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Abstract

Mobile robots are undergoing tremendous development, which makes them employed in many
fields. In this area, global localization in symmetric indoor environments is a commonly encountered
problem. One of the commonly used algorithms to solve it, is the Adaptive Monte Carlo Localization
(AMCL), which is based on the particle filter algorithm. In this paper, we developed a new algorithm
for resampling used within the Adaptive Monte Carlo Localization (AMCL) framework that we called
Effective Samples Resampling (ESR). The proposed algorithm is based on a deterministic sample
selection and it is thoroughly tested in real time. Using a considerable amount of simulations,
the efficacy and robustness of the AMCL using this technique are validated and compared to
certain conventional approaches. They are also tested and validated in various real-time operating
conditions using the Robot Operating System (ROS). The obtained results are quite satisfying in
terms of resampling quality, implementation complexity, and convergence time when compared to
random resampling approaches where a sample-based probability density given by high quality
sensors might destabilize localization. The global localization is well handled when the proposed
algorithm is involved, compared to standard resampling algorithms that can often be overconfident
and fail in some scenarios when there is a lot of symmetry in the considered map of the environment.
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Introduction

Navigation is a difficult challenge for autonomous robotic systems. The robotic system must complete
four steps in order to properly navigate its environment: perception, localization, cognition, Julius Fusic
et al. (2022) and motion control Shen et al. (2023). Localization is one of the most essential challenges
among these four components; it is the phase in which the robot must be able to continuously estimate its
position in the environment under consideration. Forbes (2013); Yilmaz and Temeltas (2021). According
to the type of information initially available, three main sub-problems can be discerned in mobile robot
localization: Position Tracking, Global Localization and Kidnapped Robot Problem Zhang et al. (2012).
All of these sub-problems are different from each other in terms of computational requirements and
complexity, especially for large symmetric environments. In position tracking problem, the initial pose
of the robot is assumed to be known, so the localization algorithm tracks the robot using its control inputs
and measurements Naab and Zheng (2021). For the global localization problem, the robot attempts to
locate itself on a map without knowing its initial pose. Hence, more effective techniques are needed to
determine it Su et al. (2017); Se et al. (2001). Another difficult localization challenge is the kidnapped
robot problem. It is the hardest among the three Thrun et al. (2000a,b); Desrochers et al. (2015), and
could be seen as a variant of the global localization problem, where localization failures are defined as a
kidnapping problem Kuptametee and Aunsri (2022).

Furthermore, the global localization and the kidnapping problem are deeply connected to the
environment’s symmetric redundancy and the quality of the sensors Laaksonen and Kyrki (2008);
Thomas et al. (2021). To resolve mobile robot localization problems, different approaches have been
proposed in the literature Yu et al. (2020); Roy and Chowdhury (2021). Monte Carlo Localization (MCL)
algorithm is a probabilistic localization technique that has been shown to be a reliable approach to
mobile robot localization. It is a Particle Filter (PF) based algorithm, which uses sampling techniques
to represent the robot’s pose belief Dellaert et al. (1999); Rosas-Cervantes and Lee (2020). However,
this algorithm uses a fixed small sample set size when the position of the robot is approximately
known, and a larger size if not, which makes it computationally expensive. The Adaptive Monte Carlo
Localization (AMCL) algorithm, proposed in Fox (2001), uses adaptive sample set size to increase the
efficiency of MCL algorithm Fox et al. (2003); Thrun et al. (2005). It uses Kullback-Leibler divergence
to infer the difference between the sample-based and the target densities Guan et al. (2019). Zhang et
al. Zhang et al. (2012) proposed another adaptive type of MCL technique called Self Adaptive Monte
Carlo Localization (SAMCL). The authors used the concept of Similar Energy Region (SER). Instead
of randomly distributing particles in the map, the method consists of using a set of poses having similar
energy with the robot, to minimize the area of search for the robot and then spreading global samples in
SER. MCL, AMCL and SAMCL techniques are often used in cases where methods like Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and Multi-Hypothesis Localization (MHL) fail Ahmad
and Namerikawa (2013); Zhang et al. (2020); Huang and Dissanayake (2007); Jensfelt and Kristensen
(2001); Moreira et al. (2020); Panigrahi and Bisoy (2021). PF enables not only Gaussian distributions
to be handled without linearization but it can also evaluate the conditions when the dynamic system
has an arbitrary probability density, which is almost the case in all real-time applications Arulampalam
et al. (2002); Karppinen and Vihola (2021). Three steps are needed to form the whole PF algorithm:
prediction, measurement update and resampling the steps Roumeliotis and Bekey (2000); Doucet et al.
(2000); Zhang et al. (2019). In the prediction step, each particle is treated as a pseudo-robot. Once the
robot is controlled, this step will predict the new pose of each particle using a probabilistic motion
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model Aycard and Brouard (2020). In the measurement update step, each particle will have a weight
that indicates whether this particle fits or not. This weight is determined by the likelihood of the sensor
measurements at that particle’s location and orientation. The resampling step means redistributing the
particles according to the weight of each one. The large-weight particles are more likely to survive than
small-weight particles. This step is needed because, without resampling for a few iterations, very few
particles will have large weight Li et al. (2015). However, this step may cause the divergence and/or the
inaccuracy of the filter and even algorithm failure Meng et al. (2021). These issues are known as particle
degeneracy and particle impoverishment Nicely and Wells (2019).

Related works

Resampling is an important step in the PF algorithm. It must be optimized to avoid a high delay in
the localization process. For that, several resampling schemes have been proposed in the literature;
Systematic Resampling (SR) Carpenter et al. (1999), Deterministic Systematic Resampling (DSR)
Kozierski et al. (2013), Stratified Resampling (StR) Kitagawa (1996) with its variants, Low-variance
Resampling (LVR) Thrun et al. (2005), Metropolis Resampling (MR) Murray et al. (2016), Rejection
Resampling (RR) Murray et al. (2013), partial resampling, partial stratified resampling, partial
deterministic resampling Bolic et al. (2003) and Kullback-Liebler divergence resampling Alam and
Gustafsson (2020); Li et al. (2012); Doucet et al. (2009). After a large number of simulations, Kozierski
et al. (2013), Hol et al. (2006), and Li et al. (2015) concluded that resampling approaches such as RR,
MR, and partial resampling result in significantly poor resampling quality, unlike SR, StR, and DSR
algorithms.

Systematic resampling (SR) is computationally efficient but may lead to sample correlation. To
address this, deterministic systematic resampling (DSR) has been developed, which reduces sample
impoverishment and enhances predictability, albeit at the cost of increased implementation complexity
and potential bias. Stratified resampling (StR) aims to minimize variance and preserve a diverse set of
particles. However, its effectiveness is contingent upon precise stratification, which may not adequately
represent all areas of the state space. Furthermore, while the Low-variance resampling (LVR) algorithm
specifically targets the reduction of sample impoverishment by eliminating particles with low weights,
it risks introducing bias. In contrast, StR generally maintains better diversity among particles, but
its performance significantly depends on the accurate adjustment and proportion of strata to particle
weights, as indicated in prior studies Kozierski et al. (2013); Li et al. (2015).

To the best of our knowledge, no prior research has examined or explored the magnitude of the
resampling effect in mobile robotics localization. This paper proposes a novel resampling algorithm for
the AMCL algorithm and compares it extensively to four other algorithms, in global localization within
symmetric environments. It introduces a new concept of Effective Samples Resampling referred to as
ESR, which basically divides the particle set into two subsets using the number of effective particles
introduced in Kong et al. (1994); Martino et al. (2016) as a threshold. The effective subset will contain
the effective particles which will be sorted, and from that, the non-effective subset will contain all
the remaining particles. At the end, the non-effective particles will be replaced by the highly effective
particles held in the effective subset.
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The proposed approach is tested in simulation, compared to other resampling algorithms and then
tested using a real-time data collected by a real robotic system. The main contribution of this work can
be summarized in the following points:

e The ESR algorithm addresses the common failures of previous resampling methods related to
ambiguity and symmetry in the environment, thereby enhancing the robustness and reliability of
global localization tasks.

* It effectively prevents particle degeneracy, reducing the need for numerous particles and enhancing
global localization accuracy. The proposed algorithm is also able to prevent the AMCL algorithm
from converging to a local minima.

* The proposed algorithm is rigorously tested in simulations, compared with existing resampling
methods, and validated using real-time data from an operational robotic system, ensuring its
applicability and effectiveness in practical scenarios.

The remainder of the paper is structured as follows. In the second section, we discuss the fundamentals
of PF and resampling methods, as well as a brief discussion of the resampling algorithms employed in
this work. The proposed ESR algorithm is introduced in the third section. In addition, simulation and
experimental results are presented in the fourth section. Finally, we outline our key findings and future
studies.

Background on Particle Filter and Resampling Algorithms

Particle Filters were introduced in the early 1990s as a solution to the non-linear, non-Gaussian
state estimation problem Gordon et al. (1993). Their flexibility and effectiveness soon made them
popular across various fields, including robotics, computer vision, economics, meteorology, and signal
processing.

This category of filters are a non-parametric implementation of the Bayes filter, employing importance
sampling to model state estimates from a target distribution. This method assigns weights to samples
(particles) to quantify deviations from a proposed distribution, particularly useful in complex estimation
problems where analytical solutions are impractical Hsu et al. (2016); Doucet et al. (2000); Elvira et al.
(2021). PF approximates the system’s state belief as bel(xq.;) = p(xo.¢|21.¢, u1.¢), Where xq.; represents
the states from time zero to ¢, and u;.; and z7.; are the control inputs and measurements, respectively.

At first, let us recall the Bayes rule and the Markov assumption. For constant probabilities p(y)>0,
Bayes rule relates conditionals of type p(z|y) to their “inverse” p(y|z) as follows:

_plylz)p(z)  ply|x)p(z)
plely) = ply) [ ply|2)pa’)da’ W
|y, ) = PO L2 2P | 2) @

p(y | 2)

Markov assumption assumes that the next state depends only on the current state. By applying a series
of Bayes rule (1), (2) and Markov assumption to the pose belief formula (3) Thrun et al. (2005):
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bel(xo) = p(@o:t | 21:6, i) = MP(2¢ | Toits Z1:0—1, Ur:e)P(To:t | 2161, Ui:t) 3

with ) = p(2¢|21.4—1, u1.¢) Which serves as a normalization constant.
We derive the Bayes filter formula Ji et al. (2017):

bel(zo.t) = np(2: | th)p(l"t \ L1, Us)P(T0:t—1 \ 2115 Ulit—1)

4
= np(zt | SUt)p(xt ‘ mtflaut)bel(xO:tfl) @

The particle filter algorithm comprises three steps: prediction, measurement update, and resampling.

In the prediction step, a particle m at pose x;_; denoted by x}* ; is controlled the same way as the real
[m]

robot at time t—1. At time ¢ this particle will be denoted by x; . All particles should be sampled from
the so called probabilistic motion model, denoted by b/e\l(xo:t) = p(xs | Tr—1, uz)bel(zot—1).
In the measurement update step, the first term np(z; | ;) in Equation (4) is introduced, and used to
determine the fitness of each particle. Under normal conditions, one can show that the weight wgm] of
the m-th particle can be recursively computed according to the importance sampling technique given in
Equation (5):

w[m} _ target distribution

= 5
proposal distribution )
where the target distribution is bel(x¢.;) introduced in (4), and the proposal distribution is b/e\l(:rO;t):
[m] _opzizd)p(ze|ze—1,u)p(Toe—1]21e—1,U1:6—1)
Wy =n p(wt|1't—17“43])('730%—(1]‘lelt—iyul?t—i) : (6)
leading to:
wf™ o p(z | @) ™

The resampling step aims at preventing the degeneracy of the propagated particles and redistributing
them according to the target distribution bel(zo.;) Shah and Kroese (2018). This could be done by

modifying the particles’ set .S; distributed according to bel(z(.;) defined by Equation (8) to a new one S,

distributed according to bel(z.¢):
S, = {<x£m], wim] >} ®)
m=1,.....M

The robustness of the PF algorithm is significantly influenced by the chosen resampling method, which
can yield diverse outcomes across different algorithms Kang et al. (2018); Zhou et al. (2021). Since the
resampling step implies that the propagated particles with small weight should be removed Wang et al.
(2020), the state space exploration will be shifted to the parts of the state space with large probability
masses Li et al. (2015).
Let us consider 7(x;) the weighted approximate sample-based density at time ¢ before resampling:

M
wlw) = 3wy (00 — (1) ©
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After resampling, it will be replaced by the unweighted density 7 (z;) given by Equation (10):

Z—éwfm Z 0z —x;(t)) (10)

where ¢; is the number of copies of the original particle x;(¢) in Sy, and d is the Dirac delta function.

Although the resampling step mitigates the divergence issue in the particle filter, it introduces
several undesirable effects. A primary concern is particle impoverishment, where particles with higher
importance weights are selected multiple times, while those with lower weights are likely discarded. In
global localization within symmetric environments, the resampling method significantly impacts particle
filters, as particles tend to have similar weights. Additionally, resampling can lead to increased latency.

Among many resampling methods existing in litterature, we mention; Stratified, Systematic,
Deterministic Systematic and Low-variance resampling for their high resampling quality Kozierski et al.
(2013); Hol et al. (2006); Li et al. (2015):

1 Stratified Resampling (StR) partitions the interval (0, 1] into M equal segments, resampling
within each segment Kitagawa (1996).

2 Systematic Resampling (SR) uses a single random number to determine resampling intervals,
improving efficiency Carpenter et al. (1999).

3 Deterministic Systematic Resampling (DSR) eliminates randomness by using a fixed number for
interval determination Kozierski et al. (2013).

4 Low-variance Resampling (LVR) ensures particles are resampled with minimal variance,
reducing redundancy Thrun et al. (2005).

Particle Filters are commonly used in robotics for state estimation and localization Yilmaz and Bayram
(2023), often integrated with the Robot Operating System (ROS). ROS provides a flexible framework for
writing robot software, which includes tools and libraries for obtaining, building, writing, and running
code across multiple computers Legleiter and Dille (2024); Zhu et al. (2024).

In our validation, we will use ROS bagfiles, which are a format for recording and playing back ROS
message data. Bagfiles enable the capturing of sensor data and other messages, allowing for offline real-
time testing and analysis of algorithms with consistent and repeatable data inputs.

Proposed Effective Samples Resampling (ESR)

The ESR algorithm, proposed in this paper assumes a deterministic selection of the very high-weighted
at the cost of removing the extremely low-weighted samples. After sorting the weights, the number of

effective sample size E/ASTS' (also known as Ne,) is used as a threshold Kong et al. (1994):

M — Nefrs M
S opm@) = > pml(ay) (1)
m=1 m=Nefr+1

where me} () and p[sm] (z¢) denote the probability of removing and selecting xgm] respectively.

The ESR algorithm uses a weights’ indices manipulation technique to guarantee the completeness of
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Equation (11). It takes as inputs the particles set S; and their weights W; and from that a set {2; of
weights with their indices is then constructed as follows:

U= { (W} a2

Afterward, the set €2; is ascendingly sorted with respect to the weight value. Therefore, each weight
will retain its previous position within the unsorted weights set. It is worth noting that ESR algorithm is
dealing with two sets instead of just one. The first set is the particle set S, the second is the weights set
€); which provides a kind of memory to the PF.

This gives each particle the possibility to recall its position in .S;. According to the obtained position,
the corresponding particle is going to be replicated, deleted or just left to be propagated in the following
iterations.

The expected number of times Mt[m] that the particle xL’"] is often resampled proportionally to its weight

wﬁ’”] as defined by the Equation of unbiasedness (13) Liu and Chen (1998):
EM{™ | wi™) o Muw]™ (13)

It can be clearly seen that Equation (11) is directly related to Negy, where Neg,=aM with « € [0, 1].
Thus the ESR algorithm is classified as a compound sequential resampling technique Li et al. (2015) as
described in Equation (14):

1
M™ e {0, Oj (14)

Negry 1s often used for analyzing large datasets Acosta et al. (2021) or to reduce the frequency of
resampling Martino et al. (2016, 2017). Such that resampling takes place whenever N, is beyond a
certain threshold ~.

For example, if one chooses v = 0.5M, this means that resampling will occur only if the number of
ineffective particles exceeds half of the total number of particles:

{Neff’t <%, resample (15)

Negey > v, do not resample

However, the ESR algorithm will lean on this number, to split-up the set €2; into effective and ineffective
particles, in order to replace only the ineffective by the highly effective particles.

The algorithm starts the particles insertion in the unweighted set S;, from the last weight’s particle in €.
Then, the M — N highest weights’ particles in €2; will be replicated one more time to finally fill up S,
with there corresponding weights’ particles. Algorithm 1 summarizes the different steps of the proposed
ESR algorithm.

It is worth noting that steps 2-4 in Algorithm | could be implemented in the measurement update step of
the PF algorithm.

Analysis of the ESR Algorithm

Figure 1 effectively illustrates the challenges associated with the AMCL algorithm, which utilizes particle
filtering for robot global localization. In this representation, particles are depicted as small arrows, with
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Algorithm 1 ESR

Require: S;, Wi, Nefr,

1:

_ = =
bl

R A A T ol e

_.
- e

Sp=Q =10
for m = 1to M do
add <Wt(m)7 m> to {1
end for
sort (£2;) with respect to W}
it=1,77=0
while 77 < M do
[Q[Z\/f—jj] ’m] ~
add x; " to Sy
iw=1+1,55=37+1
if 77 > Neff,t then
Jj=0
end if
end while

7 N\
particle’ =

= . fhigher w n

lower w

Figure 1. Visualization of particle weights and their corresponding potential poses using the AMCL algorithm
for global localization.

their potential poses and weights indicated by varying shades of green (the darker the green, the higher
the weight). The true robot position is marked by a shaded red circle in the bottom right corner.

A key observation from Figure 1 is the potential vulnerability of probabilistic resampling to

erroneously remove significant particles, including those that accurately represent the robot’s true
position. Theoretically, all of the equally dark-green particles must be preserved. For instance, the
removal of the particle near the true position could hinder the algorithm’s ability to converge to the correct
location. This scenario underscores the inherent risk of sample impoverishment, where good particles
are randomly discarded, leading to possible localization failures. This vulnerability is particularly
pronounced in symmetric environments, where probabilistic resampling might exclude the essential
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particle that represents the true position of the robot, potentially compromising the entire particle set’s
accuracy.
To address this, the Effective Samples Resampling (ESR) algorithm 1 is designed to:

¢ deterministically eliminate only particles with very low weights, thereby preserving those with
higher probabilities and improving the robustness of the localization process.

* replicate the M — N, high-weighted particles after sorting the particles set 2; with respect to the
weights W;.

Therefore, by implementing this resampling algorithm, the likelihood of retaining significant particles
increases, which in turn enhances the accuracy and reliability of the AMCL algorithm.

Simulation and Experimental results

The algorithms described in section previously as well as the proposed ESR algorithm were simulated,
tested and compared to each other using ROS melodic installed on an 8GB of RAM and i5 CPU
PC running under Ubuntu 18.04 operational system. The mobile robot used for simulation is called
Turtlebot2 shown in Figure 2a. It is a low-cost differential-drive mobile robot, composed of a Yujin
Kobuki mobile platform, sensors and actuators, such as optical encoders and DC motors. Additionally, It
integrates a Microsoft XBOX 360 Kinect sensor. For real-time experiments, a ROS bag file of the PR2
(mobile manipulation platform represented in Figure 2¢) recorded by Willow Garage is employed. The
robot is equipped with various types of sensors such as a three-axis accelerometer, Microsoft Kinect and
Hokuyo UTM-30LX Lidar sensors. In addition, it incorporates 32 brushed DC motors for controlling
its different joints and wheels. The PR2 software system is fully developed in ROS. As a result, all
PR2 features are accessible through ROS interfaces Bohren et al. (2011). The robot’s ROS package
used for simulation combines the Kobuki platform with the Kinect ROS packages. This combination
allows simulation and implementation of different mobile robotics tasks such as perception, localization,
mapping, navigation and control using ROS navigation stack.

The simulation environment is called Turtlebot2 stage, it is a 2D maze like environment. It represents a
couple of symmetric rooms as illustrated in Figure 2b. Furthermore, simulation and real-time experiments
uses the AMCL ROS package for localization. All the AMCL parameters used for tracking and/or global
localization are summarized in Table 1.

Simulation results

In this section, Turtlebot2 mobile robot is controlled via a Lyapunov-based control scheme described by
Equation (16), in order to control both linear and angular velocities v and w to arrive at a desired polar
coordinates zp = [p, a, ﬂ]T Park and Kuipers (2011); Siegwart et al. (2011). This scheme is based on
the resulted pose estimate from the AMCL algorithm and z .

(16)

w=kysinacosa + kyo

{v = kypcosa

where k,, and k,, are positive constants.
The AMCL ROS package uses an adaptive number of particles varying from 5000 to 500 for position
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Stereo Cﬁi‘ ; \

Xbox 360 Kinect

Xbox 360 Kinect

Raspberry Pi 3B+

Lidar sensor

Kobuki platform

(a) Turtlebot2 mobile robot and its (b) View of the Turtlebot2 (c) PR2 mobile manipulator and its
basic components. environment with the black cube basic components.
representing the robot’s pose.

Figure 2. View of all basic components of Turtlebot2 and PR2 (Personal Robot 2).

Table 1. A list of all the parameters of the AMCL ROS node. This adjustment is done to assess the ESR
algorithm’s efficiency for global localization without modifying the number of filter updates before resampling
Fox (2001).

Parameter Value
Probabilistic Motion Model type Differential Motion Model
Probabilistic Sensor Model Likelihood Field Model
Motion Model Parameters a=1[0.2, 0.2, 0.3, 0.2, 0.1]T
MiNparticles (Minimum allowed number of particles) Depends on the scenario
MATparticles (Maximum allowed number of particles) Depends on the scenario
resample_interval (Number of filter updates required before resampling) 1
KLDerror (Max error between bel(zo) and m(z:)) 0.05

KLD, (Upper standard normal quantile for (1-—p) 0.99
MaTheams (How many beams will be used) 30

znit (Mixture weight for the zpy part of p(z:|x)) 0.5

Zshort (Mixture weight for the zZghort part of p(z | ) 0.05

Zmaz (Mixture weight for the 2zpmes part of p(z |zy)) 0.5

Zrand (Mixture weight for the zpng part of p(z:| ) 0.5

opit (Standard deviation for Gaussian model used in z; part of p(z | x¢)) 0.2

Ashort (Exponential decay parameter for zgrt part of p(z|xi)) 0.1

[@stows @fast] (Exponential decay rate for the slow and fast average weight) [0.0,0.0]
updategisiance (Translational movement required before performing a filter update) 0.2m
updateqngle (Rotational movement required before performing a filter update) 0.5 rad

tracking and from 50000 to 500 for global localization. In order to compare the performances of the above
described resampling algorithms with the ESR algorithm, the ground truth and the estimated trajectories
are plotted. As well as the Root Squared Error (RS FE) regarding their = and y locations.

Throughout this section, the terms GT, ET and RT will refer to the ground truth, estimated and reference
trajectories respectively.

RSE = \/(z — 2,)2 + (y — y,)? (17)

where x4 and y, are the robot’s ground truth positions. The Python ROS node that controls the robot via
Equation (16) is driving the robot along a pre-defined point-to-point trajectory Ty¢f.
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The reason behind choosing this trajectory is to augment the localization difficulty, considering its length
and symmetry redundancy.

Simulation Scenario 1: Pose Tracking In this first scenario, the initial pose of the robot is assumed
to be known. The AMCL algorithm tracks the robot along x,.y. The robot is initially located at
xo = [2.0, 2.0, O.O]T, and the number of particles is varying between 5000 and 500 particles. Figures 3
describe how the RSE and ET is evolving in simulation time for each of the resampling schemes. Figure
3a describes how the error is changing when using Stratified resampling, while Figure 3b illustrates the
same scenario using Systematic resampling. Deterministic Systematic resampling simulation’s results
are illustrated in Figure 3c. Figure 3d shows how the tracking process is handled using Low-variance
resampling. Figure 3e illustrates the evolution of the error between ET and GT when the Effective
Samples Resampling (ESR) algorithm is involved. It can be seen that there is no significant difference
between them while tracking the robot’s pose. Moreover, all of these algorithms monitor the robot with
a certain offset without faults.

Simulation Scenario 2: Global localization In this scenario, the robot’s initial pose is no longer
known. Therefore, global localization will be aimed while simulation results will be illustrated through
Figures 4. All of the resampling algorithms were used in the AMCL ROS node with a particles size
M e [500, 50000]. These figures describe how the RS F and the estimated trajectory are evolving versus
simulation time for each of the resampling schemes. Figure 4a describes how the error is varying when
the resampling is handled by Stratified resampling algorithm. Figure 4b illustrates the same scenario but
using Systematic resampling. Deterministic Systematic resampling simulation’s results are illustrated in
Fig4c. Figure 4d shows how the AMCL ROS node is trying to globally localize the robot using Low-
variance resampling, while Figure 4e illustrates the evolution of the error between the ground truth z,
and y, coordinates and the estimated one of the robot using the proposed Effective Samples Resampling
(ESR) algorithm. Furthermore, we can see how efficient the suggested approach is. It can also be observed
that, with the exception of the proposed ESR technique, none of the resampling algorithms were able
to estimate the pose of the robot. It not only guaranteed convergence, but it also converged in a short
period of time. AMCL algorithm is still one of the best probabilistic mobile robot global localization
algorithms. However, in an ideal map, such as the one shown in Figure 2b, with a lot of symmetry. The
existence of numerous particles with almost equal weights could be a problem. In most cases, all particles
with equal weights should be selected. When a random resampling algorithm attempts to resample well-
fitting particles from evenly weighted group of particles. It is possible that it will alleviate one or more
of these particles. One of the particles that was deleted, on the other hand, may represent the mobile
robot’s true state. Effective Samples Resampling (ESR) algorithm is able to split up the particles set S;
into effective and ineffective sets, before replacing the extremely ineffective with the extremely effective
particles. Consequently, all well-fitting particles are saved.

To further showcase the impact of the number of particles adaptation on the resampling quality and
convergence, we conduct two other global localization simulations in another symmetric environment.
Figure 5b illustrates the environment, while Figure 5a provides its corresponding 2D grid map along with
the reference trajectory depicted in an orange line.

In the first simulation case, the number of particles varies between a minimum of 500 and a maximum
of 70000. This test highlights the robustness of the Effective Samples Resampling (ESR) algorithm,
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Figure 3. lllustrating the tracking error evolution for all algorithms, plotting the ground truth and AMCL
estimated trajectories, and showcasing the error (red curve) between them.

where it not only converges faster but also achieves a lower Root Mean Squared Error (RMSE) compared
to other algorithms. Figure 6 illustrates the tracking errors and RMSE for each algorithm.

In the second simulation case, we fix the number of particles at 70000 for all algorithms to assess their
performance under the same conditions. All algorithms demonstrate convergence, yet the ESR algorithm
continues to exhibit superior performance in terms of convergence speed and RMSE. Figure 7 depicts
these results, emphasizing the comparative efficiency of our resampling algorithm.
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Figure 4. Error evolution of all algorithms aiming at global localization. The figure depicts ground truth and
AMCL estimated trajectories, as well as the error (red curve) between them.

Real-time experimental results

In this section, a 58.25 m x 47.25 m occupancy grid map of the Willow environment illustrated in Figure
8, and a ROS bag file collected by Willow PR2 looping inside the Willow environment were used, in
order to test the AMCL ROS package while implementing different resampling techniques.

The advantage of using this map and a bag file, lies in allowing the validation of different resampling
schemes under the same conditions and using the same real-time experimental data, which results in a fair
comparison. The process of localization is running on the same control PC described above using ROS.
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Figure 7. Tracking errors and RMSE with fixed particle size.
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Figure 8. An illustrative view of the Willow environment 58.25 m x 47.25 m occupancy grid map, with 0.05
m/pixzel resolution.

The reason behind choosing the Willow dataset to test the algorithm lies in the symmetry redundancy in
the map and the high quality of the Lidar sensor. Whereas the purpose of choosing a Lidar sensor with
high-quality measurements is to maximize the number of particles sensing almost the same thing when
seeing corners, walls, and other symmetric geometries Cappé et al. (2007); Gustafsson et al. (2002). As
a result, increasing the likelihood that a resampling strategy will delete an excellent particle. It can be
clearly seen from the numerical simulation results section that the global localization in a simulation
environment (characterized with a true symmetry compared to the real world) often fails. Accordingly,
to increase the challenge of global localization one may increase the number of particles leading to an
increase in the computational requirements as well as the chance of the global localization process to fail.
Several runs of the PR2 bag file were conducted for every resampling algorithm. By changing the number
of particles parameter of the AMCL ROS package, we can measure the impact of the resampling phase on
the global localization from one resampling technique to another. We propose to conduct two scenarios
for each resampling method, where both first and second scenarios run ten times, for each test.

The time needed by the AMCL ROS node to correctly converge to the robot’s location is saved for every
test, along with a Boolean value set to frue every time the AMCL algorithm converges to the correct pose
and to false if not.

To provide a clearer comparison of the tracking error performance of the algorithms, we have selected
the trials with the smallest Root Mean Square Error (RMSE) for each algorithm. This approach is
necessary because some algorithms may fail to converge in certain trials, complicating direct performance
comparisons across all trials. By focusing on the trials with the least RMSE, we ensure that the
comparison is based on the most successful execution of each algorithm, thereby providing a more
accurate representation of their tracking accuracy. This method highlights the potential of each algorithm
when it performs at its best, allowing for a fair and meaningful comparison.

Experimental Scenario 1 The mobile robot moves along a trajectory defined in the bag file, and the
AMCL package runs to globally localize it. The allowed maximum number of particles is set to 70000
and the minimum is to 500 particles.
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Table 2. Scenario 1: AMCL convergence time (in seconds) for global localization using all algorithms across
ten trials.

Method Convergence Convergence time (sec)
StR 1,0,1,1,1,1,1,1,1,1  27,-,22,25,17,19,18,21,20,19
SR 0,0,0,0,0,0,0,0,00 -

DSR 1,1,1,0,1,1,1,1,1,1  17,16,16,-,18,16,34,16,20,15
LVR 1,0,0,1,0,1,0,1,0,1 20,-,-,16,-,20,-,16,-,15
ESR 1,1,1,1,1,1,1,1,1,1 7,8,6,7,1,6,1,1,7,1
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Figure 9. Scenario 1: AMCL algorithm’s pose estimation time, using all algorithms. Bar height represents time
in seconds. Absence of the bar indicates localization failure.

The results of the first scenario are given in Table 2. In Figures 9 each bar is happened to be in a
specified time step and it is characterized by its height. The presence of the bar means that the localization
process succeed at that time step and its height is indicating the convergence time in seconds. It is clearly
remarkable that the SR algorithm was not able to guarantee the global localization as depicted in Figure
9d. The StR algorithm converges in almost 90% of the experiments with an average time about 20.8 sec
as shown in Figure 9c.

In Figure 9a, the DSR algorithm is involved. It converges pretty much like the StR algorithm but a little
bit quicker with an average time 18.6 sec. The LVR algorithm was able to converge in almost half of the
experiments as illustrated in Figure 9b.

The proposed ESR algorithm offers the best performances. Figure 9¢ shows how it guaranteed the
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convergence of the AMCL algorithm every time with the same setup. Furthermore, it is significantly
quicker and more stable than the other algorithms, with an average time of around 6.9 sec.

Figure 10 illustrates the Root Squared Error (RSE) of each algorithm. The figure provides a clear,
quantitative comparison of their performance in terms of accuracy and time convergence time. The plot
includes both instantaneous RSE values over time and the Root Mean Squared Error (RMSE) for each
method, encapsulating their overall error metrics throughout the first scenario.

== = DSR: RMSE=4.016
40 ESR: RMSE=1.187

== = LVR: RMSE=5.994
35 ' == = SR: RMSE=6.362
' == = StR: RMSE=5.253

RSE (meters)

30 40 50 60
Time (seconds)

Figure 10. Root Squared Error (RSE) and Root Mean Squared Error (RMSE) comparisons of DSR, SR, LVR,
StR, and the proposed ESR algorithm in the first experimental scenario.

The figure illustrates the RMSE values for each algorithm, measured in meters, which serve as
indicators of the effectiveness of each algorithm in minimizing global localization errors in the first
real-time scenario:

Algorithm RMSE (meters) | Convergence Time (secs)
DSR 4.016 43.78
LVR 5.994 20.11
SR 6.362 Did not converge
StR 5.253 15.76
Proposed ESR 1.187 7.88

Table 3. Performance comparison of different algorithms in real-time scenario 1

These findings demonstrate the superior performance of the ESR algorithm in reducing error
accumulation and efficiently converging compared to the existing resampling algorithms in global
localization. Table 3, describes the impact of the particles set size on the resampling algorithms’
convergence.

Experimental Scenario 2 Like in the previous scenario, the robot moves along the same trajectory and
the global localization is handled by the AMCL ROS package. However, this time the number of particles
is fixed to 70000, so it is no longer adapted. Additionally, illustrations of how resampling algorithms can
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be sensitive to the particles’ number and adaptation can be seen through Figures 11. Furthermore, the
obtained results for this scenario are presented in Table 4.

Table 4. Scenario 2: AMCL convergence time (in seconds) for global localization using all algorithms across
ten trials.

Method Convergence Convergence time (sec)
StR 1,1,1,1,1,1,1,1,1,1  26,28,18,15,16,19,20,19,19,19
SR 1,1,1,1,1,1,1,1,1,1 ~ 27,17,23,17,17,19,25,18,24,19

DSR LLLLLLLLIL,L  27,.22,20,27,59,20,23,21,19,25
LVR LLLLLLLLILL 20,26,23,22,22.22.20,47,27,19
ESR LLLLLLLLLL  9,10,10,10,9,11,10,10,9,10
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Figure 11. Scenario 1: AMCL algorithm’s pose estimation time, using all algorithms. Bar height represents
time in seconds. Absence of the bar indicates localization failure.

It can be noticed that all of the resampling algorithms have well handled the global localization.
However, the time taken by the AMCL algorithm to find where the robot is in the map sometimes is
too long. It is remarkable that unlike in the previous case where the number of particles is changing
within the interval [70000, 500], the SR algorithm now guarantees the global localization always with an
average time of 20.6 sec as it can be seen in Figure 11d. The StR algorithm converges every time as well,
with and average time about 19.9 sec as represented in Figure 11c. In the case of the DSR algorithm,
global localization is perfectly handled, taking 26.3 sec in average to converge as depicted in Figure
11a. The LVR algorithm converges in all of the experiments as illustrated in Figure 11b with an average
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time of 24.8 sec. The Effective Samples Resampling (ESR) algorithm provides the best performances in
terms of stability and computational time compared to the others as illustrated in Figure 11e. It is stable
and fast with an average convergence time of about 9.8 sec. In the case of StR algorithm there is a peak
that exhibiting the worst convergence time. This latter is due to the randomness present in the process of
resampling, as opposed to the proposed ESR algorithm.

Figure 12 illustrates the Root Squared Error (RSE) of each algorithm in the second scenario, where
each algorithm was tested with a fixed number of 70,000 particles. The figure provides a clear,
quantitative comparison of their performance in terms of accuracy and convergence time. The plot
includes both instantaneous RSE values over time and the Root Mean Squared Error (RMSE) for each
method, encapsulating their overall error metrics throughout the scenario.

== = DSR: RMSE=3.94

40 ESR: RMSE=3.255
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== = StR: RMSE=4.686

RSE (meters)

0 10 20 30 40 50 60
Time (seconds)

Figure 12. Root Squared Error (RSE) and Root Mean Squared Error (RMSE) comparisons of DSR, SR, LVR,
StR, and the proposed ESR algorithm in the second experimental scenario.

The figure depicts the RMSE values for each algorithm, measured in meters, which serve as indicators
of the effectiveness of each algorithm in minimizing global localization errors in the second real-time
scenario. As it can be observed from Table 5, fixing the number of particles affects the convergence of
the resampling algorithm.

Algorithm RMSE (meters) | Convergence Time (secs)
DSR 3.94 42.31
LVR 6.176 46.50
SR 5.906 44.20
StR 4.686 40.15
Proposed ESR 3.255 10.1

Table 5. Performance comparison of different algorithms in real-time scenario 2

Prepared using sagej.cls



20 Journal Title XX(X)

These findings demonstrate the superior performance of the ESR algorithm in terms of error reduction,
efficiency in convergence, and overall robustness compared to the other resampling algorithms in global
localization under fixed particle count conditions.

Overall, using existing resampling algorithms requires careful tuning of the number of particles.
The proposed ESR algorithm not only addresses this issue but also outperforms all other resampling
algorithms in terms of effective and robust global localization in symmetric environments.

Conclusion

Overconfident resampling comes from the existence of many particles weighted with almost the same
value. Ideally, all equally weighted particles should be selected. Whenever a random resampling
algorithm is attempting to resample good fit particles, from equally weighted ones. It actually might
remove one or more of these particles. Whereas, one of the removed particles could be the actual pose of
the mobile robot. In this paper we presented a non-theoretical comparison between a proposed resampling
algorithm namely Effective Samples Resampling (ESR) and some of the typical algorithms, for the
resampling phase of the Adaptive Monte Carlo Localization (AMCL) algorithm. Yet, it demonstrates
the effectiveness of the proposed algorithm. Both simulation and real-time implementations were
successfully conducted.

The resampling phase of the AMCL is critical, and it needs to be well implemented. Some resampling
methods frequently fail for global localization when the map of the environment has a lot of symmetry,
in contrast to the proposed ESR algorithm, which offers excellent performance and has the shortest
convergence time. The efficiency of this algorithm is attributed to the high probability of resampling the
very effective particles at the expense of the highly ineffective ones, due to its determinability.

The implementational overhead of our approach is very small. However, it includes a sorting procedure
that can be a little bit expensive. Typically, ESR algorithm’s computational complexity is highly
dependent on the involved sorting algorithm. The global localization in very large environments that
requires a substantial particle set size (e.g M >= 107), could cause a high delay. This can be resolved
by implementing a faster sorting algorithm or exploiting an FPGA (Field Programmable Gate Array) to
accelerate sorting or resampling.

Our approach has primarily been applied to mobile robot localization in symmetric environments,
demonstrating the effectiveness of our newly developed resampling algorithm for particle filters. Beyond
this, the versatility of the technique allows it to be beneficial in other areas as well. Notably, it
can significantly enhance Simultaneous Localization And Mapping (SLAM) and improve state-space
estimation across various control systems. This broad applicability highlights the potential of our
algorithm to contribute to advancements in diverse fields within robotics and control engineering.
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