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Abstract—This paper explores a low-cost solution for 

generating modulated test stimuli using a standard digital 

Automated Test Equipment (ATE). The technique relies on the 

generation of a modulated binary signal with appropriate 

encoding using a digital tester channel and the exploitation of one 

of its harmonic replicas. A theoretical analysis is presented in this 

paper, considering a simple modulation scheme, i.e. single-tone 

frequency or phase modulation. The relationship between the 

baseband spectrum and the harmonic replicas is established and 

an analytical expression of the modulated digital signal is derived, 

taking into account effects associated with discrete-time 

generation. A corruption estimator is then defined, enabling non-

destructive sampling conditions to be identified. Experimental 

results are provided demonstrating the ability of the proposed 

solution to generate a modulated signal with the desired 

characteristics at a frequency higher than that of the test 

equipment. 

 
Index Terms— Analog/RF test; test signal generation; digital 

ATE; sampling theory; frequency/phase modulation. 

 

I. INTRODUCTION 

ECAUSE of the intrinsic variability of the manufacturing 

processes, the quality and the performance of each 

individual microelectronic product must be thoroughly verified 

and characterized before selling. The test of silicon dies is done 

at several stages of the fabrication process to ensure that every 

chip meet its specifications, introducing costs that substantially 

contribute to the overall manufacturing expenses. For decades, 

research has been driven to lower these costs, early introducing 

the idea of structural testing. It eliminates the need for an 

exhaustive functional test that would be impossible to conduct 

anyway, considering the circuit complexity. While such 

approach is standard for digital circuits, analog and RF devices 

specifications are still verified by means of conventional 

performance measurements using a dedicated instrumentation. 

In particular, wireless communications have become 

ubiquitous in several applications that include personal 

computing, smartphones, home appliances, health monitoring 

devices, WSN (Wireless Sensor Network) and IoT (Internet of 

Things) to name a few. At the heart of these communicating 

devices, we usually find a System on Chip (SoC) that embeds 

 
 

Manuscript submitted 3 April 2024. 

 

computing resources together with an RF front-end and an 

associated standard protocol stack such as Wi-Fi, Bluetooth or 

Zigbee. It is a very competitive market where costs are 

squeezed at application level, urging silicon vendors to develop 

competitiveness by reducing their production expenses. 

The physical layer of these RF devices is mostly based on a 

narrow-band modulation scheme such as FSK (Frequency-Shift 

Keying), PSK (Phase-Shift Keying) or one of their improved 

variants. RF specifications differs for transmitters (TX) and 

receivers (RX) so that even transceivers doing both can still be 

seen as two separate transmission paths, each requiring a 

dedicated test approach. Testing the TX path is done by 

analyzing the spectral content of the sourced RF signal and 

measuring its EVM (Error Vector Magnitude). Testing the RX 

path is mostly a functional test that verifies the correct reception 

of test data, in particular using a test signal with power level 

close to the receiver's minimum receivable power (typically -

95dBm). In both cases, a dedicated RF instrumentation is 

required to generate or analyze high frequency modulated 

signals. Such instrumentation is expensive and represents a 

bottleneck in the batch production chain. 

To reduce the testing costs, one approach is to develop 

solutions that relax constraints on the required instrumentation, 

so that a low-cost tester can be used. The ultimate aim is for this 

low-cost tester to be a digital tester, as this enables the digital 

part of an SoC to be tested using the same test infrastructure as 

the RF part. A number of research works can be found in the 

literature targeting the development of digital solutions, 

including the use of a reference transceiver accompanied by a 

FPGA to handle the interface between the transceiver and a 

digital ATE [1], the use of a processor embedded in a radio SoC 

to implement self-test and provide low-frequency digital output 

[2], or the proposal of an ATE architecture with multi-level 

drivers and comparators for direct modulation/demodulation of 

QAM signals [3]. Other works specifically target test response 

analysis using digital ATE channels, including analysis of 

modulated signals [4], phase noise testing [5], or EVM 

measurements [6]. Regarding test stimulus generation, many 

studies deal with the generation of pure sine-wave signals using 

digital resources [7-8]. Other works have explored the test of 

RF receivers based on excitation with pulse sequences [9] or 
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digitally-generated multi-tone signals [10] instead of the 

modulated signals used in the conventional test approach. Only 

a limited number of approaches target the generation of 

modulated signals using digital resources. An exploratory study 

has been carried out in simulation for the generation of OQPSK 

test stimuli, based on the exploitation of a harmonic replica of 

a modulated digital signal [11]. Using the same approach, the 

basis for a theoretical understanding has been established in 

[12] considering a simple modulation scheme, i.e. single-tone 

FM/PM. In the present paper, we extend this previous work by 

(i) developing an analytical expression of the modulated digital 

signal and defining an accurate corruption estimator that allows 

to identify favorable sampling conditions, (ii) providing 

experimental validation of the theoretical developments and 

(iii) demonstrating the implementation of the proposed strategy 

on a practical case study.  

The paper is organized as follows. The principle of the 

digital-based strategy for the generation of modulated test 

stimuli is introduced in Section II. Theoretical developments 

are detailed in Section III and validated in Section IV. 

Implementation on a practical case study is discussed and 

demonstrated through hardware measurements in Section V. 

Finally, Section VI concludes the paper and presents directions 

for future work.  

II. DIGITAL-BASED STRATEGY FOR TEST SIGNAL GENERATION 

The proposed strategy for reducing the cost of analog/RF 

testing is to develop new solutions that can be applied with 

digital test resources instead of analog/RF instruments. In 

particular, the objective is to enable low-cost sensitivity test of 

receivers, which is the classical performance measured during 

production test. The targeted solution is illustrated in Figure 1. 

It relies on the generation of a single-tone modulated test 

stimulus using the standard resources of a digital ATE channel.  

Basically, these resources involve a memory, a test processor 

(sequencer), a waveform composer associated with timing and 

level formatters and a driver. The electrical signal delivered by 

the driver depends on both the digital data stored in the vector 

memory and the programmed timing and level information. 

More precisely, timing information includes the definition of 

the tester period (𝑇𝑐𝑦𝑐𝑙𝑒), which gives the duration of one bit 

contained in the vector memory, as well as the specific edge 

locations for driving data within the tester period. The level 

information includes the definition of the voltage values used 

to drive a high level (𝑉𝐼𝐻) and a low level (𝑉𝐼𝐿). The test 

processor reads the content of the vector memory and formats 

it according to the programmed timing and level information. 

The resulting signal is then a binary signal with an amplitude 

𝐴 = (𝑉𝐼𝐻 − 𝑉𝐼𝐿)/2, whose transitions occur on a sampled-time 

grid determined by the ATE operating frequency 𝑓𝐴𝑇𝐸 =
1/𝑇𝑐𝑦𝑐𝑙𝑒 .  

The binary signal generated by a standard digital tester 

channel (hereinafter referred to as the baseband digital signal) 

differs from the analog modulated test stimulus classically used 

for the test of RF receivers. Yet, such a digital signal can be 

viewed as an infinite sum of sinusoidal signals of different 

frequencies, amplitudes and phases. In the frequency domain, a 

modulated digital signal therefore exhibits a baseband spectrum 

located around the signal frequency, together with harmonic 

replicas located around multiples of the signal frequency (odd 

multiples only if the digital signal has a 50% duty cycle), as 

illustrated in Figure 1.b. The idea is to exploit either the 

baseband spectrum or one of the harmonic replicas as test 

stimulus for the Device Under Test (DUT). In order to keep 

only the targeted replica, a filter can be placed on the load board 

that provides the interface between the ATE and the DUT, with 

a center frequency and bandwidth matched to the carrier 

frequency and bandwidth of the targeted modulated signal. 

Note that in many RF receivers, such a filter is already present 

within the DUT itself; the presence of the filter on the load 

board is not necessary in this case. 

 
(a) Hardware resources 

 
(b) Harmonic filtering of the digital signal 

Fig.1.  Targeted solution for digital generation of the test stimulus. 

Note that standard digital ATEs have a maximum sampling 

rate of 1.6GS/s. Filtering the baseband spectrum therefore 

restricts the solution to the generation of signals below 

800MHz. This is a strong limitation, as it does not permit to 

address the ISM 868MHz, 915MHz, and 2.4GHz frequency 

bands, which are used by most RF communication devices. By 

exploiting harmonic replicas instead of baseband spectrum as 

suggested in [13], we can bypass this limitation and generate 

test stimuli with a frequency higher than the ATE maximum 

operating frequency. However; it is necessary to understand 

how the amplitude and the spectral content of the harmonic 

replicas relate to the baseband spectrum in order to encode the 

appropriate information in the modulated digital signal. The 

fact that an ATE is a sampled-time system has also to be taken 

into account.  Both aspects are addressed in this paper, with the 

derivation of an analytical expression for the modulated digital 

signal and the definition of a corruption estimator (𝐻𝑅𝐶𝐸 for 

Harmonic Replica Corruption Estimator) that allows the 

identification of non-destructive sampling conditions. 

III. THEORETICAL DEVELOPMENTS 

In this section, we conduct a theoretical analysis in order to 

understand the properties of a modulated digital signal 

generated by means of a digital ATE channel, using a simple 

modulation scheme, i.e. single-tone FM/PM modulation. 
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A mathematical model which represents how the signal 

generated by a digital ATE channel can be derived from a 

conventional analog signal has been defined. As depicted in 

Figure 2, it involves three successive operations:  

− A level discretization: Zero-Crossing (ZC), 

− A time discretization: Sampling (S), 

− Zero-Order Hold (ZOH). 

The zero-crossing operation transforms the continuous-time 

analog signal into a continuous-time digital signal. The 

sampling process converts the continuous-time digital signal 

into a discrete sequence of samples; each sample directly 

corresponds to the binary value that will be stored in the ATE 

vector memory. Finally, the zero-order hold operation restores 

a continuous-time digital signal, but whose transitions are 

synchronous with the sampling clock.  

 
Fig.2.  Mathematical model for signal generation using an ATE digital channel. 

The effect of the zero-crossing operation applied on a 

modulated analog signal is first analyzed and an analytical 

expression of the continuous-time modulated digital signal is 

established. The effect of the sampling and zero-order hold 

operations is then analyzed in order to define the analytical 

expression of a modulated signal generated by a digital ATE 

channel. Finally, based on this expression, a corruption 

estimator is proposed which permits to identify favorable 

conditions for non-destructive sampling. 

A. Effect of zero-crossing on an analog signal  

Let us consider the general form of a single-tone frequency-

modulated (FM) or phase-modulated (PM) signal [14]:  

        𝑦(𝑡) = 𝐴 𝑐𝑜𝑠(𝛷(𝑡)) = 𝐴 𝑐𝑜𝑠(𝜔𝑐𝑡 + 𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡))                 (1) 

where Φ(𝑡) is the instantaneous phase of the modulated signal, 

𝐴 is the amplitude of the carrier signal, 𝜔𝑐 and 𝜔𝑚 are the 

angular frequency of the carrier and message signals, and 𝛽 is 

the modulation index. This expression is valid for both FM and 

PM signals, only the definition of the modulation index 

differs: 𝛽𝐹𝑀 = 𝑘𝑓𝐴𝑚/ωm and 𝛽𝑃𝑀 = 𝑘𝑝𝐴𝑚, where 𝐴𝑚 is the 

message amplitude, 𝑘𝑓 (in radians/volt-sec) and 𝑘𝑝 (in 

radians/volt) being the deviation sensitivity.  

By developing the cosine term of Eq.1 and using the Jacobi 

expansion, another expression can be obtained, involving 

Bessel coefficients: 

        𝑦(𝑡) = 𝐴 ∑ 𝐽𝑛(𝛽)

∞

𝑛=−∞

𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)                                  (2) 

This expression establishes that the spectrum of a frequency 

or phase-modulated signal comprises a central component at the 

carrier frequency 𝑓𝑐 and a series of sidebands located on both 

sides of the carrier frequency at 𝑓𝑐 ± 𝑛𝑓𝑚, whose magnitudes 

are determined by the Bessel coefficients 𝐽𝑛(𝛽).  

The spectrum can significantly differ depending on the 

modulation index, but globally the number of sidebands that 

hold significant power increases (i.e. the required bandwidth to 

transmit the signal) as the modulation index increases. The 

empirical Carson’s rule defines the effective transmission band 

𝐵𝑇  (≈98% or more of transmitted power) with: 
                 𝐵𝑇 = 2(𝛽 + 1)𝑓𝑚                                                                      (3) 

Let us now analyze the effect of a zero-crossing operation 

applied on an analog signal. First, we consider an ideal non-

modulated sine-wave carrier of amplitude 𝐴𝑐 and frequency 𝑓𝑐. 

The resulting signal is an ideal square-wave signal at the same 

frequency 𝑓𝑐. Using Fourier series expansion, this signal can be 

expressed as an infinite sum of sinusoids: 

     𝑥𝑐(𝑡) =
4

𝜋
(𝐴 𝑐𝑜𝑠(𝜔𝑐𝑡) +

𝐴

3
𝑐𝑜𝑠(3𝜔𝑐𝑡) +

𝐴

5
𝑐𝑜𝑠 (5𝜔𝑐𝑡) + ⋯ )        (4) 

where 𝐴 is the square-wave amplitude and 𝜔𝑐 = 2𝜋𝑓𝑐.  

From this well-known expression, it can be seen that the 

zero-crossing operation creates harmonic tones located at odd 

multiples of the baseband carrier frequency, whose amplitude 

is reduced by the harmonic order. 

In the same way, we can express a modulated digital signal 

as an infinite sum of modulated analog signals: 

  𝑦(𝑡) =
4

𝜋
 (𝐴 𝑐𝑜𝑠(𝛷(𝑡)) +

𝐴

3
𝑐𝑜𝑠(3𝛷(𝑡)) +

𝐴

5
𝑐𝑜𝑠(5𝛷(𝑡)) + ⋯ )     (5) 

Referring to Eq.1, in case of FM/PM modulation, the 

instantaneous phase Φ(𝑡) is given by: 
        𝛷(𝑡) = 𝜔𝑐𝑡 + 𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)                                                             (6) 

Inserting this expression in Eq.5, the modulated digital signal 

is given by:  

 𝑦(𝑡) =
4

𝜋
 (𝐴 𝑐𝑜𝑠(𝜔𝑐𝑡 + 𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)) +

𝐴

3
𝑐𝑜𝑠(3𝜔𝑐𝑡 + 3𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡))

+
𝐴𝑐

5
𝑐𝑜𝑠(5𝜔𝑐𝑡 + 5𝛽 𝑠𝑖𝑛(𝜔𝑚𝑡)) + ⋯ )                (7) 

which can be re-expressed as:  

  𝑦(𝑡) =
4

𝜋
 ∑

𝐴

𝑖
𝑖

𝑐𝑜𝑠(2𝜋𝑖𝑓𝑐𝑡 + 𝑖𝛽 𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡))   𝑓𝑜𝑟 𝑖 = 1, 3, 5, …      (8) 

This expression clearly reveals that a modulated digital 

signal is a sum of modulated analog signals located at odd 

multiples of the baseband signal, with a modification of both 

the amplitude and the modulation index for each individual 

modulated analog signal.  

 
Fig.3.  Spectrum of the modulated digital signal obtained from zero-crossing of 

a modulated analog signal. 

As an illustration, Figure 3 shows the spectrum obtained 

from an FFT applied on a zero-crossed FM analog signal with 

𝑓𝑐 = 1𝑀𝐻𝑧, 𝑓𝑚 = 30𝑘𝐻𝑧 and 𝛽 = 0.1, the amplitude of the 

digital signal being set to 𝐴𝑐 = 𝜋/4. As expected, the spectrum 
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exhibits several replicas centered on odd multiples of the carrier 

frequency, each replica presenting sidebands located at 

𝑖𝑓𝑐  ±  𝑛𝑓𝑚. The baseband spectrum has exactly the same 

characteristics than the spectrum of the original modulated 

analog signal, while the replicas are a transformed version of 

the baseband spectrum, with modification both in terms of 

spectral content and amplitude. For each replica, the harmonic 

order comes as multiplier for the modulation index and as a 

divider for the amplitude of the spectral components. 

Going back to Eq.8 and introducing the Jacobi expansion, 

another expression of the modulated digital signal can be 

determined: 

   𝑦(𝑡) =
4

𝜋
 ∑

𝐴𝑐

𝑖
𝑖

 [ ∑ 𝐽𝑛(𝑖𝛽) 𝑐𝑜𝑠(2𝜋(𝑖𝑓𝑐 + 𝑛 𝑓𝑚)

∞

𝑛=−∞

𝑡)]   

                                                                   𝑓𝑜𝑟 𝑖 = 1, 3, 5, …                     (9) 

Figure 4 shows the comparison between the spectrum 

obtained from an FFT applied on the modulated digital signal 

and the one derived from the values of the Bessel coefficients 

involved in Eq.9, with a zoom around the carrier frequency and 

the first two replicas. A perfect match can be observed for both 

the central frequency and the sidebands amplitude. 

 
Fig.4.  Zoom around the carrier frequency and the first two odd replicas. 

Eq.9 is a key element of the proposed strategy because it 

establishes the link between the spectral content and the 

amplitude of a given replica and the parameters used for the 

modulation of the baseband digital signal. It therefore permits 

to choose appropriate settings of the baseband signal to reach 

desired characteristics around a given replica. Practically, to 

obtain a modulated signal with carrier frequency 𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡
, carrier 

amplitude 𝐴𝑐𝑡𝑎𝑟𝑔𝑒𝑡
 and modulation index 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 , the baseband 

digital signal should be generated with 𝑓𝑐 = 𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡
/𝑖, 𝐴𝑐 =

𝜋𝑖𝐴𝑐𝑡𝑎𝑟𝑔𝑒𝑡
/4 and 𝛽 = 𝛽𝑡𝑎𝑟𝑔𝑒𝑡/𝑖, where 𝑖 is the order of the 

selected harmonic replica. 

B. Effect of sample-and-hold on a digital signal 

Sampling is the process of converting a continuous-time 

signal into a discrete sequence of samples. Mathematically, the 

sampled signal can be expressed as the multiplication of the 

analog signal 𝑥(𝑡) by a Dirac comb Ш𝑇𝑠
(𝑡): 

        𝑥𝑆(𝑡) = 𝑥(𝑡) ∗ Ш𝑇𝑠
(𝑡) = 𝑥(𝑡) ∗ ∑ 𝛿(𝑡 − 𝑘𝑇𝑠)

+∞

𝑘=−∞

                  (10) 

Taking the Fourier transform, the expression in the frequency 

domain is given by: 

        𝑋𝑆(𝑓) = 𝑋(𝑓) ⨂ 
1

𝑇𝑠
  Ш𝑓𝑠

(𝑓) =
1

𝑇𝑠
∑ 𝑋(𝑓 − 𝑘𝑓𝑠)

+∞

𝑘=−∞

              (11) 

As indicated by Eq.11, sampling induces a periodization of 

the spectrum, with copies of the original spectrum (called 

images) shifted by multiples of the sampling frequency and 

summed. This expression is the basis of the Nyquist theorem 

that states that a band-limited signal can be fully represented if 

sampled at a frequency 𝑓𝑠 which is greater than twice the 

maximum frequency component 𝑓𝑀 in the signal: 𝑓𝑠 > 2 ∗ 𝑓𝑀. 

Indeed, when this criterion is satisfied, there is no overlap 

between the baseband spectrum and the images created by the 

sampling process. An extension of the Nyquist theorem 

concerns narrowband signals, i.e. signals that have a limited 

bandwidth around a given frequency and that do not extent to 

DC. In this case, it is possible to sample the signal below the 

Nyquist rate while still obtaining a perfect signal representation 

in the Nyquist band, upon specific conditions on the sampling 

frequency. Such process is called undersampling, harmonic 

sampling or bandpass sampling. 

In our context, the modulated digital signal obtained from 

zero-crossing has theoretically an infinite number of replicas, 

so an infinite bandwidth. However, each replica is a narrow-

band signal. So, depending on the value of the sampling 

frequency, some replicas will satisfy the Nyquist criterion while 

others will be undersampled. 

Moreover, the signal generated by the digital ATE channel 

corresponds to a zero-order held version of the sampled signal. 

Mathematically, this is expressed by a convolution between the 

sampled signal 𝑥𝑆(𝑡) and a rectangular function Π𝑇𝑠 (𝑡 −
𝑇𝑠

2
), 

where 𝑇𝑠 is the sampling period: 

𝑥𝑆−𝑍𝑂𝐻(𝑡) = 𝑥𝑆(𝑡)  ⊗ 𝛱𝑇𝑠 (𝑡 −
𝑇𝑠

2
) 

                     = [𝑥(𝑡)  ∗  Ш𝑇𝑠
(𝑡)] ⊗ 𝛱𝑇𝑠 (𝑡 −

𝑇𝑠

2
)                               (12) 

Taking the Fourier transform, the expression in the frequency 

domain is given by: 

𝑋𝑆−𝑍𝑂𝐻(𝑓) = [
1

𝑇𝑠
∑ 𝑋(𝑓 − 𝑘𝑓𝑠)

+∞

𝑘=−∞

] ∗ 𝑇𝑠 ∗ 𝑠𝑖𝑛𝑐(𝜋𝑇𝑠𝑓) ∗ 𝑒−𝑖𝜋𝑇𝑠𝑓 

                     = 𝑠𝑖𝑛𝑐(𝜋𝑇𝑠𝑓) ∗ 𝑒−𝑖𝜋𝑇𝑠𝑓 ∑ 𝑋(𝑓 − 𝑘𝑓𝑠)

+∞

𝑘=−∞

                    (13) 

The zero-order hold process therefore introduces a global 

shaping of the periodized spectrum by the sinc function. 

1) Non-modulated signal 

Let us first investigate the effects of the sample-and-hold 

operations on a non-modulated digital signal, i.e. a simple 

square-wave signal. For the following analysis, the ratio 

between the sampling frequency and the signal one is defined 

as the Number of Samples Per Period 𝑁𝑆𝑃𝑃 = 𝑓𝑠/𝑓𝑐. Figure 5 

shows the spectrum of the sampled-and-held signal for an 

arbitrary value of 𝑁𝑆𝑃𝑃 = 6.3. The expected harmonic tones at 

odd multiples of the signal frequency are present but they are 

mixed with other components of similar or even higher 

amplitude. The components of high amplitude actually 

correspond to high-frequency images of the harmonic tones 

located below the Nyquist frequency, while the other additional 

components correspond to low-frequency images of the 

harmonic tones located above the Nyquist frequency (harmonic 
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tones of order superior or equal to 5 for this example). Because 

on this example the 𝑁𝑆𝑃𝑃 is a non-integer value, these images 

do not necessarily fall at odd multiples of the signal frequency; 

they are actually located at multiples of 0.1 ∗ 𝑓𝑐. The global 

shaping of the spectrum by the sinc function which has local 

zeros at every multiple of the sampling frequency is also clearly 

observed; all components close to these local zeros are 

cancelled. In the context of the proposed strategy, care must be 

taken to ensure that useful information does not fall close to 

these local zeros. In particular, the sampling frequency must not 

be (and preferably not close to) a sub-multiple or multiple of 

the targeted replica frequency. 

 
Fig.5.  Spectrum comparison between original square-wave signal and 

sampled-and-held signal with 𝑁𝑆𝑃𝑃 = 6.3. 

Our objective is to establish an analytical expression of the 

sampled-and-held signal spectrum so that we can easily 

investigate the transformations brought on the original 

spectrum depending on the 𝑁𝑆𝑃𝑃 value. Referring to the 

general theory, we can express the sampled-and-held signal as 

a square-wave signal multiplied by a Dirac comb Ш𝑇𝑠
(𝑡) 

(sampling operation), which is convoluted with a rectangular 

function Π𝑇𝑠 (𝑡 −
𝑇𝑠

2
) (hold operation).  

For the sake of simplicity, we consider a shifted and scaled 

version of the square-wave signal whose amplitude varies 

between 0 and 1 (the actual square-wave signal has an 

amplitude that varies between +𝐴 and −𝐴), which can be 

modeled by a convolution product between a rectangular 

function Π𝑇/2(𝑡) and a Dirac comb Ш𝑇(𝑡): 

      𝑥𝑐(𝑡) = 𝛱𝑇/2(𝑡) ⊗ Ш𝑇(𝑡)                                                              (14) 

where 𝑇 = 1/𝑓𝑐 is the period of the square-wave signal. 

The sampled-and-held signal can therefore be expressed by: 

      𝑥̃𝑐(𝑡) = [(𝛱𝑇/2(𝑡)  ⊗ Ш𝑇(𝑡)) ∗  Ш𝑇𝑠
(𝑡)] ⊗ 𝛱𝑇𝑠 (𝑡 −

𝑇𝑠

2
)     (15) 

Using the Fourier transform, the signal in the frequency domain 

is: 

      𝑋̃𝑐(𝑓) = [(
𝑇

2
∗ 𝑠𝑖𝑛𝑐 (

𝜋𝑇𝑓

2
) ∗

1

𝑇
 Ш𝑓𝑐

(𝑓)) ⊗
1

𝑇𝑠
 Ш𝑓𝑠

(𝑓)] 

                       ∗ 𝑇𝑠 ∗ 𝑠𝑖𝑛𝑐(𝜋𝑇𝑠𝑓) ∗ 𝑒−𝑖𝜋𝑇𝑠𝑓                                             (16) 

Then: 

      𝑋̃𝑐(𝑓) = [(
1

2
 𝑠𝑖𝑛𝑐 (

𝜋𝑇𝑓

2
) ∑ 𝛿(𝑓 − 𝑘𝑓𝑐)

+∞

𝑘=−∞

) ⊗ ∑ 𝛿(𝑓 − 𝑙𝑓𝑠)

+∞

𝑙=−∞

] 

                       ∗ 𝑠𝑖𝑛𝑐(𝜋𝑇𝑠𝑓) ∗ 𝑒−𝑖𝜋𝑇𝑠𝑓                                                     (17) 

After manipulation and simplification, it comes: 

      𝑋̃𝑐(𝑓) =
1

2
𝑒−𝑖𝜋𝑇𝑠𝑓 ∑ ∑ 𝑠𝑖𝑛𝑐 (𝜋

𝑘

2
) ∗

+∞

𝑙=−∞

+∞

𝑘=−∞

𝑠𝑖𝑛𝑐 (𝜋 (𝑘
𝑇𝑠

𝑇
+ 𝑙)) 

                                                             ∗ 𝛿(𝑓 − (𝑘𝑓𝑐 + 𝑙𝑓𝑠))                   (18) 

By using the greatest common divisor between the signal 

frequency and the sampling frequency ∆𝑓 = 𝑔𝑐𝑑(𝑓𝑐 , 𝑓𝑠), we 

can re-express the term in the Dirac function:  
    𝑘𝑓𝑐 + 𝑙𝑓𝑠 = (𝑘𝑥 + 𝑙𝑦)∆𝑓   𝑤𝑖𝑡ℎ 𝑥 = 𝑓𝑐/∆𝑓 𝑎𝑛𝑑 𝑦 = 𝑓𝑠/∆𝑓     (19) 

Introducing this form in Eq.18, the final expression of the 

sampled-and-held signal is:  

      𝑋̃𝑐(𝑓) =
1

2
𝑒−𝑖𝜋𝑇𝑠𝑓 ∑ ∑ 𝐴𝑘,𝑙

+∞

𝑙=−∞

+∞

𝑘=−∞

 𝛿(𝑓 − (𝑘𝑥 + 𝑙𝑦)∆𝑓)          (20) 

 𝑤𝑖𝑡ℎ 𝐴𝑘,𝑙 = 𝑠𝑖𝑛𝑐 (𝜋
𝑘

2
) ∗ 𝑠𝑖𝑛𝑐 (𝜋 (

𝑘

𝑁𝑆𝑃𝑃
+ 𝑙))               

This expression clearly establishes that the spectrum of the 

sampled-and-held square-wave signal exhibits frequency 

components located at multiples of ∆𝑓, whose amplitude 

depends on the NSPP value.  

 
Fig.6.  Comparison between the spectrum obtained from an FFT on the 

sampled-and-held square-wave signal and the one derived from the 

analytical expression. 

Figure 6 shows the comparison between the spectrum 

computed with an FFT applied on the continuous-time digital 

signal obtained after sample and hold operations and the one 

computed with Eq.20 (a factor 2𝐴 has been applied on the 

amplitude to take into account a symmetrical square-wave 

signal with an amplitude that varies between +𝐴 and −𝐴), for 

an integer and a non-integer value of 𝑁𝑆𝑃𝑃. In both cases, a 

perfect match can be observed both on the amplitude and the 

location of the spectral components. Note that in case of an 

integer 𝑁𝑆𝑃𝑃 value, ∆𝑓 = gcd(𝑓𝑐, 𝑓𝑠) = 𝑓𝑐, which means that 

all the images of the harmonic tones fall at multiples of the 

baseband signal frequency 𝑓𝑐. The amplitude at a given multiple 

of the baseband signal frequency therefore corresponds to the 
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sum of the original tone plus the contribution of all the folded 

images. Note also that even harmonics appear in case of odd 

𝑁𝑆𝑃𝑃 value, due to folded components that fall at even 

multiples of the baseband signal frequency. In case of a rational 

𝑁𝑆𝑃𝑃 value, only a limited number of folded images fall at 

multiples of the baseband signal frequency and might bring 

only a negligible contribution compared to the original tone. 

This is specifically the case with the chosen 𝑁𝑆𝑃𝑃 = 6.3, 

where components are spread all over multiples of ∆𝑓 = 0.1𝑓𝑐. 

2) Modulated signal 

Now, let us analyze the effects of the sample-and-hold 

operations on a modulated digital signal with 𝑓𝑐 = 1𝑀𝐻𝑧, 𝑓𝑚 =
30𝑘𝐻𝑧 and 𝛽 = 0.1. As in the case of a simple square-wave 

signal, we expect that the harmonic replicas that contain the 

modulation sidebands will be present in the spectrum, but 

mixed with additional components created by the sampling 

process. The shaping by the 𝑠𝑖𝑛𝑐 function will also apply, which 

means that the amplitude of the spectral components will be 

affected. In particular, assuming that there is no overlap 

between a given harmonic replica and images of other replicas, 

the expected amplitude of the central and sideband components 

is given by:  

𝐴𝑖,𝑛
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

= 𝐴 ∗
4𝐽|𝑛|(𝑖𝛽)

𝜋𝑖
∗ 𝑠𝑖𝑛𝑐 (

𝜋𝑖

𝑁𝑆𝑃𝑃
)      𝑓𝑜𝑟 𝑖 = 1, 3, 5, …   (21) 

where 𝑖 is the order of the replica and 𝑛 the order of the sideband 

components located at 𝑖𝑓𝑐 ± 𝑛𝑓𝑚 (𝑛 = 0 for the central 

component located at 𝑖𝑓𝑐).  

Figure 7 illustrates the spectrum of the sampled-and-held 

modulated digital signal for different 𝑁𝑆𝑃𝑃 values; the 

expected amplitude if no overlap is also plotted (dot markers). 

Several comments arise from this figure. First regarding the 

case of integer 𝑁𝑆𝑃𝑃, harmonic replicas are observed at odd 

multiples of the carrier frequency when using 𝑁𝑆𝑃𝑃 = 16. 

However, the amplitude of the central and sideband 

components do not match with the expected one. Indeed in this 

case, images created by the sampling process are superimposed 

onto the existing replicas of the original signal. Since the 

modulation index changes with the replica order, the spectral 

content of the original replicas is modified and no longer 

corresponds to the expected one. In case of 𝑁𝑆𝑃𝑃 = 6, only a 

single frequency component is observed at odd multiples of the 

carrier frequency. Indeed, when the 𝑁𝑆𝑃𝑃 is not sufficiently 

high, the sampling process does not permit to capture the 

modulation effect (i.e. change in the instantaneous frequency) 

and simply converts the modulated square-wave into a non-

modulated one. In the context of our strategy, both these 

situations should be avoided, which means that the sampling 

frequency must not be a multiple of the carrier frequency. 

Finally in case of 𝑁𝑆𝑃𝑃 = 6.3, the overall spectrum appears 

rather misted but the expected harmonic replicas are clearly 

visible and the amplitudes of the central and the first sidebands 

components are in good agreement with those expected, as 

illustrated by the close-up view around the carrier frequency 

and the first two odd replicas given in Figure 8. As in the case 

of the non-modulated signal, we note the presence of low-

amplitude additional components, located here at multiples of 

0.01 ∗ 𝑓𝑐. This example illustrates that despite all the 

modifications brought by the sample-and-hold process, it is 

possible to preserve the spectral content related to the 

modulation around the harmonic replicas, provided a pertinent 

choice of 𝑁𝑆𝑃𝑃.  

 
Fig.7.  Spectrum comparison between original modulated digital signal and 

sampled-and-held signal for different 𝑁𝑆𝑃𝑃 values. 

 
Fig.8.  Zoom around the carrier frequency and the first two odd replicas of the 

sampled-and-held modulated digital signal with 𝑁𝑆𝑃𝑃 = 6.3. 

In order to derive an analytical expression of the sampled-

and-held modulated digital signal, we start again with the basic 

equation that states that a sampled-and-held signal corresponds 

to the original modulated digital signal 𝑦(𝑡) multiplied by a 

Dirac comb  Ш𝑇𝑠
(𝑡), and convoluted with a rectangular 

function ΠTs (𝑡 −
𝑇𝑠

2
): 

      𝑦̃(𝑡) = [𝑦(𝑡)  ∗  Ш𝑇𝑠
(𝑡)] ⊗ 𝛱𝑇𝑠 (𝑡 −

𝑇𝑠

2
)                                    (22) 

Introducing the expression of the original modulated digital 

signal 𝑦(𝑡) established in section III.A. (Eq.9), and taking the 

Fourier transform, it comes: 
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𝑌̃(𝑓) = [( ∑ ∑
4𝐴𝐽𝑛(𝑖𝛽)

𝜋𝑖
∗

∞

𝑛=−∞𝑖

1

2
( 𝛿(𝑓 − 𝑖𝑓𝑐 − 𝑛𝑓𝑚)

+ 𝛿(𝑓 + 𝑖𝑓𝑐 − 𝑛𝑓𝑚)) ) ⊗
1

𝑇𝑠

 Ш𝑓𝑠
(𝑓)]          

∗ 𝑇𝑠 ∗ sinc(𝜋𝑇𝑠𝑓) ∗ 𝑒−𝑖𝜋𝑇𝑠𝑓                       (23) 

After some mathematical manipulations, we obtain: 

𝑌̃(𝑓) = 𝑒−𝑖𝜋𝑇𝑠𝑓 ∑ ∑ ∑
4𝐴𝐽𝑛((2𝑝 + 1)𝛽)

𝜋(2𝑝 + 1)

+∞

𝑞=−∞

+∞

𝑛=−∞

+∞

𝑝=−∞

∗ sinc (𝜋 ((2𝑝 + 1)
𝑓𝑐

𝑓𝑠

+ 𝑛
𝑓𝑚

𝑓𝑠

+ 𝑞)) 

∗ 𝛿 (𝑓 − ((2𝑝 + 1)𝑓𝑐 + 𝑛𝑓𝑚 + 𝑞𝑓𝑠))    (24) 

This signal exhibits frequency components located at 

multiples of ∆𝑓𝑚𝑜𝑑, where ∆𝑓𝑚𝑜𝑑 is given by the greatest 

common divisor between the carrier frequency 𝑓𝑐, the message 

frequency 𝑓𝑚 and the sampling frequency 𝑓𝑠: 

            ∆𝑓𝑚𝑜𝑑 = gcd(𝑓𝑐, 𝑓𝑚, 𝑓𝑠)                                                 (25) 

Using 𝑥 = 𝑓𝑐/∆𝑓𝑚𝑜𝑑 , 𝑦 = 𝑓𝑚/∆𝑓𝑚𝑜𝑑  and 𝑧 = 𝑓𝑠/∆𝑓𝑚𝑜𝑑, the 

final expression of the sampled-and-held modulated digital 

signal is: 

𝑌̃(𝑓) = 𝑒−𝑖𝜋𝑇𝑠𝑓 ∑ ∑ ∑ 𝐴𝑝,𝑛,𝑞 

+∞

𝑞=−∞

+∞

𝑛=−∞

                                    

+∞

𝑝=−∞

 

                            ∗ 𝛿(𝑓 − ((2𝑝 + 1)𝑥 + 𝑛𝑦 + 𝑞𝑧)∆𝑓𝑚𝑜𝑑)   (26) 

     with   𝐴𝑝,𝑛,𝑞 = 𝐴 ∗
4𝐽𝑛((2𝑝 + 1)𝛽)

𝜋(2𝑝 + 1)
                                 

∗ sinc (𝜋 (
2𝑝 + 1

𝑁𝑆𝑃𝑃
+

𝑛𝑓𝑚

𝑁𝑆𝑃𝑃 ∗ 𝑓𝑐

+ 𝑞))            

This expression establishes that the spectrum of the sampled-

and-held modulated digital signal has frequency components 

located at multiples of ∆𝑓𝑚𝑜𝑑 , (explaining components located 

at multiples of 0.01 ∗ 𝑓𝑐. in Figure 8), whose amplitude depends 

on the Bessel coefficients and the 𝑁𝑆𝑃𝑃 value. 

 
Fig.9.  Comparison between the spectrum obtained from an FFT on the 
sampled-and-held modulated digital signal and the one derived from the 

analytical expression. 

As an illustration, Figure 9 shows the comparison between 

the spectrum obtained from an FFT applied on time-domain 

signal and the one computed with Eq.26 for two different cases 

of 𝑁𝑆𝑃𝑃 values. A good agreement on the amplitude and the 

location of the most significant components is observed.  

C. Conditions for non-destructive sampling 

The main challenge is now to easily identify the values of the 

sampling frequency that allow non-destructive sampling for a 

given harmonic replica, i.e. no overlap between the targeted 

replica and images of other replicas with significant magnitude. 

The problem is highly complex, and all our attempts to derive a 

formal equation that expresses this condition have been 

unsuccessful so far. However, the analytical expressions 

developed in the previous section give us the opportunity of 

defining an estimator representative of the corruption around a 

given harmonic replica. A first estimator was defined in [12], 

based on the analytical expression of the sampled-and-held 

digital carrier (Eq.20). In this paper, we proposed a more 

refined estimator based on the analytical expression of the 

sampled-and-held modulated digital signal. This estimator 

relies on three performance metrics illustrated in Figure 10 and 

detailed hereafter. 

▪ 𝐻𝐶𝑃𝑖: the Harmonic Carrier Power of a replica 𝑖 is defined 

as the power contained in its central frequency component: 

                 𝐻𝐶𝑃𝑖 = 𝐻𝑖
2                                                                  (27) 

The expected value of the Harmonic Carrier Power can be 

defined from Eq.21 with: 

        𝐻𝐶𝑃𝑖
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

= (𝐴𝑖,0
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

)
2

= (
4𝐴𝐽0(𝑖𝛽)

𝜋𝑖
∗ sin𝑐 (

𝜋𝑖

𝑁𝑆𝑃𝑃
))

2

              (28) 

A deviation from the expected value is representative of images 

that strongly interact with the considered replica. In this case, 

control of the amplitude of the harmonic replica by adjusting 

the amplitude 𝐴 of the signal delivered by the ATE is no longer 

guaranteed. 

▪ 𝐻𝑆𝐵𝑃𝑖: the Harmonic Sidebands Power of a replica 𝑖 is 

defined as the power contained in the sideband components 

comprised in the bandwidth 𝐵𝑇𝑖
: 

                 𝐻𝑆𝐵𝑃𝑖 = ∑ 𝑆𝐵𝑖,𝑛
2 + 𝑆𝐵𝑖,−𝑛

2

𝑛≥1

                                (29) 

The expected value of the Harmonic Sidebands Power is 

characteristic of the modulation index value and can be derived 

from the Bessel coefficients taking into account the sinc 

shaping: 

      𝐻𝑆𝐵𝑃𝑖
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

= ∑(2 ∗ 𝐴𝑖,𝑛
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

)
2

𝑛≥1

=
4A

𝜋𝑖
∗ sin𝑐 (

𝜋𝑖

𝑁𝑆𝑃𝑃
) ∑(2 ∗ 𝐽𝑛(𝑖𝛽))2

𝑛≥1

  (30) 

A deviation from the expected value is representative of an 

overlap between the sideband components of the targeted 

replica and images of other replicas. In this case, the spectral 

content related to the modulation will be altered.  

▪ 𝐻𝐷𝑃𝑖: the Harmonic Distortion Power of a replica 𝑖 is 
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defined as the power contained in all the spectral 

components comprised within an enlarged bandwidth 𝛼𝐵𝑇𝑖
, 

except the central frequency and sideband components: 

            𝐻𝐷𝑃𝑖 = ∑ 𝐷𝑖,𝑚
2 + 𝐷𝑖,−𝑚

2

𝑚≥1

                                         (31) 

where 𝛼 is a factor higher than 1 that permits to choose to size 

of the enlarged bandwidth. For the following experiments, we 

arbitrarily choose 𝛼 = 3. In a practical situation, this factor 

should be chosen in accordance with the selectivity of the 

bandpass filter placed on the load board.  

In ideal conditions, no image of harmonic replicas should be 

present in the signal bandwidth nor in its close vicinity; the 

expected value of the Harmonic Distortion Power in the 

enlarged bandwidth is therefore zero. Any deviation from zero 

is representative of the presence of an unwanted component in 

the region of interest. 

 
Fig.10.  Definition of performance metrics for a given harmonic replica. 

Based on these three metrics, we can define a global 

estimator that expresses the overall corruption of a given replica 

with: 

𝐻𝑅𝐶𝐸𝑖 = 

    
|𝐻𝐶𝑃𝑖 − 𝐻𝐶𝑃𝑖

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
| + |𝐻𝑆𝐵𝑃𝑖 − 𝐻𝑆𝐵𝑃𝑖

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
| + 𝐻𝐷𝑃𝑖

𝐻𝐶𝑃𝑖
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑     (32) 

where 𝐻𝑅𝐶𝐸 stands for Harmonic Replica Corruption 

Estimator.  

The numerator term is representative of the deviation of both 

the carrier and sidebands power from their expected value as 

well as the presence of distortion components in the bandwidth 

and in its vicinity. The denominator term acts as a penalty factor 

to account for the reduced amplitude as the replica order 

increases and the global 𝑠𝑖𝑛𝑐 shaping induced by the hold 

process. In particular, the closer the replica 𝑖 is from a local zero 

of the 𝑠𝑖𝑛𝑐 function, the higher the penalty factor. Indeed, the 

proximity of a replica with a local zero entails a strong 

attenuation that might compromise baseband signal generation 

with sufficient amplitude. It also involves a dissymmetry 

between positive and negative sidebands that alters the spectral 

content related to the modulation. This estimator permits to 

have a quantitative evaluation of the quality of the signal 

generated by the ATE around a given harmonic replica, for any 

potential sampling frequency. The closer this estimator is to 

zero, the better the quality of the generated signal.  

Practically, 𝐻𝐶𝑃𝑖 , 𝐻𝑆𝐵𝑃𝑖  and 𝐻𝐷𝑃𝑖 metrics are evaluated 

from 𝑌̃(𝑓) defined by Eq.26 using only a limited number of 

combinations (|𝑝| < 30), |𝑛| ≤ 10 and |𝑞| < 30). Frequency 

components that fall within the interval [𝑖𝑓𝑐 −
𝛼𝐵𝑇𝑖

2
, 𝑖𝑓𝑐 +

𝛼𝐵𝑇𝑖

2
 ] 

are considered for the computation of the performance metrics. 

To illustrate the usefulness of the corruption estimator, let us 

consider that the targeted modulated signal will be generated 

using the 5th-order harmonic replica, leading to 𝛽 = 0.5 which 

is a modulation index value typically used in real case 

applications. Figure 11 shows values of the corruption 

estimator 𝐻𝑅𝐶𝐸5 computed for different values of 𝑁𝑆𝑃𝑃 

varied between 2 and 16 by step of 0.1. 

 
Fig.11.  Corruption estimator vs. 𝑁𝑆𝑃𝑃 for the 5th-order harmonic replica. 

Two main comments can be drawn from these results. First 

and as previously established, it is clear that the choice of an 

integer 𝑁𝑆𝑃𝑃 is not a favorable condition. Second, it exists a 

number of low-corruption solutions (highlighted with square 

markers), including low 𝑁𝑆𝑃𝑃 values. This is of foremost 

importance since these values are the ones that impose the least 

constraints on the equipment sampling capabilities.  

 
Fig.12.  Spectrum of the sampled-and-held modulated digital signal with 

𝑁𝑆𝑃𝑃 = 4.2 – Zoom around the 5th harmonic replica. 

For this case study, the smallest 𝑁𝑆𝑃𝑃 value that gives low 

corruption is 𝑁𝑆𝑃𝑃 = 4.2; this choice is therefore a priori a 

favorable condition to generate a good quality signal. Figure 12 

shows the spectrum obtained around the 5th harmonic. It can be 

observed that the central frequency and sideband components 

contained in the signal bandwidth are in good agreement with 

the expected values. The spectral content related to the 

modulation is therefore preserved. Moreover, the additional 

components contained in the signal bandwidth have an 
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amplitude significantly lower than the one of the central 

frequency and sideband components. In the same way, all 

components contained in the enlarged bandwidth have an 

amplitude significantly lower than the one of the central 

frequency and sideband components. Note that it exists other 

components with significant amplitude but they are outside the 

enlarged bandwidth; it is the role of the bandpass filter placed 

on the load board to eliminate these components. This example 

illustrated how the proposed corruption estimator permits to 

identify favorable sampling conditions. 

Note that, in practice, the solution chosen will not necessarily 

be the one with the lowest 𝑁𝑆𝑃𝑃 value. In fact, the chosen 

solution can be any of the valid solutions below the 𝑁𝑆𝑃𝑃 value 

that complies with the equipment sampling capabilities. All 

these solutions are a priori equivalent in terms of spectral 

content. However, they may differ in terms of attenuation 

brought on the baseband signal, which can be calculated with: 

                𝐴𝑡𝑡𝑖 =
1

4𝐽0(𝑖𝛽)
𝜋𝑖

∗ sin𝑐 (
𝜋𝑖

𝑁𝑆𝑃𝑃
)

                                (33) 

The attenuation factor can be used as a second selection 

criterion, since the lower the attenuation, the more relaxed the 

requirement on the voltage capabilities of the test equipment.  

Figure 13 shows the evolution of the attenuation factor with 

respect to the 𝑁𝑆𝑃𝑃, for the considered example. Extremely 

high attenuation is observed for 𝑁𝑆𝑃𝑃 values close to 2.5 and 

5, which correspond to situations where a local zero of the 𝑠𝑖𝑛𝑐 

function falls close to the 5th-order harmonic replica (sampling 

frequency equal to the frequency of the targeted harmonic 

replica or a submultiple); no valid solutions are identified in 

these areas. Valid solutions for this example have an attenuation 

factor ranging from 13.9𝑑𝐵 and 28.8𝑑𝐵, with a reduction of 

the attenuation factor as the 𝑁𝑆𝑃𝑃 value increases. The best 

solution will therefore be determined by the highest 𝑁𝑆𝑃𝑃 

value that can be implemented on the test equipment.  

 
Fig.13.  Attenuation factor vs. 𝑁𝑆𝑃𝑃 for the 5th-order harmonic replica. 

IV. VALIDATION 

A. Experimental setup 

A test bench corresponding to the mathematical model 

defined in Figure 2 was implemented in order to emulate a 

digital ATE channel. As illustrated in Figure 14, it comprises 

an RF signal generator, a latched comparator, a DC power 

supply, a pulse generator, and a digital storage oscilloscope. 

The RF signal generator delivers a continuous-time modulated 

sine-wave signal 𝑦(𝑡). The generator allows to adjust the carrier 

amplitude 𝐴𝑐, the carrier frequency 𝑓𝑐, the message frequency 

𝑓𝑚 (message amplitude 𝐴𝑚 is automatically set to 1) and the 

maximal frequency deviation 𝑓Δ which controls the modulation 

index 𝛽 = 𝑓Δ/𝑓𝑚. This modulated sine-wave signal is sent to 

one input of the comparator; the other input of the comparator 

being connected to the DC power supply which delivers the 

threshold voltage used for the zero-crossing operation 

(threshold voltage should be adjusted to the mean amplitude of 

the generated signal). The sample-and-hold operation is 

performed using the latch enable input of the comparator, which 

is connected to the pulse generator that delivers a pulse 

sequence at a chosen 𝑓𝑠 rate. The signal at the output of the 

comparator therefore corresponds to the sampled-and-held 

modulated digital signal 𝑦̃(𝑡), i.e. the signal that would be 

delivered by a digital ATE channel. Acquisition of this signal is 

performed by the oscilloscope at 3.125Gsps and captured data 

are transferred to a PC for further processing (FFT). 

 
Fig.14.  Experimental setup for lab experiments. 

A limitation of this setup is that the digital signal amplitude 

cannot be freely adjusted. It is fixed by the comparator output 

levels, measured at 𝑉𝐻 ≅ 1.656 𝑉 for the high state and 𝑉𝐿 ≅
1.280 𝑉 for the low state. The generated digital signal has 

therefore an amplitude 𝐴 ≅ 188 𝑚𝑉 with a mean value of 

1.468 𝑉. The generated signal is also susceptible to be impacted 

by jitter or phase noise of the various clock sources. Despite 

these limitations, the purpose of this setup is to validate the 

theoretical developments presented in the paper. In practice, the 

digital signal will be generated by reading a sequence of binary 

data stored in the ATE memory, and no analog instruments will 

be involved.  

B. Validation of theoretical developments  

Hardware measurements were performed to corroborate the 

effects identified by the simulation and the theoretical analysis, 

considering the same case study, i.e. a modulated signal with a 

carrier at 𝑓𝑐 = 1𝑀𝐻𝑧, a message at 𝑓𝑚 = 30𝑘𝐻𝑧 and a 

modulation index 𝛽 = 0.1 (frequency deviation 𝑓∆ set at 3𝑘𝐻𝑧 

on the RF signal generator).  

1) Effect of zero-crossing on analog signals 

For the first experiment, the sampling frequency was set as 

high as possible with 𝑓𝑠 = 250𝑀𝐻𝑧. The aim is to validate the 

effect of the 1-bit quantization process, independently of the 

effect of the sample-and-hold operations. With 250 samples per 

signal period, the digital signal delivered at the output of the 

comparator can be considered as equivalent to a signal 

submitted to a pure analog zero-crossing operation.  

Figure 15 shows the spectrum computed on the captured 

transient data and compare it to that computed on a simulated 
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signal submitted to a zero-crossing operation (levels of the 

signal after zero-crossing have been set to the same values than 

the measured comparator output levels). Globally, the spectrum 

of the experimental digital signal shows a good agreement with 

the expected one: the main harmonic replicas are located at odd 

multiples of the signal frequency and exhibit decreasing 

amplitude and increasing modulation index as the replica order 

gets higher. However, the presence of small harmonic tones 

located at even multiples of the signal frequency can be 

observed. These unwanted harmonic tones come from an 

inaccurate adjustment of the comparator threshold to the mean 

amplitude of sine-wave signal delivered by the RF generator, 

due to the limited resolution of the DC power supply. Still, the 

amplitude of these unwanted tones remains much lower than 

the amplitude of the odd harmonic tones. The imperfect setting 

of the comparator threshold voltage has been included in the 

simulation for all the following graphs.  

 
Fig.15.  Effect of zero-crossing on a modulated analog signal: hardware 

experiment vs. simulation/theory. 

To better illustrate the spectral characteristics related to the 

modulation, Figure 16 gives a close-view around the carrier 

frequency and the first two odd replicas; expected amplitudes 

computed by Eq.21 are also reported. The increase in the 

modulation index as the replica order gets higher is clearly 

visible, with an increase in the number of sidebands that hold 

significant power. It can also be seen that the amplitudes of the 

central frequency and significant sideband components of the 

experimental signal perfectly match with the expected ones. 

 
Fig.16.  Effect of zero-crossing on a modulated analog signal: close-view 

around the carrier frequency and the first two odd replicas. 

2) Effect of sample-and-hold on digital signals 

For the following experiments, the sampling frequency was 

limited to less than 20𝑀𝐻𝑧 in order to examine the effect of the 

sample-and-hold process on the digital signal delivered at the 

output of the latched comparator. Several acquisitions were 

carried out using different values of the sampling frequency, 

corresponding to the various 𝑁𝑆𝑃𝑃 situations investigated in 

the previous section. For the sake of brevity, only the results 

corresponding to 𝑁𝑆𝑃𝑃 = 6 (integer value) and 𝑁𝑆𝑃𝑃 = 4.2 

(valid solution with the lowest 𝑁𝑆𝑃𝑃 value) are commented. 

Note that in practice, the sampling frequency cannot be set 

exactly to the target value due to pulse generator imprecision. 

For instance, when setting the sampling frequency to 6𝑀𝐻𝑧 on 

the pulse generator, the measured value on the oscilloscope is 

6.007𝑀𝐻𝑧. For proper comparison with experiments, the 

sampling frequency used in simulation and analytical 

expressions is the actual value measured on the oscilloscope. A 

rms jitter of 5𝑛𝑠 is also included in all simulations to verify the 

robustness of the proposed solution to the presence of jitter in 

the sampling frequency.  

 
      a. Global view 

 
      b. Close-view around the 5th-order harmonic replica 

Fig.17.  Effect of sample-and-hold with 𝑁𝑆𝑃𝑃 ≅ 6 on a modulated digital 

signal: hardware experiment vs. simulation/theory.  

 
      a. Global view 

 
      b. Close-view around the 5th-order harmonic replica 

Fig.18.  Effect of sample-and-hold with 𝑁𝑆𝑃𝑃 ≅ 4.2 on a modulated digital 

signal: hardware experiment vs. simulation/theory.  
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Comparison between the spectrum computed on the captured 

transient data and the one computed in simulation is reported in 

Figures 17 and 18, for 𝑁𝑆𝑃𝑃 ≅ 6 and 𝑁𝑆𝑃𝑃 ≅ 4.2 respectively. 

A first comment is that there is a good agreement between the 

experimental spectrum and the simulated one in both cases. Yet, 

different situations are observed depending on the 𝑁𝑆𝑃𝑃 value. 

In the case of 𝑁𝑆𝑃𝑃 ≅ 6, the global spectrum has a clean 

appearance but the close-up view around the 5th-order harmonic 

replica reveals that the expected characteristics corresponding 

to a modulation index 𝛽 = 0.5 are indeed present, but they are 

altered by the presence of a first-order image of the baseband 

spectrum, which exhibits a modulation index 𝛽 = 0.1. In 

contrast, in the case of 𝑁𝑆𝑃𝑃 ≅ 4.2, the global spectrum 

appears hazy but the close-up view around the 5th-order 

harmonic replica reveals a clean spectrum with the desired 

modulation characteristics.  

Overall, these hardware measurements corroborate the 

effects identified by the simulation and the theoretical analysis, 

and thus validate the feasibility of the proposed solution. 

V. PRACTICAL CASE STUDY 

In this section, we demonstrate the implementation of the 

proposed solution on a practical case study. Specifically, the 

aim is to generate an analog modulated signal with a carrier 

frequency at 𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡
= 868𝑀𝐻𝑧, a message frequency at 𝑓𝑚 =

0.75𝑀𝐻𝑧 and an effective transmission band 𝐵𝑇𝑡𝑎𝑟𝑔𝑒𝑡
=

2.48𝑀𝐻𝑧. This signal has to be generated from a digital signal 

at lower frequency, taking into account the frequency 

capabilities of the equipment. To illustrate the adaptability of 

the proposed solution, experiments are conducted assuming 

different constraints on the equipment, with an upper limit of 

the sampling frequency 𝑓𝑠𝑚𝑎𝑥
 set at 400𝑀𝐻𝑧, 330𝑀𝐻𝑧 and 

240𝑀𝐻𝑧. The high-frequency analog signal will be obtained by 

filtering one of the harmonic replicas of the low-frequency 

digital signal. The lower the limit of the sampling frequency, 

the more challenging the implementation of the solution. 

A. Setting of sampling frequency and baseband signal 

parameters 

The first step is to determine the minimum order of the 

harmonic replica that permits to ensure that the baseband signal 

complies with the Nyquist criterion, taking into account the 

maximum sampling frequency allowed by the equipment. 

Considering, in first approximation, that the sampling 

frequency has to be higher than twice the carrier frequency of 

the baseband signal 𝑓𝑐𝐵𝐵
 and using 𝑓𝑐𝐵𝐵

= 𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡
/𝑖, it comes: 

                 𝑖 > 2𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡
/𝑓𝑠𝑚𝑎𝑥

                                                     (34) 

For this case study, it gives 𝑖 > 4.4 with 𝑓𝑠𝑚𝑎𝑥
= 400𝑀𝐻𝑧,  

𝑖 > 5.3 with 𝑓𝑠𝑚𝑎𝑥
= 330𝑀𝐻𝑧 and 𝑖 > 7.3 with 𝑓𝑠𝑚𝑎𝑥

=

240𝑀𝐻𝑧. The first odd harmonic replica that can be exploited 

is therefore the 5th-order harmonic replica for 𝑓𝑠𝑚𝑎𝑥
=

400𝑀𝐻𝑧, the 7th-order harmonic replica for 𝑓𝑠𝑚𝑎𝑥
= 330𝑀𝐻𝑧 

and the 9th-order harmonic replica for 𝑓𝑠𝑚𝑎𝑥
= 240𝑀𝐻𝑧.  

The second step is to compute the parameters of the baseband 

signal according to the selected harmonic replica. The carrier 

frequency of the baseband signal is simply given by the targeted 

carrier frequency divided by the order of the selected harmonic 

replica 𝑓𝑐𝐵𝐵
= 𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡

/𝑖. In the same way, the modulation index 

of the baseband signal is given by the targeted modulation index 

divided by the order of the selected harmonic replica 𝛽𝐵𝐵 =
𝛽𝑡𝑎𝑟𝑔𝑒𝑡/𝑖, the targeted modulation index being derived from the 

effective transmission band of the targeted modulated signal 

with 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐵𝑇𝑡𝑎𝑟𝑔𝑒𝑡
/2𝑓𝑚  −  1 = 0.653.  

Once the baseband signal parameters are set, the next step is 

to identify favorable sampling conditions based on the 

corruption estimator. Practically, for each selected harmonic 

replica, the corruption estimator 𝐻𝑅𝐶𝐸𝑖  is computed varying 

the sampling frequency between a low limit determined by the 

Nyquist criterion 𝑓𝑠𝑚𝑖𝑛
= 2𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡

/𝑖, and the upper limit 𝑓𝑠𝑚𝑎𝑥
 

imposed by the equipment, by step of 2𝑀𝐻𝑧. Valid solutions 

are then simply identified by selecting cases that give minimal 

corruption (with 2% tolerance on the minimal value). Table I 

summarizes the parameters of the baseband signal and the 

sampling frequency exploration range, according to the 

harmonic replica exploited for the generation of the targeted 

modulated signal.  

TABLE I.  
BASEBAND SIGNAL PARAMETERS AND SAMPLING FREQUENCY EXPLORATION 

RANGE ACCORDING TO THE ORDER OF THE EXPLOITED HARMONIC REPLICA 

  Harmonic replica order 𝑖 

  5 7 9 

Baseband 
signal 

parameters 

Carrier frequency 𝑓𝑐 17.36𝑀𝐻𝑧 12.4𝑀𝐻𝑧 9.644𝑀𝐻𝑧 

Modulation index 𝛽 0.131 0.093 0.073 

Max freq. deviation 𝑓∆ 98𝑘𝐻𝑧 70𝑘𝐻𝑧 54.444𝑘𝐻𝑧 

𝑓𝑠 
exploration 

range 

Minimum limit 𝑓𝑠𝑚𝑖𝑛
 348𝑀𝐻𝑧 248𝑀𝐻𝑧 194𝑀𝐻𝑧 

Maximum limit 𝑓𝑠 𝑚𝑎𝑥 400𝑀𝐻𝑧 330𝑀𝐻𝑧 240𝑀𝐻𝑧 

Results of the exploration are summarized in Figure 19, 

which shows the attenuation factor of valid solutions. It can be 

observed that valid solutions exist for the three equipment 

constraints considered. However, their number significantly 

differs depending on the equipment constraint, i.e. 15 valid 

solutions for 𝑓𝑠𝑚𝑎𝑥
= 400𝑀𝐻𝑧, 20 for 𝑓𝑠𝑚𝑎𝑥

= 330𝑀𝐻𝑧 and 

only 4 for 𝑓𝑠𝑚𝑎𝑥
= 240𝑀𝐻𝑧. Two main factors contribute to 

this variance, namely the presence of a local zero due to the 𝑠𝑖𝑛𝑐 

function within the exploration range, and the size of the 

exploration range. The presence of a local zero within the 

exploration range limits the number of valid solutions since 

they cause harmonic replica cancellation, which is the case for 

𝑓𝑠𝑚𝑎𝑥
= 330𝑀𝐻𝑧 and 𝑓𝑠𝑚𝑎𝑥

= 240𝑀𝐻𝑧 with local zeros 

located around 217𝑀𝐻𝑧 and 289𝑀𝐻𝑧 (sub-multiples of the 

targeted signal frequency). The size of the exploration range 

also has an impact on the number of valid solutions since it 

determines the number of explored solutions, i.e. 27 for 𝑓𝑠𝑚𝑎𝑥
=

400𝑀𝐻𝑧, 42 for 𝑓𝑠𝑚𝑎𝑥
= 330𝑀𝐻𝑧 and 24 for 𝑓𝑠𝑚𝑎𝑥

=

240𝑀𝐻𝑧. 

A second comment is that valid solutions differ in terms of 

attenuation factor, with values comprised between 30.7𝑑𝐵 and 

34.9𝑑𝐵 for the 5th-order harmonic replica, 35.1𝑑𝐵 and 44.1𝑑𝐵 

for the 7th-order harmonic replica, and 40.1𝑑𝐵 and 43.1𝑑𝐵 for 

the 9th-order harmonic replica. For each harmonic replica, the 



Version submitted by the authors 12 

best solution is the one that minimizes the attenuation factor, 

i.e. 𝑓𝑠 = 354𝑀𝐻𝑧 if 𝑓𝑠𝑚𝑎𝑥
= 400𝑀𝐻𝑧, 𝑓𝑠 = 328𝑀𝐻𝑧 if 

𝑓𝑠𝑚𝑎𝑥
= 330𝑀𝐻𝑧, and 𝑓𝑠 = 238𝑀𝐻𝑧 if 𝑓𝑠𝑚𝑎𝑥

= 240𝑀𝐻𝑧 as 

summarized in Table II. Note that the sampling frequency of 

the retained solution is close to the maximum limit imposed by 

the equipment for the 9th and 7th-order harmonic replicas, but 

not for the 5th-order harmonic replica.  

 
Fig.19.  Illustration of valid sampling conditions under different constraints on 

the maximum sampling frequency allowed by the equipment.  

TABLE II.  
RESULTS OF CORRUPTION ANALYSIS: RETAINED SAMPLING CONDITION 

ACCORDING TO THE EQUIPMENT FREQUENCY CAPABILITY 

 Equipment constraint: 𝑓𝑠𝑚𝑎𝑥
 

 400𝑀𝐻𝑧 330𝑀𝐻𝑧 240𝑀𝐻𝑧 

Harmonic replica order  5 7 9 

# explored solutions 27 42 24 

# valid solutions 15 20 4 

Retained solution 
𝑓𝑠 = 354𝑀𝐻𝑧 

𝐴𝑡𝑡 = 30.7𝑑𝐵 

𝑓𝑠 = 328𝑀𝐻𝑧 

𝐴𝑡𝑡 = 35.1𝑑𝐵 

𝑓𝑠 = 238𝑀𝐻𝑧 

𝐴𝑡𝑡 = 40.1𝑑𝐵 

B. Hardware measurements 

Hardware measurements were carried out to validate the 

settings determined from the corruption analysis. However, 

retained solutions cannot be directly implemented in the 

experimental test bench because the FM rate of our RF generator 

is limited to 80𝑘𝐻𝑧. We therefore apply a downscaling by 10 on 

all frequencies, i.e. 𝑓𝑐𝑡𝑎𝑟𝑔𝑒𝑡
= 86.8𝑀𝐻𝑧, 𝑓𝑚 = 75𝑘𝐻𝑧 and 

𝐵𝑇𝑡𝑎𝑟𝑔𝑒𝑡
= 248𝑘𝐻𝑧. The downscaling factor is also applied on 

the retained sampling frequencies, i.e. 𝑓𝑠 = 35.4𝑀𝐻𝑧 when 

working with the 5th-order harmonic replica under the 

assumption of an equipment limited to 40𝑀𝐻𝑧, 𝑓𝑠 = 32.8𝑀𝐻𝑧 

when working with the 7th-order harmonic replica under the 

assumption of an equipment limited to 33𝑀𝐻𝑧, and 𝑓𝑠 =
23.8𝑀𝐻𝑧 when working with the 9th-order harmonic replica 

under the assumption of an equipment limited to 24𝑀𝐻𝑧.  

Results are presented in Figures 20, 21 and 22, which show 

the spectrum computed on the captured transient data (both 

global and close-up view around the selected harmonic replica), 

for the three equipment constraints considered. In all cases, the 

spectrum exhibits the desired modulation characteristics in the 

targeted transmission band without any significant unwanted 

components in the enlarged bandwidth, thus validating the 

implementation of the proposed approach. These results also 

confirm the adaptability of the approach, since it can deal with 

different sampling frequency constraints imposed by the 

equipment by exploiting different harmonic replicas.  

Finally for demonstration purposes, a solution whose 

sampling frequency is close to a retained solution, but which 

was not identified as a valid solution on the basis of the 

corruption estimator, was also implemented in the experimental 

test bench. Figure 23 shows the close-up view of the spectrum 

around the 7th-order harmonic replica when using a sampling 

frequency 𝑓𝑠 ≅ 33.0𝑀𝐻𝑧. The components related to the 

desired modulation characteristics are indeed present in the 

targeted transmission band, but unwanted components are also 

at the edges of the signal bandwidth as well as in the extended 

bandwidth. This example clearly illustrates the effectiveness of 

the proposed corruption estimator in identifying favorable 

sampling conditions. 

 
Fig.20.  Modulated digital signal spectrum with 𝑓𝑐𝐵𝐵

= 17.36𝑀𝐻𝑧 and 𝑓𝑠 ≅

35.4𝑀𝐻𝑧 (signal generation based on 5th-order harmonic replica). 

 
Fig.21.  Modulated digital signal spectrum with 𝑓𝑐𝐵𝐵

= 12.4𝑀𝐻𝑧 and 𝑓𝑠 ≅

32.8𝑀𝐻𝑧 (signal generation based on 7th-order harmonic replica). 
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Fig.22.  Modulated digital signal spectrum with 𝑓𝑐𝐵𝐵

≅ 9.644𝑀𝐻𝑧 and 𝑓𝑠 ≅

23.4𝑀𝐻𝑧 (signal generation based on 9th-order harmonic replica). 

 
Fig.23.  Illustration of a non-favorable sampling condition: 𝑓𝑠 ≅ 33.0𝑀𝐻𝑧 

(signal generation based on 7th-order harmonic replica). 

C. Additional validation using only digital resources  

An additional validation was carried out using only digital 

resources for the generation of the modulated test stimulus. For 

this, a new setup was developed based on the NXP 

Semiconductor's i.MX RT1170 evaluation board. As shown in 

Figure 24, the internal SRAM is used to store the binary 

sequence corresponding to the baseband modulated signal. This 

sequence is read by the Arm-Cortex-M7 core and the resulting 

signal is output on a high-speed GPIO (General-Purpose 

Input/Output) port. As in the previous setup, signal acquisition 

is performed by the oscilloscope at 25Gsps and captured 

transient data are transferred to a PC to compute the spectrum.  

 
Fig.24.  Hardware setup for validation of case study using digital resources. 

The Arm-Cortex-M7 core can operate at up to 1𝐺𝐻𝑧, which 

imposes a maximum constraint of 500𝑀𝐻𝑧 for reading the 

sequence stored in the memory (two instructions are required to 

output each bit of the sequence on the GPIO port). With this 

constraint, the generation of an 868𝑀𝐻𝑧 modulated signal can 

be targeted using the 5th-order harmonic replica, choosing a bit 

rate 𝑓𝑠 = 354𝑀𝐻𝑧 as established in section V.A. The operating 

frequency of the Arm-Cortex-M7 core is therefore set at 

708𝑀𝐻𝑧. The corresponding binary sequence stored in the 

memory is determined from the zero-crossed and sampled 

signal computed with the mathematical model defined in 

Figure 2.  

Figure 25 shows the close-up view around the 5th-order 

harmonic replica of the spectrum computed on the captured 

digital signal. The spectrum exhibits the desired spectral 

characteristics in the targeted transmission band, i.e. a central 

component at 868𝑀𝐻𝑧 and two sideband components located 

750𝑘𝐻𝑧 apart with an amplitude 11.9𝑑𝐵 lower than that of the 

central component; no components of significant amplitude are 

present in the enlarged bandwidth.  

 
Fig.25.  Experimental spectrum of the digital signal generated by reading the 

bit sequence stored in the SRAM at a bit rate of 354𝑀𝐻𝑧. 

This additional experiment confirms the validity of the 

proposed approach for obtaining RF modulated signals with 

specific characteristics from a digital signal generated at lower 

frequency.  

VI. CONCLUSION 

In this paper, we have demonstrated a low-cost solution for 

generating FM/PM test stimuli in the RF range using a standard 

digital ATE. The proposed method uses spectral images of the 

binary signal generated by a digital tester channel in order to 

reach frequencies beyond Nyquist. The desired spectral 

characteristics are achieved through appropriate encoding of the 

digital sequence stored in the ATE and careful selection of the 

ATE sampling frequency. A theoretical analysis has been 

conducted, allowing to establish the relationship between the 

baseband spectrum and harmonic replicas in the continuous-

time domain. The effects of sample-and-hold operations, which 

are representative of the operating mode of a digital ATE, have 

then been analyzed and an analytical expression of the 

modulated signal delivered by a digital tester channel has been 

derived. On the basis of this expression, a corruption estimator 

has been defined, which permits to identify non-destructive 

sampling conditions. The strategy has been evaluated through 

both simulation and hardware measurements. Results have 

validated the theoretical developments and the effectiveness of 

the corruption estimator in identifying favorable sampling 

conditions. Implementation on a practical case study has 
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demonstrated the ability of the proposed approach to generate 

good quality modulated FM/PM signals at a frequency higher 

than that of the test equipment. Future work will target 

extension to digital modulation formats used by actual 

receivers, such as Frequency-Shift Keying (FSK), Binary 

Phase-Shift Keying (BPSK), Quadrature Phase-Shift Keying 

(QPSK) and Minimum-Shift Keying (MSK), in order to enable 

low-cost testing of receiver sensitivity.  
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