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Abstract

Online event detection in streaming time series is a critical task with applications across various
domains. For example, the right-on-time event detection for control systems is a key for correctly
addressing the issues related to the events. However, events may not be identified right after their
occurrence. Depending on the monitoring solution, a time difference may exist between the event’s
occurrence and detection. This problem raises research questions regarding the study of such a
temporal gap. The paper introduces novel metrics (detection probability and detection lag) to address
these questions. It explores the impact of configurable batches on detection performance. The
experimental evaluation of diverse datasets reveals nuanced insights into the interplay between batch
parameters, detection accuracy, and computational performance.

1 Introduction

Time series events are characterized by the occurrence of a significant change in the behavior of a time series at a
certain point or time interval Guralnik and Srivastava [1999], Perelman et al. [2012], Zhao [2021]. Such events are
commonly identified using change point or anomaly detection methods [Gensler and Sick, 2018, Rettig et al., 2015,
Hasani, 2020, Zhang et al., 2020]. Event detection methods are either offline or online [Blázquez-Garcı́a et al., 2021,
Truong et al., 2020, Wang et al., 2021, Belacel et al., 2022]. When offline, they rely on prior access to all historical
data. When online, they have to detect occurrences by monitoring the streaming of process data while it is being
generated [Ribeiro and Reynoso-Meza, 2018, Truong et al., 2020, Boniol et al., 2021].

Many control systems demand right-on-time detection to enable undesirable situations to be addressed promptly. In
this way, continuously monitoring streaming time series raises an important fact. An observation that characterizes an
event might not be detected when the observation appears in the time series. New observations might be appended
before event detection methods discover them [Aminikhanghahi and Cook, 2017, Ariyaluran Habeeb et al., 2019,
Talagala et al., 2020]. Thus, if an event occurs in time t but is only detected by an online detection method at time
t + k, the detection lag is k.
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Considering the detection lag problem, it is possible to raise the following research questions: How can one evaluate
the elapsed time between when an observation in the time series is read and its detection as an event? Is it possible to
assess the behavior of methods throughout the streaming process? How can information about the behavior of methods
contribute to identifying changes in the streaming time series?

To explore these questions and enhance online event detection in time series, this paper introduces new metrics for
analyzing the performance of event detection methods over streaming time series. The presented metrics enable
assessing the probability of a detection corresponding to an event and lag in detections. Since existing studies do not
correctly address these aspects, these are important contributions of this paper.

In addition to this introduction, this paper is divided into five more sections. Section 2 presents the theoretical frame-
work for event detection. Section 3 discusses related works. Section 4 introduces the general framework with the
proposed probability and lag analysis in event detection. Section 5 discusses the results of the experiments, and
Section 6 presents the research conclusions.

2 Background

This section introduces fundamental event detection and subsequence analysis concepts in time series.

2.1 Event Detection

Event detection can be based on predicted values, where methods include a step for predicting the next values in
the time series. Events are detected when there is a discrepancy between the actual value of a new observation and
predicted values. Alternatively, events can be detected based on boundaries, defining upper and lower limits beyond
which each new streaming observation is marked as an event [Ahmad et al., 2017, Munir et al., 2019, Talagala et al.,
2020, Zhang et al., 2020, Ren et al., 2019].

There are two main modes for online event detection in streaming time series: static and dynamic. In static mode, the
model detects events in the streaming time series using a pre-trained model with historical data. In dynamic mode,
training is done once a warm-up size for the time series is achieved. As new observations are received via streaming,
the model is retrained incrementally [Ariyaluran Habeeb et al., 2019].

2.2 Subsequence Analysis in Time Series

To analyze local properties in a time series X, subsequences of size p can be extracted as described by Equation 1.
The sliding windows technique involves extracting subsequences that traverse the entire time series. For this, a set of
subsequences of the same size is generated, represented as a matrix A containing all the time series X subsequences,
as defined in Equation 2. The sliding window enables continuous analyses of the local properties of time series [Lin
et al., 2003].

seqp,i(X) =< xi, xi+1, · · · , xi+(p−1) >,

|seqp,i(X)| = p, 1 ≤ i ≤ |X| − p
(1)

∀ai ∈ A, ai = seqp,i(X) (2)

Event detection methods such as Exponentially Weighted Moving Average (EWMA) [Carter and Streilein, 2012], and
Forward and Backward Inertial Anomaly Detector (FBIAD) [Lima et al., 2022] use sliding windows either integrated
or as an intermediate preprocessing [Salles et al., 2019]. Naturally, considering a scenario in which a new observation
is appended one at a time and an event detection method is immediately triggered, the concept of sliding windows
is seamlessly prepared for online event detection. For example, Zeileis et al. [2002] present an R package called
strucchange to detect change points in streaming time series through sliding windows.

However, when the data arrives very fast, analyzing all sliding windows each time a single observation arrives is not
feasible. In these cases, grouping the arrival of new observations into batches makes sense. Although the term batch
processing is typically associated with offline processing, even streaming data processing can occur by sending and
receiving individual small batches [Truong et al., 2020, Rettig et al., 2015, Hiraman et al., 2018]. For example, batches
are used in the Spark streaming tool. The tool uses micro-batches, i.e., small batches of data to be processed [Rettig
et al., 2015]. A similar intuition for dividing the time series into batches was explored for streaming processing to
identify concept changes by Iwashita and Papa [2019], Giusti et al. [2022].
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How batches are configured is a key for online event detection. The number of batches preserved in memory is also
a parameter commonly studied. It gives the flexibility of enabling a connection between the two scenarios previously
indicated. The case in which we define a batch of size 1, preserving m batches in memory, provides the same context
of having sliding windows of size m. So, these concepts are not antagonistic.

3 Related Work

This section discusses online event methods and tools and ways of comparing them. Subsection 3.1 presents works that
propose event detection methods and tools. Subsection 3.2 presents works comparing methods. Finally, Subsection
3.3 wraps up related work and presents identified research gaps.

3.1 Event Detection Methods in Streaming Time Series

Various methods have been developed for offline event detection, but works such as Talagala et al. [2020] and Ariyalu-
ran Habeeb et al. [2019] indicate the challenges of these methods in handling streaming time series. However, there
is no definitive evidence of the non-applicability of methods initially designed for offline detection in the streaming
scenario. Considering their widespread use, they should not be overlooked [Chandola et al., 2009, Salles et al., 2023,
Truong et al., 2020, Escobar et al., 2021]. Some examples include Holt-Winters (HW) [Hasani, 2017], FBIAD [Lima
et al., 2022], Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [Carmona, 2013], EWMA [Gu-
ralnik and Srivastava, 1999], and ChangeFinder (CF) [Takeuchi and Yamanishi, 2006, Escobar et al., 2021]. There are
also certain tools with hybrid applications developed for offline and online detection, including Strucchange [Zeileis
et al., 2002] and k-Nearest Neighbors - Conformal Anomaly Detector (KNN-CAD) [Ahmad et al., 2017].

Rettig et al. [2015] introduced an online event detection method targeting gradual and abrupt changes. Gradual changes
in the data stream are identified using relative entropy, whereas abrupt changes with Pearson correlation [Rettig et al.,
2015]. Ahmad et al. [2017] proposed a method for event detection in time series streaming. The Hierarchical Tempo-
ral Memory (HTM) uses machine learning to model the distribution of the time series and compares new observations
with model predictions, marking anomaly events based on the discrepancy between actual and predicted values [Ah-
mad et al., 2017, Hasani, 2017]. Zhang et al. [2020] presented the MF-stacked LSTM-EWMA method that employs a
prediction step and a detection step based on the divergence between actual streaming observations and model predic-
tions. The method is divided into three steps: (i) identifying obvious anomalies, (ii) predicting the next observations
in the time series, and (iii) detecting events.

Ren et al. [2019] implemented a service called Microsoft Anomaly Detector (MAD) on the Microsoft Azure cloud
platform. MAD used the SR-CNN algorithm, a combination of the SR algorithm and a CNN [Ren et al., 2019]. SR
performs a time series transformation, generating a saliency map representation where extreme values are accentu-
ated. At the same time, CNN uses this transformed version of the time series to learn boundaries to determine event
occurrences.

3.2 Comparative Studies of Methods

In addition to works focused on proposing methods for event detection, efforts were made to identify studies comparing
these methods. Salles et al. [2023] developed the Harbinger framework, which provides functions for event detection,
evaluation, visualization, method combination, and comparison of detections. Harbinger enables the implementation
and combination of different event detection methods but executes them offline.

Ahmad et al. [2017] provides a framework named Numenta, the Numenta Anomaly Benchmark (NAB) dataset, and
the NAB Score metric. Several methods were compared for online detection, and the three methods with the best-
published performances were HTM, Relative Entropy, and Twitter ADVec [Ahmad et al., 2017]. The methods were
compared using the NAB Score metric and microsecond latency time. Hasani [2020] analyzes online event detection
methods and compares performance, execution time, and CPU usage.

Belacel et al. [2022] present a proof of concept for using methods existing in the Scikit-Multiflow and River packages
integrated into the Kafka streaming platform. The main contributions of the work relate to proposing a model for
integrating methods with Kafka and reducing execution time in streaming scenarios compared to offline detection. In
the analysis of comparative method studies, the use of traditional metrics for classification tasks [Han et al., 2022,
Salles et al., 2023] and computational cost [Hasani, 2020] is observed. Some metrics adapted for the time series
context are also used [Ahmad et al., 2017, Escobar et al., 2021].
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3.3 Summary

A synthesis of the analysis of related works is presented in Table 1. An important aspect of identifying gaps in
the literature is that most works do not provide an analysis of batch configuration during streaming processing and
do not address a deeper discussion on evaluation metrics. Table 1 shows that using detection metrics adapted from
classification tasks is common. While evaluating streaming, the focus is on computational performance, such as
execution time, latency, and CPU usage. This paper explores these limitations through the methodology presented in
the next section.

Table 1: Metrics for Comparison in Streaming Detection
Work Metrics
Numenta
[Ahmad et al.,
2017]

Latency

Harbinger
[Salles et al.,
2023]

No

MAD [Ren
et al., 2019] No

Strucchange
[Zeileis et al.,
2002]

No

Rettig et al.
[2015] No

Hasani [2020] Execution Time, CPU
Usage

Belacel et al.
[2022] No

4 Methods

This section discusses the general scenario for online time series event detection in streaming. It also provides new
metrics to support the evaluation of detectors. Section 4.1 provides the basic formalization. Section 4.2 presents
how detections in streaming scenarios are carried out. Sections 4.3 and 4.4 formalize Detection Probability (DP) and
Detection Lag (DL), respectively.

4.1 Formalization

Given a time series X of size n, it is partitioned into batches of size s. The number of batches of X is defined as ⌈ n
s ⌉.

Thus, each batch b j (1 ≤ j ≤ ⌈ n
s ⌉) has a sequence of s observations < x( j−1)·s+1, . . . , x j·s >.

For streaming processing, w is the number of batches to fill in memory (warm-up) to start the event detection process.
Besides, m is the number of batches to preserve in memory. In steady state, for full memory (old batches are not
discarded) m ≥ w, whereas for partial memory (old batches are discarded) m = w.

4.2 Online Event Detection Process

We established a configurable batch for event detection workflow to conduct detections and develop probability and
lag analysis metrics. The workflow is presented in Figure 1. It receives a time series X and additional parameters
Pr for streaming event detection on the time series. These additional configuration parameters are streaming process
parameters s, w, and m and the applied method M for detection with its respective hyperparameters. The workflow
continues executing by sliding along the time series in batches of size s iteratively until the entire time series is
traversed.

This process of analyzing the series iteratively through batches is described in the following steps that detail Figure 1.
Initially, the warm-up subset is selected (Step 1). Then, the method M with the provided hyperparameters for event
detection is applied in the warm-up (Step 2). This step generates a set of event detections with the latest j-th batch,
denoted by D j.

4
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Figure 1: Workflow for event detection in streaming time series

After detection is completed, if the series has not yet reached the end, a new batch b j is included (Step 3). If the
configurable batch is defined as full memory, i.e., m = 0, the workflow maintains the memory of old batches. However,
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when m ≥ 1 (partial memory), the oldest batch b j−m+1 is removed (Step 4) when a new batch b j+1 is appended in a
steady state. At this point, j is incremented in one unit.

The process is repeated from step 2, i.e., method M is applied again to detect events, generating a new set of events
D j. Finally, the detection results from each stream processing iteration (D j) are consolidated in the CD set (Step 5) to
measure the events detected and their detection times correctly.

The goal of using configurable batches with full or partial memory approaches aims to balance the accuracy of the
detection methods and the computational cost of analyzing the time series in streaming. In both cases, the batches are
added continuously. Hence, the methods use the in-memory batches to learn the expected behavior of the time series.
With access to observations, methods are applied to detect events.

In full-memory detection, batches are added continuously, and the time series is analyzed cumulatively. This way,
there is more information for use by the methods that can help increase accuracy. However, it is natural for a gradual
increase in computational cost, and old observations might interfere too much with event detection.

With partial memory, old batches are removed as new batches are added. Thus, only the most recent batches equivalent
to the memory size m defined in the execution parameters remain in memory. It is expected to evaluate whether this
option generates the opposite effect of full-memory preservation, i.e., with lower computational cost, greater influence
of recent observations on event detection, and their effects on detection accuracy.

4.3 Detection Probability

Consider a time series X; the assessment of the DP requires the mapping of each observation xi while present in batches
during processing. Assuming that xi appeared in batch b j, such j = ⌈ i

s ⌉, xi is available for time series detection b f (xi)
times. In steady state, Equation 3 characterizes the batch frequency for an observation xi, considering partial and full
memory cases.

b f (xi) =
{

m, for the partial memory case
⌈ n

s ⌉, for the full memory case.
(3)

Let Bi be set of the most recent batches an observation xi is presented in the batch memory, such that Bi =
{b j, . . . , b j+b f (xi)}, a detector M has b f (xi) evaluations to check if xi is an event or not. It is possible to define
as a definition frequency d f (xi) as the number of times xi was marked by M as an event. From this definition,
0 ≤ d f (xi) ≤ b f (xi).

Under this vein, it is possible to define the detection probability DP(xi), presented by Equation 4, as the ratio between
detection frequency and batch frequency for xi.

DP(xi) =
d f (xi)
b f (xi)

(4)

To exemplify how DP can be applied to enhance the analysis of online event detections, two hypothetical observations,
x3 and x5 in a series X, can be assumed. Considering that when analyzing the series through a batch size 1 with the
batch memory size 7 (m = 7), method M detects x3 as event 2 times. In contrast, the observation x5 is detected as
event 6 times, so d f (x3) = 2 and d f (x5) = 6. Considering, furthermore, that both observations appear in 7 batches,
hence b f (x3) = b f (x5) = 7. Thus, DP(x3) = 0.29 and DP(x5) = 0.86.

4.4 Detection Lag

The DL of each detection is evaluated to assess the early detection capability of DL-executed methods. For this
purpose, DL is considered the lag in detection, i.e., the number of batches elapsed between the first reading of the
observation and the first batch in which this observation is detected as an event. Formally, considering an observation
xi in the time series X, sbi as the start of reading this observation in batches (start batch), and f dbi as the first batch
in which the observation xi is detected as an event (first detection batch), we have Lags

i for a batch size s obtained by
Equation 5. The DL identifies how many batches the method took to detect an event, helping to assess the methods’
early event detection capability.

Lags
i = f dbi − sbi (5)

6
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To illustrate the use and interpretation of Lags
i , one can consider a hypothetical observation in time 9 (x9) for a time

series of size 12. Assuming a batch size 3, the start batch sb9 equals 3. Besides, if we consider that the detector M
only found x9 as an event in batch 4, i.e., f db9 = 4. In this way, Lag3

9 equals 1.

Considering that it is possible to configure batches with different sizes (s), it is not recommended to compare the DL
obtained in batches using Equation 5 between executions of different batch sizes. As an alternative, for cases in which
this type of comparison is desired, obtaining the DL value in the number of observations is possible using Equation 6.

Lagi = ( f dbi − sbi + 1) · s (6)

5 Experimental Evaluation

This section comprehensively analyzes the online event detection process and proposed novel metrics. Firstly, Section
5.1 introduces the experimental setup, laying the foundation for subsequent discussions. Following this, an in-depth
experimental evaluation is presented to address three key aspects: (i) the comparison of various batch parameter
combinations (Section 5.2), (ii) an assessment of the utility of the detection probability (Section 5.3), and (iii) an
exploration of the detection lag associated with the methods employed (Section 5.4).

5.1 Experimental Setup

Datasets representing a wide diversity of domain areas and time series behaviors were selected to explore the studied
methods properly. These datasets include Yahoo Labs [Ren et al., 2019], Numenta [Ahmad et al., 2017], and RARE
[Lomio et al., 2020]. The datasets used in the experiments were made available in a public repository1 to facilitate
reproducibility.

The time series contained in the Yahoo Labs, NAB, and RARE datasets are from domain areas related to technology,
such as network and internet data traffic, cloud computing, and computer equipment monitoring [Ahmad et al., 2017,
Lomio et al., 2020]. The Yahoo Labs and NAB time series are extensively used in research comparing event detection
methods [Hasani, 2020, Salles et al., 2023, Lomio et al., 2020]. Thus, all the time series from these datasets were
included in the analysis.

The selected detection methods were CF [Guralnik and Srivastava, 1999], FBIAD [Lima et al., 2022], ARIMA [Chan-
dola et al., 2009], GARCH [Carmona, 2013], and LSTM [Zhang et al., 2020]. This choice aims to explore a suitable
diversity of event detection approaches. Regarding the types of events, the CF method detects change points, and
GARCH detects volatility anomalies. In contrast, the other methods detect anomalies in general.

The parameters used for each method are displayed in Table 2. These parameters represent the default values of
each method as implemented in the Harbinger framework [Salles et al., 2023]. In the experiments, no exploration of
different parameter values for the methods was conducted to maintain uniform behavior and vary only the parameters
related to their online execution. Thus, the experiments enable a more suitable evaluation of the impact of batches in
memory on detection results for each method, with different batch sizes and preservation of complete or partial data
memory across batches during execution.

Since the methods employed have different operational mechanisms, many parameters do not have equivalence or
similarity. However, when more than one method uses similar parameters, the values are kept the same for better
comparability of results. In Table 2, it is possible to verify similar parameters with equal values in the rows of sw
and ma for the FBIAD and CF methods, respectively, as well as the alpha parameters for the FBIAD and GARCH
methods.

The parameters used in the batches are the warm-up size, batch size, and batch memory (w, s,m). The options follow
a uniform proportion for the warm-up and batch size values given in the number of time series observations. For batch
memory, expressed in the number of batches, the used options are complete memory of all batches and partial memory
(the last three or nine batches, depending on the dataset and methods).

The selected values for batch size (s) enable observation-to-observation analysis execution (size = 1) up to larger
batches with 243 observations. The range of value options was defined to enable the proper execution of methods
requiring a minimum number of observations. Different value options also aimed to enable experiments with larger
time series, where very small batches could make experiments too slow and computationally expensive.

1Available at https://github.com/cefet-rj-dal/event_datasets
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Table 2: Parameters per Method
Method Parameter Value

FBIAD sw (sliding window
size) 30

ARIMA mdl (model) Autoarima

ARIMA(p, d, q) order(1,6,2)
CF mdl (model) Linear regression

ma (moving average
size) 30

GARCH
variance.model,
mean.model

sGARCH:
garchOrder
= (1, 1),
armaOrder = (1, 1)

LSTM inputsize, epochs,
normalization

4 neurons, 10000
epochs, Global
Min-Max

Values for defining batch size (s) start at one. They follow a uniform progression of multiples of three from the second
option. However, considering that the selected methods may use central tendency techniques, the first value was the
one closer to 30 (s = 27), which is known as a sample size that it may be possible to assume normal distribution con-
sidering the Central Limit Theorem. Moreover, values below s = 81 might be insufficient for methods requiring more
model training observations or greater values of w and m. For fairness in execution conditions and result comparison,
when this occurs for a specific method, the experiment parameters are configured to start from the minimum value that
works for all methods.

Regarding values for batch memory (m), in addition to exploring the complete time series by preserving the memory
of all batches, attention was given to situations where memory is incompatible with the number of batches in the
experiment. For example, the number of preserved batches must equal or smaller than the total number of batches
analyzed. It also does not make sense for the number of batches to be very close to the total number of time series
batches since the effect of both data volume for analysis and computational cost would be very close or equal to full
memory execution.

The experiments were implemented using the R programming language. They were executed on a computer with
an Intel i7-7820X CPU with 16 cores and 128 GB of main memory. The datasets were loaded into memory from a
repository on the GitHub platform2.

5.2 Batches in Memory

This subsection details the detection performance of different batch parameters and method combinations to explore
the behavior of each parameter and the different methods. The average results for each metric across all datasets are
presented in Table 3 and 4. The values were calculated by obtaining the performance average of each metric for all
batch parameter combinations in each dataset.

Table 3: Average accuracy for methods by datasets

Method Yahoo Nu-
menta RARE

ARIMA 93.28 92.78 92.12
CF 97.01 96.15 94.31
FBIAD 97.01 82.41 93.00
GARCH 97.56 97.65 93.71
LSTM 93.32 92.84 91.44

No significant differences were found at a significance level of 5% among different combinations within each dataset
for detection performance metrics. For batch execution time, executions with partial memory showed statistical signif-

2Available at https://github.com/cefet-rj-dal/event_datasets
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icance compared to their full-memory counterparts. The batch size variable proved relevant and positively correlated
with this metric. The execution time results per method and batch parameter are described in Table 5.

Table 4: Average F1 score for methods by datasets

Method Yahoo Nu-
menta RARE

ARIMA 8.66 1.79 7.04
CF 1.75 2.81 1.65
FBIAD 1.31 0.78 6.97
GARCH 10.80 3.68 4.41
LSTM 7.69 1.12 3.84

Table 5: time per batch for each combination, method, and dataset

Set. Dataset ARIMA CF FBIAD GARCH LSTM
1,
81,
F

Yahoo 3.54 - 0.98 16.82 4.43
Nu-

menta 13.98 - 4.11 31.60 6.30

RARE 1.85 - 5.80 41.97 4.60
1,
81,
P*

Yahoo 1.56 - 0.40 13.96 5.66
Nu-

menta 0.91 - 0.47 12.11 8.02

RARE 0.80 - 0.97 13.04 4.31
1,
243,
F

Yahoo 12.57 2.43 3.96 62.95 11.86
Nu-

menta 39.32 11.83 13.51 96.14 12.56

RARE 5.83 21.81 17.28 130.69 11.49

9,
27,
F

Yahoo 1.48 0.20 0.35 5.71 2.47
Nu-

menta 5.06 2.27 1.44 10.77 3.78

RARE 0.69 2.41 1.91 15.26 3.21
1,
243,
P

Yahoo 7.93 1.44 2.44 51.18 11.45
Nu-

menta 5.77 1.50 2.56 33.80 14.26

RARE 3.56 3.27 5.38 51.60 10.42

* The CF method does not support window size 81

Considering that most batch parameters may not influence detection accuracy according to these results, partial mem-
ory may be an effective option to reduce batch execution time. Moreover, some methods, such as the GARCH and
LSTM, may be more complex than others. Nevertheless, considering the results presented and the purpose of this
paper, the configuration of (w = 1, s = 243, m = 0) was used as the base for the upcoming experiments involving DP
and DL. This combination was chosen because it was faster to execute and also provided more steps in the analysis,
which are important for the metrics presented in the next sections.

5.3 Analysis of Detection Probability

This section analyses the impact of the detection probability on the detection performance in online event detection.
Specifically, a new DP threshold is proposed based on the times each observation is detected and the total amount of
times the observations are read. The purpose is to test whether the detection performance could improve with this new
threshold.

The results showed that the hypothesis that non-zero thresholds may improve the detection performance is still unclear.
Specifically, of the three datasets used in the experiments, only the Yahoo time series showed a significant improvement
at thresholds 0.5 and 0.8 compared to 0 for both accuracy and F1. The results are presented in Table 6 and 7.

The behavior of methods, expressed by the accuracy values for different thresholds, might be seen in Figure 2. The
RARE dataset showed no difference between thresholds 0.5 and 0.8. Numenta only performed better in F1 for 0.5 and

9
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accuracy for 0.5 and 0.8. This dataset showed the biggest difference in accuracy when compared to 0, as illustrated by
the abrupt growth in Figure 2.

Table 6: Accuracy metrics for each Threshold Group and dataset

Dataset Threshold
0 0.5 0.8

Yahoo 91.93 92.48 93.61
Nu-
menta 80.90 90.50 91.55

Rare 90.76 91.09 91.50
Overall 90.73 91.29 92.31

Figure 2: Visual analysis of accuracy metrics for each threshold

Table 7: F1 metrics for each Threshold Group and dataset

Dataset Threshold
0 0.5 0.8

Yahoo 9.78 10.25 11.32
Nu-
menta 11.59 13.25 17.42

Rare 5.83 5.73 5.58
Overall 4.85 5.11 5.72

Regarding the performance gain in cases where it occurred, the highest gains were around 5% F1 and 10% Accuracy.
These results indicate that the proposed detection probability metric can be a good alternative to optimize the perfor-
mance of univariate time series event detection. However, it is impossible to generalize to all databases, making it
necessary to tune different detection probability values in each case. Specifically, the improvements achieved with the
detection probability may be explained by reducing false positives. Nevertheless, this improvement may not always
hold with a high incidence of false negatives.
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5.4 Analysis of Detection Lag

This subsection analyses the detection lag metric of all methods. Specifically, it shows how many batches each method
takes to make a detection. To the best of our knowledge, these results may generate important information about the
performance of the methods that were not available in any other known metric.

The results with the DL variable indicate that the values may depend significantly on the datasets. Specifically, the
Yahoo dataset had a median DL of one window for all methods, indicating that real events tend to be detected faster
in this dataset. Table 8 presents the DL analysis of the three datasets.

Table 8: Comparison of DL for Yahoo, NAB, and RARE datasets
Parameters: w = 1, s = 243,m = 0.

Method Yahoo NAB RARE
FBIAD 1 9 10
ARIMA 1 11 11
GARCH 1 4 6
CF 1 13 8
LSTM 1 5 10

Values: Median for all time series in each dataset

When there are no differences in this aspect, selecting the best method can be based on the balance between detection
accuracy and execution time. However, as in the NAB and RARE time series, where DL values are quite distinct
between methods, it is necessary to evaluate which methods achieve the best combination of accuracy, processing
time, and lower lags in detections.

For NAB, a high value is observed for the median of DL, mainly due to some time series whose median lags are very
high, all with Lags

i > 10. However, in the time series that originated the median calculation, the DL generally was
close to Lags

i = 3. With such differences, as in NAB, the importance of evaluating the joint aspects of accuracy, time,
and mentioned lag is emphasized.

The RARE dataset has peculiar characteristics, such as many time series without changes over time, which are con-
sidered anomalies according to the labels. There are also punctual changes in some time series intervals, without the
labels of events coinciding with the moments when the greatest changes occur. Thus, many false negatives exist in
detections and high lags, as seen in Table 8, where only two methods have a median Lags

i ≤ 10.

Among the three technology datasets, NAB has the greatest difference between Lags
i values. As an exercise to show

the intuition of balancing the available metrics in the detection, it is noted that GARCH and LSTM have better Lags
i

results.

Table 9 confirms a difference in DL values with statistical significance between GARCH and LSTM. The same test
was performed for the DL and accuracy metrics for a complete evaluation. This test compares all results and generates
a value called the effect size, the magnitude of the size of the difference, which is classified on a scale as nonexistent,
small, moderate, or large. In this comparison, only the difference in DL was classified as small. At the same time,
accuracy has differences that are classified as large.

Table 9: Comparison between GARCH and LSTM using Wilcox Effect Size Statistical Test in NAB Dataset

Parameters: w = 1, s = 243,m = 0

Metric Differ-
ence

Effect
size

Magni-
tude

DL Yes 0.054 Small
Accu-
racy Yes 0.728 Large

Considering real-world scenarios, it is important to evaluate whether DL obtained by detection methods is appropriate
for response time reaction by domain experts. For example, in an oil drilling and exploration [Bach et al., 2014]
context, 15 minutes could be the right time to stop oil production in case of an incident. If DL could lead to an elapsed
time higher than the time constraint, novel detection methods should be explored.

The different usage scenarios also deepen the importance of information on the behavior of streaming methods pro-
vided by DL and DP metrics. As demonstrated, especially in exploring the NAB time series, this information on the
behavior of detections over streaming enriches the foundations for the proper selection of methods. According to the
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authors’ best knowledge, this type of detail about the streaming of time series is a unique characteristic of this paper
and reinforces its relevance.

6 Conclusion

This paper proposed a comprehensive approach to online event detection in streaming time series. It introduces novel
metrics for evaluating detection performance. The configurable batch methodology was formalized, enabling a balance
between accuracy and computational cost.

The new metrics, Detection Probability (DP) and Detection Lag (DL), provide insights into the behavior of detection
methods during streaming processing. DP measures the probability of detecting an event at each observation, and DL
evaluates the lag between observing an event and its detection.

The experimental evaluation covered diverse datasets and methods. The analysis explored different batch parameter
combinations, revealing that, in general, the choice of batch parameters does not significantly affect detection accuracy.
However, partial memory configurations clarify the potential to reduce batch execution time without compromising
accuracy.

The insights provided by DP and DL metrics contribute to a more informed decision-making process when deploying
online event detection systems. In future work, using these metrics to evaluate event detection methods can be further
explored to improve detection performance and evaluate whether the DL is acceptable for the specific problem.
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