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Abstract

As a promising paradigm to collaboratively
train models with decentralized data, Federated
Learning (FL) can be exploited to fine-tune
Large Language Models (LLMs). While LLMs
correspond to huge size, the scale of the train-
ing data significantly increases, which leads to
tremendous amounts of computation and com-
munication costs. The training data is generally
non-Independent and Identically Distributed
(non-IID), which requires adaptive data pro-
cessing within each device. Although Low-
Rank Adaptation (LoRA) can significantly re-
duce the scale of parameters to update in the
fine-tuning process, it still takes unaffordable
time to transfer the low-rank parameters of all
the layers in LLMs. In this paper, we propose a
Fisher Information-based Efficient Curriculum
Federated Learning framework (FibecFed) with
two novel methods, i.e., adaptive federated cur-
riculum learning and efficient sparse parameter
update. First, we propose a fisher information-
based method to adaptively sample data within
each device to improve the effectiveness of the
FL fine-tuning process. Second, we dynami-
cally select the proper layers for global aggre-
gation and sparse parameters for local update
with LoRA so as to improve the efficiency of
the FL fine-tuning process. Extensive experi-
mental results based on 10 datasets demonstrate
that FibecFed yields excellent performance (up
to 45.35% in terms of accuracy) and superb
fine-tuning speed (up to 98.61% faster) com-
pared with 17 baseline approaches). Our code
will be publicly available.

1 Introduction

As a promising paradigm to collaboratively train
models with decentralized data, Federated Learn-
ing (FL) can be exploited to fine-tune Large Lan-
guage Models (LLMs) without aggregating the raw
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data from a large number of devices (Fan et al.,
2023; Kuang et al., 2023; Che et al., 2023a; Liu
et al., 2024b; Che et al., 2023b; Liu et al., 2022b,a;
Zhou et al., 2022). A number of stringent legal reg-
ulations (Official Journal of the European Union,
2016; Californians for Consumer Privacy, 2020)
have been set up in order to protect the security
and the privacy of personal data, which hinders the
aggregation of the decentralized raw data. FL typi-
cally utilizes a parameter server (Li et al., 2014; Liu
et al., 2024c, 2023a,b) to aggregate the distributed
model updates in devices, which only transfers the
parameters or the gradients of the updated models
in replace of the raw personal data. By leveraging
the distributed raw data of end users, Large Lan-
guage Models (LLMs) can be trained on devices
with excellent performance (Zhao et al., 2024).

While ChatGPT (OpenAI, 2022) has achieved
remarkable progress, LLMs (Touvron et al., 2023;
Jiang et al., 2023; Du et al., 2022; Zeng et al., 2023;
Zhang et al., 2024) have attracted extensive atten-
tion. The size of LLMs ranges from several million
parameters, e.g., RoBERTaLARGE (Liu et al., 2020),
to several hundreds billion parameters (Wang et al.,
2019). While the large scale brings strong capabil-
ity in various Natural Language Processing (NLP)
tasks (Zhao et al., 2023b), the pre-training and the
fine-tuning process of LLMs significant communi-
cation and computation costs (et al., 2023).

Two types of parameter-efficient approaches ex-
ist for reducing the number of parameters within
the fine-tuning process of LLMs. Prompt tuning
(Liu et al., 2021; Lester et al., 2021; Liu et al.,
2022d) can dynamically adjust the prompts to fine-
tune LLMs with only a few trainable parameters,
which may introduce performance degradation. Al-
though Low-Rank Adaptation (LoRA) (Hu et al.,
2021) can significantly reduce the scale of parame-
ters to update in the fine-tuning process of LLMs so
as to enable the training of LLMs on edge devices
(Xu et al., 2024), it still takes unaffordable time to



update the low-rank parameters of all the layers in
LLMs when dealing with decentralized data.

While being an effective method to improve the
efficiency and effectiveness of training process, cur-
riculum learning (Bengio et al., 2009) is exploited
to train large-scale models (Li et al., 2022a). In-
spired by the learning strategy of starting small (El-
man, 1993), the curriculum training process starts
with easier data and then gradually increase the
difficulty. Instead of randomly sampling the batch
from training dataset, curriculum learning allows
the model to gradually learn from easy samples to
hard samples during the training or the fine-tuning
process. Existing approaches generally measure
the complexity of samples based on heuristic meth-
ods (Li et al., 2024) or a simple mode-based method
(Xu et al., 2022), both of which cannot provide an
accurate estimation of difficulty of data samples
and cannot be directly applied in FL. In the context
of FL, the data is generally non-Independent and
Identically Distributed (non-IID), which requires
an adaptive difficulty evaluation approach for di-
verse devices (Vahidian et al., 2023).

Model compression methods, e.g., pruning (Wu
et al., 2021; Liu et al., 2024d; Zhang et al., 2022) or
sparse training (Bibikar et al., 2022), are exploited
in FL to reduce computation and communication
costs. Sparse training can achieve personalization
so as to further improve the performance of FL
(Liu et al., 2023c; Dai et al., 2022). However, the
pruning or sparse training incurs severe accuracy
degradation due to lossy strategies or simple com-
ponent (neuron) selection mechanisms. In addition,
the model can be split into two parts, i.e., the server
part and the device part, in order to achieve both
the generalization and personalization capability
(Han et al., 2023).

Fisher information can be exploited to acceler-
ate the training process of LLMs (Ollivier, 2015;
Martens and Grosse, 2015; Osawa et al., 2023).
Fisher information is defined as the amount of infor-
mation carried by a random variable corresponding
to some unknown parameters (Duy et al., 2022). As
a measure of the local curvature (Martens, 2020),
Fisher Information Matrix (FIM) defines the Rie-
mannian metric of the parameter space (Karakida
et al., 2019), which can indicate the difficulty of
data samples and the importance of each compo-
nent of the network along with the generalization
performance (Jastrzebski et al., 2021).

In this paper, we propose FibecFed, i.e., a Fisher
Information-based Efficient Curriculum Federated

Learning framework. FibecFed is composed of two
novel methods, i.e., adaptive federated curriculum
learning and efficient sparse parameter update. To
the best of our knowledge, we are among the first
to exploit the fisher information to perform cur-
riculum learning and sparse training at the same
time within FL settings. We summarize out major
contributions as follows:

• We propose an adaptive federated curriculum
learning method to sample easy data samples
first and to gradually improve the difficulty of
samples so as to improve the effectiveness of
the FL fine-tuning process. We exploit a fisher
information-based method to measure the dif-
ficulty of training data within each device.

• We propose an efficient sparse parameter up-
date method to select proper layers for global
aggregation and to adaptively update sparse
parameters to achieve excellent efficiency and
effectiveness. We utilize fisher information
to evaluate the importance of diverse compo-
nents of LLMs and propose a lossless method
for global aggregation and local update.

• We conduct extensive experimentation to val-
idate our approach using 10 datasets. The
experimental results reveal that FibecFed sig-
nificantly outperforms 17 baseline approaches
in terms of accuracy (up to 45.35% higher)
and fine-tuning speed (up to 98.61% faster).

The rest of the paper is organized as follows.
The related work is presented in Section 2. We
formulate the problem to address in Section 3. We
present the architecture of FibecFed and propose
the adaptive federated curriculum learning and the
efficient sparse parameter update method in Sec-
tion 4. We demonstrate the experimental results in
Section 5. Finally, Section 6 concludes.

2 Related Word & Preliminaries

Inspired by the learning strategy of starting small
(Elman, 1993), curriculum learning (Bengio et al.,
2009) is exploited in large-scale model training (Li
et al., 2022a). Existing works measure the com-
plexity of samples based on static characteristics of
data samples, e.g., sequence length (Li et al., 2024;
Platanios et al., 2019). Although a simple global
mode-based method is proposed to predict the per-
formance improvement based on several training



states (Xu et al., 2022), it still cannot provide an ac-
curate estimation of difficulty of data samples due
to non-IID data in FL settings. Direct evaluation
based on the inference loss of models (Vahidian
et al., 2023) cannot well explore the impact on the
generalization of the training process. The atten-
tion scores can analyze the dependency among di-
verse layers, but varies significantly between heads
(Vig and Belinkov, 2019), which cannot be directly
utilized in FL settings. While a sharpness-aware
minimization method (Foret et al., 2021) can help
minimize loss value and loss sharpness to improve
model generalization, it does not consider federated
fine-tuning settings of LLMs.

FIM can be exploited to enable the second-order
optimization so as to improve the training process
(Osawa et al., 2023; Jin et al., 2022) and to compute
a global posterior for federated learning (Jhunjhun-
wala et al., 2024). In addition, continual learning
can be used to improve the performance of trained
models while addressing the forgetting problem
(Wu et al., 2022a). Different from (Osawa et al.,
2023; Wu et al., 2022a; Jhunjhunwala et al., 2024),
we exploit the sum of diagonal of FIM to evalu-
ate the difficulty of samples within the efficient
curriculum learning method and to calculate the
importance score of each layer and neuron within
the LLM.

Model compression methods (Wu et al., 2021;
Bibikar et al., 2022) are exploited in FL to re-
duce both computation and communication costs.
Although pruning methods can reduce the size
of large models (Wang et al., 2020; Ma et al.,
2023; Xia et al., 2023), it is complicated to
choose a proper pruning rate and may incur in-
ferior performance in terms of accuracy (Wu et al.,
2021). Sparse training can achieve personalization
(Bibikar et al., 2022; Liu et al., 2023c; Setayesh
et al., 2022; Dai et al., 2022) while addressing the
client shift problem brought by the non-IID data
(Setayesh et al., 2022; Karimireddy et al., 2020).
However, the existing sparse training methods may
incur severe accuracy degradation with poor gen-
eralization capacity due to simple component se-
lection mechanisms. The model can be split into a
server part and a device part to achieve both gener-
alization and personalization capability (Han et al.,
2023), which still incurs severe computation and
communication costs in the FL settings of LLMs.
Please note our approach is orthogonal with model
compression methods.

For NLP tasks, prompt tuning (Liu et al., 2021;

Lester et al., 2021; Liu et al., 2022d) can fine-tune
LLMs with only a few parameters. With prompt
tuning, an extra network is exploited to generate
proper prompts or prefix, which is concatenated
with the input to guide LLMs to generate proper
answers. Furthermore, LoRA updates trainable
rank decomposition matrices while freezing the
parameters of the original network, which can sig-
nificantly reduce the scale of parameters to update
(Hu et al., 2021). However, both the prompt tuning
and LoRA still incur significant communication
costs due to the update for all the layers.

3 Problem Formulation

In this paper, we delve into the problem of how to
efficiently fine-tune a large language model within
a FL setting. The FL setting is composed of a
parameter server and K devices. We assume that
the data samples are distributed among the devices,
each of which contains a dataset Dk = {si,mi}nk

with si, mi, and nk referring to a data sample, the
corresponding label, and the cardinality of Dk. We
denote the cardinality of the whole dataset D =
{D1, D2, ..., Dk} by N .

We consider a LLMM of L layers, each layer
contains a full parameter matrixW l

o. We exploit
the LoRA method to reduce the parameters to up-
date in this paper (Hu et al., 2021), and denote the
LoRA parameters of the the LLMM by P with Pl

representing the set of LoRA parameters in Layer l
ofM. We denote the updated LoRA parameters on
Device k by Pk. Then, we formulate the problem
to address in this paper as how to efficiently update
P so as to minimize the global loss:

min
P

F(M,P) ≜
1

K

K∑
k=1, Pk∈P

nkFk(M,Pk)

 ,

(1)
where F(M,P) is the global loss,
Fi(M,Pk) ≜ 1

nl

∑
{si,mi}∈Dk

f(M,Pk, si,mi)
represents the local loss function on Device k with
f(M,Pk, si,mi) calculating the local loss on
Device k.

4 Efficient Curriculum Federated
Learning

In this section, we first explain the system model.
Then, we propose the adaptive federated curricu-
lum learning method. Afterward, we further detail
the efficient sparse tuning method.
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Figure 1: The system model of FibecFed.

4.1 System Model

The system model of FibecFed is shown in Figure
1. We assume that the LLM (M) is deployed on
each device. The parameters of M stays frozen
while we update the LoRA parameters (Hu et al.,
2021). As shown on the top left of Figure 1, on
Device k, the parameters (W l

o) at each layer (l) is
decomposed into two matrices (LoRA), i.e., Al

k and
Bl

k, which can be updated during the fine-tuning
process. Then, the hidden values (h) generated
at Layer l with the input x is calculated based on
Formula 2.

h = W l
ox+Bl

kA
l
kx. (2)

The fine-tuning process is composed of two
phases, i.e., initialization and tuning. Within the
initialization phase, we evaluate the difficulty score
for each batch of data samples (see Formulas 3-5
in Section 4.2 and Lines 1-4 in Algorithm 1) and
the importance score for each layer (see Formulas
6-11 and details in Section 4.3.1) based on fisher
information on each device (Step 1⃝). Then, the
importance score of each layer is transferred to the
server (Step 2⃝), which aggregates the scores and
selects proper layers as the Global Aggregation
Layers (GAL) (see details in Section 4.3.1, Line 7
in Algorithm 1, Step 3⃝). Afterward, the GAL are
boradcasted to all the devices (Step 4⃝). Finally,
the parameters, which are not in the GAL, are lo-
cally evaluated on each device so as to generate
local update part of parameters and the local static

parameters to be frozen (see details in Section 4.3.2,
Lines 8-10 in Algorithm 1, Step 5⃝). During the
tuning phase, only the parameters in GAL and the
local update part of parameters are updated while
the local static parameters are kept frozen. The
tuning phase consists of multiple rounds, each of
which consists of five steps. First, the server ran-
domly selects K devices and broadcasts the global
parameters in GAL on the server to the selected
devices (Step 6⃝, Line 12 in Algorithm 1). Then,
the parameters in GAL and the local update part
of parameters are updated based on our proposed
curriculum FL (see details in Appendix) on each
selected device (Step 7⃝, Lines 13-17 in Algorithm
1). Afterward, the updated parameters in GAL are
uploaded to the server (Step 8⃝). Finally, the server
aggregate and update the global parameters in GAL
(Step 9⃝, Line 19 in Algorithm 1).

The tuning phase is composed of multiple
rounds, each of which consists of five steps. First,
the server randomly selects K devices and broad-
casts the global parameters in GAL on the server to
the selected devices (Step 6⃝). Then, the parame-
ters in GAL and the local update part of parameters
are updated based on our proposed curriculum FL
(see details in Section 4.2) on each selected device
(Step 7⃝). Afterward, the updated parameters in
GAL are uploaded to the server (Step 8⃝). Finally,
the server aggregate and update the global parame-
ters in GAL (Step 9⃝).



4.2 Fisher information-based Curriculum
Federated Learning

Inspired by the starting small strategy (Elman,
1993), we propose a fisher information-based cur-
riculum FL method to enable efficient federated
fine-tuning. As the FIM can help indicate the
amount of information carried by each data sample
to generate the response (Ly et al., 2017), we pro-
pose utilizing the FIM to measure the difficulty of
data samples. The FIM is defined in Formula 3:

Fi ≜ Esi

[
(∇ log pk(si)) (∇ log pk(si))

T
]
, (3)

where Fi represents the FIM corresponding to
data sample si, pk(si) represents the probability
density function of the inference with the LLM
M, the LoRA parameters Pk, and data sample si,
∇ log pk(si) denotes the first-order derivative of
the LoRA parameters, calculated by the gradient
of the loss respect to Pk, T refers to the transpose
of a matrix. Practically, the expected FIM can be
approximated by empirical FIM (Kunstner et al.,
2019) as defined in Formula 4:

Fi ≈
1

N

N∑
i=1

[
(∇ log pk(si)) (∇ log pk(si))

T
]
,

(4)
However, calculating the FIM is computational

expensive as the multiplication of ∇ log pk(si) is
both time and memory consumption when the size
of the derivative matrix, i.e., |∇ log pk(si)|, is sub-
stantial. Inspired by (Pascanu and Bengio, 2013),
we calculate the diagonal of FIM to approximate
the FIM as shown in Formula 5.

F̃i = I|∇ log pk(si)| ⊙ Fi (5)

where I|∇ log pk(si)| is the identity matrix with the
same size of the derivative matrix. Then, we cal-
culate the sum of the trace of F̃i (Jastrzebski et al.,
2021) as the score of the data sample. Finally, we
can calculate the difficulty score of a batch of data
samples (see details in Appendix).

In order to improve the training efficiency, we
propose a curriculum data selection strategy. We
take the simplest Btk data samples for the local
update on Device k in Round t. Btk becomes bigger
along with the epoch number within the training
process (see details in Apendix).

4.3 Efficient Sparse Parameter Update
In this section, we propose an efficient sparse pa-
rameter method composed of a global aggregation

layer selection method and a local update parame-
ter selection method.

4.3.1 Global Aggregation Layer Selection
In order to reduce communication costs, we only
transfer the LoRA parameters in important layers
(GAL) between the server and devices for global
aggregation. In this section, we propose a global
aggregation layer selection method with a novel
layer importance score calculation technique and a
global aggregation layer selection technique based
on the importance score.

While important layers generally capture distin-
guishable features of data (Mellor et al., 2021),
we select the layers that are sensitive to the input
data samples. When a layer exhibit less resilience
against the noise on the data, it corresponds to
higher sensitivity, and thus is more important. We
calculate the output difference of a certain layer
with two similar input data samples to indicate its
resilience, which represents the importance score.

In order to get two similar input data samples,
we add noise to an original sample. Within a prede-
fined noise budget, we calculate the noise that max-
imizes the loss, so as to well evaluate the sensitivity
of the layer. Then, the noise (ϵi) corresponding to
si is calculate based on Formula 6:

ϵi = argmax
||ϵi||p<γ

f(M,Pk, si + ϵi,mi)︸ ︷︷ ︸
Lk(si+ϵi)

− f(M,Pk, si,mi)︸ ︷︷ ︸
Lk(si)

,
(6)

where Lk is the local loss, || · ||p represents the ℓp-
norm of the noise, and γ refers to the noise budget.
We decompose Lk(si + ϵi)− Lk(si) via the first-
order Talyor extension as defined in Formula 7:

Lk(si + ϵi)− Lk(si)

≈ Lk(si) + ϵTi ∇Pk
Lk(si)− Lk(si),

= ϵTi ∇Pk
Lk(si).

(7)

Then, we can solve the approximation by the solu-
tion to a classic dual problem (Foret et al., 2021)
as defined in Formula 8.

ϵ∗i = γ
sign(∇Pk

Lk(Pk))|∇Pk
Lk(Pk)|q−1

(||∇Pk
Lk(Pk)||qq)1/1−p

(8)

where | · |q−1 denotes the absolute value and power
in terms of each element, q is a factor that satisfies
1
p + 1

q = 1. Afterward, we take ϵ∗i as the noise ϵi
to calculate the sensitivity.



As Frobenius norm can characterize features in
the latent space (Chen et al., 2021), we exploit a rel-
ative difference of the Frobenius norm to measure
the sensitivity of each layer. The relative difference
can avoid the bias brought by the absolute values.
The relative difference of of Frobenius norm is
defined in Formula 9.

F l(si) =
||hl(si + ϵ∗i )||F − ||hl(si)||F

||hl(si)||F
, (9)

where F l(si) is the relative difference of the Frobe-
nius norm, hl(si) represents the output embeddings
at Layer l of the LLMM for data sample si, || · ||F
refers to the Frobenius norm. Then, the importance
score of Layer l on Device k is calculated based on
its local data Dk as defined in Formula 10.

I lk =
1

nk

∑
si∈Dk

F l(si), (10)

where I lk represents the importance score of Layer
l on Device k. Afterward, the global importance
score I l is calculated based on Formula 11.

I l = 1

N

K∑
k=1

nkI lk, (11)

We propose a lossless method to select proper
important layers as GAL. On each device k, the
LoRA parameters are initialized as P0

k . After T
rounds of fine-tuning, the LoRA parameters are
denoted by PT

k . We construct a base function as
∆k = P0

k − PT
k . We calculate the Hessian ma-

trix of the local loss function with its eigenvalues
sorted in ascending order ({λ1

k, λ
2
k, ..., λ

r
k ..., λ

Rk
k }

with r representing the index of an eigenvalue and
R indicating the rank of the Hessian matrix). We
calculate the Lipschitz constant (Lk) of a base func-
tion Hk(PT

k )∆k − ▽L′
k(∆k + PT

k ) with ▽L′
k(·)

being the gradient of the local loss function and
Hk referring to the Hessian matrix of the local loss
function. Inspired by (Zhang et al., 2021), we find
the first rk that satisfies λrk+1

− λrk > 4Lk to
achieve lossless performance. Then, we calculate
the expected number of layers in GAL on Device
k as N ∗

k = (1 − rk
Rk

)L with L being the number
of layers inM. Then, we calculate the number of
layers in GAL as N ∗ = µ

N

∑
nkN ∗

k , where µ is a
hyper-parameter to adjust the ratio between global
and local number. Finally, we select N ∗ layers
with the highest importance scores.

4.3.2 Local Update Parameter Selection
In order to reduce computation costs, we only up-
date important LoRA parameters within the lo-
cal update while freeze the remaining parameters.
Apart from the parameters in GAL, we dynamically
select an important part of parameters in other lay-
ers to update. In this section, we propose a novel
fisher information-based local update parameter
selection method with momentum.

While the LoRA parameters may significantly
vary during the fine-tuning process, we calculate
the FIM with momentum within first T ′ epochs by
Ft
k = γ∗Ft−1

k +(1−γ)F̃k, where γ represents the
coefficient that controls the step size of the moving
average, Ft

k refers to the FIM on Device k at Round
t, F̃k is the empirical average diagonal approxima-
tion of the FIM, i.e., F̃k = 1

nk

∑
si∈Dk

F̃i with F̃i

calculated based on Formula 5, while F0
k is directly

calculated without moment. Finally, we get a FIM
FT ′
k,l for each layer l outside of GAL. Inspired by

(Diao et al., 2023), we exploit a neuron-wise aggre-
gation of the FIM to indicate the importance score
of Neuron µ in Layer l as defined in Formula 12.

∫µk,l =
|Wµ:|−1∑
υ=0

FT ′
k [µ ∗ |Wµ:|+ υ] (12)

Where |Wµ :| denotes the number of elements in
the µth row of the full weight matrix W l

o in M,
FT ′
k,l[ν] represents the νth diagonal element in FT ′

k,l.
Afterward, we exploit the lossless method to cal-
culate the proper local update parameter ratio as
ρk,l = 1− rk,l

Rk,l
(see details in Section 4.3.1, with

rk,l and Rk,l representing the corresponding rk and
Rk in Layer l. Finally, we take the most important
ρk,l neurons in terms of the importance score ∫µk,l as
the local update parameters to be updated with the
parameters in GAL and freeze the other parameters
within the local update.

4.4 FibecFed Algorithm

The FibecFed algorithm is shown in Algorithm 1.
Within the initialization phase (Lines 1 - 10), the
difficulty scores of each batch are calculated based
on Formula 7 (Lines 2 - 4), the batches of data sam-
ples are sorted in ascending order in terms of the
difficulty scores for the curriculum data selection
strategy (Line 5), the GAL are calculated in Line 7
(see details in Section 4.3.1 ), and the local update
parameters are computed in Line 9 (see details in
Section 4.3.2 ). Then, within the fine-tuning phase



Algorithm 1 Fisher Information-base Efficient Cur-
riculum Federated Learning (FibecFed)

Input:
T : The maximum number of rounds
K: The number of devices
D = {D1, D2, ..., DK}: The set of datasets
on each device
η = {η1, η2, ..., ηT }: The learning rates

Output:
Pt: The set of LoRA parameters at Round t

1: for k in {1, 2, ...,K} (in parallel) do
2: for Bj ∈ Dk do
3: ∫j ← Calculation based on Formula 7
4: end for
5: Sort Bj ∈ Dk in ascending order of ∫j
6: end for
7: GAL← Compute the GAL
8: for k in {1, 2, ...,K} (in parallel) do
9: Pu

k ← Compute local update parameters
10: end for
11: for t in {1, 2, ..., T} do
12: Sample K ⊆ {1, 2, ...,K} devices
13: for k in K do
14: Select Btk data samples based on For-

mula 8
15: Pt− 1

2
k ← Update Pt−1

k with Pt−1
GAL

16: Pt
k ← Update Pu

k ⊂ P
t− 1

2
k using Btk

data samples
17: end for
18: Pt

GAL← Aggregate Pt
GAL,k with k ∈ K

19: end for

is performed in Lines 11 - 19. A set of devices K is
randomly selected (Line 12). Then, on each device,
local update is carried out in Lines 13 - 17. First,
the data samples are selected based on the curricu-
lum data selection strategy in Line 14. Second, the
LoRA parameters are updated with the global pa-
rameters in PSL transferred from the server in Line
15 (see details in Section 4.1 ). Third, the LoRA
parameters are updated based on the local training
with the selected Btk data samples in Line 16 (see
details in Section 4.3.2 ). Finally, the parameters in
the global aggregation layers are aggregated using
the FedAvg algorithm (McMahan et al., 2017) on
the server (Line 18).

5 Experiments

In this section, we demonstrate extensive experi-
mentation with 17 baseline approaches and 10 NLP
tasks to reveal the advantages of FibecFed.

5.1 Experimental Setup

We take an FL environment composed of 100 de-
vices and a parameter server in the experimentation.
We randomly sample 10 devices in each epoch. We
utilize 10 commonly-used NLP tasks in the ex-
perimentation, i.e., QNLI (Rajpurkar et al., 2016),
SST-2 (Socher et al., 2013), CoLA (Warstadt et al.,
2019), MRPC (Dolan and Brockett, 2005), RTE
(Giampiccolo et al., 2007), BoolQ (Clark et al.,
2019), MPQA (Wiebe et al., 2005), Subj (Pang and
Lee, 2004), TREC (Voorhees and Tice, 2000), and
MR (Pang and Lee, 2005). The input data of the
tasks are non-IID among the 100 devices. We com-
pare FibecFed with 17 baseline approaches, i.e., a
parameter efficient fine-tuning-based approaches
(Adapter (Houlsby et al., 2019)), 6 prompt-based
tuning methods (FedPrompt (Zhao et al., 2023a),
P-tuning v2 (Liu et al., 2022d), IDPG (Wu et al.,
2022b), ATTEMPT (Asai et al., 2022), LPT (Liu
et al., 2022c), LoRA (Hu et al., 2021)), 4 curricu-
lum learning-based approaches (Shortformer (Press
et al., 2021), VOC (Platanios et al., 2019), SLW
(Li et al., 2024), SE (Peng et al., 2023)), 3 person-
alized FL methods (PFedGate (Chen et al., 2023),
FedDST (Bibikar et al., 2022), FedALT (Pillutla
et al., 2022)), and 2 Lora based methods (SLoRA
(Babakniya et al., 2023), AdaLoRA (Zhang et al.,
2023)). We carry out the experimentation based
on two language models, i.e., RoBERTaLARGE (Liu
et al., 2020) and LLaMA (Touvron et al., 2023).

5.2 Evaluation of FibecFed

In this section, we present the evaluation of
FibecFed based on RoBERTaLARGE and LLaMA.

5.3 Evaluation based on RoBERTaLARGE

Table 1 present the convergence accuracy of
diverse approaches based on RoBERTaLARGE.
FibecFed significantly outperforms baseline meth-
ods in terms of the convergence accuracy (up
to 45.35%, 38.37%, 12.69%, 37.60%, 42.38%,
18.72%, 7.01%, 6.36%, 5.70%, 5.90%, 8.79%,
28.45%, 16.70%, 4.96%, 5.44%, 14.11% and
5.49% compared with Adapter, FedPrompt, P-
tuning v2, IDPG, ATTEMPT, LTP, LoRA, Short-
former, VOC, SLW, PFedGate, FedDST, SE,
FedALT, sLoRA, AdaLoRA, and Delta-LoRA re-
spectively). In addition, we analyze the time
to achieve target accuracy (see details in Ap-
pendix), which demonstrates that FibecFed out-
performs baseline methods in terms of efficiency



Method QNLI SST-2 CoLA MRPC RTE BoolQ MPQA Subj Trec MR Avg

Adapter 49.46 90.83 54.17 84.77 47.29 62.17 90.95 51.65 96.2 91.30 58.32
FedPrompt 87.73 94.38 19.79 76.31 64.98 74.58 90.10 94.25 92.6 91 78.57
P-tuning v2 88.74 94.04 50.23 78.16 76.17 74.89 88.75 95.5 90.8 90.65 82.79

IDPG 66.7 89.11 4.59 72.22 52.35 68.93 71.8 59.4 73.4 86.35 64.48
ATTEMPT 50.74 50.92 4.63 76.01 54.15 62.17 90.35 88.85 77.2 91.15 64.16

LPT 89.38 94.27 50.78 82.38 80.86 62.2 90.15 95.75 92.4 90.6 82.87
LORA 89.86 94.72 54.78 83.15 78.7 75.96 89.2 95.8 94.4 91.35 84.72

Shortformer 90.17 94.04 54.16 84.49 79.78 78.62 90.6 96.85 95.2 91.1 85.5
VOC 91.89 95.18 53.64 85.15 81.31 78.32 90.85 96.85 96.6 91.25 86.1
SLW 91.91 94.1 54.75 85.01 79.06 78.41 91.25 96.6 95.8 91.15 85.80

PFedGate 90.72 93.81 50.73 83.33 76.17 76.88 89.8 94.5 94 87.65 83.75
FedDST 90.15 94.61 30.12 81.41 71.84 77.13 90.05 95.85 86.2 91.2 80.85

SE 76.42 93.69 55.47 81.72 71.84 76.42 89.8 96.3 87.2 91.85 82.07
FedALT 91.76 94.15 55.5 85.89 80.95 80.46 90 96.15 96.6 91.25 86.23
sLORA 92.40 94.38 55.51 85.41 82.31 80.24 91.30 96.8 97.2 91.35 86.69

adaLORA 91.14 92.32 44.46 81.83 75.81 77.16 89.65 96.25 91 91.8 83.14
Delta-LoRA 92.41 94.27 54.95 85.36 83.39 80.18 90.80 96.75 96.8 91.25 86.61

Ours 93.12 95.76 58.57 90.85 84.69 80.92 91.35 97.0 97.8 92.95 88.31

Table 1: The convergence accuracy with FibecFed and diverse baseline approaches. The evaluation with GLUE
benchmark is based on development sets while others are based on test sets. The best results are highlighted in bold
and the second bests are marked with underline. The results are obtained using RoBERTaLARGE.

(up to 94.7%, 97.43%, 98.61%, 61.64%, 96.12%,
91.6%, 96.69%, 89.12%, 80.15%, 84.26%, 80.82%,
97.01%, 96.52%, 82.16%, 85.18%, 95.66% and
69.65% compared with Adapter, FedPrompt, P-
tuning v2, IDPG, ATTEMPT, LTP, LoRA, Short-
former, VOC, SLW, PFedGate, FedDST, SE,
FedALT, sLoRA, AdaLoRA, and Delta-LoRA re-
spectively). The advantages are expected as our
proposed curriculum data selection strategy on
each device can well improve both the efficiency
and the effectiveness. In addition, the proposed im-
portant layer selection method can reduce the scale
of parameters to transfer between the server and
devices. Furthermore, the local update parameter
selection method can well reduce useless compu-
tation on each devices while freezing unimportant
parameters may mitigate the effect of overfitting
brought by the non-IID data.

5.4 Evaluation based on LLaMA 7B

We carried out the experimentation with a LLM,
i.e., LLaMA 7B on MRPC, MR, and SST-2 dataset.
As shown in Table 2, FibecFed significantly outper-
forms baseline approaches in terms of both perfor-
mance (up to 29.60%, 33.93%, 11.91%, 12.27%,
5.41%, 11%, 12.27%, 26.35%, 4.69% higher ac-
curacy compared with FedPrompt, P-tuning v2,
ATTEMPT, LPT, LORA, VOC, SE, SLoRA and
DeltaLoRA) and efficiency (up to 45.75%, 39.87%,
28.8%, 32.7%, 26.58%, 5.63%, 16.2%, 25.6%,
47.1% faster compared with FedPrompt, P-tuning
v2, ATTEMPT, LPT, LORA, VOC, SE, SLoRA

Method COLA MRPC RTE

Acc Time Acc Time Acc Time

FedPrompt 59.30 2527 80.54 1365 56.68 1296
P-tuning v2 3.89 2159 80.18 935 52.35 842
ATTEMPT 54.77 1825 81.38 1069 74.37 934
LPT 51.8 1645 80.13 958 74.01 1045
LoRA 59.55 1768 79.56 941 80.87 984
Voc 60.64 1364 38.64 859 75.28 745
SE 58.69 1628 79.35 846 74.01 839
SLoRA 60.56 1602 80.39 947 59.93 945
DeltaLoRA 58.91 1674 81.67 1034 81.95 1329
FibecFed 61.48 1298 81.93 832 86.28 703

Table 2: Convergence accuracy and fine-tuning time on
COLA, MRPC and RTE with LLaMA.

and DeltaLoRA). The advantages reveal the our
proposed approach improves both the efficiency
and effectiveness with LLM.

5.5 Robustness & Scalability

In this section, we demonstrate the robustness
and the scalability of FibecFed with divers de-
grees of non-IID data and different device numbers.
FibecFed achieves comparable accuracy across
divers degrees of data heterogeneity, the difference
of which is smaller than 1.83%. In addition, we
conduct the experimentation with the device num-
ber ranging from 20 to 100 based on MRPC dataset
and find that the disparity is smaller than 0.79% in
terms of accuracy.

5.6 Communication overhead

The absolute communication overhead is shown in
the Table 13 of Appendix (with RoBERTaLARGE).



The communication overhead of FibecFed is higher
than that of FedPrompt (up to 3.51 times), IDPG
(up to 3.3 times), and ATTEMPT (up to 1.85 times).
This is expected as the these three methods are
prompt tuning-based methods, which corresponds
to much fewer parameters to update during the
training phase compared with FibecFed. However,
these three methods correspond to significantly
lower performance (compared with FibecFed),
i.e., low convergence accuracy (from 1.25% to
38.68% for FedPrompt, from 6.6% to 53.98% for
IDPG, and from 1% to 53.94% for ATTEMPT), as
shown in Table 1. The communication overhead
of FibecFed is significantly lower than the other
methods (6.25 times for Adapter, 9.67 times for P-
tuning V2, 1.9 times for LPT, and 25% for LORA,
SHORTFORMER, Voc, SLW, PFedGate, FedDST,
SE, FedAlt, sLora, AdaLora, Delta-LoRA). This
is expected as well as FibecFed only transfers the
global aggregation layers instead of the parameters
of all the layers in LLM.

In addition, the relative communication overhead
(i.e., the ratio between the absolute communication
overhead and the total training time) is shown in
Table 14 of Appendix. Similar to the absolute com-
munication overhead, the relative communication
overhead of FibecFed is higher than that of Fed-
Prompt (from 2.3% to 37.4%), IDPG (from 2.4% to
34.4%), and ATTEMPT (from 1.9% to 31.7%) as
well. This is expected as explained before. As the
total training time of FibecFed becomes shorter, the
relative communication overhead of FibecFed be-
comes slightly more significant than FedAlt (from
1.4% to 20.1%) and AdaLora (from 0.8% to 5.7%).
In addition, the relative communication overhead
of FibecFed becomes similar to that of sLora (from
7.8% smaller to 24.8% bigger) and Delta-LoRA
(from 7.5% smaller to 5.5% bigger). The rela-
tive communication overhead of FibecFed is still
smaller than the rest approaches, i.e., Adapter (up
to 43.9%), P-tuning V2 (up to 55.6%), LPT (up to
25.1%), LORA (up to 14.5%), SHORTFORMER
(up to 13.8%), Voc (up to 8.0%), SLW (up to 8.8%),
PFedGate (up to 7.0%), FedDST (up to 7.1%), SE
(8.1%). Please note that FibecFed corresponds to
higher convergence accuracy (as shown in Table 1)
and shorter training time (as shown in Table 2).

5.7 Ablation Study
To analyze the impact of each module in FibecFed,
we demonstrate the ablation study in terms of the
curriculum data selection method, the important

layer selection method, and the local update param-
eter selection method. First, we conduct a compara-
tive analysis among four curriculum strategies, i.e.,
SLW, VOC, Shortformer, SE, and that without cur-
riculum (NULL). FibecFed corresponds to superior
performance in terms of accuracy (up to 5.73%,
9.12% 5.84%, 6.41%, 7.7% compared with Voc,
SE, SLW, Shortformer, and NULL, respectively)
and efficiency (up to 26.53%, 34.26% 68.92%,
68.36%, 58.57% compared with Voc, SE, SLW,
Shortformer, and NULL, respectively). Afterward,
we compare the importance layer selection method
with Ascending Order (AO), Descending Order,
Random Order (RO) and that with full layer syn-
chronization (FULL), which reveals the advantages
of our layer selection method in terms of accuracy
(up to 3.42%, 2.76%, 2.65%, 1.02%) and efficiency
(up to 29.3%, 18.46%, 23.1%, 15.3%) compared
with AO, DO, RO, and FULL, respectively. Fur-
thermore, we compare our local update parame-
ter selection method to that without selection, i.e.,
all the parameters are updated. The advantage of
our local update parameter selection method can
achieve 2.48% higher accuracy and 11.8% faster.

6 Conclusion

In this paper, we propose an original fisher
information-based efficient curriculum federated
learning, i.e., FibecFed. Within FibecFed, we pro-
pose an adaptive federated curriculum learning
method and an efficient sparse parameter update
method. We exploit fisher information to calculate
the difficulty scores of data samples and propose
the an original curriculum data selection strategy.
In the sparse parameter update method, we propose
a new sensitivity-based important layer selection
technique and a novel fisher information-based im-
portant parameter technique method while freezing
the remaining parameters to achieve both efficiency
and effectiveness. We demonstrate the results of ex-
tensive experimentation to compare FibecFed with
17 baseline approaches based on 10 NLP tasks,
which reveal significant advantages of FibecFed in
terms of accuracy (up to 45.35%) and fine-tuning
speed (up to 98.61% faster).
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Limitations

While our approach can be to exploited to signifi-
cantly improve the performance and efficiency of
LLM federated learning, we assume that a cen-
tral parameter server is exploited to coordinate the
training process. When there is not a central pa-
rameter or the heterogeneous devices (Che et al.,
2022; Li et al., 2022b) are connected based on di-
verse topologies (decentralized setting (Liu et al.,
2024a)), e.g., ring, it would be complicated to
directly exploit our proposed approach. In addi-
tion, our approach can be combined with model
compression methods, e.g., model pruning and
quantization (Jia et al., 2024), to achieve better
performance. In the future, we anticipate exploit-
ing model compression methods in LLM federated
learning with a decentralized setting.
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Algorithm 2 FedAvg

Input:
t: The number of current round
Pt−1: The global LoRA parameters at Round
t− 1
T : The maximum number of rounds
K: The number of devices
D = {D1, D2, ..., DK}: The set of datasets
on each device
λ = {λ1, λ2, ..., λT }: The learning rates

Output:
Pt: The global LoRA parameters at Round t

1: for k in {1, 2, ...,K} (in parallel) do
2: Pk ← Pt−1

3: for Bj ∈ Dk do
4: Pk ← Pk -

λt
∑

si∈Bj
∇Pk

f(M,Pk, si,mi)
5: end for
6: end for
7: mt ←

∑K
k=1 |Dk|

8: Pt =
∑K

k=1
|Dk|
mt Pk

A FedAvg Update

The original FedAvg update is shown in Algorithm
2.

B Gradient Calculation in LoRA

During the local training, we update LoRA param-
eters at Epoch t for data samples si as follows:

Pt
A = Pt−1

A − λt∇Pt−1
A

f(M,Pk, si,mi)

Pt
B = Pt−1

B − λt∇Pt−1
B

f(M,Pk, si,mi),
(13)

and for a batch of data samples Bj as follows:

Pt
A = Pt−1

A − λt
∑
si∈Bj

∇Pt−1
A

f(M,Pk, si,mi)

Pt
B = Pt−1

B − λt
∑
si∈Bj

∇Pt−1
B

f(M,Pk, si,mi),

(14)

where λt is the learning rate, Pk is the combination
of PA and PB . To get the gradient of reconstructed
full-rank matrix at iteration t, we can calculate as
follows:

∇Pt
k
f(M,Pk, si,mi) = Pt

APt
B − Pt−1

A Pt−1
B

(15)

C Formulas for Curriculum Federated
Learning

We can calculate the difficulty score of a data sam-
ple as defined in Formula 16.

∫i = Tr(F̃i), (16)

where ∫i is the difficulty score of data sample si.
Then, the difficulty score of a batch of data samples
can be calculated based on Formula 17:

∫j =
∑
si∈Bj

Tr(F̃i), (17)

where ∫j is the difficulty score of the batch Bj .
The more significant the score is, the more diffi-
culty the batch of data samples is. We calculate the
difficulty score based on the initial model as the
difficulty of data samples corresponds to negligible
change during the fine-tuning process (Platanios
et al., 2019; Li et al., 2022a). ∫i can be computed
using the square of the elements in the diagonal of
the first-order derivative matrix, which can avoid
the computation of the full FIM with the heavy
multiplication of two matrices. This mechanism
makes the calculation feasible in terms of compu-
tation time and memory consumption. Please note
that FIM is calculated and stored locally, which
does not need to be transferred to the server.

We calculate Btk based on Formula 18.

Btk = (β + (1− β)
t

αT
)
nk

B
, (18)

where β represents the initial training sample ratio,
α denotes the ratio of training epoch until all data
is used, B refers to the batch size. Both β and
α are hyper-parameters within the range of [0, 1].
Then, the batch of data samples is selected based
on Formula 19:

Selectt(Bj) =

{
True if j < Btk
False otherwise,

(19)

where Selectt(Bj) represents the selection deci-
sion. When Selectt(Bj) = True, the batch of
data samples is selected for local update. With
this curriculum training strategy, the local training
can learn from easy samples to challenging sam-
ples, which can achieve excellent performance with
fewer data samples in early iterations.



D Novelty of FibecFed

Different from the existing approaches, we exploit
the fisher information to measure both the com-
plexity of training data and the importance of the
components, e.g., neurons, in LLMs. We enable
curriculum learning based on the complexity of the
training data within each device to achieve superb
accuracy. We exploit LoRA to achieve efficient
fine-tuning with only a few parameters. In addi-
tion, we split the trainable parameters into three
parts, each of which is for global aggregation, lo-
cal update, and as frozen neurons on each device,
respectively. Only the parameters of the global ag-
gregation part are updated and synchronized among
multiple devices during the fine-tuning process. We
consider the relative change of each layer and get
an excellent estimation of important layers to gen-
erate the part for global aggregation. We exploit
the momentum of parameter updating and get a
robust estimation of important neurons in order to
select important neurons for local update.

E Prompt-tuning in LLM

When exploiting the prompt tuning, the parameters
of the networks to generate prompts or prefix are
adjusted instead of the parameters of LLMs. The
prompt or the prefix is the added instruction con-
catenated to the input, which can guide LLMs to
generate proper answers. For instance, a prompt
(“This is [MASK]”) can be concatenated to the in-
put (“Wonderful movie!”) to be sent to a LLM,
which generates the label (“positive” or “negative”)
for a sentiment analysis task.

F Notations

In this paper, we use the notations summarized in
Table 3.

G Experiment results

In this section, we present the details of extensive
experiments. In Section G.1, we explain the de-
tails of experimental setup. In Section G.3, we
compare the efficiency in terms of time to achieve
target accuracy. In Section G.4, we show the con-
vergence accuracy over 10 different datasets. In
SectionG.5, we present the robustness of FibecFed
respect to scalability and data heterogeneity. In
Section G.6, we demonstrate the performance with
learning rates. In Section G.7, we discuss the im-
pact of different curriculum strategies.

G.1 Experimental Setup

We present the hyper-parameters used in the fine-
tuning process in Table 8. We set the global training
epochs to 100, except for QNLI, SST-2. We follow
the Dirichlet distribution (with 1 as concentration
α) to partition the whole data into splits and assign
a certain number of samples based on Dirichlet dis-
tribution (with α = 5), development sets are served
as test data to evaluate performance in the GLUE
benchmark. For 4 other datasets, we select a certain
number of samples from the training set as the de-
velopment set, and the number of samples for each
label is determined according to its original label
distribution of training set. For datasets in GLUE
benchmark, we use their original data splits. For 4
other datasets with no default splits, we randomly
split the dataset into train, development, and test
sets.

With 100 devices, the number of samples ranges
from 346 to 2607 for QNLI, 222 to 1676 for SST-
2, 28 to 213 for COLA, 12 to 91 for MRPC, 8 to
62 for RTE, 31 to 235 for BoolQ, 25 to 189 for
MPQA, 23 to 174 for Subj, 16 to 123 for Trec and
25 to 191 for MR. Additionally, a detailed number
of samples distributed among 10 devices with the
MRPC dataset is shown in Table 4.

RoBERTaLARGE consists of 24 layers of trans-
formers followed by a classification head, which
contains 355M parameters. LLaMA is composed
of 32 transformer layers with 7B parameters.

The centralized methods (Adapter, P-tuning v2,
IDPG, ATTEMPT, LPT, LoRA, Shortformer, VOC,
SLW, AdaLoRA, Delta-LoRA) are adapted to the
FL setting with FedAvg (McMahan et al., 2017) for
a fair comparison. In addition, we exploit the LoRA
with FL opmization-based methods, i.e., PFedGate,
FedDst and FedALT.

G.2 Comparison with Random Data Selection

The heuristic based methods or mode-oriented
methods cannot address the heterogeneity issue
across local data samples with variance in such
metric. To show the effectiveness of our proposed
Fisher information-based metric, we implement
another baseline method using random selecting
in the curriculum data selection strategy. Table 5
shows the performance under different selecting
strategies. Compared with other selecting method,
FibecFed outperforms other baselines up to 8.51%
in terms of accuracy, which demonstrates the ef-
fectiveness of proposed method. In addition, Ran-



dom corresponds to the lowest accuracy compared
other methods, i.e., ShortFormer, SLW, Voc, and
FibecFed. Table 6 also indicates that FibecFed
achieves the target accuracy of 85% on the MRPC
dataset in less time(up to 92.49% faster) compared
with other selection strategies. It is noteworthy that
the random method reaches the accuracy 85% at
epoch 95, significantly increasing the required time.
This will be clarified in the revised version.

G.3 Fine-tuning Efficiency

In order to show the efficiency of FibecFed, we
present the time to achieve target accuracy in Table
7.

G.4 Accuracy & Time Figures in
RoBERTaLARGE

Figures 2 - 5 present the convergence process of
FibecFed and other baselines on COLA, QNLI,
SST-2, MRPC, RTE, BOOLQ, MPQA and Subj
datasets. Figure 2 shows the convergence results
over FibecFed and benchmarks on COLA, QNLI
and SST-2 datasets, Figure 3 presents the results
on MRPC, RTE and BOOLQ datasets, Figure 4
demonstrates the evaluation results on MPQA, Subj
datasets and Figure 5 shows the performance on
Trec and MR datasets.

G.5 Accuracy & Time for Robustness &
Scalability

Figure 6 presents results of robustness of FibecFed.
Figure 6(a) shows accuracy of FibecFed with dif-
ferent learning rate. Figure 6(b) shows the perfor-
mance under varying client number. In addition,
Figure 6(c) indicates FibecFed is robust to different
degree of heterogeneity of data.

G.6 Impact of learning rate

As shown in Figure 6(a). the performance of
FibecFed on MRPC dataset differs (up to 2.22%)
among 4 varying learning rates from 1e−4 to 8e−4.
Thus, we take the learning rate of λ = 8e−4, which
corresponds to the best accuracy 90.59% in prac-
tice.

G.7 Impact of Curriculum Strategies

The curriculum strategy controls the speed of ex-
ploiting difficult data samples during the fine-
tuning process. We consider three strategies, i.e.,
linear, square (sqrt), and exponential (exp), which

are defined in Formulas 20, 21, and 22, respec-
tively.

Btk = (β + (1− β)
t

αT
)
nk

B
, (20)

Btk = (β + (1− β)
t2

αT
)
nk

B
, (21)

Btk = (β + (1− β)
et

αT
)
nk

B
, (22)

where e represents the Euler’s number. As shown
in Figure 7(c) the performance of linear (91%) is
similar to that of sqrt (91%), which are much higher
than exp (83.14%). However, as sqrt incurs more
complicated calculation compared with linear, we
exploit the linear strategy in the paper.

G.8 Generalization of FibecFed

To further evaluate the generalization of FibecFed
on modest models, we conducted image classifica-
tion task on the CIFAR-10 dataset using a seven-
layer Multilayer Perceptron (MLP). As demon-
strated in Table 9, our proposed method consis-
tently achieves higher accuracy (from 2.09% to
3.53%) than FedAvg across all epochs. Further-
more, Table 10 illustrates that FibecFed corre-
sponds to less time (from 0.78 to 2.12 times faster)
than FedAvg. The result is aligned with the findings
reported in the paper, which suggests that FibecFed
can be effectively generalized across various ma-
chine learning models.

G.9 Low Bound of K

In fact, there is no strict lower bound for K (while
K should be bigger than 1 for federated learn-
ing). As curriculum learning is effective in cen-
tralized learning scenarios (Bengio et al., 2009),
i.e., K = 1, our method retains its efficacy even
with the minimal device setting (1). When K is
increased, the performance remains high (or even
higher because of more data is exploited for the
training) as shown in Figure 6(b). In addition,
we conducted additional experiments with vary-
ing numbers of devices, i.e., 2, 5, and 10, to verify
the effect of small device number K. Table 11
shows the performance in terms of accuracy across
all tested scenarios on MRPC dataset, where the
proposed method achieves an average accuracy of
90.56% and a variance of 0.326. These results
demonstrate the robustness of our approach across
different K values.
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Figure 2: The accuracy and training time with FibecFed and diverse baseline approaches.
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Figure 3: The accuracy and training time with FibecFed and diverse baseline approaches.
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Figure 4: The accuracy and training time with FibecFed and diverse baseline approaches.
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Figure 5: The accuracy and training time with FibecFed and diverse baseline approaches.

G.10 Effect of Initial Sampling Rate

As shown in Table 12, a proper initial sample ra-
tio can achieve optimal performance. when Bt

k is
small, the model can learn nothing from beginning.
However, when Bt

k is large, too many hard exam-
ples are exposed to model and might force model

generated some bad gradients. Both cases will
lead to a poor quality of aggregation on server side,
hence degrading the final convergent performance.
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Figure 6: The accuracy and training time with FibecFed under different settings
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Figure 7: The accuracy and training time with FibecFed under different settings
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Figure 8: The accuracy and training time with FibecFed with diverse data selection strategies.

H Analysis of FibecFed

In this section, we present the analysis of FibecFed,
including the motivation, the training efficiency,
fake difficulty scores, task fairness, and the signifi-
cance of each component.

H.1 Motivation

While stringent legal regulations are carried out to
protect the security and the privacy of decentralized
raw data, federated learning becomes promising to
enable the collaborative training process without
aggregating the raw data into a centralized data cen-
ter. While LLMs are too large to be directly trained
with federated learning, we propose adaptive fed-
erated curriculum learning and efficient sparse pa-
rameter update with LoRA to enable the federated
learning of LLMs while reducing the communica-
tion costs so as to improve the training speed (up
to 98.61% faster) and improving the accuracy (up

to 45.35%). The use case is to enable the inference
process of LLMs on edge devices, while the LoRA
parameters are updated. The LoRA parameters are
much smaller than the full model, the training of
which is feasible on edge devices. However, the
full update and aggregation of all the layers within
the LoRA parameters of LLMs in traditional feder-
ated learning still takes much time and the perfor-
mance is inferior. Our approach can well improve
the training (LoRA fine-tuning) process and the
performance in the setting of federated learning of
LLMs.

H.2 Curriculum learning & Efficiency of the
training

Our proposed method, i.e., efficient curriculum
federated learning, can significantly improve the
efficiency of the training instead of reducing the
efficiency. As explained in Section 5.6, we con-
duct a comparative analysis among four curriculum



strategies: SLW, VOC, Shortformer, SE, and that
without curriculum (NULL). FibecFed corresponds
to superior performance in terms of accuracy (up
to 5.73%, 9.12% 5.84%, 6.41%, 7.7% compared
with Voc, SE, SLW, Shortformer, and NULL, re-
spectively) and efficiency (up to 26.53%, 34.26%
68.92%, 68.36%, 58.57% compared with Voc, SE,
SLW, Shortformer, and NULL, respectively). The
efficient curriculum federated learning can reduce
the total number of batches participating in the
training process so as to reduce local training time.
In addition, the curriculum federated learning still
carries out the training process in parallel, i.e., the
training process in each client is performed in par-
allel. While it may take some time to calculate
the score of each batch, i.e., ∫i, the calculation is
carried out in parallel on each device, and takes
negligible time (less than 2.98%) compared with
the training time. Once the difficulty score is deter-
mined, each training batch is sorted in ascending or-
der and indexed starting from 0. Once the difficulty
score is calculated, the training data is selected on
each device based on Formula 9 for the training
process of each epoch, and the selected batches
of data samples are much smaller compared with
those without curriculum learning at the beginning
(when j < Btk). The process of batch selection
takes negligible time (a few microseconds) com-
pared with the reduced training time brought by the
reduced data samples. In addition, the curriculum
federated learning strategy can well improve the
accuracy of the trained model.

H.3 Curriculum Learning with Fake
Difficulty Score

The Fisher Information Matrix (FIM) is calculated
and stored locally, which does not need to be trans-
ferred to the server. FIM is utilized to calculate the
difficult score so as to locally select the data sam-
ples based on our curriculum learning strategy on
each device. When a device tricks the training by
providing updates with fake lower FIM pretending
to use a simpler dataset, the curriculum learning
strategy can select the simple samples among the
local dataset, which can reduce the training time
and improve the training efficiency as well. In this
work, our approaches focuses on improving the
training efficiency and reducing the communica-
tion costs in federated learning of large language
models based on our efficient curriculum learn-
ing method and efficient sparse parameter update,
while the security issues may be addressed in future

work.

H.4 Task Fairness
Our efficient curriculum federated learning method
does not incur unfair process of the tasks in devices.
The curriculum strategy selects the data within each
selected device. It does not change the device sam-
pling mechanism, which determines which device
participates in which epoch. Our efficient curricu-
lum federated learning method guides the model to
learn from simpler to more complex samples, facil-
itating stable and efficient convergence. In Feder-
ated Learning (FL), the inherent data heterogeneity
often results in significant gradient divergence, es-
pecially when the data heterogeneity is severe. Our
curriculum federated learning method can mitigate
this effect, leading to more effective model aggre-
gation and improve overall performance.

H.5 Communication overhead
The absolute communication overhead is shown in
the Table 13 (with RoBERTaLARGE). The commu-
nication overhead of FibecFed is higher than that
of FedPrompt (up to 3.51 times), IDPG (up to 3.3
times), and ATTEMPT (up to 1.85 times). This
is expected as the these three methods are prompt
tuning-based methods, which corresponds to much
fewer parameters to update during the training
phase compared with FibecFed. However, these
three methods correspond to significantly lower per-
formance (compared with FibecFed), i.e., low con-
vergence accuracy (from 1.25% to 38.68% for Fed-
Prompt, from 6.6% to 53.98% for IDPG, and from
1% to 53.94% for ATTEMPT), as shown in Table
1. The communication overhead of FibecFed is sig-
nificantly lower than the other methods (6.25 times
for Adapter, 9.67 times for P-tuning V2, 1.9 times
for LPT, and 25% for LORA, SHORTFORMER,
Voc, SLW, PFedGate, FedDST, SE, FedAlt, sLora,
AdaLora, Delta-LoRA). This is expected as well
as FibecFed only transfers the global aggregation
layers instead of the parameters of all the layers in
LLM.

In addition, the relative communication over-
head (i.e., the ratio between the absolute commu-
nication overhead and the total training time) is
shown in Table 14. Similar to the absolute com-
munication overhead, the relative communication
overhead of FibecFed is higher than that of Fed-
Prompt (from 2.3% to 37.4%), IDPG (from 2.4% to
34.4%), and ATTEMPT (from 1.9% to 31.7%) as
well. This is expected as explained before. As the



total training time of FibecFed becomes shorter, the
relative communication overhead of FibecFed be-
comes slightly more significant than FedAlt (from
1.4% to 20.1%) and AdaLora (from 0.8% to 5.7%).
In addition, the relative communication overhead
of FibecFed becomes similar to that of sLora (from
7.8% smaller to 24.8% bigger) and Delta-LoRA
(from 7.5% smaller to 5.5% bigger). The rela-
tive communication overhead of FibecFed is still
smaller than the rest approaches, i.e., Adapter (up
to 43.9%), P-tuning V2 (up to 55.6%), LPT (up to
25.1%), LORA (up to 14.5%), SHORTFORMER
(up to 13.8%), Voc (up to 8.0%), SLW (up to 8.8%),
PFedGate (up to 7.0%), FedDST (up to 7.1%), SE
(8.1%). Please note that FibecFed corresponds to
higher convergence accuracy (as shown in Table
1 in the manuscript) and shorter training time (as
shown in Table 2 in the manuscript).

H.6 Significance of Each Component
Our approach aims to improve the efficiency of
LLM federated learning in two perspective: com-
munication cost and local training efficiency, each
of which plays a significant role in accelerating
the training process of FL. In contrast to heuristic
metrics, we utilize the FIM to assess sample diffi-
culty, achieving an accurate estimation of difficulty
score. This newly proposed metric enhances Cur-
riculum Learning by facilitating a more stable and
faster convergence training, reducing the number
of epochs required for local training. Consequently,
this approach reduces local training time and im-
proves overall efficiency, offering a significant en-
hancement over traditional difficulty assessment
methods. In addition, A novel noise-sensitive Layer
Selection is proposed to identify the critical lay-
ers of the model, thereby reducing communication
overhead without compromising performance. Fur-
thermore, A novel parameter selection strategy fo-
cuses on identifying key neurons within the model
for local update. By determining which parame-
ters are most influential, this approach enhances
local training efficiency, optimizes computational
resources and speeds up the learning process on
individual devices.

In Section 5.6 (Ablation Study), we demonstrate
the ablation study in terms of the curriculum data
selection method, the important layer selection
method, and the local update parameter selection
method. The experimentation reveals that the effi-
cient curriculum federated learning corresponds to
superior performance in terms of both accuracy (up

7.7%) and efficiency (up to 68.92%). In addition,
the important layer selection method can signifi-
cantly improve the efficiency (up to 23.1%) with
slight improvement of accuracy (up to 3.42%) and
the local update parameter selection method can
further improve the efficiency up to 11.8% with
slightly higher efficiency (up to 2.48%).

In our approach, efficient curriculum federated
learning enables the training process begins with
simple data samples and then gradually increase the
difficulty, which can improve both the efficiency
and the performance. The efficient sparse param-
eter update method is composed of global layer
selection and local update parameter selection. The
global layer selection method reduces communi-
cation costs by only transferring the layers of im-
portance scores between devices and the server,
without performance degradation. The local update
parameter selection can improve the local training
efficiency by only updating the important param-
eters. Our approach yields excellent performance
(up to 45.35% in terms of accuracy) and superb
fine-tuning speed (up to 98.61% faster).

H.7 Combination with Model Compression
Our approach is orthogonal with model compres-
sion methods. Various model compression methods
exist, e.g., pruning and quantization. Our approach
can be combined with these methods to achieve
higher training speed or higher accuracy. How-
ever, the pruning and quantization methods may
degrade the performance (accuracy) of LLMs. In
addition, the training process based on the model
compression methods may require additional low-
level training operators in the forward propagation
and back propagation, which incurs extra complex-
ity. Thus, the combination of our approach with
the model compression methods can be addressed
in our future work.

H.8 LLM Training on Devices
In real-world scenarios, numerous governments
and organizations have established regulations and
laws to protect data privacy, making access to
data on edge devices increasingly challenging.
Moreover, pre-trained models are often not well-
suited for domain-specific tasks due to lack of fine-
tuning. By implementing our proposed approach,
the LLMs can be fined based on the distributed
raw data stored on diverse edge devices without
aggregating the raw data into a central server or
a central data center. This approach not only ad-



heres to privacy and regulatory standards but also
ensures that LLMs can be fine-tuned to specific
tasks with distributed end user data distributed in
edge devices. A classical example is highlighted
in (Zhao et al., 2024), where, by leveraging the
behavioral data of end users, the server obtains a
collaboratively fine-tuned LLM-based recommen-
dation system. Furthermore, with the advancement
of LLM technology, additional applications could
emerge in highly confidential environments such
as hospitals and banks. Our proposed approach
provides a solution to develop good task-specific
model while ensuring both the integrity and confi-
dentiality of the sensitive raw data of end users on
diverse edge devices. All the explanation will be
added in our final version.

H.9 Data Heterogeneity & Layer Importance
The inherent heterogeneity of samples on each de-
vice contributes to the difference of the importance
scores of each layer. In the settings of federated
learning, the samples on each device are generally
heterogeneous, i.e., non non-Independent and Iden-
tically Distributed (non-IID). In order to select the
important layers as the global aggregation layers,
we aggregate the importance scores on each device
based on Formula 11 so as to calculate the global
importance scores for each layer. This global ag-
gregation can balance the diverse importance of
each layer on each device. Afterward, we select
the proper global aggregation layers with a lossless
method on each device. This selection can reduce
the data to communicate in each epoch so as to
improve the efficiency without degrading perfor-
mance (accuracy).

H.10 Perturbed Parameters & Increased
Sensitivity

While the layer selection is conducted on each de-
vice, the importance scores of each layer are aggre-
gated, which can balance the importance of layers
among different devices. The data heterogeneity
may have impact on the global aggregation layer se-
lection within the lossless method, i.e., the number
of selected aggregation layers are different across
devices.

When more parameters are perturbed locally, the
lossless method may result in more global aggrega-
tion layers so as to achieve excellent performance
(accuracy). When the sensitivity to noise corre-
sponding to specific layers is increased, the impact
can be taken into consideration while calculating

the importance scores. Afterward, the impact is
reflect within the calculation of Formula 15 to gen-
erate the global importance score of each layers.
Thus, the increase sensitivity to noise may impact
the importance of layers. However, the fact of more
parameters are perturbed can be captured by our
lossless method, which determines a proper number
of layers to be selected as the global aggregation
layers so as to reduce the number of layers to trans-
fer while ensuring the performance (accuracy) of
LLM in federated learning. More parameters are
perturbed locally across different clients when their
increased sensitivity to noise has impacts on more
layers of LLMs. Our proposed global aggregation
layer selection with the lossless method can well
reduce the communication costs so as to improve
the efficiency (training speed) while ensuring the
performance (accuracy).

H.11 Implementation of FibecFed
FibecFed is composed of two methods, i.e., adap-
tive federated curriculum learning and efficient
sparse parameter update. While these two methods
correspond to in-depth novel technical contribu-
tions based on Fisher Information, the implementa-
tion of FibecFed is straightforward. While Fisher
Information is exploited, we calculate the square
of the elements in the diagonal of the first-order
derivative matrix to reduce the complexity of the
Fisher Information computation as explained in
Section 4.2.

In practice, the Fisher Information is imple-
mented to calculate the importance scores of the
data and layers in the initialization phase. In addi-
tion, the local update parameter selection is carried
out in the initialization phase as well. Within the
training phase, the curriculum data selection strat-
egy is carried out. The execution can be easily car-
ried out with the parameters, e.g., α, β, as shown
in Table 8.

H.12 intuition for Fisher Information
Within the training phase of federated learning, it
is pivotal to exploit the informative data and to up-
date the critical parts of the LLM so as to achieve
efficient training process. However, the existing
methods to evaluate the training data or the LLM is
static, which corresponds to inaccurate estimation
and low performance. As a measure of the local cur-
vature, Fisher Information Matrix (FIM) defines the
Riemannian metric of the parameter space, which
can indicate the difficulty of data samples and the



importance of each component of the LLM within
the training phase. Fisher information is defined
as how sensitive the model is to changes in θ at a
particular θ (Ly et al., 2017), where θ represents
the value to infer and corresponds to the ground
truth output of the LLM in FibecFed. When the
Fisher Information is not significant in respect of a
certain training sample within the training process
of an LLM, i.e., small score defined in Formula
17, the corresponding training data contains rela-
tively few information for the training process and
the data is considered easy for the LLM. Then, the
model can quickly learn the knowledge within the
easy data according to the starting small strategy
of the curriculum learning (Bengio et al., 2009).
In FibecFed, we exploit Formula 18 to carry out
the Fisher Information-based curriculum learning,
which can choose easy samples at the beginning
to improve the training efficiency while achieving
high accuracy. Besides the training data, Fisher
Information can indicate the importance of the neu-
ron in LLM within the training phase. When the
Fisher Information corresponding to a neuron is
significant, we consider it as an important part of
the LLM that needs further adjustment (training).
Otherwise, the corresponding neurons do not need
update as they are not sensitive within the train-
ing phase (these neurons may stay unchanged even
when they are considered as local update parame-
ters). Thus, we take the neurons of high importance
scores based on the Fisher Information (based on
Formula 12) as the local update parameters. In
this way, Fisher Information guides FibecFed to
choose the simple data to begin with and to choose
the sensitive neurons in the LLM to update within
the training phase so as to achieve efficient and
effective federated learning.

H.13 Privacy in FibecFed

Indeed, federated learning is designed to preserve
privacy. While FibecFed focuses on improving
the efficiency of federated learning, it can further
enhance the data privacy without bringing extra pri-
vacy issues. Within the training phase of FibecFed,
we only transfer the parameters in global aggrega-
tion layers between the server and devices, which
can avoid transfer the whole model so as to protect
the data privacy. In addition, we update the local
update parameters instead of the full parameters,
which can further avoid privacy and security issues
due to potential gradient leakage. Traditional attack
methods, e.g., gradient attack, assume that full gra-

dients or models are transferred between the server
and devices (Dimitrov et al., 2022; Marchand et al.,
2023). Thus, compared with the traditional feder-
ated learning approaches that transfer the whole
model between the server and devices, FibecFed
can further enhance the privacy and security of
federated learning.

Within the initialization of FibecFed, only the
global aggregation layer selection incurs exchang-
ing the importance scores of each layer in the LLM
between the server and devices, while the other two
modules, i.e., Fisher information-based curriculum
learning and local update parameter selection, does
not bring any extra information transfer between
the server and devices. The importance scores of
layers are insensitive data with few information
of the raw training data on each device. The in-
sensitive data resembles the number of samples to
be transferred in traditional federated learning ap-
proaches, e.g., FedAvg, which still complies with
privacy regulations. To the best of our knowledge,
there is no attack methods based on the importance
scores of each layer in the LLM.

FibecFed can be combined with other security
or privacy methods, e.g., encryption, differential
privacy, to further protect the data security and
privacy in federated learning.

I Potential Risks

We propose an efficient LLM federated learning ap-
proach to enable collaborative LLM training with
distributed raw data without aggregation, which
can protect the privacy of the raw data. Our ap-
proach can be combined with other defense ap-
proaches or privacy protection methods to further
enhance the security or the privacy of federated
learning when there are curious or malicious at-
tacks.



Table 3: Summary of main notations.

Notation Definition
M; P The set of LLM parameters; the set of trainable LoRA parameters
K; K The set of edge devices; the size ofM
D; N The global dataset; the size of D
Dk; Nk The dataset on Device k; the size of Dk

F(·); Fk(·) The global loss function; the local loss function on Device k
si; mi The single data sample; it’s corresponding label of index i
L The number of Layers
T The maximum number of global rounds
ηk The learning rate on device k
K The number of participated devices per round
Pk The set of trainable LoRA parameters for device k
W l

0 The parameters at Layer l
Al

k, B
l
k The LoRA matrices at Layer l on device k

hl The hidden values generated at Layer l
F̃i; Fi The empirical and approximated FIM
⊙ The hadamard product operation
I The identity matrices
Tr The trace of the matrices
∫i;∫j The difficulty score of Sample i and Batch j
ϵi The generated noise for sample i
p;q The dual norm factors
γ The noise budget

F l(si) The relative difference of Frobenius norm
I l The importance score of Layer l
λk The ith eigenvalues
Lk The Lipschitz constant

Hk(PT
k ) The Hessian Matrix with respect to Pk at round T on device k

Ft
k The FIM on Device k at Round t

F̃t
k The empirical average diagonal approximation of Ft

k

FT ′
k,l The FIM on Device k at Round t for layer l

FT ′
k,l[ν] The vth diagonal element in FT ′

k,l

R;r The Rank of the Hessian Matrix; the index of eigenvalue.
Pt
A;Pt

B The fist and second part of LoRA parameters for device k

Device index 1 2 3 4 5 6 7 8 9 10

Number of samples 422 317 303 303 651 474 270 431 378 119

Table 4: The number of samples on each client for MRPC dataset.

Method Accuracy

ShortFormer 86.05%
SLW 86.58%
Voc 86.49%

Random 85.56%
FibecFed 90.84%

Table 5: The accuracy under different sample selection strategies with RoBERTA-Large model on mrpc dataset.



Method Time

ShortFormer 173
SLW 177
Voc 118

Random 786.6
FibecFed 59

Table 6: The time(seconds) under different sample selection strategies to achieve target accuracy 85% with
RoBERTA-Large model on mrpc dataset.

Method QNLI SST-2 CoLA MPRC RTE BoolQ MPQA Subj Trec MR

Adapter / 70 / 529 / / / / / /
FedPrompt 2381 221 / / 317 1121 130 / 317 95
P-tuning v2 1365 731 894 / 415 1586 429 1384 / 992

IDPG / / / / / / / / 73 /
ATTEMPT / / / / / / 361 / / 125

LPT 697 279 600 / 82 / 92 246 / 177
LORA 663 276 230 193 110 665 210 278 96 130

SHORTFORMER 193 359 65 76 17 66 31 94 204 38
VOC 111 99 71 89 14 45 32 71 142 31
SLW 113 194 69 60 17 45 37 71 178 37

PFedGate 85 / 110 146 28 71 33 70 421 82
FedDST 686 105 / / 268 427 228 315 / 189

SE 100 153 115 / 230 378 194 283 / 198
FedALT 314 131 288 127 48 108 46 69 157 39
sLORA 170 64 145 90 45 72 69 84 189 /

adaLORA 875 271 738 / 296 507 265 344 / 227
Delta-LoRA 201 58 180 59 50 123 46 75 188 66

Ours 61 39 50 28 8 22 14 25 46 29

Table 7: The fine-tuning time (s) to achieve a target accuracy (87% for QNLI, 93% for SST-2, 50% for CoLA, 83%
for MRPC, 70% for RTE, 74% for BoolQ, 88% for MPQA, 95% for Subj, 94% for Trec, and 91.1% for MR) with
FibecFed and diverse baseline approaches. "/" represents that fine-tuning does not achieve the target accuracy. The
best results are highlighted in bold and the second best ones are marked with underline. The results are obtained
using RoBERTaLARGE.

Method QNLI SST-2 CoLA MPRC RTE BoolQ MPQA Subj Trec MR

batch size 8 8 8 8 8 8 8 8 8 8
non-IID degree 5 5 5 5 5 5 5 5 5 5

epochs 20 20 100 100 100 100 100 100 100 100
local iteration 2 2 2 2 2 2 2 2 2 2
learning rate 4e-4 4e-4 3e-4 8e-4 4e-4 8e-4 2e-4 2e-4 8e-4 1e-4

β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
pace function linear linear linear linear linear linear linear linear linear linear

number of layers in GAL 18 18 18 18 18 18 18 18 18 18
clients num 100 100 100 100 100 100 100 100 100 100

clients num per round 10 10 10 10 10 10 10 10 10 10
α 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Table 8: The hyperparameters settings for each dataset

Method/Epoch number 5 20 35 50

FedAvg 26.07% 36.59% 39.85% 41.13%
FibecFed 29.60% 38.85% 41.94% 43.74%

Table 9: The accuracy of FibecFed and FedAvg with MLP across different epochs on cifar-10 dataset



Method/Epoch number 20 30 40

FedAvg 13.06 65.3 241.61
FibecFed 4.18 25.05 135.43

Table 10: The time (seconds) of FibecFed and FedAvg with MLP to achieve different target accuracy 40% on
cifar-10 dataset

Number of devices K Accuracy

2 91.64%
5 89.48%
10 91.19%
20 90.20%
50 91.0%
100 90.56%
110 90.75%

Table 11: The accuracy under varying number of devices on the RoBERTA-Large model.

initial sample ratio Accuracy Time

0.05 88.55% 139
0.1 89.40% 141
0.2 89.18% 147
0.4 89.93% 162
0.6 90.57% 175
1.0 89.80% 205

Table 12: The accuracy and training time(seconds) under varying initial sample ratios with RoBERTA-Large model
on MRPC dataset.

Method qnli sst-2 cola mrpc rte boolq mpqa subj trec mr
Adapter 217.4 217.4 1086.9 1086.9 1086.9 1086.9 1086.9 1086.9 1086.9 1086.9

FedPrompt 6.7 6.7 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
P-tuning v2 320.0 320.0 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0 1600.0

IDPG 7.0 7.0 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9
ATTEMPT 10.5 10.5 52.6 5.26 52.6 52.6 52.6 52.6 52.6 52.6
LPT 87.0 87.0 434.8 434.8 434.8 434.8 434.8 434.8 434.8 434.8 434.8

LORA 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
Shortformer 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

VOC 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
SLW 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

PFedGate 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
FedDST 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

SE 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
FedALT 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
sLORA 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

adaLORA 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
Delta-LoRA 40.0 40.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

FibecFed (ours) 30.0 30.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0

Table 13: Absolute communication overhead of FibecFed and diverse baseline approaches. The time unit is second.



Method qnli sst-2 cola mrpc rte boolq mpqa subj trec mr
Adapter 0.091 0.161 0.674 0.837 0.833 0.464 0.746 0.692 0.815 0.689

FedPrompt 0.003 0.005 0.046 0.078 0.097 0.027 0.054 0.046 0.077 0.045
P-tuning v2 0.127 0.260 0.858 0.899 0.883 0.707 0.824 0.741 0.897 0.840

IDPG 0.003 0.005 0.067 0.107 0.096 0.016 0.078 0.072 0.111 0.069
ATTEMPT 0.004 0.010 0.088 0.135 0.140 0.043 0.100 0.083 0.141 0.078

LPT 0.045 0.098 0.546 0.664 0.630 0.379 0.558 0.525 0.653 0.513
LORA 0.021 0.042 0.416 0.570 0.539 0.207 0.456 0.454 0.535 0.441

Shortformer 0.048 0.072 0.370 0.589 0.478 0.218 0.429 0.428 0.531 0.409
VOC 0.023 0.037 0.351 0.531 0.441 0.254 0.383 0.398 0.471 0.373
SLW 0.023 0.036 0.366 0.530 0.482 0.252 0.382 0.397 0.475 0.377

PFedGate 0.019 0.032 0.336 0.521 0.441 0.232 0.351 0.378 0.471 0.344
FedDST 0.020 0.034 0.322 0.523 0.448 0.238 0.353 0.384 0.451 0.350

SE 0.021 0.032 0.338 0.533 0.454 0.231 0.375 0.385 0.476 0.370
FedALT 0.007 0.015 0.184 0.251 0.262 0.087 0.196 0.225 0.334 0.242
sLORA 0.022 0.034 0.354 0.530 0.465 0.235 0.375 0.372 0.462 0.077

adaLORA 0.011 0.021 0.263 0.435 0.364 0.187 0.273 0.278 0.379 0.280
Delta-LoRA 0.019 0.037 0.339 0.527 0.453 0.145 0.375 0.306 0.469 0.298

FibecFed (ours) 0.019 0.029 0.302 0.452 0.394 0.200 0.330 0.328 0.403 0.325

Table 14: Relative communication overhead of FibecFed and diverse baseline approaches. The time unit is second.
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