
HAL Id: lirmm-04663497
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04663497v1

Submitted on 28 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Socializing A* Algorithm for Crowd- and Socially Aware
Navigation

Seif Eddine Seghiri, Noura Mansouri, Ahmed Chemori

To cite this version:
Seif Eddine Seghiri, Noura Mansouri, Ahmed Chemori. Socializing A* Algorithm for Crowd- and
Socially Aware Navigation. Arabian Journal for Science and Engineering, inPress, �10.1007/s13369-
024-09334-6�. �lirmm-04663497�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04663497v1
https://hal.archives-ouvertes.fr


Socializing A* Algorithm For Crowd- and

Socially-Aware Navigation

Seif Eddine Seghiri1*, Noura Mansouri1† and Ahmed Chemori2†

1*Department of Electronics, University Mentouri Constantine 1,
Constantine, 25017, Algeria.

2LIRMM, University of Montpellier, Montpellier, CNRS, France.

*Corresponding author(s). E-mail(s): seifeddine.seghiri@umc.edu.dz;
Contributing authors: nor mansouri@yahoo.fr;

Ahmed.Chemori@lirmm.fr;
†These authors contributed equally to this work.

Abstract

Today, an undeniable interest is given to the development of socially intelligent
robotic systems and efficient crowd- and socially-aware navigation strategies. In
this paper, we introduce a novel crowd-aware navigation algorithm that com-
bines the A* path planner with the Double Deep Q-Network (DDQN) method.
The algorithm, named Social A*, aims to allow safe navigation for mobile robots
in social dynamics and crowded environments. In order to facilitate future real-
world implementation, a new learning environment compatible with the Robot
Operating System (ROS) is developed. This allows expert teleoperation to help
train the DDQN agent and refine the reward function. We conducted exten-
sive simulations to compare the performance of Social A* with Socially-attentive
Reinforcement Learning (SARL*) and Intention Aware Robot Crowd Navigation
with Attention-Based Interaction Graph (IARL). The obtained simulation results
demonstrate that Social A* not only surpasses SARL* and IARL but also shows
enhanced performance in handling static obstacles. These results showcase the
excellent crowd-aware navigation performance, the efficiency, and the significant
potential of the algorithm.

Keywords: Socially-aware navigation, Deep Reinforcement Learning, ROS, Crowd
awareness, A* algorithm

1



1 Introduction

Nowadays, human-robot coexistence has become more widespread in our daily social
interactions. This coexistence significantly improves healthcare efficiency and service
industry experiences due to its adept integration of robotic assistance [1]. There-
fore, the development of advanced navigation policies that are collision-free, efficient,
and aware of crowd dynamics is essential, attracting considerable attention from
researchers [2–5].

In the domain of robot navigation, multiple strategies are employed to enhance
safety and social awareness. These strategies encompass reaction-based approaches,
trajectory prediction, integration of social cues, and the adoption of learning-based
methods.

In reaction-based approaches such as Optimal Reciprocal Collision Avoidance
(ORCA) [6] and Social Force Model (SFM) [7], one-step interaction rules are employed.
These interactions determine the optimal action for the robot. While some studies
have primarily focused on collision-free navigation [8], others emphasize maintaining
social distance for the robot [9]. This reflects human collision avoidance behavior and
prioritizes safety and respect for pedestrians’ personal space. Some researches were
conducted to anticipate and represent the social behaviour using some parameters
such the goal destination weight, the social weight and the obstacle weight. One of the
widely used social models is the Social Force Model (SFM) and its variations [7, 10].

Another category of techniques relies on predicting the future trajectories of other
agents in the environment. To safely navigate through its environment, the robot may
attempt to plan a path that avoids any potential collisions with the anticipated tra-
jectories. This approach is particularly useful in environments with a high density of
agents [11]. To improve robot-human interactions, a different study [12] recommended
including translation and human indicators into the existing motion planning algo-
rithms. These human indicators are nonverbal social actions undertaken by individuals
to prevent collisions.

However, with the aforementioned techniques, there is a risk of the emergence of
the robot freezing problem [13]. That is why learning-based methods are introduced
as alternative solutions. Several learning-based techniques rely on a set of expert
demonstrations, namely imitation learning, in which the robot learns by observing
the expert’s demonstrations [14]. Other learning-based approaches combine supervised
learning and Reinforcement Learning (RL) to form: Deep RL (DRL) [15].

The DRL-based approaches are getting more attention from researchers given their
high-dimensional states and/or actions flexibility [4]. In DRL, the crowd-aware nav-
igation problem is represented as a Partially Observable Markov Decision Process
(POMDP) [16]. This improves the navigation performance by encoding the interac-
tions between the different apparent agents. The decision-making process in the DRL
framework relies on an approximation provided by a Deep Neural Network (DNN) of
the state and/or the state-action value [17]. The feasibility of encoding information
about the human crowd in this context has been supported by various early pub-
lished DNN architectures, utilizing techniques such as pooling [3], applying a maximal
operation [18] or using a long short-term memory (LSTM) [19, 20].

2



Other DNN architectures that facilitate the encoding of the information can be
included such as Contrastive Learning [5, 21], Generative Adversarial Network (GAN)
[22–24], and Structural RNN (S-RNN) [25–27]. In socially-aware robotic navigation,
each of these architectures is designed to address specific challenges by incorporating
some assumptions such as homogeneous crowd dynamics and consistent environmental
perception accuracy. To improve generalization, DRL models typically represent the
state of the robot and the crowd relative to the robot’s frame by using normalized
positions and velocities of nearby humans, effectively adapting learned behaviors to
various environments [3, 18, 28].

In this paper, we propose a new DRL-based algorithm that combines a DRL archi-
tecture [29] with a global path planner [30], specifically the A* algorithm [31]. The
A* algorithm is used as a reward function design framework. The resulting algorithm,
named Social A*, incorporates social factors, including humans’ minimum comfortable
distance and multiple features based on the A* path [32].

The main contributions of our work can be highlighted by the following three
points:

• A novel crowd-aware navigation algorithm, called Social A*, based on DRL is pro-
posed. It outperforms two state-of-the-art algorithms and it is effective at navigating
crowded environments while considering static obstacles.

• For rapid training and to stimulate the robot to reach its destination faster, an
effective reward function has been proposed. This is accomplished by incorporating
the optimal velocity and a local goal into the reward value.

• A ROS-compatible learning environment is developed to facilitate future transition
from simulation to real-world implementation. Furthermore, expert ROS-based tele-
operation is used to enable simple adjustment of the reward function. This approach
assists domain experts in determining the necessary incentive values to enhance the
performance of the robot.

The remainder of this paper is organized as follows. In section 2, we will provide a
problem formulation. In section 3, we provide a thorough explanation of the proposed
algorithm and its key characteristics. The outcomes of the training and simulation
experiments are presented in sections 4 and 5, respectively. The results demonstrate
the effectiveness of the proposed algorithm for enhancing mobile robot navigation in
crowded and socially complex environments.

2 Problem formulation

Robot navigation in crowd- and socially-aware spaces is an important research area.
It seeks to implement algorithms and methodologies, to allow the robot to safely share
the space with humans. The robot has to navigate its environment taking into account
the pedestrians’ movements and their social space.

To formalize the problem, we consider a 2D environment with one robot and n
pedestrians, for a total of n + 1 agents. All agents retain partially observable states.
The observable part of the state holds the position p = [px, py], velocity v = [vx, vy],
and since the agents will be represented as circles, we define the circle radius r. The

3



unobservable state holds the agent’s orientation θ, its goal position g = [gx, gy].
In this study, we introduce a local goal to the unobservable state of the robot denoted
gl = [glx, g

l
y]. The robot’s full state at time t is defined as

St = [px, py, g
l
x, g

l
y, vx, vy, θ, gx, gy, r], and the k-th human’s observable state in the

robot’s coordinate frame at time t is Ok
t = [pkx, p

k
y , v

k
x, v

k
y , r

k]. To generalize the state
representation, the current and target positions (p, g) are substituted by the A* path
length, denoted dg. In addition, the robot’s orientation θ is substituted by the term
θgl which represents the angular error between θ and the direction to its local goal gl.
The new states are then expressed as follows:

St = [dg, θgl , vx, vy, r]

Ok
t = [pkx, p

k
y , v

k
x, v

k
y , r

k, rk + r]
(1)

By concatenating the state St with all observable human states Ok
t , we obtain at time

t a joint state of all n+ 1 agents:

Jt = [St,O
1
t ,O

2
t , ...,O

n
t ] (2)

In this context, Jt is defined within the robot’s coordinate frame, enabling the model’s
ability to generalize across diverse environments. Furthermore, when encountering
scenarios with more than n pedestrians, the model prioritizes the nearest n individuals
based on proximity to the robot for consideration.

According to a specified navigation policy π(Jt), the possible actions at, that a
differential drive mobile robot can take, are linear and angular velocities: π(Jt) = at =
vt. If we suppose that at each time t, the robot is awarded by a function R(Jt, π(Jt)),
the optimal value of Jt at time t is given by:

V ∗(Jt) =

K∑
i=0

γi.∆tR(Jt,a
∗
t ) (3)

Where a∗t is the optimal action at Jt, and it is selected according to the optimal policy
π∗(Jt). The term K represents the overall amount of decision steps taken from the
initial state to the last one. ∆t is the decision time interval between two consecutive
actions, and γ ∈ [0, 1] is a discount factor.
The optimal policy π∗(Jt) is obtained by maximizing the following cumulative reward,
which is as follows:

π∗(Jt) = argmax
at∈A

R(Jt,at) + γ∆t∫
Jt+∆t

P (Jt+∆t | Jt,at)V
∗(Jt+∆t)dJt+∆t

(4)

Where A is the action space, P (Jt+∆t | Jt,at) is the transition probability from
Jt to Jt+∆t when action at is taken.
It is reasonable to assume that pedestrians walk at a constant speed within the
time interval [t, t+∆t] since pedestrian intentions are difficult to forecast and the

4



length ∆t is quite short. As a result, we can consider a constant velocity model to
forecast humans’ next states and approximate the next combined state: Jt+∆t ←
propagate(Jt,∆t,at).
Eq. (5) simplifies the computation of the optimal policy π∗ as follows:

π∗(Jt) = argmax
at∈A

R(Jt,at) + γ∆tV∗(Jt+∆t) (5)

To solve Eq. (5), we will employ a state-value Double Deep Q-Network (DDQN)
DRL algorithm. This algorithm extends the standard Deep Q-Network (DQN) by
using a dual network architecture that mitigates overestimation bias—a common issue
in traditional DQNs. Specifically, one network estimates the state-action values to
select actions, while a separate periodically updated network evaluates these actions to
avoid feedback loops in value estimation [29]. This separation enhances the accuracy
of the value function approximation, which is crucial for the efficient training of our
policy π∗ under the complex dynamics of pedestrian navigation modeled as a Markov
Decision Process (MDP) [33]. Further technical details of the DDQN implementation
are discussed in Section 3.

3 Proposed Social A* algorithm

The Social A* algorithm is based on the Double Deep Q-Network (DDQN) algorithm
[29], where the A* path planning algorithm is used in its reward design step 2. The
DDQN is an advanced form of the standard Deep Q-Network [15, 29] that mitigates
the overestimation of action values typically seen in Q-learning. As it is described in
Algorithm 1 and given Eq. (6) and Eq. (7), The DDQN employs two neural networks:
the main network with weights θ and a target network with weights θ−. These networks
are used to estimate and periodically stabilize the state-value function V , based on
transitions (Jt,at, rt,Jt+1) stored in a replay buffer D.

The main objective of the DDQN algorithm is to minimize the loss function:

L(θ) = E(Jt,a,r,Jt+1)∼D

[
(y − V (J; θ))

2
]

(6)

where

y =

{
r if the episode terminates at step j + 1

r + γV̂ (Jt+1; θ
−) otherwise

(7)

Here, V̂ is the target state-value function, and γ is the discount factor.
The A* algorithm is a heuristic search method used for finding the shortest path in

a graph, making it highly effective for pathfinding in structured environments [31, 34].
It uses the evaluation function f(n) = g(n)+h(n) to determine the most cost-effective
path from a start node to a goal node, where h(n) estimates the cost to reach the
goal, and g(n) represents the path cost from the start node to any node n.

Along with the A* and the DDQN employed in this work, the Social Force Model
(SFM) is employed to simulate the social behavior of the crowd. This model is widely
used to estimate the trajectories of individuals within a crowd, capturing the social

5



Algorithm 1 Double Deep Q-Network (DDQN) Using State Value Function

Initialize replay buffer D to capacity N
Initialize state value function V with random weights θ
Initialize target state value function V̂ with weights θ− = θ
Initialize policy π to select actions based on V
for episode = 1 to M do

Initialize state J1

for t = 1 to T do
With probability ϵ select a random action at
Otherwise select a∗t = argmaxa π(Jt, a; θ)
Execute action at and observe reward rt and new state Jt+1

Store transition (Jt,at, rt,Jt+1) in D
Sample random minibatch of transitions (Jj ,aj , rj ,Jj+1) from D
Set yj = rj if episode terminates at step j + 1

Otherwise set yj = rj + γV̂ (Jj+1; θ
−)

Perform a gradient descent step on (yj − V (Jj ; θ))
2 with respect to θ

Every C steps reset V̂ = V
end for

end for

forces that influence pedestrian behaviors [7, 35–37]. The SFM posits that a pedestrian
behaves as if it is subject to external attractive and repulsive forces. These include
an attractive force towards a goal Fgoal, repulsive forces to avoid collisions with other
pedestrians Fsoc, obstacles Fobs, and forces related to social group dynamics Fgroup.
The total force influencing a pedestrian at any given moment is given by:

Ftotal = Fgoal +
∑

Fsoc +
∑

Fobs + Fgroup (8)

In our simulations and tests, the SFM does not consider the robot’s presence, focusing
solely on the interactions among crowd members.

The reward function of the Social A* algorithm is defined sparsely by several social
parameters along with characteristics of the A* path. A notable parameter introduced
to the reward function is a local goal, which is dynamically placed along the robot’s
A* path at a predetermined distance from its current position, as illustrated in Fig. 1.
This local goal is marked by a small red star on the A* path, facilitating the robot’s
agility in progressing towards its final goal, represented by a larger red star.

During learning, the robot will be strengthened to understand how to move towards
it and eventually towards the overall goal.

For demonstration purposes, the local goal is placed at four different orientations
(−2, −1, 1, 2) rad. In Fig. 2a, the local goal is considered within a field-of-view (FOV )
of π

6 . Where, in Fig. 2b, it is set to π
3 . The selection of the FOV depends on the desired

emphasis, whether it is to emphasize rewards or punishments. To illustrate further,
a decrease in the number of yellow zones results in a reduction of the robot’s reward

6



Fig. 1: Robot navigation using the proposed algorithm.

and an increase in its punishment. The reward function is described as follows:

R(Jt,at) =



−400, if dmin < 0;

−1500, if tglobal > Tmax;

200 (dmin − dc), if 0 < dmin < dc;

1500, if dg < goff ;

α (FOV − θgl) Tmax ∆t v∗(t), otherwise.

(9)

Where dmin represents the smallest separation distance from the robot to pedes-
trians during the decision time interval ∆t, dc is the least distance that humans can
endure without discomfort, and tglobal is the travel time. The offset of the goal des-
tination dg is set to goff , which is in our case, set to 2 r. Furthermore, the term α
indicates how much we want the local goal and the optimal velocity to stimulate the
robot to reach its destination as quickly as feasible.

The incorporation of the optimal linear velocity, denoted as v∗(t), into the design
of the reward function was intended to motivate the robot’s navigation system to
prefer higher velocities. The reward function is structured to allocate greater rewards
to actions that achieved velocities close to v∗(t), thereby, encouraging the robot to
operate at or near its optimal speed at any given time t.

Employing Eq. (6), Eq. (7), and Eq. (9), the proposed Social A* algorithm is
therefore described by the following two equations:

LSocial A*(θ) = E(Jt,at,rt,Jt+1)∼D

[
(y − V (Jt; θ))

2
]

(10)

where

y =

{
R(Jt,at) if the episode terminates at step t+ 1

R(Jt,at) + γV̂ (Jt+1; θ
−) otherwise

(11)

7



(a) The field-of-view (FOV ) is set to π
6 .

(b) The field-of-view (FOV ) is π
3 .

Fig. 2: Illustration of the reward distribution, and the impact of field-of-view (FOV )
and local goal orientation on the robot’s decision-making process.

We have adopted the attention-based DRL architecture from SARL* [3, 28] with
significant adaptations in the proposed Social A* algorithm. The principal differences
between SARL* and Social A* include:

• Social A* adheres to the A* path in order to socialize it, i.e. navigating socially while
considering the environment’s state. However, SARL* fails to take into account the
environment’s map [2].

• The SARL* policy depends on the ORCA policy [6], however, the Social A* is
entirely self-taught. In addition, since the Social A* is based on the DDQN and

8



Algorithm 2 Social A*

while dg > goff do
Run A*
Set a local goal falling on the A* path, and get the A* path’s length
Formulate the state Jt with respect to the robot frame
Pad the state Jt with zeros to have a compatible input to the DDQN Algorithm

1
Propagate the state using the DDQN
Update the value function V (Jt)
Choose the best action a∗t

end while

incorporates the local goal adherence mechanism, it requires fewer episodes and less
time to learn effectively.

4 Training environment and outcomes

This section outlines the simulation environment developed for training purposes and
discusses the training results.

4.1 Training environment description

The training environment named CrowdSimROS-v0 depicted in Fig. 3 is a crowd-robot
coexisting Gazebo environment.

The mobile robot used in this environment is referred to as Turtlebot2. It is a
differential-drive robot, comprised of a Yujin Kobuki mobile platform, various sensors
(optical encoders), actuators (DC motors), and a Microsoft XBOX 360 Kinect sensor.
Rather than using the Kinect, we have installed a 2D lidar sensor, for future crowd
and environment state estimation. Additionally, it should be noted that this training
environment provides all the necessary data e.g. velocities and sensors’ measurements
for the robot’s learning algorithm. This environment is inherited from the OpenAI Gym

official environment. Hence, it uses the normal training procedure of the Gym [38].
However, unlike other Gym environments, it enables the leverage of the advantageous
utilities and state-of-the-art algorithms provided by ROS. The state of pedestrians is
systematically retrieved from the environment to ensure an accurate representation
of their positions and movements. Additionally, to realistically simulate the inherent
noise associated with sensor measurements, Gaussian noise is meticulously introduced
into the pedestrian state data. This approach not only enhances the robustness of the
simulation by incorporating potential sensor inaccuracies but also contributes to the
development of more resilient and adaptive navigation algorithms.

4.2 Training results

The robot successfully learned how to navigate its crowded environment. The reward
curve depicted in Fig. 4 shows a steady increase over time, demonstrating that the
agent is able to improve its performance along each episode of training.

9



(a)

(b)

Fig. 3: Illustrative top-view of the crowd-robot coexisting CrowdSimROS-v0 Gazebo
environment. a) view of the crowd departure states, b) view of the crowd arrival states.

Table 1 summarizes the DDQN training settings.

Table 1: Summary of hyperparameters that can affect the performance and conver-
gence of the DDQN algorithm.

Parameter Value

Number of episodes 6000
Discount factor γ 0.99
Epsilon decay ϵdecay 1.5e−5

Minimum epsilon value ϵmin 0.1
Agent memory size 50000
Learning rate α 0.0001
Batch size 64

The robot maintains the navigation along the shortest path due to the use of the
A* algorithm’s local goal introduced in this work. As the training progressed, the
agent became more efficient in its navigation, making fewer mistakes and achieving
its goal in a shorter amount of time.

10



0 1000 2000 3000 4000 5000 6000
Episode number

−1000

−500

0

500

1000

1500

2000

2500

3000

Av
er
ag

e 
re
wa

rd

Social A* training average reward with 6000 episodes

Fig. 4: Reward curve showing the improvement of the robot’s social navigation learn-
ing over time using DDQN.

5 Numerical simulation results

To test the efficiency and robustness of the proposed algorithm, several tests were
conducted to compare its performance with two state-of-the-art socially-aware naviga-
tion algorithms. The tests likely measured several metrics to evaluate the performance
of each algorithm such as the path length, the navigation time, and the minimum
distance to pedestrians.

Initially, comprehensive evaluations were conducted to assess the performance of
the Social A* algorithm. These evaluations were designed to test the algorithm’s accu-
racy across various starting and goal positions. Depending on the initial position of
the robot, the observed accuracy of the algorithm varied between 71% and 96%.

Furthermore, the Social A* algorithm navigation time varied between 18 to 28
seconds, influenced by the initial positioning of the robot.

We conducted four circle-crossing simulation scenarios:

• Scenario 1: the objective of the robot is to navigate from an initial position x0 =
(0.0, 0.0) to a specific goal destination xg = (0.0,−8.0).

• Scenario 2: the robot starts moving from an initial position x0 = (−3.0,−1.6) and
must reach a goal destination xg = (3.6,−6.6).

• Scenario 3: in this scenario we test the adaptability and path efficiency of Social A*
compared to SARL* and IARL navigation algorithms. The robot performs multiple
trials to evaluate consistency across runs.

• Scenario 4: in this scenario we introduce a wall-shaped obstacle along the path
to the goal to test the algorithms’ capability to navigate around static obstacles.
This scenario assesses how effectively each algorithm acts in the presence of static
obstacles.

11



5.1 Scenario 1

The robot must reach the target destination taking into consideration the social space
of 7 pedestrians. All pedestrians move in a way to cross the A* path of the robot from
multiple directions without avoiding the robot. The evaluation of the Social A* and
SARL* policies is described in Table 2. The metrics include the number of involved
pedestrians, the time taken to complete the task, the distance traveled by the robot,
and the minimum distance to the crowd.

Table 2: Average performance for multiple trials of Social A* and SARL* in scenario
1.

Metric Social A* SARL*

Number of humans 7 7
Starting position x0 (0.0, 0.0) (0.0, 0.0)
Destination xg (0.0,−8.0) (0.0,−8.0)
Minimum distance to pedestrians (meters) 1.1 0.87
Path length (meters) 10.2 8.79
Navigation time (seconds) 26.0 24.0

Fig. 5 shows the effectiveness of both the proposed Social A* algorithm and the
SARL* algorithm. With the Social A* algorithm, the robot is able to navigate socially
through the crowd, maintaining a minimum distance of 1.1 meters to pedestrians,
compared to only 0.87 meters with the SARL* algorithm. This sometimes leads to
collisions in the SARL* algorithm due to its excessive compliance with initial learning
conditions. A graphical representation of the spatial distribution of the distance to
each pedestrian in the gathering for both algorithms is depicted in figures Fig. 6a-Fig.
6b.

The initial rotational motion observed in the trajectory generated by the proposed
Social A* algorithm, as illustrated in Fig. 5, is attributed to the algorithm’s deliberate
balance between optimizing for the shortest path and adhering to social interaction
norms.

By incorporating the optimal linear velocity v∗(t) in the reward function, the
robot managed to navigate at its maximum speed at time t. Conversely, SARL* relies
on a collection of up to 3000 experiences based on the ORCA navigation policy to
initialize its memory and facilitate swift navigation. This can lead to ORCA policy-like
behavior, which may induce reciprocal assumptions among agents [6]. It is important
to emphasize that such behavior does not accurately reflect real-life crowded scenarios
that we encounter.

5.2 Scenario 2

The second scenario involves the same setup as the first one. However, the initial
conditions have been modified, creating a new set of challenges for the robot. In this
way, the scenario aims to test the robustness of the Social A* policy under different

12



−4 −2 0 2 4 6
X (meter)

−10

−8

−6

−4

−2

0

2

Y 
(m

et
er
)

Social A* Robot Trajector 
Social A* Local Goal
SARL* Robot Trajector 
SARL* Local Goal
Crowd
Start
Goal

Fig. 5: Scenario 1: demonstration of the trajectories generated by Social A* and
SARL* algorithms. The dashed black line and the green line represent the path and
local goal of Social A*, respectively, while the solid black and the green lines represent
the path and local goal for SARL*. The scattered pedestrian trajectories illustrate the
added 2D noise.

0 100 200 300 400
Time step

0

2

4

6

8

10

No
rm

 (m
et
er
)

1
2
3
4
5
6
7
dmin

(a) Social A*

0 50 100 150 200 250 300 350 400
Time step

0

2

4

6

8

10

No
rm

 (m
et
er
)

1
2
3
4
5
6
7
dmin

(b) SARL*

Fig. 6: Comparative representation of robot-crowd distances for Social A* and SARL*
algorithms in Scenario 1.

operating conditions and situations. Table 3 provides an overview and evaluation of
both navigation policies.

13



Table 3: Average performance for multiple trials of Social A* and SARL* in scenario
2.

Metric Social A* SARL*

Number of humans 7 7
Starting position x0 (−3.0,−1.6) (−3.0,−1.6)
Destination xg (3.6,−6.6) (3.6,−6.6)
Minimum distance to pedestrians (meters) 0.89 0.88
Path length (meters) 9.8 9.24
Navigation time (seconds) 19.75 22.0

The evaluation of the second scenario focuses on the comparative performance
analysis of the proposed Social A* algorithm and the SARL* algorithm under identical
operating conditions. Fig. 7 consolidates the navigation trajectories of both algorithms,
with the Social A* algorithm represented by dashed black and lines for
the trajectory and local goal path, respectively this is fague. Conversely, the
SARL* algorithm is depicted using solid black and lines for its trajectory and local goal
path, respectively. This visualization highlights the effectiveness of both algorithms in
navigating through crowded environments while maintaining respect for social spatial
boundaries.

−4 −2 0 2 4 6
X (meter)

−10

−8

−6

−4

−2

0

2

Y 
(m

et
er
)

Social A* Robot Trajector 
Social A* Local Goal
SARL* Robot Trajector 
SARL* Local Goal
Crowd
Start
Goal

Fig. 7: Scenario 2: Comparative demonstration of the trajectories generated by the
Social A* and SARL* algorithms, with distinct line styles for each algorithm’s trajec-
tory and local goal paths.

14



To further dissect the operational dynamics of each algorithm, Fig. 8a and Fig. 8b
separately illustrate the evolution of the distance between the robot and the crowd.
These figures provide a granular insight into how each algorithm modulates the robot’s
path in response to varying crowd densities.

0 50 100 150 200 250 300 350
Time step

0

2

4

6

8

10

No
rm

 (m
et
er
)

1
2
3
4
5
6
7
dmin

(a) Social A*

0 50 100 150 200 250 300 350
Time step

0

2

4

6

8

10

No
rm

 (m
et
er
)

1
2
3
4
5
6
7
dmin

(b) SARL*

Fig. 8: Comparative representation of robot-crowd distance for Social A* and SARL*
algorithms in Scenario 2.

Quantitatively, the Social A* algorithm produced a path length of 9.8 meters,
marginally exceeding the 9.24 meters path length by the SARL* algorithm. Never-
theless, it outperformed SARL* in navigation efficiency, completing the task in 19.75
seconds compared to 22.0 seconds by SARL*. This showcases the robust decision-
making and effective trajectory-planning capabilities of Social A*. Furthermore, the
minimal distance maintained from pedestrians was 0.89 meters for Social A*, slightly
better than the 0.88 meters by SARL*. Although the differences in minimum distances
are marginal, they underscore the consistent adherence of Social A* to the established
social spatial norms throughout the navigation process.

These results substantiate the effectiveness of the Social A* algorithm. It achieves
an optimal balance between path efficiency and safety, proving its potential for reliable
and socially aware navigation in crowded environments.

We further evaluated our proposed Social A* algorithm by incorporating additional
complex simulations that introduced variations in pedestrian dynamics and static
obstacles. To comprehensively assess the adaptability and performance of Social A*,
we expanded our comparative analysis to include not only the SARL* algorithm but
also the Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph algorithm [39, 40], henceforth referred to as IARL in our simulations. This
approach allowed us to analyze the capabilities of Social A* in crowded environments
where predictive and attention-driven navigation strategies, such as those employed
by IARL, play crucial roles.

15



5.3 Scenario 3: Multiple run trajectory analysis (5 pedestrians)

In this scenario, we simulated an environment with five pedestrians, where three moved
in intersecting circular paths and two remained stationary. We executed five indepen-
dent trials for each algorithm. Fig. 9 displays the trajectories from these simulations,
showing the paths taken by the mobile robot under Social A*, SARL*, and IARL.

−4 −2 0 2 4 6
X (meters)

−8

−6

−4

−2

0

Y 
(m

et
er
s)

SARL*
Social A*
IARL

Fig. 9: Trajectories of the mobile robot in Scenario 3, under Social A*, SARL*, and
IARL algorithms. The crowd trajectories are depicted in gray.

Table 4: Navigation time and path length for scenario 3

Trial Time (seconds) Path Length (meters)
Social A* SARL* IARL Social A* SARL* IARL

1 18.90 20.97 20.12 9.11 11.05 8.10
2 17.80 19.95 16.20 10.95 8.65 8.69
3 19.21 20.30 19.05 8.55 11.19 9.78
4 20.70 19.00 16.91 8.69 11.14 10.90
5 18.76 20.90 17.42 8.71 10.42 7.85

Table 4 compares the navigation times and path lengths of Social A*, SARL*, and
IARL across five trials in scenario 3.

16



The results show that the performances of Social A*, SARL*, and IARL are gener-
ally similar across most metrics. However, IARL shows marginally better performance
in terms of navigation time and path length in several trials. This suggests that while
all algorithms are effective in social environments, IARL may offer slightly improved
efficiency and route optimization, though the differences are not substantial.

5.4 Scenario 4: Introduction of a static obstacle

The fourth scenario introduced a wall-shaped obstacle near the goal position to eval-
uate how well each algorithm navigates around static obstacles. Five trials were
conducted to assess the navigation effectiveness of Social A*, SARL*, and IARL.
Figure 10 shows a screenshot of the Gazebo simulation setup with the wall-shaped
obstacle, providing a visual context for the experimental setup. Figure 11 illustrates
the trajectories for all trials, and the recorded navigation times and path lengths are
summarized in Table 5.

Fig. 10: Gazebo simulation screenshot showing the wall-shaped obstacle near the goal
position in Scenario 4.

Table 5: Navigation time and path length for scenario 4 (with
an obstacle)

Trial Time (s) Path Length (m)
Social A* SARL* IARL Social A* SARL* IARL

1 19.20 24.10 60.52 8.01 12.03 28.95
2 18.00 32.10 46.24 7.73 8.36 18.43
3 25.70 36.80 50.30 10.01 8.42 12.28
4 19.90 33.50 37.04 8.09 12.14 14.31
5 24.50 29.70 18.74 10.78 15.79 8.16

Table 5 presents the navigation times and path lengths for Social A*, SARL*, and
IARL in scenario 4.

17



-2.60 -0.20 2.20 4.60 7.00
X (meters)

-9.00

-7.75

-6.50

-5.25

-4.00

-2.75

-1.50

-0.25

1.00

Y 
(m

et
er
s)

SARL*
Social A*
IARL

Fig. 11: Trajectories of the mobile robot in Scenario 4 with the obstacle, under Social
A*, SARL*, and IARL algorithms.

The data indicates that Social A* generally achieves shorter navigation times and
more efficient path lengths compared to SARL* and IARL. Specifically, Social A*
demonstrates consistently quicker completion times across all trials, highlighting its
effective obstacle negotiation strategies. In terms of path length, Social A* also tends
to follow more direct routes than SARL*, particularly noticeable in Trials 1 and 4
where SARL* records significantly longer paths.

IARL shows varied performance, particularly prolonged times in Trials 1, 2, and
3. The excessive navigation time and path length in Trial 1 suggest difficulties in
efficiently circumnavigating the obstacle, possibly due to its conservative or over-
cautious approach in complex scenarios.

Overall, these results underscore Social A*’s proficiency in handling static obsta-
cles, affirming its suitability for environments where both dynamic and static
challenges are prevalent.

5.5 Comparative analysis

The results from Fig. 9 and Fig. 11, along with the data summarized in Tables 4 and 5,
demonstrate that Social A* adapts well to both social dynamics challenges and static
obstacles in the environment, consistently outperforming SARL* and IARL in terms
of navigation efficiency. This superior performance is attributed to the integration of

18



the A*-based reward design, which enhances the algorithm’s capability to navigate
complex environments effectively. While SARL* and IARL are proficient in manag-
ing crowds and social interactions, they struggle comparatively with static obstacles.
This limitation arises because their strategies are primarily oriented towards dynamic
interactions, lacking robust measures for static challenges. Furthermore, the reason
why SARL* and IARL do not crash into the wall is that they are hardcoded to avoid
collisions. They propagate the robot’s state based on the selected action and test if
the next state will potentially collide with the cost map; if a collision is imminent,
the robot will simply rotate in place. The robustness and adaptability of Social A*
suggest its significant potential for real-world applications in crowded and complex
environments.

6 Conclusions and future work

The proposed algorithm uses the A* path as its basis, allowing the robot to navigate
in a socially acceptable manner. By adhering to the A* path’s local goal. Furthermore,
the algorithm ensures the robots’ maximum total cumulative reward.

In conclusion, the proposed Social A* demonstrates significant potential for nav-
igating in crowded environments for mobile robots. This algorithm provides a fast,
short, safe, and social path for the robot, ensuring that it navigates its environment
without disrupting the movement of pedestrians. Additionally, the compatibility of the
proposed DRL environment with ROS enables a seamless transition from simulation
to real-time, thereby facilitating interoperability.

Future work may include further improvements to the performance of the Social A*
algorithm. For instance, incorporating additional features, increasing the crowd size, or
fine-tuning the hyperparameters of the DDQN agent. All of which may lead to better
navigation in complex and dynamic environments. Moreover, estimating the states
and features of dynamic obstacles and integrating these into the DDQN algorithm,
along with reformulating the reward function to include their features and states, will
be crucial for enhancing the algorithm’s effectiveness in a dynamic environment.

Competing Interests

The authors declare that there are no competing interests associated with this research
article. No potential conflict of interest was reported by the authors, and all aspects of
the research were conducted with full transparency and integrity, ensuring an unbiased
and objective presentation of the findings.

Data Availability

Data will be available on request from the authors.

References

[1] Cheng, C.-L., Hsu, C.-C., Saeedvand, S., Jo, J.-H.: Multi-objective crowd-
aware robot navigation system using deep reinforcement learning. Applied Soft

19



Computing 151, 111154 (2024)

[2] Seghiri, S.E., Mansouri, N., Chemori, A.: Implementation of sarl* algorithm for
a differential drive robot in a gazebo crowded simulation environment. In: 2022
2nd International Conference on Advanced Electrical Engineering (ICAEE), pp.
1–6 (2022). IEEE

[3] Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: Crowd-aware
robot navigation with attention-based deep reinforcement learning. In: 2019 Inter-
national Conference on Robotics and Automation (ICRA), pp. 6015–6022 (2019).
IEEE

[4] Chen, C., Hu, S., Nikdel, P., Mori, G., Savva, M.: Relational graph learning for
crowd navigation. In: IROS (2020)

[5] Liu, Y., Yan, Q., Alahi, A.: Social nce: Contrastive learning of socially-aware
motion representations. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 15118–15129 (2021)

[6] Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-
agent navigation. In: 2008 IEEE International Conference on Robotics and
Automation, pp. 1928–1935 (2008). Ieee

[7] Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical
review E 51(5), 4282 (1995)

[8] Wang, L., Li, Z., Wen, C., He, R., Guo, F.: Reciprocal collision avoidance for
nonholonomic mobile robots. In: 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 371–376 (2018). IEEE

[9] Cheng, C.-L., Hsu, C.-C., Saeedvand, S., Jo, J.-H.: Multi-objective crowd-
aware robot navigation system using deep reinforcement learning. Applied Soft
Computing 151, 111154 (2024) https://doi.org/10.1016/j.asoc.2023.111154

[10] Wu, W., Chen, M., Li, J., Liu, B., Zheng, X.: An extended social force model
via pedestrian heterogeneity affecting the self-driven force. IEEE Transactions on
Intelligent Transportation Systems (2021)

[11] Kuderer, M., Kretzschmar, H., Sprunk, C., Burgard, W.: Feature-based prediction
of trajectories for socially compliant navigation. In: Robotics: Science and Systems
(2012)

[12] Reddy, A.K., Malviya, V., Kala, R.: Social cues in the autonomous navigation of
indoor mobile robots. International Journal of Social Robotics 13(6), 1335–1358
(2021)

[13] Trautman, P., Krause, A.: Unfreezing the robot: Navigation in dense, interacting

20

https://doi.org/10.1016/j.asoc.2023.111154


crowds. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 797–803 (2010). IEEE

[14] Qin, L., Huang, Z., Zhang, C., Guo, H., Ang, M., Rus, D.: Deep imitation learning
for autonomous navigation in dynamic pedestrian environments. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4108–4115
(2021). IEEE

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

[16] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge, MA (2018)

[17] Liu, S., Chang, P., Liang, W., Chakraborty, N., Driggs-Campbell, K.: Decentral-
ized structural-rnn for robot crowd navigation with deep reinforcement learning.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp. 3517–3524 (2021). IEEE

[18] Chen, Y.F., Liu, M., Everett, M., How, J.P.: Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 285–292
(2017). IEEE

[19] Everett, M., Chen, Y.F., How, J.P.: Motion planning among dynamic, decision-
making agents with deep reinforcement learning. In: 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 3052–3059
(2018). IEEE

[20] Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.:
Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971
(2016)

[21] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for
contrastive learning of visual representations. In: International Conference on
Machine Learning, pp. 1597–1607 (2020). PMLR

[22] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially
acceptable trajectories with generative adversarial networks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–
2264 (2018)

[23] Lin, K.-C., Hsu, J.-Y., Wang, H.-W., Chen, M.-Y.: Early fault prediction for
wind turbines based on deep learning. Sustainable Energy Technologies and
Assessments 64, 103684 (2024)

21



[24] Ma’sum, M.A., Pratama, M., Lughofer, E., Ding, W., Jatmiko, W.: Assessor-
guided learning for continual environments. Information Sciences 640, 119088
(2023)

[25] de Jesús Rubio, J., Orozco, E., Cordova, D.A., Hernandez, M.A., Rosas, F.J.,
Pacheco, J.: Observer-based differential evolution constrained control for safe ref-
erence tracking in robots. Neural Networks 175, 106273 (2024) https://doi.org/
10.1016/j.neunet.2024.106273

[26] Jesús Rubio, J., Garcia, D., Rosas, F.J., Hernandez, M.A., Pacheco, J., Zacarias,
A.: Stable convolutional neural network for economy applications. Engineer-
ing Applications of Artificial Intelligence 132, 107998 (2024) https://doi.org/10.
1016/j.engappai.2024.107998

[27] Jesús Rubio, J., Garcia, D., Sossa, H., Garcia, I., Zacarias, A., Mujica-Vargas,
D.: Energy processes prediction by a convolutional radial basis function network.
Energy 284, 128470 (2023) https://doi.org/10.1016/j.energy.2023.128470

[28] Li, K., Xu, Y., Wang, J., Meng, M.Q.-H.: Sarl*: Deep reinforcement learning based
human-aware navigation for mobile robot in indoor environments. In: 2019 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pp. 688–694
(2019). https://doi.org/10.1109/ROBIO49542.2019.8961764

[29] Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

[30] Ganesan, S., Natarajan, S.K., Srinivasan, J.: A global path planning algorithm for
mobile robot in cluttered environments with an improved initial cost solution and
convergence rate. Arabian Journal for Science and Engineering 47(3), 3633–3647
(2022)

[31] Ulrich, I., Borenstein, J.: Vfh/sup*: Local obstacle avoidance with look-ahead
verification. In: Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), vol. 3, pp. 2505–2511 (2000). IEEE

[32] Ji, X., Feng, S., Han, Q., Yin, H., Yu, S.: Improvement and fusion of a* algorithm
and dynamic window approach considering complex environmental information.
Arabian Journal for Science and Engineering 46, 7445–7459 (2021)

[33] Ebrahimi, S.H.S.: A hybrid principal label space transformation-based binary
relevance support vector machine and q-learning algorithm for multi-label classi-
fication. Arabian Journal for Science and Engineering (2024) https://doi.org/10.
1007/s13369-024-09034-1

22

https://doi.org/10.1016/j.neunet.2024.106273
https://doi.org/10.1016/j.neunet.2024.106273
https://doi.org/10.1016/j.engappai.2024.107998
https://doi.org/10.1016/j.engappai.2024.107998
https://doi.org/10.1016/j.energy.2023.128470
https://doi.org/10.1109/ROBIO49542.2019.8961764
https://doi.org/10.1007/s13369-024-09034-1
https://doi.org/10.1007/s13369-024-09034-1


[34] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics 4(2), 100–107 (1968)

[35] Alitaleshi, A., Jazayeriy, H., Kazemitabar, J.: Indoor pedestrian trajectory
reconstruction using spatial–temporal error correction and dynamic time warping-
based path matching for fingerprints map creation. Arabian Journal for Science
and Engineering 48(2), 2101–2119 (2023)

[36] Khan, S.D., Basalamah, S.: Sparse to dense scale prediction for crowd couting in
high density crowds. Arabian Journal for Science and Engineering 46(4), 3051–
3065 (2021)

[37] Moussäıd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.:
Experimental study of the behavioural mechanisms underlying self-organization
in human crowds. Proceedings of the Royal Society B: Biological Sciences
276(1668), 2755–2762 (2009)

[38] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

[39] Liu, S., Chang, P., Huang, Z., Chakraborty, N., Hong, K., Liang, W., Liv-
ingston McPherson, D., Geng, J., Driggs-Campbell, K.: Intention aware robot
crowd navigation with attention-based interaction graph. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 12015–12021 (2023)

[40] Liu, S., Chang, P., Liang, W., Chakraborty, N., Driggs-Campbell, K.: Decentral-
ized structural-rnn for robot crowd navigation with deep reinforcement learning.
In: IEEE International Conference on Robotics and Automation (ICRA), pp.
3517–3524 (2021)

23


	Introduction
	Problem formulation
	Proposed Social A* algorithm
	Training environment and outcomes
	Training environment description
	Training results

	Numerical simulation results
	Scenario 1
	Scenario 2
	Scenario 3: Multiple run trajectory analysis (5 pedestrians)
	Scenario 4: Introduction of a static obstacle
	Comparative analysis

	Conclusions and future work

