoc and finally momentum time evolution ḣ, joint velocity, angle and torque regularization.
The control horizon is chosen as T = 20 such that the number of variables is n = 361. The control time step is ∆t = 0.01 s.

The results in Tab. 3 show S-HLSP convergence in 4.8 s and within 110 and 353 iterations for NADM2 and NIPM2,
respectively. This is in contrast to H-MOSEK which delivers a time-optimal solution in only 72.1 s. H-GUROBI fails to resolve
the time-optimal control fdyn,adtoc and converges quickly due to SOI activation of the dynamics constraints (which occupies most
of the variables such that lower levels show little variable activity).

26 Pfeiffer ET AL.

F I G U R E 11 UR3e time-optimal control, data for the different HLSP sub-solvers over S-HLSP outer iteration: computation
times per HLSP solve, number of inner iterations, KKT residuals and overall number of non-zeros handled throughout the whole
hierarchy.

Fig. 11 shows how the projector based solvers NADM2 and NIPM2 both solve the single S-HLSP iterations the fastest with
run-times of around 0.05 s and 0.02 s (note that H-GUROBI only resolves the hierarchy up to the dynamics constraints due to
SOI activation). In comparison, H-MOSEK solves the HLSP sub-problems in around 0.2 s. This is due to the significantly lower
number of non-zeros throughout the hierarchy for NADM2 and NIPM2 (20000, about half as many as for H-MOSEK).

Figure 12 shows the resulting joint torques normalized by their limits (lower graph) for NADM2. A time-optimal bang-bang
control profile (controls at their limits) can clearly be distinguished. This leads to a sharp drop-off of the task error fef,adtoc at
around control iteration 12 (upper graph).

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 27

F I G U R E 12 UR3e time-optimal control, NADM2. Error reduction of the time-optimal reaching task (top) and joint torques
normalized by their limits (bottom).

NADM2 (19.7 s) NIPM2 (4.1 s) H-MOSEK (11.8 s) H-GUROBI (20.3 s)

l fl(x) ≦ vl ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter.

1 |q| ≤ q, |Fcart | ≤ F, |τ∗ | ≤ 0 (only NADM2 and NIPM2) 6.6 · 10–2 1 0 1 1.7 · 10–6 33 5.0 · 10–5 1
2 fdyn(x) = v2 2.9 · 10–5 2 4.8 · 10–7 81 2.8 · 10–8 129 2.0 · 10–8 152
3 fef(q) = v3 3.90 371 3.19 78 6.0 2 3.2 1
4

[
q q̇

]T = v5 268.6 1 263.0 22 175.2 2 274.2 18
5 Fcart = v6 683.5 1 600.1 1 416.7 1 577.9 74

Σ 378 184 168 247

T A B L E 4 Inverted pendulum swing-up: optimal slacks v∗ and number of outer iterations (Iter.) per priority level for a NL-
HLSP with p = 5 and n = 375 (n∗ = 450 for NADM2 and NIPM2).

6.5 Swing-up of inverted pendulum

In this two-dimensional simulation setting, we aim to compute a swing up motion of a freely rotating pendulum mounted to
a horizontally moving cart57. The control input is given by the force Fcart (limit F = 100 N) applied horizontally to the cart
of weight 0.1 kg. The pendulum is of length 0.25 m and of mass 0.1 kg. The coordinates q =

[
q1 q2

]T
=
[
0 π

]T
describe the

horizontal cart position q1 and the pendulum angle q2. q2 = 0 corresponds to the upright pendulum position. The planning horizon
is T = 75 (∆t = 0.0025 s) with n = 375 (n∗ = 450 according to Sec. 5.6 with under-actuation nua = 1, for NADM2 and NIPM2).

The hierarchy of this trajectory optimization problem is given in Tab 4. On the first two levels, joint angle and torque limits
and the dynamics equations integrated by the explicit Euler method are defined. The third level contains a positioning task where
the desired Cartesian position of the pendulum tip is set to 0 m and 0.5 m for the horizontal and vertical axis, respectively.

The solver data is given in Tab. 4 and Fig. 13. NIPM2 is able to compute a swing-up motion in 4.1 s. The corresponding robot
values are depicted in Fig. 14. It can be seen from the bottom graph that Fcart exhibits slight jittering at the upright position from
control iteration 45 onwards. This is due to SOI approximations (linear Lagrange multipliers, regularization, numerical errors,
...). A slightly worse solution is delivered by H-GUROBI (position task error of ∥v3∥2

2 = 3.2 instead of ∥v3∥2
2 = 3.19 for NIPM2).

The computation time is significantly longer at 20.3 s and 247 outer iterations. This is due to the higher number of non-zeros

28 Pfeiffer ET AL.

F I G U R E 13 Inverted pendulum swing-up, data for the different HLSP sub-solvers over S-HLSP outer iteration: computation
times per HLSP solve, number of inner iterations, KKT residuals and overall number of non-zeros handled throughout the whole
hierarchy.

handled throughout the hierarchy and confirms the efficiency of the turnback algorithm in the under-actuated case. Both solvers
NADM2 and H-MOSEK struggle to resolve level 3 of the HLSP sub-problem (see graph of KKT norm in Fig. 13), giving rise
to worse convergence in the corresponding NL-HLSP (∥v∗3∥2

2 = 3.9 for NADM2 and ∥v∗3∥2
2 = 6.0 for H-MOSEK; note that we

increased the maximum number of inner iterations to 2000 for NADM2).

6.6 Jump of robot dog Solo12

In this example, we compute a whole-body jumping motion of the robot dog Solo12 over a horizon of T = 15 with ∆t = 0.01 s.
The base of the robot is not actuated (nua = 6). We use the turnback algorithm for under-actuated systems as described in Sec. 5.6.
This effectively increases the number of variables from n = 900 to n∗ = 990.

The control hierarchy is given in Tab. 5. Joint, torque and contact friction cone (µ = 1) constraints enforce robot safety and
physicality. The jumping motion is enforced by removing contacts from the dynamics equation fdyn in the time interval from

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 29

F I G U R E 14 Inverted pendulum swing-up, NIPM2: position and velocity q and q̇ of the cart and the freely swinging
pendulum, force Fcart applied to the cart.

NADM2 (7.0 s) NIPM2(12.2 s) H-MOSEK (80.8 s) H-GUROBI (7.4 s)

l fl(x) ≦ vl ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter. ∥v∗l ∥2 Iter.

1 |q| ≤ q, |τ | ≤ τ , |τ∗ | ≤ 0 (only NADM2 and NIPM2), γz ≥ 0 4.8 · 10–4 1 1.4 · 10–7 1 0 1 4.7 · 10–5 33
2 fdyn(x) = v2 1.2 · 10–8 5 2.8 · 10–6 2 4.8 · 10–9 55 3.1 · 10–7 1

3
√

γ2
x + γ2

y ≤ µγz 1.0 · 10–5 4 0 28 0 30 1.4 · 10–8 1

4 fef(q) = v3,1 4.9 · 10–3 6 5.2 · 10–4 12 2.5 · 10–4 30 1.8 · 10–2 3
10–3 · qact = v3,2 2.1 · 10–3 4.4 · 10–4 1.7 · 10–3 2.4 · 10–3

5 ḣ(x) = v4 83.0 35 130.5 14 176.7 51 89.5 3
6

[
qT q̇T

]T = v5 49.0 1 36.8 4 87.3 5 38.6 1
7

[
τT γT

]
= v6 36.1 1 108.1 12 315.5 7 19.0 1

Σ 54 74 180 44

T A B L E 5 Solo12 jump: optimal slacks v∗ and number of outer iterations (Iter.) per priority level for a NL-HLSP with p = 6
and n = 900 (n∗ = 990 for NADM2 and NIPM2).

t = 4 to t = 13. The contacts fef after landing are shifted by
[
0.05 0.05 0

]
m compared to the initial stance. On the same level,

we add a posture regularization task with low weight on the actuated robot joints. Furthermore, the evolution of the angular
momentum ḣ is regularized to zero. This promotes a stable flight phase.

The results are given in Fig. 15. Our solverNADM2 (7.0 s, 54 outer iterations) solves the NL-HLSP faster thanNIPM2 (12.2 s,
74 outer iterations), H-MOSEK (80.8 s, 180 outer iterations) and H-GUROBI (7.4 s, 44 outer iterations). However, the HLSP

30 Pfeiffer ET AL.

F I G U R E 15 Solo12 jump, data for the different HLSP sub-solvers over S-HLSP outer iteration: computation times per
HLSP solve, number of inner iterations, KKT residuals and overall number of non-zeros handled throughout the whole hierarchy.

solve times fluctuate with SOI activations which introduce a large number of non-zeros due to the SOI of the dynamics equations
(see nnz peaks in bottom graph of Fig. 15). This could for example be avoided by generating strictly dynamically feasible outer
iterates, which has been proposed in a SQP trust-region method58. In contrast, SOI activations of the dynamics constraints do
not occur for NIPM2, which can be contributed to the high-accuracy nature of the solver. Combined with the lower number of
iterations (∼200 times lower than the ones ofNADM2), the HLSP sub-problem solve times are limited to under 0.2 s. The HLSP
times for H-GUROBI are competitive.. The solver is efficiently warm-started by the primal of the full-rank level 5, such that levels
below converge with zero iterations. In comparison, both the solversNADM2 andNIPM2 exhibit significantly faster HLSP solve
times than H-MOSEK, which resolves every level of the hierarchy. This emphasizes the advantage of projection based methods
for active constraints elimination in order to resolve sparse problems with lower number of non-zeros. This also indicates the
high sparsity introduced by the turnback nullspace for under-actuated systems with virtual controls as described above.

The high accuracy solver NIPM2 achieves the greatest error reduction consistently throughout the priority levels, see Tab. 5.
The corresponding robot torso trajectory and contact forces are depicted in Fig. 16 and Fig. 17, respectively. It can be observed
that for a shorter time horizon of 0.14 s, the posture task is infeasible and the torso is only moved around 0.025 m into the desired
direction. The robot feet however are translated to their desired position, as can be seen from the corresponding error reduction

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 31

F I G U R E 16 Solo12 jump, NIPM2, torso trajectory, dashed for ∆t = 0.025 s.

F I G U R E 17 Solo12 jump, NIPM2, contact forces.

of fef in Tab. 5. With a longer time horizon of 0.35 s with ∆t = 0.025 s, the robot manages a larger torso transfer and shifts its
body by the desired amount of 0.05 m.

7 CONCLUSION

In this article, we proposed several tools for efficiently solving prioritized trajectory optimization problems in robot motion
planning. We designed a threshold adaptation strategy in order to appropriately activate or deactivate SOI. This promotes
optimality of the NL-HLSP and numerical stability when solving its HLSP approximation. We proposed the ADMM solver

32 Pfeiffer ET AL.

NADM2 for efficiently solving HLSP’s. It is based on a reduced Hessian formulation with nullspace basis projections of
active constraints. We directed our attention to problems of block-diagonal structure arising from optimal control formulations.
Accordingly, we designed a sparsity leveraging turnback nullspace basis of upper bounded bandwidth for dynamics discretized
by Euler integration.

The proposed HLSP solver’s efficiency was demonstrated within the S-HLSP framework to solve NL-HLSP’s. The reduced
Hessian formulation significantly reduces the number of non-zeros handled throughout the hierarchy with a sufficient number of
priority levels. With a limited number of inner iterations, this enables a fast search for an optimal point of lower accuracy. We
showed how such a point can be used to warm-start S-HLSP to find a high accuracy solution. Applicability to PTO for robot
scenarios with multi-stage constraints was demonstrated for a fully-actuated and under-actuated robots. In the latter case, we
showed how the high sparsity of the turnback nullspace for fully-actuated robots can be maintained in the case of under-actuation.
The SOI threshold adaptation strategy was shown to adjust to constraint infeasbility even from a far off starting point.

Our method sparsely and once and for all eliminates the dynamics constraints from the HLSP sub-problems. In future work,
we aim to extend the turnback algorithm to higher-order integration methods. Furthermore, as a non-recursive method, our
method is associated with a high memory footprint as all control time-steps need to be handled in one big solution system. We
therefore aim to implement recursive formulations of our method to achieve higher solver maturity, for example based on DDP
principles. While this is associated with low bandwidth and high degree of sparsity, special attention needs to be paid with
respect to multi-stage constraints and high number of priority levels, as the recursions need to be computed for every level.

FUNDING

This work is partly supported by the Schaeffler Hub for Advanced Research at Nanyang Technological University, under the
ASTAR IAF-ICP Programme ICP1900093. This work is partly supported by the Research Project I.AM. through the European
Union H2020 program (GA 871899).

CONFLICT OF INTEREST DISCLOSURE

The authors have no relevant financial or non-financial interests to disclose.

DATA AVAILABILITY

Data generated by our algorithms S-HLSP and the HLSP sub-problem solvers are available from the corresponding author on
request.

References

1. Sherali HD, Soyster AL. Preemptive and nonpreemptive multi-objective programming: Relationship and counterexamples. Journal of Optimization
Theory and Applications. 1983;39:173-186.

2. Lai L, Fiaschi L, Cococcioni M, Deb K. Pure and Mixed Lexicographic-Paretian Many-Objective Optimization: State of the Art. Natural Computing.
2022.

3. Escande A, Mansard N, Wieber PB. Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International
Journal of Robotics Research. 2014;33(7):1006–1028.

4. Djeha M, Gergondet P, Kheddar A. Robust Task-Space Quadratic Programming for Kinematic-Controlled Robots. IEEE Transactions on Robotics.
2023;39(5):3857-3874.

5. Pfeiffer K, Escande A, Gergondet P, Kheddar A. The Hierarchical Newton’s Method for Numerically Stable Prioritized Dynamic Control. IEEE
Transactions on Control Systems Technology. 2023:1-14.

6. Pfeiffer K, Kheddar A. Sequential Hierarchical Least-Squares Programming for Prioritized Non-Linear Optimal Control. 2024.

Efficient Lexicographic Optimization for Prioritized Robot Control and Planning 33

7. Meduri A, Shah P, Viereck J, Khadiv M, Havoutis I, Righetti L. BiConMP: A Nonlinear Model Predictive Control Framework for Whole Body
Motion Planning. IEEE Transactions on Robotics. 2023:1-18.

8. Kaneko I, Lawo M, Thierauf G. On computational procedures for the force method. International Journal for Numerical Methods in Engineering.
1982;18:1469-1495.

9. Mayne D. A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems. International Journal of
Control. 1966;3(1):85-95.

10. Nocedal J, Wright SJ. Numerical Optimization. New York, NY, USA: Springer. second ed., 2006.

11. Forsgren A, Gill PE, Wright MH. Interior Methods for Nonlinear Optimization. SIAM Review. 2002;44(4):525–597.

12. Hestenes MR. Multiplier and gradient methods. Journal of Optimization Theory and Applications. 1969;4:303-320.

13. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers. Foundations and Trends in Machine Learning. 2011;3:1-122.

14. Boggs P, W. Tolle J. Sequential Quadratic Programming. Acta Numerica. 1995;4:1-51.

15. Fletcher R, Leyffer S, Toint PL. On the Global Convergence of a Filter–SQP Algorithm. SIAM Journal on Optimization. 2002;13(1):44-59.

16. Armijo L. Minimization of functions having Lipschitz continuous first partial derivatives.. Pacific Journal of Mathematics. 1966;16(1):1 – 3.

17. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming. 2006;106:25-57.

18. Wang Y, Boyd S. Fast Model Predictive Control Using Online Optimization. IEEE Transactions on Control Systems Technology. 2010;18(2):267-
278.

19. Pavlov A, Shames I, Manzie C. Interior Point Differential Dynamic Programming. IEEE Transactions on Control Systems Technology. 2021;PP:1-8.

20. Jallet W, Bambade A, Arlaud E, El-Kazdadi S, Mansard N, Carpentier J. PROXDDP: Proximal Constrained Trajectory Optimization. working
paper or preprintnot; 2023.

21. Geisert M, Del Prete A, Mansard N, Romano F, Nori F. Regularized Hierarchical Differential Dynamic Programming. IEEE Transactions on
Robotics. 2017;33(4):819-833.

22. Wang Y, Liu Y, Leibold M, Buss M, Lee J. Hierarchical Incremental MPC for Redundant Robots: a Robust and Singularity-Free Approach. IEEE
Transactions on Robotics. 2024:1-20.

23. Tazaki Y, Suzuki T. Constraint-Based Prioritized Trajectory Planning for Multibody Systems. IEEE Transactions on Robotics. 2014;30(5):1227-
1234.

24. Topcu A. A contribution to the systematic analysis of finite element structures using the force method. Ph.D. thesis, University of Essen, Germany.
1979.

25. Gilbert JR, Heath MT. Computing a Sparse Basis for the Null Space. SIAM Journal on Algebraic Discrete Methods. 1987;8(3):446-459.

26. Yang J, Meijer T, Dolk V, Jager Bd, Heemels W. A System-Theoretic Approach to Construct a Banded Null Basis to Efficiently Solve MPC-Based
QP Problems. In: 2019:1410-1415.

27. Pfeiffer K, Escande A, Kheddar A. Singularity Resolution in Equality and Inequality Constrained Hierarchical Task-Space Control by Adaptive
Nonlinear Least Squares. IEEE Robotics and Automation Letters. 2018;3(4):3630-3637.

28. Cococcioni M, Pappalardo M, Sergeyev YD. Lexicographic multi-objective linear programming using grossone methodology: Theory and
algorithm. Applied Mathematics and Computation. 2018;318:298-311. Recent Trends in Numerical Computations: Theory and Algorithms.

29. Chiaverini S. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on
Robotics and Automation. 1997;13(3):398–410.

30. Higham N. Computing the Polar Decomposition with Applications. SIAM Journal on Scientific and Statistical Computing. 1986;7(4):1160-1174.

31. Golub GH, Van Loan CF. Matrix Computations (3rd Ed.). Baltimore, MD, USA: Johns Hopkins University Press, 1996.

32. Broyden CG. The Convergence of a Class of Double-rank Minization Algorithms. Journal of the Mathematics and its Applications. 1970;6:76–90.

33. Moré JJ. The Levenberg-Marquardt algorithm: Implementation and theory. In: Watson GA., ed. Numerical AnalysisSpringer Berlin Heidelberg
1978; Berlin, Heidelberg:105-116.

34. Pfeiffer K, Escande A, Righetti L. N IPM-HLSP: an efficient interior-point method for hierarchical least-squares programs. Optimization and
Engineering. 2023:1573-2924.

34 Pfeiffer ET AL.

35. Liu Z, Guo F, Wang W, Wu X. A distributed parallel optimization algorithm via alternating direction method of multipliers. IET Control Theory &
Applications. 2023;17(7):896-905. doi: https://doi.org/10.1049/cth2.12421

36. Dang TV, Ling KV, Maciejowski J. Banded Null Basis and ADMM for Embedded MPC. IFAC-PapersOnLine. 2017;50(1):13170-13175. 20th
IFAC World Congress.

37. Stellato B, Banjac G, Goulart P, Bemporad A, Boyd S. OSQP: an operator splitting solver for quadratic programs. Mathematical Programming
Computation. 2020;12(4):637–672.

38. Eckstein J, Bertsekas D. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators.
Mathematical Programming. 1992;55:293-318.

39. Ghadimi E, Teixeira A, Shames I, Johansson M. Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM):
Quadratic Problems. IEEE Transactions on Automatic Control. 2014.

40. Rao AV, Benson DA, Darby C, et al. Algorithm 902: GPOPS, A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using
the Gauss Pseudospectral Method. ACM Trans. Math. Softw.. 2010;37(2).

41. Li Z, Ge SS. Adaptive robust controls of biped robots. IET Control Theory & Applications. 2013;7(2):161-175. doi: https://doi.org/10.1049/iet-
cta.2012.0066

42. Carpentier J, Mansard N. Analytical Derivatives of Rigid Body Dynamics Algorithms. Robotics: Science and Systems XIV. 2018.

43. Giftthaler M, Neunert M, Stäuble M, Buchli J, Diehl M. A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control.
2017.

44. Singh S, Russell RP, Wensing PM. Efficient Analytical Derivatives of Rigid-Body Dynamics Using Spatial Vector Algebra. IEEE Robotics and
Automation Letters. 2021;7:1776-1783.

45. Knight PA, Ruiz D, Uçar B. A Symmetry Preserving Algorithm for Matrix Scaling. SIAM Journal on Matrix Analysis and Applications.
2014;35(3):931-955.

46. Udwadia F, Schutte A. Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 2010;213.

47. Lu TT, Shiou SH. Inverses of 2 × 2 block matrices. Computers & Mathematics with Applications. 2002;43(1):119-129.

48. Pfeiffer K, Righetti L. N IPM-MPC: An Efficient Null-Space Method Based Interior-Point Method for Model Predictive Control. 2021.

49. Guennebaud G, Jacob B, others . Eigen v3. http://eigen.tuxfamily.org; 2010.

50. Carpentier J, Saurel G, Buondonno G, et al. The Pinocchio C++ library – A fast and flexible implementation of rigid body dynamics algorithms
and their analytical derivatives. In: 2019.

51. Bell M. CppAD: A package for differentiation of C++ algorithms (2024/02/01. http://www.coin-or.org/CppAD; 2024.

52. Paige CC, Saunders Ma. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical
Software. 1982;8(1):43–71.

53. Gill PE, Murray W, Saunders MA, Wright MH. Maintaining LU factors of a general sparse matrix. Linear Algebra and its Applications.
1987;88-89:239-270.

54. ApS M. MOSEK Fusion API for C++ 10.1.12. 2019.

55. Gurobi Optimization, LLC . Gurobi Optimizer Reference Manual. 2023.

56. Chen T, Lasserre JB, Magron V, Pauwels E. A sublevel moment-SOS hierarchy for polynomial optimization. Computational Optimization and
Applications. 2021;81:31 - 66.

57. Cavdaroglu M, Olgac N. Trajectory tracking of cart-pendulum dynamics using multiple time-delayed feedback. Control Theory & Applications,
IET. 2008;2:458 - 466. doi: 10.1049/iet-cta:20070242

58. Tenny MJ, Wright SJ, Rawlings JB. Nonlinear Model Predictive Control via Feasibility-Perturbed Sequential Quadratic Programming.
Computational Optimization and Applications. 2004;28(1):87-121.

http://dx.doi.org/https://doi.org/10.1049/cth2.12421
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2012.0066
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2012.0066
http://dx.doi.org/10.1049/iet-cta:20070242

	Efficient Lexicographic Optimization for Prioritized Robot Control and Planning
	Abstract
	Introduction
	Context and contribution
	Non-linear programming
	Prioritized robot control and planning
	Overview

	Nomenclature
	Problem definition and contributions
	Non-linear Hierarchical Least-Squares Programming
	Sequential Hierarchical Least-Squares Programming
	Prioritized trajectory optimization

	Hierarchical step-filter with adaptive threshold for second order information
	The hierarchical step-filter
	Adaptive SOI thresholding

	Alternating direction method of multipliers for HLSP
	Reduced Hessian based ADMM for HLSP
	Choice of the step-size parameters
	Warm-starting HLSP's
	Lagrange multipliers of active constraints

	Turnback algorithm for Euler integrated dynamics
	Euler integrated dynamics
	Turnback algorithm
	Subset determination for turnback algorithm
	Turnback algorithm for Euler integrated dynamics
	Full-rank property of turnback nullspace basis
	Under-actuated systems
	Multi-threaded computation

	Evaluation
	Turnback algorithm for Euler integrated dynamics
	NL-HLSP test-functions
	Inverse kinematics of humanoid robot HRP-2
	Time-optimal control of manipulator
	Swing-up of inverted pendulum
	Jump of robot dog Solo12

	Conclusion
	Funding
	Conflict of interest disclosure
	Data availability
	References

