
1/17

Exploring the 3-Dimensional Variability of
Websites’ User-Stories

using Triadic Concept Analysis

Alexandre Bazin1, Thomas Georges1,3, Marianne Huchard1,
Pierre Martin2, Chouki Tibermacine1

1LIRMM, Université de Montpellier, CNRS
2AIDA, Cirad

3ITK -Predict & Decide



2/17

Context

Software Product Line (SPL)
▶ Framework to build similar software in a disciplined way
▶ Low cost, easy customization
▶ Various implementation approaches
▶ Main common artefact: Variability model (options/features

and constraints)

Extractive approach to build a SPL
▶ Using existing similar software
▶ Extract Variability model, shared artefacts (requirements,

specification, code)



3/17

Context
Variability model
▶ Available features and constraints
▶ Partial or exhaustive expression of variability
▶ Diverse forms: Feature models, Textual models (UVL),

CSP, Binary Implication Graph, Variable UML diagrams

catalog

e_commerce

grid list

check

payment_method

basketcredit_card

quick_purchase

Credits: J. Galasso and https://www.sciencedirect.com/science/article/pii/S016412122400195X



4/17

Extract variability model

Standard case
Software described by features

search (s) view comment (vc) manage cart (mc)

MyManga × ×
MangaStore ×
MangaHome × × ×

Mandatory Optional Optional

MangaWebSite

search view
comments

manage
cart

Graphical variability expression (e.g.
feature model [Kang, 1990])

{} ⇒ search

view comment, search ⇒
manage cart

Textual variability expres-
sion (e.g. dyadic implications)



5/17

Extract Software-feature-role variability model

Agile approach
▶ Software described by a set of user-stories
▶ As a < user/role >, I want to < action/feature >

s vc mc s vc mc s vc mc

MyManga × × × ×
MangaStore × ×
MangaHome × × × × ×

FinalUser Administrator ProductManager

Interest
▶ For software with various access (e.g. e-shop, forum, ERP,

wiki, healthcare software, etc.)
▶ To take into account the role dimension in variability and

further in new software configurations and code generation



6/17

Extract Software-feature-role variability model

State of the art
▶ No known extraction method
▶ No identified representation: Variable use case diagram in

UML [Junior et al., 2010])?, logical expressions?

<<Mandatory>>

<<Optional>>

<<Mandatory>>

search

<<Optional>>

view
comments

<<Optional>>

manage
cart

Final user
<<Mandatory>>

Administrator
<<Mandatory>>

Product Manager

<<Mandatory>>

<<Mandatory>>

<<Mandatory>>

<<Mandatory>>

<<Optional>>

<<Mandatory>>

Graphical variability expression
(freely inspired from SMarty profile
[Junior et al., 2010])

∀(S, F ) ∈ CFinalUser

∩ CProductManager,

(S, F ) ∈ CAdministrator

In CFinalUser,
viewComment ⇒ search

Possible textual variability
expression



7/17

Proposed solution for extraction: Triadic Concept
Analysis

Ternary relations between three object sets: software, roles
and features

s vc mc s vc mc s vc mc

MyManga × × × ×
MangaStore × ×
MangaHome × × × × ×

FinalUser Administrator ProductManager



8/17

Triadic implications

What is a rule in a triadic setting?

▶ Rules between software
▶ Rules between roles
▶ Rules between features
▶ Rules between pairs (feature, role)
▶ Rules between pairs (software, feature)
▶ Rules between pairs (software, role)
▶ Rules that hold only given some condition



9/17

Triadic implications: Conditioning

s vc mc s vc mc s vc mc

MyManga × × × ×
MangaStore × ×
MangaHome × × × × ×

FinalUser Administrator ProductManager

C{FinalUser}

search viewComment manageCart

MyManga ×
MangaStore ×
MangaHome × ×

Rule that holds only given some condition
({viewComment} ⇒ {search}){FinalUser}



10/17

Triadic implications: Rules between Pairs (feature,role)

(s,FU ) (vc,FU ) (mc,FU ) (s,A) (vc,A) (mc,A) (s,PM ) (vc,PM ) (mc,PM )
MyManga × × ×
MangaStore × ×
MangaHome × × × × ×

{(viewComment,Administrator)} ⇒ {(manageCart,
ProductManager)}



11/17

Triadic implications: Rule between Roles

FinalUser Administrator ProductManager

(MM ,s) × ×
(MM ,vc)
(MM ,mc) × ×

(MS,s) × ×
(MS,vc)
(MS,mc)
(MH,s) ×
(MH,vc) × × ×
(MH,mc) ×

{FinalUser, ProductManager} ⇒ {Administrator}



12/17

Case Study

Goal
▶ An help for a software engineer:

▶ Reasonable number of implications after relevant filtering
▶ Understandable implications
▶ Informative implications

Dataset: Manga Websites
▶ 67 systems
▶ 145 features
▶ 17 roles
▶ 1546 triples (density 0.009)



13/17

Case Study

Number of Rules between Features per Support



14/17

Case Study

Understandable implications
▶ Currently for users familiar with TCA
▶ More complex to interpret than dyadic implications
▶ Example:

▶ Between features
▶ f1 → f2 states that when there is a triple (s, r, f1), then

there is a triple (s, r, f2).
▶ E. g. browse productlist, update userprofile ⇒

search product
▶ Means: when a role can browse a product list and update a

user profile in a system, they can also search products
▶ And not exactly: when a system has the features ’browse a

product list’ and ’update a user profile’, it has feature
’search products’



15/17

Case Study

Informative implications
▶ Can be used to establish a graphical variability model +

additional textual constraints
E.g. inspired from the dataset
(Content creator; add product price),
(Final user; pay shoppingcart) →
(Final user; search product)

<<Mandatory>>

<<Optional>>

search
product

add product
price

Final user

Content Creator

pay 
shopping cart

action relative 
to purchase

<<includes>>



16/17

Conclusion

Overall...
▶ The number of implications is surprisingly okay
▶ Triadic implications are too difficult to interpret
▶ The rules are truly informative

Research Agenda
▶ Addressing more complex features (e.g. with attributes)
▶ Making implications efficient for Software Engineers:

▶ A reading guide likely needed for the raw form
▶ Translation rules towards (graphical) variability model



17/17

Thank you for your attention !
https://dx.doi.org/10.1016/j.ijar.2024.109248

ANR SmartFCA project
Grant ANR-21-CE23-0023



17/17

Junior, E. A. O., de Souza Gimenes, I. M., and Maldonado,
J. C. (2010).
Systematic management of variability in uml-based
software product lines.
J. Univers. Comput. Sci., 16(17):2374–2393.

Kang, K.-C. (1990).
Feature-oriented Domain Analysis (FODA): Feasibility
Study; Technical Report CMU/SEI-90-TR-21 -
ESD-90-TR-222.
Software Engineering Inst., Carnegie Mellon Univ.


