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Abstract

We introduce a supporting combinatorial framework for the Flat Wall Theorem. In particular,
we suggest two variants of the theorem and we introduce a new, more versatile, concept of wall
homogeneity as well as the notion of regularity in flat walls. All proposed concepts and results
aim at facilitating the use of the irrelevant vertex technique in future algorithmic applications.
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1 Introduction

One of the cornerstone achievements of the Graph Minors series by Robertson and Seymour was
the celebrated Flat Wall Theorem, proved in the 13th paper of the series [38]. It is a powerful graph
structural result, revealing the local structure of H-minor-free graphs. The Flat Wall Theorem has
important consequences and applications in structural graph theory and in graph algorithm design.
It served as the combinatorial base for the design of an algorithm for the following two problems:

• Minor Testing: Given a graph G and a k-vertex graph H, decide whether G contains H

as a minor.

• Disjoint Paths: Given a graph G with k pairs of terminals (si, ti), . . . , (sk, tk), decide
whether G contains k vertex-disjoint paths joining si and ti for every i ∈ {1, . . . , k}.

These algorithms run in time f(k) ·n3 on n-vertex graphs, for some computable function f : N→ N
(see [28] for quadratic-time improvements). This, using the terminology of parameterized com-
plexity, implies that both above problems, when parameterized by k, belong to the parameterized
class FPT or, alternatively, admit FPT-algorithms. In order to obtain these algorithms, Robertson
and Seymour introduced a powerful technique, called the irrelevant vertex technique, which has
now become a standard technique in the design of parameterized algorithms (see e.g., Section 7
of the textbook [8]). Further algorithmic applications combining the Flat Wall Theorem and the
irrelevant vertex technique appeared later in [2,9,12,17,26], while generalizations to directed graphs
have recently appeared in [13,21].

1.1 The Flat Wall Theorem and its variants

The original statement of the Flat Wall Theorem, as appeared in [38], is the following.

Proposition 1. There exist functions f : N2 → N and f ′ : N2 → N such that if G is a graph and
h and k are integers, then one of the following holds:

1. G contains Kh as a minor1.

2. G has treewidth at most f(k, h).

3. G has a vertex set A with |A| ≤ f ′(h), such that G \A contains a flat wall W of height k.

We postpone the formal definitions of “treewidth”, the related concept of “tree decomposition”,
and “flat wall” to Section 2. One can get a quick idea of a wall by looking at Figure 1 and of
flat wall by looking at Figure 3 and Figure 5. Intuitively, a flat wall W is contained in a larger
graph, its compass, that is separated from the rest of the graph via a separator S that is a “suitably
chosen” part of the perimeter of W. This compass is “flat” in the sense that it does not contain
two disjoint paths whose endpoints are in S and are “crossing” with respect to the cyclic ordering
induced in S by the perimeter of W. As proved by Kawarabayashi, Thomas, and Wollan [32],
this flatness property can be certified by a concept called rendition (corresponding to the concept

1I.e., some subgraph of G can be contracted to a complete graph on h vertices.
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of rural division in [38]) that can be seen as a plane embedding inside a disk of a hypergraph
with hyperedges of arity at most three (see Figure 2 for a visualization of a rendition). Then the
compass is “embedded” inside the rendition so that it can be seen as the union of graphs called
flaps bijectively mapped to the hyperedges of the rendition.

In its original version in [38], Proposition 1 was proved for f ′(h) =
(h

2
)

with the additional
assertion that f(k, h) is a bound on the treewidth of the “internal flaps”, i.e., those that are not
incident to the perimeter of W . Later, in [14], the same result was proved (without an algorithm) for
f ′(h) = h−5 and f(k, h) = Oh(k).2 The original result of Robertson and Seymour was accompanied
with an O(n·m)-time algorithm3 that outputs a certifying structure for each possible outcome. This
algorithm was further improved to a linear one by Kawarabayashi, Kobayashi, and Reed in [28].

A recent wave of improvements of Proposition 1 appeared in the following form [7,32].

Proposition 2. There exist functions f : N2 → N and f ′ : N2 → N such that if G is a graph and
h and k are integers, and G contains a wall W of height f(k, h) as a subgraph, then one of the
following holds:

1. G contains Kh as a minor.

2. G has a vertex set A with |A| ≤ f ′(h), such that G \A contains a flat wall W ′ of height k.

Notice that Proposition 2 can indeed be seen as an extension of Proposition 1 because the
exclusion of a wall of height k in a Kh-minor-free graph implies that its treewidth is bounded by
Oh(k) [10, 27]. Moreover, according to [32, Theorem 1.9], Proposition 2 holds for f ′(h) = O(h24)
and f(k, h) = O(h24(h2 + k)), and it enjoys the following additional features:

(A) In the first case, the graph Kh is a minor of G in a way that is “grasped by the wall W ’.’4

(B) In the second case, the flat wall W ′ is a subwall of W.

(C) Proposition 2 comes with an algorithm that certifies one of the two outcomes in linear time,
in particular, in O(h24 ·m + n) time.

Moreover, the same result with Features (A) and (B) is proved in [32, Theorem 1.7] with the optimal
function f ′(h) = h− 5 at the cost of a worse bound for f(k, h). Also [32, Theorem 1.8] corresponds
to Proposition 2 with the additional feature that the compass of the flat wall W ′ contains no wall
of height f(k, h) + 1, again at the cost of a worse bound for f(k, h).

Later, Chuzhoy [7] drastically improved the bounds of Proposition 2 with the extra Features (A)
and (B) to f ′(h) = h− 5 and f(k, h) = O(h · (h + k)). Moreover, Chuzhoy gives a polynomial-time
algorithm for her improved variant, however she does not specify whether this algorithm can run
in linear time, as the one in [32, Theorem 1.9].

2The notation ‘Oh(·)’ means that the hidden constants depend only on h.
3In this paper we always denote by n and m the number of vertices and edges, respectively, of the graph under

consideration.
4We avoid here the formal definition of “grasping by a wall” as we do not make use of it in this paper; see [32]

for the details. However, we stress that it provides additional information that is used in further applications (see
e.g., [33]).
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1.2 Our contribution

In this paper we provide a series of enhanced algorithmic versions of the Flat Wall Theorem as well
as a series of combinatorial tools related to the applicability of the irrelevant vertex technique. In
our presentation we adopt the framework and the terminology of [32]. Our aim is to introduce a
“more accurate” view of the Flat Wall Theorem that, we hope, will be useful for future algorithmic
applications. Our contribution consists in the following.

(α) Subwalls of flat walls are not always flat. Our initial motivation comes from the fact5 that
the claimed Feature (B) in Proposition 2, as stated in [32], needs some slight (but not neglectable)
revision. This feature is based on [32, Lemma 6.1], asserting that if W is a flat wall and W ′ is
a subwall of W that is disjoint from the perimeter of W, then W ′ is also a flat wall of G. As we
observe in Subsection 2.3, there are some very marginal cases where a subwall of a flat wall is not
flat anymore. This phenomenon is illustrated in the flat wall of Figure 3 (in Subsection 2.3).

(β) A reparation framework. Fortunately, the issue raised in (α) is just a minor formal mis-
match that harms neither the spirit of the proofs of [32] nor the “essential” correctness of subsequent
results that are based on [32]. The first contribution of our paper is to propose an extension of
the framework of [32] that supports a formally correct statement of Feature (B) in Proposition 2.
What we show (Theorem 5) is that if a wall W is a flat wall, whose flatness is certified by some
rendition R, and W ′ is a subwall of W, then there is another, slightly different, subwall W̃ ′ of W,

which we call a W ′-tilt, that is indeed flat6. By the term “slightly different” we mean that W ′

and its W ′-tilt W̃ ′ may differ only perimetrically. Moreover, the rendition certifying the flatness
of W̃ ′ maintains all the “internal” structure of the rendition R, relatively to W ′. This implies that
all the arguments based on Proposition 2 of [32] are essentially correct, and can become formally
correct under the suggested framework. In our definitions and proofs we pay attention to all the
necessary formalism so to facilitate dealing with future results that may use those of [32] (or [7]).
We conclude with Proposition 7 that is a version of Proposition 2 translated into our framework.

(γ) A Flat Wall Theorem with compasses of bounded treewidth. Our next result, The-
orem 8 in Subsection 3.2, is an improved version of Proposition 1 with the following additional
features: (1) f(k, h) = k · 2O(h2 log h) and f ′(h) = O(h24), (2) in the third case, the compass of
the wall W comes with a tree decomposition of width at most f(k, h), and (3) the result is ac-
companied by a 2Oh(r2) · n time algorithm. Notice that a non-algorithmic version of this result
could be indirectly derived, with worse functions, combining [32, Theorem 1.8] and the main result
of Kawarabayashi and Kobayashi in [27]. We present this result in this paper for the following
reasons: first because it is new, second because it is in a form suitable for future applications where
it is important that the compass has bounded treewidth, and third because its proof provides an
indicative sample of the potential of the formalism of W ′-tilts that we suggest in (β).

5This was first spotted in the conference article [41].
6In fact, Theorem 5 applies not only to subwalls W ′ of W , but also to every subwall W ′ of the compass of W that

is not “contained” in a flap. See Subsection 2.3 for the details.
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(δ) An alternative concept of wall homogeneity. As mentioned before, the Flat Wall The-
orem has been the combinatorial base for the FPT-algorithms of [38] for Minor Testing and
Disjoint Paths. One of the cornerstone ideas of [38] was to prove that the existence of a “big
enough” flat wall W in the input graph G implies that a minor-model of H or a collection of k

disjoint paths in G can be safely rerouted so to avoid the central vertices of this wall (see Figure 1
for a visualization of the central vertices of a wall). This permits us to declare parts of the wall
“irrelevant” and find an equivalent instance of the problem with fewer vertices. In fact, avoiding
the central vertices is not so straightforward when dealing with a flat wall W. This is because the
rerouting has to be done inside the compass K of W where the paths should be rerouted through
different, however “equivalent”, flaps of the compass. To deal with this, Robertson and Seymour
defined in [38] the concept of wall homogeneity. Roughly speaking, when a wall is homogenous then
the variety of the ways that paths may be routed through the flaps that are inside some “brick” of
the wall is the same for all bricks. In [38] it was proved that every big enough flat wall contains a
still big homogeneous subwall where the claimed rerouting is possible, with the help of later results
of the Graph Minors series [39,40].

The definition of wall homogeneity in [38] was based on the concept of the vision of a flap and
was quite particular to the problems it was dealing with. To our knowledge, after [38], not much use
of homogeneity, as defined in [38], was done for algorithmic purposes. Most of the results where the
irrelevant vertex technique was applied concerned questions on surface-embeddable graphs where
the wall is “already” disk-embedded and there is no need of homogeneity (see e.g. [16,22–25,29–31,
35,36]). An indicative exception to this rule is the celebrated algorithm in [17,18] for the problem
of checking whether H is a topological minor of a graph G where some notion of homogeneity,
tailor-made for this problem, was introduced (see [18, Theorem 5.8] and also [12]).

In this paper we introduce an alternative notion of wall homogeneity that is simpler and more
versatile to use. This is done in Subsection 3.3 and is based on the framework introduced in (β).
Our definition may help dealing with the wide variety of the problems as it permits any version
of finite index flap equivalency (for instance, flap equivalency based on MSOL-expressibility). We
accompany the definition with an FPT-algorithm that finds a homogeneous subwall. This, together
with the main result of (γ), can permit us to find “big-enough” homogeneous walls with compasses
of bounded treewidth. This, in turn, will permit the answer of MSOL-queries in parts of the compass
and will allow more elaborated applications of the irrelevant vertex technique (such as those used
for problems on surface-embeddable graphs in [11,15]).

(ε) Regular flatness pairs and plane representations. We call a pair (W,R) flatness pair if
W is a flat wall whose flatness is certified by the rendition R. Based on the framework of (β), in
Subsection 3.4 we introduce a notion of regularity for flatness pairs, which roughly demands that the
branching vertices of the wall are “internal” with respect to the flaps of the compass of W. Regular
flatness pairs permit the representation of the compass of a flat wall by a graph embedded in a disk
and a “well-arranged” wall inside it. This “plane” representation of flat walls will appear handy in
other applications. For instance, it has been a useful tool for the proofs of the main combinatorial
results of [5,41] as it makes it possible to translate routing questions inside compasses to analogous
questions on planar embeddings and deal with them in an easier way (using the new homogeneity
concept of (δ)).
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1.3 Organization of the paper

In Section 2 we provide some definitions and preliminary results and we state the two main results
of this paper (Theorem 5 and Theorem 6), that assert the existence of an algorithm computing
a tilt of a subwall of a flat wall and of an algorithm, that given a flatness pair outputs a regular
flatness pair, respectively. We prove Theorem 5 and Theorem 6 in Section 4. In Section 3, we
develop the tools to address the topics (β), (γ), (δ), and (ε) listed above.

2 Definitions and preliminary results

2.1 Preliminaries

Sets and integers. We denote by N the set of non-negative integers. Given two integers p, q,

where p ≤ q, we denote by [p, q] the set {p, . . . , q}. For an integer p ≥ 1, we set [p] = [1, p] and
N≥p = N \ [0, p− 1]. For a set S, we denote by 2S the set of all subsets of S and by

(S
2
)

the set of
all subsets of S of size 2. If S is a collection of objects where the operation ∪ is defined, then we
denote

⋃⋃⋃⋃⋃⋃⋃⋃⋃
S =

⋃
X∈S X.

Basic concepts on graphs. As a graph G we denote any pair (V, E) where V is a finite set
and E ⊆

(V
2
)
, that is, all graphs of this paper are undirected, finite, and without loops or multiple

edges. We also define V (G) = V and E(G) = E. We say that a pair (L, R) ∈ 2V (G) × 2V (G) is
a separation of G if L ∪ R = V (G) and there is no edge in G between L \ R and R \ L. Given a
vertex v ∈ V (G), we denote by NG(v) the set of vertices of G that are adjacent to v in G. Also,
given a set S ⊆ V (G), we set NG(S) =

⋃
v∈S NG(v). A vertex v ∈ V (G) is isolated if NG(v) = ∅.

For S ⊆ V (G), we set G[S] = (S, E ∩
(S

2
)
) and use G \ S to denote G[V (G) \ S]. Given an edge

e = {u, v} ∈ E(G), we define the subdivision of e to be the operation of deleting e, adding a new
vertex w, and making it adjacent to u and v. Given two graphs H, G, we say that H is a subdivision
of G if H can be obtained from G by subdividing edges. The contraction of an edge e = {u, v} of
a simple graph G results in a simple graph G′ obtained from G \ {u, v} by adding a new vertex uv

adjacent to all the vertices in the set (NG(u) ∪NG(v)) \ {u, v}. A graph G′ is a minor of a graph
G if G′ can be obtained from a subgraph of G after a series of edge contractions.

Disk-embedded graphs. A closed (resp. open) disk is a set homeomorphic to the set {(x, y) ∈
R2 | x2 + y2 ≤ 1} (resp. {(x, y) ∈ R2 | x2 + y2 < 1}). Let ∆ be a closed disk. We use bd(∆) to
denote the boundary of ∆ and int(∆) to denote the open disk ∆ \ bd(∆). When we embed a graph
G in the plane or in a disk, we treat G as a set of points. This permits us to make set operations
between graphs and sets of points. We say that a graph G is ∆-embedded if G is embedded in
∆ without crossings such that the intersection of bd(∆) and G (seen as a set of points of ∆) is a
subset of V (G).

A circle of ∆ is any set homeomorphic to {(x, y) ∈ R2 | x2 + y2 = 1}. Given two distinct points
x, y ∈ D, an (x, y)-arc of D is any subset of D that is homeomorphic to the closed interval [0, 1],
where the image of zero is x and the image of one is y.
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Walls. Let k, r ∈ N. The (k × r)-grid is the graph whose vertex set is [k] × [r] and two vertices
(i, j) and (i′, j′) are adjacent if |i − i′| + |j − j′| = 1. An elementary r-wall, for some odd integer
r ≥ 3, is the graph obtained from a (2r×r)-grid with vertices (x, y) ∈ [2r]× [r], after the removal of
the “vertical” edges {(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices of degree
one. This definition is slightly different than other definitions in the literature (i.e., we require r to
be odd), but we adopt this one for technical reasons. Notice that, as r ≥ 3, an elementary r-wall is
a planar graph that has a unique (up to topological isomorphism) embedding in the plane R2 such
that all its finite faces are incident to exactly six edges. The perimeter of an elementary r-wall is
the cycle bounding its infinite face, while the cycles bounding its finite faces are called bricks. Also,
the vertices in the perimeter of an elementary r-wall that have degree two are called pegs, while
the vertices (1, 1), (2, r), (2r − 1, 1), and (2r, r) are called corners (notice that the corners are also
pegs).

Figure 1: A 15-wall. The 3-branch vertices are depicted in cyan except from the corner and the
central vertices that are depicted in red and orange respectively.

An r-wall is any graph W obtained from an elementary r-wall W̄ after subdividing edges (see
Figure 1). A graph W is a wall if it is an r-wall for some odd r ≥ 3 and we refer to r as the height
of W. Given a graph G, a wall of G is a subgraph of G that is a wall. We insist that, for every
r-wall, the number r is always odd.

We call the vertices of degree three of a wall W 3-branch vertices. A cycle of W is a brick (resp.
the perimeter) of W if its 3-branch vertices are the vertices of a brick (resp. the perimeter) of W̄ .

We denote by C(W ) the set of all cycles of W. We use D(W ) in order to denote the perimeter of
the wall W. A brick of W is internal if it is disjoint from D(W ).

Subwalls. Given an elementary r-wall W̄ , some i ∈ {1, 3, . . . , 2r−1}, and i′ = (i + 1)/2, the i′-th
vertical path of W̄ is the one whose vertices, in order of appearance, are (i, 1), (i, 2), (i + 1, 2), (i +
1, 3), (i, 3), (i, 4), (i + 1, 4), (i + 1, 5), (i, 5), . . . , (i, r− 2), (i, r− 1), (i + 1, r− 1), (i + 1, r). Also, given

8



some j ∈ [2, r − 1] the j-th horizontal path of W̄ is the one whose vertices, in order of appearance,
are (1, j), (2, j), . . . , (2r, j).

A vertical (resp. horizontal) path of W is one that is a subdivision of a vertical (resp. horizontal)
path of W̄ . Notice that the perimeter of an r-wall W is uniquely defined regardless of the choice of
the elementary r-wall W̄ . A subwall of W is any subgraph W ′ of W that is an r′-wall, with r′ ≤ r,

and such the vertical (resp. horizontal) paths of W ′ are subpaths of the vertical (resp. horizontal)
paths of W.

Tilts. The interior of a wall W is the graph obtained from W if we remove from it all edges of
D(W ) and all vertices of D(W ) that have degree two in W. Given two walls W and W̃ of a graph
G, we say that W̃ is a tilt of W if W̃ and W have identical interiors.

2.2 Renditions

Paintings. Let ∆ be a closed disk. Given a subset X of ∆, we denote its closure by X̄ and its
boundary by bd(X). A ∆-painting is a pair Γ = (U, N) where

• N is a finite set of points of ∆,

• N ⊆ U ⊆ ∆, and

• U \N has finitely many arcwise-connected components, called cells, where, for every cell c,

◦ the closure c̄ of c is a closed disk and
◦ |c̃| ≤ 3, where c̃ := bd(c) ∩N.

We use the notation U(Γ) := U, N(Γ) := N and denote the set of cells of Γ by C(Γ). For convenience,
we may assume that each cell of Γ is an open disk of ∆.

Notice that, given a ∆-painting Γ, the pair (N(Γ), {c̃ | c ∈ C(Γ)}) is a hypergraph whose hy-
peredges have cardinality at most three and Γ can be seen as a plane embedding of this hypergraph
in ∆.

Renditions. Let G be a graph, and let Ω be a cyclic permutation of a subset of V (G) that we
denote by V (Ω). By an Ω-rendition of G we mean a triple (Γ, σ, π), where

(a) Γ is a ∆-painting for some closed disk ∆,

(b) π : N(Γ)→ V (G) is an injection, and

(c) σ assigns to each cell c ∈ C(Γ) a subgraph σ(c) of G, such that

(1) G =
⋃

c∈C(Γ) σ(c),
(2) for distinct c, c′ ∈ C(Γ), σ(c) and σ(c′) are edge-disjoint,
(3) for every cell c ∈ C(Γ), π(c̃) ⊆ V (σ(c)),
(4) for every cell c ∈ C(Γ), V (σ(c)) ∩

⋃
c′∈C(Γ)\{c} V (σ(c′)) ⊆ π(c̃), and

9



(5) π(N(Γ)∩ bd(∆)) = V (Ω), such that the points in N(Γ)∩ bd(∆) appear in bd(∆) in the
same ordering as their images, via π, in Ω.

Given an Ω-rendition (Γ, σ, π) of a graph G, we call a cell c of Γ trivial if π(c̃) = V (σ(c)).
We say that an Ω-rendition (Γ, σ, π) of a graph G is tight if the following conditions are satisfied:

(i) If there are two points x, y of N(Γ) such that e = {π(x), π(y)} ∈ E(G), then there is a cell
c ∈ C(Γ) such that σ(c) is the two-vertex connected graph (e, {e}),

(ii) for every c ∈ C(Γ), every two vertices in π(c̃) belong to some path of σ(c),

(iii) for every c ∈ C(Γ) and every connected component C of the graph σ(c)\π(c̃), if Nσ(c)(V (C)) ̸=
∅, then Nσ(c)(V (C)) = π(c̃),

(iv) there are no two distinct non-trivial cells c1 and c2 such that π(c̃1) = π(c̃2), and

(v) for every c ∈ C(Γ) there are |c̃| vertex-disjoint paths in G from π(c̃) to the set V (Ω).

(i)

(ii)

(iii)

(iv)

(v)

Figure 2: A graph G together with an Ω-rendition of G, where all tightness conditions are violated.

Lemma 3. There is a linear-time algorithm that, given a graph G and an Ω-rendition (Γ, σ, π) of
G, outputs a tight Ω-rendition of G.

In order to prove Lemma 3, and in particular condition (v), we need to define the notion of
triconnected components (see [34,43]).

Given a graph G, we say that G is triconnected if for each {u, v} ∈
(V

2
)
, there exist three

pairwise internally disjoint (u, v)-paths of G, say P1, P2, P3, such that for each {i, j} ∈
([3]

2
)
, Pi ̸= Pj ,
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V (Pi)∩V (Pj) = {u, v}. Let G be a graph and S ⊆ V (G) and let V1, . . . , Vq be the vertex sets of the
connected components of G\S. We define C(G, S) = {G1, . . . , Gq} where, for i ∈ [q], Gi is the graph
obtained from G[Vi ∪ S] if we add all edges between vertices in S. We call the members of the set
C(G, S) augmented connected components. Given a vertex x ∈ V (G) we define C(G, x) = C(G, {x}).

Given a graph G, the set Q(G) of its triconnected components is recursively defined as follows:

• If G is triconnected or a clique of size at most three, then Q(G) = {G}.

• If G contains a separator S where |S| ≤ 2, then Q(G) =
⋃

H∈C(G,S)Q(H).

Notice that all graphs in Q(G) are either cliques on at most three vertices or triconnected graphs
(graphs without any separator of less than three vertices).

Proof of Lemma 3. We argue about how to transform (Γ, σ, π) to a tight Ω-rendition of G in O(n+
m) time. See Figure 2 for an example of a graph G together with an Ω-rendition of G that violates
each of the five tightness conditions (indicated in the figure).

For the first property, let e = {π(x), π(y)} ∈ E(G) be an edge of G that belongs to some σ(c)
with |V (σ(c))| > 2. Then, we add a new cell cnew to the rendition, where π(c̃new) = {π(x), π(y)}
and σ(cnew) = (e, {e}) Also, we remove the edge e from σ(c).

For the second property, let c be a cell in C(Γ) and let C be the set of connected components of
the graph σ(c) and let C∅ = {C ∈ C | V (C)∩π(c̃) = ∅}. Observe that, because of condition (c.3) of
the definition of rendition, for every x ∈ π(c̃) there is some C ∈ C \ C∅ such that x ∈ V (C) and it
can happen that two vertices in π(c̃) belong to the vertex set of the same connected component in
C \ C∅. Therefore, if |C \ C∅| = 1, then (ii) holds. If |C \ C∅| > 1, then we obtain a new ∆-painting Γ′

as follows: We remove c from U(Γ) and we replace it with a new cell cC for each C ∈ C \ C∅ (this
can be done by taking a subset U ′ of U(Γ) such that (U ′ \N(Γ)) ∩ c has exactly |C \ C∅| arcwise-
connected components satisfying the conditions in the third item of the definition of a painting).
Then, to obtain the new rendition, we update σ so that each new cell cC is mapped to the graph
C, except one arbitrarily chosen C ′ ∈ C \ C∅, for which σ(cC′) is the union of C ′ with all connected
components in C∅.

For the third property, consider some c ∈ C(Γ). Let C be the set of connected components of
the graph σ(c)\π(c̃). We say that C1, C2 ∈ C are equivalent if Nσ(c)(V (C1)) = Nσ(c)(V (C2)). Notice
that this equivalence relation has at most eight equivalence classes, each corresponding to a subset
of π(c̃). For each subset X of π(c̃), we define the graph FX as the subgraph of σ(c) induced by the
union of X and the (union of the) vertex sets of the graphs in the corresponding equivalence class.
We then obtain a new ∆-painting Γ′ as follows: We remove c from U(Γ) and for every non-empty
X ∈ 2π(c̃) where FX is non-null, we add a new cell cX (this can be done by taking a subset U ′ of
U(Γ) such that (U ′ \N(Γ)) ∩ c has exactly as many arcwise-connected components as the number
of different sets X considered above, and these components satisfy the conditions in the third item
of the definition of a painting). Then, to obtain the new rendition, for every non-empty X ∈ 2π(c̃)

where FX is non-null, we update σ by mapping each cX to the graph FX . Observe that, for every
cell c in the new rendition and for every connected component C of the graph σ(c) \ π(c̃), with
Nσ(c)(V (C)) ̸= ∅, it holds that Nσ(c)(V (C)) = π(c̃).

For property (iv), for every two distinct non-trivial cells c1 and c2 with π(c̃1) = π(c̃2), we remove
c2 from the rendition and we update σ(c1) := σ(c1) ∪ σ(c2).
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The last property can be achieved as follows: we first construct an auxiliary planar graph G′

by substituting in G each σ(c) by a clique on π(c̃) (that is a vertex, an edge, or a triangle) and
by adding a new vertex vnew adjacent to all the vertices in V (Ω). We first consider a minimal set
S ∈ V (G′) of size at most two such that if C∗ is the augmented connected component of G′ \ S

that contains vnew, then C∗ is a triconnected component of G′. The set S can be computed in time
O(n + m) using the classic algorithm of Hopcroft and Tarjan [20] (see also [19]). We define a new
Ω-rendition (Γ′, σ′, π′) as follows: Let A be the set of all cells c of Γ such that E(σ(c))∩E(C∗) = ∅.
We obtain Γ′ from Γ by removing all cells c ∈ A and replacing them by a single cell c′. We set σ′ to
be the function that maps every cell c such that E(σ(c)) ⊂ E(C∗) to σ(c) and c′ to

⋃
c∈A σ(c). Also,

we set π′ to be the function that maps, for each cell c such that E(σ(c)) ⊂ E(C∗), c̃ to π(c̃) and c̃′

to S. Observe that, by definition of S, if for some cell c of Γ there are no |c̃| vertex-disjoint paths
in G from π(c̃) to the set V (Ω), then c belongs to A. Also, since C∗ is the triconnected component
of G′ that contains vnew, there are |S| vertex-disjoint paths in G from S to V (Ω). Therefore, in
(Γ′, σ′, π′), property (v) holds.

In the rest of this paper we use only conditions (i)–(iii) of the tightness definition. However, we
adopt the above, more strict, version of tightness as it will be useful in further applications.

2.3 Flatness pairs

Let W be an r-wall, for some odd integer r ≥ 3. We say that a pair (P, C) ⊆ D(W ) × D(W ) is
a choice of pegs and corners for W if W is a subdivision of an elementary r-wall W̄ where P and
C are the pegs and the corners of W̄ , respectively (clearly, C ⊆ P ). To get more intuition, notice
that a wall W can occur in several ways from the elementary wall W̄ , depending on the way the
vertices in the perimeter of W̄ are subdivided. Each of them gives a different selection (P, C) of
pegs and corners of W.

Let an odd integer r ≥ 3 and W be an r-wall of some graph G. We say that W is a flat r-wall
of G if there is a separation (X, Y ) of G and a choice (P, C) of pegs and corners for W such that:

• V (W ) ⊆ Y,

• P ⊆ X ∩ Y ⊆ V (D(W )), and

• if Ω is the cyclic ordering of the vertices X ∩Y as they appear in D(W ), then there exists an
Ω-rendition (Γ, σ, π) of G[Y ].

Because of Lemma 3, we can assume (and we also demand) that the Ω-rendition (Γ, σ, π) of
G[Y ] in the above definition is always tight. We mention here that Chuzhoy [7] uses a slightly
different notion of flatness, where the separation (X, Y ) consists of two edge-disjoint subgraphs,
instead of two vertex sets, and where the graph Y may play the role of the compass.

Flatness pairs. Given the above, we say that the choice of the 7-tuple R = (X, Y, P, C, Γ, σ, π)
certifies that W is a flat wall of G. We call the pair (W,R) a flatness pair of G and define the
height of the pair (W,R) to be the height of W. We use the term cell of R in order to refer to the
cells of Γ.
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We call the graph G[Y ] the R-compass of W in G, denoted by CompassR(W ). We define the
flaps of the wall W in R as FlapsR(W ) := {σ(c) | c ∈ C(Γ)}. Given a flap F ∈ FlapsR(W ), we define
its base as ∂F := V (F ) ∩ π(N(Γ)). A flap F ∈ FlapsR(W ) is trivial if |∂F | = 2 and F consists of
one edge between the two vertices in ∂F. Keep in mind that trivial flaps are only flaps that consist
of a single edge between the two vertices of their base. We call the edges of the trivial flaps short
edges of CompassR(W ). A cell c of R is untidy if π(c̃) contains a vertex x of W such that two of
the edges of W that are incident to x are edges of σ(c). Notice that if c is untidy then |c̃| = 3. A
cell c is tidy if it is not untidy.

Figure 3: A flat 7-wall W in a graph G whose flatness is certified by some rendition R where
the choice of pegs and corners in R corresponds to the squared vertices. We depict only the R-
compass of W that consists of W and some “black paths” between the vertices of W. The 5-wall
W̃ ′ consisting of the fat edges (purple, green, blue) is a flat R-normal wall of CompassR(W ). The
flatness of W̃ ′ is certified by the rendition R̃′ = (X ′, Y ′, P ′, C ′, Γ′, σ′, π′), where X ′ contains all the
vertices incident to at least one orange edge plus the non-depicted vertices in the grey area, Y ′

contains all vertices that are either in a “fat” black path or incident to at least two fat edges, the
pegs are the diamond vertices, and the corners are the fat diamond vertices (that are also pegs).
For the (tight) Ω′-rendition (Γ′, σ′, π′) of G[Y ′], see Figure 4.

In Figure 3 we depict a flat wall W in a graph G as well as the R-compass of W in G, for some
rendition R certifying its flatness. Notice that there is a unique subwall W ′ of W that is disjoint
from D(W ) and has height five. Interestingly, the subwall W ′ is not a flat wall of G, however there
is a tilt W̃ ′ of W ′ that is a flat wall of G. The wall W̃ ′ is depicted in Figure 3 and the rendition
certifying its flatness is depicted in Figure 4.
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Figure 4: The painting of the rendition R̃′ certifying the flatness of the 5-wall W̃ ′ of Figure 3. The
R̃′-compass of W̃ ′ has two types of flaps: those whose base has three vertices (they are images of
the blue cells) and those that are trivial (they are images of the purple cells).

Cell classification. Given a cycle C of CompassR(W ), we say that C is R-normal if it is not a
subgraph of a flap F ∈ FlapsR(W ). Given an R-normal cycle C of CompassR(W ), we call a cell
c of R C-perimetric if σ(c) contains some edge of C. Notice that if c is C-perimetric, then π(c̃)
contains two points p, q ∈ N(Γ) such that π(p) and π(q) are vertices of C where one, say P in

c , of the
two (π(p), π(q))-subpaths of C is a subgraph of σ(c) and the other, denoted by P out

c , (π(p), π(q))-
subpath contains at most one internal vertex of σ(c), which should be the (unique) vertex z in
∂σ(c) \ {π(p), π(q)}. We pick a (p, q)-arc Ac in ĉ := c ∪ c̃ such that π−1(z) ∈ Ac if and only if P in

c

contains the vertex z as an internal vertex.
We consider the circle KC =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{Ac | c is a C-perimetric cell of R} and we denote by ∆C the

closed disk bounded by KC that is contained in ∆. A cell c of R is called C-internal if c ⊆ ∆C

and is called C-external if ∆C ∩ c = ∅. Notice that the cells of R are partitioned into C-internal,
C-perimetric, and C-external cells.

Let c be a tidy C-perimetric cell of R where |c̃| = 3. Notice that c\Ac has two arcwise-connected
components and one of them is an open disk Dc that is a subset of ∆C . If the closure Dc of Dc

contains only two points of c̃ then we call the cell c C-marginal.

Influence. For every R-normal cycle C of CompassR(W ) we define the set

InfluenceR(C) = {σ(c) | c is a cell of R that is not C-external}.

A wall W ′ of CompassR(W ) is R-normal if D(W ′) is R-normal. Notice that every wall of W

(and hence every subwall of W ) is an R-normal wall of CompassR(W ). We denote by SR(W ) the
set of all R-normal walls of CompassR(W ). Given a W ′ ∈ SR(W ) and a cell c of R we say that c

is W ′-perimetric/internal/external/marginal if c is D(W ′)-perimetric/internal/external/marginal.
We also use KW ′ , ∆W ′ , InfluenceR(W ′) as shortcuts for KD(W ′), ∆D(W ′), InfluenceR(D(W ′)).
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Figure 5: A flat wall W in a graph G, the painting of a rendition R certifying its flatness, a
subwall W ′ of W, of height three, which is R-normal, and the R-flaps of W, that correspond to
either W ′-perimetric (depicted in grey) or W ′-internal cells (depicted in green). The circle KW ′

is the fat orange cycle. The W ′-marginal cells are depicted in light grey and the untidy cells are
those with dashed boundary.

Regular pairs. Let (W,R) be a flatness pair of a graph G. We call a flatness pair (W,R) of a
graph G regular if none of its cells is W -external, W -marginal, or untidy.

Tilts of flatness pairs. Let (W,R) and (W̃ ′, R̃′) be two flatness pairs of a graph G and let
W ′ ∈ SR(W ). We also assume that R = (X, Y, P, C, Γ, σ, π) and R̃′ = (X ′, Y ′, P ′, C ′, Γ′, σ′, π′). We
say that (W̃ ′, R̃′) is a W ′-tilt of (W,R) if

• R̃′ does not have W̃ ′-external cells,

• W̃ ′ is a tilt of W ′,

• the set of W̃ ′-internal cells of R̃′ is the same as the set of W ′-internal cells of R and their
images via σ′ and σ are also the same,

• CompassR̃′(W̃ ′) is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃

InfluenceR(W ′), and

• if c is a cell in C(Γ′) \ C(Γ), then |c̃| ≤ 2.

The next observation follows from the definitions of regular flatness pairs and tilts.
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Observation 4. If (W,R) is a regular flatness pair, then for every W ′ ∈ SR(W ) every W ′-tilt of
(W,R) is also regular.

The main results of this paper are the following.

Theorem 5. There exists an algorithm that given a graph G, a flatness pair (W,R) of G, and a
wall W ′ ∈ SR(W ), outputs a W ′-tilt of (W,R) in O(n + m) time.

Theorem 6. There is an algorithm that, given a graph G and a flatness pair (W,R) of G, outputs
a regular flatness pair (W ⋆,R⋆) of G, with the same height as (W,R) such that CompassR⋆(W ⋆) ⊆
CompassR(W ). This algorithm runs in O(n + m) time.

3 Applications

In this section we apply Theorem 5 and Theorem 6 in order to address the items (β), (γ), (δ),
and (ε) discussed in the introduction.

3.1 Tilts of subwalls

We present the following result from [32], stated in our new framework.

Proposition 7. There are two functions f1 : N→ N and f2 : N→ N and an algorithm that receives
as input a graph G, an odd integer r ≥ 3, a t ∈ N≥1, and an f1(t) · r-wall W in G, and outputs, in
O(t24 ·m + n) time,

• either that Kt is a minor of G or

• a set A ⊆ V (G) where |A| ≤ f2(t) and a flatness pair (W̃ ′, R̃′) of G \A of height r, such that
W̃ ′ is a tilt of a subwall W ′ of W.

Moreover f1(t) = O(t26) and f2(t) = O(t24).

An alternative of the above where f1(t) = O(t2) and f2(t) = t − 5 = O(t) has been proved by
Chuzhoy in [7] with a running time that is polynomial in the input size. However, we prefer the
version of Kawarabayashi, Thomas, and Wollan [32] as their algorithm is linear.

3.2 Apex-walls with compasses of bounded treewidth

We first define the notion of treewidth. A tree decomposition of a graph G is a pair (T, χ) where T

is a tree and χ : V (T )→ 2V (G) such that

1.
⋃

t∈V (T ) χ(t) = V (G),

2. for every edge e of G there is a t ∈ V (T ) such that χ(t) contains both endpoints of e, and

3. for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.
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The width of (T, χ) is defined as w(T, χ) := max
{
|χ(t)| − 1

∣∣ t ∈ V (T )
}
. The treewidth of G is

defined as
tw(G) := min

{
w(T, χ)

∣∣ (T, χ) is a tree decomposition of G
}
.

This subsection is dedicated to the proof of the following result.

Theorem 8. There is a function f3 : N → N and an algorithm that receives as input a graph G,

an odd integer r ≥ 3, and a t ∈ N≥1, and outputs, in 2Ot(r2) · n time, one of the following:

• a report that Kt is a minor of G,

• a tree decomposition of G of width at most f3(t) · r, or

• a set A ⊆ V (G), where |A| ≤ f2(t), a regular flatness pair (W,R) of G \A of height r, and a
tree decomposition of the R-compass of W of width at most f3(t)·r. (Here f2(t) is the function
of Proposition 7 and f3(t) = 2O(t2 log t).)

Moreover, to obtain an explicit dependence on t, this algorithm can be modified to run in time
22O(t2 log t)r log r+O(r2) · n + 22O(t2 log t)r3 log r.

We will need some additional results in order to prove Theorem 8. First we need the following
result that is derived from [37]. For a detailed analysis of the results of [37], see [3].

Proposition 9. There exists an algorithm with the following specifications:

Input: A graph G and a non-negative integer k such that |V (G)| ≥ 12k3.

Output: A graph G∗ such that |V (G∗)| ≤ (1− 1
16k2 ) · |V (G)| and:

• Either G∗ is a subgraph of G such that tw(G) = tw(G∗), or

• G∗ is obtained from G after identifying the vertices of a matching in G.

Moreover, this algorithm runs in 2O(k) · n time.

The following result of Kawarabayashi and Kobayashi [27], provides a linear relation between
the treewidth and the height of a largest wall in a minor-free graph.

Proposition 10. There is a function f4 : N → N such that, for every t, r ∈ N and every graph G

that does not contain Kt as a minor, if tw(G) ≥ f4(t) · r, then G contains an r-wall. In particular,
one may choose f4(t) = 2O(t2 log t).

The following is the main result of [6]. We will use it to compute a tree decomposition of a
graph of bounded treewidth.

Proposition 11. There is an algorithm that, given a graph G and an integer k, outputs either
a report that tw(G) > k, or a tree decomposition of G of width at most 5k + 4. Moreover, this
algorithm runs in 2O(k) · n time.

The following result is derived from [1]. We will use it in order to find a wall in a graph of
bounded treewidth, given a tree decomposition of it.
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Proposition 12. There is an algorithm that, given a graph G, a graph H on h edges without
isolated vertices, and a tree decomposition of G of width at most k, outputs, if it exists, a minor of
G isomorphic to H. Moreover, this algorithm runs in 2O(k log k) · hO(k) · 2O(h) ·m time.

We start by proving the following “light version” of Theorem 8.

Lemma 13. There exists an algorithm as follows:
Find-Wall(G, t, r)
Input: A graph G, an odd r ∈ N≥3, and a t ∈ N≥1.

Output: One of the following:

• a report that Kt is a minor of G,

• a report that G has treewidth at most f4(t) · r, where f4 is as in Proposition 10, or

• an r-wall W of G.

Moreover, this algorithm runs in 2Ot(r2) · n time. To obtain an explicit dependence on t, this
algorithm can be modified to run in time 22O(t2 log t)r log r+O(r2) · n + 22O(t2 log t)r3 log r.

Proof. We set c := f4(t) · r. Notice that there is a constant ct, depending on t, such that ct =
O(t
√

log t) and if |E(G)| > ct · |V (G)|, then G contains Kt as a minor [42]. We therefore assume
that |E(G)| = O(t

√
log t · n), otherwise we can immediately report that Kt is a minor of G and

stop. We now describe a recursive algorithm as follows.
We first argue for the base case, namely when |V (G)| < 12c3. To check whether Kt is a

minor of G, we use the minor-containment algorithm of Robertson and Seymour [38], which runs
in Ot(|V (G)|3) = Ot(r3) time, and if this is the case, we report the same and stop. If not, then we
check whether tw(G) ≤ c, using the algorithm of Arnborg, Corneil, and Proskurowski [4], in time
O(|V (G)|c+2) = 2Ot(r log r), and if this is the case, we report the same and stop. If not, we deal with
the case where G does not contain Kt as a minor and tw(G) > c. By Proposition 10 we know that
G contains an r-wall. To find such a wall, we first consider an arbitrary ordering (v1, . . . , v|V (G)|)
of the vertices of G. For each i ∈ [|V (G)|], we set Gi to be the graph induced by the vertices
v1, . . . , vi. We iteratively run the algorithm of Proposition 11 on Gi and c for ascending values of
i. This algorithm runs in 2O(c) · |V (G)| = 2Ot(r+log r) time. Let j ∈ [|V (G)|] be the smallest integer
such that the above algorithm outputs a report that tw(Gj) > c and notice that there exists a tree
decomposition (Tj , χj) of Gj (obtained by the one of Gj−1 by adding the vertex vj in the appropriate
bags) of width at most 5c + 5. The fact that Gj does not contain Kt as a minor and tw(Gj) > c,

implies that Gj contains an r-wall W, that is also a wall of G. To detect W, we run the algorithm
of Proposition 12 on Gj , W, and (Tj , χj). This algorithm runs in 2Ot(r2) · |V (G)| = 2Ot(r2+log r)

time. Therefore, in the case where |V (G)| < 12c3, we obtain one of the three possible outputs
in time 2Ot(r2). Alternatively, to get an explicit dependence on t, instead of applying the minor-
containment algorithm of Robertson and Seymour [38] in the beginning of the algorithm, we can do
the following: first, apply the algorithm of Proposition 11 on G and 12c3. Since |V (G)| < 12c3 and
therefore tw(G) < 12c3, this algorithm outputs a tree decomposition (T , χ) of G of width 62c3 + 4.
Then, we apply the algorithm of Proposition 12 on G, Kt, and (T , χ), to check whether Kt is a
minor of G, in time 22O(t2 log t)r3 log r.
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If |V (G)| ≥ 12c3, then we call the algorithm of Proposition 9 with input (G, c), which outputs
a graph G∗ such that |V (G∗)| ≤ (1− 1

16c2 ) · |V (G)| and

A. either G∗ is a subgraph of G such that tw(G) = tw(G∗), or

B. G∗ is obtained from G after identifying the vertices of a matching M of G.

In both cases, we recursively call the algorithm on G∗ and we distinguish the following two cases.

Case A: G∗ is a subgraph of G such that tw(G) = tw(G∗). If the recursive call on G∗ reports that
Kt is a minor of G∗, then we report the same for G as well. If the recursive call on G∗ reports that
tw(G∗) ≤ c, then we return that tw(G) ≤ c. If it outputs an r-wall W of G∗, then we return W as
a wall of G.

Case B: G∗ is obtained from G after contacting the edges of a matching of G.

If the recursive call on G∗ reports that tw(G∗) ≤ c, then we do the following. We first notice that
the fact that tw(G∗) ≤ c implies that tw(G) ≤ 2c, since we can obtain a tree decomposition (T , χ)
of G from a tree decomposition (T ∗, χ∗) of G∗, by replacing, in every t ∈ T ∗, every occurrence of
a vertex of G∗ that is a result of an edge contraction by its endpoints in G. Thus, we can call the
algorithm of Proposition 12 on G, Kt, and (T , χ) in order to check whether G contains Kt as a
minor in 2Ot(r log r) · n steps and if this is the case, we report the same and stop (keep in mind that
c = Ot(r)). If not, then using the same algorithm we can also find in G, if it exists, an r-wall W of
G in 2Ot(r2) ·n time (this can be done by first finding an r-wall as a minor of G using Proposition 12
and then, since every wall has maximum degree three, finding a subdivision of the obtained r-wall
as a subgraph of G). If this is the case, i.e., we find an r-wall W of G, we report it and stop. In
the remaining case, we can safely report, because of Proposition 10, that tw(G) ≤ f4(t) · r = c.

If the recursive call on G∗ outputs an r-wall W ∗ of G∗, then by uncontracting the edges of M

in W ∗ we can also return an r-wall of G. Finally, if the output is that Kt is a minor of G∗, then we
return that the same holds for G.

It is easy to see that the running time of the above algorithm is

T (n, r, t) ≤ T ((1− 1
12c2 ) · n, r, t) + 2Ot(r2) · n,

where for n < 12c3, T (n, r, t) = 22O(t2 log t)·r log r+O(r2) +Ot(r3) = 2Ot(r2). Recall that the alternative
subroutine that we described above in the case where n < 12c3 and we ask for an explicit dependence
on t, runs in time T (n, r, t) = 22O(t2 log t)r3 log r. Therefore, we either have that T (n, r, t) = 2Ot(r2) · n
or T (n, r, t) = 22O(t2 log t)r log r+O(r2) · n + 22O(t2 log t)r3 log r, as claimed.

Given a flatness pair (W,R) of a graph G and a set L ⊆ V (G), we say that (W,R) is L-avoiding
if L ∩ V (CompassR(W )) = ∅. We now proceed to the proof of Theorem 8.

Proof of Theorem 8. Notice that there is a constant ct, depending on t, such that ct = O(t
√

log t)
and if |E(G)| > ct · |V (G)|, then G contains Kt as a minor [42]. We therefore assume that |E(G)| =
O(t
√

log t · n), otherwise we can immediately report that Kt is a minor of G and stop. We first
give an algorithm with the following specifications. This algorithm involves recursion assuming an
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input with an additional set L that should be avoided by the desired flatness pair. For notational
convenience, we define z : N2 → N as z(r, t) = 2 · (⌈

√
f2(t) + 2⌉+ 1) · f4(t) · (f1(t) + 1) · (r + 2).

Algorithm Find_Low_TW_compass(G, r, t, L).
Input: an odd r ∈ N≥3, a t ∈ N≥1, a graph G where tw(G) > z(r, t), and a set L ⊆ V (G) where
|L| ≤ f2(t) + 1.

Output: either a report that Kt is a minor of G or a set A ⊆ V (G), where |A| ≤ f2(t), an L-
avoiding flatness pair (W,R) of G \ A of height r, and a tree decomposition of the R-compass of
W of width at most 5 · z(r, t) + 4.

Step 1. We set ℓ as the smallest odd integer that is not smaller than
√

f2(t) + 2. Also, let f̃1(t) be
the smallest odd integer that is not smaller than f1(t). These augmentations are necessary in order
to guarantee that the considered subwalls will be of odd height. We also set r′ = 2 · (r + 2) + 1.

Run the algorithm of Lemma 13 for G, ℓ · f̃1(t) · r′, and t. This takes time 2Ot(r2) · n, or, for an
explicit dependence on t, it can be modified to take time 22O(t2 log t)r log r+O(r2) · n + 22O(t2 log t)r3 log r.
If the output is a report that Kt is a minor of G, then return the same. Otherwise, because,
tw(G) > z(r, t) ≥ ℓ · f4(t) · f̃1(t) · r′, the algorithm returns an ℓ · f̃1(t) · (2(r + 2) + 1)-wall W of G.

Step 2. Call the algorithm of Proposition 7 on G, ℓ · r′, t, and W. This takes O(t25√log t ·n) time,
since |E(G)| = Ot(n). If the output is a report that Kt is a minor of G, then return the same.
Otherwise, we have a set A ⊆ V (G), where |A| ≤ f2(t), and a flatness pair (W̃ ′, R̃′) of G \ A of
height ℓ · r′.

Step 3. Let W ′′ be a subwall of W̃ ′ of height r′ such that none of the vertices in L belongs to
InfluenceR̃′(W ′′). The subwall W ′′ exists because ℓ2 ≥ f2(t) + 2 ≥ |L|+ 1 and W̃ ′ has height ℓ · r′.

We also consider four pairwise disjoint (r + 2)-subwalls of W ′′, namely W ′
1, W ′

2, W ′
3, and W ′

4, and
observe that each W ′

i is also a subwall of W̃ ′. For every i ∈ [4], we call the algorithm of Theorem 5
on G\A, (W̃ ′, R̃′), and W ′

i which outputs, in Ot(n) time, a W ′
i -tilt (W̃ ′

i , R̃
′
i) of (W̃ ′, R̃′). Let K ′

i be
the compass of W̃ ′

i in R̃′
i. We finally fix i so that W̃ ′

i is a wall among W ′
1, W ′

2, W ′
3, and W ′

4 where
|V (K ′

i)| is minimized. Observe that |V (K ′
i)| ≤ |V (G)|/4 and that (W̃ ′

i , R̃
′
i) is L-avoiding. Indeed,

since (W̃ ′
i , R̃

′
i) is a W ′

i -tilt of (W̃ ′, R̃′), K ′
i = CompassR̃′

i
(W̃ ′

i ) is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃

InfluenceR̃′(W ′
i )

that, in turn, is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃

InfluenceR̃′(W ′′) and by definition of W ′′, InfluenceR̃′(W ′′)∩L = ∅.
We update W ← W̃ ′

i , R ← R̃′
i and we set K = CompassR(W ). Recall that (W,R) is an

L-avoiding flatness pair of G \A of height r + 2.

Step 4. We now consider the subwall W ′ of W obtained from W \D(W ) after repeatedly removing
vertices of degree one until no such vertices exist anymore. Notice that W ′ is an r-wall of G\A. We
call the algorithm of Theorem 5 on G \ A, (W,R), and W ′ which outputs, in O(t

√
log t · n) time,

a W ′-tilt (W̃ ′, R̃′) of (W,R). Let K ′ be the R̃′-compass of W̃ ′. Clearly, (W̃ ′, R̃′) is L-avoiding as
well.
Step 5. Let GD be the graph obtained from G[V (K) ∪A] if we contract all the vertices of D(W )
to a single vertex v∗. Since (W̃ ′, R̃′) is a W ′-tilt of (W,R), K ′ = CompassR̃′(W̃ ′) is a subgraph of⋃⋃⋃⋃⋃⋃⋃⋃⋃

InfluenceR(W ′), and therefore the perimeter of W and the graph K ′ do not have any vertex in
common. This implies that K ′ is a subgraph of GD.

Step 6. Call the algorithm of Proposition 11 with input GD and z(r, t). This runs in 22O(t2 log t)·r ·n
time. If the output is a tree decomposition of GD of width at most 5 · z(r, t) + 4, then, as K ′ is a
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subgraph of GD, we have that (W̃ ′, R̃′) is an L-avoiding flatness pair of G\A of height r where the
R̃′-compass of W̃ ′ has treewidth at most 5 · z(r, t) + 4. In this case, the algorithm outputs the pair
(W̃ ′, R̃′) and the corresponding tree decomposition of the R̃′-compass K ′ of W̃ ′ obtained from the
one of GD by removing the vertices in V (GD) \ V (K ′).
Step 7. Suppose now that tw(GD) > z(r, t). Notice that, by construction, if GD \ A has
an {v∗}-avoiding flatness pair (W ∗,R∗) of height r, then (W ∗,R∗) will also be an L-avoiding
flatness pair of G \ A. Moreover, since GD is a minor of G, if GD contains Kt as a minor
then also G does. Notice also that |A ∪ {v′}| ≤ f2(t) + 1. Therefore, we can safely return
Find_Low_TW_compass(GD, r, t, A ∪ {v′}). This completes the description of the algorithm
and its correctness.

Notice that the running time of the above algorithm is

T (n, r, t) ≤ T (n/4 + f2(t), r, t) + 2Ot(r2) · n,

which implies that T (n, r, t) = 2Ot(r2) · n, and can be modified in order to obtain T (n, r, t) =
22O(t2 log t)r log r+O(r2) · n + 22O(t2 log t)r3 log r.

We define the function f3 : N → N so that f3(t) = min{c ∈ N | ∀r ≥ 3, 5 · z(r, t) + 4 ≤ c · r}.
The algorithm claimed by the theorem calls first the algorithm of Proposition 11 with input G and
z(r, t). This runs in 22O(t2 log t)·r · n time. If the output is a tree decomposition of G of width at
most 5 · z(r, t) + 4 ≤ f3(t) · r, then we report this and we are done. If the output is a report that
tw(G) > z(r, t), then we run Algorithm Find_Low_TW_compass(G, r, t, L) for L = ∅. This
may provide either a report that Kt is a minor of G, or a set A ⊆ V (G), where |A| ≤ f2(t), a
flatness pair (W,R) of G \ A of height f2(t) that can be made regular by Theorem 6, and a tree
decomposition of the R-compass of W of width at most 5 · z(r, t) + 4 ≤ f3(t) · r, and these are the
possible outputs of the claimed algorithm.

3.3 Homogeneous walls

Palettes and homogeneity. Let w ∈ N, let G be a graph, and let (W,R) be a flatness pair
of G. A flap-coloring of (W,R) with w colors is any function ζ : FlapsR(W ) → [w]. For every
R-normal cycle C of CompassR(W ), we define ζ-palette(C) = {ζ(F ) | F ∈ InfluenceR(C)}. We say
that the flatness pair (W,R) of G is ζ-homogeneous if every internal brick of W (seen as a cycle of
CompassR(W )) has the same ζ-palette.

Finding a homogeneous flatness pair inside a flatness pair has a price, which is determined by
the following lemma.

Lemma 14. There is a function f5 : N2 → N, whose images are odd integers, such that for every
w ∈ N≥1 and every odd integer r ≥ 3, if G is a graph, (W,R) is a flatness pair of G of height
f5(r, w), and ζ is a flap-coloring of (W,R) with w colors, then W contains some subwall W ′ of
height r such that every W ′-tilt of (W,R) is ζ-homogeneous. Moreover, f5(r, w) = O(rw).

Proof. Let w ∈ N and an odd integer r ≥ 3. We define the function f5 : N2 → N so that, for every
x ∈ N, f5(x, 1) = x while, for y ≥ 2, we set f5(x, y) = x · (f5(x, y − 1)− 1) + 1. Notice that if x is
odd, then f5(x, y) is also odd for every y ∈ N≥1.

21



Let G be a graph, (W,R) be a flatness pair of G of height f5(r, w), and ζ be a flap-coloring of
(W,R) with w colors. We prove the lemma by induction on w. Clearly, if w = 1, then the lemma
holds trivially as, in this case, for every brick B of W, ζ-palette(B) = {1}, and therefore as W

is a subwall of itself, every W -tilt of (W,R) is a flatness pair of G of height f5(r, 1) = r that is
ζ-homogeneous.

Suppose now that w ≥ 2 and that the lemma holds for smaller values of w. We set q =
f5(r, w − 1). We define the subwall W ′ of W by taking the union of the i-th horizontal and the

i-th vertical paths of W for all i ∈ {j · (q− 1) + 1 | j ∈ [r]}. If for every brick B of W ′ it holds that
ζ-palette(B) = [w], then consider a W ′-tilt (W̃ ′, R̃′) of (W,R). The third property in the definition
of a tilt of a flatness pair implies that for every internal brick B̃ of W̃ ′ there is an internal brick
B of W ′ such that InfluenceR(B) = InfluenceR̃′(B̃). Therefore, for every internal brick B̃ of W̃ ′,

ζ-palette(B̃) = [w]. Therefore, (W̃ ′, R̃′) is a flatness pair of G of height r that is ζ-homogeneous.
Otherwise, let B̆ be some brick of W ′ such that |ζ-palette(B̆)| < w. Notice that B̆ is the perimeter
of a subwall W̆ of W of height q. From the induction hypothesis applied to W̆ , we have that W̆ has
a subwall W ′ (that is a subwall of W as well) such that every W ′-tilt of (W,R) is a flatness pair of
G of height r that is ζ-homogeneous. The lemma follows by observing that f5(r, w) = O(rw).

We now prove the main result of this subsection.

Lemma 15. There is an algorithm that receives as input w ∈ N≥1, an odd integer r ≥ 3, a graph
G, a flatness pair (W,R) of G of height f5(r, w), and a flap-coloring ζ of (W,R) with w colors, and
outputs a ζ-homogeneous flatness pair (W̆ , R̆) of G of height r that is a W ′-tilt of (W,R) for some
subwall W ′ of W. This algorithm runs in time 2O(wr log r) · (n + m).

Proof. Let W be the collection of all r-subwalls of W. Clearly |W| =
(f5(r,w)

r

)2
= 2O(wr log r). For

each W ′ ∈ W, we call the algorithm of Theorem 5 on G, (W,R), and W ′, which outputs, a W ′-tilt
(W̃ ′, R̃′) of (W,R). This algorithm runs in O(n + m) time. Then, for every W ′ ∈ W, we check
whether (W̃ ′, R̃′) is ζ-homogeneous by computing the ζ-palette(B̃) for every internal brick B̃ of W̃ ′.

This is done in linear time. Lemma 14 guarantees that since the height of (W,R) is f5(r, w), W

contains a subwall W ′ of height r such that every W ′-tilt of (W,R) is ζ-homogeneous. Therefore,
the above procedure will detect a flatness pair (W̃ ′, R̃′) of G that is ζ-homogeneous and has height
r, which we return.

3.4 Levelings and well-aligned flatness pairs

Let G be a graph and let (W,R) be a flatness pair of G. Let also R = (X, Y, P, C, Γ, σ, π), where
(Γ, σ, π) is an Ω-rendition of G[Y ] and Γ = (U, N) is a ∆-painting. The ground set of W in R

is groundR(W ) := π(N(Γ)) and we refer to the vertices of this set as the ground vertices of the
R-compass of W in G. Notice that groundR(W ) may contain vertices of CompassR(W ) that are not
necessarily vertices of W. For instance, in Figure 3, all the ground vertices of the R̃′-compass of W̃ ′

are vertices of W̃ ′, while in Figure 5, there are ground vertices of the R-compass of W that are not
vertices of W.

We define the R-leveling of W in G, denoted by WR, as the bipartite graph where one part is
the ground set of W in R, the other part is a set vflapsR(W ) = {vF | F ∈ FlapsR(W )} containing
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Figure 6: The R̃′-leveling of the flat 5-wall W̃ ′ of Figure 3.

one new vertex vF for each flap F of W in R, and, given a pair (x, F ) ∈ groundR(W )×FlapsR(W ),
the set {x, vF } is an edge of WR if and only if x ∈ ∂F. We call the vertices of groundR(W ) (resp.
vflapsR(W )) ground-vertices (resp. flap-vertices) of WR. Notice that the incidence graph of the
plane hypergraph (N(Γ), {c̃ | c ∈ C(Γ)}) is isomorphic to WR via an isomorphism that extends
π and, moreover, bijectively corresponds cells to flap-vertices. This permits us to treat WR as
a ∆-embedded graph where bd(∆) ∩WR is the set X ∩ Y. As an example, see Figure 6 for the
R̃′-leveling of the flat 5-wall W̃ ′ of Figure 3.

We denote by W • the graph obtained from W if we subdivide once every edge of W that is a
short edge of CompassR(W ). The graph W • is a “slightly richer variant” of W that is necessary
for our definitions and proofs, namely to be able to associate every flap-vertex of an appropriate
subgraph of WR (that we will denote by RW ) with a non-empty path of W •, as we proceed to
formalize. We say that (W,R) is well-aligned if the following holds:

WR contains as a subgraph an r-wall RW where D(RW ) = D(WR) and W • is isomorphic
to some subdivision of RW via an isomorphism that maps each ground vertex to itself.

Suppose now that the flatness pair (W,R) is well-aligned. We call the wall RW in the above
condition a representation of W in WR.

As an example, notice that the flatness pair (W̃ ′, R̃′) of Figure 3 is well-aligned while the flatness
pair (W,R) in Figure 5 is not since, for example, in the uppermost rightmost grey cell, the upper
right ground vertex can not be mapped to itself in order to yield a subgraph RW of WR as in the
above property.

Lemma 16. If a flatness pair (W,R) is regular, then it is also well-aligned. Moreover, there is an
O(n) time algorithm that, given G and such a (W,R), outputs a representation RW of W in WR.

Proof. Let (W,R) be a regular flatness pair. All cells of R are tidy and there are no W -external
or W -marginal cells. We also denote R = (X, Y, P, C, Γ, σ, π). Recall that W • (whose edges are
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depicted in orange in Figure 7) is the graph obtained from W if we subdivide once every short edge
of CompassR(W ) that is also an edge of W. Let ξ be the function mapping every “new” vertex of W •

created by a subdivision of such a short edge of CompassR(W ) (depicted by a cross in Figure 7) to
the corresponding (trivial) flap-vertex of WR (that is depicted as one of the blue vertices of degree
two).

Consider RW = (B ∪ F1 ∪ F2, E′), where

B = W ∩ groundR(W ),
F1 = {ξ(x) | x is a subdivision vertex of W •}, and
F2 = {vF ∈ vflapsR(W ) | E(W ∩ F ) ̸= ∅ and F is a non-trivial flap}.

In Figure 7, the vertices in B are depicted in red in Figure 7 while the vertices in F1 ∪ F1 are
depicted in blue. Observe that B ∪ F1 ∪ F2 ⊆ V (WR). We define E′ as follows. For every vF ∈ F1
we include in E′ both edges of WR that are incident to vF . For every vF ∈ F2 such that F \ ∂F

contains a 3-branch vertex of W we include in E′ the three edges of WR that are incident to vF .

Finally, for every vF ∈ F2 such that F \ ∂F does not contain any 3-branch vertex of W we first
consider the non-trivial path PF in W ∩F and we add in E′ the edges of WR between the flap-vertex
vF and the endpoints of PF . Notice that since σ−1(F ) is tidy, PF does not contain internal vertices
in ∂F. Observe that RW is indeed a wall of WR, where D(WR) = D(RW ), that can be computed
in O(n) time. We now define a mapping ρ : V (RW ) → V (W •) and a function τ mapping the
edges in E(RW ) (depicted as purple edges in Figure 7) to subpaths of W • as follows (an intuitive
explanation follows the formal definition):

Figure 7: A well-aligned flatness pair (W,R) where W is a 3-wall, the wall W • (whose edges are
depicted in red and the new subdivision vertices are depicted by small crosses), the leveling WR

of W (whose edges are depicted in purple), and the subgraph RW of WR (depicted by fat purple
edges).
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• If x ∈ B, then ρ(x) = x.

• If vF ∈ F1 and ∂F = {x, y}, then we set ρ(vF ) = ξ−1(vF ), τ({x, vF }) = {x, ξ−1(vF )}, and
τ({y, vF }) = {y, ξ−1(vF )}.

• If vF ∈ F2 and vF is a branch vertex of RW , then assume first that ∂F = {x, y, z}. Because the
cell σ−1(F ) is tidy the graph F \∂F contains a unique 3-branch vertex w of W (or equivalently
of W •) and F ∩W • consists of three internally disjoint paths Pw,x, Pw,y, and Pw,z in F from
w to x, y, and z, respectively. We set ρ(vF ) = w, τ({x, vF }) = Pw,x, τ({y, vF }) = Pw,y, and
τ({z, vF }) = Pw,z.

• If vF ∈ F2 and vF is not a 3-branch vertex of RW , then there exist two vertices x, y of
RW such that NRW

(vF ) = {x, y}. Pick an internal vertex w of the (x, y)-path PF and set
ρ(vF ) = w (recall that, as σ−1(F ) is tidy, none of the internal vertices of the path PF is a
ground vertex). If Pw,x is the (w, x)-subpath of PF , and Pw,y is the (w, y)-subpath of PF ,

then set τ({x, vF }) = Pw,x and τ({y, vF }) = Pw,y.

Intuitively, ρ maps each vertex of RW to a vertex in W • in the following way: if x ∈ B, then, since
x is already a vertex in W and therefore in its subdivision W •, x is mapped to itself. If x ∈ F1, then
x = ξ(x), for some subdivision vertex of W • (recall that W • is obtained from W by subdividing
once all short edges), and ρ maps x to x. Also, the function τ , which maps edges of RW to paths in
W •, maps the (two) edges adjacent to x to the (two) corresponding edges in W • that are adjacent
to x. Finally, if vF ∈ F2, then vF is a flap-vertex of WR such that the corresponding flap F is
“traversed” by some path of the wall W and is non-trivial, i.e., contains non-boundary vertices.
We assume that ∂F = {x, y, z} and we consider two cases. First, if vF is a 3-branch vertex of RW ,
then tidiness of the cells implies that F contains a unique 3-branch vertex w of W , to which vF is
mapped via ρ. Then, the function τ maps the three edges of RW between vF and the boundary
vertices x, y, z (that belong to B) to the corresponding (internally disjoint) paths of W from w to
the boundary vertices x, y, z of F . Otherwise, i.e., if vF is not a 3-branch vertex of RW , then the
intersection of W • and F is a single path connecting two boundary vertices of F , say x and y. We
now choose an arbitrary internal vertex w of this path, we set ρ(vF ) = w and we map, via τ , the
(two) edges of RW incident to vF to the (two internally disjoint) paths connecting w to x and y in
W •.

Consider a subdivision H of RW where each edge e ∈ E(RW ) is replaced with a path Pe of
length |τ(e)|. We extend ρ by mapping, via ρ, each vertex of Pe to the corresponding vertex in the
corresponding path in W •. Then, the definition of the mappings ρ and τ above implies that this
subdivision H of RW is isomorphic to W • (see Figure 7 for a visualization).

As all members of B = W ∩ groundR(W ) are, by definition, fixed points of ρ, then (W,R) is
well-aligned.

4 Proofs of Theorem 5 and Theorem 6

This section is devoted to the proofs of Theorem 5 and Theorem 6. We first present some definitions
in Subsection 4.1 and Subsection 4.2, necessary for the proof of the main technical lemma of this
paper, namely Lemma 17, presented in Subsection 4.3.
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4.1 Stretchings

Let F be a graph and x and y be two distinct vertices belonging to the same connected component
of F. We say that a sequence ⟨F1, . . . , Fr⟩ of subgraphs of F is a stretching of F along the pair
(x, y) if there is a shortest (x, y)-path PF in F such that the sequence ⟨F1, . . . , Fr⟩ consists of the
(unique) minimum-sized collection of subpaths of PF with the following properties:

• for every i ∈ [r], Fi is a path where all internal vertices have degree two in F,

• for every i, j ∈ [r] such that i ̸= j, Fi and Fj have no common edges,

• F1 ∪ · · · ∪ Fr = PF ,

• for every {i, j} ∈
([r]

2
)
, Fi ∩ Fj ̸= ∅ if and only if |i− j| = 1, and

• x ∈ V (F1) and y ∈ V (Fr).

For an example of a streching of a graph F along a pair (x, y), see Figure 8.

PF

F

F5F1 F2 F3 F6F4

F \ V (PF )

y yxx

z

Figure 8: The stretching of a graph F along the pair (x, y).

4.2 Classifying perimetric cells

Let G be a graph and let (W,R) be a flatness pair of G, where R = (X, Y, P, C, Γ, σ, π). Let
W ′ ∈ SR(W ). We now further refine the classification of the cells of R that we gave in Subsec-
tion 2.3 with respect to W ′. See Figure 9 for an illustration of the ways a W ′-perimetric cell c of Γ
may intersect ∆W ′ . The simplest case when |c̃| = 2, depicted in the leftmost configuration of the
figure. The remaining configurations correspond to the case where ∂σ(c) = {x, y, z} where Ac is a
(π−1(x), π−1(y))-arc (see Subsection 2.3 for the definition of the paths P in

c and P out
c , the arc Ac,

and the vertex z). The second/fifth, third/sixth, and forth/seventh configurations correspond to
the case where z is an internal vertex of P in

c , P out
c , or none of them, respectively. This permits a

further classification of the W ′-perimetric cells of Γ as follows. A cell c of Γ is W ′-inner-perimetric
(resp. W ′-outer-perimetric) if c ∩∆W ′ is situated in c as indicated in the left (resp. right) part of
Figure 9.

We denote the set of cells of Γ that are W ′-inner-perimetric, W ′-outer-perimetric, W ′-internal,
and W ′-strictly external by C ip

W ′(Γ), Cop
W ′(Γ), C in

W ′(Γ), and Cex
W ′(Γ), respectively. See Figure 10 for

an example of this further classification (relatively to Figure 5). Notice that all W ′-marginal cells
of Γ are W ′-outer-perimetric cells (corresponding to the last two cases of Figure 9).
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W ′-inner-perimetric cells

Ac

W ′-outer-perimetric cells

Ac

c ∩ ∆W ′

Ac Ac

c ∩ ∆W ′ c ∩ ∆W ′
Ac

c ∩ ∆W ′

AcAc

c ∩ ∆W ′ c ∩ ∆W ′c ∩ ∆W ′

Figure 9: Seven ways ∆W ′ may traverse a cell. The arc Ac is depicted in orange.

4.3 The main lemma

Lemma 17. There is an algorithm that, given a graph G, a flatness pair (W,R), where R =
(X, Y, P, C, Γ, σ, π), and a wall W ′ ∈ SR(W ), outputs, in O(n + m) time, a flatness pair (W̃ ′, R̃′)
where R̃′ = (X ′, Y ′, P ′, C ′, Γ′, σ′, π′) such that

1. all cells of R̃′ are W̃ ′-internal or W̃ ′-inner-perimetric,

2. W̃ ′ is a tilt of W ′,

3. σ′|C in
W̃ ′ (Γ′) = σ|C in

W ′ (Γ), i.e., the set of W̃ ′-internal cells of R̃′ is the same as the set of W ′-
internal cells of R and their images via σ′ and σ are also the same, and

4. CompassR̃′(W̃ ′) is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃

InfluenceR(W ′).

Moreover, if all W ′-internal or W ′-inner-perimetric cells of R are tidy, then the flatness pair
(W̃ ′, R̃′) is regular.

Proof. Since R = (X, Y, P, C, Γ, σ, π) is a 7-tuple certifying that W is flat in G , we have that the
triple (Γ, σ, π) is an Ω-rendition of G[Y ], where Γ = (U, N) is a ∆-painting.

We define a series of ingredients that will permit us to define an alternative 7-tuple R̃′. We first
deal with W ′-inner-perimetric cells. For every W ′-inner-perimetric cell c ∈ C ip

W ′(Γ), we assume that
π(c̃) = {xc, yc, zc} and that the two endpoints of the non-trivial path of D(W ′)∩σ(c) (by non-trivial
we refer to the path that has distinct endpoints). Then, we consider an (π−1(xc), π−1(yc))-arc Yc

of ∆ that intersects the cell c only in the points π−1(xc) and π−1(yc) (see Figure 11, where Yc is
depicted in red). Also, we set F c

1 = σ(c), rc = 1, and V c
mid = π(c̃)∩ V (D(W ′)) (the vertices in V c

mid
are depicted in orange in Figure 11).

Next, we consider a W ′-outer-perimetric cell c ∈ Cop
W ′(Γ). We assume that π(c̃) = {x, y, z} and

that x and y are the two endpoints of the non-trivial path of D(W ′) ∩ σ(c). We also define V c
W ′

as the set of all internal vertices of this path that are different from z. Let ⟨F c
1 , . . . , F c

rc
⟩ be the

stretching of σ(c) along the pair (x, y) and let vi, for i ∈ [rc − 1], be the common endpoint of F c
i

and F c
i+1. Notice that by tightness property (i), rc ≥ 2. This permits us to set up a special vertex

vc = v1. We also set

V c
mid = {x, v1, . . . , vrc−1, y}, V c

in =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{V (F c

i ) | i ∈ [rc]} \ V c
mid.

Let p0 = π−1(x), prc = π−1(y), and create a collection c1, . . . , crc of open disks in c and a set
p1, . . . , prc−1 of points in c such that

• p0 ∈ bd(c1) and prc ∈ bd(crc), p0 ̸= p1, and prc ̸= prc−1,
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Figure 10: A flat wall W in a graph G, the painting of a rendition R certifying its flatness, a subwall
W ′ of W, of height three, which is R-normal, and the R-flaps of W, corresponding to the cells of
R that are not W ′-external. The edges and the non-boundary vertices of the flaps corresponding
to the W ′-external cells of R (depicted in pink) are not depicted (however their boundary vertices
that are not in D(W ′) are depicted in grey). There are nine W ′-outer-perimetric cells of R (in
blue) and seven W ′-inner-perimetric cells (in yellow). Also, there are thirteen W ′-internal cells of
R (in green). Among the W ′-inner-perimetric and W ′-internal cells of R, those that are untidy are
depicted with a dashed boundary. The orange cycle is the circle KW ′ .

• for i ∈ [rc − 1], c̄i ∩ c̄i+1 = {pi}, and

• for every {i, j} ∈
([rc]

2
)
, c̄i ∩ c̄j ̸= ∅ if and only if |i− j| = 1.

We define the cell replacement of c as the set c-repl(c) = {c1, . . . , crc}, the point replacement of
c as the set p-repl(c) = {p0, . . . , prc}, and we set Cc

new =
⋃⋃⋃⋃⋃⋃⋃⋃⋃

c-repl(c) and N c
new =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
p-repl(c).

We also define the arc Yc as an arc of c where pi ∈ Yc, i ∈ [0, rc], such that p0, prc are the extreme
points of Yc, and Yc is traversing c̃ in a way that removing Yc from c leaves π−1(z) and c1, . . . , crc in
different arcwise-connected components of c\Yc (as depicted by the red line in Figure 12). Observe
that

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{Yc | c ∈ C ip

W ′(Γ) ∪ Cop
W ′(Γ)} is a “red” cycle of ∆. Let ∆′ be the disk bounded by this cycle

for which ∆′ ⊆ ∆.
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c ∩∆W ′ c ∩∆W ′ c ∩∆W ′
c ∩∆W ′ c ∩∆W ′

Figure 11: The four cases of the definition of the arc Yc (depicted in red), for W ′-inner-perimetric
cells. The boundary of ∆W ′ is depicted in orange and the boundary of ∆ is depicted in purple.

c ∩∆W ′c ∩∆W ′c ∩∆W ′

c2
c1 prc−1 prc

p2p1
p0

Yc

crc

Figure 12: The definition of the replacement sequence c1, . . . , crc and the arc Yc for the three cases
of W ′-external cells of Cop

W ′(Γ).

We set

H =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{F c

1 ∪ · · · ∪ F c
rc
| c ∈ Cop

W ′(Γ)}, VW ′ =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{V c

W ′ | c ∈ Cop
W ′(Γ)},

Vmid =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{V c

mid | c ∈ C ip
W ′(Γ) ∪ Cop

W ′(Γ)}, Vin =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{V c

in | c ∈ Cop
W ′(Γ)},

Nnew =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{N c

new | c ∈ Cop
W ′(Γ)}, Unew =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{Cc

new ∪N c
new | c ∈ Cop

W ′(Γ)}.

We now define the wall W̃ ′ = (W ′ \ VW ′) ∪H, i.e., we extract from W ′ the internal vertices of the
subpaths of W ′ that are intersected by images, via σ, of W ′-outer-perimetric cells and we substitute
them by the paths of their stretchings. Clearly this does not affect the interior of W ′, and therefore
W̃ ′ is a tilt of W ′, yielding Property 2 of the statement of the lemma. Next we define a separation
(X ′, Y ′) of G so that

Y ′ =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{V (σ(c)) | c ∈ C ip

W ′(Γ) ∪ C in
W ′(Γ)} ∪ Vin ∪ Vmid, X ′ = (V (G) \ Y ′) ∪ Vmid.

In other words, Y ′ consists of the images of the internal cells and the vertices of every path F c
i ,

while X ′ consists of everything else, except from Vmid (that is, the set X ′ ∩ Y ′). Notice that

G[Y ′] is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{σ(c) | c ∈ C in

W ′(Γ) ∪ C ip
W ′(Γ) ∪ Cop

W ′(Γ)} = InfluenceR(W ′). (1)

We define the pair (P ′, C ′) as follows. Let c be a W ′-outer-perimetric cell and σ(c)∩V (D(W ′))
contain a vertex w such that either w is a 3-branch vertex of W ′ or w ∈ P (resp. w ∈ C). We
distinguish two cases. If w ∈ Y ′, then we include w in P ′ (resp. C ′). If w ̸∈ Y ′, then we include
the special vertex vc in P ′ (resp. C ′).
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We next define an Ω′-rendition (Γ′, σ′, π′) of G[Y ′] where Γ′ = (U ′, N ′) is a ∆′-painting. For
this we set Γ′ = (U ′, N ′), where

U ′ =
((

U \
⋃⋃⋃⋃⋃⋃⋃⋃⋃

Cop
W ′(Γ)

)
∩∆′) ∪ Unew and N ′ = (N ∩∆′) ∪Nnew.

Let now K ′ be the set of the connected components of U ′ \N ′, which will form the cells of the new
Ω′-rendition (Γ′, σ′, π′). We define the function σ′ mapping the cells in C ′ to subgraphs of G[Y ′]
as follows. Notice that c ∈ K ′ ∩ C(Γ) if and only if c ∈ C in

W ′(Γ) ∩ C ip
W ′(Γ), and in this case we

set σ′(c) = σ(c). Suppose now that c ∈ K ′ \ C(Γ). Then c should be one of the cells, say ci, of
c-repl(c∗) = {c1, . . . , crc} for some c∗ ∈ Cop

W ′(Γ), and in this case we set σ(c) = F c∗
i . It now remains

to define π′ : N ′ → Y ′. Similarly to the definition of σ′, we consider a p′ ∈ N ′ and if p ∈ N ∩ N ′

we set π′(p) = π(p). Suppose now that p ∈ N ′ \N. Then p should be one of the points, say pi, of
p-repl(c∗) = {p0, . . . , prc} for some c∗ ∈ Cop

W ′(Γ) and such that i ∈ [rc∗ − 1]. In this case we define
π′(p) to be the unique common vertex of F c∗

i and F c∗
i+1. It is now easy to verify that (Γ′, σ′, π′) is a

tight Ω′-rendition of G[Y ′] and that the 7-tuple R̃′ := (X ′, Y ′, P ′, C ′, Γ′, σ′, π′) certifies that W̃ ′ is
flat in G (see Figure 13). Moreover K ′ = C(Γ′).

Figure 13: The flatness pair (W̃ ′, R̃′) created in the proof of Lemma 17. The wall W̃ ′ is the tilt of
W ′ where the updated part of W̃ ′ correspond to the red paths in Figure 10 whose edges are drawn
in the orange cells.

Recall now that all the cells in C(Γ′) ∩ C(Γ) are either W̃ ′-inner-perimetric or W̃ ′-internal.
Moreover, all the cells in C(Γ′) \ C(Γ) are cells as in the left part of Figure 9, therefore they
are W̃ ′-inner-perimetric. This yields Property 1 in the statement of the lemma. Notice also that
Property 3 follows directly from the definition of σ′, as it concerns the W ′-internal cells of R, and
these cells are the same as the W̃ ′-internal cells of R̃′. Finally, recall that CompassR̃′(W̃ ′) = G[Y ′]
and Property 4 follows because of (1).

On the other hand, notice that all W̃ ′-internal cells of R̃′ are also W -internal cells of R. More-
over, if a W̃ ′-inner-perimetric cell c of R̃′ is a cell of R, then c is either an W -inner-perimetric or
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an W -internal cell of R. On the other hand, all W̃ ′-inner perimetric cells of R̃′ that are not cells
of R are cells as in the left part of Figure 9, therefore they are W̃ ′-inner-perimetric and tidy. We
conclude that if all W ′-internal or W ′-inner-perimetric cells of R are tidy, then all cells of R̃′ are
tidy as well. As R̃′ does not have any W̃ ′-outer-perimetric cells it also does not have W̃ ′-marginal
cells. These two facts along with the fact that R̃′ does not have any W̃ ′-external cells imply that
the flatness pair (W̃ ′, R̃′) is regular.

The running time follows from the fact that the substitution of W ′-outer-perimetric cells is
based on the stretching operation on the corresponding flaps, and this requires the computation of
shortest paths that, in total, takes O(n + m) time.

Lemma 18. There is an algorithm that, given a graph G and a flatness pair (W,R), outputs, in
O(n + m) time, a flatness pair (W ⋆,R⋆) of G with the same height as (W,R), with R⋆ = R, and
such that all the W ⋆-internal or W ⋆-inner-perimetric cells of R⋆ are tidy.

Figure 14: An illustration of the proof of Lemma 18, based on the flatness pair of Figure 13.
The new flatness pair is (W ⋆,R⋆) where W ⋆ is depicted in red and R⋆ = R.

Proof. Given a wall W and an R = (X, Y, P, C, Γ, σ, π) as above, we denote by Cutd
W (Γ) the set of all

the W -internal or W -inner-perimetric cells of Γ that are untidy. Notice that for every c ∈ Cutd
W (Γ),

|π(c̃)| = 3. In what follows, we explain how to update W, while leaving (X, Y, P, C, Γ, σ, π) intact,
in order to reduce |Cutd

W (Γ)| by one. Repeating this procedure clearly yields the statement claimed
in the lemma.

Let c ∈ Cutd
W (Γ). We assume that π(c̃) = {x, y, z} and that z ∈ π(c̃) ∩ V (W ) is a vertex of W

such that two of the edges of W incident to z are edges of σ(c). This implies that P̄ = W ∩ σ(c)
is an (x, y)-path containing z as an internal vertex. Moreover, none of the internal vertices of P̄ ,

except from z, is a 3-branch vertex of W. By tightness properties (i), (ii), and (iii), there is a vertex
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w ∈ σ(c) \ π(c̃) and three internally vertex-disjoint paths P ′
x, P ′

y, and P ′
z in σ(c) such that P ′

x

is a (w, x)-path, P ′
y is a (w, y)-path, and P ′

z is a (w, z)-path. If z is a 3-branch vertex of W we
update W := (W \ V (P̄ \ {x, y, z})) ∪ P ′

x ∪ P ′
y ∪ P ′

z (see bottom yellow cell with dashed boundary
in Figure 14 for an example), while, if not, we update W := (W \ V (P̄ \ {x, y})) ∪ P ′

x ∪ P ′
y (see

the leftmost green cell with dashed boundary in Figure 14 for an example) and observe that W is
again a flat wall of G, certified by (X, Y, P, C, Γ, σ, π). Moreover, in the first case, z is no longer
a 3-branch vertex of W and is incident to only one edge of σ(c) ∩W, while, in the second case, z

is no longer a vertex of W. This implies that c is tidy and |Cutd
W (Γ)| is indeed reduced by one (see

Figure 14 for an example). As for each cell c that we modify we need to identify the paths P ′
x, P ′

y,

and P ′
z in σ(c), the construction of W ′ takes, in total, O(n + m) time.

4.4 Proofs of Theorem 5 and Theorem 6

We finally have all the ingredients to prove our two main results.

Proof of Theorem 5. Let (W,R) be a flatness pair of a graph G, where R = (X, Y, P, C, Γ, σ, π)
and W ′ ∈ SR(W ). We call the algorithm of Lemma 17 on G, (W,R), and W ′, which outputs, in
O(n + m) time, a flatness pair (W̃ ′, R̃′) where R̃′ = (X ′, Y ′, P ′, C ′, Γ′, σ′, π′) such that all cells of
R̃′ are W̃ ′-internal or W̃ ′-inner-perimetric (hence R̃′ does not have W̃ ′-external cells), W̃ ′ is a tilt
of W ′, the set of W̃ ′-internal cells of R̃′ is the same as the set of W ′-internal cells of R and their
images via σ′ and σ are also the same, and CompassR̃′(W̃ ′) is a subgraph of

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR(W ′). We

observe that (W̃ ′, R̃′) is a W ′-tilt of (W,R) and thus we return (W̃ ′, R̃′). Notice that in the case
where (W,R) is regular, all cells of R are tidy. Thus, by Lemma 17, (W̃ ′, R̃′) is also regular.

Proof of Theorem 6. Given a flatness pair (W,R) of a graph G, we first apply Lemma 18 to (W,R)
and obtain in time O(n + m) a flatness pair (Ŵ ⋆, R̂⋆) of G with the same height as (W,R), with
R̂⋆ = R, and such that all Ŵ ⋆-internal or Ŵ ⋆-inner-perimetric cells of R̂⋆ are tidy.

We now apply Lemma 17 with input G, (Ŵ ⋆, R̂⋆), and Ŵ ⋆ and obtain, in O(n + m) time, a
flatness pair (W ⋆,R⋆) of G such that, if R̂⋆ = (X̂, Ŷ , P̂ , Ĉ, Γ̂, σ̂, π̂) and R⋆ = (X, Y, P, C, Γ, σ, π),
we have that all cells of R⋆ are W ⋆-internal or W ⋆-inner-perimetric (hence R⋆ does not have W ⋆-
external cells), W ⋆ is a tilt of Ŵ ⋆, the set of W ⋆-internal cells of Ŵ ⋆ is the same as the set of
Ŵ ⋆-internal cells of R̂⋆ and their images via σ and σ̂ are also the same, and CompassR⋆(W ⋆) is a
subgraph of

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR̂⋆(Ŵ ⋆). Moreover, since all the Ŵ ⋆-internal or Ŵ ⋆-inner-perimetric cells of

R̂⋆ are tidy, Lemma 17 implies that all (W ⋆-internal or W ⋆-inner-perimetric) cells of R⋆ are tidy.
Also, since none of the cells of R⋆ is W ⋆-outer-perimetric, none of the cells of R⋆ is W ⋆-marginal.
These two facts together with the fact that none of the cells of R⋆ is W ⋆-external imply that
(W ⋆,R⋆) is a regular flatness pair of G with the same height as (W,R), as required.

We now prove that CompassR⋆(W ⋆) ⊆ CompassR(W ). First, keep in mind that CompassR⋆(W ⋆) ⊆⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR̂⋆(Ŵ ⋆). We observe that

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR̂⋆(Ŵ ⋆) ⊆ CompassR̂⋆(Ŵ ⋆) and, since R̂⋆ = R,

CompassR̂⋆(Ŵ ⋆) = CompassR(W ). Therefore, CompassR⋆(W ⋆) ⊆ CompassR(W ).
Finally, the claimed running time follows from Lemma 17 and Lemma 18.
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