
HAL Id: lirmm-04646842
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04646842v2

Submitted on 12 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collaborative Benchmarking Rule-Reasoners with
B-Runner

Federico Ulliana, Pierre Bisquert, Akira Charoensit, Renaud Colin, Florent
Tornil, Quentin Yeche

To cite this version:
Federico Ulliana, Pierre Bisquert, Akira Charoensit, Renaud Colin, Florent Tornil, et al.. Collabo-
rative Benchmarking Rule-Reasoners with B-Runner. BDA 2024 - 40e Conférence sur la Gestion de
Données – Principes, Technologies et Applications, Oct 2024, Orleans, France. �lirmm-04646842v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04646842v2
https://hal.archives-ouvertes.fr

Collaborative Benchmarking Rule-Reasoners
with B-Runner

Federico Ulliana1, Pierre Bisquert2,1, Akira Charoensit1,
Renaud Colin2, Florent Tornil1, Quentin Yeche2

1Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France
2INRAE, Montpellier, France

Abstract
Conducting experimental analysis on rule reasoners is a
mainstream task for validating novel algorithms and systems.
Nevertheless, providing robust, veri�able, and reproducible
experiments can still raise a sensible challenge. We propose
to demonstrate B-Runner, an open library for collaborative
benchmarking focusing on the deployment of articulate tests
for knowledge and rule-based systems with low cost and high
robustness. B-Runner reduces the benchmarking setup time
while guaranteeing experiment repeatability. At the same
time, it improves the scrutability of experimental protocols
thereby enhancing their robustness as well as fairness of
system comparisons. This demonstration proposes to show-
case the use of the tool for systematically testing a number
of systems as well as to introduce its architecture and its
extensibility to novel tools and experimental protocols.

1 The Benchmarking Issue
Scienti�c experiments are essential for validating and im-
proving systems, but they come with numerous challenges.
These can be classi�ed depending on whether they are re-
lated to planning, reporting, or conducting experiments.
Planning consists in writing down all design choices for

the experiments. Notably, the benchmarks to use, the com-
petitors to consider, the testing environment (hardware/soft-
ware) and the target measures.

Reporting includes retrieving and analyzing the results,
then choosing the most meaningful data as well as the most
informative and succinct graphical representations.
Conducting consists in faithfully implementing what has

been planned. This includes setting up the test environment,
coding (and verifying) the experimental protocols, and then
running the tests while handling potential failures.

While all phases of experimental analysis can cause issues,
the experiment conduction is perhaps the least accessible
part. Accessibility here is intended as the time and e�ort
it takes a user to conduct a robust experimental analysis. Of
course, with high accessibility experimental analysis can be
deeper, which directly translates to more thoughtful valida-
tion of novel approaches.
Conducting is also intimately related to repeatability. Re-

peatability means that another user equipped with the ap-
propriate software and hardware can repeat the same ex-
periments. Repeatability is easily attained when experiment

Figure 1.Benchmarking:0) Independent vs1) Collaborative.

conduction is simple, reliable, and documented. Conversely,
it may be a burden to prepare a test suite and write sophisti-
cated instructions on how to con�gure and run a benchmark
starting from ad-hoc scripts, not to mention debugging them
to make them portable on di�erent systems. Experiment re-
peatability has become increasingly relevant during the last
decades. Nowadays many conferences consider the availabil-
ity of test artifacts in the review of scienti�c work, and have
established reproducibility1 tracks.

1.1 Independent vs Collaborative Benchmarking
In this work, we argue that the underlying issue with bench-
marking conduction and repeatability lies in the lack of a plat-
form for collaborative benchmarking. Indeed, the most com-
mon benchmarking scenario is one where activities are con-
ducted independently, which in practice results in a plethora
of hard-to-maintain scripts and ad hoc methods for running
tests. While this consideration may apply to many �elds,
we stress that our focus is on the case of benchmarking
knowledge and rule-based reasoners for which we introduce
a dedicated collaborative benchmarking library.

Independent Benchmarking. Figure 1.a) illustrates a set
of users (here �,⌫,⇠) conducting an experimental analysis
to understand the performances of a given reasoning system
(which may or may not have been coded by one of the users).
The reasoning system supports query answering (QA) tasks
on a knowledge base. In particular, users ⌫ and ⇠ want to

1reproducibility is stricter than repeatability: not only it ensures that the
experiment can be re-run, but that it also yields the same result.

F. Ulliana et al.

test the performances of QA via query rewriting while user
� is interested in the performances of QA via the chase.

Let us explain in detail this scenario. A knowledge base
(KB) can be seen as the extension of a database (also referred
to as a factbase) with a set of rules modelling semantic con-
straints on the data. These semantic constraints can be used
to both enrich and ensure the consistency of the data [5]. The
reasoner can be commanded through an API. The API also of-
fers a number of advanced features. For instance, loading and
building the knowledge base starting from plain data and/or
data-integration mappings [9], and rules. But also, deploying
a certain type of internal storage for the data (graph, rela-
tional, triplestore, in-memory/disk, etc.). And �nally, being
able to evaluate queries on a factbase (without considering
the rules). The API also includes a number of advanced fa-
cilities. This includes techniques which accounts for rules
using saturation (also called chase) and query rewriting. The
chase approach essentially consists at extending the KB data
(i.e., the factbase) with the result of the application of rules
[4]. Query rewriting in contrast compiles the rules into the
input query thereby yielding a reformulated query which
provides the same answers (as the input rules and query) on
any database [8]. Query answering via the chase consists
in evaluating the input query on the saturated knowledge
base. Query answering via rewriting consists in evaluating
the reformulated query on the input data.2

As Figure 1.a) shows, to conduct the test, every user writes
a script coding an experimental protocol by leveraging on
the API. Typically, this is done from scratch. Firstly, this is
time consuming, as it requires learning the API and internals
of the system as well as coding the measurements for the
API calls. Secondly, this is error prone. Indeed, since scripts
are independently written, for more complex tests it is not
uncommon for the test protocols to even diverge - with an
impact on measures.3 All of this makes that setting up an
experiment can have a signi�cant cost and compromised
robustness, resulting in low accessibility.

Collaborative Benchmarking. A principled solution to
this issue is to provide users with a platform for collaborative-
benchmarking, which simpli�es the conduction of extended
test trials. Collaborative benchmarking captures the idea that
robust and repeatable experimental analysis can be achieved
if a community of users work together on 8) consolidating a
set of test protocols which 88) can run on a reliable framework
and 888) without unnecessary complexity at the user level. Fig-
ure 1.b) illustrates the case for collaborative benchmarking.
Again, we consider users ⌫ and ⇠ testing QA via rewriting
2To illustrate, let us consider the factbase � = {Prof (Alice) } the rule
8G .Prof (G) ! Faculty (G) and the query & = 9~.Faculty (~) . The chase
will yields {Prof (Alice), Faculty (Alice) } on which& answers true. Query
rewriting will yield 9~.Faculty (~) _ Prof (~) which answers true on � .
3typical errors are including/omitting optimizations in the tool, parsing
time, writing on disk or standard output (logging, result export), improper
use of cold/warm measures, misplaced timers or timeouts.

and user � testing QA via the chase. The �rst characteris-
tic of this approach is that it allows users to share bench-
markable services (or simply services) coded in a common
programming language.4 Every such service implements a
self-contained testing protocol which allows one to measure
the performances (time, throughput, etc.) of a certain task.
This test protocol is meant to be deployed on a variety of
input scenarios and algorithm con�gurations - and not on a
single one. By de�nition, sharing test implementations can
bene�t from code reviews in a collaborative environment,
thus increasing the robustness of the experimental analysis
and avoiding the divergence of testing protocols. Figure 1.b)
illustrates user � sharing a service for running QA via the
chase, while user ⇠ shares a service for QA via rewriting.
By fostering test reuse, user ⌫ can perform an experimental
analysis without coding by reusing the service shared by ⇠ .
This results in signi�cant time savings. Besides test sharing,
another key characteristic of this approach is that test trials
are speci�ed by users via con�gurations. This makes the spec-
i�cation of test trials more declarative than programmatic,
and hence independent from any programming languages. In
this aspect, collaborative benchmarking is strongly opposed
to independent benchmarking, the latter allowing each script
to be potentially written in a di�erent language. Crucially,
con�guration �les can also be shared, as illustrated for users
⌫ and ⇠ . Not only does this save time, but it allows users
to communicate and document the content and aim of their
experiments in a more standard and intelligible way.

1.2 Novelty and Contributions.
We propose to demonstrate B-Runner: a Java tool for collabo-
rative benchmarking on knowledge and rule-based reasoners.5
The distinctive elements of the tool are the following.

1) Collaborative B-Runner allows users to share and
reuse test protocols and con�gurations. Collaborative bench-
marking has not been considered so far for rule-based rea-
soners. To the best of our knowledge, B-Runner is the only
tool implementing this approach for rule-based reasoners.
2) Simple and Robust B-Runner allows to de�ne trial

speci�cations through declarative con�gurations which re-
quire minimal coding and learning of test systems. B-Runner
proposes a design pattern for writing test protocols that fa-
vors their scrutability. The execution of tests is controlled via
the Java Microbenchmarking Harness (JMH) library. This fa-
vors converging towards robust error-free testing protocols
and measures.
3) Extensible and Portable. B-Runner’s generic archi-

tecture allows to easily include novel systems and testing
protocols. B-Runner is Java-based, which makes it portable,
yet still able to support benchmarking of non-Java systems.

4While in principle services can be written using di�erent languages, a
single language very much improves protocol readability.
5B-Runner is an open source tool available at gitlab.inria.fr/rules/brunner.

https://gitlab.inria.fr/rules/brunner

B-Runner

Related Work. Collaborative benchmarking is important
in the context of scienti�c work�ows [7]. These have been in-
troduced for the reproducibility and automation of large scale
scienti�c computations in domains such as genomics, biol-
ogy, and astronomy [7]. A scienti�c work�ow is expressed as
a directed graphwhose nodes are computations and edges de-
pendencies. Research work in this area concerns the design
of languages for work�ow speci�cation, as well as the repro-
ducibility of experiments (or part of experiments) involving
large data masses. The optimization of scheduling compu-
tations across di�erent distributed and cloud platforms has
also been considered, with the goal to obtain results faster
and with less cloud computation [7].

User Groups. B-Runner can be used by two types of users:
testers and providers. Testers de�ne experiments from avail-
able services using con�guration �les (for instance, user ⌫
in Figure 1.b). Providers share benchmarking services (for
instance, users � and ⇠ in Figure 1.b that share services for
testing respectively KB chase and QA chase). In the remain-
der of this paper, Section 2 presents how a tester can declare a
benchmarking activity through a con�guration �le, and how
B-Runner responds to it. Section 3 shows what needs to be
done on the provider side to o�er a benchmarking protocol.
Section 4 delves into features and limits of B-Runner. Section
5 outlines the scenarios proposed for this demonstration.

2 Benchmarking in a Hurry!
The �rst distinctive feature of B-Runner is the possibility
of conducting experiments at small cost for tester users. Let
us introduce the benchmarking activities we consider. A
benchmarking activity ⌫ is a sequence of service execu-
tions ⌫ = (41, . . . , 4:). Every service execution is a triple
4 = (B, 2, A) where B is a service, 2 is a con�guration for the
service, and A the repetition parameters. A con�guration
2 = (=,0,3) is a combination of an execution environment
= on top of which the service B is executed by taking as
input an algorithm con�guration 0 and an input scenario
3 . The repetition parameter is a couple A = (5 , 8) where 5
is the number of forks and 8 the number of the iterations
for the execution of B given 2 . Figure 2 illustrates a bench-
marking activity made of four service executions (with their
corresponding con�gurations and repetitions parameters).
The goal of a fork is twofold. Firstly, it creates a “cold”

execution environment. Secondly, it sets up the reasoning
system for running a number of repetitions (of the same
service). An iteration takes places within a fork, and con-
sists in the actual execution of the service itself. It is worth
pointing out that every fork in B-Runner triggers the cre-
ation of a new Java Virtual Machine (JVM) where the test
runs. More speci�cally, this is accomplished by leveraging
on Java Microbenchmark Harness (JMH), and happens to be
useful to eliminate measure bias (due to cache, Just-In-Time
compilation, etc.).

1 # Reasoner

2 reasoner = integraal

3
4 # Scenarios (fixed rules and queries)

5 ### 10M data

6 scenario .10M.data = data10.dlgp

7 scenario .10M.rules = ontology.dlgp

8 scenario .10M.workload = queries.dlgp

9
10 ### 100M data

11 scenario .100M.data = data100.dlgp

12 scenario .100M.rules = ontology.dlgp

13 scenario .100M.workload = queries.dlgp

14
15 # Algorithms

16 ### chase (in-memory)

17 tool.inmem_chase.service = QAChase

18 tool.inmem_chase.dbType = inMemoryGraphStore

19 tool.inmem_chase.checker = semiOblivious

20
21 ### rewriting (postgres)

22 tool.postgres_rew.service = QARewriting

23 tool.postgres_rew.driver = postgreSQL

24 tool.postgres_rew.driverURL = jdbc:postgresql ://...

25
26 # Environment

27 execution.basic_env.maxMemory = 16g

28 execution.basic_env.timeout = 10m

29 execution.basic_env.fork = 2

30 execution.basic_env.iterations = 3

31
32 # Export

33 export = json

Figure 2. Trial Con�guration Example

Figure 2 illustrates a con�guration written by a tester and
inspired by the example given in the introduction (Figure 1).6
In the example, reserved keywords for B-Runner are high-
lighted in blue. As indicated by line 2, the con�guration
applies to the InteGraal reasoner [3].7 Keywords proper to
the con�guration of InteGraal are highlighted in red. The
con�guration then continues with the speci�cation of two
test scenarios “10M” (lines 7-9) and “100M” (lines 12-14).
To declare di�erent datasets, we use the reserved keyword
scenario. Both scenarios consider the same ontology-rules
6The syntax represents a collection of properties of the form =0<4 = E0;D4
where =0<4 is a sequence of keys of the form 0.1 .2 and E0;D4 is a string.
This notation is used in our case as a notation for trees. For instance the set
of properties {0.3 = 1,0.4 = 2} can be equivalently expressed as an XML
tree <a>1<c>2</c> or a JSON record {a:{b:1,c:2}}.
7In B-Runner, every con�guration �le can be associated to a single reasoner.
Although in principle multiple reasoners could be managed from the same
con�guration, it is unlikely that their parameters would be the same. Hence,
a good practice is to keep con�gurations for di�erent reasoners separated.

F. Ulliana et al.

1 public void serviceOperations () {

2 setup(DATA_LOADING , this:: setData);

3 setup(RULE_LOADING , this:: setRules);

4
5 operation(QUERY_LOADING , this:: setQuery);

6 operation(BUILD_REWRITER , this:: buildRewriter);

7 operation(QUERY_REWRITING , this:: rewrite);

8
9 operation(BUILD_EVALUATOR , this:: buildEvaluator);

10 operation(QUERY_EVALUATION , this:: evalRewriting);

11 }

Figure 3. Protocol for Rewriting-based Query Answering

and queries but di�er in terms of data (here, .dlgp denotes
the Datalog-Plus language [2]. Then, two di�erent algorith-
mic strategies for query answering are used. This is done
with properties pre�xed by the keyword tool. The �rst is
via the chase procedure (line 17). Note also that the data is
stored in a native InteGraal in-memory graph store (line 18)
and that a speci�c variant of the chase, called semi-oblivious
[5] is chosen (line 19). Similarly, a second strategy based
on rewriting is de�ned (line 22). In this case, note that the
data is stored on a (local or remote) PosgtreSQL server (line
23) which is accessible via the given connection URL (line
24). These options illustrates the richness and simplicity of
the algorithm con�guration that can be achieved. Finally,
the execution environment for the tests is set. This is done
to properties pre�xed by the keyword execution. Options
here include setting the maximum JVM size to 16GB (line
27), setting the timeout for the execution of a single iteration
to 10 minutes (line 28), and setting the number of forks and
repetitions (lines 29-31). The concluding command (line 33)
concerns the export of the results in JSON.
From this speci�cation �le, B-Runner automatically con-

ducts a benchmarking activity on a sequence of con�gu-
rations generated by combining every input scenario with
every algorithm and every environment con�guration. The
resulting benchmarking activity is illustrated in Figure 2.
Selective test execution is also possible in B-Runner [1].

3 Sharing a New Benchmarkable Service
The second distinctive feature of B-Runner is the possibility
of sharing new testing protocol for provider users. In con-
trast with con�guration �les, protocols must be programmat-
ically written. B-Runner adopts Java, yet the methodology
we present is transposable to other programming languages.

In short, B-Runner proposes a design pattern for imple-
menting protocols which aims at making a service equivalent
to an array of method references. To illustrate, Figure 3 shows
a testing protocol for query answering via query rewriting
inspired by the example given in the introduction (Figure 1).
The service measures the overall time it takes to answer a
query by using this technique, and also provides details for
each step of the task. The B-Runner API o�ers the possibility
of specifying new testing protocols by simply implement-
ing the serviceOperations method. In turn, this uses two

methods for specifying the test steps. The �rst is the setup
method, which corresponds to a step that has to be performed
for every fork. The second is the operation method, which
corresponds to a step that has to be performed for every iter-
ation. As Figure 3 illustrates, typical examples of setup steps
include the loading of the scenario, notably data and rules
which are considered �xed (lines 2-3). Then, operation steps
include creating objects and executing query rewriting (lines
5-7), followed by evaluation (lines 9-10). Note that describ-
ing a step via setup and operation using the design-pattern
proposed by B-Runner systematically requires two inputs.
The �rst is a description of the step, which is instrumental to
associate a measure to an operation. The second is a method
reference. E.g., this::setData refers to the setData() method
of the protocol class. Each method is then meant to include a
compound block of instructions. Making a service equivalent
to an array of method references results in code which is free
from ad-hoc instructions for measuring (as this code can be
factorized). We understand that these are mostly engineering
aspects, but we believe that these are crucial for achieving a
collection of readable protocols. For space reasons, we refer
to [1] for details on B-Runner architecture.

4 E�ective Experiment Conduction
We conclude the presentation of B-Runner by emphasizing
two key aspects of the tool: the outputs and its limitations.

Interpreting Benchmark Results. The goal of bench-
marking is to yield data to be analyzed. Yet, monitoring test
execution must not be underestimated.
Benchmarking progress as well as errors must be visible.

Tests can take a long time (minutes, hours, days, or weeks)
and users need to be able to check the state of their eval-
uation. Tests can also fail during benchmarking. This can
be due to the inputs, the tool, the execution environment,
the network, timeouts, etc. In all of these cases, users need
to see meaningful errors in order to correct and eventually
restart them. It is important to clearly distinguish failures
from timeouts. While providing meaningful errors requires
a bit more e�ort in coding the experimental protocol, we
argue that providing context for failures, and their nature, is
an invaluable help. In B-Runner, benchmarking progress and
errors are provided both via logging and on the test results.
Benchmarking results must come in a structured format.

Results need to be automatically exploitable, in an easy way.
Speci�cally, a set of console lines may not always be handy.
B-Runner exports benchmarking results in both JSON and
XML, and other formats can be easily added. Experimental
results must also come with precise context about where
the measure was made (scenario, algorithm, environment,
operation). The availability of structured data helps with
setting up routines for data aggregation, which saves time
and bene�ts consistency of data processing. Also, a rich
context helps users spotting anomalies in the data.

B-Runner

Recognizing and Overcoming Limitations.While B-
Runner provides a �exible and extensible setting to auto-
mate some extended testing scenarios, it also has some limits
which are important to keep in mind. We will discuss three
limitations that mainly pertain to the use of Java, and ways
to circumvent them.

Monitoring Memory. This is a feature that B-Runner does
not currently handle but which is planned for future releases.
The strategy we plan to pursue for this consists at using
the JMH library facilities which allows one to run a built-
in pro�ler, add an external pro�ler, or a custom pro�ler to
report metrics - notably memory usage at the desired level.

The API Wall. The precision of a measurement is directly
proportional to the richness of the API of the tested reasoner.
Being a Java tool, B-Runner is naturally more at ease with
benchmarking Java APIs. That being said, it is important to
note that it can still be used for tools implemented in other
languages that can be commanded either via Java Native
Interface (JNI) or system calls.
Consider then an API which exposes only high level fea-

tures such as a compound operation including both data
loading and query evaluation. In this case, it could become
more di�cult to measure the time taken by the two oper-
ations separately. Nevertheless, it should be noted that, by
de�nition, this situation would be impacting all experimen-
tal analysis involving such API. Therefore, it is still very
useful to point out the issue and �nd an alternative way of
measuring the two subtask in a uniform way for all testers -
like by retrieving information provided by the tested tool.

Comparing Versions. It is sometimes desirable to compare
the performance of a tool to one of its previous versions. This
raises the risk of creating a con�ict of Java dependencies be-
tween the versions. To avoid such a situation, a good practice
consists in 8) making sure that every release of a reasoner
under test has its dedicated B-Rrunner project as well as 88)
performing two di�erent executions of the benchmarking
activity; every execution must include in the Java classpath
only one of the version to compare. Such a work�ow for
comparing versions can furthermore be automatized.

5 Demonstration Scenario
During the demonstration, we will show how to use our tool
for multiple types of tasks. First, we focus on the de�nition of
tests using con�gurations. This will showcase the simplicity
of the tool for de�ning extended test trials. Second is the
extension of the tool with new services. This will showcase
the simplicity of the tool for de�ning new test protocols.
Finally, we will outline the logging features provided by the
tool which are helpful for monitoring test progress, failures,
as well as the test result exports. We will focus on testing
scenarios by using InteGraal [3] and Rulewerk/VLog [6]
on standard benchmarks [5]. Details on use cases will be
available at gitlab.inria.fr/rules-demo/brunner-demo.

6 Conclusion and Outline
Principled benchmarking paradigms can be instrumental
to perform robust experimental analysis at small cost. We
advocate for the development of collaborative benchmark-
ing for knowledge and rule-based reasoners. As an answer
to this need, we introduced B-Runner, an open library for
testing rule-based reasoners. B-Runner leverages on Java
Microbenchmarking Harnessing (JMH) for experiment con-
duction. B-Runner is Java-based - which makes it portable -
yet still able to support non-Java systems.
Our library implements an architecture for collaborative

benchmarking which is service-oriented and con�guration-
driven. We argue that sharing reusable services dramatically
reduces experiment setup thereby increasing their repro-
ducibility. More generally, this provides testing accessibility
to larger audiences. Also, making test protocols transparent
through a simple yet well-de�ned design pattern enhances
their robustness and scrutability. Crucially, this can con-
tribute to increase the fairness of comparisons when these
span across di�erent tools. Using a con�guration-based ap-
proach - as opposed to scripting - constitutes a simple way to
plan extended benchmarking activities, which also improves
readability. Finally, while our work focuses on reasoning
systems, these principles can be applied to other contexts.

B-Runner is available online [1]. The tool supports a num-
ber of reasoners and is currently under active development.
Future work also involves the creation of a library for auto-
matic chart creation from trial results.

References
[1] 2024. B-Runner Repository. gitlab.inria.fr/rules/brunner.
[2] Jean-François Baget, Alain Gutierrez, Michel Leclère, Marie-Laure Mug-

nier, Swan Rocher, and Clément Sipieter. 2015. Datalog+, RuleML and
OWL 2: Formats and Translations for Existential Rules. In RuleML.

[3] Jean-François Baget, Pierre Bisquert, Michel Leclère, Marie-Laure Mug-
nier, Guillaume Pérution-Kihli, Florent Tornil, and Federico Ulliana.
2023. InteGraal: a Tool for Data-Integration and Reasoning on Heteroge-
neous and Federated Sources. Repository gitlab.inria.fr/rules/integraal.
In BDA 2023. Montpellier, France.

[4] Catriel Beeri and Moshe Y. Vardi. 1984. A Proof Procedure for Data
Dependencies. J. ACM (1984).

[5] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris
Motik, Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017.
Benchmarking the Chase. In PODS.

[6] David Carral, Irina Dragoste, Larry González, Ceriel Jacobs, Markus
Krötzsch, and Jacopo Urbani. 2019. Vlog: A rule engine for knowledge
graphs. Repository github.com/knowsys/rulewerk. In ISWC.

[7] Sarah Cohen-Boulakia, Khalid Belhajjame, Olivier Collin, Jérôme
Chopard, Christine Froidevaux, Alban Gaignard, Konrad Hinsen, Pierre
Larmande, Yvan Le Bras, Frédéric Lemoine, Fabien Mareuil, Hervé Mé-
nager, Christophe Pradal, and Christophe Blanchet. 2017. Scienti�c
work�ows for computational reproducibility in the life sciences: Status,
challenges and opportunities. Future Generation Computer Systems 75
(2017), 284–298. h�ps://doi.org/10.1016/j.future.2017.01.012

[8] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël
Thomazo. 2015. Sound, complete and minimal UCQ-rewriting for
existential rules. Semantic Web (2015).

[9] Maurizio Lenzerini. 2002. Data integration: A theoretical perspective.

https://gitlab.inria.fr/rules-demo/brunner-demo
gitlab.inria.fr/rules/brunner
gitlab.inria.fr/rules/integraal
github.com/knowsys/rulewerk
https://doi.org/10.1016/j.future.2017.01.012

	Abstract
	1 The Benchmarking Issue
	1.1 Independent vs Collaborative Benchmarking
	1.2 Novelty and Contributions.

	2 Benchmarking in a Hurry!
	3 Sharing a New Benchmarkable Service
	4 Effective Experiment Conduction
	5 Demonstration Scenario
	6 Conclusion and Outline
	References

