
HAL Id: lirmm-04658994
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04658994v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Tag Identification in Web Service
Descriptions

Jean-Rémy Falleri, Zeina Azmeh, Marianne Huchard, Chouki Tibermacine

To cite this version:
Jean-Rémy Falleri, Zeina Azmeh, Marianne Huchard, Chouki Tibermacine. Automatic Tag Identifica-
tion in Web Service Descriptions. WEBIST 2010 - 6th International Conference on Web Information
Systems and Technologies, Apr 2010, Valencia, Spain. �lirmm-04658994�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04658994v1
https://hal.archives-ouvertes.fr

AUTOMATIC TAG IDENTIFICATION IN WEB SERVICE
DESCRIPTIONS ∗

Jean-Rémy Falleri, Zeina Azmeh, Marianne Huchard, Chouki Tibermacine
LIRMM, CNRS and Montpellier II University - 161, rue Ada 34392 Montpellier Cedex 5 France

{falleri,azmeh,huchard,tibermacin}@lirmm.fr

Keywords: Tags, web services, text mining, machine learning.

Abstract: With the increasing interest toward service-oriented architectures, the number of existing Web services is
dramatically growing. Therefore, finding a particular service among thishuge number of services is becoming
a time-consuming task. User tags or keywords have proven to be a useful technique to smooth browsing
experience in large document collections. Some service search engines, like Seekda, already propose this kind
of facility. Service tagging, which is a fairly tedious and error prone task,is done manually by the providers
and the users of the services. In this paper we propose an approach that automatically extracts tags from Web
service descriptions. It identifies a set of relevant tags extracted froma service description and leaves only to
the users the task of assigning tags not present in this description. The proposed approach is validated on a
corpus of 146 services extracted from Seekda.

1 INTRODUCTION

Service-oriented architectures (SOA) are achieved
by connecting loosely coupled units of functionality.
The most common implementation of SOA uses Web
Services. One of the main tasks is to find the rele-
vant Web services to use. With the increasing inter-
est toward SOA, the number of existing Web services
is dramatically growing. Finding a particular service
among this huge amount of services is becoming a
time-consuming task.

Web services are usually described with a standard
XML-based language called WSDL. A WSDL file in-
cludes a documentation part that can be filled with a
text indicating to the user what the service does. Un-
fortunately, this documentation part is often not filled
by the creators of the services. In this case, the po-
tential users of the service spend time to understand
its functionality and to decide whether or not to use
it. A selected service may become unavailable after a
period of time, and therefore, a mechanism that may
facilitate the discovery of similar services becomes in-
dispensible. Tagging is a mechanism that has been
introduced in search engines and digital libraries to
fulfill exactly this objective.

Tagging is the process of describing a resource by
assigning some relevant keywords (tags) to it. The
tagging process is usually done manually by the users

∗France Télécom R&D has partially supported this work
(contract CPRE 5326).

of the resource to be tagged. Tags are useful when
browsing large collections of documents. Indeed, un-
like in traditional hierarchical categories, documents
can be assigned an unlimited number of tags. It allows
cross-browsing between the documents. Seekda2, one
of the main service search engines, already allows its
users to tag its indexed services. Tags are also useful
to have a quick understanding of a particular service
and service classification or clustering.

In this paper, we present an approach that auto-
matically extracts a set of relevant tags from a WSDL.
We use a corpus of user-tagged services to learn how
to extract relevant tags from untagged service descrip-
tions. Our approach relies on text mining techniques
in order to extract candidate tags out of a descrip-
tion, and machine learning techniques to select rele-
vant tags among these candidates. We have validated
this approach on a corpus of 146 user-tagged Web ser-
vices extracted from Seekda. Results show that this
approach is significantly more efficient than the tradi-
tional (but fairly efficient)tfidf weight.

The remaining of the paper is organized as fol-
lows. Section 2 introduces the context of our work.
Then, Section 3 details our tag extraction process.
Section 4 presents a validation of this process and dis-
cusses the obtained results. Before concluding and
presenting the future work, we describe the related
work in Section 5.

2http://www.seekda.com

2 CONTEXT OF THE WORK

Our work focuses on extracting tags from service
descriptions. In the literature, we found a similar
problem:keyphrase extraction, which aims at extract-
ing important and relevant short phrases from a plain-
text document. It is mostly used on journal articles
or on scientific papers in order to smooth browsing
and indexing of those documents in digital libraries.
Before starting our work, we analyzed one assessed
approach that performs keyphrase extraction: Kea
(Frank et al., 1999) (Section 2.1). We concluded that
a straightforward application of this approach is not
possible on service descriptions instead of plain-text
documents (Section 2.2).

2.1 Description of Kea

Kea (Frank et al., 1999) is a keyphrase extractor for
plain-text documents. It uses a Bayesian classification
approach. Kea has been validated on several corpora
(Jones and Paynter, 2001; Jones and Paynter, 2002)
and has proven to be an efficient approach. It takes
a plain-text document as input. From this text, it ex-
tracts a list of candidate keyphrases. These candidates

are the
k⋃

i=1
k-grams of the text. For instance, let us con-

sider the following sample document: “I am a sam-
ple document”. The candidate keyphrases extracted if
k= 2 are:(I,am,a,sample,document,I am,am a,a sam-
ple,sample document). To choose the most adapted
value of k for the particular task of extracting tags
from WSDL files, we made some measurements and
found that 86% of the tags are of length 1. It clearly
shows that one word tags are assigned in the vast ma-
jority of the cases. Therefore we will fixk = 1 in our
approach (meaning that we are going to find one word
length tags). Nevertheless, our approach, like Kea, is
easily generalizable to extract tags of lengthk.

Kea then computes two features on every candi-
date keyphrase. First,distanceis computed, which is
the number of words that precede the first observa-
tion of the candidate divided by the total number of
words of the document. For instance, for the sam-
ple document,distance(am a) = 1

5. Second,tfidf,
a standard weight in the information retrieval field,
is computed. It measures how much a given candi-
date keyphrase of a document is specific to this doc-
ument. More formally, for a candidatec in a doc-
umentd, t f id f (c,d) = t f (c,d)× id f (c). The met-
ric t f (c,d) (term frequency) corresponds to the fre-
quency of the termc in d. It is computed with the
following formula: t f (c,d) = occurences o f c in d

size o f d . The
metricid f (c) (inverse document frequency) measures

the general importance of the term in a corpusD.
id f (c) = log(|D|

|{d: c ∈d}|).
Kea uses a naive Bayes classifier to classify the

different candidate keyphrases using the two previ-
ously described features. The authors showed that this
type of classifier is optimal (Domingos and Pazzani,
1997) for this kind of classification problem. The two
classes in which the candidate keyphrases are classi-
fied are:keyphraseandnot keyphrase. Several evalua-
tions on real world data report that Kea achieves good
results (Jones and Paynter, 2001; Jones and Paynter,
2002). In the next section, we describe how WSDL
files are structured and highlight why the Kea ap-
proach is not directly applicable on them.

2.2 WSDL service descriptions

We extract tags from the following WSDL elements:
services, ports, port types, bindings, typesandmes-
sages. Each element has an identifier, which can op-
tionally come with a plain-text documentation. Figure
3 (left) shows the general outline of a WSDL file.

One simple idea to extract tags from services
would be to use Kea on their plain-text documenta-
tions. Unfortunately, an analysis of our service cor-
pus shows that about 38% of the services are not doc-
umented at all. Another important source of informa-
tion to discover tags are the identifiers contained in
the WSDL. For instanceweatherwould surely be an
interesting tag for a service namedWeatherService.
Unfortunately, identifiers are not easy to work with.
Firstly because identifiers are usually a concatenation
of different words. Secondly because they are associ-
ated with different kinds of elements (services, ports,
types, . . .) that have not the same importance in a ser-
vice description. Therefore, extracting candidate tags
from WSDL files is not straightforward. Several pre-
processing and text-mining techniques are required.
Moreover, the previously described features (tfidf and
distance) are not easy to adapt on words from WSDL
files. First because WSDL deals with two categories
of words (the documentation and the identifiers) that
are not necessary related. Second because thedis-
tancefeature is meaningless on the identifiers, which
are defined in an arbitrary order.

3 TAG EXTRACTION PROCESS

Similarly to Kea, we model the tag extraction
problem as the following classification problem: clas-
sifying a word into one of the twotag and no tag
classes. Our overall process is divided into two
phases: atraining phase and atag extractionphase.

Figure 1: The training phase.

Figure 2: The tag extraction phase

Figure 1 summarizes the behavior of the training
phase. In this phase we have a corpus of WSDL files
and associated tags, extracted from Seekda, (Section
3.1). From this training corpus, we first extract a list
of candidate words by using text-mining techniques,
(Sections 3.2 and 3.3). Then severalfeatures(met-
rics) are computed on every candidate. Afeatureis
a common term in the machine learning field. As an
example, it may be the frequency of the words in their
WSDL file. Finally, since manual tags are assigned to
those WSDL files, we use them to classify the can-
didate words coming from our WSDL files. Using
this set of candidate words, computed features and as-
signed classes, we train a classifier.

Figure 2 describes thetag extraction phase. First,
like in the training phase, a list of candidate words is
extracted from an untagged WSDL file and the same
features are computed. The only difference with the
training phase is that we do not know in advance
which of those candidates are true tags. Therefore we
use the previously trained classifier to automatically
perform this classification. Finally the tags extracted
from the WSDL file are the words that have been clas-
sified in thetagclass.

3.1 Creation of the training corpus

As explained above, our approach requires a train-
ing corpus, denoted byT . Since we want to extract
tags from WSDL files,T has to be a set of couples
(wsdl, tags), with wsdla WSDL file, andtagsa set of
corresponding manually assigned tags. We created a
corpus using Seekda. Indeed, Seekda allows its users
to manually assign tags to its indexed services. We
created a program that parses the Seedka result pages
to extract WSDL files together with their user tags.
To ensure that the services of our corpus were sig-
nificantly tagged, we only retain the WSDL files that
have at least five tags. Using this program, we ex-
tracted 150 WSDL files. Then, we removed fromT
the WSDL files that triggered parsing errors. Finally,
we have a training corpus containing 146 WSDL files

Figure 3: WSDL pre-processing

together with their associated tags.
To clean the tags of the training corpus, we per-

formed three operations. We removed the non al-
pha numeric characters from the tags (we found sev-
eral tags like_onsaleor :finance). We also removed
a meaningless and highly frequent tag (the_unkown
tag). Finally, we divided the tags with lengthn > 1
into n tags of length 1, in order to have only tags
of length 1 (the reason has been explained in section
2.1). The length of a tag is defined as the number of
words composing this tag.

Finally, we have a corpus of 146 WSDL files and
1393 tags (average of 9.54 tags per WSDL file). An
analysis ofT shows that about 35% of the user tags
are already contained in the WSDL files.

3.2 Pre-processing of the WSDL files

As we have seen before, a WSDL file contains sev-
eral element definitions optionally containing a plain-
text documentation. The left side of figure 3 shows
such a data structure. In order to simplify the WSDL
XML representation in a format more suitable to ap-
ply text mining techniques, we decided to extract two
documents from a WSDL description. First, a set
of couples(type, ident) representing the different el-
ements defined in the WSDL. We havetype∈ (Ser-
vice,Port,PortType,Message,Type,Binding)the type of
the element andident the identifier of the element.
We call this set of couples theidentifier set. Sec-
ond, a plain text containing the union of the plain-text
documentations found in the WSDL file, called the
global documentation. This pre-processing operation
is summarized in the figure 3.

3.3 Selection of the candidate tags

As seen in the previous section, we have now two
different sources of information for a given WSDL:
an identifier setand aglobal documentation. Un-
fortunately, those data are not yet usable to compute
meaningful metrics. Firstly because the identifiers are

Figure 4: Processing of the identifiers

names of the formMyWeatherService, and therefore
are very unlikely to be tags. Secondly because these
data contain a lot of obvious useless tags (like theyou
pronoun). Therefore, we will now apply several text-
mining techniques on the identifier set and the global
documentation.

Figure 4 shows how we process theidentifier set.
Here is the complete description of all the performed
steps:

1. Identifier type filtering : during this step,
the couples(type,ident) where type ∈ (Port-
Type,Message,Binding)are discarded. We applied
this filtering because very often, the identifiers
of the elements in those categories are duplicated
from the identifiers in the other categories.

2. Tokenization: during this step, each cou-
ple (type, ident) is replaced by a couple
(type, tokens). tokens is the set of words
appearing in ident. For instance, (Ser-
vice,MyWeatherService)would be replaced
by (Service,[My,Weather,Service]). To split ident
into several tokens, we created a tokenizer that
uses common clues in software engineering to
split the words. Those clues are for instance a case
change, or the presence of a non alpha-numeric
character.

3. POS tagging: during this step each couple
(type, tokens) previously computed is replaced
by a couple(type, ptokens). ptokensis a set
of couples (tokeni , posi) derived from tokens
where tokeni is a token fromtokensand posi
the part-of-speech corresponding to this token.
We used the tooltree tagger (Schmid, 1994)
to compute those part-of-speeches. Example:
(Service,[My,Weather,Service])is replaced by
(Service,[(My,PP),(Weather,NN),(Service,NN)]).
NN means noun andPPmeans pronoun.

4. Stopwords removal: during this step, we pro-
cess each couple(type, ptokens) and remove
from ptokensthe elements(tokeni , posi) where
tokeni is a stopword for type. A stop-
word is a word too frequent to be mean-
ingful. We manually established a stopword

Figure 5: Processing of the global documentation

list for each identifier type. Example:(Ser-
vice,[(My,PP),(Weather,NN),(Service,NN)])is re-
placed by (Service,[(My,PP)(Weather,NN)])be-
causeServiceis a stopword for service identifiers.

5. POS filtering: during this step, we process
each couple(type, ptokens) and remove from
ptokensthe elements(tokeni , posi) whereposi /∈
(Noun,Adjective,Verb,Symbol). Example: (Ser-
vice,[(My,PP),(Weather,NN))is replaced by(Ser-
vice,[(Weather,NN)])because pronouns are fil-
tered.

Figure 5 shows how we process theglobal docu-
mentation. Here is the complete description of all the
performed steps:

1. HTML tags removal : the HTML tags (words be-
gining by < and ending by>) are removed from
the global documentation.

2. POS tagging: similar to the POS tagging step ap-
plied to the identifier set.

3. POS filtering: similar to the POS filtering step
applied to the identifier set.

The union of the remaining words in the identifier
set and in the global documentation are our candidate
tags. When defining those processing operations, we
took great care that no correct candidate tags (i.e. a
candidate tag that is a real tag) of the training corpus
have been discarded. The next section describes how
we adapted the Kea features to these candidate tags.

3.4 Computation of the features

We have now different well separated words. There-
fore we can now compute thet f id f feature. But
words appearing in documentation or in the identi-
fier names are not the same. We decided (mostly be-
cause it turns out to perform better) to separate the
t f id f value into at f id fident and at f id fdoc which are
respectively thet f id f value of a word over the iden-
tifier set and over the global documentation. Like in

Word TFIDFid TFIDFdoc IN_SERVICE . . . IN_DOC POS IS_TAG

Weather [0,0.01]]0.01,0.04] × NN ×

Location]0.03,0.1]]0.04,0.15] × JJ

Code]0.03,0.1]]0.01,0.04] × VV

Table 1: Excerpt of the ARFF file enriched with the words

Kea, we used the method in (Fayyad and Irani, 1993)
to discretize those two real-valued features.

Thedistancefeature still has no meaning over the
identifier set, because the elements of a WSDL de-
scription are given in an arbitrary order. Therefore
we decided to adapt it by defining five different fea-
tures:in_service, in_port, in_type, in_operationand
in_documentation. Those features take their values
in the(true, f alse) set. Atruevalue indicates that the
word has been seen in an element identifier of the cor-
responding type. For instancein_service(weather)-
= true means that the wordweatherhas been seen
in a service identifier.in_documentation(weather) =
truemeans that the wordweatherhas been seen in the
global documentation.

In addition of these features, we compute another
feature calledpos, not used in Kea, which signifi-
cantly improves the results.pos is simply the part-
of-speech that has been assigned to the word dur-
ing the POS tagging step. If several parts-of-speech
have been assigned to the same word, we choose
the one that has been assigned in the majority of the
cases. The different values ofpos are: NN (noun),
NNS (plural noun), NP (proper noun), NPS (plu-
ral proper noun), JJ (adjective), JJS (plural adjec-
tive), VV (verb), VVG (gerundive verb), VVD (preterit
verb), SYM (symbol).

3.5 Training and using the classifier

We applied the previously described technique to all
the WSDL files ofT . In addition to the previously de-
scribed features, we compute theis_tag feature over
the candidates. This feature takes its values in the
(true, f alse) set. is_tag(word) = true means that
word has been assigned as a tag by Seekda users for
its service description. We have serialized all those
results in anARFFfile compatible with the Weka tool
(Witten and Frank, 1999). Weka is a machine learn-
ing tool that defines a standard format for describing
a training corpus and provides the implementation of
many classifiers. One can use Weka in order to train
a classifier or compare the performances of different
classifiers regarding a given classification problem.
Table 1 shows an excerpt of the ARFF file we pro-
duce, enriched with the words for the sake of clarity.

With this ARFF file, we used Weka to train a

naive Bayes classifier, shown as optimal for our kind
of classification task (Domingos and Pazzani, 1997).
This trained classifier can now be used in the tag ex-
traction phase. As previously said, the beginning of
this phase is the same as the one of the training phase.
It means that the WSDL file goes through the pre-
viously described operations (pre-processing, candi-
dates selection and features computation). Only this
time, the value of theis_tag feature is not available.
This value will be automatically computed by the pre-
viously trained classifier.

4 VALIDATION OF THE
PROPOSED WORK

This section provides a validation of our technique
on real world data from Seekda to assess the precision
and recall of our trained classifier.

Methodology: We conducted two different experi-
ments. In the first one, the trained classifier is applied
on the training corpusT and its output is compared
with the tags given by Seekda users (obtained as de-
scribed in Section 3.1). After having conducted the
first experiment, a manual assessment of the tags pro-
duced by our approach revealed that many tags not
assigned by the user seemed highly relevant. This
phenomenon has also been observed in several human
evaluations of Kea (Jones and Paynter, 2001; Jones
and Paynter, 2002), that inspired our approach. It oc-
curs because tags assigned by the users are not the
absolute truth. Indeed, it is very likely that users have
forgotten many relevant tags, even if they were in the
service description. To show that the real efficiency
of our approach is better than the one computed in
the first experiment, we perform a second experiment,
where we manually augmented the user tags of our
corpus with additional tags we found relevant and ac-
curate by analyzing the WSDL descriptions of the ser-
vices.

Metrics: In the evaluation, we used precision and
recall. First, for each web services ∈ T , where
T is our training corpus, we consider:A the set
of tags produced by the trained classifier,M the set

of the tags given by Seekda users andW the set of
words appearing in the WSDL. LetI = A∩ M be
the set of tags assigned by our classifier and Seekda
users. LetE = M ∩W be the set of tags assigned
by Seekda users present in the WSDL file. Then we
defineprecision(s) = |I |

|A| and recall(s) = |I |
|E| , which

are aggregated inprecision(T) = ∑s∈T precision(s)
|T | and

recall(T) = ∑s∈T recall(s)
|T | . The recall is therefore com-

puted over the tags assigned by Seekda users that are
present in the descriptions of concerned services.

Evaluation: Figure 6 (left) gives results for the first
experiment where the output of the classifier is com-
pared with the tags of Seekda users, while in Figure
6 (right), enriched tags of Seekda users are used in
the comparison (curated corpus). In this figure, our
approach is calledate(Automatic Tag Extraction). To
clearly show the concrete benefits of our approach, we
decided to include in these experiments a straightfor-
ward (but fairly efficient) technique. This technique,
called tfidf in Figure 6, consists in selecting, after
the application of our text-mining techniques, the five
candidate tags with the highesttfidf weight.

In Figure 6 (left), the precision ofate is 0.48.
It is a significant improvement compared to thetfidf
method that achieves only a precision of 0.28. More-
over, there is no significant difference between the re-
call achieved by the two methods. To show that the
precision and recall achieved byateare not biased by
the fact that we used the training corpus as a testing
corpus, we performed a 10 folds cross-validation. In
a 10 folds cross-validation, our training corpus is di-
vided in 10 parts. One is used to train a classifier,
and the 9 other parts are used to test this classifier.
This operation is done for every part, and then, the
average recall and precision are computed. The re-
sults achieved by our approach using cross-validation
(precision= 0.44 andrecall = 0.42) are very similar
to those obtained in the first experiment.

In Figure 6 (right), we see that the precision
achieved byatein the second experiment is much bet-
ter. It reaches 0.8, while the precision achieved by the
tfidf method increases to 0.41. The recall achieved
by the two methods remains similar. The precision
achieved by our method in this experiment is good.
Only 20% of the tags discovered byate are not cor-
rect. Moreover, the efficiency ofate is significantly
higher thantfidf.

Threats to validity: Our experiments use real
world services, obtained from the Seekda service
search engine. Our training corpus contains services

Figure 6: Results on the original and manually curated
Seekda corpus

extracted randomly with the constraint that they con-
tain at least 5 user tags. We assumed that Seekda users
assign correct tags. Indeed, our method admits some
noise but would not work if the majority of the user
tags were poorly assigned. In the second experiment,
we manually added tags we found relevant by exam-
ining the complete description and documentation of
the concerned services. Unfortunately, since we are
not “real” users of those services, some of the tags we
added might not be relevant.

5 RELATED WORK

In this section, we will present the related work
according to two fields of research: keyphrase extrac-
tion and web service discovery.

Keyphrase extraction and assignment According
to (Turney, 2003), there are two general approaches
that are able to supply keyphrases for a document:
keyphrase extractionandkeyphrase assignment. Both
approaches are using supervised machine learning ap-
proaches, with training examples being documents
with manually supplied keyphrases.

In the keyphrase assignmentapproach, a list of
predefined keyphrases is treated as a list of classes in
which the different documents are classified. Text cat-
egorization techniques are used to learn models for as-
signing a class (keyphrase) to a document. Two main
approaches of this category are (Dumais et al., 1998;
Leung and Kan, 1997).

In the keyphrase extractionapproach, a list of
candidate keyphrases are extracted from a document
and classified into the classeskeyphraseand not
keyphrase. There are two main approaches that fall

in this category: one using a genetic algorithm (Tur-
ney, 2000) and one using a naive Bayes classifier (Kea
(Frank et al., 1999)).

Web service discovery Web service discovery is a
wide research area with many underlying issues and
challenges. A quick overview of some of the works
can be acquired from (Brockmans et al., 2008; Lausen
and Steinmetz, 2008)3. Here, we describe a selection
of works, classified using their adapted techniques.

Many approaches adapt techniques from machine
learning field, in order to discover and group similar
services. In (Crasso et al., 2008a; Heßand Kushm-
erick, 2003), service classifiers are defined depend-
ing on sets of previously categorized services. Then
the resulting classifiers are used to deduce the rele-
vant categories for new given services. In case there
were no predefined categories, unsupervised cluster-
ing is used. In (Ma et al., 2008), CPLSA approach is
defined that reduces a service set then clusters it into
semantically related groups.

In (Lu and Yu, 2007), a web service broker is de-
signed relying on approximate signature matching us-
ing XML schema matching. It can recommend ser-
vices to programmers in order to compose them. In
(Günay and Yolum, 2007), a service request and a
service are represented as two finite state machines
then they are compared using various heuristics to
find structural similarities between them. In (Dong
et al., 2004), the Woogle web service search engine
is presented, which takes the needed operation as in-
put and searches for all the services that include an
operation similar to the requested one. In (Bouillet
et al., 2008), tags coming from folksonomies are used
to discover and compose services.

The vector space model is used for service re-
trieval in several existing works as in (Platzer and
Dustdar, 2005; Wang and Stroulia, 2003; Crasso
et al., 2008b). Terms are extracted from every WSDL
file and the vectors are built for each service. A
query vector is also built, and similarity is calculated
between the service vectors and the query vector.
This model is sometimes enhanced by using Word-
Net, structure matching algorithms to ameliorate the
similarity scores as in (Wang and Stroulia, 2003), or
by partitioning the space into subspaces to reduce the
searching space as in (Crasso et al., 2008b).

A collection of works (Aversano et al., 2006; Peng
et al., 2005; Azmeh et al., 2008), adapt the for-
mal concept analysis method to retrieve web services
more efficiently. Contexts obtained from service de-
scriptions are used to classify the services as a concept

3The second one is edited by the responsible of Seekda’s
technical infrastructure

lattice. This lattice helps in understanding the differ-
ent relationships between the services, and in discov-
ering service substitutes.

6 CONCLUSION AND FUTURE
WORK

With the emergence of SOA, it becomes important
for developers using this paradigm to retrieve Web
services matching their requirements in an efficient
way. By using Web service search engines, these de-
velopers can either search by keywords or navigate by
tags. In the second case, it is necessary that the tags
characterize accurately this service. Our work con-
tributes in this direction and introduces a novel ap-
proach that extracts tags from Web service descrip-
tions. This approach combines and adapts text min-
ing as well as machine learning techniques. It has
been experimented on a corpus of user-tagged real
world Web services. The obtained results demon-
strated the efficiency of our automatic tag extraction
process. The proposed work is useful for many pur-
poses. First, the automatically extracted tags can as-
sist the users who are tagging a given service, or to
“bootstrap” tags on untagged services. They are also
useful to have a quick understanding of a service with-
out reading the whole description. They can also be
used in tasks such as service clustering (for instance
by measuring the similarity of the tags of two given
services), or classification (for instance by defining
association rules between tags and categories).

With our approach, only tags appearing in the
WSDL files are to be found. This way, we miss some
interesting tags (such as associated words, synonyms
or more general words). Nevertheless, the identified
tags represent a good support to find other relevant
tags by using ontological resources (likeWordNet), or
machine learning techniques. This is one of the per-
spectives of our work. We also plan to work on the
extraction of tags composed of more than one word.
Indeed, one-word tags are sometimes insufficient to
describe concepts likeexchange rateor Web 2.0.

REFERENCES

Aversano, L., Bruno, M., Canfora, G., Penta, M. D.,
and Distante, D. (2006). Using concept lattices
to support service selection.International Jour-
nal of Web Services Research, 3(4):32–51.

Azmeh, Z., Huchard, M., Tibermacine, C., Urtado,
C., and Vauttier, S. (2008). WSPAB: A tool for

automatic classification & selection of web ser-
vices using formal concept analysis. InProc. of
(ECOWS 2008), pages 31–40, Dublin, Ireland.
IEEE Computer Society.

Bouillet, E., Feblowitz, M., Feng, H., Liu, Z.,
Ranganathan, A., and Riabov, A. (2008). A
folksonomy-based model of web services for
discovery and automatic composition. InIEEE
International Conference on Services Comput-
ing (SCC), pages 389–396.

Brockmans, S., Erdmann, M., and Schoch, W. (2008).
Service-finder deliverable d4.1. research report
about current state of the art of matchmaking al-
gorithms. Technical report, Ontoprise, Germany.

Crasso, M., Zunino, A., and Campo, M. (2008a).
Awsc: An approach to web service classification
based on machine learning techniques.Inteligen-
cia Artificial, Revista Iberoamericana de Interli-
gencia Artificial, 12, No 37:25–36.

Crasso, M., Zunino, A., and Campo, M. (2008b).
Query by example for web services. InSAC ’08:
Proc. of the 2008 ACM symposium on Applied
computing, pages 2376–2380.

Domingos, P. and Pazzani, M. J. (1997). On the op-
timality of the simple bayesian classifier under
zero-one loss.Machine Learning, 29(2-3):103–
130.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., and
Zhang, J. (2004). Similarity search for web ser-
vices. InVLDB ’04: Proc. of the Thirtieth in-
ternational conference on Very large data bases,
pages 372–383.

Dumais, S. T., Platt, J. C., Hecherman, D., and Sa-
hami, M. (1998). Inductive learning algorithms
and representations for text categorization. In
CIKM, pages 148–155. ACM.

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval
discretization of continuous-valued attributes for
classification learning. InIJCAI, pages 1022–
1029.

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C.,
and Nevill-Manning, C. G. (1999). Domain-
specific keyphrase extraction. InIJCAI, pages
668–673.

Günay, A. and Yolum, P. (2007). Structural and se-
mantic similarity metrics for web service match-
making. InEC-Web, pages 129–138.

Heß, A. and Kushmerick, N. (2003). Learning to at-
tach semantic metadata to web services. InInter-
national Semantic Web Conference, pages 258–
273.

Jones, S. and Paynter, G. W. (2001). Human evalua-
tion of kea, an automatic keyphrasing system. In
JCDL, pages 148–156. ACM.

Jones, S. and Paynter, G. W. (2002). Automatic ex-
traction of document keyphrases for use in dig-
ital libraries: Evaluation and applications.JA-
SIST, 53(8):653–677.

Lausen, H. and Steinmetz, N. (2008). Survey of cur-
rent means to discover web services. Technical
report, Semantic Technology Institute (STI).

Leung, C.-H. and Kan, W.-K. (1997). A statistical
learning approach to automatic indexing of con-
trolled index terms.JASIS, 48(1):55–66.

Lu, J. and Yu, Y. (2007). Web service search: Who,
when, what, and how. InWISE Workshops, pages
284–295.

Ma, J., Zhang, Y., and He, J. (2008). Efficiently find-
ing web services using a clustering semantic ap-
proach. InCSSSIA ’08: Proc. of the 2008 in-
ternational workshop on Context enabled source
and service selection, integration and adapta-
tion, pages 1–8.

Peng, D., Huang, S., Wang, X., and Zhou, A. (2005).
Management and retrieval of web services based
on formal concept analysis. InProc. of the The
Fifth International Conference on Computer and
Information Technology (CIT’05), pages 269–
275.

Platzer, C. and Dustdar, S. (2005). A vector space
search engine for web services. InThird IEEE
European Conference on Web Services, 2005.
ECOWS 2005., pages 62–71.

Schmid, H. (1994). Probabilistic part-of-speech tag-
ging using decision trees. InProc. of NeM-
LaP’94, volume 12. Pages 44–49.

Turney, P. D. (2000). Learning algorithms for
keyphrase extraction.Inf. Retr., 2(4):303–336.

Turney, P. D. (2003). Coherent keyphrase extraction
via web mining. InIJCAI, pages 434–442.

Wang, Y. and Stroulia, E. (2003). Semantic struc-
ture matching for assessing web service similar-
ity. In 1st International Conference on Service
Oriented Computing (ICSOC03, pages 194–207.
Springer-Verlag.

Witten, I. H. and Frank, E. (1999).Data Mining:
Practical Machine Learning Tools and Tech-
niques with Java Implementations.

