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Abstract. Temporal graphs are graphs that evolve over time. Many
problems which are polynomial-time solvable in standard graphs become
NP-hard when appropriately defined in the realm of temporal graphs.
This suggested the definition of several parameters for temporal graphs
and to prove the fixed-parameter tractability of several problems with
respect to these parameters. In this paper, we introduce a hierarchy of
parameters based on the previously defined interval membership width
and on the temporal evolution of the connected components of the un-
derlying static graph. We then show that the Eulerian trail problem and
the temporal 2-coloring problem are both fixed-parameter tractable (in
short, FPT) with respect to any of the parameters in the hierarchy. We
also introduce a vertex-variant of the parameters and we show that the
firefighter problem (which was known to be FPT with respect to the
vertex-variant of the interval membership width) is also FPT with re-
spect to one of the parameters in the second level of the hierarchy.

Keywords: Temporal graphs, Eulerian trails, Temporal coloring, Firefighter,
Parameterized complexity, Width measures

1 Introduction

A temporal graph is a graph whose underlying topology is subject to discrete
changes over time. Several real-world networks, such as social networks, trans-
portation networks, and information and communication networks, can be mod-
eled as temporal graphs. This is usually done by associating time labels to the
edges of a graph, in order to indicate the moments of existence of the edges
themselves (with the vertex set of the graph remaining unchanged).
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A temporal graph G with lifetime τ is a pair (G = (V,E), λ), where λ : E →
2[τ ] is a time-labeling function that assigns a set of integer time labels to each
edge of the graph G.5 An edge e ∈ E is available only at the times specified by
λ(e). Due to their relevance and applicability in many areas, temporal graphs
have attracted a lot of attention in the past decade (we refer the reader to
the book of Holme and Saramäki [13], to the survey of Michail [18], and to
the seminal paper of Kempe, Kleinberg, and Kumar [14]). Temporal graphs
have also appeared under different names in the literature, such as time-varying
graphs [10], dynamic graphs [5], evolving networks [2], and link streams [15].

Paths and walks in a temporal graph have to traverse a sequence of adjacent
edges e1, . . . , ek at increasing times t1 < . . . < tk, respectively, with ti ∈ λ(ei) for
every i ∈ [k].6 By referring to this kind of paths and walks, several polynomial-
time problems on standard graphs become intractable when transferred to the
temporal realm, such as, for example, the computation of connected compo-
nents [1] and the identification of Eulerian walks [17]. Moreover, the introduc-
tion of the time dimension suggests new problems connected to paths and walks,
such as, for example, determining the existence of a restless (that is, respecting
specific waiting constraints) connection between two nodes, which is intractable
for paths and polynomial-time solvable for walks [6], and the analysis of simple
spreading processes [9].

The temporal version of other classical graph problems have been considered
in the last ten years, such as, for example, the well-known coloring problem. The
temporal coloring problem consists in deciding whether there exists a coloring
of the temporal nodes (that is, the nodes at different time steps) such that each
edge of the graph is properly colored in at least one time step. It is known that
deciding whether a temporal graph admits a temporal coloring using 2 colors is
NP-complete (even under very strict constraints of the temporal graph) [16].

When dealing with temporal graphs, the intractability of several problems
holds also when the underlying static graph has small well-known parameters,
such as the tree-width or the feedback vertex/edge number. This prompts the
need to develop parameters that not only consider the underlying graph struc-
ture but also account the temporal structure of the input graph. Some such mea-
sures, like temporal variations of the above two parameters, have already been
proposed [6,11]. In this paper, we focus on the parameter introduced by Bum-
pus and Meeks [3], called interval membership width, which intuitively quantifies
the extent to which the set of intervals defined by the first and last appear-
ance of each edge can overlap. The value of this parameter, hence, does not
depend on the structure of the underlying static graph (other than its number
of edges), but it is instead influenced only by the temporal structure of the in-
put graph. In [3] it is shown that Temporal Eulerian Trail is FPT when
parameterized by the interval membership width, while in [12] it is shown that

5 For every positive integer k, [k] denotes the set {1, 2, . . . , k}.
6 Similarly, one can consider non-decreasing sequences, i.e. with t1 ≤ . . . ≤ tk. In this

paper, however, we focus on the strictly increasing case.
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Temporal Firefighter Reserve is FPT when parameterized by its ‘vertex
variant’ (see below for the definitions of all considered problems).

Motivated by these latter results, we here modify the definition of the inter-
val membership width by taking into account the evolution (both forward and
backward) of the connected components of the temporal graph and by intro-
ducing a new parameter called connected interval membership width (together
with its vertex-variant). We show that both Temporal Eulerian Trail and
Temporal 2-Coloring are FPT with respect to this new parameter. We also
show that Temporal Firefighter Reserve is FPT with respect to its vertex-
variant. We then introduce another parameter which is based on the search
for the best combination of the forward and the backward connected inter-
val membership width and we prove that Temporal Eulerian Trail and
Temporal 2-Coloring are FPT with respect to this latter parameter.

Preliminaries We use standard definitions and notation of graph theory (we re-
fer the unfamiliar reader to [20]). We will also make use of the following notations.
Given an undirected graph G = (V,E) and a vertex v ∈ V , the neighborhood of v
is defined as NG(v) = {u | {u, v} ∈ E}. For a set X ⊆ V (G), we also use NG(X)
to denote the set

⋃
x∈X NG(x)\X. We omit G when it is clear from the context.

For any edge set A ⊆ E, V (A) denotes the set of vertices with an incident edge
in A, that is, V (A) =

⋃
e={u,v}∈A{u, v}. For any connected component C of G,

V (C) (respectively, E(C)) denotes the set of nodes (respectively, edges) in C.
Concerning temporal graphs, we use and extend the notation in [18]. A tem-

poral graph G is a pair (G,λ), where G = (V,E) is the underlying (undirected)
graph of G, and λ : E → 2N is a time-labeling function which assigns to every edge
of G a finite set of integer time labels. Without loss of generality, we can assume
that min

⋃
e∈E λ(e) = 1. The lifetime τ of G is defined as τ = max

⋃
e∈E λ(e). For

every edge e = {u, v} ∈ E and every t ∈ λ(e), the triple (u, v, t) (or, equivalently,
the pair (e, t)) is said to be a temporal edge of G.

Given a temporal graph G = (G = (V,E), λ) with lifetime τ , the snapshot at
time t, with t ∈ [τ ], is the graph Gt = (V,Et) where Et = {e ∈ E : t ∈ λ(e)}.
The temporal graph G can then also be defined as the sequence G1, . . . , Gτ

of its snapshots. In the following, G≤(t) (respectively, G≥(t)) will denote the
temporal graph formed by the first t (respectively, last τ − t+1) snapshots of G.
Moreover, G≤(t) (respectively, G≥(t)) will denote the underlying graph of G≤(t)
(respectively, G≥(t)). For S ⊆ V and t ∈ [τ ], we define Nt(S) to be the set of all
vertices that are temporally adjacent at time t to the vertices in S, excluding S,
that is, Nt(S) = NGt

(S). A (strict) temporal walk from u to v in G is a sequence
of temporal edges (u1, v1, t1), . . . , (uk, vk, tk) such that u1 = u, vk = v, and, for
any i ∈ [k−1], vi = ui+1 and ti < ti+1. A temporal walk is said to be a temporal
trail if no edge in E is traversed twice. A temporal trail is said to be a temporal
path if no node in V is visited twice.

The following lemma introduces a transformation of a temporal graph that
will allow us to easily design a backward version of our algorithms (for the sake
of brevity, all proofs have been omitted in this extended abstract).
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Lemma 1 ([4]). Given a temporal graph G = (G = (V,E), λ), let GR = (G =
(V,E), ρ) be the reverse temporal graph of G obtained by setting, for each e ∈ E,
ρ(e) = ∪t∈λ(e){−t− 1}. Then, there exists a temporal walk in G starting from u
and arriving at v at time at most t if and only if there exists a temporal walk in
GR starting from v at time −t and arriving at u.

Edge Exploration. An Eulerian walk (respectively, trail) in a graph is a walk
which traverses every edge at least (respectively, exactly) once. A temporal Eu-
lerian walk (respectively, trail) in a temporal graph is a temporal walk (respec-
tively, trail) (e1, t1), . . . , (em, tm) such that e1, . . . , em is an Eulerian walk (re-
spectively, trail) in the underlying graph. The Temporal Eulerian Walk (re-
spectively, Temporal Eulerian Trail) problem consists of deciding whether
a temporal graph admits a temporal Eulerian walk (respectively, trail). It is
known that these two problems are both NP-complete [17]. The following lemma,
instead, immediately follows from the proof of Lemma 1.

Lemma 2. Given a temporal graph G = (G = (V,E), λ) and its reverse tempo-
ral graph GR, there exists an Eulerian walk in G if and only if there exists an
Eulerian walk in GR.

Temporal Coloring. Given a temporal graph G = (G = (V,E), λ) with lifetime
τ , an integer k ≥ 2, and a function f : V × [τ ] → [k], we say that e = {u, v} ∈ E
is properly colored by f (or that f properly colors e) if there exists t ∈ λ(e)
such that f(u, t) ̸= f(v, t). We say that f is a temporal k-coloring of G if f
properly colors every edge in E. Temporal 2-Coloring consists of deciding
whether a temporal graph G = (G = (V,E), λ) admits a temporal 2-coloring
(similarly, for any k > 2 we define Temporal k-Coloring). It is known that
Temporal 2-Coloring is NP-complete [16] even if G has bounded treewidth.

Temporal Firefighter Reserve. Given a temporal graph G = (G = (V,E), λ) with
lifetime τ , a defence strategy (in G) is a sequence S = (S1, . . . , Sτ ) of pairwise
disjoint subsets of V such that |St| ≤ t−

∑t−1
i=1 |Si|, for each t ∈ [τ ]. Given a vertex

s ∈ V , the set Bs(S) = Bτ
s (S) of burnt nodes by a fire starting in s is recursively

defined as follows: B1
s (S) = {s} ∪ (N1(s) \ S1), and, for any t ∈ [τ ] with t > 1,

Bt
s(S) = Bt−1

s (S) ∪ (Nt(B
t−1
s (S)) \

⋃t
i=1 Si). In words, starting in s, at each

time step the fire spreads to the temporal neighbors of the current fire, except
that defended vertices can never catch on fire (note that the condition on the
cardinality of St is due to the fact that, at each time step t, it is possible to decide
not to defend a new node and to use this saving for future time steps). Given a
temporal graph G = (G = (V,E), λ), a vertex s ∈ V , and an integer k ≤ |V |, the
Temporal Firefighter Reserve problem consists of deciding whether there
exists a defence strategy S such that |Bs(S)| ≤ |V |−k (that is, at least k vertices
have not been burnt). It is known that Temporal Firefighter Reserve is
NP-complete [12].
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Fig. 1: For each edge e, the label of e denotes the unique time label in λ(e).
For any k ≥ 2, we have that imw≤(G1) = 1 since, for any t ∈ [k + 1], each
connected component of G≤(t) contains only one edge of Ψ e

t . On the other hand,
imw≥(G1) = k since G≥(1) = G1 is connected and Ψ e

1 contains all the k edges
{vi, vi+1} for i = {1, 3, . . . , 2k − 1}. Similarly, we have that imw≤(G2) = k while
imw≥(G2) = 1. Finally, imw(G3) = k (since Ψ e

1 contains all edges), while, for any
d ∈ {≤,≥}, imwd(G3) = 1 (since each connected component of Gd(1) contains
only one edge).

Parameterized Complexity. We use standard notation and terminology from
parameterized complexity theory [7] and we say that a problem is fixed-parameter
tractable (FPT) with respect to a parameter k if it can be solved in time f(k) ·
nO(1), where n is the size of the input.

2 Connected (vertex) interval membership width

Given a temporal graph G = (G = (V,E), λ) with lifetime τ , let the active
window of an edge e ∈ E be the interval aw(e) = [minλ(e),maxλ(e)]. Then,
for each t ∈ [τ ], let Ψ e

t = {f ∈ E : t ∈ aw(f)} be the activity bag at time t of
G. The interval membership width [3] of G is defined as imw(G) = maxt∈[τ ]|Ψ e

t |.
For each direction d ∈ {≤,≥} and for each connected component C of Gd(t), let
Ψ e
d(G, t, C) = E(C)∩Ψ e

t be the d-connected bag at time t of G and C. Moreover,
let Fe

d(t) = {Ψ e
d(G, t, C) : C is a connected component of Gd(t)} be the family

of d-connected bags at time t of G. The d-connected interval membership width
of G is defined as imwd(G) = max

t∈[τ ],Ψ e∈Fe
d(t)

|Ψ e|. Note that these parameters
can be computed in (almost) linear time by using disjoint-set data structures [19]
for implementing incremental connectivity algorithms.

We first observe that the ≤-connected interval membership width and the
≥-connected interval membership width are two incomparable measures. That
is, there exists an infinite family of temporal graphs G1 for which imw≤(G1) is
arbitrarily smaller than imw≥(G1), and there exists an infinite family of temporal
graphs G2 for which imw≥(G2) is arbitrarily smaller than imw≤(G2) (see Fig. 1).

For any temporal graph G and for each d ∈ {≤,≥}, we have that imwd(G)
is at most imw(G), since each bag in Fe

d(t) is a subset of Ψ e
t . Moreover, the d-

connected interval membership width can be arbitrarily smaller than the interval
membership width (see the family of temporal graphs G3 shown in Fig. 1).
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For any direction d ∈ {≤,≥}, we will also make use of the following vertex
version of the d-connected interval membership width. Given a temporal graph
G = (G = (V,E), λ) with lifetime τ , let the active window of a vertex v ∈ V (G)
be the interval aw(v) = [min

⋃
u∈NG(v)

λ({u, v}),max
⋃

u∈NG(v)
λ({u, v})]. Then,

for each t ∈ [τ ], let Ψv
t = {u ∈ V : t ∈ aw(u)} be the activity vertex bag at

time t of G. The vertex interval membership width [3] is defined as vimw(G) =
maxt∈[τ ]|Ψv

t |. For each connected component C of Gd(t), let Ψv
d (G, t, C) = V (C)∩

Ψv
t be the vertex d-connected bag at time t of G and C. Moreover, let Fv

d (t) =
{Ψv

d (G, t, C) : C is a connected component of Gd(t)} be the family of vertex d-
connected bags at time t of G. The d-connected vertex interval membership width
of G is defined as vimwd(G) = max

t∈[τ ],Ψv∈Fv
d (t)

|Ψv|. Once again, for any direc-
tion d, the d-connected vertex interval membership width is not greater than the
vertex interval membership width (since each bag in Fv

d (t) is a subset of Ψv
t ),

and the ≤-connected vertex interval membership width and the ≥-connected ver-
tex interval membership width are two incomparable measures, since the same
examples given for the connected interval membership width work also for the
connected vertex interval membership width.

3 Eulerian trails parameterized by imw≤ and by imw≥

In this section we consider the Temporal Eulerian Trail problem. This
problem is FPT when parameterized by the interval membership width [3]. In this
section, we show that this result can be improved by considering as a parameter
the d-connected interval membership width, for any direction d ∈ {≤,≥}. Let us
first consider the case d =≤ (in the following, without loss of generality, we can
assume that the underlying graph of the input temporal graph is connected). A
(u, v, t)-trailset is a set of edges of G such that there exists a temporal trail from
u to v in G which arrives in v at time at most t and which uses all and only
the edges in the set. Given a temporal graph G = (G = (V,E), λ), let us define
the following (dynamic programming) table

−→
M . For each t ∈ [τ ], each connected

component C of G≤(t), each u, v ∈ V (C), and each subset F of Ψ e
≤(G, t, C), we

let
−→
M [t, C, u, v, F ] = 1 if and only if E(C) \ F is a (u, v, t)-trailset.

Fact 1 G = (G = (V,E), λ) has an Eulerian trail if and only if there exists u, v

such that
−→
M [τ,G, u, v, ∅] = 1.

Now, given t ∈ [τ ], a connected component C of G≤(t), a pair u, v ∈ V (C),
and F ⊆ Ψ e

≤(G, t, C), we show how to recursively compute
−→
M [t, C, u, v, F ].

Base case. If t = 1, then Ψ e
1 = E(G1) and G≤(1) = G1: hence, Ψ e

≤(G, 1, C) =

E(C)∩Ψ e
1 = E(C)∩E(G1) = E(C). We set

−→
M [1, C, u, v, F ] to 1 if and only if

|F | = |E(C)| − 1, {u, v} ̸∈ F , and 1 ∈ λ({u, v}) (that is, {u, v} ∈ E(C) \F ).

Recursive step. Let t ∈ [τ ] with t > 1. We set
−→
M [t, C, u, v, F ] to 1 if and only

if one of the following two cases occurs.
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G≤(t)

C

B≤(G, t, C)

G≤(t− 1)

C′

B≤(G, t− 1, C′)

C1 C2

Fig. 2: Case 1 of the recursive step to compute table
−→
M for the

Temporal Eulerian Trail problem. The red edges in Ψ e
≤(G, t, C) are the

edges in F which distribute among the three connected components of G≤(t− 1)
in which the connected component C of G≤(t) is split. The blue edges in
Ψ e
≤(G, t, C) are the edges in F which are not contained in G≤(t− 1). If the

(u, v, t)-trailset in G≤(t) is equal to E(C ′) minus the red edges in Ψ e
≤(G, t− 1, C ′)

(which form the set F ′), then
−→
M [t, C, u, v, F ] is set to 1 (the red edges of F in

the other two connected components C1 and C2 are not included in F ′).

Case 1 There exists a connected component C ′ of G≤(t− 1) and a subset
F ′ of Ψ e

≤(G, t− 1, C ′) such that
−→
M [t−1, C ′, u, v, F ′] = 1 and E(C)\F =

E(C ′) \ F ′ (see Figure 2). In words, there is a desired trail finishing at
time at most t− 1.

Case 2 There exists e = {w, v} ∈ E(C) \F such that t ∈ λ(e), a connected
component C ′ of G≤(t− 1), and a subset F ′ of Ψ e

≤(G, t− 1, C ′) such that
−→
M [t − 1, C ′, u, w, F ′] = 1 and E(C) \ (F ∪ {{w, v}}) = E(C ′) \ F ′. In
words, the desired trail can be obtained through a trail from u to some
w finishing at time at most t− 1, and then using the edge {w, v} active
at time t.

By executing a “backward” version of the previously described dynamic program-
ming algorithm, we can also solve Temporal Eulerian Trail parameterized
by imw≥(G).

Theorem 2. Given a temporal graph G = (G = (V,E), λ) with lifetime τ ,
the Temporal Eulerian Trail problem with input G can be solved in time
O(2wτn4m) where n = |V |, m = |E|, and w ∈ {imw≤(G), imw≥(G)}.

4 Vertex coloring parameterized by imw≤ and by imw≥

In this section, we consider Temporal 2-Coloring. Deciding whether a tem-
poral graph G admits a temporal 2-coloring is FPT when parameterized by the
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u7

u6

u5

u4

u3

u2

u1

G≤(t− 1) C1C2 u7

u6

u5

u4

u3

u2

u1

G≤(t) = C

Fig. 3: The recursive step to compute table
−→
M for the vertex coloring problem.

The dashed edges on the left (respectively, right) are the ones which are not in
Ψ e
t−1 (respectively, Ψ e

t ). The red edges on the left (respectively, on the right) are
the ones in F1 and F2 (respectively, F ). In this case, (E(C)\F )\ ((E(C1)\F1)∪
(E(C2)\F2)) = {{u3, u5}, {u2, u4}}. Since the graph induced by these two edges
is bipartite, if

−→
M [t−1, C1, F1] =

−→
M [t−1, C2, F2] = 1, then we set

−→
M [t, C, F ] = 1.

treewidth of the underlying graph and the lifetime τ [16]. In the following, we
show that this problem is FPT when parameterized by the d-connected inter-
val membership width, for any direction d ∈ {≤,≥}. Let us first consider the
case d =≤. Given a temporal graph G = (G = (V,E), λ), let us define the
following (dynamic programming) table

−→
M . For each t ∈ [τ ], each connected

component C of G≤(t) with edge set E(C), and each subset F of Ψ e
≤(G, t, C),

we let
−→
M [t, C, F ] = 1 if and only if there exists a function f : V (C) × [t] → [2]

which properly colors every edge in E(C) \ F .

Fact 3 Let G = (G = (V,E), λ) be a temporal graph with lifetime τ . There
exists a temporal 2-coloring of G if and only if

−→
M [τ,G, ∅] = 1 for every connected

component C of G.

Now, given t ∈ [τ ], a connected component C of G≤(t) and a subset F of
Ψ e
≤(G, t, C), we show how to recursively compute

−→
M .

Base case. If t = 1, then we set
−→
M [1, C, F ] to 1 if and only if the graph

(V (C), E(C) \ F ) is bipartite.
Recursive step. Let t ∈ [τ ] with t > 1. We set

−→
M [t, C, F ] to 1 if and only

if there exist q connected components C1, . . . , Cq of G≤(t− 1) and q sets
F1, . . . , Fq with Fi ⊆ Ψ e

≤(G, t− 1, Ci), for i ∈ [q], such that the following two
properties are satisfied (see Figure 3 for an example).
1. For every i ∈ [q],

−→
M [t− 1, Ci, Fi] = 1.

2. The graph (V (C), (E(C)\F )\
⋃q

i=1(E(Ci)\Fi)) is bipartite. Intuitively,
this graph contains all the edges in E(C)\F which have not been properly
colored before time t, and, hence, do not belong to any set E(Ci) \ Fi,
for i ∈ [q].

Again, by executing a “backward” version of the above algorithm, we can
solve Temporal 2-Coloring problem parameterized by imw≥(G).

Theorem 4. The Temporal 2-Coloring problem with input a temporal graph
G = (G = (V,E), λ) with lifetime τ can be solved in time O(4wτn2m) where
n = |V |, m = |E|, and w ∈ {imw≤(G), imw≥(G)}.
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Observe, finally, that, in order to generalize our approach for higher values of
k, it suffices to test whether Ψ e

d(G, 1, C)\F = E(C)\F is k-colorable in the base
case, and whether f is a proper k-coloring of (Ψ e

d(G, t, C)\F )\
⋃q

i=1(E(Ci)\Fi)
in item 2 of the recursive step. This clearly increases the time complexity of the
algorithm by factor which is exponential in the d-connected interval membership
width, giving an FPT algorithm for the Temporal k-Coloring problem when
parameterized by the d-connected interval membership width, for any direction
d ∈ {≤,≥}, and k.

5 Firefighter parameterized by vimw≤

Temporal Firefighter Reserve is FPT when parameterized by the vertex
interval membership width [12]. In the following, we show that this result can be
improved by considering as a parameter the ≤-connected vertex interval mem-
bership width. Consider a temporal graph G = (G = (V,E), λ) with lifetime τ
and a source node s ∈ V (G). For each t ∈ [τ ], we denote the connected compo-
nent of G≤(t) containing s by Ct

s and we denote by Gs
≤(t) the related temporal

graph (i.e., the temporal subgraph of G≤(t) constrained to Ct
s). Also, let n de-

note |V (G)|. Observe that if A(s) = [t1, t2] and t1 > 1, then Ct
s is the trivial

component containing only s for every t ∈ [t1 − 1]. In such case, we can apply
the following procedure starting at t1 instead. To make presentation simpler, in
what follows we consider that t1 = 1. Let us now define the following (dynamic
programming) table

−→
M . For each pair d, t ∈ [τ ], each two subsets D and B of

Ψv
≤(G, t, Ct

s), and each b ∈ [n], we let
−→
M [t,D,B, d, b] = 1 if and only if there

exists a defence strategy S = (S1, . . . , St) in Gs
≤(t) such that:

1. D is the set of vertices defended in bag t. Formally D = Ψv
≤(G, t, Ct

s)∩
⋃t

i=1 Si;
2. B is the set of burnt vertices in bag t. Formally B = Ψv

≤(G, t, Ct
s) ∩Bt

s(S);
3. d is the total number of defended vertices up to time t. Formally, d =∑t

i=1|Si|. Observe that d ≤ t by definition; and
4. b is the total number of burnt vertices at time t. Formally, b = |Bt

s(S)|.

Fact 5 (G, s, k) is a yes-instance of the Temporal Firefighter Reserve prob-
lem if and only if there exists D,B, d, b such that

−→
M [τ,D,B, d, b] = 1 and

n− b ≥ k.

Now, given d, t ∈ [τ ], two subsets D and B of Ψv
≤(G, t, Ct

s), and b ∈ [n], we
show how to recursively compute

−→
M [t,D,B, d, b].

Base case. Let t = 1. If D = ∅ (i.e., no vertex is defended at time 1), then we
set

−→
M [1, D,B, d, b] to 1 if B = {s}∪N1(s), d = 0 and b = |B|. If D = {u} for

some u ∈ V (C1
s ), then we set

−→
M [1, D,B, d, b] to 1 if B = {s}∪ (N1(s)\{u}),

d = 1 and b = |B|. In all other cases, we set
−→
M [1, D,B, d, b] to 0.
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Recursive step. Let t ∈ [τ ] with t > 1. We set
−→
M [t,D, F, d, b] to 1 if and only if

there exist D′, B′, d′, b′ such that
−→
M [t−1, D′, B′, d′, b′] = 1 and the following

properties are satisfied.
(I) D = (D′ ∩ Ψv

≤(G, t, Ct
s)) ∪A, where A ⊆ Ψv

≤(G, t, Ct
s)) \ (B′ ∪D′).

(II) B = (B′ ∩ Ψv
≤(G, t, Ct

s)) ∪ (Nt(B
′) \D).

(III) d = d′ + |A|.
(IV) b = b′ + |Nt(B

′) \D|.

Theorem 6. The Temporal Firefighter Reserve problem, with input a
temporal graph G = (G = (V,E), λ) with lifetime τ , s ∈ V , and k ∈ [n], can
be solved in time in time O(16wτ4n2), where n = |V | and w = vimw≤(G).

6 Bidirectional connected interval membership width

Given a temporal graph G = (G = (V,E), λ) with lifetime τ , for each t ∈ [τ ], we
define the bidirectional connected interval membership width at time t as

imw∼(t) =

max{imw≤(G≤(t− 1)), imw≥(G≥(t+ 1)), |Ψ e
t |} , if 1 < t < τ

imw≥(G) , if t = 1
imw≤(G) , if t = τ .

The bidirectional connected interval membership width of G is then defined as
imw∼(G) = mint∈[τ ] imw∼(t). Note that also this parameter can be computed in
(almost) linear time and that there exists an infinite family of temporal graphs
G for which imw∼(G) is arbitrarily smaller than imwd(G), for any direction d (see
Fig. 4). In order to solve a problem by referring to the bidirectional connected
interval membership width, we can first solve it with input G≤(t− 1) and with
input G≥(t+ 1), by referring to the connected interval membership width of
G≤(t− 1) with direction ≤ and the connected interval membership width of
G≥(t+ 1) with direction ≥, and then combine the two solutions. This approach
can be followed in the case of the Temporal Eulerian Trail problem and of
the Temporal 2-Coloring problem, as stated by the following two results.

Theorem 7. Given a temporal graph G = (G,λ) with n nodes, m edges, and
lifetime τ , the Temporal Eulerian Trail problem can be solved by an algo-
rithm running in time O(2imw∼(G)τn4m).

Theorem 8. Given a temporal graph G = (G,λ) with n nodes, m edges, and
lifetime τ , the Temporal 2-Coloring problem can be solved by an algorithm
running in time O(4imw∼(G)τn2m).

7 Conclusion

We have introduced a three-level hierarchy of polynomial-time computable pa-
rameters starting from the interval membership width up to the bi-directional



Connected and Bidirectional Interval Membership Width 11

2

2

2

2

2

2

2

2

1111

1111

1111

3 3 3 3

3 3 3 3

3 3 3 3

u1 v1

u2 v2

uk vk

x1
1x1

2
. . .x1

n

x2
1x2

2
. . .x2

n

xk
1xk

2
. . .xk

n

y1
1 y1

2
. . . y1

n

y2
1 y2

2
. . . y2

n

yk
1 yk

2
. . . yk

n

. . . . . .

Fig. 4: For each edge e, the label of e denotes the unique time label in λ(e).
For each k, n ≥ 1 and for any direction d, we have that imwd(G) = (k + 1)n
(since |Ψ e

1 | = |Ψ e
3 | = (k + 1)n, G≤(3) = G≥(1) = G, and G is connected), while

imw∼(G) = n (since |Ψ e
2 | = 2(k + 1) and imw≤(G≤(1)) = imw≥(G≥(3)) = n).

version of the connected interval membership width (see Fig. 5). We proved
that the hierarchy is strict (that is, each parameter at one level can be arbi-
trarily smaller than the ones in the levels below), and that the two parameters
at the second level are not comparable (that is, each of them can be arbitrarily
smaller than the other). We also proved that Temporal Eulerian Trail and
Temporal 2-Coloring are FPT with respect to any of the parameters in the
hierarchy, and that Temporal Firefighter Reserve is FPT with respect to
the vertex-variant of the parameter at the first level and of one of the parameters
of the second level. A natural research direction will be to design FPT algorithms
with respect to our new parameters for other temporal graphs problems (such as
counting temporal paths [8]). We also leave as an open question the classification
of Temporal Firefighter Reserve when parameterized by vimw≥(G).

interval membership width

≤-connected interval membership width ≥-connected interval membership width

bidirectional connected interval membership width

Fig. 5: The hierarchy of interval membership width parameters.
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