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Abstract

The multisource surveillance tool (MUST) is a platform for collecting, gathering, and visualizing different sources of information
related to health events and highly pathogenic avian influenza in mammals (HPAIM). MUST-AI constitutes the first part of the
MUST tool, which centralizes health information relating to cases of HPAIM since January 1, 2021, and comes from 3 different
notification sources, an official notification source confirmed by public health institutions (i.e., WAHIS) and two other alternative
unofficial sources that collect events from online media (PADI-web) and expert networks (ProMED). Owing to the use of natural
language processing (NLP) algorithms, HPAIM events are represented on an interactive map associated with a graph that represents
their distribution over a given time interval. This paper presents new tools and approaches for data fusion and experiments for
selecting data to integrate into MUST that are related to HPAIM events.
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1. Introduction

Zoonotic infectious diseases pose a significant threat to public health, and it is essential to detect them early and
respond promptly to minimize risk at the earliest possible stage. Traditional animal health surveillance systems involve
a step-by-step process of field suspicion, laboratory confirmation and formal notification to international organizations,
such as the World Organization for Animal Health (WOAH). This process ensures the transparency and accuracy of
global animal health data [10].
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Avian influenza (AI) is a highly contagious viral disease that affects both domestic and wild birds. This zoonotic
virus has been the source of worldwide outbreaks, leading to several million wild bird deaths, culled poultry, and
sporadic human cases. Recently, there has been an increase in reported infections in mammals, ranging in intensity
from no symptoms to mass mortality events [6]. As a WOAH-listed disease, the occurrence of AI in unusual host
species is considered an exceptional epidemiological event and thus must be noted through the World Animal Health
Information System (WAHIS) within 24 hours after confirmation [10]. However, several examples from the scientific
literature have documented AI evidence in mammals that has not been reported or identified within weeks or months
[14, 1, 16]. Similarly, it has been observed that some disease outbreaks are only recorded in the national health
information systems of specific countries. This can lead to discrepancies when comparing publicly available official
national counts of outbreaks and WAHIS reports1. In some cases, underreporting of outbreaks can result in gaps in the
information available, such as the geographical coverage and the range of affected species, and may result in delayed
notifications. Consequently, the awareness of virus spread among unusual hosts might be incomplete and delayed.

In the last two decades, this recurrent challenge has led animal health agency teams to use complementary ap-
proaches and technologies to reinforce the capacity of the surveillance systems to detect emerging infectious dis-
eases [13]. Web-based early warning systems, such as ProMED-mail, the Global Public Health Intelligence Network
(GPHIN), Health Maps, and PADI-web, have been able to recognize emerging infectious diseases earlier than the tra-
ditional surveillance systems [7, 11, 15]. These systems are highly adaptable, low-cost and/or operate in real time, all
of which are necessary features for the early detection of emerging diseases. They offer the opportunity to capture com-
plementary information and improve surveillance coverage (e.g., spatially and temporally). At the same time, these
methods produce large volumes of unstructured and non-validated data that can lead to difficult and time-consuming
interpretations or inaccurate health status predictions [2, 7].

A new surveillance tool called the multisource surveillance tool (MUST2) has been developed. This paper presents
an original platform for collecting, compiling, and visualizing different sources of information related to the relevant
events and the status of HPAIM (highly pathogenic avian influenza in mammals). The first version of the MUST
tool is called ”MUST-AI”, which filters and centralizes health information related to cases of HPAIM (excluding
human cases) starting from January 1st, 2021. The tool collects information from three different notification sources,
an official notification source confirmed by public health institutions (WAHIS), and two other unofficial alternative
sources that collect events from online media (PADI-web data) and networks of experts (ProMED-mail). The MUST
interface has been designed to ease risk assessments by providing (i) data visualizations to assess spatiotemporal
coverage in real time, (ii) a list of affected species to adapt to surveillance programs and (iii) direct access to articles
to obtain additional details about the detected events.

The rest of the paper is organized as follows. Section 2 outlines related work in animal disease surveillance based
on WAHIS, ProMED, and PADI-web; Section 3 presents the fusion methods of these systems integrated into our
original tool called MUST; Section 4 evaluates the type of events related to HPAIM extracted with PADI-web to
integrate into MUST. Finally, future directions for this research are proposed in Section 5.

2. Processing of data sources

2.1. WAHIS

WAHIS3 is the global animal health reference database of the World Organization for Animal Health (WOAH).
WAHIS data reflect the validated information collected since 2005 reported by the Veterinary Services from Member
and Non-Member Countries and Territories on terrestrial and aquatic listed diseases in domestic animals and wildlife,
as well as on emerging diseases and zoonoses. WAHIS includes interactive mapping tools and dashboards to support
data consultations, visualizations, and extractions of officially validated animal health data.

1 Animal and Plant Health Agency. 2023. ”Confirmed Findings of Influenza of Avian Origin in Non-Avian Wildlife”. Bird flu (avian influenza):
findings in nonavian wildlife. GOV.UK. 31 October 2023 - https://www.gov.uk/government/publications/bird-flu-avian-influenza-findings-in-non-
avian-wildlife/confirmed-findings-of-influenza-of-avian-origin-in-non-avian-wildlife

2 http://must-surveillance.com/
3 https://wahis.woah.org/#/home
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2.2. ProMED

The Program for Monitoring Emerging Diseases (ProMED) [3] is a global system for reporting and tracking out-
breaks of infectious diseases. Since 1994, this program of the International Society for Infectious Diseases (ISID) has
monitored outbreaks of infectious diseases affecting humans, animals, and even plants. In most countries in the world,
those involved in health monitoring disseminate or relay alerts by e-mail (the information can then be accessed via
the ProMED website: https://promedmail.org/). The advantage of this information network is that it is generally much
more responsive than official channels, but the disadvantage is that the information is poorly structured (ProMED
should eventually provide access to a database).

As part of the MUST project, we used ProMED’s API every week to collect the posts related to cases of avian
influenza affecting mammals (with the exception of humans). The challenge of analyzing emails is manifold, bearing
in mind that information about a new outbreak is often associated with a recall of outbreaks that have occurred in
the past at the regional or national level. Our automatic system must therefore identify in the header of an email its
link with an avian flu epidemic (in particular by identifying the serotypes involved), then in the body of the email, the
mammal species (excluding humans) affected by the disease, the date of the outbreak, its location and, if possible, the
number of individuals affected and their environment (farm, wild). The example post in Figure 1 is an almost ideal
example, particularly because it does not include chronological references to other epidemic outbreaks.

Fig. 1. Examples of elements extracted from a ProMED Post

This text analysis work is based on the following:

• A purpose-built lexicon of approximately 6,000 mammal species, including scientific names and vernacular
names in English, Spanish and French.
• The GeoNames service, which provides detailed information on the place names; it performs an essential task

by identifying the location of epidemic outbreaks.

Information extraction is based on regular expressions. While the analysis of relatively well-structured e-mail
headers, in which the disease and its serotypes, the country (or continent) and the species of interest appear, is reliable,
the analysis of the body of e-mails requires a check to verify the exact location of the epidemic (there is one inaccuracy
per four posts). A final automated check is carried out to avoid duplication in the reporting of outbreaks (the main
problem being that several e-mails may cite the same epidemic).

Note that evaluations based on 100 ProMED posts highlight that the scientific names of impacted mammal species
are not given in 82% of posts. Moreover, the main problems identified are related to the extraction of irrelevant
locations (i.e., 21% of locations are wrong or imprecise).

2.3. PADI-web

The Platform for Automated Extraction of Animal Disease Information from the Web (PADI-web) is an automated
biosurveillance system devoted to online news source monitoring for the detection of emerging/new animal infectious
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diseases via the French Epidemic Intelligence System. PADI-web4 [15] automatically collects news via customized
multilingual queries, classifies them and extracts epidemiological information. This tool was mainly developed for
animal disease surveillance.

The PADI-web pipeline involves 5 steps ranging from online news collection to the extraction of epidemiological
features. The 5 steps are: (1) data collection, (2) data processing, (3) data classification (i.e., news and sentence
classification), (4) information extraction, and (5) visualization and user notification.

For Step 4, spaCy5 was integrated into PADI-web 3.0 [15]. SpaCy already includes powerful named entity recog-
nition (NER) models that allow the recognition of named entities. With PADI-web, we can use a classical model to
identify well-known named entities such as locations and organizations. Moreover, specific information for the ani-
mal disease surveillance domain could be extracted by using specific dictionaries (e.g., host lexicons) and/or labeled
datasets to learn and integrate a domain-specific model for NER. For location names, regular calls to the Geonames6

gazetteer API aim to associate each recognized location name with a Geonames entity ID. Note that in the last version
of the tool, five types of extractions are proposed to end-users:

• Strategy A: Events extracted from outbreak articles [spaCy locations in outbreak articles (i.e., document-based
classification)];
• Strategy B: Events extracted from outbreak articles and current event sentences [spaCy locations in outbreak

articles (i.e., document-based classification) and current event sentences (i.e., sentence-based classification)];
• Strategy C: Places extracted at the beginning of the outbreak articles [spaCy locations in the first 300 characters

of the outbreak article];
• Strategy D: Events extracted in relevant articles based on PADI-web-specific locations [locations extracted

with spaCy learned with labeled data];
• Strategy E: Events extracted at the beginning of relevant articles [spaCy locations in the first 300 characters of

relevant articles].

The results of these strategies for extracting events to integrate into the MUST tool are discussed in Section 4.

3. Fusion of data with MUST

The multisource surveillance tool (MUST) tool is designed to provide a comprehensive view of various events. It
consists of four main components, a map, some search criteria (above the map), a list of events (on the right of the
map), and a distribution chart (below the map) (see Figure 2).

3.1. Filtering events

The filtering criteria enables the user to customize the events displayed on the map and other components based
on their preferences. The user can specify the source of events, date range, and other parameters. After the criteria are
modified, the displayed events are automatically updated on the fly.

One central aspect of events is their source, i.e., where they were first published. The user can filter the sources
that should be displayed on the map by checking the corresponding checkboxes. The list of sources is dynamically
generated from the events currently loaded in the GUI. Therefore, if a data source is not listed, it is not present in
the currently loaded events. This can occur if the date range that is currently selected is narrow and does not contain
events from all the sources. The colors are automatically assigned to each data source to visually differentiate them.
The sources whose names start with ”Merged” have been created by MUST (see Figure 3). They correspond to the
results of a process aimed at merging similar events (from one source or several distinct sources) into one event. The
methods used for merging are detailed in Section 3.2. The name of these fusion results describe:

4 https://www.padi-web-one-health.org
5 https://spacy.io/
6 https://www.geonames.org/
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Fig. 2. General view of the MUST tool.

• The parameters used during the merging process, which are shown in parentheses.
• The sources that were merged to provide the resulting events. For instance, ”PADI-web + ProMED” contains

all events that were obtained by merging events from PADI-web and ProMED.

Fig. 3. Merging of events with the MUST tool.

The checkbox ”Highlight recent events” is not a filter per se but rather a way to visually highlight the most recent
events on the map. All the event markers that have their event date within the last N days have a visible yellow circle
around them (see the map in Figure 4).

3.2. Fusion method

This section describes the methodology and algorithms used to address end-user needs. Event merging is a tool
designed to analyze and merge similar events based on certain criteria, even if they were published by different sources.
The MUST tool works by comparing each event with every other event in the dataset. Three main criteria are used to
determine whether two events are similar:



6 C. Trevennec et al. / Procedia Computer Science 00 (2024) 000–000

Fig. 4. Visualization of recent events.

1. Geographical Proximity: MUST calculates the geographical distance between events. The events are considered
geographically close if this distance is less than a specified maximum distance.

2. Temporal Proximity: Our tool compares the dates of events. If the difference in dates is less than a specified
maximum number of days, the events are considered temporally close.

3. Species Similarity: MUST compares the species involved in the events. This method uses a text comparison
algorithm (i.e., the Levenshtein distance) to determine the similarity between the species names. The species are
considered similar if the Levenshtein distance is less than a specified maximum value. If events have more than
one species value, at least one pair of values must be fairly similar.

If two events meet all three criteria, they are considered similar and are grouped together. The application then
merges the data of similar events, creating a new event that represents a group of similar events. MUST also provides
a way to save merged events in a dedicated database, with each merged event being associated with a unique data
source. The event merging algorithm follows these steps:

1. Preprocessing: The algorithm first converts all event data to a standard format.
2. Finding Similar Events: The algorithm then compares each event with every other event in the dataset using the

three criteria mentioned above. It keeps track of which events are similar to each other.
3. Grouping Similar Events: Once all the comparisons are made, the algorithm groups together all the similar events.

This is done using a depth-first search algorithm. For instance, if events A and B have been found to be similar
and events B and C have also been found to be similar, the algorithm creates a group A, B, C.

4. Merging Similar Events: The algorithm then merges the data of similar events in each group, creating a new
event that represents a group of similar events. The creation of the new merged event is proceeds as follows:
• The first event of the group is used as a reference. It is cloned as a new event.
• In addition to the event values coming from the reference event, we create new values coming from all the
events from the group. The resulting merged event can have many event values for each data field (e.g., many
locations, event dates).
• The data source that is associated with the event is built as follows. Its name is ”Merged (500;15;5) - PADI-web
+ ProMED” (see Figure 3).

5. Saving Merged Events: Finally, the algorithm saves the merged events to the database.

4. Case study and results

4.1. Case study

It is mandatory to report the detection of the highly pathogenic avian influenza (HPAI) virus in an unusual host
species to WAHIS. However, some countries either delay or fail to report such cases to the WAHIS database, which
can jeopardize the quality of the early warning systems for these events.
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Fig. 5. Visualization of the results obtained with MUST-AI in the USA. Red dot: WAHIS event / Green dot: PADI-web event

In parallel, several HPAIM findings have been documented in the literature. The European Food Safety Authority
(EFSA) has published a global review of the literature on the role of mammals in avian influenza [6].

In this paper, we used the WAHIS database and some cases reported in published articles as our gold standard for
identifying HPAIM cases. In total, we selected 7 case studies: 5 from the WAHIS database and 2 from the literature.
These data correspond to 67 relevant events related to outbreaks associated with these case studies and were obtained
with PADI-web.

The ease of associating a PADI-web article with a report or an official notification motivated the selection of
certain case studies over others. More precisely, an event of which WAHIS was notified (i.e., red dots indicating
reports with MUST) was selected for our study based on the number of WAHIS events represented in a given area.
Conversely, in dedicated areas, there is a low concentration of WAHIS notifications, which facilitates analysis of the
correlated PADI-web articles. This enables them to be integrated into our gold standard dataset.

Note that identifying a link between an officially reported outbreak of HPAIM and a PADI-web article can be
difficult when certain areas have concentrations of both numerous WAHIS events and PADI-web articles, as is the
case in the United States (see Figure 5), where PADI-web articles are difficult to associate with a particular WAHIS
notification.

The scientific literature cannot cover recent HPAIM cases, as there is an average of one year from the detection
of an outbreak to publication. Furthermore, some countries, such as China, India and Australia, were not selected as
case studies because their cases were published too long ago (before the creation of PADI-web). The study could not
consider the African continent because it suffers from a lack of surveillance resources, leading to underreporting on
WAHIS and in the scientific literature.

In addition, this study did not target outbreaks of HPAIM due to very large quantities of PADI-web articles asso-
ciated with these events, which complicates the evaluation described in Section 4.2. An example of this occurred in
Spain during a farmed mink HPAI outbreak in October 2022. Approximately 83 PADI-web articles were reported,
making it challenging to analyze the event [1].

4.2. Evaluation protocol and results

The selection of PADI-web articles for the construction of case studies is based on the similarity of the criteria
date and the location of the outbreak mentioned in the article with the reference event reported to WAHIS or in the
literature. Only PADI-web articles whose publication dates were between the date of the event and approximately one
month after the date of the report or official notification were retained for this study. This time window was chosen
based on previous work and could be refined in future work [15]. Articles for which at least one of these criteria was
missing were not retained for this study; therefore, they constituted an expert prefilter in this selection process.

Once the study cases and associated PADI-web articles were identified, the aim was to evaluate the extraction
quality of each strategy (see Section 2.3) in terms of recall and precision (formula (1)). Recall, also called sensitivity,
corresponds to the number of relevant outbreaks found for each strategy out of the total number of relevant events
actually present; in other words, recall makes it possible to determine whether all the relevant events that should have
been reported by the strategies have been identified. Precision corresponds to the number of relevant outbreaks found
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for each strategy out of the number of events returned by the automated system. If the system returned other outbreaks,
in our strict evaluation, this was not considered relevant.

Recall =
number of relevant items returned

number of relevant articles
Precision =

number of relevant items returned
number of items returned

(1)

Recall is based on the level of relevance of the PADI-web articles; i.e., an article is considered very relevant (++)
if its publication date is before the date of the report or official notification (early identification of the outbreak) and is
considered relevant (+) if its publication date is the same as or later than the date of the report or official notification.
Two values of recall (R1 (++) and R2 (+ and ++)) and precision (P1 (++) and P2 (+ and ++)) were calculated. The
harmonic mean of the precision and recall was also calculated (F-measure).

Note that the method used to compute precision is strict because relevant outbreaks correspond to the expected
outbreaks for each study case. However, if PADI-web returns relevant outbreaks that are not the expected outbreaks
related to our study cases, these could be considered relevant items (i.e., outbreaks found in the WAHIS database) in
another measure of precision (called ”real precision”).

Note that the calculation of real and strict precision values as well as recall is based on manual analysis of the
relevance of 244 outbreaks returned by our strategies.

Table 1. Precision, Recall, and F-measure for each strategy.
Strategy A Strategy B Strategy C Strategy D Strategy E

R1 61.1% 31.3% 38.9% 94.4% 38.9%
Strict P1 17.7% 10.4% 22.6% 14.4% 18.4%
Strict F-measure (++) 27.5% 15.6% 28.6% 25% 25%

R2 59.7% 46% 41.8% 94% 44.8%
Strict P2 32.8% 28.2% 48.3% 28.6% 39%
Strict F-measure (+ and ++) 42.3% 35% 44.8% 43.9% 41.7%

Real Precision 69% 67% 72.4% 61.4% 66%
Real F-measure 64% 54.6% 53% 74.3% 53.4%

Table 1 shows better recall for Strategy D (and good results for Strategy A) and better precision for Strategy C.
Strategy C highlights only events at the beginning of the articles. This explains why some relevant events were not
extracted and why there were lower values of recall.

In terms of the F-measure, the best strategies are C and D, which are based on ”strict” and ”real” calculus methods,
respectively. In this context, these strategies will be integrated into the MUST-AI import system.

4.3. Discussion

Many solutions exist for visualizing multisource data based on technical tools such as Elasticsearch/Kibana7.
Therefore, several visualizers and dashboards have been developed over the past few years for epidemiological pur-
poses, especially since the COVID-19 pandemic. They mostly focus on the number of confirmed cases represented
on maps and incidence curves used to visualize spatiotemporal distributions and trends. More sophisticated platforms
combine multisource information such as big data mining, remote sensing images, population data and other haz-
ard data (disasters, chemical or nuclear expositions, etc.) [8, 9]. Although these solutions provide valuable help for

7 https://www.elastic.co/
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synthesizing large volumes of highly disparate data, the main challenge remains the integration of tools into rou-
tine workflows, sustainability and interoperability with existing information systems [4]. The animal health sector
still needs substantial improvements in data-driven and web-based surveillance to bring prevention strategies into the
digital age [5].

Some event-based surveillance tools, such as HealthMap, GPHIN or EIOS, exist, but they partially cover animal
health issues or are not publicly available. Other tools exist to address specific animal health events, such as
SARS-Ani. This tool was developed to characterize SARS-CoV-2 cases confirmed in nonhuman species reported in
WAHIS and ProMED. It provides valuable insights into patterns of reporting and identifies data gaps between the
official number of reports and known cases reported by other sources. However, the updating process requires manual
data collection, resulting in a greater investment in human resources [12].

In MUST-AI, we focused on automatically collecting unstructured data from ProMED and PADI-web and extract-
ing valuable information to make comparisons and complete official data. MUST-AI was designed to assist epidemic
intelligence teams in producing early-warning messages and summaries. To our knowledge, there is currently no
such automated tool publicly available for the detection of unusual health events in animals. The ”Highlight” option
focuses on recent events and allows visualization of their locations and easy access to related information. Further
developments will include filters on the dashboard to display specific categories (e.g., regions, groups of species, and
sources) and a module to download data to perform more specific statistical analyses.

In this study, we identified two event extraction strategies that can be chosen according to the location of interest
and the goal of the intelligence team. The most sensitive strategy (i.e., Strategy D) can be chosen when targeting
countries with low investment in wildlife surveillance, when little is known about the disease situation, or even when
targeting small countries (only a few articles are expected). In addition, the very relevant option (++) allows early
warning signals to be identified when reporting issues are suspected. On the other hand, the most specific strategy
(i.e., Strategy C) can be chosen to avoid ”noise” and target specific events. This approach could contribute to obtaining
more information on the context and to complete sparse information content in official reports. It can also be used for
large countries, where a large number of articles are expected. In further developments, users will be able to select the
preferred strategy according to their goals.

Finally, research biases were encountered in the construction of the case studies, namely, that certain potentially
relevant articles could not be studied because either the URL referring to the article on the web was obsolete or a
subscription was required for access. In addition, PADI-web articles for which the publication date was too far from
the date of the report or official notification were not considered during the study.

5. Conclusion and future work

MUST is an innovative surveillance tool that aims to combine the surveillance data from the official pro-
grams extracted from WAHIS and two web-based systems (i.e., ProMED-mail and PADI-web). In this paper,
we described the first component of this tool, MUST-AI, which focuses on HPAI events detected in mammalian
species. The events are displayed on a dashboard, which includes a map interface, an incidence graph, and the text of
reports. This paper highlights the relevance of integrating events from Strategies C and D of PADI-web into MUST-AI.

In our future work, we plan to evaluate the quality of NER models (i.e., perform comparisons between generic and
specific NER models learned from our labeled datasets) and the impact of the final results obtained.

This paper presents an evaluation of the integration of PADI-web data into MUST-AI, and we plan to conduct the
same type of evaluation with ProMED data in future work.

Note that the same event can be represented in the MUST-AI map by all three data sources (WAHIS, ProMED and
PADI-web) at the same time, causing the same event to appear several times (duplication). Therefore, these duplicates
must be merged so that the event is represented only once in the MUST interface. This can be done by identifying
criteria and fusion strategies to allow global visualization of HPAIM cases. Thus, an evaluation of fusion criteria based
on the case study presented in this paper could constitute a continuation of this study.
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