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AVOIDABILITY OF LONG k-ABELIAN REPETITIONS

MICHAËL RAO AND MATTHIEU ROSENFELD

Abstract. We study the avoidability of long k-abelian-squares and k-abelian-
cubes on binary and ternary alphabets. For k = 1, these are Mäkelä’s ques-
tions. We show that one cannot avoid abelian-cubes of abelian period at least
2 in infinite binary words, and therefore answering negatively one question
from Mäkelä. Then we show that one can avoid 3-abelian-squares of period
at least 3 in infinite binary words and 2-abelian-squares of period at least 2
in infinite ternary words. Finally, we study the minimum number of distinct
k-abelian-squares that must appear in an infinite binary word.

1. Introduction

Avoidability of structures and patterns has been extensively studied in theoreti-
cal computer science since the work of Thue on avoidability of repetitions in words
[15]. Thue showed that there are infinitely long ternary words avoiding squares (fac-
tors of the form ww where w is a word) and infinitely long binary words avoiding
cubes (factors of the form www where w is a word).

The avoidability of abelian repetitions has been studied since a question from
Erdős in 1957 [5, 6]. A factor uv is an abelian-square if u is a permutation of the
letters of v. Erdős asked whether it is possible to avoid abelian-squares in an infinite
word over an alphabet of size 4. (Abelian-square-free ternary words have a length
of at most 7.) After some intermediary results (alphabet of size 25 by Evdokimov
[7] and size 5 by Pleasant [13]), Keränen answered positively Erdős’s question by
giving a 85-uniform morphism (found with the assistance of a computer) whose
fixed-point is abelian-square-free [10]. Moreover, Dekking showed that it is possible
to avoid abelian-cubes on a ternary alphabet and abelian-4th-powers over a binary
alphabet [3].

Erdős also asked if it is possible to avoid arbitrarily long ordinary squares on
binary words. This question was answered positively by Entringer, Jackson and
Schatz [4]. Mäkelä asked the following two questions about the avoidability of long
abelian-cubes (resp. squares) on a binary (resp. ternary) alphabet:

Question 1 (Mäkelä (see [11])). Can you avoid abelian-cubes of the form uvw
where |u| ≥ 2, over two letters? - You can do this at least for words of length 250.

Question 2 (Mäkelä (see [11])). Can you avoid abelian-squares of the form uv
where |u| ≥ 2 over three letters? - Computer experiments show that you can avoid
these patterns at least in words of length 450.

The notion of k-abelian repetition has been introduced recently by Karhumäki
et al. as a generalization of both repetition and abelian repetition [9]. One can
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avoid 3-abelian-squares (resp. 2-abelian-cubes) on ternary (resp. binary) words
[14]. Following Erdős’s and Mäkelä’s questions, one can ask whether it is possible
to avoid long k-abelian-powers on binary (resp. ternary) words.

In Section 3, we answer negatively Mäkelä’s Question 1, and we propose a new
version of the conjecture. In Section 4, we show that one can avoid 3-abelian-
squares of period at least 3 in binary words and 2-abelian-squares of period at
least 2 in ternary words. In Section 5, we study the minimum number of distinct
k-abelian-squares that must appear in an infinite binary word. Finally, in Section
6, we explain the computer searches we use to find the morphisms of Section 4 and
Section 5.

2. Preliminaries and definitions

We use terminology and notation of Lothaire [12]. Let Σ be a finite alphabet.
For a word u ∈ Σ∗ and a ∈ Σ, we denote by |u|a = |{i : u[i] = a}| the number
of occurrences of the letter a in u. For u,w ∈ Σ∗, we denote by |u|w = |{i : u[i :
i+ |w| − 1] = w}| the number of occurrences of the factor w in u.

Two words u and v are said to be abelian equivalent, denoted u ≈a v, if for every
a ∈ Σ, |u|a = |v|a, and they are said to be k-abelian equivalent (for k ≥ 1), denoted
u ≈a,k v, if for every w ∈ Σ∗ such that |w| ≤ k, |u|w = |v|w. A word u1u2 . . . un is
a k-abelian-n-power if it is non-empty, and u1 ≈a,k u2 ≈a,k . . . ≈a,k un. Its period
is |u1|. Similarly, a k-abelian-square (resp. k-abelian-cube) is a k-abelian-2-power
(resp. k-abelian-3-power). A word is said to be k-abelian-n-power-free if none of
its factors is a k-abelian-n-power. Note that when k = 1, the k-abelian-equivalence
is exactly the abelian equivalence, and we ommit the “1-” prefix in this case.

The Parikh vector of a word w ∈ Σ∗, denoted Ψ(w), is the vector indexed by
Σ such that for every a ∈ Σ, Ψ(w)[a] = |w|a. Then, by definition, two words
u and v are abelian-equivalent if Ψ(u) = Ψ(v). For a set S ⊂ Σ∗ and a word
w ∈ Σ∗, we denote by ΨS(w) the vector indexed by S such that for every s ∈ S,
ΨS(w)[s] = |w|s. We may write Ψk(w) instead of ΨΣk(w) if Σ is clear in the
context.

For all u ∈ Σ∗, i ≤ |u|, let prefi(u) be the prefix of size i of u and let sufi(u) be
the suffix of size i of u. There are equivalent definitions of k-abelian-equivalence
(see [9]). Two words of size at most 2k − 1 are k-abelian equivalent if and only if
they are equal. For every two words u and v of size at least k − 1, the following
conditions are equivalent:

• u and v are k-abelian equivalent (i.e. u ≈a,k v),
• Ψk(u) = Ψk(v) and prefk−1(u) = prefk−1(v),
• Ψk(u) = Ψk(v) and sufk−1(u) = sufk−1(v).

3. Abelian cubes and Mäkelä’s Question 1

Dekking showed that it is possible to avoid abelian-cubes in an infinite word
over a ternary alphabet [3]. More recently, Rao showed that one can avoid 2-
abelian-cubes over a binary alphabet [14] and one can check that every word over a
binary alphabet of length greater than 9 contains an abelian-cube. The only open
question about the avoidability of long k-abelian-cubes on infinite words is then
the avoidability of long abelian-cubes over the binary alphabet. This is the subject
of Question 1 from Mäkelä: he asked whether one can avoid every abelian-cube of
period at least 2 in binary words. We answer negatively this question.
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For this, we used a property of Lyndon words that made the exhaustive search
much faster. A word w ∈ Σ∗ is a Lyndon word if for all u, v ∈ Σ+ such that w = uv,
w <lex vu, where <lex is the lexicographic order. The well-known Chen-Fox-Lyndon
Theorem states that every word may be written uniquely as a concatenation of non-
increasing Lyndon words (see for example [12]). In the following, we refer to this
decomposition as the Lyndon factorization. A language L ⊂ Σ∗ is factorial if for
every w in L, every factor of w is in L.

Lemma 1. Any factorial language L with arbitrarily long words contains arbitrarily
long Lyndon words or repetitions of arbitrarily large power.

Proof. Let us assume that there are no arbitrarily long Lyndon words in L. This
implies that there is a finite number n of Lyndon words in L and s ∈ N such that
for every Lyndon word w in L, |w| ≤ s. Let w1, . . . , wn ∈ Ln be the Lyndon words
of L ordered by decreasing lexicographic order.

Then using the Lyndon factorization for every w ∈ L there are some Lyndon
words L1 ≥lex L2 ≥lex . . . ≥lex Ld such that w = L1 . . . Ld. The fact that our
language is factorial tells us that all the Li are in L. We get that for every w ∈ L
there are α1, . . . , αn ∈ N such that w = wα1

1 . . . wαn
n . Then |w| ≤

∑
i |wi| × αi ≤

s×
∑

i αi ≤ s× n×maxi(αi).
Since L contains arbitrarily long words, then for any t ∈ N there is a w ∈ L such

that |w| ≥ t× s× n. Let j ∈ {1, . . . , n} be such that αj = maxi(αi). Thus αj ≥ t
and then (wj)

t ∈ L. Thus we have arbitrarily long powers in L. �
A set of words that avoid certain kinds of abelian repetitions is a factorial lan-

guage and does not contain arbitrarily large powers. Thus we just need to check
that there are no arbitrarily long Lyndon words in it to deduce that this set does
not contain arbitrarily long words. The exhaustive search on prefixes of Lyndon
words is then much shorter. Figure 1 shows how it helps for the exhaustive search
of binary words avoiding abelian-squares of period at least 2. The next proposition
answers negatively Question 1.

Proposition 1. There is no infinite word over a binary alphabet avoiding abelian-
cubes of period at least 2.

We checked using a computer program that there are only finitely many Lyndon
words over a binary alphabet avoiding abelian-cubes of period at least 2. The
program took approximately 3 hours to find all 2,732,711,352 such Lyndon words
and prefixes of Lyndon words. The longest word has a length of 290. Using Lemma
1 we deduce that there is no infinite binary word avoiding abelian-cubes of size at
least two. Then we can reformulate the question and ask:

Question 3. Is there a p ∈ N such that one can avoid abelian-cubes of period at
least p over two letters?

For p = 3, we found a word of length 2,500.

4. Avoiding long k-abelian-squares on binary words

It is easy to verify that one cannot avoid squares of period at least 2 over a
binary alphabet. Entringer et al. showed that it is possible to construct a binary
word avoiding squares of period at least 3 [4]. They also showed that every infinite
binary word contains arbitrarily long abelian-squares. Thus, one can wonder about
the avoidability of large k-abelian-squares. Rao asked the following question:
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01
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Figure 1. Top: the exhaustive search of binary words avoiding
abelian-squares of period at least 2. Bottom: the same exhaustive
search restricted on the prefixes of Lyndon words.

Question 4 (Rao [14]). What is the smallest k (if any) such that arbitrarily long
k-abelian-squares can be avoided over a binary alphabet?

Since arbitrarily long abelian squares cannot be avoided in binary words, k is at
least 2. In this section, we show that k is at most 3, that is, one can avoid long
3-abelian-squares over a binary alphabet, by giving a morphism whose fixed point
avoids 3-abelian-squares of period at least 3.

A morphism h is said to be (p, k)-abelian-square-free if for every abelian-square-
free word w, h(w) avoids k-abelian-squares of period at least p. Let h be the
following morphism:

h :

⎧⎪⎪⎨
⎪⎪⎩

0 → 00001101010,
1 → 00011111010,
2 → 00110100110,
3 → 00111001010.

Theorem 1. The morphism h is (3, 3)-abelian-square-free.

Proof. The proof is based on the same idea as the one used by Rao to give sufficient
conditions for a morphism to be k-abelian-free [14] which is a generalization of the
sufficient conditions given by Carpi for abelian-free-morphisms [1]. We checked the
sufficient conditions on h by computer.
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In the proof we use the following property: for every k, i ∈ N and u, v ∈ Σ∗ such
that i < k, k−1−i ≤ |u| and i ≤ |v|:
(S) Ψk(uv) = Ψk(u prefi(v))+Ψk(sufk−1−i(u)v).

Let A = {0, 1, 2, 3} and w ∈ A∗. Let us show that if h(w) contains a 3-abelian-
square of period at least 3, then w is not abelian-square-free. Note that every image
h(x), x ∈ A, starts with the prefix p = 00 and ends with the suffix s = 10.

We check using a computer that for every a, b ∈ A, a �= b, every 3-abelian-square
of h(ab) has period at most 2. So if there is a forbidden 3-abelian-square, it has to
be on the image of at least 3 letters. Then there are a1, a2, a3 ∈ A, x1, x2 ∈ A∗ and
(u1, v1), (u2, v2), (u3, v3) ∈ ({0, 1}∗, {0, 1}+) such that

• a1x1a2x2a3 is a factor of w,
• for every i ∈ {1, 2, 3}, uivi = h(ai),
• v1h(x1)u2 ≈a,3 v2h(x2)u3.

Since |v1u2v2u3| ≥ 1+|h(a2)| ≥ 12, either |v1u2| ≥ 6 or |v2u3| ≥ 6. Moreover,
|v1h(x1)u2| = |v2h(x2)u3|, thus for all i ∈ {1, 2}, |vih(xi)ui+1| ≥ 6, and for all
i ∈ {1, 2}, |vi| ≥ 2, |h(xi)| ≥ 2 or |ui+1| ≥ 2. If |ui+1| ≥ 2, then

Ψ3(vih(xi)ui+1)

= Ψ3(vi00)+Ψ3(h(xi)ui+1) (using (S) and pref2(h(xi)ui+1) = 00),

= Ψ3(vi00)+Ψ3(h(xi)00)+Ψ3(ui+1) (using (S) and pref2(ui+1) = 00),

= Ψ3(vi00)+Ψ3(h(xi)00)+Ψ3(10ui+1)−Ψ3(1000).

If |vi| ≥ 2 or |h(xi)| ≥ 2, we have the same result. So for every i ∈ {1, 2}, we get:

(L) Ψ3(vih(xi)ui+1) = Ψ3(vi00)+Ψ3(h(xi)00)+Ψ3(10ui+1)−Ψ3(1000).

Let N be the matrix indexed by {0, 1}3×{0, 1, 2, 3} with N [w, x] = |h(x)00|w.

tN =

⎛
⎜⎜⎝
3 1 2 1 1 2 1 0
2 1 1 1 1 1 1 3
1 2 1 2 2 1 2 0
1 2 2 1 2 1 1 1

⎞
⎟⎟⎠ .

For every word w, Ψ3(h(w)00) = NΨ(w), thus the equality (L) can be rewritten:

Ψ3(vih(xi)ui+1) = Ψ3(vi00)+NΨ(xi)+Ψ3(10ui+1)−Ψ3(1000).

Using v1h(x1)u2 ≈a,3 v2h(x2)u3, we get the following:

(1) N(Ψ(x2)−Ψ(x1)) = Ψ3(v100)+Ψ3(10u2)−Ψ3(v200)−Ψ3(10u3).

Let M be the sub-matrix of N made of its rows 1, 2, 3 and 4 (they correspond
to the words 000, 001, 010, 011).

M =

⎛
⎜⎜⎝
3 2 1 1
1 1 2 2
2 1 1 2
1 1 2 1

⎞
⎟⎟⎠ .

Let S = {000, 001, 010, 011}. Then ΨS(w) is the sub-vector of Ψ3(w) made of the
rows 1, 2, 3 and 4. We can check that M is non-singular. Thus,

(2) Ψ(x2)−Ψ(x1) = M−1(ΨS(v100)+ΨS(10u2)−ΨS(v200)−ΨS(10u3)).
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Let

ΨS(v1, u2, v2, u3) = ΨS(v100)+ΨS(10u2)−ΨS(v200)−ΨS(10u3),

and

Ψ3(v1, u2, v2, u3) = Ψ3(v100)+Ψ3(10u2)−Ψ3(v200)−Ψ3(10u3).

From equation (1), Ψ3(v1, u2, v2, u3) is in Im(N), and from equation (2),
M−1(ΨS(v1, u2, v2, u3)) is an integer vector. From v1h(x1)u2 ≈a,3 v2h(x2)u3,
if we note p = 00, s = 10 and k = 3, we get prefk−1(v1p) = prefk−1(v2p),
sufk−1(su2) = sufk−1(su3).

The following claim is verified using a computer program. There are 43 values
for the ai and 113 ways of choosing the ui, vi for each of them which makes 85,184
cases to check (most of them are eliminated by the prefix and suffix conditions).

Claim 1. For all a1, a2, a3 ∈ A and (u1, v1), (u2, v2), (u3, v3) ∈ ({0, 1}∗, {0, 1}+)
such that

• ∀i ∈ {1, 2, 3}, uivi = h(ai),
• prefk−1(v1p) = prefk−1(v2p) and sufk−1(su2) = sufk−1(su3),
• Ψk(v1, u2, v2, u3) ∈ Im(N) and M−1(ΨS(v1, u2, v2, u3)) is an integer vector,

there are (α1, α2, α3) ∈ {0, 1} such that

(E) M−1(ΨS(v1, u2, v2, u3)) = α1Ψ(a1)−(2α2−1)Ψ(a2)−(1−α3)Ψ(a3).

From the claim we have (α1, α2, α3) ∈ {0, 1} such that equation (E) is fulfilled.

Now we can introduce x′
1, x

′
2 such that ∀i ∈ {1, 2}, x′

i = aαi

i xia
1−αi+1

i+1 . Then x′
1x

′
2

is a factor of w and we have the following:

Ψ(x′
2)−Ψ(x′

1) = Ψ(x2)+(1−α3)Ψ(a3)+α2Ψ(a2)−(Ψ(x1)+(1−α2)Ψ(a2)+α1Ψ(a1))

= M−1(ΨS(v1, u2, v2, u3))−α1Ψ(a1)+(2α2−1)Ψ(a2)+(1−α3)Ψ(a3),

Ψ(x′
2)−Ψ(x′

1) = 0.

This implies that there is an abelian-square on w. �

Using Theorem 1 together with the existence of abelian-square-free words over
four letters, we get the following corollary.

Corollary 1. There is an infinite binary word that avoids 3-abelian-squares of
period at least 3.

Moreover, we can deduce the exponential growth of such words from the expo-
nential growth of abelian-square-free words over four letters [2]. Corollary 1 gives
a partial answer to Question 4: there is such a k, and k ∈ {2, 3}. We can then ask
the following question.

Question 5. Can we avoid 2-abelian-squares of period at least p on the binary
alphabet, for some p ∈ N?

Computer experiments show that we can avoid those patterns for p = 3 in a
word of length 15,000.
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2-abelian squares over a ternary alphabet. Rao showed that one can build
an infinite word that avoids 3-abelian-squares over a ternary alphabet [14]. The
longest 2-abelian-square-free ternary word has a length of 537 [9]. Mäkelä asked
whether we can avoid abelian-squares of period at least 2 in ternary words (Question
2). We give the answer to a weaker version of this question, that is one can avoid
2-abelian-squares of period at least 2 over the ternary alphabet. Let

h2 :

⎧⎪⎪⎨
⎪⎪⎩

0 → 00021,
1 → 00111,
2 → 01121,
3 → 01221.

Theorem 2. h2 is (2, 2)-abelian-square-free.

Proof. The proof is also done by checking sufficient conditions, similar to those
in the proof of Theorem 1. Claim 1 is true for this morphism with k = 2, S =
{00, 01, 02, 11}, s = 1 and p = 0. �

If w is an infinite square-free-abelian word over four letters, h2(w) is a ternary
word which avoids 2-abelian-squares of period at least 2.

5. Minimal number of distinct 3-abelian-squares

in infinite binary words

Fraenkel and Simpson showed that there is an infinite binary word containing
only the squares 02, 12, (01)2 [8]. Moreover, every binary infinite word contains
at least three distinct squares. It is natural to ask whether this property can be
extended to the k-abelian case: Is there a k ∈ N such that there is an infinite binary
word that contains only 3 distinct k-abelian-squares?

More generally, let g(k) be the minimal number of distinct k-abelian squares that
an infinite binary word must contain. Any (k + 1)-abelian-square is a k-abelian-
square so g is non-increasing. From Fraenkel and Simpson’s result, we know that
g(k) ≥ 3 for all k.

Proposition 2. The morphism h3 (defined in Table 1) is (5, 3)-abelian-square-free.
Moreover, for every abelian-square-free word w, h3(w) contains only 3 distinct 5-
abelian-squares: 02, 12 and (01)2.

Proof. The proof that h3 is (5, 3)-abelian-square-free is also done by a computer
check, similar to the proof of Theorem 1. This morphism is not uniform, so we
need to check images of words of size up to 3 to ensure that the image of a long
5-abelian square starts and ends on images of different letters. �

This proposition together with Keränen’s word tells us that for any k ≥ 5 there
is an infinite binary word with only 3 distinct k-abelian-squares, i.e., g(k) = 3 for
every k ≥ 5. Propositions 3 and 4 give us that g(3) = g(4) = 4.

Proposition 3. Every word of size more than 87 over the binary alphabet contains
at least 4 distinct 4-abelian-squares.

This was verified by an exhaustive computer search.
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Table 1. A (5, 3)-abelian-square-free morphism, with only three
distinct 5-abelian-squares: 00, 11 and 0101.

h3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 → u1001011000101110001100101100010111001011000111001011100011001011000
10111001011001110001011000111001011100011001011000101110010110001110
01011100011001011000111001011001110001100101100011100101110001100101
10001011100101100011100101110001100101100011100101100111000101100011
10010110001011100101100111000101110010110001011100011001011000111001
0110011100010111001011000111001011100011v

1 → u0001110010110011100011001011000111001011001110001011100101100011100
10111000110010110001110010110011100011001011000111001011100010110001
11001011001110001100101100011100101100111000101100011100101100010111
00011001011000111001011001110001100101100011100101110001100101100010
11100101100011100101110001100101100011100101100111000110010110001110
0101110001100101100010111001011001110v

2 → u0001110010110011100011001011000111001011001110001011100101100011100
10111000110010110001011100101100111000101100011100101100010111001011
00111000101110010110001110010111000110010110001011100101100111000101
11001011000101110001100101100010111001011001110001011000111001011001
11000110010110001110010111000110010110001011100101100111000101110010
110001011100011001011000101110010110011100011v

3 → u0001110010110001011100011001011000101110010110001110010111000110010
11000111001011001110001100101100011100101110001011000111001011001110
00110010110001110010110011100010110001110010110001011100011001011000
10111001011001110001011000111001011100010110011100011001011000111001
01100111000101100011100101100010111001011001110001011100101100011100
101110001100101100010111001011001110v

Where:

u = 11000110010110001011100101100111000101100011100101100

01011100101100111000101110010110001011100011001011000
111001011001110001100101100010111001011001110001011

v = 00101100011100101100111000110010111000101100111000101
11001011000101110001100101110001011001110001100101100
01110010111000101100011100101100111000101100011100101

Proposition 4. Let

h4 :

⎧⎪⎪⎨
⎪⎪⎩

0 → 0001100101001101011000101010001011101011000101,
1 → 0001100101001101011001110101011100011101011000101,
2 → 0001100101001110001010001100101100011101011000101,
3 → 000110010100111001010100111000101100101011000101.

Then h4 is (3, 3)-abelian-square-free. Moreover, for every abelian-square-free word
w, h4(w) contains only 4 distinct 3-abelian-squares: 02, 12, (01)2 and (10)2.

The proof that h4 is (3, 3)-abelian-square-free is also done by a computer check,
similar to the proof of Theorem 1. One can then check that (00)2 and (11)2 do not
appear as factors of any image of a two-letter word.

Finally, using again an exhaustive search we were able to give the lower bound
g(2) ≥ 5.

Proposition 5. Every word of size more than 92 over the binary alphabet contains
at least 5 distinct 2-abelian-squares.

The following question is a stronger version of Question 5:
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Question 6. How many distinct 2-abelian-squares must an infinite binary word
contain?

6. Computer searches

The toughest part to prove the existence of an infinite word with a desired
property (say, the property P) is to find a morphism with sufficient conditions
whose fixed point has the property P. Let W be the family of finite words with
the property P. This part was done by a computer-assisted search, as follows. We
look for a morphism whose images share a long common prefix and a long common
suffix, to avoid the creation of small forbidden patterns when we concatenate two
images. For this, we first selected one “good” factor w = uv (with |u| = |v|), where
v will be the common prefix, and u the common suffix. To optimize the chance of
success, we took a factor w which is supposed to appear often in words in W : we
constructed, with a backtrack algorithm, a long random word in W , and selected
the factor w among the factors which appear most often in this word. Then we
constructed a family Fw of words in W with prefix u, suffix v, and with a size of
at most a fixed number. (If the search fails, we try again with another w, or with
a larger size.) We constructed the graph with vertex set Fw, and edges {x, y} such
that xyx and yxy are in W . Finally, we checked the sufficient conditions on every
morphism which corresponds to a clique of size 4 in the graph.

As an example, for the morphism h3, which was the most arduous to find among
the morphisms presented here, we use the following parameters. We selected the 88
factors with a size of 300 which appear most often among approximately 1.2 million
factors we found in the random word. We computed the families Fw with words of
size at most 700. All the families Fw we computed had a size between 1,000 and
5,000. The graph of the family that gave us the morphism h3 had 58,680 edges and
1,977 vertices (density of ∼0.03). With the right parameters (|w| and length of the
elements of Fw) it took half a day to find a good morphism.

The presented approach cannot be directly used to answer positively to Ques-
tion 5. For every binary word w, |wx|10 = |wx|01 (where x is the first letter of w).
So the matrix N has rank at most 3, and one cannot find an invertible sub-matrix
M of size 4. Thus Question 5 is, in spirit, close to Mäkelä’s questions (Question 2
and Question 3, the modified version of Question 1).
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