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Abstract. Spatio-temporal Predictive Queries encompass a spatio tem-
poral constraint, defining a region, a target variable, and an evaluation
metric. The output of such queries presents the future values for the tar-
get variable computed by predictive models at each point of the spatio-
temporal region. Unfortunately, especially for large spatio-temporal do-
mains with millions of points, training temporal models at each spatial
domain point is prohibitive. In this work, we propose a data-driven ap-
proach for selecting pre-trained temporal models to be applied at each
query point. The chosen approach applies a model to a point according to
the training and input time series similarity. The approach avoids train-
ing a different model for each domain point, saving model training time.
Moreover, it provides a technique to decide on the best-trained model to
be applied to a point for prediction. In order to assess the applicability
of the proposed strategy, we evaluate a case study for temperature fore-
casting using historical data and auto-regressive models. Computational
experiments show that the proposed approach, compared to the base-
line, achieves equivalent predictive performance using a composition of
pre-trained models at a fraction of the total computational cost.

Keywords: Spatio-temporal · Time-series · Predictive models.

1 Introduction

Successfully predicting the behavior of spatio-temporal phenomena based on
past observations is essential for a wide range of scientific studies and real-life
applications like precipitation nowcasting [32], and climate alert systems [21]. In
support of these applications, traditional data processing and time series analysis
approaches generate predictive models that aim for predictive accuracy at the
cost of high execution time and utilization of computational resources [12,35].

⋆ The authors thanks CAPES, CNPq, and FAPERJ for partially supporting the paper.
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More recently, a new class of systems, known as prediction serving systems,
has emerged to support trained models scheduling warranting performance and
run-time efficiency [10, 18, 25]. Inspired by the tradition of database systems,
predictive serving systems are expected to support prediction requests through
a declarative query interface [5]. For spatio-temporal phenomena, the focus of
this paper, expressing a predictive query, involves specifying spatio-temporal
constraints that define a region, a target variable whose values are to be inferred,
and an evaluation metric for the performance of the predictive query. The query
outcome then exhibits the target variable’s future values on the specified region,
computed by predictive models that meet the metric evaluation threshold.

However, we argue that building a query plan to answer a spatio-temporal
predictive query is hard from several perspectives. Among them, we are inter-
ested in the model selection and allocation problem: for a given spatio-temporal
query region, a serving system must automatically build an appropriate plan
that chooses between training models or pick pre-trained models for each query
region spatial position such that their composition meets the specified perfor-
mance constraints and covers the requested spatial area for prediction.

In practice, for large spatial domains, such as the Brazilian territory in a
weather forecast service, it is not feasible to hold pre-trained models for each
possible point of interest. Complementarily, training models at run-time may not
be feasible under stringent elapsed-time query constraints, such as in nowcasting
applications [26].

This work proposes reusing pre-trained models built in a reduced set of
spatio-temporal points, that probably fall outside the query spatio-temporal re-
gion, in order to answer predictive queries. By using pre-trained models, we shall
meet the real-time prediction execution constraints. However, as the models may
have been trained outside the query region, the procedure shall guarantee that
the prediction error produced by the composition of models is minimized.

We adopt a data-driven approach to guide the model selection problem. Con-
sidering the availability of historical data, the approach pre-processes the data
by grouping sequences of the domain using a shape-based similarity measure,
which only considers the temporal dimension. The approach trains time series
models at each group’s representatives sequence. It uses sequence shape similar-
ity between points in the query region to identify candidate models. Finally, it
uses a model recommendation strategy to indicate the ones that meet the metric
evaluation criteria.

Our experiments explore the robustness of the domain partitioning and the
predictive performance of the proposed model composition used to answer spatio-
temporal predictive queries. Results indicate comparable predictive quality using
a model composition based on cluster representatives, with a fraction of the
computational cost. Moreover, our experiments show that a single clustering
strategy, with a fixed number of partitions, may not fully reflect the spatial
variations of time series shape throughout the data domain. We adopt a time
series classification approach, using a deep learning model, to further improve
the model selection.



A Data-Driven Model Selection Approach to Spatio-Temporal Prediction 3

The remaining of this paper is structured as follows. In Section 2, we describe
the problem formulation; in Section 3, we introduce our proposal to tackle the
problem described; in Section 4, we show the experimental results; in Section 5
we discuss related works; and finally, conclusions and future works are given in
Section 6.

2 Problem Formulation

Let D = {((x, y), s), with (x, y) ∈ R2 and s = (s1, s2, . . . , sT ) denotes a uni-
variate time series (u.t.s) with T time units }, D represents a spatio-temporal
domain. Let G = {g1, g2, . . .} be a set of predictive models, based on forecasting
techniques, that were trained with different univariate time series s ∈ D. Each
model g ∈ G is represented as:

g = ⟨s, A,p, Eg, Σg⟩, (1)

where:

– s: input sequence (time series) divided in training, validation and test sub-
sequences,

– A: forecasting technique,
– p: parameters for the forecast technique,
– Eg: in-sample error [13],
– Σg: implementation/execution quality metrics.

We use g(s, tp, tf ) = (sT+1, . . . , sT+tf ) to represent a forecast of tf time units
of s, indicating that tp time units were used as validation time series to compute
Eg. In this context, we are interested in processing a spatio-temporal predictive
query (STPQ) Q:

Q = ⟨R, tp, tf , Qm⟩, (2)

where:

– R: represents the spatial region of interest,
– tp: {sT−tp−1, . . . , sT } validation time units,
– tf : {sT+1, . . . , sT+tf } forecast time units (tf ≥ 1),
– Qm: evaluation metric for the predictive output.

We assume ⟨MSE {Eg; s ∈ R} , ttrain, teval⟩ as an evaluation metric, bounded
by Qm. Thus, we focus on providing an efficient solution to selecting pre-trained
models to compose an answer to a STPQ. This process can be integrated into a
more general query processing framework outside the scope of this work. More-
over, D is a dataset that is directly processed in raw by queries in database
systems like [31].
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3 Our Proposal

Given the problem formulation described in Section 2, a possible solution could
be to pre-train a predictive model for each time series in D. It is sub-optimal as
many points would never be queried, and as the time series change, the models
need to be re-trained. Another option would be to train models at the query
region points in run-time, severely impacting the query response time.

In this paper, we propose a data-driven model selection approach that focuses
on grouping historical data representing the behavior of the target variable in
the domain. We argue that, by considering only a set of models generated over
a time series representative, which generalizes the shape similarity (variations
according to the temporal dimension) of other time series in the domain, it is
possible to preserve a predictive quality comparable to the baseline approach of
using a model for every time series We could then process an STPQ efficiently
while maintaining a low error margin.

In our approach, the domain D comprises univariate time series and their (lat,
lon) positions. However, when building or training models for each time series,
we do not include the spatial positions as features. This effectively decouples the
spatial component from the domain, allowing us to identify and cluster similar
time series based purely on their temporal evolution.

Therefore, in Equation (1), the focus is on the temporal characteristics of the
data:

g = ⟨s,A, p, Eg, Σg⟩

For spatio-temporal predictive queries, as shown in Equation (2), spatial
information is incorporated separately to apply the time series models across
various locations:

Q = ⟨R, tp, tf , Qm⟩

Here, R represents the spatial region of interest, guiding the use of the pre-
dictive models without altering the underlying time series analysis.

Fig. 1: Our Model Composition Approach

To illustrate our proposal, Figure 1 shows a domain that has been partitioned
into four groups S = {S1, S2, S3, S4}. Here, the query region R has 35 univariate
time series and intersects with the four groups. Within our proposal, we only
need to train four models to process the STPQ. Note that three models were
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trained outside of R. The approach is divided into two phases, offline and online

OFF-LINE ON-LINE

A. Domain
Partitioning

B. Model Representative 
Construction

C. Model Selection for
Model Composition

D. ST Predictive  
Query Processing

Fig. 2: A two phase query processing approach

(Figure 2). The offline phase comprises two steps: (A) the domain partitioning,
based on time series clustering techniques; (B) the construction of predictive
models at each group time series representative. The online phase is applied
when processing a spatio-temporal predictive query. It consists of: (C) a process
to select a set of pre-trained representative models, to schedule and run them;
(D) an approach to compose the query output using the forecasts of models
allocated to every query region point.

The offline phase is also responsible for storing the domain partitioning and
the pre-trained models for later retrieval in the online phase. As a result, we
can reduce the computational workload and execution elapsed-time if we were
to train a model on each point of a query region in run time.

3.1 Domain Partitioning

This step aims to: partition the domain into groups with time series with high
shape similarity among themselves; and find a representative. By using k-medoids
as a clustering algorithm, each group found can minimize its local dissimilarity
and be represented by a medoid that corresponds to an existing time series in
the dataset [1]. In this paper, the number of groups k is chosen to produce k
corresponding predictive models that produce accurate forecasts for similar time
series

Usually, for k-medoids, the choice of k should strike a balance between mini-
mizing the computational cost in using few representatives while maximizing the
accuracy when assigning each time series data to its cluster. In the context of the
off-line partitioning step, we are not interested in reducing the computational
cost. Instead, we want to find the corresponding predictive models that produce
accurate forecasts for similar time series

The k-medoids algorithm requires the user to specify k. When using a clus-
tering technique for high volumes of data and low variability of the data values
throughout neighbor points, it is difficult to determine the optimal number of
groups [19]. We consider three methods to find an optimal value for k: the el-
bow method [1], silhouette index [27] and a fitting of the WSS curve by using a
smooth cubic spline [4].
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Fig. 3: Groups obtained with k-Medoids using k = 8 (left) and k = 66 (right).
Corresponding medoids are marked with a ‘×’.

3.2 Model Representative Construction

In order to answer STPQ with acceptable predictive error and reasonable query
evaluation time, we consider using a model trained at each medoid. We refer
to these k models as representative models and are computed during the offline
phase as follows. Let’s assume a medoid series has size T . We first train a predic-
tive model using (T − tp) time units and validate it with the immediate sequence
of tp time units, to compute the forecast error Eg. This model is then re-trained,
including the tp sub-sequence of validation, becoming the representative model
that can be used to make predictions of tf time units for all time series in its
group that fall within a particular query region.

3.3 Model Selection for Model Composition

For the scope of this work, we define “Model Composition” as the subset of
predictive models that can compute the forecast value of each element in a
region of interest on the domain with increased accuracy. The justification to
implement this step is based on the intrinsic properties of the spatio-temporal
data: the consistency and auto-correlation on nearby points in the domain makes
difficult the task of finding an ’optimal’ number of groups (k). Even when we
consider the elements only in the temporal dimension, this difficulty persists [2].
Within this step, our hypothesis consists in assuming that, if the representative
predictive models manage to adequately predict a group of elements with similar
shape patterns, then these models will allow us to obtain a prediction for a region
of interest of the domain, based on limited information about its past. In order
to find this model composition, we consider a model selection process based on
the following strategies:

– Naive Approach: for each time series sj in each group, we train its model gj
and calculate the corresponding forecast error. We consider this the baseline
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Fig. 4: On-Line STPQ processing.

strategy as it generates as many models as there are time series in the region,
and requires a high computational cost.

– Representative Models: we propose that, given the time series representative
in each group, we train its corresponding model in order to predict future
values for each element in the group and evaluate a corresponding general-
ization error.

3.4 Spatio-Temporal Predictive Query Processing

The online phase is depicted in Figure 4, and described as follows:

(a) The query region R and the time units tp (past) and tf (future) are parsed
from the input query.

(b) A [R× tp] spatio-temporal sub-region is extracted from the original dataset,
associating a time series of tp time units for each point in R.

(c) A model composition is created using data about the domain partitioning
from the offline phase. Algorithm 1 considers two strategies for model selec-
tion: (i) train a predictive model on each point in R, and (ii) intersect the
query region R with the groups to find the representatives for every time
series and load the pre-trained models.

(d) With the model composition of the previous step, the requested forecast for
the tf steps for each time series in R is computed using its corresponding
representative model. Here, we highlight that the same model can generate
different forecasts for different time series, provided that the time series un-
dergo a data transformation (e.g., normalization). The forecast is produced
by the inverse transformation of the model output.

The online procedure can also be represented by Algorithm 2. As input,
the procedure takes the domain, the query parameters, and the model selection
strategy. Then, for each element in the query region, the model composition
obtained indicates which model performs the forecast, and the known in-sample
error of the model is attributed.
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Algorithm 1 Apply a Model Selection Strategy
1: function select_model_composition(D, selection_id, t_p)
2: model_comp ← ⊥

/* Model Composition with Naive Approach */
3: if is_naive_selection(selection_id) then

/* Let model at each element predict its own element */
4: model_comp ← load_trained_models_each(D, t_p)
5: end if

/* Model Composition with Representative Models */
6: if is_representative_selection(selection_id) then

/* User needs to supply value for k of partitioning scheme */
7: k ← get_k_for_request(selection_id)

/* Retrieve previously trained models at each representative */
8: (medoids_with_models,D_part) ← load_models_at_medoids(D, k, t_p)
9: for m ∈ medoids_with_models do

/* Retrieve the elements associated to current representative
10: cluster ← elements_represented_by(m,D_part)

/* Let model at current representative predict these elements */
11: model_comp ← set_predictor(cluster,m,model_comp)
12: end for
13: end if
14: Return model_comp
15: end function

Algorithm 2 Process Online Predictive Query
1: function processQuery(D,R, t_p, t_f, selection_id)

/* Obtain a model composition, also load available models /*
2: model_comp ← select_model_composition(D, selection_id)

/* Extract t_p past time units for region R /*
3: region_data ← extract_region(D,R, t_p)
4: query_out ← ⊥
5: for element ∈ region_data do

/* model composition determines representative (medoid) to use /*
6: representative ← find_repr(model_comp, element)

/* representative has trained model, do forecast of t_f steps /*
7: forecast← predict(representative.model, element, t_f)

/* annotate the current element with forecast series and known error /*
8: error ← representative.error
9: annotate(element, forecast, error)

/* the query result has a set of the annotated elements in R /*
10: query_result← add_element(element, query_out)
11: end for

/* Compute the MSE of the errors for a single error metric over R /*
12: error_mse← combine_errors_mse(query_out)
13: annotate(query_out, error_mse)

/* Output is the forecast and error at each element of R, as well as the MSE /*
14: Return query_out
15: end function

4 Experiments and Results

In this Section, we describe the experimental validation of the methodology
presented, following the steps: the domain partitioning, the predictive quality of
the representative models, the model composition and the query performance.
We show how each step is applied to the use case of temperature forecasting,
with the corresponding presentation and analysis of the results of each step.

Experimental dataset. We use a subset of the Climate Forecast System Re-
analysis (CFSR) dataset, which contains four daily air temperature obser-
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vations from January 1979 to December 2015 covering the space between
8N-54S latitude and 80W-25W longitude [29]. We subset this data to in-
clude one year of readings in the Brazilian territory, then transform each
time series into the tuple (latitude, longitude, daily average temperature
values), with dimensions (90, 90, 365).

Computational environment. We use a Dell PowerEdge R730 server with 2
Intel Xeon E5-2690 v3 2.60GHz CPUs, 768GB of RAM, and running Linux
CentOS 7.7. for all experiments.

4.1 Domain Partitioning Evaluation

We implemented k-medoids using the Dynamic Time Warping similarity measure
[30], and compared with a regular partitioning technique (baseline) based solely
on the geometry of the domain (k rectangles). The representative time series for
each technique are the medoid and centroid, respectively. Computing k-medoids
requires pairwise distances, which can be calculated beforehand as a 2-d matrix.
In our proposal, we perform this expensive computational process only once, for
a quick retrieval later.

For each of the two partition techniques, we vary the number of groups
from k = 2 up to k = 150 with a stride of two and calculate the Within-
cluster Sum of Squares (WSS) for each value of k. For k-medoids, we obtain a
monotonically decreasing trend for the WSS curve. This makes the choice for an
optimal k difficult, a known problem for high volumes of data with low variability
throughout neighbor points [19].

In Figure 5, it is possible to observe the decreasing behavior of the WSS
curve for higher values of k.
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It is particularly important for our problem, where there is low variation
in the spatial data distribution of the different time series The Table 1 sum-
marizes the findings of applying the available methods to find optimal values
for k (Section 3.1). The monotonous trend of k-medoids allowed for calculating

Table 1: Methods to find the optimal value for k.
Method Optimal k
Elbow 4
Silhouette 8
Cubic spline for WSS 66

the minimum value for the second derivative, by fitting the values of the WSS
using a cubic smooth spline. We argue that this method is more appropriate
for our dataset, as it highlights the decreasing trend in the intra-cluster cost as
k increased. It was possible because the splines smoothed the small variations
that were preventing the other methods from finding a higher value for k. This
value gives us a reasonable number of representatives to use in the next phases
of the methodology. Also, since we applied two other evaluation methods for
selecting k that produced two other domain partitioning schemes, we can also
consider these groups when evaluating compositions relevant to our proposed
model selection approach.

4.2 Predictive Quality of Models at Representatives

Here, we are interested in evaluating the accuracy of the forecast values computed
on the test sub-sequence (tf ) by comparing them against the observational values
available. In this work, we consider the Symmetric Mean Absolute Percentage
Error (sMAPE) for forecast error evaluation and the Mean Squared Error (MSE)
[15] for accumulated forecast.

Training Validation Test

In-sample error: 

Forecast Error

t (time)t.f.t.p.

Fig. 6: Splitting a Sequence to train and test a model.

In order to assess the predictive quality of a model on a representative time
series, we train the corresponding k models in a domain partitioning and evaluate
the following metrics:

– sMAPE: Forecast error of the representative model when forecasting each
time series in its respective group.
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– MSE: Accumulated forecast error (sMAPE) by combining the previous fore-
casts within each group.

In this section, we evaluate the predictive quality of Auto-Regressive Integrated
Moving Average (ARIMA) models [3]. These models fit the description in Section
2 and offer a good trade-off between predictive accuracy and computational cost
[21]. We leverage auto.ARIMA [14] implementation to choose optimal ARIMA
parameters.

Evaluation of sMAPE Forecast Error Considering the domain partitioning
with k = 8, we have eight groups with 1013±617 time series on average, yielding
eight representative models. In order to explore the relationship between the
intra-cluster similarity and forecast error, we gather the forecast errors within
each group and generate scatter plots diagrams, with the Dynamic Time Warping
distance of each sequence to its medoid in the x-axis and the sMAPE metric in
the y-axis. We found that, for the group index zero (Figure 7), the maximum
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Fig. 7: Forecast Error = 0.159 ±
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Fig. 8: Forecast Error = 0.718 ±
0.347.

sMAPE value was the lowest among the eight groups. Conversely, for the group
index four (Figure 8), the maximum sMAPE value was the highest.

We observe that there is not a clear correlation between the Dynamic Time
Warping distances and the forecast error. If we consider all the representatives,
then as k increases, there is a tendency to obtain groups with more similarity
between their elements (lower Dynamic Time Warping distance) and also the
predictions tend to be more accurate. An additional important observation here
is that lower values of k (8, 66) can produce some representatives that offer better
predictions than, for example, the ‘worst’ (highest forecast error) representatives
of the partitioning scheme with k = 132. Both these observations indicate that
different spatial areas may need more precise partitioning than others.

Evaluation of MSE Forecast Error Here we are interested in evaluating the
MSE metric computed when forecasting an entire group of domain partitioning.
We compare the following approaches:
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– ARIMA or Naive Approach (Baseline): We train a model using a time series
and calculate the corresponding forecast error for every time series in each
group. Then for each group, we compute its corresponding MSE value.

– Representative Models (Proposal): given the k corresponding models for the
representatives in a domain partitioning, we use its representative model to
forecast future values; finally, we compute the accumulated MSE values.

Considering the domain partitioning with k = 8, Table 2 highlights the results
of the MSE evaluation. The columns are as follows: (1) cluster/group ID; (2)
elapsed time to train models for all the time series in the group (naive approach);
(3) elapsed time to forecast tf future units for the time series in the group (naive
approach); (4) accumulated MSE value for the Naive Approach; (5) accumulated
MSE value for the Representative Models; (6) percentage change of the MSE
values between the approaches.

Col. 1. Group or Cluster Id.
Col. 2. Elapsed time to train models for all the time series in the group (naive

approach).
Col. 3. Elapsed time to forecast tf future units for the time series in the group

(naive approach).
Col. 4. Accumulated MSE value for the Naive Approach.
Col. 5. Accumulated MSE value for the Representative Models.
Col. 6. Percentage change of the MSE values between the approaches.

Table 2: Forecast Error Analysis with k = 8 and tf = 8.
cid T. Train.(s) T. For. (s) ARIMA Repr. Models ∆ (%)
0 2041.469 1.069 0.170 0.185 8.82
1 3447.608 1.299 0.689 0.926 34.38
2 2011.441 0.880 0.581 0.678 16.70
3 2685.912 1.238 0.413 0.492 19.13
4 14542.318 5.727 0.785 0.838 6.75
5 3231.718 1.375 0.407 0.437 7.37
6 1930.740 0.957 0.157 0.203 29.30
7 1811.335 0.853 0.388 0.551 42.01

We observe that the MSE of the Representative Models varies significantly
between groups and is consistently larger than the MSE of the Naive Approach,
by 6.75% to 42.01%. Moreover, we find that 76% of the domain time series can
be predicted using only five models with a forecast error incremented by at most
20% of the Naive Approach, which would consider 8100 different models for the
same predictions. These results support our hypothesis that when considering
more compact groups, each representative generalizes its elements better, and
this generalization can be extended to the predictive quality.
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Elapsed Time for Training, Validation and Forecast An additional aspect
in the evaluation of the Representative Models is the computational cost for
training and forecasting. According to Table 2, the total time for training the
models over all the time series in the Naive Approach is about 31500 seconds
(8.75 hours). Thus, the average training time of an ARIMA model using a time
series with 349 time units is 31500/8100 ≈ 3.9 seconds. In our proposal, we
consider train and re-train models for k representative time series Thus, the
total training time for a given partitioning can be estimated as k × (2 × 3.9)
seconds, about a minute for the domain partitioning with k = 8.

The results in this section support the hypothesis that: (1) the data distri-
bution variation observed in different regions of the domain would point to a
strategy based on multiple partitioning criteria; (2) by using model representa-
tives, we can significantly reduce the model training cost while keeping accept-
able forecast errors. Additionally, experiments in this section were repeated for
all values of k considered in Section 4.1, and we found that k = 132 minimized
the MSE metric. For these reasons, we will consider k = {8, 66, 132} for multiple
domain partitioning criteria.

4.3 Processing Spatio-Temporal Predictive Queries

Our proposed online phase (See Fig. 2) comprises two steps: (D) Model Selection
for Model Composition and (E) STPQ Processing. Here, we evaluate the predic-
tive quality of a Model Composition over a region of interest R when processing
an STPQ.

Model Composition Evaluation To assess the predictive quality of a Model
Composition, we consider multiple domain partitioning criteria and a Model
Selection approach to be applied on query regions of fixed size R = [10 × 10]
distributed uniformly over the domain. We consider these approaches for Model
Selection:

– Naive Selection: For each time series in R, we select its pre-trained ARIMA
model. Here, we introduce kNN as an additional predictive model for com-
parisons of forecast accuracy, so we obtain two sets of experimental results.

– Selection of Representative Models: For each time series in R, we determine
its corresponding group and select the pre-trained ARIMA Representative
Model.

The predictive quality of the Model Composition forecasts is evaluated using
the accumulated MSE over the query region R. These results are summarized
in Table 3: the first column corresponds to the Model Composition using Naive
Selection; the following three columns represent the Model Composition formed
by the Selection of Representative Models for a domain partitioning, varying
k = {8, 66, 132}. We present the mean and variance of the MSE for the 81 query
regions.
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Table 3: MSE Forecast Error Summary.

ARIMA kNN k-Medoids
k = 8 k = 66 k = 132

0.38± 0.61 0.62± 0.91 0.48± 0.59 0.47± 0.86 0.39± 0.62

We use color maps to help the visualization of the MSE over different regions
of the domain. Figure 9 and Figure 10 correspond to k = 66 and k = 132,
respectively. Each color map shows the relative magnitude of the values, with
a dark blue for the highest forecast error and a constant palette throughout
figures.
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Fig. 9: Model Composition with
Representatives (k = 66).
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Fig. 10: Model Composition with
Representatives (k = 132).

Experimentally, we find that a spatial region near the bottom left results in
larger forecast errors. Even there, using k (8, 66) may yield better results than
k = 132 for some slices. This finding triggered the development and evaluation
that follows next.

Classifier for Model Selection This section proposes a Model Selection ap-
proach that leverages the predictive quality variation of the Representative Mod-
els in domain partitioning. Here, the intuition is that by applying multiple par-
titioning to a domain, each time series would be mapped to a set of groups.
Conversely, each domain sequence would be associated with a set of model rep-
resentatives, and so the question is which one to pick.

We extend the problem formulation presented in Section 2. Consider two
domain partitioning criteria D = ∪m

i=1Pi and D = ∪n
j=1Qj, where m ̸= n; the set

of representatives on the partitioning considered is R = {pi, . . . , pm, q1, . . . , qn},
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and G(R) the set of their predictive models. Then, for a given s ∈ D:

∃ ŝ ∈ R, such that, min
ŝ∈R
s∈D

dDTW (ŝ, s). (3)

We formulate the model selection proposal as a univariate time series (univari-
ate time series) classification problem: Given an unlabeled univariate time se-
ries of tp time units, assign it to one or more predefined classes. From (3),
we are able to generate the Time Series Classification Dataset as TSCD =
{(s1, y1), . . . , (sN , yN )} as a collection of pairs (si, yi) where si is a u.t.s with yi
as its corresponding one-hot label vector of the labels for its class [11].

In our context, each of these classes represents one of the available domain
partitioning criteria. Considering k = {8, 66, 132}, we obtain 183 classes in total,
after accounting for medoid repetition. In order to work with a balanced dataset,
we extract for the TSCD approximately 30 samples per class [8]. We consider
5000 samples, divided in the percentages 60/20/20 for training, validation, and
test, respectively.

Considering the sequential aspect of time series data requires algorithms
that can harness this temporal property to select a class label. In this work, we
consider a classifier based on Neural Network models. After considering non-
hybrid approaches that provided inferior classification accuracy [16], we opted
for the hybrid architecture 1D Convolutional Neural Network – Long-Short Term
Memory (1DCNN-LSTM) [7, 34]. We considered variations for parameters such
as learning rate and batch size, that affect the training time and how fast we
achieve convergence in the validation loss function. From now on, we will consider
only the last model in Table 4 (CNN1D-LSTM(2)) that presented the higher
accuracy.

Table 4: Models’ metrics on Test Set.
Model Layers Accuracy Loss
CNN1D-LSTM(1) 6 57.740 2.673
CNN1D-LSTM(2) 6 64.759 1.865

Evaluation of the Classifier for Model Selection After training the Clas-
sifier presented in the previous section, we repeat the same experiments from
Section 4.3 using the classifier as a Model Selection approach. For each time
series in R, the classifier receives a time series of length tp as input. As output,
we obtain a Representative Label that corresponds to one of the Representative
Models. With this model selection process, we repeat the forecast error analysis
from Section 4.3.

The experimental results are summarized in Table 5: it extends the Table 3
with the last column (highlighted) representing the Classifier for Model Selection.
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Table 5: MSE Forecast Error Summary including the Classifier.

ARIMA kNN k-Medoids Classifier
k = 8 k = 66 k = 132

0.38± 0.61 0.62± 0.91 0.48± 0.59 0.47± 0.86 0.39± 0.62 0.70± 0.81

We show the colormap for the MSE of the forecast errors computed in differ-
ent regions of the domain using the Classifier for model composition in Figure 11.
For comparison, we also add the colormap for the ARIMA (baseline) Approach.
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Fig. 11: Forecast Error with Model
Composition by Classifier.
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Fig. 12: Model Composition with
ARIMA, naive approach.

We observed that the Classifier generates a composition with predictive qual-
ity comparable to the Naive Approach in some areas. Moreover, the classifier
quality is reflected in a few regions of the domain that exhibit a smaller fore-
cast error than when using the composition based on Selection of Representative
Models directly. However, the opposite is true for other regions, this can be ex-
plained by the limited knowledge of the classifier about the time series, as it
receives time series of tp time units.

Finally, we compare the execution of an STPQ using the proposed Model
Composition, with the Naive Selection based on ARIMA models and kNN re-
gressions for univariate time series, over different query region sizes. Results are
shown in Table 6, it is similar to Table 5 but with the query regions. We observe
that, for the majority of the query regions considered, the forecast error of the
Classifier for Model Selection is closer to the ARIMA Naive Selection.
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Table 6: MSE Forecast Error for Spatio-Temporal Queries in the domain D.

Query Region ARIMA kNN k–Medoids Classifier
k = 8 k = 66 k = 132

[0, 20]× [0, 20] 0.158 0.209 0.089 0.174 0.160 0.190
[20, 40]× [35, 55] 0.203 0.258 0.335 0.199 0.230 0.330
[50, 70]× [60, 80] 0.170 0.145 0.584 0.203 0.188 0.274
[15, 35]× [65, 85] 0.034 0.067 0.063 0.045 0.038 0.093
[20, 50]× [50, 80] 0.122 0.210 0.203 0.147 0.135 0.202
[15, 45]× [20, 50] 0.156 0.198 0.262 0.155 0.168 0.281
[40, 55]× [20, 40] 0.483 0.707 0.707 0.530 0.541 0.618
[65, 80]× [50, 70] 0.248 0.190 0.470 0.302 0.308 0.343
[30, 60]× [5, 20] 0.137 0.208 0.353 0.205 0.147 0.391
[10, 40]× [55, 70] 0.095 0.226 0.139 0.111 0.098 0.135

5 Related Works

In this work, we integrate tools designed for two types of knowledge fields: (i)
time series classification and (ii) processing spatio-temporal predictive queries.
The former gained attention in the last decade due to the accelerated advance-
ment of deep learning techniques, many are discussed in a thesis aimed at deep
learning for TSC [16], and the site http://www.timeseriesclassification.com, in
efforts to reunite dataset and research papers on this evolving topic.

For time series clustering, the use of k-medoids with Dynamic Time Warping
as similarity measure was used with success in several applications [22, 28]. In
our work, we validate k–Medoids as an appropriate algorithm for our dataset,
but we shifted our focus away from the Euclidean distance in favor of Dynamic
Time Warping; the former failed to capture temporal misalignments.

Common uses for spatio-temporal predictive queries in spatio-temporal data
are predictive analytics to answer complex questions involving missing or future
values, correlations, and trends, which can be used to identify opportunities or
threats [10,25]. The predictive functionality can help build introspective services
for various resource management and optimization tasks [9].

While we do not aim to propose a full Predictive Serving System [6], it is
worth exploring some of these systems to better understand the requirements
behind model composition and model selection. The framework Clipper [6] is
designed to serve trained models at interactive latency, with two model selec-
tion policies based on multi-armed bandit algorithms for a trade-off between
accuracy and computation overhead. Rafiki [33] is an inference service based on
reinforcement learning that provides an online multi-model selection to compose
ensembles.

Regarding massive data processing and model training, in [20] are discussed
techniques for dataset characterization in a reduced number of representatives
elements, with data-efficient methods to extract representative subsets that gen-
eralize the full data. The work focuses on extracting representative subsets for
training machine learning models, and developing theoretically rigorous opti-

http://www.timeseriesclassification.com
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mization techniques. Finally, DJEnsemble [24] investigates the prediction of
spatio-temporal phenomena using deep-learning models. However, instead of our
shape-based approach, they partition the domain into tiles based on the statis-
tical properties of the time series in contrast of our shape-based approach.

6 Conclusions and Future Works

The main objective of this work is to develop an approach to make predictions,
within some tolerated error margin, about future states of a spatio-temporal
region, using carefully selected predictive models that have been trained with
limited temporal data. To achieve this, we formulate the problem of model com-
position to process predictive queries and propose a solution where the model
selection is guided by a data-driven approach backed by shape-based domain
partitioning. The computational experiments were then designed to evaluate the
proposal, considering the case study of temperature forecasting.

Experimentally, we find that the k-medoids method can efficiently group time
series in a domain according to the Dynamic Time Warping distance. Also, the
resulting medoids generalizes the temporal evolution of their group. Therefore it
can be used to train representative models that take a univariate time series as
input. Within our proposal, both the domain partitioning (k–medoids) and the
construction of Representative Models can be computed and persisted during
an offline phase, quickly retrieved during an online phase, significantly reducing
the elapsed time for processing predictive queries. In this regard, the choice of
k becomes an important factor for the predictive quality, and three techniques
to find optimal values of k were explored. We find that the intuitive choice of
a large value of k may not always produce the best results: fewer groups may
produce more accurate results for some elements of the query region.

The previous result motivated the proposal of a neural network classifier for
model selection. In the offline phase, we allow the construction of representative
predictive models for multiple partitioning criteria (k = {8, 66, 132}). For the
online phase, the classifier matches the subset (tp time units) of each univariate
time series in the query region to one of the representatives, thus creating the
model composition for a given predictive query.

We show that our proposal can process predictive queries with significantly
lower response time, while maintaining comparable predictive quality. To evalu-
ate this experimentally, we used sMAPE forecast errors accumulated over query
regions with MSE. Results indicate 20% and 45% relative increases for k = 66
and the Classifier approach, respectively, with a gain in computational efficiency
of two orders of magnitude as a trade-off.

Results from the forecast error analysis support using a time series classifier
to leverage potential gains in predictive performance when using multiple parti-
tioning schemes. However, we recognize that the Classifier needs to be improved,
e.g., by considering a domain with a larger volume of data and understanding
its classification accuracy.



A Data-Driven Model Selection Approach to Spatio-Temporal Prediction 19

Our proposal opens up several research directions. The calculation of pairwise
Dynamic Time Warping distances can be enhanced by grouping time series with
an incremental process for the Dynamic Time Warping matrix [23]. For the
domain partitioning task, we could consider non-crisp partitioning techniques
[17], producing more than one representative for a given element. This work did
not focus on forecast time for the online phase as the ARIMA models deliver
predictions in milliseconds (see Table 2); however, more complex models would
imply significant service times. Therefore, a natural follow-up would include a
multi-objective optimization process.
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