
HAL Id: lirmm-04711807
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04711807v1

Submitted on 27 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forgetful Counters for Rowhammer Detection
Loïc France, Florent Bruguier, David Novo, Pascal Benoit

To cite this version:
Loïc France, Florent Bruguier, David Novo, Pascal Benoit. Forgetful Counters for Rowhammer De-
tection. CHES 2024 - Conference on Cryptographic Hardware and Embedded Systems, Sep 2024,
Hallifax, Canada. , 2024. �lirmm-04711807�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04711807v1
https://hal.archives-ouvertes.fr


Forgetful Counters for Rowhammer Detection
Loic France, Florent Bruguier, David Novo, Pascal Benoit
LIRMM, CNRS, University of Montpellier, Montpellier, France

I. INTRODUCTION

To this day, counter-based Rowhammer mitigation proposals
offer the best protection guarantee. These solutions use row
activations counters to detect aggressor rows. Contrary to
probabilistic solutions, counter-based proposals can offer a
guaranteed protection against bit-flips, where an aggressor is
always detected before the attack succeeds.

To account for periodic refreshes of the DRAM rows,
the counters in a counter-based mitigation technique must
be periodically reset. However, the periodic refresh of all
DRAM rows does not happen at the same time in the cycle.
Refreshes are spread out in the short chunks of time every
tREFI . As memory controller is not aware of which row
is refreshed every tREFI , the reset of a counter cannot be
synchronised with the refresh of the row it is watching. As a
result, most existing counter-based mitigation techniques reset
all the counters at the same time, every tREFW .

As most counters are not reset synchronously with the re-
fresh of the row, aggressor could use this information to target
rows whose counters will be reset in the middle of the attack
while the row has not been refreshed, resulting in an attack
not witnessed by the countermeasure. Figure 1 illustrates an
attack on a row that is not refreshed synchronously with the
counters reset. The refreshes on the considered row 2 are
not synchronised with the reset of the counters 1 . When the
counters are reset, the actual activation count (ACT) of the
row is higher than the value of the counter. If an attack uses
this row as an aggressor, when the actual ACT count of the
row exceeds ACT/2 3 , the value of the counter is below the
actual count 4 , as it was reset during the attack. In this case,
the attack will not be detected.

nACTs < 2 2 < nACTs <

t

counted ACTs actual ACTs since last REF

1

3

4

2 2

ACT count

Fig. 1. Counters reset not synchronised with row refresh.

Existing mechanisms use multiple methods to take this
fact into account. For example, BlockHammer [2] chooses
to double the whole mechanism and alternately reset them,
and Graphene [1] divides the detection threshold by 2, conse-
quently using twice the initial number of counters.

Modern mitigation proposals are greatly affected by this
unsynchronised refreshes issue, which forces them to double
the number of counters.

II. CONTRIBUTION

We propose a new counter-based detection mechanism that
does not need a periodic reset of all its counters, and therefore
is not affected by the unsynchronised refreshes.

It is based on the combination of ACT counters and
ACT frequency evaluation. To simplify the demonstration, we
assume that 2 ACTs will always take the same time to be
executed, even if a periodic refresh command is issued in-
between, i.e., we will only consider the time during which
the memory can be issued ACTs. The time will be considered
paused when the memory is not accessible because of, e.g.,
periodic refresh commands (that are issued every tREFI ).

In a bank, a total of W ACTs can be issued during tREFW .
Considering a corruption threshold TRH , as the two neigh-
bours of a victim rows can be used to corrupt it, the required
number of ACTs per row to induce a bit-flip is HCfirst =
TRH /2. We can deduce that a total of Nagg = W/HCfirst

aggressors can be used at the same time. Therefore, the mean
period between two ACTs on an aggressor cannot exceed
P = Nagg× for a successful attack. If the mean ACT period
of a row is greater than P , it is not an aggressor as it cannot
complete the attack within a refresh window (tREFW ).

To track only the potential aggressor, we can track only the
rows that are activated frequently enough to be aggressors and
store them in a table. We can do the following steps:

1) When a row is issued an ACT for the first time, allocate
an entry in the table for it. The expiration time is set to
t+ P , where t is the current time.

2) If the row is activated again before the expiration time
is reached, increase the expiration time by P . The
expiration time will be set to t0 + n × P , where t0 is
the time of the first ACT, and n is the number of times
it has been activated since the step 1.

3) When the expiration time is reached, the entry can be
removed from the table.

Using this method, only the rows that are activated at least
once every P on average will be kept in the table. Monitoring
all expiration dates of the table to check for expired values
would be too time-consuming. Instead of having a constant
monitoring of expiration dates, new entries will first try to
replace expired entries. Additionally, a periodic maintenance
is put in place to periodically remove expired entries that were
not replaced by new entries.



REFERENCES

[1] Yeonhong Park et al. Graphene: Strong yet lightweight row hammer
protection. In MICRO, 2020.

[2] A Giray Yağlikçi et al. Blockhammer: Preventing rowhammer at low cost
by blacklisting rapidly-accessed DRAM rows. In HPCA, 2021.


