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Abstract. Conducting experimental analysis on rule reasoners is a main-
stream task for validating novel algorithms and systems. Nevertheless,
providing robust, verifiable, and reproducible experiments can still raise
a sensible challenge. This paper introduces B-Runner, an open library for
collaborative benchmarking focusing on the deployment of extended tests
for knowledge and rule-based systems with low cost and high robustness.
B-Runner reduces the benchmarking setup time while guaranteeing ex-
periment repeatability. Also, it improves the scrutability of experimental
protocols thereby enhancing the fairness of system comparisons.

1 The Benchmarking Issue

Scientific experiments are essential for validating and improving systems, but
they come with numerous challenges. These can be classified depending on
whether they are related to planning, reporting, or conducting experiments.

Planning consists in writing down all design choices for the experiments.
Notably, the benchmarks to use, the competitors to consider, the testing envi-
ronment (hardware/software) and the target measures.

Reporting includes retrieving and analyzing the results, then choosing the
most meaningful data as well as the most informative and succinct graphical
representations.

Conducting consists in faithfully implementing what has been planned. This
includes setting up the test environment, coding (and verifying) the experimental
protocols, and then running the tests while handling potential failures.

While all phases of experimental analysis can cause issues, the experiment
conduction is perhaps the least accessible part. Accessibility here is intended as
the time and effort it takes a user to conduct a robust experimental analysis.
Of course, with high accessibility experimental analysis can be deeper, which
directly translates to more thoughtful validation of novel approaches.

Conducting is also intimately related to repeatability. Repeatability means
that another user equipped with the appropriate software and hardware can
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repeat the same experiments [14]. Repeatability is easily attained when exper-
iment conduction is simple, reliable, and documented. Conversely, it may be a
burden to prepare a test suite and write sophisticated instructions on how to
configure and run a benchmark starting from ad-hoc scripts, not to mention
debugging them to make them portable on different systems. Experiment re-
peatability has become increasingly relevant during the last decades. Nowadays
many conferences have established reproducibility3 tracks.

Independent vs Collaborative Benchmarking

In this work, we argue that the underlying issue with benchmarking conduction
and repeatability lies in the lack of a platform for collaborative benchmarking.
Indeed, the most common benchmarking scenario is one where activities are con-
ducted independently, which in practice results in a plethora of hard-to-maintain
scripts and ad hoc methods for running tests. While this consideration may ap-
ply to many fields, we emphasize that our focus is on the case of benchmarking
knowledge and rule-based reasoners for which we introduce a dedicated library.

Independent Benchmarking. Figure 1.a) illustrates a set of users (here A,B,C)
conducting an experimental analysis to understand the performances of a given
reasoning system (which may or may not have been coded by one of the users).
The system supports multiple query answering (QA) tasks on a knowledge base.
In particular, users B and C want to test the performances of QA via query
rewriting while user A is interested in the performances of QA via the chase.

Let us explain this scenario in detail. A knowledge base (KB) is composed of
a factbase and a set of rules modelling semantic constraints on the data (ontolo-
gies, data-dependencies, etc) used to both enrich it and ensure its consistency
[15]. The reasoner can be commanded through an API. The API also offers a
number of basic features. For instance, loading and building the knowledge base
starting from plain data and/or data-integration mappings [10]. But also, using
a certain type of internal storage for the data (graph, relational, triplestore, in-
memory/disk, etc.). And, finally, being able to evaluate queries on a factbase
(without considering the rules). The API also includes a number of advanced
features. These includes techniques which accounts for rules using saturation
(also called chase) and query rewriting. The chase approach essentially consists
at extending the factbase with the result of the application of rules [6]. Query
rewriting in contrast compiles the rules into the input query thereby yielding
a reformulated query which provides the same answers (as the input rules and
query) on any database [9]. Query answering via the chase consists in evaluating
the input query on the saturated knowledge base. Query answering via rewriting
consists in evaluating the reformulated query on the input data.4

3 reproducibility is stricter than repeatability: not only it ensures that the experiment
can be re-run, but that it also yields the same result.

4 To illustrate, consider the factbase F = {P (a)}, the rule ∀x.P (x) → R(x), and the
boolean query Q = ∃y.R(y). The chase yields {P(a),R(a)} where Q answers true.
Query rewriting yields reformulation ∃y.R(y) ∨ P (y) answering true on F .
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Fig. 1. Benchmarking: a) Independent vs b) Collaborative.

As Figure 1.a) shows, to conduct the test, every user writes a script coding
an experimental protocol by leveraging on the API. Typically, this is done from
scratch. Firstly, this is time consuming, as it requires learning the API and
internals of the system as well as coding the measurements for the API calls.
Secondly, this is error prone. Indeed, since scripts are independently written, for
more complex tests it is not uncommon for the test protocols to even diverge, at
the point measuring different operations.5 All of this makes that setting up an
experiment can have a significant cost and compromised robustness, resulting in
low accessibility.

Collaborative Benchmarking. A principled solution to this issue is to provide
users with a platform for collaborative-benchmarking, which simplifies the con-
duction of extended test trials. Collaborative benchmarking captures the idea
that robust and repeatable experimental analysis can be achieved if a community
of users work together on i) consolidating a set of test protocols which ii) can
run on a reliable framework and iii) without unnecessary complexity at the user
level. Figure 1.b) illustrates the case for collaborative benchmarking. Again, we
consider users B and C testing QA via rewriting and user A testing QA via the
chase. The first characteristic of this approach is that it allows users to share
benchmarkable services (or simply services) coded in a common programming
language, which very much improves protocol readability. Every such service
implements a self-contained testing protocol which allows one to measure the
performances (time, throughput, etc.) of a certain task. This test protocol is
meant to be deployed on a variety of input scenarios and algorithm configu-
rations - and not on a single one. By definition, sharing test implementations
can benefit from code reviews in a collaborative environment, thus increasing
5 typical errors are including/omitting optimizations and/or parsing time, writing on

disk or standard output (logging, result export), improper cold/warm measures [14]
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the robustness of the experimental analysis and avoiding the divergence of test-
ing protocols. Figure 1.b) illustrates user A sharing a service for running QA
via the chase, while user C shares a service for QA via rewriting. By foster-
ing test reuse, user B can perform an experimental analysis without coding by
reusing the service shared by C. This results in significant time savings. Besides
test sharing, another key characteristic of this approach is that test trials are
specified by users via configurations. This makes the specification of test trials
more declarative than programmatic, and hence independent from any program-
ming languages. In this aspect, collaborative benchmarking is strongly opposed
to independent benchmarking, the latter allowing each script to be potentially
written in a different language. Crucially, configuration files can also be shared,
as illustrated for users B and C. Not only does this save time, but it allows users
to communicate and document the content and aim of their experiments in a
more standard and intelligible way.

1.1 Novelty and Contributions

We introduce B-Runner: a Java tool for collaborative benchmarking on knowledge
and rule-based reasoners. The distinctive elements of the tool are the following.

1) Collaborative B-Runner allows users to share and reuse experimental
protocols and test configurations. The notion of collaborative benchmarking has
been little regarded for rule-based reasoners. To the best of our knowledge, B-
Runner is the first attempt to systematize this approach for rule-based reasoners.

2) Simple and Robust B-Runner allows to define trial specifications through
declarative configurations which require minimal coding and learning of test sys-
tems. B-Runner proposes a design pattern for writing test protocols that favors
their scrutability. The execution of tests is controlled via the Java Microbench-
marking Harness (JMH) library. This favors converging towards robust error-free
testing protocols and measures.

3) Extensible and Portable. B-Runner’s generic architecture allows to
easily include novel systems and testing protocols. B-Runner is Java-based, which
makes it portable, yet still able to support benchmarking of non-Java systems.

1.2 User Groups and Paper Organization

B-Runner can be used by two types of users: testers and providers. Testers define
experiments from available services using configuration files (for instance, user
B in Figure 1.b). Providers share benchmarking services (for instance, users A
and C in Figure 1.b that share services for testing respectively QA chase and QA
rewriting). In the remainder of this paper, Section 2 presents how a tester can
declare a benchmarking activity through a configuration file. Section 3 shows the
provider side of offering a benchmarking protocol. Section 4 delves into features
and limits of B-Runner.
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2 Benchmarking in a Hurry!

The first key feature of B-Runner is the possibility of doing benchmarking at
small cost for tester users. Let us define the benchmarking activities we consider.
A benchmarking activity B is a sequence of service executions B = (e1, . . . , ek).
Every service execution is a triple e = (s, c, r) where s is a service, c is a configura-
tion for the service, and r the repetition parameters. A configuration c = (n, a, d)
is a combination of an execution environment n on top of which the service s is
executed by taking as input an algorithm configuration a and an input scenario
d. The repetition parameter is a pair r = (f, i) where f is the number of forks
and i the number of the iterations for the execution of s given c.

1 # Reasoner
2 reasoner = integraal
3
4 # Scenarios (fixed rules and queries)
5 ### 10M data
6 scenario.s10M.data = data10.dlgp
7 scenario.s10M.rules = ontology.dlgp
8 scenario.s10M.workload = queries.dlgp
9

10 ### 100M data
11 scenario.s100M.data = data100.dlgp
12 scenario.s100M.rules = ontology.dlgp
13 scenario.s100M.workload = queries.dlgp
14
15 # Algorithms
16 ### chase (in-memory)
17 tool.inmem_chase.service = QAChase
18 tool.inmem_chase.dbType = inMemoryGraphStore
19 tool.inmem_chase.checker = semiOblivious
20
21 ### rewriting (postgres)
22 tool.postgres_rew.service = QARewriting
23 tool.postgres_rew.driver = postgreSQL
24 tool.postgres_rew.driverURL = jdbc:postgresql ://...
25
26 # Environment
27 execution.basic_env.maxMemory = 16g
28 execution.basic_env.timeout = 10m
29 execution.basic_env.fork = 2
30 execution.basic_env.iterations = 3
31
32 # Export
33 export = json

Fig. 2. Trial Configuration Example

Figure 2 illustrates a benchmarking activity made of four service executions
(with their corresponding configurations and repetitions parameters). The goal
of a fork is twofold. Firstly, it creates a “cold” execution environment. Secondly,
it sets up the reasoning system for running a number of repetitions (of the same
service). An iteration takes places within a fork, and consists in the actual exe-
cution of the service itself. It is worth pointing out that every fork in B-Runner
triggers the creation of a new Java Virtual Machine (JVM) where the test runs.
More specifically, this is accomplished by leveraging on Java Microbenchmark
Harness (JMH), and happens to be useful to eliminate measure bias (due to
cache, Just-In-Time compilation, etc.).
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Figure 2 shows a configuration written by a tester and inspired by the ex-
ample given in the introduction (Figure 1). The syntax represents a collection
of properties which stands as a notation for trees.6 In the example, reserved
keywords for B-Runner are highlighted in blue. As indicated by line 2, the con-
figuration applies to the InteGraal reasoner [3]. Keywords proper to the config-
uration of the reasoner are highlighted in red. The configuration then continues
with the specification of two test scenarios “s10M” (lines 6-8) and “s100M” (lines
11-13). To declare different datasets, we use the reserved keyword scenario.
Both scenarios consider the same ontology-rules and queries but differ in terms
of data.7 Then, two different algorithmic strategies for query answering are used.
This is done with properties prefixed by the keyword tool. The first is via the
chase procedure (line 17). Note also that the data is stored in a native Inte-
Graal in-memory graph store (line 18) and that a specific variant of the chase,
called semi-oblivious [7] is chosen (line 19). Similarly, a second strategy based
on rewriting is defined (line 22). In this case, note that the data is stored on a
(local or remote) PosgtreSQL server (line 23) which is accessible via the given
connection URL (line 24). These options illustrate the richness and simplicity
of the algorithm configuration that can be achieved. Finally, the execution envi-
ronment for the tests is set. This is done to properties prefixed by the keyword
execution. Options include setting the maximum JVM size to 16GB (line 27),
setting the timeout for the execution of a single iteration to 10 minutes (line
28), and the number of forks and repetitions (lines 29-30). The last command
(line 33) exports the results in JSON.

From this specification file, B-Runner automatically conducts a benchmark-
ing activity on a sequence of configurations generated by combining every input
scenario with every algorithm and every environment configuration. The result-
ing benchmarking activity is illustrated in Figure 2. Note that selective test
execution (useful for example to restart failures) is also possible in B-Runner [1].

3 Sharing a New Benchmarkable Service

The second distinctive feature of B-Runner is the possibility of sharing new
testing protocol for provider users. In contrast to configuration files, protocols
must be programmatically written. B-Runner adopts Java, yet the methodology
we present here is transposable to other programming languages.

In a nutshell, B-Runner proposes a design pattern for implementing protocols
which aims at making a service equivalent to an array of method references.
Below, we present a testing protocol for query answering via query rewriting,
which measures time for each step of the task. Let us present the B-Runner
API for specifying new testing protocols. (1) A new protocol can be specified
by simply implementing the serviceOperations method. (2) In turn, this uses
two methods for specifying the test steps: setup and operation. The method
6 To illustrate, lines 6-8 of Figure 2 can be written in JSON as the record {scenario:
{s10M: {data:data10.dlgp, rule:ontology.dlgp, workload:queries.dlgp}}}

7 In the example, the .dlgp extension stands for the Datalog-Plus language [4].
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setup corresponds to a step that has to be performed for every fork. The method
operation corresponds to a step that has to be performed for every iteration.

1 public void serviceOperations () {
2
3 setup(DATA_LOADING , this:: setData);
4 setup(RULE_LOADING , this:: setRules);
5
6 operation(QUERY_LOADING , this:: setQuery);
7 operation(BUILD_REWRITER , this:: buildRewriter);
8 operation(QUERY_REWRITING , this:: rewrite);
9

10 operation(BUILD_EVALUATOR , this:: buildEvaluator);
11 operation(QUERY_EVALUATION , this:: evalRewriting);
12 }

As the example illustrates, typical examples of setup steps include the loading of
the scenario, notably data and rules which are considered fixed (lines 3-4). Then,
operation steps include creating objects and executing query rewriting (lines 6-
8), followed by evaluation (lines 10-11). Note that describing a step via setup
and operation systematically requires two inputs. The first is a description of
the step, which is mandatory to associate a measure to an operation. The second
is a method reference (e.g., this::setData refers to the setData method of the
class implementing the protocol). Each method includes a compound block of
instructions. As already said, the goal of this design pattern is to see a protocol
as an array of method references. As a side effect, this results in code which is
free from ad-hoc timers for measuring (as this code can be factorized).

We understand that this discussion mostly concerns engineering aspects of
the tool, but we believe them to be critical to be able to share intelligible proto-
cols. For space reasons, we refer to [1] for more details on B-Runner architecture.

4 Effective Experiment Conduction

We conclude by discussing two key aspects: outputs and limitations of the tool.

Interpreting Benchmark Results The goal of benchmarking is to yield data to
be analyzed. B-Runner provides results in a structured format (XML or JSON)
which suit routines for data aggregation. Monitoring test execution must also
not be underestimated as tests can take a long time and/or fail. Benchmarking
progress as well as errors are visible via logging and exported results [1].

Recognizing and Overcoming Limitations While B-Runner provides a flexible and
extensible setting to automate testing scenarios, it also has some limitations. We
will discuss how to circumvent some points that mainly pertain to the use of Java.

Monitoring Memory. This is a feature that B-Runner does not currently
handle but which is planned for future releases. The strategy we pursue consists
in using the JMH library facilities to plug a profiler for reporting custom metrics.

The API Wall. The measurement possibilities depend on the granularity of
the methods exposed by the API of the tested system. B-Runner integrates
seamlessly with Java APIs but it can still be used for tools implemented in other
languages either via Java Native Interface (JNI) or system calls.
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Comparing Versions. Comparing the performance of a tool to one of its pre-
viously published versions may raise a conflict of Java dependencies. To avoid
this, two separate executions of the benchmarking activity are required (see [1]).

5 Related Work

Collaborative benchmarking has been little regarded for rule-based reasoning.
The closest work to ours is [2] which provides an API and an implementation
for testing Java reasoners inspired by the OpenRuleBench benchmark [11]. How-
ever, our system differs by proposing a more general and scalable architecture,
which introduces a methodology for writing and sharing configurations and test
protocols, as well as the use of JMH for controllable experiment conduction. Col-
laborative benchmarking is important in the context of scientific workflows [8].
These have been introduced for the reproducibility and automation of large scale
scientific computations in domains such as genomics, biology, and astronomy [5].
These are expressed as a directed graph whose nodes are computations and edges
dependencies. Research work in this area concerns the design of languages for
workflow specification, as well as the reproducibility of experiments (or part of
experiments) involving large data masses. The optimization of scheduling com-
putations across distributed and cloud platforms has also been considered, with
the goal to obtain results faster and with less cloud computation [13,12].

6 Conclusion and Outline

Principled benchmarking paradigms can be instrumental to perform robust ex-
perimental analysis at small cost. In particular, we advocate for the development
of collaborative benchmarking for knowledge and rule-based reasoners. As an an-
swer to this need, we introduced B-Runner, an open library for testing rule-based
reasoners. B-Runner leverages on Java Microbenchmarking Harnessing (JMH)
for experiment conduction. B-Runner is Java-based, which makes it portable,
yet still able to support non-Java systems.

Our library implements an architecture for collaborative benchmarking which
is service-oriented and configuration-driven. We argue that sharing reusable
services dramatically reduces experiment setup thereby increasing their repro-
ducibility. More generally, this provides testing accessibility to larger audiences.
Also, making test protocols transparent through a simple yet well-defined design
pattern enhances their robustness and scrutability. Crucially, this can contribute
to increase the fairness of comparisons when these span across different tools. Us-
ing a configuration-based approach, as opposed to scripting, constitutes a simple
way to plan extended benchmarking activities, which also improves readability.
Finally, note that while B-Runner focuses on reasoning systems, the principles
it implements can be applied to a larger extent.

B-Runner is available online [1]. The tool supports a number of reasoners and
is currently under active development. Future work also involves the creation of
a library for automatic chart creation from trial results.
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