
HAL Id: lirmm-04660507
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04660507v1

Preprint submitted on 23 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Analog Edge AI Architecture For Scalable
Energy-Efficient On-Chip Learning

Mohamed Watfa, Gilles Sassatelli, Alberto Garcia-Ortiz

To cite this version:
Mohamed Watfa, Gilles Sassatelli, Alberto Garcia-Ortiz. End-to-End Analog Edge AI Architecture
For Scalable Energy-Efficient On-Chip Learning. 2024. �lirmm-04660507�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04660507v1
https://hal.archives-ouvertes.fr

Preprint: Under Review

End-to-End Analog Edge AI Architecture For
Scalable Energy-Efficient On-Chip Learning

Mohamed Watfa∗†, Alberto Garcia-Ortiz† (Senior, IEEE), Gilles Sassatelli∗ (Fellow, IEEE)
∗LIRMM, University of Montpellier, CNRS, Montpellier, France

†ITEM, University of Bremen, Bremen, Germany
{mohamed.watfa, sassatelli}@lirmm.fr, agarcia@item.uni-bremen.de

Abstract—Equilibrium Propagation (EP) has emerged as a
promising method in deep learning that leverages analog process-
ing and memristive devices for efficient deep learning. However,
practical challenges such as reduced accuracy in voltage variation
calculations, non-ideal characteristics of memristive devices, and
analog processing blocks complicate its application. Existing
EP models, often idealized, overlook these issues, making them
impractical for silicon-based implementations. Moreover, current
implementations mainly serve as proof-of-concept architectures,
falling short in solving complex problems effectively. Our study
introduces and conducts a comprehensive analysis of various
EP circuit implementations to identify efficient solutions for on-
device training. We explore different formulations of update rules
and propose hardware-aware gradient quantization and accumu-
lation for batch training. Our findings show that simple update
rules in current analog implementations fail on modest problems,
but analog-compatible modifications can achieve performance
comparable to ideal models. Furthermore, we propose a viable
architecture for developing analog/mixed-signal systems capable
of end-to-end training, thereby paving the way towards practical
and efficient analog machine learning solutions.

Index Terms—analog neural networks, hardware optimization,
memristive technology, equilibrium propagation, spice simulation

I. INTRODUCTION

Deep learning is being increasingly used to address com-
plex problems across diverse domains [1], [2]. However, this
progress entails significant energy consumption due to the
high computational demands [3]. These issues are critical in
the context of edge devices, which operate under stringent
power and computational constraints [4]. Furthermore, there’s
a growing need for on-device learning [5], which not only
improves the efficiency and real-time responsiveness of these
devices [6], [7], but also allows them to adapt to changing
data environments [8], an essential feature for maintaining
accuracy over time. However, achieving this goal is hampered
by the inherent complexities of implementing neural networks
in hardware, notably in optimizing for both inference and on-
device learning.

To address the first concern, a promising line of research
has been the exploration of memristive crossbars to perform
the matrix-vector multiplication in the analog domain [9].
These circuits address the memory access and data movement
problem in digital accelerators [10] and boast significant
improvements in performance and energy consumption over
state-of-the-art digital designs [11]. Nonetheless, the inte-
gration of these technologies in mixed-signal accelerators is

often limited by the need for data converters between layers,
introducing substantial power and area overheads [12], [13],
[14]. Moreover, when memristors are used in purely inference
mixed-signal accelerators, finding the optimal weights is not
trivial: since training is often done offline, a naive linear
mapping from matrix values to crossbar conductances can lead
to low accuracy [15].

In spite of this, the use of memristors in purely analog accel-
erators presents a compelling case. Analog accelerators, com-
bined with an analog-friendly learning algorithm, such as the
Equilibrium Propagation (EP) algorithm [16], can potentially
leverage the unique properties of memristors, such as their
continuous resistance states and their inherent non-linearity,
to perform the computations directly in the analog domain,
circumventing the need for energy-intensive digital-to-analog
and analog-to-digital converters. This approach could not only
lead to significant improvements in energy efficiency and
computational density, but also paves the way towards the
realization of efficient on-chip learning.

The EP algorithm is one of the many methods that have been
explored to address the challenges of implementing Back-
propagation in hardware [17], [18], [19], such as non-locality
of information exchange and the requirement for different
kinds of computations in the forward and backward phases
of training [20]. The EP algorithm, explained graphically
in Fig. 1, is a two-step optimization algorithm based on
the principle of energy minimization. It defines the energy
function as Fθ = Eθ + β · C, where θ is the adjustable
parameter of the system, Eθ is the internal energy, and β is a
parameter that modulates how the external force, C, influences
the internal state s of the system. By defining the energy
function this way and by associating a state variable s to each
neuron, EP requires the same kind of computation for both
steps of the optimization problem (called free and nudging
phases), potentially easing hardware implementation.

Nevertheless, the gap between the theoretical allure of EP
and its practical application remains wide. This gap stems from
several factors, including the challenges of accurately calculat-
ing voltage variations, the non-ideal behaviors of memristive
devices, and the intricacies of analog implementations which,
to date, have been largely experimental and limited in their
ability to solve complex problems effectively. Our work seeks
to bridge this divide by making following contributions:

• Comprehensive Analysis of EP Implementations: We
introduce and conduct a rigorous analysis of various EP

1

Preprint: Under Review

circuit implementations, identifying the parameters that
are crucial for enhancing the performance and reliability
for on-device training.

• Innovative Hardware-Aware Modifications: We present
hardware-aware gradient quantization and accumulation
methods for batch training. This includes the development
of a novel circuit that implements these methods in
hardware, achieving performance levels comparable to
ideal models and thus advancing the state-of-the-art.

• End-to-End Architecture: We design and present a ro-
bust architecture for developing analog/mixed-signal sys-
tems capable of end-to-end training, laying the ground-
work for practical and highly efficient analog machine
learning solutions.

This paper is organized as follows: In Sec. II, we present
our proposed hypothetical architecture optimized for hardware
implementation of EP. In Sec. III, we detail the methodology
used in our experimental analysis. In Sec. IV, we present our
findings on four key aspects: the impact of batching in EP, the
impact of various EP learning rules, the benefits of gradient
quantization, and the necessity of adapting the update rule to
the unique characteristics of memristors. In Sec. V, we discuss
the hardware implications of our results and compare our
method to the current state-of-the-art analog-based solutions.
Finally, we conclude and offer perspectives for future work.

II. END-TO-END MIXED-SIGNAL ARCHITECTURE FOR
ON-CHIP LEARNING

A high-level floorplan of our proposed architecture is shown
in Fig. 2a. It primarily comprises of crossbar arrays connected
through bidirectional analog blocks. Each crossbar array is
associated with a Programming Unit (Prog. Unit) and a Row
Select Unit (Row Select), which are only active during the
training phase. High-dimensional input vectors are transferred
into the chip and deserialized via a shift register (Shifter). The
input is then converted from digital to analog via a digital-
to-analog (D/A) interface to enable analog processing in the
crossbar arrays. The processed output is subsequently retrieved
through an analog-to-digital (A/D) interface. Unlike typical
implementations where data converters are used between lay-
ers, incurring significant energy and hardware costs, our design
uses such converters only at the system’s interface.

The architecture integrates dual crossbars: one for stor-
ing analog weights via memristors and another for storing
analog gradients via capacitors during training. For efficient
training, every memristor is paired with its own gradient-
storing capacitor. However, in extreme resource-constrained
settings, the architecture could be adapted to selectively update
a few randomly-selected memristors at a time, integrating
the capacitors within the programming units to save space.
Each crossbar is further composed of two sub-crossbars to
enable the representation of negative weights, a necessary
adaptation for devices like memristors that only store positive
values. The crossbars are also equipped with row and column
multiplexers (MUX) to facilitate access to the programming
elements during training. These are effectively transparent
during inference.

The basic structure of a memristor crossbar that can be
used to implement a fully-connected layer in EP is shown
in Fig. 2e. Designs for incorporating other layers have also
been proposed [9]. The array operates in two modes controlled
by the state of the multiplexers. In normal mode, voltages
are applied to all rows simultaneously as pulses with dura-
tions long enough for the circuit to reach equilibrium 1 .
In programming mode, conductance updates can be done
individually, row-wise, or column-wise, depending on the
requirement. For instance, as demonstrated in the figure, all
elements in row i can be updated simultaneously by applying
appropriate programming voltages to the column buffers and
grounding row i, while other rows remain disconnected 2 .

Unlike neural networks that process memristive crossbars
digitally on a layer-by-layer basis, EP requires simultaneous
equilibrium across all layers. As a result, all layers are inter-
connected with bidirectional buffers and non-linearities instead
of expensive A/D and D/A converters. While the requirement
for the entire system to achieve equilibrium simultaneously
precludes the possibility of reusing layers, this limitation is
not unique to our system; it is a common characteristic of
most in-memory analog neural networks that use memristive
crossbars for weight storage. Despite these constraints, the
representational capacity of equilibrium-based networks, even
with only a few layers, is quite high, rivaling that of multi-
layer recurrent neural networks [21].

On-chip training can be supported through two approaches.
In the first approach, each memristor is equipped with its own
programming unit. This has the advantage of supporting true
local learning and extremely fast processing times as all the
memristors could, in theory, be processed in parallel. However,
this comes at the cost of larger chip area and high power
consumption.

The alternative, depicted in Fig. 2, positions the program-
ming units outside the crossbar arrays, allowing them to
be shared by multiple memristors. Moreover, using fewer
but more precise programming units is crucial for realistic
implementations, as it allows for better detection of small
voltage variations across training phases. While this approach
reduces hardware costs, it comes at the price of slower
processing speeds and the need for complex logic to select
individual cells. To enhance speeds, programming could occur
simultaneously across entire rows or columns by duplicating
programming units according to row or column elements. The
former approach is depicted in Fig. 2.

The programming units have two functions: they compute
and accumulate gradients for the memristors, and generate the
necessary voltage to update them.

• Gradient Computation: This occurs in two stages. Dur-
ing the free phase, the voltage across the memristor
is sampled and stored using a sample-and-hold (SAH)
block. This voltage is then processed according to the
EP update rule. The same process is repeated during
the nudging phase. The voltages from both phases are
subtracted to produce the loss gradient for a given sample.
If batching is used, this new gradient is added to the
previously stored one in the capacitor, and then saved
back into it.

2

Preprint: Under Review

2

1 3

4 6

7

5 5 8 8a b c

states

en
er

gy

states

en
er

gy

time

st
at

e

6

3 7

3 7

d e f

Fig. 1: Training in EP: (a) shows a network with interconnected nodes. Unlike conventional neural networks, the links between
nodes are bidirectional, as shown by the double-headed arrows. This is because EP is an equilibrium based algorithm where
each neuron exchanges information with its neighbors. Every node is associated with a state s, collectively forming the state
vector s. The first step involves initializing the state vector to zero 1 . (b) Before training begins, some nodes are designated
either as inputs or outputs, as indicated by double strokes. At the start of training (or free phase), input nodes are clamped
to the input vector x 2 . The remaining nodes are allowed to dynamically evolve according to equation ds

dt = −∂E
∂s until

they settle at a free equilibrium state, s[f] 3 . At the end of the free phase, the network’s prediction can be derived from the
output nodes 4 . The gradient of the energy, Eθ, of the system with respect to the parameter θij is a function of only the
states it is connected to, si and sj . For the entire network, this term is denoted as

(
∂E
∂θ

)[f]
5 (c) With the input nodes still

clamped to the input vector, the output nodes are pushed to the target vector’s value, y, using loss nodes shown in red 6 . The
remaining unclamped nodes are allowed to once again evolve dynamically following the equation ds

dt = −∂E
∂s − β · ∂C∂s , where

C is the cost function, until they reach a new equilibrium, s[n], which is better than s[f] in terms of the prediction error 7 .
The gradient of the energy, Fθ = Eθ + β ·C, of the system with respect to the parameter vector θ is denoted as

(
∂F
∂θ

)[n]
8 .

Finally, the parameter vector is updated in proportion to − 1
β

[(
∂F
∂θ

)[n] − (
∂E
∂θ

)[f]]
.

• Memristor Programming: The memristor can either
be updated using the newly calculated gradient or by
preloaded values from an external storage. This data is
then converted into a programming pulse depending on
the chosen scheme. The pulse driver uses this voltage to
drive the column line to program the memristor.

The computation of the gradient according to the EP rule
requires the evaluation of the circuit at two equilibrium points.
The first equilibrium point is measured at the end of the free
phase during which the output units are left floating. At the end
of this phase, the outputs, representing the prediction of the
circuit, are measured and compared with the desired outputs. A
loss current, representing the gradient of the loss function with
respect to the output, is then injected into the output nodes.
This current propagates through the circuit until it reaches a

new equilibrium state.

The computation of the loss current can be done using
either analog or digital methods. For instance, the gradient of
the mean-squared error (MSE) can be easily realized in pure
analog hardware using a subtractor (opamp) and a voltage-
controlled current source. However, the gradient of loss func-
tions that require more complex calculations, such as the
crossentropy loss, are more easily done in digital, necessitating
A/D and D/A interfaces. This digital processing is only needed
at the output layer and is essential for interfacing with the
external world, despite the additional overhead.

3

Preprint: Under Review

(f) Memristor Characteristics
(II)

µs

(III)

µs

(IV)(I)

To/From
Gradient Crossbar

Fr
om

 W
eig

ht
St

or
ag

e

Update
Pulse Driver

Pulse
Generator

Subtract
&

Accumulate

M
UX

SAH EP

Update
Pulse Driver

Pulse
Generator

Subtract
&

Accumulate

M
UX

SAH EP

Update
Pulse Driver

Pulse
Generator

Subtract
&

Accumulate

M
UX

SAH EP

(d) Prog. Unit

Power
Clock

Tim
ing

Control

Reference
Blocks

1

CE

CE

CE

CE

(e) Crossbar + MUXes

CE (Weight) CE (Gradient)

output vector

(a) Floorplan

Ro
w

M
UX

Ctrl

To Next Layer, Row Select
From Prog. Units

To
/F

ro
m

Pr
ev

io
us

 L
ay

er

Col. MUX

Ro
w

M
UX

Col. MUX

To Next Layer, Row Select
From Prog. Units

(b) Weight Crossbar

Weight
Crossbar
(Neg)

Weight
Crossbar
(Pos)

a

1

1

1

2

2

2 2

(g) Gradient Calculation Circuits
(I) (II) (III)

Weight
Crossbar

Weight
Crossbar

Prog. Units

Ro
w

Se
lec

t

Weight
Crossbar

Prog. Units

Ro
w

Se
lec

t

Prog. Units

Ro
w

Se
lec

t

Weight
Crossbar

Prog. Units

Ro
w

Se
lec

t

D/
A

input vector

Sh
ift

er

D/
A

A/
D

Lo
ss

 C
alc

.

loss
gradient

d
analog
blocksb

Weight
Crossbar

Weight
Crossbar

Weight
Crossbar

Weight
Crossbar

injected
current

e

To/From
Prog. Units

To/From
Prog. Units

(c) Gradient Crossbar

c

Ctrl

Ro
w

M
UX

Col. MUX

Ro
w

M
UX

Col. MUX

Gradient
Crossbar
(Pos)

Gradient
Crossbar
(Pos)

R1

Ibias Ibias

M1 M2

M3 M4

C1
C1C2

Cf
Vmem

Vmem

Switch
Logic

2b
ADC

Vmem b0
b1

Fig. 2: Hardware architecture for implementing the EP algorithm. The D/A converters transform the input into a vector of
voltages, V . These are applied to the rows (shown in green) of the first weight crossbar, which is connected to a series of other
crossbars via analog blocks b , which, as depicted in Fig. 3, could include components such as diodes to introduce nonlinearity
to the network. Applying a voltage V to a column of conductances Gj produces a current given by the dot product of V −Vj

and Gj , where Vj is the steady-state voltage of column j. These steady-state voltages, depend not only on the inputs, but on
the entire circuit. They are the result of the minimization of the energy function inherent to the whole circuit, as required by
EP. This corresponds to step 3 in Fig. 1, concluding the free phase. If training the network is desired, the voltage across
each conductance (given by the difference between the row and column voltages after steady-state) should first be stored in a
capacitor c 5 . The network’s output is then compared against the true output using a suitable loss function d . The resulting
losses are injected into the output nodes e 5 , causing a perturbation that travels back through the network 7 , altering the
voltages at all nodes 8 . Using the EP update rule, these new set of voltages are used to calculate the loss gradients.

4

Preprint: Under Review

III. METHODOLOGY

A. Framework for Conducting Experiments

This study conducts four experiments. The first explores
the necessity of batching in hardware implementations, a
contrast to the non-batching approach used in [22]. The second
experiment evaluates the effectiveness of simplified EP update
rules, noting that [22] limited their evaluation to the absolute
value function on the MNIST dataset. The third experiment
examines how compression affects learning capabilities, focus-
ing on gradient quantization. For these experiments, an ideal
linear resistor models the weight. In the fourth experiment, this
linear resistor is replaced with a memristor model to assess if
learning is feasible with simplified rules or if adaptation to the
memristor’s characteristics is necessary. Finally, we evaluate
a simple memristor programming scheme.

Given the complexity of the full architecture and the breadth
of experiments involved, simulating every aspect in SPICE
proved extremely time-consuming. To optimize this process,
the simulations were divided into two parts: the free and
nudging phases of the EP algorithm were conducted in SPICE
to accurately reflect the hardware behavior. The other parts of
the process, such as sensing, gradient computation, and weight
updating, were carried out in Python, significantly accelerating
the process. To streamline the construction of analog neural
networks in a manner similar to using Keras1, we used a
tool specifically developed for this purpose, called EBANA
(Energy-Based Analog Neural Network Framework) [23]. This
framework leverages Python’s flexibility to easily model the
effects of different levels of accuracy, including the implemen-
tation of complex models like memristors. The procedure is
illustrated in Fig. 3.

TABLE I: Training parameters of conducted experiments. The
abbreviations used are: DS for dataset, LN for the number of
nodes in a layer, LR for learning rate, MSE for mean-squared
error, and CE for crossentropy.

DS LN LR Loss Optim.

Iris 9–10–6 10−9 – 10−10 MSE SGD

MNIST 1569–100–20 10−8 – 10−8 CE Adam

For all experiments, the network architecture consisted of
an input layer, a hidden layer, and an output layer. The specific
number of nodes and other training parameters are indicated in
Table I. Initial learning rates for the hidden and output layers
were set to those in the table, and then repeated for nearby
values to reduce the bias of bad learning rates. Due to the time-
intensive nature of analog simulations, the MNIST dataset was
limited to 1000 samples to ensure the experiments could be
completed in a reasonable timeframe. The training accuracy
for Iris was evaluated using the entire dataset, whereas a subset
of the traning dataset was used for MNIST. Finally, each
experiment varied only one parameter at a time to clearly
assess its effect on the training dynamics.

All experiments were conducted for the same number of
epochs. Following this, the data was filtered to assess the

1https://keras.io

impact of the selected variables on model accuracy. Only
the configuration with the best learning rates were chosen.
Subsequently, the filtered results were used to make box and
whisker plots with three axis: accuracy, epoch, and updates. An
epoch indicates the network has processed the entire dataset
once, linking directly to training time. Updates refer to how
often the network’s parameters are changed, which depends on
both the epoch count and batch size. In setups using memris-
tors, updates also relate to programming time, power use, and
inversely, to hardware lifespan. Each point on the boxplots
represents the outcome of a single experiment, highlighting
the best accuracy achieved along with the epoch and update
count that reached this level. While this does not capture the
differences between stable and oscillating networks, closer
examination of the data reveals that oscillating networks tend
to, on average, perform worse than stable networks, a trend
implicitly reflected in the figures.

In the batching experiment, for the Iris dataset, batch sizes
were varied from 1 to 105, incrementing by factors of 105.
“Small batch” refers to groupings of batches sized 3, 5, and
7, while “large batch” includes sizes of 15, 35, and 105. For
the MNIST dataset, experiments were limited to batch sizes
of 1, 10, and 40, representing “no batching”, “small batch”,
and “large batch”, respectively.

B. Memristor Modeling

Memristors represent an emerging category of memory
technologies that distinguishes itself by relying on resistance
change rather than charge storage to store information. Unlike
conventional resistors, memristors do not adhere strictly to
Ohm’s Law. To understand how the unique properties of mem-
ristors affect the training of neural networks, we integrated a
memristor model developed by researchers at Stanford into the
EBANA simulation tool [24]. This model, based on metal-
oxide RRAM technology, captures the dynamic behavior of
memristors, including DC cycling, pulsed operation, and the
inherent stochastic variability associated with resistive switch-
ing. It incorporates factors such as electric field influence,
temperature-enhanced ion migration, and local temperature
effects due to Joule heating, allowing for a realistic simulation
of memristor behavior.

Given EBANA’s design as an open-source analog neu-
ral network simulator, the direct use of Verilog-A models
(which is how the Stanford memristor model is distributed)
poses a compatibility issue, primarily because there are no
freely available Verilog-A compilers2. To bridge this gap,
the memristor model was rewritten in Python with minor
modifications to ensure seamless integration and functionality
within EBANA [25].

The adaptation process involved two key modifications:
1) DC Simulation: During DC simulations, the memris-

tor’s behavior is emulated through a behavioral resistor
model, whose current-voltage characteristics is given by
I = I0 · e−

gap
g0 · sinh

(
V
V0

)
, where I0, g0, and V0 are

fitting parameters.

2At the time of this writing, the open-source Verilog-A compiler, OpenVAF,
supports only compact models.

5

Preprint: Under Review

training logs

V

A

V

A

inject loss current

apply update rule
accumulate gradient
update weights

model description
update rule
loss definition
optimizer
...

generate batch of
spice netlists

save voltages
training logs

V

A

V

A

save voltages

a
b

c

c

e
d

Fig. 3: EBANA training loop. The network’s architecture,
training parameters, and model files are first defined in Python.
This information is then used to generate SPICE netlists for
each training batch. Following the initial simulation, or free
phase, the node voltages, and other relevant data, are extracted
from the simulation log. The node voltages at the output
nodes are compared with the true values using the selected
loss function. The result is then translated to loss currents,
which are injected into the output nodes. A second simulation,
the nudge phase, is then performed, and the node voltages
are measured again. Using the data from the two simulation
phases, the weight gradients are calculated and accumulated.
At the end of a batch, the accumulated gradients are used to
update the weights. Note: Blocks marked with circled letters
in this figure correspond with those in Fig. 2.

2) Transient Simulation and State Update: This process
involves running a transient simulation on the memristor
in Python. The final state is then used to update the DC
model.

The memristor model offers a comprehensive set of fitting
parameters, allowing the model to fit the shape of real mem-
ristor current-voltage (I-V) curves and resistance changes over
time. A summary of some of the main parameters and the
values used in our experiments is given in Table II.

The I-V characteristics of memristor defined in Table II is
shown in Fig. 2f. Part (II) illustrates the characteristic butterfly
curve, which represents the memristor’s transition between low
and high resistance states. This memristor exhibits a resistance
range of approximately 100, aligning with what is typically
observed in real memristors. The next two figures show how
the resistance of the memristor evolves over time in response
to a voltage pulse. The gray traces in these figures highlight
the intrinsic cycle-to-cycle variation during programming.

TABLE II: Memristor parameteers.

Param. Value Description

I0 200 · 10−9 Affects the vertical positioning
of the I-V curve.

g0 0.32·10−9 Affects the resistance dynamic
range.

Vel0 5 Affects the velocity at which
the gap changes.

Ea 0.6 Affects gap change through the
energy barrier.

IV. RESULTS

In this section, we present our findings on critical aspects,
including batching effects, different EP learning rules, gradient
quantization, and the adaptation of update rules to memristor
characteristics.

A. Requirements For Batching

Neural networks are commonly optimized using gradient
descent methods, which iteratively minimize the loss function,
C, by updating the parameters, θ, in the direction of the
steepest decline, as given in eq. 1. This update is performed
by averaging the gradients across a mini-batch of m samples
and scaling by the learning rate α.

θk ← θk −
α

m

m∑
n=1

dC

dθk
[n] (1)

The batch size can significantly influence the training dy-
namics. Investigating the application of batching in the EP
framework, particularly in analog computing, introduces com-
plexities not fully explored in existing literature, prompting
an examination of how batching advantages translate into this
context.

The results from simulations on the Iris and MNIST datasets
are presented in Figures 5a and 5b. The experiments reveal
that larger batch sizes typically result in higher accuracies,
supporting the notion that they better approximate the true
gradient [26], even in the context of EP, where the calculated
gradient for each sample is not exact as a result of approxi-
mating the EP update rule with a two point estimate [27].

In the Iris dataset, lower learning rates for a batch size
of 1 enabled the network to achieve an accuracy of 95%,
nearly matching the 96% accuracy observed for all batch
sizes larger than 3. This demonstrates that with a sufficiently
small learning rate, the network can take smaller steps towards
a minima of a loss function. However, doing so required
1680 updates to be made, as opposed to 345 for the small-
sized batch and 105 to the large-sized batch, for the best
performing configurations. Conversely, for the MNIST dataset,
even with significantly more updates (5000 compared to 100),
the optimal configuration using a batch size of 1 only reached
an accuracy of 87%, which is 7% lower than the accuracy
achieved with a batch size of 40 after 5 epochs. This discrep-
ancy between the MNIST and Iris datasets may be attributed
to the inherent complexity of the tasks: The MNIST dataset
represents a more complex classification task, necessitating

6

Preprint: Under Review

larger batch sizes to sufficiently capture the variability in the
gradient.

B. Requirements For Gradient Calculation

Within the Equilibrium Propagation (EP) framework, the
weight parameters, θ, are updated exactly according to eq. 2,
or approximated using a two-point derivative method, such as
the forward difference approximation, to estimate the deriva-
tive for small values of β.

∆θ ∝ d

dβ

(
∂F

∂θ
(θ,x,y, β, s)

)
(2)

Empirical results have shown that the bias introduced by the
forward difference method leads to suboptimal performance in
complex datasets, such as CIFAR-10 [27]. Various strategies
have been proposed to mitigate this bias, such as changing
the sign of β randomly between updates [27], replacing the
forward difference with the backward difference [28], and
employing complex integration [29]. The first two methods
require the computation of the circuit at only two values of β,
whereas the third method, while can theoretically yield exact
gradients, requires the computation of the circuit for multiple
values of β, potentially imposing excessive energy demands.
Consequently, the focus of this section is on the approximation
of the EP update rule that requires only two-point computation.

The selection of the energy function F required in the
EP framework can be hand-crafted or derived from physical
principles. For instance, in the context of two-terminal analog
neural networks, if the energy function is chosen to be the
sum of the pseudo-power of each component, as defined in
eq. 3 [30], the minimum of this energy function can be
shown to correspond to exactly the equilibrium state of the
circuit [31].

F =
∑∫ ∆V

0

i(v) · dv (3)

With this definition of the energy function, and using the
forward difference approximation of eq. 2, it can be easily
shown that the update equation of a linear resistor, with a
current-voltage characteristic i(v) = G · v, where G is the
conductance, is given by eq. 4. While accurately computing
the difference between the squares of two signals, as eq. 4
suggests, is feasible, further exploration of simplified or al-
ternative update rules could ease hardware implementation.
We propose three additional update rules, summarized below,
each with unique hardware implications, to be motivated and
discussed in Sec. V.

ep_sq:∆θ ∝ lim
β→0

1

β
[(∆V [n])2 − (∆V [f])2] (4)

ep_ana:∆θ ∝ lim
β→0

1

β
[(∆V [n])n − (∆V [f])n] (5)

ep_abs:∆θ ∝ lim
β→0

1

β
[|∆V [n]| − |∆V [f]|] (6)

ep_mult:∆θ ∝ lim
β→0

2

β
∆V [f](∆V [n] −∆V [f]) (7)

Simulation results for the Iris and MNIST datasets are
shown in Figures 5c and 5d. For the Iris dataset, all learning
rules, except for ep_abs, demonstrated similar performance.
On average, ep_sq and ep_mult performed the best (96%
for both) and recorded the fastest convergence times. Inter-
estingly, batch sizes 15 and 21 (5 and 7) were the best
performers for ep_sq (ep_mult). This outcome is consistent
with theoretical predictions, given that ep_sq is derived from
the pseudo-power of a linear resistor. Contrary to expectations,
on the MNIST dataset, ep_ana surpassed both ep_sq and
ep_mult in performance, achieving a peak accuracy of 93%
and a higher average (∼ 92%) on the top 3 performing
configurations. In terms of speed, all three rules achieved their
best accuracies after 4 epochs.

The ep_abs learning rule has the worst performance on
both datasets (average of ∼ 83% on Iris and ∼ 86% on MNIST
on the top 3 performing configurations), taking almost twice
as long to converge on Iris. This performance issue can be
attributed to ep_abs’s tendency to overestimate the gradient
for small voltages (below 0.5V), as explained in Fig. 4, result-
ing in larger weight updates. Consequently, when the model
is close to the optimal solution, where precise, small updates
are crucial, ep_abs applies excessive adjustments, causing
the model to overshoot the minima. This is in contrast to the
behavior exhibited by the other two rules, which underestimate
the gradient for smaller voltages.

Fig. 4: Computation of the gradient. The gradient is computed
in three steps. In the first two steps, we calculate h[f] =
f(∆V [f]) and h[n] = f(∆V [n]), where f corresponds to (·)2,
| · |, or (·)2.8, depending on the update rule used. Finally,
we subtract the two values to get the gradient. Since the
gradient is the difference between h[n] and h[f], we need to
look at the derivative of the three rules to understand why
ep_ana outperforms ep_abs. In the case of ep_abs, the
gradient is overestimated for small voltages (below 0.5V) and
underestimated for large voltages (above 0.5V). In contrast,
ep_ana exhibits the opposite trend, which is advantageous,
as it ensures smaller updates near the optimal point, thereby
minimizing the risk of overshooting.

7

Preprint: Under Review

C. Requirements For Gradient Quantization

The application of quantization in neural networks primarily
falls into two categories: quantization for inference [32], and
quantization for training. The interest of this work is in the
latter. Unlike traditional approaches that compute gradients at
one precision and perform updates at another [33], [34], our
approach consistently applies 2-bit quantization, as described
in eq. 8, reducing hardware complexity by eliminating dual
precision pathways. This enables robust training on various
datasets using mixed-signal processing with minimal fine-
tuning.

∆θ ∝ Quantize(∆V [f],m) ·∆ (8)

This method contrasts with scenarios where high-precision
multiplication precedes quantization or where multiplication
involves low-precision numbers. Here, eq. 8 quantizes one
multiplicand before multiplication, potentially explaining why
the network converges with only 2-bits of precision. Although
not practical for digital hardware, analog/mixed-signal hard-
ware can accommodate this approach.

Implementing eq. 8 requires careful consideration of quan-
tization techniques, range, and variability. Using 2-bit static
uniform quantization on ∆V [f] with a symmetric clipping
range yields satisfactory results on the datasets we tested.

The simulations conducted on the Iris and MNIST datasets,
illustrated in Figures 5e and 5f, demonstrate a predictable
decrease in accuracy as the number of quantization bits in
the calculation of the gradient decreases. Interestingly, some
configurations with just 2 and 4 quantization bits achieve
accuracies comparable to the unquantized best cases (98% for
Iris and 96% for MNIST). Specifically, the top 3 performers
for Iris have an average accuracy of 96.3% (95.6%) with batch
sizes 21, 7, and 5, (105, 35, 105), 4 (2) bits of quantization,
and requiring 25 (63) epochs on average. For MNIST, we
observe a similar trend: both scenarios achieve a top accuracy
of 92% with a batch size of 40, and 90% with a batch
size of 10. Interestingly, one of the configurations with a 1
bit quantization level reached 91%, requiring 1 more epoch
compared to the other two cases. This is 3% more than the top
performing configuration for ep_abs. While this rule can also
be regarding as a form of quantization, it has its quantization
range pinned at ±1, making it less effective at quantizing the
data.

In summary, these outcomes suggest two key insights: first,
learning is feasible with gradient quantization using as few as
2 bits, potentially reducing hardware demands; and second,
batching appears to enhance quantization efficiency, further
supporting the argument for its implementation in hardware.

D. Requirements For Memristor Update

While memristors are ideally expected to function as linear
resistors, the reality of training circuits that incorporate mem-
ristors necessitates a careful consideration of their current-
voltage (I-V) characteristics. Overlooking these characteristics
can result in the inaccurate calculation of gradients, potentially
hindering the network’s ability to converge.

∆θ ∝ lim
β→0

1

β

[
1

2!
[(∆V [n])2 − (∆V [f])2]

]
(9)

The results from simulations when using the exact equation
of the memristor, as given in eq. 9 (derived in Sec. A-A), on the
Iris and MNIST datasets are presented in Figures 5g and 5h.
For the Iris dataset, the learning rules ep_memristor and
ep_analog yielded the highest average accuracies. For the
MNIST dataset, ep_memristor emerged as the top per-
former, with ep_sq and ep_mult a close second and third,
on average. Interestingly, the top performer of ep_mult,
an approximation of ep_sq, surpassed the top performer of
ep_sq (94% vs 92%). These results show that that while
learning is also feasible with other learning rules, optimizing
the learning rule to align with the memristor’s properties is
crucial for achieving peak performance.

V. DISCUSSION

In this section, we discuss the hardware implications of our
results and compare our method to the current state-of-the-art
analog-based solutions.

A. Hardware Implications of Implementing Batching

Although batching evidently enhances accuracy per update,
the decision to implement it in hardware involves a deeper
analysis beyond just the accuracy per update metric. Deter-
mining the appropriateness of batching in hardware requires
consideration of four key factors:

1) The energy costs associated with batching.
2) The hardware costs incurred by batching.
3) The potential of batching to mitigate the imperfections

inherent in analog computation.
4) The impact of batching on memristor longevity.
To evaluate the total energy consumption of a neural

network employing batching versus one that does not, it
is essential to account for two main operations: the energy
associated with the accumulation of gradients for each sample
within a batch and the energy required to update the weights
at the end of a batch. The relevant parameters include:

• nd: dataset size.
• nb: batch size.
• nu: number of updates to achieve the desired accuracy.
• eg: energy required for accumulating the gradient per

sample.
• ew: energy required for updating the weights.
The system’s total energy, Etotal, is calculated as the sum

of the energy for gradient accumulation, Egrad, and the energy
for weight updates, Ewrite:

Etotal =

(
nd

nb
× nu

)
× nb × eg + nu × ew

= nd × nu × eg︸ ︷︷ ︸
Egrad

+nu × ew︸ ︷︷ ︸
Ewrite

(10)

From an energy perspective, batching becomes advanta-
geous when the total energy consumption with batching is

8

Preprint: Under Review

no batching small batch large batch

40

60

80

100

a
cc

u
ra

cy
(%

)

0

40

80

120

160

ep
o
ch

1.8

2.4

3.0

3.6

lo
g

(u
p

d
at

es
)

accuracy epoch updates

(a) Accuracy vs. batching in Iris

no batching small batch large batch

60

70

80

90

ac
cu

ra
cy

(%
)

2

3

4

5

ep
o
ch

2.0

2.5

3.0

3.5

lo
g

(u
p

d
a
te

s)

accuracy epoch updates

(b) Accuracy vs batching in MNIST

ep sq ep analog ep abs ep mult
30

40

50

60

70

80

90

a
cc

u
ra

cy
(%

)

0

50

100

150

200

ep
o
ch

1.2

1.8

2.4

3.0

3.6

lo
g

(u
p

d
at

es
)

accuracy epoch updates

(c) Accuracy vs. update rule in Iris

ep sq ep analog ep abs ep mult

84

86

88

90

92

a
cc

u
ra

cy
(%

)

2

3

4

5

ep
o
ch

2.0

2.4

2.8

3.2

3.6

lo
g

(u
p

d
a
te

s)

accuracy epoch updates

(d) Accuracy vs. update rule in MNIST

no quantization Q=4 Q=2 Q=1

20

40

60

80

100

ac
cu

ra
cy

(%
)

0

60

120

180

240

ep
o
ch

0.8

1.6

2.4

3.2

lo
g

(u
p

d
at

es
)

accuracy epoch updates

(e) Accuracy vs. quantization in Iris

no quantization Q=4 Q=2 Q=1

40

50

60

70

80

90

a
cc

u
ra

cy
(%

)

2

3

4

5

ep
o
ch

1.5

2.0

2.5

3.0

3.5

lo
g

(u
p

d
at

es
)

accuracy epoch updates

(f) Accuracy vs. quantization in MNIST

ep memristor ep sq ep analog ep abs ep mult

20

40

60

80

ac
cu

ra
cy

(%
)

0

40

80

120

160

ep
o
ch

1.2

1.8

2.4

3.0

3.6

lo
g

(u
p

d
at

es
)

accuracy epoch updates

(g) Accuracy vs. rule for behavioral model in Iris

ep memristor ep sq ep analog ep abs ep mult
30

40

50

60

70

80

90

ac
cu

ra
cy

(%
)

1

2

3

4

5

ep
o
ch

1.8

2.4

3.0

3.6
lo

g
(u

p
d

at
es

)

accuracy epoch updates

(h) Accuracy vs. rule for behavioral model in MNIST

Fig. 5: Aggregated results from the Iris and MNIST datasets showing the effects of batching (a, b), update equations (c, d),
gradient quantization (e, f), and behavioral memristor training (g, h). Batching improves accuracy consistency and reduces
updates needed. Update rules reveal that most rules, except ep_abs, achieve high accuracy. Gradient quantization with 2-bit
levels require slightly longer training times but stable accuracy. Behavioral memristor training shows that ep_memristor
achieves the highest accuracy, emphasizing the importance of aligning learning rules with memristor properties.

9

Preprint: Under Review

lower than that of non-batched training, expressed as nd ×
nu1 × eg + nu1 × ew < nu2 × ew, where nu1 and nu2 denote
the number of updates with and without batching, respectively.
Substituting eg = γ · ew and nu1 = ζ · nu2, this condition
simplifies to ζ(nd × γ + 1) < 1, which further reduces to
ζ · γ < 1/nd. For example, comparing two configurations of
the Iris dataset with batch sizes of 1 and 21, requiring 1259
and 80 updates respectively, batching is more energy-efficient
if the gradient accumulation energy is less than ∼ 0.15 times
the weight update energy, calculated as 1/(80

1259×105) ≈ 0.15.
This criterion provides a quantitative threshold for determining
when the energy savings from batching justify its implemen-
tation.

Implementing batching in systems that use the EP method
introduces additional hardware considerations. EP’s algorithm
requires measuring voltage drops across two training phases
and storing these readings for gradient calculation, a require-
ment that persists with or without batching. From a hardware
perspective, the additional cost in adding batching to a system
that already implements the EP rule might hinge only on the
additional requirements imposed by accumulating gradients
across multiple samples. For instance, if a switched-capacitor
accumulator is used as a component in the implementation
of the EP rule, the additional cost for batching might be
ensuring that the accumulator has enough output dynamic
range to accommodate the aggregated gradient from multiple
samples. Therefore, in such scenarios, the marginal hardware
costs associated with batching may be considered reasonable
and justified.

The potential of batching to mitigate the imperfections
inherent in analog computation is another important con-
sideration, particularly in the context where memristors are
used for weight storage. Accurate gradient estimation is cru-
cial in complex tasks, where precision in weight updates
directly influences the network’s performance and ability to
converge [27]. Memristors, however, present challenges due
to their non-linear and asymmetric response to programming
pulses. By aggregating gradients from multiple training exam-
ples before updating the weights, batching not only averages
out individual gradient errors but also reduces the frequency
of weight adjustments. This aggregation process helps in
compensating for the imperfect programming of memristors,
thereby stabilizing the training dynamics. As a result, the risk
of oscillatory behaviors, which can prevent convergence by
continuously overshooting the optimal weights, is considerably
reduced.

Finally, batching contributes to the longevity of memristor
hardware. Memristors degrade with each programming op-
eration; therefore, reducing the number of write operations
through larger batch sizes directly extends the durability of the
hardware, a key requirement for machine learning applications.

B. How To Implement The Different Update Rules

We now discuss the implications of implementing each of
the rules in hardware. The ep_sq and ep_ana rules will
be examined together since they are related, followed by a
separate discussion on the ep_abs rule.

The exact update rule according to the EP framework for a
linear resistor is given by eq. 4, which calculates the difference
of the square of two voltages, ∆V [f] and ∆V [n]. These voltges
represent the potential difference, V1−V2, between two nodes
of the circuit in the free and nudging phases, respectively.

Recall that the drain current, ID, of an nMOS transistor
operating in the saturation region is given by:

ID =
1

2
·Kn ·

(
W

L

)
· (VGS − VTH)

2, (11)

where Kn is a technology dependent parameter, W/L is the
aspect ratio of the transistor, VGS is the gate-source voltage,
and VTH is the threshold voltage. If the two inputs V1 and V2

are applied to the gate and the source of a MOS transistor, the
drain current is proportional to the square of the difference of
the two inputs. Thus, the computation of the term (∆V [f])2

or (∆V [n])2 can be easily realized from the inherent square
law of the MOS transistors operating in the saturation region.

In modern CMOS devices, factors such as velocity satu-
ration, mobility degradation, and channel length modulation
significantly alter the behavior of MOS transistors from the
ideal square law. Thus, it becomes necessary to adapt the EP
learning rule to align with the actual device characteristics,
prompting the exploration of ep_ana. As an example, em-
ploying TSMC’s 65nm process technology, we conducted a
voltage sweep on the gate-source from 0.3V to 1.0V of a low-
threshold nMOS transistor for transistors with lengths of 65nm
and 2µm from which we derived the corresponding drain
currents. By fitting these data points to the model ID = k·V n

GS,
we obtained values of n ≈ 2.9 for the 65nm device and
n ≈ 2.76 for the 2µm device. As a result, our simulations
for ep_ana were done using n = 2.8 for a more realistic
realisation of ep_sq using modern transistors.

Although our simulations indicate that ep_ana yields
comparable performance to ep_sq, and while numerous
circuits capable of executing the squaring operation exist [35],
applying these circuits to realize the EP update rule presents
significant obstacles.

One of the major challenges in using circuits that rely on
the inherent square law characteristics of MOS transistors to
calculate the square of the difference of two voltages is the
problem of matching. For the circuits to operate over a wide
range of voltages, these circuits usually employ two transistors,
one for each voltage polarity. These are M1/M2 and M3/M4
in the circuit in Fig. 2g(I). As explained in [35], the current
through the resistor R1 is proportional to (V1−V2)

2 provided
that M1 and M2 are perfectly matched, requiring them to have
the same threshold voltage at all times. Since the difference
between V1 and V2 (nudged and free phase voltages) is usually
very small, if the two transistors are not perfectly matched,
the difference in the threshold voltages will be larger than
the difference between V1 and V2, significantly impacting
the calculation of the gradient. Moreover, such circuits must
accurately square signals across both positive and negative
values to avoid introducing biases that could skew gradient
calculations. This requirement places stringent demands on the
circuit’s linearity across a wide voltage range, which is hard
to achieve in analog.

10

Preprint: Under Review

The update rule ep_abs, which computes the absolute
value of the voltage, offers a potential solution to the afore-
mentioned problems while also being straight-forward to im-
plement. A high level block diagram is shown in Fig. 2g(II).
Only three simple blocks are required: a Swapping Circuit that
swaps the position of V1 and V2, a comparator that checks for
the condition V1 > V2, and a Charging Circuit to transfer the
voltage to a storage element, such as a capacitor. Based on
the combination of the signal φ (which identifies the phase
the circuit is in) and the output of the comparator, a simple
logic inside the Swapping Circuit decides whether to swap the
positions of V1 and V2. These signals go into the Charging
Circuit, which could be a simple operational amplifier that
transfers a charge proportional of the difference of the voltages
onto the capacitor.

Although the implementation is straight-forward, simulation
results show that this rule is inferior to the other three rules
across both datasets. While it might be possible to find a
sufficiently small learning rate that allows the system to
converge, the amount of time, and consequently, the energy
required might not be justified to opt for this solution.

To implement the gradient quantization rule with batching,
we use the following expression, which follows from the
ep_mult rule (derived in Sec. A-B):

VCf
=

∑
(V [f], 2-bit, Vref,p, Vref,m) · (V [n] − V [f]) (12)

Before this equation is implemented in hardware, a few
considerations need to be addressed, such as selecting be-
tween uniform and non-uniform quantization, defining the
quantization range, and choosing between static and dynamic
quantization. These considerations are essential for balancing
accuracy and hardware complexity.

• Uniform vs. non-uniform quantization: Typically, non-
uniform quantization offers greater accuracy for data that
does not exhibit a uniform distribution. On hardware, this
process requires an ADC that translates a sampled input
into a digital code. With a known voltage distribution, im-
plementing non-uniform quantization is straightforward;
for example, by modifying the ladder resistance in low-bit
resolution ADCs, such Flash ADCs.

• Selecting the quantization range: Quantization involves
dividing an interval between α and β into 2m − 1 parts.
Various strategies exist for selecting α and β, each with
its advantages and drawbacks regarding accuracy and
implementation complexity. A simple approach sets α
and β at equidistant points from the origin. While this
method is simple and ensures a tight clipping range, it
may not always yield the best results. For instance, in
EP, if negative voltages are not generated at the output of
each layer, a method that can be used to reduce hardware
complexity, the distribution of voltages skews towards the
positive real axis the farther you move from the input
layer, as demonstrated in Fig. 6. The optimal solution
requires optimizing α and β for each layer.

• Static or dynamic quantization: The variability in training
inputs leads to diverse voltage distributions, making a
single set of α and β suboptimal across different inputs

and different epochs. While computing the quantization
ranges for each input often achieves higher accuracy, it
can be very expensive to implement.

0

25

50

75

fr
eq

u
en

cy

Beginning of Training

hidden 1

hidden 2

−0.1 0.0 0.1

node voltages

0

50

100

fr
eq

u
en

cy

End of Training

Fig. 6: Voltage distribution across nodes during the training of
the Iris dataset with a three-layer neural network (two hidden
layers and one output layer). Initially, node voltages are ran-
domly distributed, mirroring the randomness in initial weights,
with the second hidden layer showing a skew towards higher
voltages. By the end of training, the distribution and scale of
the voltages across the layers have significantly changed and
stabilized, reflecting the network’s learning progress.

Assuming that the optimal quantization parameters have
been determined, eq. 12 can be implemented using an mDAC
by rewriting it as follows:

vCf
=

∑
Φβ(β1, β2, S1) · Φv(v

[n] − v[f], S2) (13)

Here, Φβ(β1, β2, S1) returns either β1 or β2 based on the
state of the signal S1, and Φv(v

[n] − vref , S2) returns either
v[n] − v[f] or −(v[n] − v[f]) based on the state of the signal
S2.

A mixed-signal implementation of eq. 13 is illustrated in
Fig. 2g(III) for the 2-bit case. It could be easily extended to
support more bits. Its operation is explained below.

The process starts by acquiring the voltage drop, Vmem,
across the memristor. During the free phase, when φphase is
LOW, Vmem is passed to the 2-bit ADC, which outputs two
control signals:

• φsign, which is HIGH for codes 10 and 11, indicating a
positive input.

• φC2, which is HIGH for codes 00 and 11, and is used to
enable capacitor C2 in the mDAC.

In the mDAC, the voltage of the feedback capacitor, VCf
,

is calculated as:

VCf
=

(
C1 + φC2 · C2

Cf

)
·∆, (14)

11

Preprint: Under Review

where ∆ is the voltage stored in capacitors C1 and C2. If
C1 = α1 · Cf and C2 = α2 · Cf , the scaling of ∆ depends
on α1, α2 and the state of φC2. When φC2 is HIGH, ∆ is
scaled by β1 = (α1 + α2). When φC2 is LOW, ∆ is scaled
by β2 = α1.

The sign of ∆ is adjusted based on the state of the switches,
S1 and S2, in the switched-capacitor circuit, which operates
in two phases: charging and accumulation, controlled by φsc.
The operation is as follows:

During the free phase (φphase is HIGH), Vmem is equal to
V [f].

• In the charging phase (φsc is LOW), the bottom plates of
C1 and C2 are connected to Vmem, and the top plates are
grounded, storing a voltage of −V [f] in the capacitors.

• In the accumulation phase (φsc is HIGH), the bottom
plates are grounded, and the top plates are connected to
the inverting node of the amplifier, transferring a voltage
of −β1 · V [f] or −β2 · V [f], depending on the state of
φC2.

During the nudging phase (φphase is HIGH), Vmem is equal
to V [n].

• In the charging phase, the top plates of C1 and C2 are
connected to Vmem, and the bottom plates are grounded,
storing V [n].

• In the transfer phase, the bottom plates are grounded, and
the top plates are connected to the inverting node of the
amplifier, transferring a voltage of β1 · V [n] or β2 · V [n].

The above description allows for the implementation of
β1(V

[n]−V [f]) or β2(V
[n]−V [f]) based on the sign of φC2.

For the other possibilities, −β1(V
[n] − V [f]) or −β2(V

[n] −
V [f]), we apply V [f] to the top plates and V [n] to the bottom
plates. This decision is made by Switch Logic circuit based
on the output of the ADC, the training phase (free or nudge),
and the phase of the switched-capacitor circuit (charging or
transfer).

In conclusion, by adopting 2-bit precision for gradient
quantization across all stages, our simulations demonstrate that
it is possible to achieve robust training performance across the
two tested datasets. This result offers a promising avenue for
implementing EP on resource-constrained devices. Finally, by
adopting a mixed-signal approach, gradient quantization and
batching can be integrated together.

C. Hardware Implications For the Memristor Update Circuit

The method used to update a memristor varies depending
on the type of the memristor and the design of the array
architecture [36]. Resistive RAM (RRAM) is particularly
favored in crossbar arrays for neural computations due to
its ability to achieve distinct resistance states through the
growth and dissolution of conductive filaments within its
active layer. This process can be achieved through various
approaches. For example, architectures that use a transistor
as a selector device apply the programming voltage to the
transistor’s gate to set the current during the SET operation.
Alternatively, modulation of the programming voltage for a
fixed duration, modulation of the pulse duration at a fixed
voltage, or a combination of these methods are used [37].

Consequently, the voltage driving circuits must be designed
to provide adjustable voltage range and variable pulse widths
to accommodate different programming schemes.

The implementation of RRAM-based memristors as storage
elements comes with challenges, primarily due to the inherent
variability in the formation and dissolution of the conductive
filaments, as shown in Figure 2. These challenges are typically
addressed through iterative write-verify programming schemes
or weight slicing methods [38], [39], which not only consume
significant power and silicon area but are also time-consuming.
Despite these issues, the precise control over conductance lev-
els is less critical for certain applications. In contexts like ours,
where the system supports online training, inaccuracies in
the memristor’s writing process can be corrected dynamically,
effectively mitigating issues that are common in conventional
digital memory systems or neural networks using memristive
crossbars in a digital configuration.

In view of this, we investigate a very simple update rule,
called the Manhattan Rule, that uses only the sign of the
gradient [40]. The Manhattan method is very easy to imple-
ment in hardware as there is no need to convert the weight
update values to precise writing voltages, a very difficult
process thanks to the nonlinearly-changing conductance of the
memristor. The most basic form of this rule simply produces
a negative (positive) pulse of fixed duration when the gradient
is positive (negative). Since this always results in either a
positive or a negative pulse, the accuracy can bounce back
and forth as the network gets closer to convergence. This issue
can be fixed by only producing a pulse when the magnitude
of the gradient exceeds a certain threshold. Such an update
rule could be implemented with only two comparators. If the
threshold voltage is fixed, the hardware requirements could be
further simplified by integrating the threshold voltages directly
in the comparators, a technique commonly-used to design
biased comparators. This leads to more compact hardware
implementation and faster training time. This is the method
we used to update the memristors.

D. Comparative Analysis
In an effort to optimize the equilibrium propagation algo-

rithm for memristor-based hardware, extensive experiments
were conducted to identify the best parameter configurations.
Our aim in this section is to demonstrate that our selected pa-
rameters not only match the accuracy of an idealized software
implementation but also surpass the performance of existing
hardware solutions, without the degradation observed in prior
implementations.

Our approach is informed by a practical architecture with
real hardware constraints and supported by rigorous empirical
analysis on two datasets. For the Iris dataset, employing 4-bit
gradient quantization achieved 95% accuracy, vastly superior
to the 63% achieved by the method of [22]. Similarly, for
the MNIST dataset, our 4-bit quantization approach reached
93% accuracy, compared to only 48% with their method.
Please note that attempts to replicate the results of [22] in our
experiments failed to yield comparable outcomes, highlighting
potential issues with the robustness and general applicability
of their approach.

12

Preprint: Under Review

software analog-sota Q=4b Q=2b

longevity
energy-
efficiency

sp
ee

d

accuracy robustness

ar
ea

-e
ffi

ci
en

cy

epoch

ac
cu

ra
cy

(%
)

lo
ss

a b c

epoch

ac
cu

ra
cy

(%
)

lo
ss

Fig. 7: Comparison Plot. The plot labelled “software” corresponds to the scenario where the simulation is conducted in
software. The plot labelled “analog-sota” corresponds to the method suggested by [22]. The final two plots demonstrate our
proposed method, using 4-bit and 2-bit gradient quantization with batching enabled. For all experiments, we selected only
those configurations (best learning rate, best batch size, etc.,) that yielded the best performance. The “software” experiment
was conducted using a behavioral model, the ep_memristor update rule, and exact memristor programming. The other
experiments were conducted using the memristor model, their respective update rules, and the simplified memristor programming
approach. (a). Iris Training: Using 4-bit gradient quantization yielded an accuracy of 95%. With 2-bit quantization, accuracy
dropped to 89%. The method proposed by [22] achieved a maximum accuracy of 63%, but the learning process was unstable.
(b). MNIST Training: Using 4-bit gradient quantization yielded an accuracy of 93%. With 2-bit quantization, accuracy dropped
to 94%. The method proposed by [22] achieved a maximum accuracy of 48%, but the learning process was unstable. (c).
Qualitative plot across various performance metrics.

For a qualitative analysis of other performance metrics,
we assessed the area efficiency, energy efficiency, memristor
longevity, and robustness. Due to the lack of quantitative data
from the authors of [22], we adopted a qualitative scoring
system ranging from poor (1) to excellent (4), as shown in
Fig. 7. In terms of area efficiency, our design required more
area due to the use of capacitors and additional transistors
for implementing the 4-bit ADC, whereas the design by [22]
used no capacitors, suggesting a minimal area requirement.
Energy efficiency comparisons showed that our 4-bit approach
had higher energy demands due to the need for 15 com-
parators in the FLASH ADC structure, whereas the 2-bit
and the design by [22] had comparable energy requirements.
Memristor longevity was significantly better in our design
due to less frequent updates facilitated by batching, contrary
to the design by [22] that updated memristors with every
sample. Robustness was also enhanced in our method, which
consistently performed well across different configurations,
unlike the design by [22] which showed greater susceptibility
to instability.

VI. CONCLUSION

This study advances the implementation of Equilibrium
Propagation (EP) within analog machine learning, addressing
key challenges in hardware deployment, a topic often over-
looked. Our SPICE-level experiments on two datasets using
different resistor models reveal several key insights. While
techniques such as no batching and a simplified EP update rule
using the absolute function showed individual promise, their
combination with standard memristor update rules resulted in
instability across both datasets. However, using a combina-
tion of 2-bit gradient quantization and effective batching, we
achieved an accuracy of 93% on the MNIST dataset and 95%

on the Iris dataset, outperforming the state-of-art hardware
implementable approach, which only achieved 48% accuracy
on MNIST and 63% on Iris.

Moreover, we propose an architecture template and gradient
calculation circuits for end-to-end hardware realization. Our
flexible architecture, which leverages mixed-signal process-
ing and resource-sharing techniques, optimizes computational
performance and power efficiency. The proposed hardware
solution inherently performs the batching operation, improving
training accuracy and extending hardware longevity.

Despite these promising results, our experiments were lim-
ited to two datasets and a simple neural network architec-
ture. Furthermore, challenges such as noise effects, signal
degradation, and voltage refresh circuits remain unaddressed,
which are critical for EP’s successful deployment in real-
world applications. Future research should take these into
account and include a broader array of datasets and more
complex network configurations to confirm the scalability of
our solutions. Looking ahead, refining EP integration within
memristive crossbar arrays to maximize energy efficiency and
computational throughput will be a key focus. Additionally,
exploring adaptive learning rates to mimic advanced optimiza-
tion algorithms like ADAM, without the associated hardware
overhead, offers a promising direction to improve network
convergence and validate EP’s practical viability.

APPENDIX A
DERIVATIONS

A. Memristor Update Equation Derivation

We have shown in Sec. IV-B that a circuit implementing
EP should ideally be able to calculate the gradient according
eq. 15. However, while this is the ideal update equation for

13

Preprint: Under Review

a linear resistor, and while under specific cases can lead
to convergence, it is not the optimal update equation for a
memristor.

∆θ ∝ lim
β→0

1

β
[(∆V [n])2 − (∆V [f])2] (15)

We now derive the precise update rule for the particular
memristor model we’re using. The DC I-V characteristic
equation of the memristor is given by:

I=I0 · e−
gap
g0 · sinh

(
V

V0

)
(16)

=
I0 · e−

gap
g0

V0︸ ︷︷ ︸
G

· sinh
(
V

V0

)
· V0 (17)

We can use gap as the programming variable and derive
the exact update rule for eq. 16. This will give a gradient of
the form dP

dgap . However, to compare the update rule for the
memristor with the update rule given in eq. 15, we rewrite
eq. 16 as shown in eq. 17 so that G (for conductance) is
the programming variable. Applying eq. 3 and the forward-
difference formula approximation of eq. 2 results in:

∆θ ∝ lim
β→0

V 2
0

β

[
cosh

(
∆V [n]

V0

)
− cosh

(
∆V [f]

V0

)]
(18)

Using the Taylor series of cosh(x), eq. 18 can be rewritten
as:

∆θ ∝ lim
β→0

1

β

[
1

2!
[(∆V [n])2 − (∆V [f])2]

+
1

4! · V 2
0

[(∆V [n])4 − (∆V [f])4] + · · ·
]
(19)

Disregarding terms with exponents greater than 4, the
update rules for a linear resistor and memristor with character-
istics given by eq. 17 differ by a term equal to 2

4!·V 2
0
[(∆Vβ)

4−
(∆V0)

4], which becomes less significant with smaller voltages.
To make the second term in eq. 19 be γ times the first term,
the voltages must remain below ±

√
12γV 2

0 . For example, to
reduce the second term to 10% of the first, the voltage limit
is approximately ±0.27V. This could enable the application
of eq. 16 over eq. 19 in the update rule, thereby greatly
simplifying hardware requirements. However, for a voltage of
approximately ±0.87V, the gradient calculated by eq. 16 is
nearly half of the optimal value.

B. ep_mult Rule Derivation

The results of the simulations based on rule ep_mult
follow very closely those from rule ep_sq. This is not
surprising since ep_mult is a specific approximation of rule
ep_sq. It can be deduced as follows:

∆θ ∝ (∆V [n])2 − (∆V [f])2

Let ∆ = ∆V [n] −∆V [f]. Therefore:

∆θ ∝ 2 ·∆V [f] ·∆−∆2

If ∆ is very small, ∆2 → 0, leading to the update rule:

∆θ ∝ 2 ·∆V [f] ·∆ (20)

The novelty of this rule is that it not only aligns closely
with the theoretical optimum but also circumvents the practical
limitations of implementing ep_sq. Instead of requiring a
circuit that computes the square of the difference of two
numbers, we require a circuit that multiplies two numbers.
With some further approximations, as will be discussed in
the next section, this rule can be easily implemented using a
multiplicative capacitive DAC (shown in Fig. 2c).

REFERENCES

[1] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamara, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: concepts, cnn architectures, challenges,
applications, future directions,” Journal of Big Data, vol. 8, no. 1, Mar.
2021. [Online]. Available: https://doi.org/10.1186/s40537-021-00444-8

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, jul 2017. [Online].
Available: https://doi.org/10.1109%2Fmsp.2017.2693418

[3] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 3645–3650. [Online]. Available: https://aclanthology.org/P19-1355

[4] N. N. Alajlan and D. M. Ibrahim, “TinyML: Enabling of inference
deep learning models on ultra-low-power IoT edge devices for AI
applications,” Micromachines, vol. 13, no. 6, p. 851, may 2022.
[Online]. Available: https://doi.org/10.3390%2Fmi13060851

[5] S. Zhu, T. Voigt, J. Ko, and F. Rahimian, “On-device training: A first
overview on existing systems,” 2023.

[6] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to work:
Flexible communication compression for energy efficient federated
learning over heterogeneous mobile edge devices,” in IEEE INFOCOM
2021 - IEEE Conference on Computer Communications. IEEE, may
2021. [Online]. Available: https://doi.org/10.1109%2Finfocom42981.
2021.9488839

[7] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware
and energy-efficient computation offloading in mobile-edge computing
using deep reinforcement learning,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 3, pp. 881–892, sep 2021.
[Online]. Available: https://doi.org/10.1109%2Ftccn.2021.3066619

[8] M. Tsukada, M. Kondo, and H. Matsutani, “A neural network-
based on-device learning anomaly detector for edge devices,” IEEE
Transactions on Computers, pp. 1–1, 2020. [Online]. Available:
https://doi.org/10.1109%2Ftc.2020.2973631

[9] X. Liu and Z. Zeng, “Memristor crossbar architectures for implementing
deep neural networks,” Complex & Intelligent Systems, vol. 8, no. 2, pp.
787–802, Apr. 2022.

[10] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” 2017. [Online]. Available:
https://arxiv.org/abs/1703.09039

[11] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
and Y. Xie, “PRIME: A novel processing-in-memory architecture
for neural network computation in ReRAM-based main memory,”
in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, jun 2016. [Online]. Available:
https://doi.org/10.1109%2Fisca.2016.13

[12] S. Zahrai and M. Onabajo, “Review of analog-to-digital conversion
characteristics and design considerations for the creation of power-
efficient hybrid data converters,” Journal of Low Power Electronics
and Applications, vol. 8, no. 2, p. 12, apr 2018. [Online]. Available:
https://doi.org/10.3390%2Fjlpea8020012

14

Preprint: Under Review

[13] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing,” in Proceedings of the 53rd Annual
Design Automation Conference. ACM, jun 2016. [Online]. Available:
https://doi.org/10.1145%2F2897937.2898010

[14] T. Chou, W. Tang, J. Botimer, and Z. Zhang, “CASCADE,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, oct 2019. [Online]. Available: https:
//doi.org/10.1145%2F3352460.3358328

[15] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang,
“RRAM-based analog approximate computing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 12, pp. 1905–1917, dec 2015. [Online]. Available:
https://doi.org/10.1109%2Ftcad.2015.2445741

[16] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the
gap between energy-based models and backpropagation,” Frontiers in
Computational Neuroscience, vol. 11, p. 24, May 2017.

[17] J. C. R. Whittington and R. Bogacz, “An Approximation of the
Error Backpropagation Algorithm in a Predictive Coding Network
with Local Hebbian Synaptic Plasticity,” Neural Computation,
vol. 29, no. 5, pp. 1229–1262, 05 2017. [Online]. Available:
https://doi.org/10.1162/NECO\ a\ 00949

[18] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random
feedback weights support learning in deep neural networks,” 2014.

[19] G. Hinton, “The forward-forward algorithm: Some preliminary investi-
gations,” 2022.

[20] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton,
“Backpropagation and the brain,” Nature Reviews Neuroscience,
vol. 21, no. 6, p. 335–346, Apr. 2020. [Online]. Available:
http://dx.doi.org/10.1038/s41583-020-0277-3

[21] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” CoRR, vol. abs/1806.07366, 2018.
[Online]. Available: http://arxiv.org/abs/1806.07366

[22] S. Oh, J. An, S. Cho, R. Yoon, and K.-S. Min, “Memristor Crossbar Cir-
cuits Implementing Equilibrium Propagation for On-Device Learning,”
Micromachines, vol. 14, no. 7, p. 1367, Jul. 2023.

[23] M. Watfa, A. Garcia-Ortiz, and G. Sassatelli, “Energy-based analog
neural network framework,” Frontiers in Computational Neuroscience,
vol. 17, Mar. 2023. [Online]. Available: http://dx.doi.org/10.3389/
fncom.2023.1114651

[24] S. University, “Stanford university resistive-switching random access
memory (rram) verilog-a model 1.0.0,” https://nanohub.org/publications/
19/1, 2014.

[25] M. Watfa, “Python memristor models,” https://github.com/medwatt/
python\ memristor\ models, 2024.

[26] D. Wilson and T. R. Martinez, “The general inefficiency of
batch training for gradient descent learning,” Neural Networks,
vol. 16, no. 10, pp. 1429–1451, 2003. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608003001382

[27] A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and
D. Querlioz, “Scaling equilibrium propagation to deep convnets by
drastically reducing its gradient estimator bias,” 2020.

[28] B. Scellier, M. Ernoult, J. Kendall, and S. Kumar, “Energy-based
learning algorithms for analog computing: a comparative study,” 2023.

[29] A. Laborieux and F. Zenke, “Holomorphic equilibrium propagation
computes exact gradients through finite size oscillations,” 2022.

[30] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier,
“Training end-to-end analog neural networks with equilibrium propaga-
tion,” arXiv:2006.01981 [cs], Jun. 2020.

[31] W. Johnson, “Nonlinear electrical network,” https://sites.math.
washington.edu/∼reu/papers/2017/willjohnson/directed-networks.pdf.

[32] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A Survey of Quantization Methods for Efficient Neural Network
Inference,” Jun. 2021.

[33] L. Cambier, A. Bhiwandiwalla, T. Gong, M. Nekuii, O. H. Elibol, and
H. Tang, “Shifted and squeezed 8-bit floating point format for low-
precision training of deep neural networks,” 2020.

[34] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for 8-
bit training of neural networks,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 5151–5159.

[35] H.-J. Song and C.-K. Kim, “An mos four-quadrant analog multiplier
using simple two-input squaring circuits with source followers,” IEEE
Journal of Solid-State Circuits, vol. 25, no. 3, pp. 841–848, 1990.

[36] A. Prakash and H. Hwang, “Multilevel cell storage and resistance vari-
ability in resistive random access memory,” Physical Sciences Reviews,
vol. 1, no. 6, Jun. 2016.

[37] S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the switching dynamics
and multilevel capability of bipolar metal oxide resistive switching
memory,” Applied Physics Letters, vol. 98, no. 10, p. 103514, Mar. 2011.

[38] S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, Y.-S. Chen, P.-F. Chiu,
C.-C. Kuo, Y.-S. Yang, P.-C. Chiang, W.-P. Lin, C.-H. Lin, H.-Y. Lee,
P.-Y. Gu, S.-M. Wang, F. T. Chen, K.-L. Su, C.-H. Lien, K.-H. Cheng,
H.-T. Wu, T.-K. Ku, M.-J. Kao, and M.-J. Tsai, “A 4mb embedded slc
resistive-ram macro with 7.2ns read-write random-access time and 160ns
mlc-access capability,” in 2011 IEEE International Solid-State Circuits
Conference, 2011, pp. 200–202.

[39] W. Song, M. Rao, Y. Li, C. Li, Y. Zhuo, F. Cai, M. Wu, W. Yin, Z. Li,
Q. Wei, S. Lee, H. Zhu, L. Gong, M. Barnell, Q. Wu, P. A. Beerel,
M. S.-W. Chen, N. Ge, M. Hu, Q. Xia, and J. J. Yang, “Programming
memristor arrays with arbitrarily high precision for analog computing,”
Science, vol. 383, no. 6685, pp. 903–910, Feb. 2024.

[40] E. Zamanidoost, F. M. Bayat, D. Strukov, and I. Kataeva, “Manhattan
rule training for memristive crossbar circuit pattern classifiers,” in 2015
IEEE 9th International Symposium on Intelligent Signal Processing
(WISP) Proceedings, 2015, pp. 1–6.

15

