
HAL Id: lirmm-04717703
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04717703v1

Submitted on 2 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trade-offs in Neural Network Compression: Quantized
and Binary Models for Keyword Spotting

Bruno Lovison-Franco, Jonathan Miquel, Aymen Romdhane, Guillaume
Prenat, Lorena Anghel, David Novo, Pascal Benoit

To cite this version:
Bruno Lovison-Franco, Jonathan Miquel, Aymen Romdhane, Guillaume Prenat, Lorena Anghel, et
al.. Trade-offs in Neural Network Compression: Quantized and Binary Models for Keyword Spotting.
ICECS 2024 - 31st IEEE International Conference on Electronics Circuits and Systems, Nov 2024,
Nancy, France. In press. �lirmm-04717703�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04717703v1
https://hal.archives-ouvertes.fr


Trade-offs in Neural Network Compression:
Quantized and Binary Models for Keyword Spotting

Bruno Lovison Franco,1 Jonathan Miquel,1 Aymen Romdhane,1 Guillaume Prenat,2

Lorena Anghel,2 David Novo,1 Pascal Benoit1
1LIRMM, University of Montpellier, CNRS - Montpellier, France - {firstname}.{lastname}@lirmm.fr

2UGA/CNRS/CEA - SPINTEC Grenoble, France - {firstname}.{lastname}@cea.fr

Abstract—Enabling smart and independent IoT devices often
requires to run complex Machine Learning (ML) workloads at
the edge. Such systems usually operate with memories in the
order of tens of kilobytes and low processing power. To fit
within these constraints, model designers typically rely on low-
precision integer representation of operations down to 1-bit, i.e.,
Binary Neural Networks (BNN). In this paper, we investigate
the tradeoffs available to model designers between memory
footprint and accuracy and the challenges to overcome for
effective use of BNN. We show that designing BNN architectures
is not a straightforward process. To overcome this, we propose a
methodology based on design guidelines and Neural Architecture
Search (NAS) to adapt traditional model architectures into BNN
variants. As a case study, we apply this methodology to a ResNet-
based model for a keyword spotting (KWS) application. Our
results demonstrate that, contrary to 8-bit quantization, direct
binarization significantly impacts accuracy. However, careful
architecture redesign and hyperparameter tuning helps bringing
BNNs performances on par with their quantized counterparts.

Index Terms—Edge Computing, Exploration, TinyML, Binary
Neural Networks, Quantization

I. INTRODUCTION

Recent years have been characterized by the explosion of
Internet-of-Things (IoT) devices. Common IoT applications
require gathering and processing sensor data to act on their
environment accordingly. Traditionally, such systems transmit
gathered data to a High-Performance centralized computing
node to handle the bulk of the processing task through
Machine Learning (ML) based algorithms. However, in many
resource-constrained applications, the continuous transmission
of high-frequency-sampling data (e.g., audio) over a low-
power RF link (e.g., LoRa) is hardly achievable within the
given constraints of available bandwidth and energy. It is
possible to limit transmissions to a strict minimum by moving
the processing to the edge device. This allows not only for
saving energy and reducing the latency of the system but also
comes with the added benefit of a reduced risk of data leaks.

However, executing ML workloads on Microcontroller Unit
(MCU) class devices is not trivial due to the limited embedded
resources. MCUs usually operate with memories in the order
of tens of kilobytes and low processing power. In the TinyML
field, ML models designers take into account such constraints
at the cost of moderate loss of models accuracy. Quantization
(i.e., reducing a model’s operations precision) is the most
popular optimization available to reduce the requirements of
high-performance models. It allows for encoding full precision
floating point parameters (32-bit) into an integer (typically
8-bit) representation, bringing three main benefits [1] : (i)
MCUs do not require a Floating Point Unit (FPU) to execute

the inference without relying on software emulation, (ii) The
memory footprint of the model is reduced (by a factor of 4 for
8-bit quantization) and, (iii) larger bit-width MCU can speed-
up execution by using single instruction multiple data (SIMD)
operations. For all of these benefits, it is widely available in
state-of-the-art portable frameworks such as Tensorflow Lite
for Microcontrollers.

More aggressive quantization approaches, namely Binary
Neural Networks (BNN), leverage the up-stated benefits to
an extreme by reducing the encoding precision down to a
single bit [2]. Due to their low memory footprint, it is possible
to combine multiple BNN models predictions within a single
system to improve the overall performances.

As such, TinyML models designers have a plethora of low
memory-footprint options to bring existing models to the edge.
In these conditions, comparing and selecting the best option
is not obvious and exhaustive comparison is time-consuming.

In this work, we present this selection process by using
a Keyword Spotting (KWS) application as a case study.
We compare the effect on model size (i.e., model weights
memory-footprint) of the above-stated options, namely 8-bit
quantization, binarization, and ensembles. The target baseline
model of this study is a ResNet-based model, namely res8-
narrow, which was first introduced in [3]. This model was the
result of a first accuracy vs model size exploration tailored for
small footprint KWS applications. Our objective is to further
reduce the size of this model at a minimal cost on accuracy
to enable deployment on lower-end MCU-class devices. In
summary, this work makes the following contributions:

• We evaluate the quantization of a ResNet-based model
into both 8-bit and binarized weights and activations
representation. We show that proper binarization of the
baseline model require additional tweakings as opposed
to 8-bit quantization.

• We adapt the design and training pipelines of a BNN
model to improve its accuracy, our results show that such
techniques allow BNNs to perform similarly with respect
to the baseline model.

• We investigate binary ensembles to combine multiple
model outputs in a voting system, we show that this
straightforward implementation underperform architec-
ture search approaches.

• We compare different low-bit representations of ML mod-
els to find Pareto-efficient size vs accuracy architectures,
our results show that 8-bit quantification outperforms
other options at extremely compact model sizes (less
than 26KiB) and binary models becomes more memory-



Fig. 1: Accuracy results obtained on test dataset vs model
size for (a) the baseline model, (b) 8-bit quantization, (c)
unchanged binarized architecture. The last plot (d) show the
results of a model implementing basic BNN design guidelines.

efficient above this threshold.

II. BACKGROUND

The following briefly summarizes the techniques we em-
ployed in the paper to balance accuracy and model size.
Quantization is a widely spread model compression technique
that encodes full precision weights and intermediate outputs
of a model to a lower precision (usually 8-bit integer).
Binarization is an extreme form of quantization in which pa-
rameters and intermediate outputs of a model are represented
either as -1 or 1. The training of such models opens up new
issues to tackle [2]. Nonetheless, the intrinsically low memory
footprint of such a model makes it a good match for edge
systems.
Binary Ensemble Neural Networks (BENN) leverage the
low memory footprint of BNNs to combine in a single system
multiple models with relatively low accuracy to improve the
overall reliability. In this work, we investigate the tradeoff be-
tween memory and performance that such technique enables.
Neural Architecture Search (NAS) is an automated model
architecture designing heuristic that operates within a specified
search space [4]. We apply this design methodology in this
work to efficiently explore tradeoffs between full precision,
quantized, and binarized models.

III. MOTIVATION

We base our exploration on a small memory-footprint
model, namely res8-narrow, first introduced by Tang et al. [3]
(See Figure 2). We first investigate the full-precision, 8-
bit quantization-aware and binary training of this unchanged
architecture on a KWS task. Figure 1 (a), (b), and (c) shows
the accuracy results and model sizes obtained after the three
different trainings.

The full-precision variant (a) reaches 92.14%, as it was
tailored for mobile-class devices, this baseline already has a
low memory-footprint of 80 KiB.

The 8-bit quantization variant (b), namely res8-q, achieves
degraded but still comparable accuracy (85.43%) with the
added benefit of a reduced model size of a factor ≈ 4×.

The binary variant (c) proves to be more challenging to
train. This baseline binarized architecture does not meet fia-
bility requirements reaching only 8.28% accuracy, which is on
par with a random prediction.

Fig. 2: On the left side we show the res8-narrow architecture,
it is composed of an initial convolutional layer, three Residual
Blocks (detailed in the center), and a global downsampling
layer before the final softmax layer. On the right side, we
show the updated Residual Block used for BNNs.

Following the BNN design principles presented by Bethge
et al. [5], we adapt the res8-narrow architecture to perform
better with binary parameters. Practically, this translates to
two main changes : (i) we replace the downsampling (i.e.,
average pooling) layers with convolution layers, and (ii) we
introduce additional residual connections in the residual blocks
(See Figure 2). In the following, we refer to this updated
architecture as res8-bin.

In Figure 1 (d), we show the architecture and training
results of res8-bin. It achieves a much higher 69.50% accuracy
compared to a direct binarization of res8-narrow. However,
the removal of the downsampling layers leads to a model size
of 56.06 KiB, higher than the 8-bit quantized variant res8-q.
This highlights the need for further optimization to balance
the trade-off between accuracy and model size for binarized
architectures.

IV. METHODOLOGY

Bethge et al. [5] showed that BNNs require deep and
complex architectures to counterweight their low weight-
encoding precision. According to our previous experiment,
the same applies to a lesser extent for 8-bit quantization.
The data preparation step, computing Mel-Frequency Cepstral
Coefficients (MFCC) features from audio clips, has also a
significant impact on the models: For our architectures, the
number of inputs and model size have a linear relationship.
Finding size-efficient architectures with these newly added
parameters is a three-step problem to solve through a trial-and-
error process. First, we need to tweak models hyperparameters
(from the model itself or data preparation) to identify archi-
tectures of interest (i.e., low-memory footprint). Second, we
need to train selected architectures. Finally, we can merge low
memory-footprint architectures displaying good accuracy into
ensembles to form more complex and more accurate systems.
The following details each steps of this process.



TABLE I: Hyperparameters explored during the iterative Neu-
ral Architecture Search. Bold numbers are the default value.

Iteration Parameter Values

1 MFCCs 10, 20, 40
2 Residual Depth 2, 3, 4, 6, 8, 10
3 Kernel Size 2, 3, 5, 7, 9
4 Filters 4, 8, 16, 19, 32, 64

A. Neural Architecture Search Parameters
In this work, we keep NAS space small for the sake of

clarity. Table I summarize the hyperparameters tunned, with
bold numbers representing values of the reference design res-
bin. From early experimentations, these following four hyper-
parameters had the most significant impact on both model size
and accuracy results. The four hyperparameters tunned are in
order, (i) the number of MFFCs computed per 30ms window,
(ii) the residual depth i.e. number of residual blocks (noted D
in Figure 2), (iii) the convolutions’ kernel size (noted K), and
(iv) the number of filters for convolution layers (noted F).

Our approach employs an iterative NAS strategy to in-
vestigate, in order, the above-stated hyperparameters. Within
this already contrained search space, we only consider model
architectures whose size is inferior to the baseline res8-narrow,
i.e., 80 KiB. For the retained architectures, we repeat model
trainings three times and save the best-performing hyperpa-
rameter for subsequent explorations.

B. Model training
The following details the specificities for 8-bit quantized

and binary models training.
Quantization Training. Two options are available to train
quantized models. The first method is post-training quanti-
zation: We train a full-precision model and then use a few
audio clips to evaluate quantization parameters (zero-point and
scale). The second method is Quantization-Aware Training
(QAT). For this approach, following TensorFlow recommen-
dations [6], we also start by training the full-precision baseline
model, then we run 15 additionnal fine-tunning epochs. During
the fine-tuning, weights’ 8-bit representation (and quantization
parameters) are emulated and re-evaluated at each epochs.

Our early experimentations showed that QAT performs
better than post-training on res8-narrow. For the sake of
clarity, we only present the QAT results in this work.
Binary Training. Directly applying the gradient updates to
binary weights during backpropagation is not feasible due
to the sign function’s zero derivative. To tackle this issue,
we use full-precision latent weights during training. During
the backward pass, these latent weights are updated using
the Straight-Through Estimator (STE) [7]. During the forward
pass, the latent weights are binarized as -1 or 1 using the sign
function. Since full-precision latent weights are not needed for
inference, we only save the binarized parameters in the final
model so that latent weights do not impact memory-footprint.

C. Binary Ensembles Evaluation
The idea behind the binary ensembles is to combine multiple

low-memory footprint models to counterweight their individ-

ually low accuracy. Each model within an ensemble has the
same voting weight. Practically, this means that the prediction
of the ensemble is the average of the predictions of each indi-
vidual model. We select the three binary architectures with the
lowest memory footprint found through our NAS exploration
regardless of their accuracy. In our case study, these models’
size are lower than 15 KiB. As such, we can combine multiples
instances of these architectures in an ensemble (while still
fitting memory constraints) to improve accuracy. For each
selected architecture, we train two additional models and
evaluate their combined accuracy and memory size in a 2-
model ensemble. Note that no further selection is performed
on trained models based on their individual performance. We
repeat this process to build and evaluate 3-model ensembles.

V. RESULTS AND DISCUSSION

In this section, we compare all above-stated model com-
pression techniques as accuracy vs model size Pareto plot.

A. Experimental Setup
The models are trained and evaluated using Google’s Speech

Commands V2 dataset [8], composed of 105K speech samples
of 35 words. We classify 10 keywords, namely: “yes”, “no”,
“up”, “down”, “left”, “right”, “on”, “off”, “go”, “stop” along
with the classes “unknown” (sampled from the remaining
25 keywords) and “silence” (generated from non-vocal back-
ground noises). The audio clips are preprocessed in the form
of MFCC features extracted from 30ms frames with a 10ms
time shift (for a total of 98 sets of MFCCs). Following
the recommendations of [8], we mix every keywords with
background noise (at random amplitudes) and we add random
timing jitter for input feature enhancement. An 80:10:10 split
is used for training, validation, and testing subsets. For a fair
evaluation of models, we use the hashed id associated with
each audio clip to ensure that every audio excerpt from a
common speaker remain in a single subset.

Model training and evaluation are made in Python using
Google’s Tensorflow framework [9]. To build and train the
binary architectures, we use the Larq Library [10].

The models are trained using the Adam optimizer with an
initial learning rate of 1e−3 (except binary whose learning rate
starts at 1e−2) polynomially decaying down to 1e−5. We use
a batch size of 64 clips, each model is trained for 30 epochs
with 600 steps per epoch.

B. Pareto Front Evaluation
In Figure 3 we compare all trained models during the

NAS based on their accuracy and model size. As a general
rule of thumb for both 8-bit quantized and binarized models,
the higher the number of parameters, the better subsequent
classification performances. Both model size reduction ap-
proaches lead to a logarithm-like increase in accuracy results
with diminishing benefits as the model size increases. Given
the 80 KiB model size limitation, the number of quantized
architectures available within our search space is more limited.
As a direct consequence, more quantized architectures from
the NAS are discarded, reducing the number of quantized
models. Overall, small-sized models (i.e., models whose size
is less than 26 KiB), tend to benefit more of a higher weight
precision, and as such quantized models outperform binarized



Fig. 3: Pareto plot obtained by comparing accuracy vs size for
every model architectures explored through the NAS strategy.

approaches. Past this 26 KiB threshold, the tendency starts
inverting, with binarized approaches leveraging their deeper
and more complex architectures, consistently reaching higher
accuracy thresholds. Explored binary ensembles consistently
underperform NAS approach at comparable model sizes.
8-bit Quantized Models. The number of quantized archi-
tectures available within our limited search space is limited
due to the empirical effect of hyperparameters on model size.
Nonetheless, we observe through the applied NAS strategy that
highly constrained size (less than 13KiB) quantized models
leverage their relatively precise weight representation. This
allows such models with low parameter counts (10 MFCCs, a
kernel size of 3, and 4 filters per convolution) to reach 70.25%
accuracy at just 2.91KiB. Doubling the filter count to 8 boosts
accuracy to 81.57%. However, the effect on model size is not
linear as it increases to 11.43KiB.

As model size grows (13 to 26KiB), the Pareto-optimal
configurations shift towards shallower networks with more
filters. At this range, models have a maximum of 4 residual
blocks depth and keep the baseline number of filters (19).
This suggests that for quantized models, a wider architecture
becomes more effective at higher sizes potentially due to a
better ability to capture complex features.

Past the 26 KiB range, accuracy increases become very
incremental. As a matter of fact, roughly doubling the model
size (from 25.78 to 51.17KiB) only yields an accuracy increase
of 2% (from 85.65 to 87.68%).
Binary Models. For our KWS application, binarized models
suffer from the low-precision weight representation at low
model sizes. Practically, explored BNN architectures below the
26KiB threshold consistently achieve 5 to 10% less accuracy
than similar-size quantized variants.

This trend inverts past 26KiB, at this point binarized models
form the Pareto front of the 26 to 72KiB explored range. The
very low-precision encoding of binary architectures allows us
to explore more deep architectures, with higher filter counters

and wider convolutional kernel size.
Increasing the size of binarized architectures also leads to

diminishing returns on accuracy increase. This occurs at a
higher model size (around 40 KiB) compared to quantized
architectures. At this threshold roughly doubling the model
size (from 38.90 to 71.27KiB) only yields an accuracy increase
of 1% (from 90.17 to 91.23%).
Binary Ensembles. The memory cost of relying on ensemble
approaches is a straightforward multiplication of the size of
the model used as a baseline: a 2-model ensemble doubles
the overall system memory footprint. A 2-instance ensemble
increases on average 5.5% accuracy for the base binary models
under 4.5KiB. However, the ensemble approach also suffers
from diminishing returns on accuracy increase as we add
additional models to the voting system. Diminishing returns
are also noticeable as base model accuracy increases: For a
83.95% base performance, a 2-model ensemble only yields
3.5% more accuracy. For all of these reasons, in our ex-
periments, accuracy from the ensemble approach proves to
consistently underperform the NAS approach.

VI. CONCLUSION

In this work, we presented the trade-offs between accuracy
and model size in the context of keyword spotting on resource-
constrained devices. We used a ResNet-based model as a
case study. We compared model size reduction techniques
using 8-bit quantization, binarization, and binary ensembles.
Our results showed that quantization yields better per-byte
performance at tiny model sizes (less than 26KiB) while
binarisation reaches higher accuracies past this threshold for
our target baseline model.

ACKNOWLEDGMENT

This work was supported by the French National Research
Agency (ANR) through the government grants EMCOM
(ANR-22-PEEL-0009) and CHOOSE (ANR-22-PEEL-0013).

REFERENCES

[1] L. Heim, A. Biri, Z. Qu, and L. Thiele, “Measuring what really matters:
Optimizing neural networks for tinyml,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.10645

[2] H. Qin, X. Ma, Y. Ding, X. Li, Y. Zhang, Z. Ma, J. Wang, J. Luo, and
X. Liu, “Bifsmnv2: Pushing binary neural networks for keyword spotting
to real-network performance,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 10 674–10 686, 2024.

[3] R. Tang and J. Lin, “Deep residual learning for small-footprint keyword
spotting,” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5484–5488, 2018.

[4] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, pp. 1–21, 2019.

[5] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Back to simplicity:
How to train accurate bnns from scratch?” 2019. [Online]. Available:
https://arxiv.org/abs/1906.08637

[6] TensorFlow Documentation, “Training quantized models,”
https://www.tensorflow.org/model optimization/guide/quantization/
training comprehensive guide, 2024, accessed: 2024-06-05.

[7] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,”
2013. [Online]. Available: https://arxiv.org/abs/1308.3432

[8] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018. [Online]. Available: https://arxiv.org/abs/1804.03209

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow:
Large-scale machine learning on heterogeneous distributed systems,”
2016. [Online]. Available: https://arxiv.org/abs/1603.04467

[10] L. Geiger and P. Team, “Larq: An open-source library for training
binarized neural networks,” Journal of Open Source Software, p. 1746,
2020.


