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a b s t r a c t

We consider two games between two players Ann and Ben who
build a word together by adding alternatively a letter at the end
of a shared word. In the nonrepetitive game, Ben wins the game
if he can create a square of length at least 4, and Ann wins if
she can build an arbitrarily long word without Ben winning. In
the erase-repetition game, whenever a square occurs the second
part of the square is erased and the goal of Ann is still to build
an arbitrarily long word (Ben simply wants to limit the size of
the word in this game).

Grytczuk, Kozik, and Micek showed that Ann has a winning
strategy for the nonrepetitive game if the alphabet is of size at
least 6 and for the erase-repetition game if the alphabet is of size
at least 8. In this article, we lower these bounds to respectively
4 and 6. The bound obtained by Grytczuk et al. relied on the so-
called entropy compression and the previous bound by Pegden
relied on some particular version of the Lovász Local Lemma. We
recently introduced a counting argument that can be applied to
the same set of problems as entropy compression or the Lovász
Local Lemma and we use our method here.

For these two games, we know that Ben has a winning
strategy when the alphabet is of size at most 3, so our result
for the nonrepetitive game is optimal, but we are not able to
close the gap for the erase-repetition game.
©2024TheAuthor. PublishedbyElsevier Ltd. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A square is a word of the form uu where u is a non-empty word. The period of the square uu
is |u| the length of u. We say that a word is square-free (or avoids squares) if none of its factors
is a square. For instance, hotshots is a square while minimize is square-free. In 1906, Thue showed
that there are arbitrarily long ternary words avoiding squares [8,9]. This result is often regarded as
the starting point of combinatorics on words, and the many generalizations of this question were
widely studied.

The nonrepetitive game over an alphabet A is a game between Ann and Ben in which they
consecutively add a letter at the end of a shared sequence. Ann’s goal is to avoid squares while
Ben tries to construct squares. More precisely, if a square of period 2 or more appears, then Ben
wins. We do not forbid squares of length 1, since Ben could simply repeat the last letter played by
Ann to win the game otherwise. However, over a large enough alphabet, Ann can avoid all the other
squares. In fact, Pedgen, who introduced this game, used his extension of the Lovász Local Lemma
to show that Ann can always win the game if the alphabet is of size at least 37 [4]. Grytczuk Kozik
and Micek showed that Ann has a winning strategy as long as the alphabet is of size at least 6 [1].
To obtain this result they used the entropy compression argument based on the work of Moser on
the algorithmic proof of the Lovász Local Lemma [3]. On the other hand, it is not hard to see that
if the alphabet is of size at most 3 Ben has a winning strategy (see [4]). In this article, we close the
gap by showing that Ann has a winning strategy as soon as the alphabet is of size at least 4.

Theorem 1. Over an alphabet of size at least 4 Ann has a winning strategy for the nonrepetitive game.

Our proof relies on the same idea as the technique used in [6] (in fact, we recommend reading
Lemma 2 of [6] before any proof from the current article since it is a less technical proof using the
same central idea). More precisely, it relies on a recent counting argument [5,10] and on some ideas
introduced by Kolpakov and improved by Shur [2,7]. Intuitively, we use some extensive computer
calculations to verify that Ann has exponentially many strategies for some ‘‘approximation’’ of the
game, and we show that if there are enough such strategies, then at least some of them are valid
for the original game.

In their article Grytczuk et al. also considered the erase-repetition game [1]. Once again Ann and
en build a sequence together by alternately picking the next symbol. This time, however, as soon
s a square occurs the second half of the square is deleted.1 The goal of Ann is to build an arbitrarily
ong word while Ben tries to bound the size of the word. Notice that, in this game, we erase the
econd half of the square even if it has period 1 (which is equivalent to allowing the players to
kip their turn). Grytczuk et al. showed that Ann has a winning strategy as soon as the alphabet is
f size at least 8. Because of the nature of the problem, the entropy compression argument seems
articularly well suited to tackle it. Indeed, the idea behind the entropy compression argument in
his setting is to try to build a word from left to right in a pseudo-random manner and to erase the
econd half of any square that might occur. We use the same technique as for the nonrepetitive
ame to show that Ann has a winning strategy as soon as the alphabet is of size at least 6. We
onsider another game, the hard game which is easier for Ben than the erase-repetition game and
e show that Ann wins the hard game with an alphabet of size 6.

heorem 2. Over an alphabet of size at least 6 Ann has a winning strategy for the erase-repetition
game.

We first provide the proof of Theorem 1 in Section 2 and the proof of Theorem 2 in Section 3.
The second proof follows the same idea as the first one but is slightly more technical (this is mostly
because Ben can skip his turn in the hard game). These two proofs rely on the existence of a vector
with the right properties that we find with the aid of a computer. These computer verifications are

1 This is always well defined since the concatenation of one letter to a square-free word cannot create two squares.
Indeed, it is not hard to verify that a word that admits two different squares as suffixes also admits a square as a proper
factor.
2
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delayed to Section 4. We then conclude our article in Section 5 with a simple proof that Ben has a
winning strategy for the erase-repetition game over an alphabet of size at most 3. We are, however,
not able to say who has a winning strategy for the erase-repetition game over an alphabet of size
4 or 5 and we leave this question open.

Let us recall the following formula related to the sum of a geometric series, for all x > 1,∑
k≥0

x−k
=

x
x − 1

.

We use this formula and a few elementary variations extensively without detailing every step of
computation in the rest of the article.

We will say that a word v is a 2−-power if it has length at least 3 and there exists a letter a
such that va is a square of period at least 2. This notion will be really useful since Ben can create a
square of period at least 2 at his turn if and only if Ann created a 2−-power at her turn.

2. Ann wins the nonrepetitive game over 4 letters

Ann can build arbitrarily long words in the nonrepetitive game if and only if she can play in
such a way that after her turn the word never ends with a 2−-power. Let A = {0, 1, 2, 3} be our
alphabet. Let p = 15. We denote by S≤p

free the set of words that contain no square of period at most
p and at least 2.

A word w is normalized if it is the smallest for the lexicographic order amongst all the words
obtained by applying to w a permutation of the alphabet. Let Λ be the set of normalized prefixes
of minimal squares of period between 2 and p (by minimal, we mean that no proper factor of these
words should be a square of period between 2 and p). For any w, we let Λ(w) be the longest word
from Λ that is a suffix of w up to a permutation of the alphabet.

Example. The normalized minimal squares of period between 2 and 3 are 0000, 0101, 001001,
011011, 010010 and 012012. Hence, if we were working with p = 3 the set Λ would be the set of
prefixes of these words and in this case Λ(03012312) = 01201 and Λ(0123122) = 011.

Notice that the size of this set grows really fast as a function of p (for p = 15, we have
|Λ| = 298489407 and this is why we will use a computer).

For any set of words L, and any w ∈ Λ, we let L(w) be the set of words from L whose longest
suffix that belongs to Λ up to a permutation of the alphabet is w, that is L(w)

= {u ∈ L : Λ(u) = w}.
We are ready to state our first lemma.

Lemma 3. There exist coefficients (Cw)w∈Λ such that C0 > 0 and for all v ∈ Λ,

αCv ≤ min
a∈A

∑
b∈A

vab∈S≤p
free

CΛ(vab) (1)

where α = 12914/6541 and for all v ∈ Λ, Cv ≤ 10635 and either Cv = 0 or Cv ≥ 4441.

The proof of this lemma relies on a simple computer verification that we delay to Section 4. For
the rest of this section let us fix coefficients (Cw)w∈Λ that respect the conditions given by Lemma 3.
We also let α be defined as in Lemma 3 and γ = 10635/4441. The weight of a word w ∈ L is given
by CΛ(w). For any set of words L, the weight L̂ of the set L is the sum of the weight of the words of
L, that is,

L̂ =

∑
u∈L

CΛ(u) =

∑
w∈Λ

Cw|L(w)
|.

Intuitively, the coefficients introduced in Lemma 3, estimate how good it is for Ann to play a
iven word (i.e., the larger the coefficient the better). In particular, by definition, for any w ∈ Λ, if

−
ends with a 2 -power, then Cw = 0. Informally, for a set of square-free words S, Lemma 3 give

3
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us a lower bound on the weight of the extensions of the words from S by playing one move of each
layer that do not contain squares of period at most p (see Eq. (4)).
To show that Ann can reach arbitrarily long words we are going to ‘‘count’’ the number of words

of length n that Ann can reach. More precisely, instead of counting them, we are going to count the
total weight of the words of size n that she can reach. If this weight is non-zero, then she can reach
at least one word (we will show that she can reach exponentially many words).

We fix a strategy φ : A∗
↦→ A for Ben (a strategy for Ben is simply a function that gives the next

play of Ben for each word). We then say that a square-free word w of odd length2 is playable by
Ann (or simply playable) if

• there is a sequence of moves by Ann that leads to this word against the strategy φ of Ben,
• for every prefix u of w whose last letter was played by Ann, CΛ(u) > 0,
• for every prefix u of w whose last letter was played by Ann, u does not end with a 2−-power.

Let us explain the two last conditions. We lower bound the total weight of the playable words, so
we might as well not count the words of weight 0. In particular, Lemma 3 tells us that any playable
word weights at least 4441 and at most 10635, so for any two sets of playable words A and B such
that |A| ≤ |B| we have Â ≤ γ B̂ (recall that, γ = 10635/4441). The third condition ensures that Ben
an never choose a letter that would create a square, and that Ann herself does not create a square
f period at least 2 (since every square of period at least 2 ends with a 2−-power). We will show
hat there exist arbitrarily long playable words, which means that Ann has a winning strategy.

emark. By the definition of (Cw)w∈Λ, for any w ∈ Λ, if w ends with a 2−-power, then Cw = 0. So,
n fact, the second condition in the definition of playable moves implies the third condition.

For all n, let Sn be the set of playable words of length 2n − 1. We are now ready to state our
ain Lemma.

emma 4. Let β > 1 be a real number such that

α −
2γ β (3−p)/2

β − 1
≥ β.

hen for all n,

Ŝn+1 ≥ β Ŝn.

roof. We proceed by induction on n. Let n be an integer such that the lemma holds for any integer
maller than n and let us show that Ŝn+1 ≥ β Ŝn.
By the induction hypothesis, for all positive i ≤ n − 1,

Ŝn ≥ β iŜn−i (2)

We say that a word w of length 2n + 1 is good, if there exists v ∈ Sn and a ∈ A such that:

• w = vφ(v)a,
• w contains no square of period at most p and at least 2,
• and Cminsuff (w) > 0.

et G be the set of good words. A word is wrong if it is good but not playable, that is, if one of its
uffixes is 2−-power (this also covers the case where a suffix is a square). Let F be the set of wrong
ords. Then for any w, Sn+1 = G \ F and

Ŝn+1 = Ĝ − F̂ . (3)

Let us first lower-bound Ĝ =
∑

w∈Λ |G(w)
|Cw .

2 We let Ann play first.
4
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The extensions of any word v ∈ Sn are the words of the form vφ(v)a where a ∈ A. Such an
xtension belongs to G if and only if vφ(v)a ∈ S≤p

free and CΛ(vφ(v)a) ̸= 0 (this last condition implies
mongst other things that vφ(v)a does not end with a 2−-power of period at most p). By definition,

Λ(v) is the longest suffix of v that is a prefix of a square of period of length at most p (up to
permutation of the alphabet). This implies that for any square-free word v and for any word u,
vu ∈ S≤p

free if and only if Λ(v)u ∈ S≤p
free. For the same reason, for any square-free word v and for any

word u, Λ(vu) = Λ(Λ(v)u). We then deduce that the contribution of the extensions of any word
v ∈ Sn to Ĝ is∑

b∈A
vφ(v)b∈S≤p

free

CΛ(vφ(v)b) =

∑
b∈A

Λ(v)φ(v)b∈S≤p
free

CΛ(Λ(v)φ(v)b) ≥ min
a∈A

∑
b∈A

Λ(v)ab∈S≤p
free

CΛ(Λ(v)ab).

By Lemma 3, we deduce that the contribution of the extensions of any word v ∈ Sn to Ĝ is at least
αCΛ(v). We sum the contributions over Sn to obtain

Ĝ ≥

∑
v∈Sn

αCΛ(v) =

∑
u∈Λ

αCu|S(u)n | = αŜn . (4)

Let us now bound F . For all i, let Fi be the set of words from F that end with a 2−-power of
period i. Clearly, F =

⋃
i≥1 Fi and

F̂ ≤

∑
i≥2

F̂i . (5)

Let us now upper-bound the F̂i separately depending on the magnitude and parity of i.

Case i ≤ p. For the sake of contradiction suppose that there is a word v in Fi. Let u be the shortest
2−-power that is a suffix of v. Then |u| ≤ 2p − 1 and u is the prefix of a minimal-square, which
implies that u belongs to Λ. Hence u is a suffix of Λ(v). There exists a letter a such that Λ(v)a is a
minimal square and by inequality (1), Cv = 0. This is a contradiction since it implies that v is not
good and Fi contains only good words. We deduce |Fi| = 0 and F̂i = 0.

Case i = 2j + 1 ≥ p + 1. Any word u ∈ Fi ends with a 2−-power of period 2j + 1, so the last
2j letters are uniquely determined by the remaining prefix. This prefix belongs to Sn+1−j. Hence,
|F2j+1| ≤ |Sn+1−j| which implies

F̂2j+1 ≤ γ Ŝn+1−j ≤ γ Ŝnβ1−j.

Case i = 2j ≥ p + 1. Any word u ∈ Fi ends with a 2−-power of period 2j, so the last 2j − 1 letters
are uniquely determined by the remaining prefix. Since the last letter was played by Ann then the
2j-th letter from the end of the word was played by Ben and is uniquely determined by the previous
prefix (and the strategy of Ben). Thus, the last 2j letters of the word are uniquely determined by
the remaining prefix that belongs to Sn+1−j. Hence, |F2j| ≤ |Sn+1−j| which implies

F̂2j ≤ γ Ŝn+1−j ≤ γ Ŝnβ1−j.

We can now sum these bounds over the Fi to upper bound F (we use the fact that p = 15 is
odd),

F̂ ≤ Ŝn2γ
∑

i≥(p+1)/2

β1−i
≤ Ŝn

2γ β (3−p)/2

β − 1

Using this bound and (4) with (3) yields

Ŝn+1 ≥ Ŝn

(
α −

2γ β (3−p)/2 )
.

β − 1
5
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By theorem hypothesis we deduce

Ŝn+1 ≥ Ŝnβ

hich concludes our proof. □

Notice that we do not use the fact that p = 15 in the proof other than the fact that p is odd. So
this result holds for any odd p (and a similar result holds for any even p). For larger values of p, one
should expect the fraction 2γ β(3−p)/2

β−1 to get smaller and smaller, but this might not be true since γ

nd α are functions of p. It seems to be the case in practice, and the value p = 15 was chosen to be
he smallest value such that this equation admits a solution. There is nothing particular about this
alue p = 15 and we expect that this should work with any odd p ≥ 17 instead.
One easily verifies that the conditions of the Lemma hold for β = 7/4 with the values given in

Lemma 3 (or for any β ∈ [1.733, 1.790]). This implies the following Corollary

Corollary 5. For all n ≥ 1,

Ŝn+1 ≥
7
4
Ŝn.

Since, Ŝ1 = 4C0 > 0 (by Lemma 3), we deduce |Sn| > 0 for all n. There are playable words of
ny odd length, so Ann can reach arbitrarily long words over 4 letters. This concludes the proof of
heorem 1.
If the alphabet is such that |A| ≥ 5, then Ann can always ‘‘pretend’’ that two letters that are

ongruent modulo 4 are identical and play the same strategy as she would over 4 letters. If Ann
voids squares with this extra equality between letters, then there is no square with the real value
f the letters as well (it does not work for the erase-repetition game, since, amongst other things,
he game is not over after one square). This is why increasing the size of the alphabet can only
enefit Ann in the non-repetitive game.

. Ann wins the erase-repetition game over 6 letters

We will consider a slightly different game that we call the hard game. In this game, Ann and Ben
lternately add a letter at the end of a shared word, Ben cannot repeat the letter previously played
y Ann, but he can decide to skip his turn (or equivalently, play the empty word ε) and Ben wins if
square appears. If Ann has a strategy to win this game (i.e., build arbitrarily long words), then she
an use the same strategy to win the erase-repetition game. More precisely, if Ben plays a repetition
f period 1 in the erase-repetition game, we simulate this by having him play ε in the hard game,

and because Ann uses a winning strategy for the hard game there is no square of period more than
1 that appears and nothing needs to be erased. We will show that with 6 letters or more Ann wins
the hard game which implies Theorem 2. The proof and the definitions in this section are almost
identical to the previous section, but there are a few technicalities that differ and in particular, the
computation of the upper bound on F is slightly more complicated in this case (the fact that Ben
can play ε means that we do not know who played each previous letter simply by looking at the
suffix).

Ann can build arbitrarily long words in the hard game if and only if she can play in such a way
that after her turn the word never ends with a square or a 2−-power. Let A = {0, 1, 2, 3, 4, 5} be
our alphabet and let p = 9. We denote by S≤p

free the set of words that contain no square of period at
most p.3

A word is normalized if it is the smallest of all the words obtained by a permutation of the
alphabet. Let Λ be the set of normalized prefixes of minimal squares of period at most p over A.
For any w, we let Λ(w) be the longest word from Λ that is a suffix of w up to a permutation of
the alphabet. For any set of words S, and any w ∈ Λ, we let S(w) be the set of words from S whose

3 The choice p = 9 is the smallest value of p for which the proof works. As discussed at the end of the article, we
ight be able to prove a stronger result with p = 21, but it would require a much more powerful computer.
6
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longest suffix that belongs to Λ up to a permutation of the alphabet is w, that is S(w)
= {u ∈ S :

(u) = w}.
The last letter of any word w is denoted by ℓ(w).

emma 6. There exist coefficients (Cw)w∈Λ such that C0 > 0 and for all v ∈ Λ,

αCv ≤ min
a∈(A∪{ε})\{ℓ(v)}

∑
b∈A

vab∈S≤p
free

CΛ(vab) (6)

here α = 29481/9855 and for all v ∈ Λ, Cv ≤ 11699 and either Cv = 0 or Cv ≥ 6710.

The proof of this lemma relies on a computer verification that we delay to Section 4. For the rest
f this section let us fix coefficients (Cw)w∈Λ that respect the conditions given by this lemma. We
et γ = 11699/6710. The weight of a word w is given by CΛ(w), and, for each set S of words, the
eight Ŝ of S is the sum of the weight of the words in S, that is,

Ŝ =

∑
w∈S

CΛ(w) =

∑
u∈Λ

Cu|S(u)|.

nce again our goal will be to show that the weight of the words of playable words of any length
s positive, which implies that there are playable words of any length.

We fix a strategy φ : A∗
↦→ A∪{ε} of Ben (a strategy of Ben is simply a map that gives the next

lay of Ben for each word). A square-free word v is said to be playable by Ann (or simply playable)
f

• there is a sequence of moves by Ann that leads to v against the strategy φ of Ben,
• for every prefix u of v whose last letter was played by Ann, we have Cminsuff (v) > 0,
• and for every prefix u of v whose last letter was played by Ann, v does not end with a

2−-power.

For all n, w, let Sn be the set of all playable words obtained after Ann played n times. We are
ow ready to state our main Lemma.

emma 7. Let β > 1 be a real number such that

α − γ
β2−p(β (5+p)/2

+ 2β (3+p)/2
+ β (1+p)/2

− β2
− 1)

(1 + β)(β − 1)2
≥ β . (7)

hen for all n ≥ 1,

Ŝn+1 ≥ β Ŝn.

roof. We proceed by induction on n. Let n be an integer such that the lemma holds for any integer
maller than n and let us show that Ŝn+1 ≥ β Ŝn.
By the induction hypothesis, for all i,

Ŝn ≥ β iŜn−i (8)

A word v whose last letter was played at Ann’s n + 1th move is good, if its prefix produced by
he previous move of Ann is in Sn, if it contains no square of period at most p and if Cminsuff (v) > 0.
et G be the set of good words. A word is wrong if it is good but not playable, that is, if one of its
uffixes is a 2−-power (this covers the case where one of the suffix is a square). Let F be the set of
rong words. Then for any w, Sn+1 = G \ F and

Ŝn+1 = Ĝ − F̂ (9)

Let us first lower-bound Ĝ =
∑

w∈Λ |G(w)|Cw .
The extensions of any word v ∈ Sn that belong to G are the words of the form vφ(v)a where

≤p

∈ A and such that vφ(v)a ∈ Sfree. By definition, Λ(v) is the longest suffix of v that is a prefix

7



M. Rosenfeld European Journal of Combinatorics 118 (2024) 103924

a
r
t

w

C
a

of a square of period of length at most p (up to permutation of the alphabet). This implies that for
ny square-free word v and for any word u, vu ∈ S≤p

free if and only if Λ(v)u ∈ S≤p
free. For the same

eason, for any square-free word v and for any word u, Λ(vu) = Λ(Λ(v)u). We then deduce that
he contribution of the extensions of any word v ∈ Sn to Ĝ is∑

b∈A
vφ(v)b∈S≤p

free

CΛ(vφ(v)b) =

∑
b∈A

Λ(v)φ(v)b∈S≤p
free

CΛ(Λ(v)φ(v)b) ≥ min
a∈(A∪{ε})\{ℓ(v)}

∑
b∈A

Λ(v)ab∈S≤p
free

CΛ(Λ(v)ab)

here the last inequality relies on the fact that φ(v) cannot be the last letter ℓ(v) of v by the rules of
the hard game. By Lemma 6, we deduce that the contribution of the extensions of any word v ∈ Sn
to Ĝ is at least αCΛ(v). We sum the contributions over Sn to obtain

Ĝ ≥

∑
v∈Sn

αCΛ(v) =

∑
u∈Λ

αCu|S(u)n | = αŜn . (10)

Let us now bound F . For all i, let Fi be the set of words from F that end with a 2−-power of
period i. Clearly, F =

⋃
i≥1 Fi and

F̂ ≤

∑
i≥1

F̂i . (11)

Let us now upper-bound the F̂i separately depending on the magnitude and the parity of i.

Case i ≤ p. For the sake of contradiction suppose that there is a word v in Fi. Let u be the shortest
2−-power that is a suffix of v. Then |u| ≤ p and u is the prefix of a minimal-square, which implies
that u belongs to Λ. Hence u is a suffix of Λ(v). There exists a letter a such that Λ(v)a is a minimal
square and by Eq. (1), Cv = 0. This is a contradiction since it implies that v is not good and Fi
contains only good words. Thus |Fi| = 0 and F̂i = 0.

Case i = 2j + 1 ≥ p + 1. Any word u ∈ Fi ends with a 2−-power of period 2j + 1, so the last 2j
letters are uniquely determined by the remaining prefix. Removing the last 2j letters corresponds
to erasing between j and 2j moves, so the corresponding prefix belongs to

⋃2j
k=j Sn+1−k. Hence,

|F2j+1| ≤
∑2j

k=j |Sn+1−k| which implies

F̂2j+1 ≤ γ

2j∑
k=j

Ŝn+1−k ≤ γ Ŝn
2j∑
k=j

β1−k
= γ Ŝn

β1−2j(β1+j
− 1)

β − 1
.

ase i = 2j ≥ p + 1. Any word u ∈ Fi ends with a 2−-power of period 2j, so the last 2j − 1 letters
re uniquely determined by the remaining prefix. In particular, the last 2(j−1) letters are uniquely

determined by the remaining prefix. Now, with the same argument as in the previous case, we
obtain

F̂2j ≤ γ

2(j−1)∑
k=j−1

Ŝn+1−k ≤ γ Ŝn
2(j−1)∑
k=(j−1)

β1−k
= γ Ŝn

β1−2(j−1)(β j
− 1)

β − 1
.

We can now sum the over the Fi to upper bound F (we use the fact that p = 9 is odd),

F̂ ≤

∑
i≥p+1

F̂i =

∑
j≥(p+1)/2

F̂2j+1 +

∑
j≥(p+1)/2

F̂2j

≤ Ŝnγ

⎛⎝ ∑
j≥(p+1)/2

β1−2j(β1+j
− 1)

β − 1
+

∑
j≥(p+1)/2

β1−2(j−1)(β j
− 1)

β − 1

⎞⎠
= Ŝnγ

β2−p(β (5+p)/2
+ 2β (3+p)/2

+ β (1+p)/2
− β2

− 1)
(1 + β)(β − 1)2
8
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Using this bound and (10) with (9) yields

Ŝn+1 ≥ Ŝn

(
α − γ

β2−p(β (5+p)/2
+ 2β (3+p)/2

+ β (1+p)/2
− β2

− 1)
(1 + β)(β − 1)2

)
.

he theorem hypothesis given in Eq. (7) implies

Ŝn+1 ≥ β Ŝn

hich concludes our proof. □

One easily verifies that the condition of the Lemma holds for β = 5/2 with the values given in
Lemma 6 (in fact, we can take any β ∈ [2.19, 2.68]). It implies the following Corollary

orollary 8. For all n ≥ 1,

Ŝn+1 ≥
5
2
Ŝn.

Since, Ŝ1 = 6C0 > 0 (by Lemma 6), we deduce |Sn| > 0 for all n. There are playable words after
ny number of moves, so Ann can reach arbitrarily long words over 6 letters.

.1. And over larger alphabets as well

To conclude the proof of Theorem 2, we need to show that this also holds for 7 letters. The case
A| ≥ 8 was already solved by Grytczuk et al. and the proof that we used for the case |A| = 6 is
asy to adapt to the case |A| = 7. The only difficulty is to find an equivalent of Lemma 6 (this can
lmost be done by hand in this case since p = 5 is enough). However, we can in fact use Ann’s
trategy over 6 letters to find strategies over more than 6 letters with a simple idea: Ann simply
gnores the other letters. More precisely, Ann never plays the extra letters and whenever Ben plays
uch a letter Ann pretends that Ben played ε.

emma 9. Let k be a positive integer such that Ann has a winning strategy for the hard game over k
etters, then she has a winning strategy for the hard game over k + 1 letters.

roof. For any word, w ∈ {0, . . . , k}∗, we let π (w) be the word obtained by deleting all the
ccurrences of k from w. For instance, if k = 6, then π (01656346) = 01534. Let φ : {0, . . . , k −

}
∗

→ {0, . . . , k−1} be a winning strategy of Ann over k letters (a strategy of any of the two players
s simply a map that given the current word indicates the next letter to play). In a winning strategy
nn does not need to pass, this is why we can assume that she does not play ε. We claim that the
trategy φ ◦ π is a winning strategy for Ann over {0, . . . , k} which would immediately imply our
emma.
For the sake of contradiction, suppose that there is a strategy

Ψ : {0, . . . , k}∗ → {0, . . . , k, ε}

f Ben over {0, . . . , k} that wins against φ ◦ π . It means that when Ann plays φ ◦ π and Ben plays
after some step they reach a word u that ends with a square vv. Ann does not pass, so v must

ontain at least one letter played by Ann and this letter is not k. This implies that π (u) also ends
ith a non-empty square π (v)π (v). However, π (u) is a word reached if Ann played the strategy
against Ben playing the same sequence of letters where k is replaced by ε. Since φ is a winning

trategy for Ann, π (u) cannot contain any square which is a contradiction. □

. Verifying Lemmas 3 and 6

The idea to find the sequence of coefficients is identical to the one used in Section 5 of [6]. We
se a computer to first compute the set Λ of minimal forbidden factors and we can then find a set of
oefficients with the desired properties. This set of coefficients can be seen as a fixed point of some
9
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(almost linear) transformation, and we find them by iterating the corresponding transformation
until it converges enough. This is really the same idea as iterating a matrix on some random vector
to find a good approximation of the main eigenvector of the matrix.

The sets Λ are really large, so instead of providing the coefficients, we simply provide two almost
dentical programs (one for each Lemma) that find the coefficients and verify that they have the
esired properties.4
The first step is to compute the set Λ of prefixes of minimal forbidden words of length at most

. In a second step, we compute the directed multi-graph G over the set of vertices Λ and such that
here is an arc from u to v, if v = Λ(ua) and ua is square-free, for some letter a. More precisely,
he multiplicity of the number of arcs from u to v in our graph is given by |{a ∈ A : v = Λ(ua)}|.
This graph is useful to efficiently compute for any v ∈ Λ, the quantity mina∈A

∑
b∈A

vab∈S≤p
free

CΛ(vab) (or

ina∈A∪{ε}\{ℓ(v)}
∑

b∈A
vab∈S≤p

free

CΛ(vab) for Lemma 6).

We consider the procedure that takes coefficients (Cw)w∈Λ as input and produces the coefficients
C ′

w)w∈Λ such that for each v ∈ Λ

C ′

v = min
a∈A

∑
b∈A

vab∈S≤p
free

CΛ(vab).

n practice, we even compute an intermediate vector (C ′′
w)w∈Λ, such that for each v ∈ Λ

C ′′

v =

∑
b∈A

vb∈S≤p
free

CΛ(vb)

nd then for each v ∈ Λ,

C ′

v = min
a∈A

C ′′

va.

For every v, we call the quantity C ′
v/Cv the growth associated to v. If we let α be the minimum

f the growth over every v ∈ Λ, then α and the current coefficients (Cw)w∈Λ respect the condition
f Eq. (1). Our goal is then simply to find coefficients (Cw)w∈Λ that give the largest value of α.
To find our coefficients we simply start by setting all the Cw to the same value, and then we

terate our procedure. We can normalize the coefficients after each iteration by dividing them by
he average value. We then simply iterate until the algorithm converges.

When we give new values to each coefficient we replace any coefficient smaller than some
hreshold value m by 0 and any coefficient larger than some threshold value M by M . We want

= M/m to be as small as possible, but if we choose m too large or M too small, then we get
a smaller coefficient α. So we chose these values experimentally so that γ would be as small as
possible while minimizing the effect on the coefficient α. The threshold values m and M are inside
he C++ code.

We suspect that there are good reasons why this procedure seems to converge toward the
ptimal. However, it is enough for our purpose that we verified that this deterministic proce-
ure produces coefficients (Cw)w∈Λ with the desired property (which is verified exactly using

computation over the rationals).

5. Ben wins the erase-repetition game over 3 letters

Lemma 10. Ben wins the erase-repetition game over 3 letters.

4 The C++ implementations can be found in the ancillary file on the arXiv (https://arxiv.org/abs/2107.14022). Running
this program took 27.8 GB of memory and 26 min for Lemma 3 and 6 KB of memory and 0.05 s for Lemma 6. Our
implementation does not use parallelization, but it is easily parallelizable.
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Fig. 1. An illustration of a winning strategy for Ben over 3 letters. From each configuration where it is Ann turn to play
e give the two leaving arrows corresponding to the two possible moves of Ann (other than skipping her turn). From
very configuration where it is Ben turn there is one leaving arrow corresponding to the chosen strategy for Ben. Since
his graph is finite, it describes a winning strategy for Ben.

roof. It is always a bad choice for Ann to repeat the last letter of the word, since Ben can do the
ame thing and then we are back to the same configuration. So if Ann has a winning strategy, then
he never repeats the last letter of the word. We now describe the winning strategy of Ben (it is
llustrated in Fig. 1).

Up to a permutation of the alphabet, the two first letters played by Ann and Ben are respectively
and 1. If Ann plays 0, Ben can play 1 so we remove the second part of the square 0101 and we
re back to the word 01 and Ann’s turn. So in a winning strategy, Ann has to play 2 for and Ben can
lay 0 and the game then reaches the word 0120. Here, if Ann plays 2 Ben can play 0 and we reach
120 and Ann’s turn, which is a previously visited configuration. So for the game to progress, she
as to play 1 and then Ben can play 2 so this is Ann’s turn and the word is 012. Now if she plays
, Ben answers 2 and we are back to Ann’s turn with the word 012. If she plays 0, then Ban can
imply play 0, so this is now Ann’s turn and the word is 0120 which is a situation we have already
ncountered. We deduce that over 3 letters Ann cannot hope to reach a word of length larger than
. □

With a similar, but slightly more complicated analysis one can verify that Ben wins the hard
ame over 4 letters. Thus, we know that if Ann wants to win the erase-repetition game with 4
etters, then she needs to use the erasing to her advantage. Erasing the second half of a square of
ven period puts the game into a previously visited configuration and if Ann creates a square of odd
ength at her turn, then Ben can skip his next turn (by repeating a single letter) to put the game in a
reviously visited configuration. Hence, if Ann has a winning strategy for the erase-repetition game
ver 4 letters, this strategy must regularly put Ben in a position where he can choose to create a
quare of odd length. It is not clear if our approach can be adapted to deal with such strategies (and
ith the fact that the size of the word does not necessarily increase at every step). On one hand,
he erase-repetition game does not seem to be much easier for Ann than the hard game, but on the
ther hand, when trying to play the game with short words it seems that the difference might be
nough to allow Ann to win the game.
Experimental computations suggest that the coefficients that can be computed in Lemma 3 if

ne replaces p = 8 and A = {0, 1, 2, 3, 4, 5} by p = 21 and A = {0, 1, 2, 3, 4} would allow us to
conclude that Ann wins the erase-repetition game over 5 letters with the exact same proof. We are,
however, not able to carry out such computations since it seems to require at least a few terabytes
of RAM (it takes 30 GB and 29 min for p = 16). Moreover, if we consider a modified version of
the hard game where Ben is not allowed to play ε, then our technique allows us to show that Ann
wins this game over 5 letters. So while we leave the question over the alphabet of size 4 completely
open, we conjecture that Ann also wins the erase-repetition game over 5 letters (and that, in a few
years with larger computational power, it should not be harder to prove than the current result).

Let us finally conclude that this technique can certainly be used to study many variations of these
questions. One could, for instance, replace squares with other powers or avoidability of patterns,
modify the short factors that are forbidden or allow Ben to skip his turn or not.
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