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Highlights
Robotic Co-manipulation of Deformable Linear Objects for Large Deformation Tasks
Karam Almaghout,Andrea Cherubini,Alexandr Klimchik

• We address the problem of complex deformation of DLO and propose a new approach to handle it
• We evaluate the proposed approach in both simulation and real-life experiments.
• We conduct a comprehensive review, along with a comparative study on the most recent works in the literature in the

DLO shape control and the techniques for modeling DLOs.
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A B S T R A C T
This research addresses the challenge of large/complex deformation in the shape control tasks of
Deformable Linear Objects (DLO). We propose a collaborative approach using two manipulators to
achieve shape control of a DLO in 2D workspace. The proposed methodology introduces an innovative
Intermediary Shapes Generation (ISG) algorithm which outputs a series of intermediary shapes to
guide the DLO towards the desired shape. The robot controller is formulated as an optimization
problem, where the main objective is to minimize the error between the current shape and the
desired shape, while ensuring the diminishing rigidity property of the DLO as a constraint. We
conduct extensive simulations and real-life experiments to evaluate the effectiveness of our approach.
We consider various scenarios of basic shapes, as well as complex deformations with opposite
concavities between initial and final shapes. The outcomes demonstrate the robustness and high
accuracy of the proposed system, in achieving complex deformations. This capability represents the
primary contribution of our research. The optimization-based control framework, coupled with the
ISG algorithm, enables effective shape control without the need for extensive modeling nor training,
and offers a promising solution for practical applications requiring precise shape control of DLOs.
Moreover, we carry out a thorough review and comparative analysis encompassing the latest literature
in DLO shape control, and the techniques for DLO modeling.

1. Introduction
Deformable linear objects (DLOs), such as cables, ropes,

and sutures, are widely used in industry, medicine, and
everyday life. However, the problem of DLOs handling
and manipulation is considered as a bottleneck of automa-
tion and robotics (Trommnau, Kühnle, Siegert, Inderka and
Bauernhansl (2019); Heisler, Steinmetz, Yoo and Franke
(2017)). This has led to a growing interest in DLO robot
manipulation, e.g., for cable routing, shape control of a
rope, and surgical suturing. Although great progress has
been achieved in recent years, shape control remains an
open problem in robotics (Zhu, Cherubini, Dune, Navarro-
Alarcon, Alambeigi, Berenson, Ficuciello, Harada, Kober,
Li et al. (2022)).

The shape control tasks of DLOs can be divided into
two types. The first type concerns manipulating soft DLOs
placed on tables: the robot can move the DLO to the desired
shape by executing a series of grasp-and-release actions
at different points of the DLO (Yan, Vangipuram, Abbeel
and Pinto (2021); Zhang, Schmeckpeper, Chaudhari and
Daniilidis (2021)). The second type is the manipulation of
stiffer DLOs such as cables, for which deformation under
forces is mainly elastic (Laezza and Karayiannidis (2021);
Jin, Wang and Tomizuka (2019)). The robot grasps only
the DLO ends to control its shape, either in 2D or 3D
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workspace. In this paper, we focus on the second type of
shape control tasks: manipulation of elastic DLO grasped
at its two ends by two manipulators in 2D workspace. The
manipulators guide the DLO towards a desired shape based
on visual servoing. While most existing works consider local
and small deformation, this work addresses the challenge of
large deformation: the initial and desired shapes are quite
different from each other and may even feature opposite
concavities. Figure 1 shows an example of the considered
cases. To the best of the authors’ knowledge, this is the first
time this type of deformation is explicitly addressed in the
robotics literature.

(a) Initial shape (b) Final Shape

Figure 1: An example of a large deformation task. The DLO
(red) is concave upwards while the desired shape (green) is
concave downwards

To deform it accurately, the DLO shape must be tracked
throughout the task, by a proper sensory system, includ-
ing vision, force, and/or tactile sensors (Delgado, Cor-
rales, Mezouar, Lequievre, Jara and Torres (2017); Sanchez,
Mohy El Dine, Corrales, Bouzgarrou and Mezouar (2020)).
Among these, vision sensors, i.e., cameras, are widely
used since they are affordable and appropriate for tasks
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which include detection and localization of both rigid and
deformable objects (Sanchez, Corrales, Bouzgarrou and
Mezouar (2018); Almaghout, Boby, Othman, Shaarawy and
Klimchik (2021)). In the vision-based robotic manipulation
of DLOs, some works use marked DLOs. These marks
are considered as feature points, and the robot manipulates
these points towards desired positions (Tang, Wang and
Tomizuka (2018); Li, Wang and Liu (2019); Yan et al.
(2021)). A significant limitation of this approach is that
it is not realistically possible to add these markers on
every DLO to be manipulated. Others consider the DLO
contour as the DLO feature (Zhu, Navarro, Fraisse, Crosnier
and Cherubini (2018); Zhu, Navarro-Alarcon, Passama and
Cherubini (2021)). This approach is more feasible than the
previous one, but it requires more calculations, since it
handles a greater number of points (the contour points). In
our previous work (Almaghout and Klimchik (2022b)), we
developed a virtual feature points (VFPs) algorithm, which
tracks the DLO by representing it as a set of virtual points.
This algorithm eliminates the need for physical markers
and reduces the computational cost needed to process the
contour. Once we obtain the DLO feature points, the desired
shape is generated to have the same number of points.

In this work, we propose a new algorithm for interme-
diary shapes generation (ISG). This ISG algorithm takes
the initial and desired shapes (each represented as a set of
points), and generates intermediary shapes which can be
considered as local desired shapes. Once these intermediary
shapes are generated, the robots guide the DLO from the
current shape to the desired shape through these interme-
diary ones. The robots motion is planned as an optimization
control problem (OCP), where the desired displacement of
the robot end-effectors are computed to minimize the error
between the current DLO shape and the next intermediary
shape, in an iterative manner towards the desired shape.
Figure 2 shows an overview of the proposed scheme. The
proposed approach and algorithms are evaluated in simu-
lation and real experiments for different shapes. The main
contributions of this paper are summarized hereby.

1. We tackle the problem of complex deformation of
DLO, including opposite-concavity deformation, i.e.,
the desired shape has a concavity that is the reverse of
the initial one.

2. We conduct a review and comparative analysis of
the latest works in the field of DLO manipulation,
including various techniques for modeling DLOs.

3. We propose a novel algorithm (ISG) for generating
intermediary shapes, to handle large and complex
deformation scenarios.

4. We formulate the shape control task as an optimiza-
tion control problem, considering the diminishing
rigidity property of DLO.

5. We conduct simulations and real experiments to vali-
date our approach in various cases.

To address these problems, the rest of the paper is
organized as follows. In the next section, we review the most

Figure 2: The proposed framework. The virtual feature points
(VFPs) algorithm takes the captured frame, segments the
DLO, and samples it into a set of feature points. The interme-
diary shapes generation (ISG) algorithm takes the sampled and
desired shapes and generates intermediary shapes. The DLO
moves towards the desired shape through the intermediary
shapes by the guidance of the robots, which receive the desired
displacements as the output of the motion planner.

recent works in the robotics literature. Section 3 states the
problem of interest and defines some notations. The ISG
algorithm is introduced in section 4. Section 5 discusses
the robots motion planning problem. In section 6, the DLO
dynamic modeling techniques are discussed and the mass-
spring model is exerted for simulation study, which is devel-
oped in section 7. In section 8, real experiments are presented
and discussed. Finally, we conclude and discuss the future
works in Section 9.

2. Related Works
In this section, we begin with a thorough review and

comparison of the techniques employed for modeling and
simulating DLOs. Subsequently, we categorize and discuss
the various approaches used for DLO manipulation, while
also providing a comparison of the latest works in this area.
2.1. DLO Modeling

The problem of simulation and modeling of DLOs is
crucial for many applications: in virtual reality, for training
and assessing suturing skills Xu and Liu (2018), in reinforce-
ment learning to train robots handling these objects Laezza
and Karayiannidis (2021), and in parameter identifications
of real DLOs to improve the manipulation accuracy Liu,
Su, Lu, Li and Yip (2022). In contrast to rigid objects, it is
challenging to obtain the exact models of DLOs; they can
be hardly calculated theoretically, and modeling parameters
may vary significantly among DLOs. Several techniques
have been developed in the literature to model flexible cables
and other DLOs. These include: mass-spring model (Lv, Liu,
Ding, Liu, Lin and Ma (2017)), multi-body model (Servin
and Lacoursiere (2008)), position-based dynamics model
(Xu and Liu (2018)), elastic rod model(Linn and Dreßler
(2017)), and dynamic spline model (Valentini and Pennestrì
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Table 1
Characteristics of DLO modeling techniques

Model Advantages Limitations

Mass-Spring

➤ Widely used and easy to implement.

➤ Computationally efficient, leading to fast
results.

➤ Requires less memory usage.

➤ The accuracy is limited in large
deformation.

Multi-body

➤ Intuitive.

➤ Good real-time performance.

➤ Requires less memory.

➤ The accuracy is limited in large
deformation.

Position-based Dynamics ➤ Fast and stable performance.
➤ Lacks of physical explanation.

➤ Visual reliability only.

Finite element
➤ High accuracy.

➤ Realistic behavior.

➤ Associated with significant computational
resources and cost.

Elastic Rod
➤ Good theoretical basis.

➤ Realistic and accurate behavior.

➤ Associated with significant computational
resources and cost.

➤ Slow computation speed.

Dynamic Spline
➤ Good theoretical basis.

➤ Continuous model.

➤ Relatively high computational resources
and cost.

➤ Slow computation speed.

(2011)). Different modeling techniques were analyzed by Lv,
Liu, Xia, Ma and Yang (2020), and Yin, Varava and Kragic
(2021) have conducted in-depth analyses of these modeling
techniques. The authors have provided valuable insights
into the strengths and limitations of each technique. These
findings assist in determining the most suitable modeling
methods for DLOs, considering their specific behaviors and
characteristics. The overview of different DLO’s modeling
techniques and their characteristics are given in Table 1.
The table sums up key advantages and limitations of each
approach. In addition, Table 2 compares the approaches,
based on the following indicators:

• Complexity: indicates the complexity of implementing
and understanding the model.

• Computational cost: refers to the computational re-
sources and time required to simulate the model.

• Resources cost: reflects the amount of memory and
other resources needed to run the model.

• Accuracy: represents the model’s ability to accurately
simulate deformations.

• Real-time applications: indicates whether the model
can be used in real-time applications, where timely
responses are crucial.

• Stability: represents the model’s ability to handle var-
ious input scenarios and maintain stability in complex
deformation scenarios.

• Versatility: indicates the model’s flexibility in simu-
lating different types of objects dynamics.

Based on this overview and comparison, it is shown
that the mass-spring model provides a reasonable trade-off
between model accuracy, implementation complexity, and
computational cost; this motivates us to to use it as a primary
modeling approach for simulation evaluation.
2.2. DLO Manipulation

In recent years, there has been significant research on
robotic shape control of DLOs. Herein, we review some
of the recent works in this field and categorize them into
four main groups based on the DLO manipulation control
approach:

1. Model-based approach.
2. Jacobian-based approach.
3. Data-driven approach.
4. Hybrid approach.
Let us analyze their particularities and advantages in

detail, in the following sections.
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Table 2
Comparison of DLO modeling techniques

Model Complexity Computat-
ional Cost

Resources
Cost Accuracy

Real-time
applica-

tion
Stability Versatility

Mass-Spring Low Low Low Medium Yes Limited Medium

Multi-body Medium Low Low Medium Yes Limited Medium

Position-based Dynamics Medium Low Low Medium Yes Medium High

Finite element High High High High No High High

Elastic Rod High High Medium High No High High

Dynamic Spline Medium Medium Medium Medium No Limited Medium

2.2.1. Model-based approach
In the model-based approaches, the physical model of

the DLO is used to predict the behavior of how it will deform
in response to different manipulation strategies, see Figure 3.
The model is used to plan the manipulation, in order to
deform the DLO into the desired shape. Duenser, Bern,
Poranne and Coros (2018) develop a finite element model
(FEM) simulation of DLO for open-loop shape control. An
approach using reduced FEM to closed-loop shape con-
trol of DLOs is proposed by Koessler, Filella, Bouzgarrou,
Lequièvre and Ramon (2021). This approach is limited by
the accuracy of the model used for it, as well as by the com-
plexity of the DLO’s behavior, which makes obtaining the
accurate model difficult in practice. Liu et al. (2022) propose
a model-based shape control approach. In their approach,
they consider position-based dynamics of DLO. They esti-
mate the model parameters by minimizing the shape error
between the real DLO and the simulated model. Model-
based approach proved their efficiency in applications where
the accuracy is critical, such as surgical suturing tasks.
However, the lack of precise model parameters knowledge
is the main drawback of this approach.

Figure 3: Block diagram of model-based approach for DLO
manipulation.

2.2.2. Jacobian-based approaches
These approaches use simplified models of the DLO

deformation to compute the required robot control inputs,
which can be more computationally efficient than using a full
DLO model. Approximation approaches for DLO shape con-
trol offer a trade-off between computational complexity and
shaping accuracy. Assuming that a small change of the DLO
is linearly related to a small displacement of the robot, many
works developed a Jacobian-like approximate model, to map
the DLO shape to the robot end-effectors motion. This

Jacobian is computed numerically during manipulation, as
shown in Figure 4a. For instance, Zhu et al. (2018), Jin et al.
(2019), and Lagneau, Krupa and Marchal (2020) introduced
methods based on online estimation of the local deformation
model of DLOs. Another direction consists in formulating
the Jacobian analytically, considering DLO properties as
well as the manipulation conditions, Figure 4b. In particular,
in our previous works, we introduced an approximate model
based on the diminishing property of the DLO (Almaghout
and Klimchik (2022a,b)). Ruan, McConachie and Berenson
(2018) developed a new geometric model, based on the di-
rectional rigidity and constraints. Although these approaches
are simple to implement, they are not suitable for highly
deformable DLOs, and fail in large deformation tasks.

(a) Numerical Jacobian

(b) Analytical Jacobian

Figure 4: Block diagram of Jacobian-based approach for DLO
manipulation.

2.2.3. Data-driven approaches
In data-driven approaches, the robot learns to control

the shape of the object either through offline training,
demonstration, or trial-and-error, see Figure 5. Nair, Chen,
Agrawal, Isola, Abbeel, Malik and Levine (2017), Tang et al.
(2018), and Yan, Zhu, Jin and Bohg (2020) present learning-
based approaches where the robot observes how a human
deforms the DLO, and then imitates the observed behaviors.
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Reinforcement learning (RL) is another direction where the
robot learns a policy, by the rewards collected during the
interaction. RL policies are learned for shape control of
elastoplastic DLOs in (Laezza, Gieselmann, Pokorny and
Karayiannidis (2021)) and (Zakaria, Aranda, Lequièvre,
Lengagne, Ramón and Mezouar (2022)). Zakaria et al.
(2022) develop a new framework for shape control of DLOs,
using Deep RL. Huang, Xia, Wang and Liang (2023) pro-
pose a new framework for DLO shape control. They suggest
a new approach to control the shape of DLO using external
contacts, to supplement the control system and compensate
for its underactuation. The suggested framework includes
a learning module named Learning Graph Dynamics with
External Contact (LG-DEC), for predicting future outcomes
and an action generation module for manipulating the DLO
in an iterative manner. The LG-DEC module is trained
by data collected in a simulation environment. The action
generation module outputs optimal actions through random
sampling, forward prediction, and SGD optimization. These
approaches can be particularly effective for complex DLOs,
that are difficult to model accurately, but require a large
amount of training data and can be computationally expen-
sive.

Figure 5: Block diagram of data-driven approach for DLO
manipulation.

2.2.4. Hybrid approaches
Some recent studies have proposed hybrid approaches,

which combine a model-based or Jacobian-based approach
augmented with data-driven approach, see Figure 6. For
example, Wang, Zhang, Zhang, Wu, Zhu, Jin, Tang and
Tomizuka (2022) developed a hybrid offline-online method
to learn the dynamics of DLOs. A graph neural network
(GNN) is utilized to learn the deformation dynamics from
the simulation data. Then, a linear residual model is learned
in real-time to bridge the sim-to-real gap. The learned model
is then used as the dynamics constraint of a trust region-
based model predictive controller, to calculate the robot
desired motion. Yu, Zhong and Li (2022) proposed a new
scheme for DLOs shape control, where the initial model is
approximated as a local linear model by a neural network
trained offline. The approximated model is used in an adap-
tive controller to achieve the shape control task. The neural
network is further updated online to compensate for any
errors in the offline model caused by insufficient training or
by changes of DLO properties. Although these approaches
offer more accurate performance for complex shapes, they
suffer from the training expense, and require a sufficient
amount of data earlier.

Figure 6: Block diagram of hybrid approach for DLO manipu-
lation.

2.3. Summary
Overall, each of the modeling and manipulation ap-

proaches mentioned above has its advantages and limita-
tions, imposing trade-offs for specific applications, depend-
ing on the desired properties and accuracy. Table 3 provides
a concise summary of the general advantages, limitations,
and applications of the approaches we have reviewed. In
addition, Table 4 offers an overview of the most recent works
related to these approaches with some details on the model
particularities and use cases.

In this work, we address the large/complex deformation
challenge. The large deformation is solved mainly by a novel
intermediary shapes generation (ISG) algorithm that allows
the system to guide the DLO to the desired shape. The
control is defined as an optimization problem. A Jacobian-
based approximate model based on the diminishing rigidity
property of the DLO is defined as a constraint. The loss func-
tion describes the deflection between the DLO current shape
and desired one. No prior knowledge of the DLO dynamics
and characteristics is required. Thus, this system will have
the Jacobian-based advantages and overcome its limitations
to solve the large deformation problem. Further, we use the
DLO mass-spring model (for its simple implementation), in
simulations, for evaluation purposes.

3. Problem Formulation
Let us consider two robot arms rigidly grasping a DLO at

its two ends. The robots cooperatively manipulate the DLO
on a 2D plane to move it from an initial to a desired shape.
The DLO initial and desired shapes are represented as a set
of𝑁 points uniformly distributed along the DLO length. The
distance between each pair of adjacent points is constant 𝑙𝑠.Figure 7 shows a DLO grasped by two end-effectors along
with the desired shape.

Let c = [c1, c2, ⋯ , c𝑁 ]𝑇 and s = [s1, s2, ⋯ , s𝑁 ]𝑇 ∈
ℝ2𝑁 be the vector of DLO point coordinates and de-
sired shape point coordinates, respectively; where 𝑐𝑛 =
[𝑐𝑛𝑥, 𝑐𝑛𝑦]𝑇 and 𝑠𝑛 = [𝑠𝑛𝑥, 𝑠𝑛𝑦]𝑇 , for 𝑛 = 1, 2, ..., 𝑁 . The
robots’ end-effectors configurations are defined by vector
r = [r1, r2]𝑇 ∈ ℝ6; where 𝑟𝑚 = [𝑟𝑚𝑥, 𝑟𝑚𝑦, 𝜑𝑚]𝑇 , for
𝑚 = 1, or 2.

The problem is to design the robots controller to guide
the DLO towards its desired shape. In the literature, re-
searchers have defined Jacobian-like models to map the
motion of the robots to that of the DLO. However, these
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Table 3
Summary DLO manipulation control approaches

Approach Advantages Limitations Applications

Model-based

➣ Accurate predictions.

➣ Precise manipulation.

➣ Can handle nonlinear behavior
locally.

➣ Difficult to obtain an accurate
model.

➣ Sensitive to parameter uncer-
tainties.

➣ High computational cost.

Suitable for applications where
accurate modeling is critical and
deformations are not highly com-
plex.

Jacobian-based
➣ Computationally efficient.

➣ Suitable for real-time control.
➣ Limited accuracy for large de-
formations or nonlinear behavior.

Suitable for applications where
real-time control is critical and
deformations are not highly com-
plex.

Data-driven

➣ Can adapt to changes in be-
havior during large and complex
deformation.

➣ Robust to modeling errors and
parameters uncertainties.

➣ Requires a large amount of
training data.

➣ Accuracy depends on quality
and quantity of data.

➣ Requires more computational
resources.

➣ Generalization to different un-
trained DLOs cannot be guaran-
teed.

Suitable for applications with
complex and large deformation.

Hybrid

➣ Combines strengths of multiple
approaches.

➣ Can handle modeling errors
and uncertainties.

➣ Can adapt to changes in be-
havior.

➣ High computational resources
and cost.

➣ Complex to implement.

➣ Requires acquiring data (offline
and online), and the performance
depends on the quality of the
acquired data.

Suitable for applications with
complex and large deformations,
where accuracy is critical.

Figure 7: A DLO (black) grasped by two end-effectors (orange)
with the desired DLO shape (green).

researches considered relatively straightforward scenarios,
where the desired shape s and the initial shape of the DLO c0
are relatively simple and close to each other. These scenarios
known as local deformation and do not require large or com-
plex deformation (Qi, Ma, Zhou, Zhang, Lyu and Navarro-
Alarcon (2022)) and (Zhu et al. (2018)). Our work addresses
different shape control scenarios, where large or complex
deformations are required. For instance, the scenarios where
the concavity of the initial and desired shapes are opposite.

The robots’ motion is planned in two distinct phases.
In the first phase, a series of intermediary shapes is cre-
ated, connecting the initial shape to the desired one. These
shapes act as waypoints for each DLO point, guiding each
one from its initial position towards the desired one. The
primary purpose of these shapes is to simplify the challenges
posed by large and complex deformations. The second phase
involves manipulating the DLO from its initial shape towards
the desired one, following the trajectory defined by the
generated intermediary shapes.

4. Intermediary Shapes Generation (ISG)
The first phase of the approach is to generate a set of

intermediary shapes representing how the DLO will deform
to reach the desired shape. The aim of these shapes is to
simplify the large/complex deformation, known as global
deformation, into a series of local deformation problems,
handled sequentially.

Let c0 and s be the DLO initial and desired shapes,
respectively. First, we compute the difference between each
DLO point c0 and its corresponding desired point s as
follows:

𝜹 = s − c0 (1)
K. Almaghout et al.: Preprint submitted to Elsevier Page 6 of 18



Table 4
Comparison analysis of different work for DLO manipulation

Manipulators Workspace Approach Type of Study

Single Multiple 2D 3D Model-
based

Jacobian-
based

data-
driven Hybrid Sim. Real

Nair et al. (2017) ✓ ✓ ✓ ✓

Xu and Liu (2018) ✓ ✓ ✓ ✓

Tang et al. (2018) ✓ ✓ ✓ ✓

Duenser et al.
(2018) ✓ ✓ ✓ ✓ ✓

Ruan et al. (2018) ✓ ✓ ✓ ✓ ✓

Zhu et al. (2018) ✓ ✓ ✓ ✓

Jin et al. (2019) ✓ ✓ ✓ ✓

Lagneau et al.
(2020) ✓ ✓ ✓ ✓

Yan et al. (2020) ✓ ✓ ✓ ✓

Koessler et al.
(2021) ✓ ✓ ✓ ✓

Wang et al. (2022) ✓ ✓ ✓ ✓ ✓

Almaghout and
Klimchik (2022a) ✓ ✓ ✓ ✓

Almaghout and
Klimchik (2022b) ✓ ✓ ✓ ✓

Yu et al. (2022) ✓ ✓ ✓ ✓ ✓

Liu et al. (2023) ✓ ✓ ✓ ✓

Huang et al.
(2023) ✓ ✓ ✓ ✓ ✓

Let us define the DLO point with the maximum distance as
c𝜎 , with

𝜎 = argmax (𝜹) ; 𝜎 ∈ {1, ..., 𝑁}. (2)
We also define 𝐾 , the number of shapes (including the
intermediary shapes and the final desired one):

𝐾 = ⌊

𝜹𝜎
𝜆
⌋ + 1, (3)

where 𝜆 is a user-defined step of the DLO point c𝜎 .
Next, we compute the slope (angle) between each two

adjacent points in c0 and s, starting from c𝜎 towards both
ends, as shown in Fig. 8:

• for each point from c𝜎 and s𝜎 towards c𝑁 and s𝑁 ,
respectively:
𝜃𝑐𝑛 = atan2

(

(𝑐𝑛𝑦 − 𝑐(𝑛−1)𝑦), (𝑐𝑛𝑥 − 𝑐(𝑛−1)𝑥)
)

, (4)

𝜃𝑠𝑛 = atan2
(

(𝑠𝑛𝑦 − 𝑠(𝑛−1)𝑦), (𝑠𝑛𝑥 − 𝑠(𝑛−1)𝑥)
)

; (5)
• for each point from c𝜎 and s𝜎 towards c1 and s1,

respectively:

Figure 8: Demonstration of the angles between each two
adjacent DLO points in 2D plane.

𝜃𝑐𝑛 = atan2
(

(𝑐𝑛𝑦 − 𝑐(𝑛+1)𝑦), (𝑐𝑛𝑥 − 𝑐(𝑛+1)𝑥)
)

, (6)

𝜃𝑠𝑛 = atan2
(

(𝑠𝑛𝑦 − 𝑠(𝑛+1)𝑦), (𝑠𝑛𝑥 − 𝑠(𝑛+1)𝑥)
)

. (7)
Then, each angular displacement is given by:

Θ𝑛 = 𝜃𝑠𝑛 − 𝜃𝑐𝑛. (8)
We get the angular displacement step size as

𝜗𝑎𝑛 =
Θ𝑛

𝐾 − 1
(9)
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where 𝜗𝑎𝑛 are the linear and angular step size of the DLO
point c𝑛.

Finally, we generate the 𝐾 − 1 waypoints for all DLO
points starting from c𝜎 in the following order:

c𝜅𝜎 = c𝜅−1𝜎 + 𝜆 (10)
• for DLO points of indices > c𝜎 :

c𝜅𝑛 = c𝜅𝑛−1 +

[

𝑙𝑠 cos(𝜃𝑐𝑛−1 + 𝜗𝑎𝑛)
𝑙𝑠 sin(𝜃𝑐𝑛−1 + 𝜗𝑎𝑛)

]

(11)

• for DLO points of indices < c𝜎 :

c𝜅𝑛 = c𝜅𝑛+1 −

[

𝑙𝑠 cos(𝜃𝑐𝑛+1 + 𝜗𝑎𝑛)
𝑙𝑠 sin(𝜃𝑐𝑛+1 + 𝜗𝑎𝑛)

]

(12)

where the superscript 𝜅 = 1,⋯ , 𝐾 − 1. These waypoints
represent intermediary shapes from the initial towards the
final desired shape of the DLO s, where c𝐾 = s. The initial,
desired, and intermediary shapes of the DLO are shown
in Fig. 9. Algorithm 1 shows a pseudo code of the ISG
algorithm.

Figure 9: Illustration of the initial, desired, and intermediary
shapes.

(a) The proposed ISG algorithm. (b) Algorithm proposed by Al-
maghout and Klimchik (2022a).

Figure 10: Comparison between the intermediary shapes gen-
erated by the ISG algorithm and the those generated by the
linear interpolation based algorithm for the case of changing
concavity.

Compared to the linear generation of the intermedi-
ary profiles methods proposed by Zhu et al. (2021) and

Algorithm 1: Intermediary Shapes Generation
(ISG)

Given :
c0: DLO initial shape
s: Desired shape
𝑁 : Number of DLO points
𝐿: DLO length
𝜆: user-defined step
Begin :
𝜹 ← s − c0
𝜎 ← argmax (𝜹); 𝜎 ∈ {1, ..., 𝑁}
𝐾 ← ⌊

𝜹𝜎
𝜆 ⌋ + 1

% Starting from c𝜎 and s𝜎, calculate angles

between each two adjacent points

for 𝑛 = 𝜎 𝑡𝑜 𝑁 do
𝜃𝑐𝑛 ← atan2

(

(𝑐𝑛𝑦 − 𝑐(𝑛−1)𝑦), (𝑐𝑛𝑥 − 𝑐(𝑛−1)𝑥)
)

𝜃𝑠𝑛 ← atan2
(

(𝑠𝑛𝑦 − 𝑠(𝑛−1)𝑦), (𝑠𝑛𝑥 − 𝑠(𝑛−1)𝑥)
)

end
for 𝑛 = 𝜎 𝑡𝑜 1 do

𝜃𝑐𝑛 ← atan2
(

(𝑐𝑛𝑦 − 𝑐(𝑛+1)𝑦), (𝑐𝑛𝑥 − 𝑐(𝑛+1)𝑥)
)

𝜃𝑠𝑛 ← atan2
(

(𝑠𝑛𝑦 − 𝑠(𝑛+1)𝑦), (𝑠𝑛𝑥 − 𝑠(𝑛+1)𝑥)
)

end
% Calculate the angular displacement for all

points

𝚯 ← Θ𝑛 = 𝜃𝑠𝑛 − 𝜃𝑐𝑛
% Calculate the angular step length

𝝑𝑙
𝑛 ←

Θ𝑛
𝐾−1

% Generate the intermediary shapes

for 𝜅 = 1 𝑡𝑜 𝐾 − 1 do
c𝜅𝜎 = c𝜅−1𝜎 + 𝜆
for 𝑛 = 𝜎 + 1 𝑡𝑜 𝑁 do

c𝜅𝑛 ← c𝜅𝑛−1 +

[

𝑙𝑠 cos(𝜃𝑐𝑛−1 + 𝜗𝑎𝑛)
𝑙𝑠 sin(𝜃𝑐𝑛−1 + 𝜗𝑎𝑛)

]

end
for 𝑛 = 𝜎 − 1 𝑡𝑜 1 do

c𝜅𝑛 ← c𝜅𝑛+1 −

[

𝑙𝑠 cos(𝜃𝑐𝑛+1 + 𝜗𝑎𝑛)
𝑙𝑠 sin(𝜃𝑐𝑛+1 + 𝜗𝑎𝑛)

]

end
end
c𝐾 = s

(Almaghout and Klimchik (2022a)), the ISG outputs more
reasonable and feasible intermediary shapes, which make it
applicable for large deformation scenarios. Figure 10 shows
a comparison between the output of the proposed algorithm
herein, Figure 10a and the one proposed earlier in (Almagh-
out and Klimchik (2022a)), Figure 10b. It can be seen that
in Figure 10b, the generated intermediate profiles are not
realistic. For instance, the third intermediary shape assumed
the DLO to be fully stretched with length smaller than the
DLO real length. Thus, if the robots end-effectors follow
the intermediate points of the DLO ends, the DLO will be
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compressed and an unpredictable behavior will occur, due to
the increase of its internal potential energy. This undesirable
behavior may lead to a failure in the manipulation task.
On the other hand, in Figure 10a, the intermediary shapes
generated by the ISG algorithm are realistic, and allow
the DLO to be stretched to eliminate an excessive increase
in potential energy and avoid the mentioned undesirable
behaviors.

5. DLO Manipulation
Once we generate the intermediary shapes, the manip-

ulators start guiding the DLO through these intermediary
shapes towards the desired shape. To obtain the required
displacement of the end-effectors configurations to manip-
ulate the DLO accurately, we formulate manipulations task
as an optimization control problem (OCP), where the DLO
is guided sequentially through the intermediary shapes as
follows:

for 𝜅 = 1, ⋯ , 𝐾 ∶

min
r

𝑁
∑

𝑛=1

‖

‖

c𝜅𝑛 − c𝑛‖‖

such that: ċ = 𝑱 ṙ
|ṙ| ≤ 𝝂

(13)

The first constraint represents an approximate model,
mapping the motion to the DLO points and to the end-
effectors. This model defines a Jacobian based on the di-
minishing rigidity property of the DLO, meaning that the
rigidity of the motion of the DLO points decreases as the
distance between the point and the end-effector increases.
Berenson, in Berenson (2013), defines rigidity descent as ex-
ponentially proportional to the distance between end effector
and grasped points. We use a Jacobian 𝑱𝑚

𝑛 to map each DLO
point c𝑛 to end-effector velocity ṙ𝑚:

ċ𝑛 = 𝑱𝑚
𝑛 ṙ𝑚 (14)

We compute 𝑱𝑚
𝑛 by assuming that the DLO is fully stretched

and the point moves rigidly with the end-effector. Then, we
multiply it by an exponential function of the distance:

𝑱𝑚
𝑛 = 𝑒−|𝐷

𝑚
𝑛 −𝑑

𝑚
𝑛 |

[

1 0 −𝛽𝑚𝐷𝑚
𝑛 sin 𝜃𝑚

0 1 𝛽𝑚𝐷𝑚
𝑛 cos 𝜃𝑚

]

. (15)

In this equation, 𝐷𝑚
𝑛 = 𝜂𝑚𝑛 ⋅ 𝑙𝑠 (with 𝜂𝑚𝑛 is the order of c𝑛with respect to r𝑚) is the Euclidean distance between c𝑛 and

r𝑚 when the DLO is fully stretched, 𝑑𝑚𝑛 = ‖

‖

‖

c𝑛 − r𝑚
‖

‖

‖

is the
Euclidean distance between c𝑛 and r𝑚 at any configuration
of the DLO. Lastly, 𝛽1 = 1, 𝛽2 = −1, 𝜃1 = 𝜑1, 𝜃2 = 𝜋 −𝜑2.

In our previous work, (Almaghout and Klimchik (2022b)),
we assumed that each DLO point is guided by two end-
effectors. We observed that the impact of a small change of
end-effector configuration on a DLO point is related to the
distance between DLO point and end-effector. Thus in the

addressed case, where the manipulation is quasi-static, the
end-effector that is nearest to the DLO point has the major
impact, while the impact on the farthest end-effector can
be neglected. Thus, in contrast with that work, herein, we
assign a one guiding end-effector for each DLO point: the
end-effector guiding each DLO point c𝑛 is the one nearest to
c𝑛, so the guiding end effector index is:

arg𝑚𝑖𝑛
{

𝐷1
𝑛, 𝐷

2
𝑛
}

= {1, 2} . (16)
Hence, for a DLO of𝑁 points, where𝑁 is even, the Jacobian
is obtained as follows:

ċ =

[

𝑱 1
𝑁×3 𝟎𝑁×3

𝟎𝑁×3 𝑱 2
𝑁×3

]

ṙ (17)

The second constraint in (13) imposes bounds on the
linear and angular velocities of the robots’ end-effectors: |ṙ|
is the element-wise absolute values vector of ṙ; and 𝝂 is a 6
vector of the maximum linear and angular robot velocities.

To evaluate our approach, we define the error as the
deflection between the DLO points position and the desired
one, as follows:

𝒆 =
[

𝑒1 ... 𝑒𝑛 ... 𝑒𝑁
]𝑇 (18)

where
𝑒𝑛 =

|

|

|

c𝐾𝑛 − c𝑛
|

|

|

(19)
As performance metrics, we consider the mean and

standard deviation of the error defined in (18):
• the mean error:

𝑒𝑚𝑒𝑎𝑛 =
1
𝑁

𝑁
∑

𝑛=1
𝑒𝑛, (20)

• the standard deviation of the error:

𝑒𝑠𝑡𝑑 =

√

∑𝑁
𝑛=1

(

𝑒𝑛 − 𝑒𝑚𝑒𝑎𝑛
)

𝑁 − 1
. (21)

We will use these metrics further to evaluate the ap-
proach in simulations and in real-life experiments. Addi-
tionally, the mean error 𝑒𝑚𝑒𝑎𝑛 will be considered as system
convergence criterion.

6. Simulation Study
To evaluate the proposed algorithm in simulation, we

first model the DLO as a mass-spring model. Then, we
realize several simulations, to study the performance of our
approach, considering several factors. The simulations are
carried out in MATLAB2020b running on Ubuntu 18.04.6
operating system on a computer equipped with Intel Core
i7-10510U CPU running at 1.8 GHz and 16 GB of RAM.
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6.1. DLO Simulation
We use the mass-spring model for evaluation purpose

since it is an intuitive practical physical model, easy to
implement, and computationally efficient(Lv et al. (2020)).
Due to these advantages, this model is widely used for
simulation of deformable objects, such as cables Lv et al.
(2017)), clothes (ElBadrawy and Hemayed (2011)), and
cloak (Patete, Iacono, Spadea, Trecate, Vergnaghi, Mainardi
and Baroni (2013)). The model discretizes the DLO into 𝑁
mass points. The position of these mass points represents
the shape of the DLO. The mass points are connected by
𝑁 − 1 massless stiff linear springs to preserve the length of
the DLO, while representing its stretchabilty. The model has
𝑁 − 2 torsion springs situated at the mass points, excluding
the end points, to describe the elastic bending behaviour.
Figure 11 depicts the DLO model, including the springs.

Figure 11: Mass-spring model used to simulate a cable.

For a displacement of the DLO ends, the positions of the
internal DLO points are updated, based on the stretching and
bending stiffness of the DLO. We introduce an energy-based
DLO model where the object energies are defined as follows:
the stretching energy is

𝐸𝑠 =
𝑁
∑

𝑛=2

𝑘𝑠
2
(

‖

‖

c𝑛 − c𝑛−1‖‖ − 𝑙𝑠
)2 , (22)

and the bending energy is

𝐸𝑏 =
𝑁−1
∑

𝑛=2

𝑘𝑏
2
𝛾2𝑛 . (23)

In the above equations, 𝑘𝑠 and 𝑘𝑏 are the stiffness parameters
of the linear and torsional springs, respectively; 𝛾𝑛 is the
bending angle of c𝑛, shown in Figure 11, and given by:

𝛾𝑛 = tan−1
⎛

⎜

⎜

⎝

‖

‖

‖

(

c𝑛+1 − c𝑛
)

×
(

c𝑛 − c𝑛−1
)

‖

‖

‖

(

c𝑛+1 − c𝑛
)𝑇 (

c𝑛 − c𝑛−1
)

⎞

⎟

⎟

⎠

. (24)

Then, for any update in the DLO ends position, the inner
points c𝑖𝑛𝑛𝑒𝑟 position are updated to minimize the total
energy

min
c𝑖𝑛𝑛𝑒𝑟

{𝐸𝑠 + 𝐸𝑏}. (25)

Model (25) is used further to evaluate the proposed approach
in simulations.

Table 5
DLOs geometric and elastic parameters

Model 𝐿 [𝑚𝑚] 𝑑 [𝑚𝑚] 𝐸 [𝑀𝑃𝑎]
𝐷𝐿𝑂1 500 4.0 100
𝐷𝐿𝑂2 700 7.0 126

We use two DLO models, with parameters presented in
Table 5. Their stiffness coefficients are computed based on
the formulas proposed in Lv et al. (2017):

• the linear stiffness coefficient: 𝑘𝑠 = 𝐸 ⋅ 𝐴∕𝑙𝑠,
• the bending stiffness coefficient: 𝑘𝑏 = 3 ⋅ 𝐸 ⋅ 𝐼∕𝑙𝑠.

In the above equations: 𝐸 is Young’s modulus, 𝐴 and 𝐼
are the DLO’s cross sectional area and moment of inertia,
respectively. For circular cross-section DLO (e.g., cables) of
diameter 𝑑: 𝐴 = 𝜋 ⋅ 𝑑2∕4 and 𝐼 = 𝜋 ⋅ 𝑑4∕64.

Then, for any update in the DLO ends, the inner points
𝒑𝑖𝑛𝑛𝑒𝑟 positions are updated to minimize the total energy

min
𝒑𝑖𝑛𝑛𝑒𝑟

𝑬 (26)

Thus, for each update in the 𝒑𝑐𝑜𝑛𝑡𝑟𝑜𝑙 position, the model
updates its 𝒑𝑖𝑛𝑛𝑒𝑟 position, to minimize the internal energies
and to put the DLO in equilibrium configuration. Further, we
will use this model for the simulation of DLO manipulation,
where the control will guide the 𝒑𝑐𝑜𝑛𝑡𝑟𝑜𝑙 to deform the DLO
into the desired shape.
6.2. Study for different 𝑁 values

The approach discretizes both the DLO and the desired
shape into 𝑁 points. Choosing the proper number of DLO
points 𝑁 plays a crucial rule. Reducing the number of
points will not provide a realistic approximation, and will
negatively impact final shape accuracy, although it reduces
the computational cost, and vice versa. We investigate the
impact of 𝑁 on the final result, by a comparative study. The
study considers DLO models with 𝑁 = 8, 10, 12, and 14. It
is worth mentioning that we tested the DLO models for the
number of points from 4 to 20. For 𝑁 = 4 and 6 the model
was unrealistic and for 𝑁 > 14 the model is redundant
and the computational cost is very high. Four desired shapes
are considered, U, L, S, and M, shown in Figure 12. These
scenarios represents different levels of complexity, with
different inflectional points. Our study takes into account the
following metrics:

• the error mean defined by (20).
• the error standard deviation defined by (21).
• the number of iterations.

The convergence criterion of the optimization control prob-
lem is 𝑒𝑚𝑒𝑎𝑛 < 0.01𝐿, the maximum number of iterations is
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(a) U-shape (b) L-shape (c) S-shape (d) M-shape

Figure 12: The desired shapes of the considered scenarios U, L, S, and M; and the intermediary shapes generated by ISG algorithm
from the initial shapes towards the desired ones.

(a) U-shape (b) L-shape (c) S-shape (d) M-shape

Figure 13: Final shapes of 𝐷𝐿𝑂1 (𝐿 = 700𝑚𝑚, 𝑑 = 7𝑚𝑚,𝐸 = 126𝑀𝑃𝑎), for different number of feature points 𝑁 = 8, 10, 12, 14.

20 ⋅𝐾 , where 𝐾 is total number of intermediary and desired
shapes defined in (3), and 𝜆 = 10𝑚𝑚.

The intermediary shapes generated by the ISG algorithm
are depicted in Figure 12. It can be noticed that the ISG
algorithm successfully outputs realistic shapes, despite the
deformation complexity. It is also suitable for the opposite
concavity scenario, as shown in figure 12a, where the DLO
is fully stretched and then bent towards the desired shape.

Figures 13 and 14 show the final shapes of 𝐷𝐿𝑂1 and
𝐷𝐿𝑂2, respectively, at the end of the manipulation task. It
can be seen that the developed approach achieved the task
and fitted the DLO models to the desired shapes for all 𝑁
values. We show the trials’ mean error and standard devia-
tion for 𝐷𝐿𝑂1 and 𝐷𝐿𝑂2 in Fig. 15 and 16, respectively.
One can observe that although all trials succeeded, 6 out
of 32 did not reach the convergence threshold, one trial for
𝑁 = 10, two for 𝑁 = 12, and three for 𝑁 = 14. the
figures presents an overall tendency of the error to increase
as 𝑁 increases. The relatively small standard deviation 𝑒𝑠𝑡𝑑shows that the points individual error have dispersion about
the mean error, as is also confirmed by Figures 13 and
14. Figure 17 shows the required number of iterations and
the execution time of each trial. It illustrates that both the
number of iterations and execution time increase as 𝑁 in-
creases. Thus, taking into account these results, the proposed
approach performs well regardless the 𝑁 value. However,
𝑁 significantly impacts the realisticness of representing the
DLO and the execution time required to accomplish the task.

6.3. Different Initial Conditions
The objective of the next study is to assess the per-

formance of the approach under different initial conditions
(shapes) while targeting the same desired shape. For this test,
we utilized the 𝐷𝐿𝑂1 method with parameters 𝑁 = 10,
𝜆 = 10mm, and a maximum of 20 ⋅𝐾 iterations.

In Figures 18, 19, 20, and 21, we present five distinct
initial shapes, corresponding to the desired shapes U, L, S,
and M, respectively. It is evident that despite variations in the
complexity of the initial shapes, the approach successfully
achieved the desired shapes for all cases.

The 𝑒𝑚𝑒𝑎𝑛 error for each desired shape roughly varies
depending on the initial shape. For the U-shape, the overall
𝑒𝑚𝑒𝑎𝑛 error was 4.40mm, with a narrow standard deviation of
0.54mm. For the L-shape, it was 7.24mm, with a standard
deviation of 0.81mm. Meanwhile, the S-shape had a mean
error of 3.84mm, with a remarkably low standard deviation
of 0.30mm. Lastly, the M-shape achieved an average 𝑒𝑚𝑒𝑎𝑛error of 3.26mm, with a standard deviation of 1.22mm. For
a comprehensive overview, Table 6 summarizes the 𝑒𝑚𝑒𝑎𝑛for each desired shape along with the corresponding initial
shapes.

These findings provide valuable insights into the robust-
ness and adaptability of our approach to diverse initial condi-
tions, ultimately yielding the desired shapes with remarkable
accuracy.
6.4. The impact of 𝜆

To determine the suitable step value 𝜆 for generating
local intermediary shapes, we conducted a study examining
the impact of 𝜆 on the performance, across eight different
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(a) U-shape (b) L-shape (c) S-shape (d) M-shape

Figure 14: Final shapes of 𝐷𝐿𝑂2 (𝐿 = 500𝑚𝑚, 𝑑 = 4𝑚𝑚,𝐸 = 100𝑀𝑃𝑎), for different number of feature points 𝑁 = 8, 10, 12, 14.

(a) U-shape (b) L-shape (c) S-shape (d) M-shape

Figure 15: The approach efficiency represented by mean error 𝑒𝑚𝑒𝑎𝑛 and standard deviation 𝑒𝑠𝑡𝑑 in simulation experiments of
𝐷𝐿𝑂1 (𝐿 = 700𝑚𝑚, 𝑑 = 7𝑚𝑚,𝐸 = 126𝑀𝑃𝑎).

Table 6
Mean DLO shape error 𝑒𝑚𝑒𝑎𝑛 [𝑚𝑚] in the simulation experi-
ments for different initial shapes.

Initial Shapes 1 2 3 4 5

U-shape 4.05 4.02 4.43 5.34 4.18

L-shape 6.55 6.64 6.78 8.07 8.20

S-shape 3.79 4.22 4.11 3.56 3.56

M-shape 2.75 4.59 4.08 3.46 1.45

scenarios: U1: Figure 18a, U2: Figure 18b, L1: Figure 19a,
L2: Figure 19b, S1: Figure 20a, S2: Figure 20b, M1: Fig-
ure 21a, and M2: Figure 21b. These scenarios encompass

various desired shapes and corresponding initial shapes,
drawing from the simulation study in Section 6.3.

We explored the variation of 𝜆 within the range of 1𝑚 to
100𝑚𝑚 for a step of 1𝑚𝑚. The results are depicted in Fig-
ures 22 and 23, showing the relationship between 𝜆 and the
final 𝑒𝑚𝑒𝑎𝑛 (mean error) as well as the number of iterations
required, respectively. It is notable that, as 𝜆 increases, the
number of iterations decreases. For 𝜆 < 10𝑚𝑚, the number
of iterations for trial 𝑀1 was exceptionally high, exceeding
1400. On the other hand, the final 𝑒𝑚𝑒𝑎𝑛 remained relatively
steady for all 𝜆 values below 50𝑚𝑚. However, beyond 𝜆 =
50𝑚𝑚, the system began to encounter challenges, and the
𝑒𝑚𝑒𝑎𝑛 increased, indicating unsuccessful trials.

Based on this intensive study, we conclude that the
system performs effectively for 𝜆 values between 10 and

(a) U-shape (b) L-shape (c) S-shape (d) M-shape

Figure 16: The approach efficiency represented by mean error 𝑒𝑚𝑒𝑎𝑛 and standard deviation 𝑒𝑠𝑡𝑑 in simulation experiments of
𝐷𝐿𝑂2 (𝐿 = 500𝑚𝑚, 𝑑 = 4𝑚𝑚,𝐸 = 100𝑀𝑃𝑎)
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(a) 𝐷𝐿𝑂1: iterations (b) 𝐷𝐿𝑂1: execution time (c) 𝐷𝐿𝑂2: iterations (d) 𝐷𝐿𝑂2: execution time

Figure 17: The relation between iterations and execution time and number of DLO points 𝑁 in experiments of 𝐷𝐿𝑂1 (𝐿 =
700𝑚𝑚, 𝑑 = 7𝑚𝑚,𝐸 = 126𝑀𝑃𝑎) and 𝐷𝐿𝑂2 (𝐿 = 500𝑚𝑚, 𝑑 = 4𝑚𝑚,𝐸 = 100𝑀𝑃𝑎).

(a) Initial shape 1 (b) Initial shape 2 (c) Initial shape 3

(d) Initial shape 4 (e) Initial shape 5 (f) Final shapes

Figure 18: The considered initial shapes (a) to (e) alongside the ISG algorithm output (intermediary shapes) and final shapes (f)
for U-shape scenario.

50𝑚𝑚. The aforementioned findings present crucial perspec-
tives, which guide us towards the selection of an optimal
step value, to attain precise shape manipulation through our
approach.

7. Experiments
7.1. Hardware Setup

Figure 24 shows the experimental setup used to validate
our theoretical findings. Two KUKA LBR iiwa manipulators
manipulate a DLO of length 𝐿 = 350𝑚𝑚, and diameter
𝑑 = 9𝑚𝑚. Each manipulator is equipped with a 3D printed
tool designed to rigidly hold the DLO’s end. We utilize
an Intel Realsense D435 camera for top-view vision. After
calibration, we use the VFPs algorithm proposed in our
previous work (Almaghout and Klimchik (2022b)) to detect
and track the DLO, by sampling it into 𝑁 feature points and
tracking their position. Having one of the tools marked, the
VFPs algorithm detects the marked tool as the starting point,
via color-based segmentation. Next, the DLO is detected and

segmented by a sequence of edge-detection methods and
morphological operations. Then, we obtain the center line
of the DLO, with a one-pixel width by applying a thinning
algorithm Guo and Hall (1992). The algorithm starts sam-
pling by sliding a circular mask, whose center is placed at
the starting point. We consider the intersection between the
DLO centerline and the mask as a VFP. The mask continues
sliding to the obtained VFP, the new intersection point is
assigned as the new VFP, and so forth until the other end of
the DLO. Finally, the algorithm returns the DLO sampled as
𝑁 virtual feature points. Figure 25 shows a diagram of the
VFPs algorithm, as well as its input and output frames.

We built the algorithm using the Robotic Operating Sys-
tem (ROS, Stanford Artificial Intelligence Laboratory et al.),
and wrote the optimization control problem with CasADi
(Andersson, Gillis, Horn, Rawlings and Diehl (2019)). The
robots linear and angular velocities are limited to 0.030𝑚∕𝑠
and 0.080𝑟𝑎𝑑∕𝑠, respectively. The convergence threshold is
𝑒𝑚𝑒𝑎𝑛 = 10𝑚𝑚; we set 𝜆 = 10𝑚𝑚 and the maximum number
of iterations to 20 ⋅𝐾 .
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(a) Initial shape 1 (b) Initial shape 2 (c) Initial shape 3

(d) Initial shape 4 (e) Initial shape 5 (f) Final shapes

Figure 19: The considered initial shapes (a) to (e) alongside the ISG algorithm output (intermediary shapes) and final shapes (f)
for L-shape scenario.

(a) Initial shape 1 (b) Initial shape 2 (c) Initial shape 3

(d) Initial shape 4 (e) Initial shape 5 (f) Final shapes

Figure 20: The considered initial shapes (a) to (e) alongside the ISG algorithm output (intermediary shapes) and final shapes (f)
for S-shape scenario.

We evaluate the approach through two sets of experi-
ments. In the first set, the robots manage to deform the DLO
to the U, L, S, M shapes, seen in the simulations. In the
second set, we address opposite concavity scenarios, where
the desired shapes are concave, while the initial shapes are
convex (or vice versa).
7.2. U-L-S-M Shapes

We first tested the approach on the same desired shapes
considered in the simulations shown in Fig. 12. Figure 26

shows the initial, intermediary, and final shapes U, L, S,
and M. The figure shows how the VFPs algorithm detects
and samples the DLO, the intermediary shapes generated by
the ISG algorithm, and the final results of the manipulation
for all shapes. It can be noticed that the system properly
deformed the DLO to the desired shape.

The mean error gradually decreased during the manip-
ulation process for all experiments, see Fig. 27. The robots
successfully accomplished all tasks, with a maximum 𝑒𝑚𝑒𝑎𝑛
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(a) Initial shape 1 (b) Initial shape 2 (c) Initial shape 3

(d) Initial shape 4 (e) Initial shape 5 (f) Final shapes

Figure 21: The considered initial shapes (a) to (e) alongside the ISG algorithm output (intermediary shapes) and final shapes (f)
for M-shape scenario.

Figure 22: The relation between the mean shape error 𝑒𝑚𝑒𝑎𝑛 and
the user-defined step value 𝜆 in the different considered case
studies: U1: Figure 18a, U2: Figure 18b, L1: Figure 19a, L2:
Figure 19b, S1: Figure 20a, S2: Figure 20b, M1: Figure 21a,
and M2: Figure 21b

of 11.7 mm in the most challenging case and a minimum of
𝑒𝑚𝑒𝑎𝑛 = 5.2 mm in the best-case scenario.

Table 7 provides a comparison of 𝑒𝑚𝑒𝑎𝑛 and 𝑒𝑠𝑡𝑑 (stan-
dard deviation) between real-life experiments and simula-
tions, for 𝑁 = 10. These results prove the effectiveness
and reliability of our approach in achieving accurate shape
manipulation, in both simulations and real-life experiments.
7.3. Opposite-concavity Shapes

We proceeded to explore more challenging scenarios,
where the initial shapes had opposite concavities compared
to the desired shapes. It is worth mentioning that, this
challenge has never been addressed in the previous works
on manipulation of a DLO grasped by its two ends. Previous
works investigated local deformations, when the desired

Figure 23: The relation between the number of iterations
executed and the user-defined step value 𝜆 in the different
considered case studies: U1: Figure 18a, U2: Figure 18b, L1:
Figure 19a, L2: Figure 19b, S1: Figure 20a, S2: Figure 20b,
M1: Figure 21a, and M2: Figure 21b

Figure 24: The hardware setup for the validation in real-life
experiments.

shape had no more than two inflectional points and when
the initial shape is locally close to the desired one (Zhu
et al. (2018), Yu et al. (2022), Huang et al. (2023)). Figure
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Table 7
Comparison between simulations and experiments based on mean shape error 𝑒𝑚𝑒𝑎𝑛 and on the error standard deviation 𝑒𝑠𝑡𝑑 .

U-shape L-shape S-shape M-shape
sim. exp. sim. exp. sim. exp. sim. exp.

𝑒𝑚𝑒𝑎𝑛 [𝑚𝑚] 4.0 11.7 6.9 10.9 5.2 10.6 4.9 5.2

𝑒𝑠𝑡𝑑 [𝑚𝑚] 2.0 5.7 4.2 5.0 2.4 6.4 3.0 3.0

Figure 25: The VFPs algorithm. The image of the DLO
centerline, starting point, and mask are in inverted color.

Table 8
The approach efficiency in the opposite-concavity experiments
represented by the mean shape error 𝑒𝑚𝑒𝑎𝑛 and the error
standard deviation 𝑒𝑠𝑡𝑑 .

Scenario 1 2 3 4

𝑒𝑚𝑒𝑎𝑛[𝑚𝑚] 12.4 9.0 8.1 4.5

𝑒𝑠𝑡𝑑[𝑚𝑚] 5.1 3.7 3.1 3.3

28 presents four of these scenarios, showing the shapes at
their initial and final shapes. Notably, the ISG algorithm
effectively generated intermediary shapes that facilitated
reversing the DLO concavity, preventing it from staying
trapped in its initial concavity. The final results show that
the robots successfully deformed the DLOs, to precisely fit
the desired shapes.

Figure 29 presents the reduction in error as the robots
guided the DLO towards its desired shapes. In all of these
scenarios, the system effectively managed to finish the task
with a maximum mean error below 12.5𝑚𝑚. Table 8 shows
the mean and standard deviation of the errors observed in
these scenarios.

These findings emphasize the effectiveness and adapt-
ability of our approach, in handling challenging situations
involving opposite concavities. The approach showcases
promising performance in achieving accurate shape manip-
ulation, even in complex scenarios with varying curvatures.

8. Conclusions
This article proposes a new methodology to achieve the

shape control of DLO in 2D workspace, by two manipulators
working collaboratively. The DLO is grasped at its ends
by two manipulators. We introduce the ISG algorithm to
generate a set of intermediary shapes. The control problem
is defined as an optimization problem. We carry out an
intensive evaluation, to test the approach performance in
simulation and real-life experiments, in a variety of sce-
narios at different levels of complexity. For the first time,
the challenge of opposite concavity scenarios, is addressed
successfully by our approach. The robots realize all desired
shapes with a high final accuracy. The experiments prove
the robustness and capability of our approach in effectively
performing complex deformation, which is the main contri-
bution of our work.
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