
HAL Id: lirmm-04737573
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04737573v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost Efficient Flip-Flop Designs With Multiple-Node
Upset-Tolerance and Algorithm-Based Verifications

Aibin Yan, Yuting He, Zhengfeng Huang, Wenjie Yan, Jie Cui, Xiaolei Wang,
Tianming Ni, Patrick Girard, Xiaoqing Wen

To cite this version:
Aibin Yan, Yuting He, Zhengfeng Huang, Wenjie Yan, Jie Cui, et al.. Cost Efficient Flip-
Flop Designs With Multiple-Node Upset-Tolerance and Algorithm-Based Verifications. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, In press.
�10.1109/TCAD.2024.3426271�. �lirmm-04737573�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04737573v1
https://hal.archives-ouvertes.fr

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

1 Abstract—This paper presents radiation-hardened

flip-flop (FF) designs capable of tolerating soft errors, e.g.,

single-node upsets (SNUs), double-node upsets (DNUs) and

multiple-node upsets (MNUs). First, a 2-input FF and a

3-input FF are proposed as the baseline FFs that not only

respectively tolerate SNUs and DNUs but also exhibit cost

efficiency in terms of delay, power, and area. Through

adding two stages of C-elements, a 4-input FF and a 5-input

FF are proposed as the baseline FFs as well. Utilizing the

structural characteristics of these FFs, an N-1 input FF and

an N input FF are proposed as the extended FFs capable of

tolerating more node upsets. Moreover, a highly efficient

algorithm for verifying MNU-tolerance of these FFs is

proposed. Algorithm and HSPICE-tool-based verification

results both demonstrate the MNU-tolerance for the

proposed FFs with more inputs.
Index Terms—Flip-Flop, verification algorithm, C-element,

radiation hardness, multiple-node-upset

I. INTRODUCTION

ITH the advancement of complementary metal oxide

semiconductor (CMOS) technologies, the manufacturing

process of integrated circuits (ICs) has reached the deep

nano-scale level, and the performance of modern systems has

been considerably improved. However, ICs are increasingly

becoming more vulnerable to radiative particles causing soft

errors, seriously affecting the reliability of ICs [1]. Common

soft errors include single-node upsets (SNUs) and double-node

upsets (DNUs). However, because of the rapid decrease of node

spacing between adjacent nodes in advanced CMOS

technologies, the impact of a single radiative particle can lead

to multiple-node upsets (MNUs), including triple-node upsets

(TNUs) and more-node upsets. Therefore, it is crucial to

propose and implement advanced flip-flops (FFs) protected

against MNUs to construct highly robust ICs and systems used

in safety-critical applications.

In recent decades, many radiation-hardened circuits, e.g.,

latches [1-3], FFs [4-11], and static random access memories

This work was supported by NSFC under 62274052, 62174001, 62027815.

Aibin Yan, Yuting He, and Jie Cui are with School of Computers, Anhui

University, Hefei 230601, China. (E-mail: abyan@mail.ustc.edu.cn,
baiwhitebai@163.com, cuijie@mail.ustc.edu.cn).

Zhengfeng Huang, Wenjie Yan and Xiaolei Wang are with School of

Microelectronics, Hefei University of Technology, Hefei 230601, China.
E-mail: huangzhengfeng@139.com, jlnu@163.com, wangxiaolei@hfut.edu.cn

Tianming Ni is with School of Integrated Circuits, Anhui Polytechnic

University, Wuhu 241000, China. (E-mail: timyni126@126.com). He is the
corresponding author.

Patrick Girard is with LIRMM, University of Montpellier / CNRS,

Montpellier 34095, France (E-mail: girard@lirmm.fr)
Xiaoqing Wen is with Department of Computer Science and Networks,

Kyushu Institute of Technology, Fukuoka, Japan (wen@cse.kyutech.ac.jp).

(SRAMs) [12-13], have been proposed, to improve robustness.

This paper focuses on the design innovation of FFs, aiming to

mitigate MNUs. Note that, a preliminary version of this paper

has been proposed [5], in which the slave latch includes a

keeper to keep the output stable. However, for

high-performance applications, the keeper is redundant leading

to extra overhead. In existing designs, C-elements (CEs) are

widely used. Figure 1 shows the transmission gate (TG) and the

adopted implementation of a 2-input CE. The clock-gated CE

can be controlled by system clock (CLK) and negative CLK

(NCK) as well. A CE works as an inverter outputting a reversed

value if its input values are identical. If its inputs change and

have different values, its output can temporarily have the

previous correct value due to intrinsic parasitic capacitance.

CLK

NCK
Y

A

B

CLK

C
A

B
YC

A

B
Y

Y

A

B

Out
NCK

In

In TG Out

NCK

CLK

 (a) (b) (c)

Fig. 1. Schematic of transmission gate (TG) and C-element (CE). (a) TG. (b)

2-input CE. (c) Clock-gating based 2-input CE.

Note that existing FFs cannot tolerate more-node upsets and

HSPICE-tool-based exhaustive simulations are impractical for

error injections with too many combinations. In this paper, cost

effective and robust FFs are firstly proposed for safety-critical

applications. The proposed 2-input and 3-input baseline FFs

comprise two-stage of CEs providing SNU and DNU tolerance,

respectively. The proposed FFs are extended to tolerate more

node upsets. Note that the N-input FF in this paper means that

the first-stage of CEs totally has N input nodes (i.e., N1 to Nn).

Moreover, a highly efficient algorithm is proposed in this paper

to automatically verify the MNU-tolerance of FFs. Simulation

results demonstrate the efficiency of the proposed solutions.

The rest of this paper is organized as follows. Section II

introduces the proposed FFs as well as their algorithm-based

MNU-tolerance verification solution. Section III shows the

results of comprehensive comparisons between the proposed

FFs and the existing designs. Section IV summarizes the paper.

II. PROPOSED SOLUTIONS

A. Proposed Baseline Flip-Flop Designs

Figure 2 presents the proposed baseline FF designs. It can be

seen that the 2-input and 3-inputs FFs in Fig. 2-(a) and (b)

mainly consist of two-stage of CEs. Fig. 2(c) shows the layout

of the 2-input FF (the layouts of the other FFs are not provided

Cost Efficient Flip-Flop Designs with Multiple-Node

Upset-Tolerance and Algorithm-based Verifications

Aibin Yan, Yuting He, Zhengfeng Huang, Wenjie Yan, Jie Cui, Xiaolei Wang, Tianming Ni, Patrick Girard,

Fellow, IEEE, and Xiaoqing Wen, Fellow, IEEE

W

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3426271

mailto:baiwhitebai@163.com

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

due to page limitation). Fig. 2 (d) and (e) show the 4-input and

5-input FFs extended from the 2-input and 3-input FFs. The

proposed FFs consists of a master latch (see the left side) and a

slave latch (see the right side).

N1

N2

C

C

CE1

CE2

CE3

X2

X1

Q
C

D M1

M2

C

C

CE4

CE5

CE6

Y2

Y1

OUT
C

NCK

NCK

CLK

CLK

NCK CLK

CLK

NCK

(a) 2-input (see N1 and N2)

N1

N2

N3

C

C

CE1

CE2

CE3

X2

X1

Q
CD

M1

M2

M3

C

C

CE4

CE5

CE6

Y2

Y1

OUT
C

CLK

CLK

CLK

NCK

NCK

NCK

NCK CLK

CLK NCK

 (b) 3-input (see N1, N2 and N3) (c) Layout of the 2-input

C

C

CE1

CE2

CE5

X2

X1

C

C

CE6

N1

N2

N3

C

CE4

C

CE7

X4

N4

C X3

CE3

NCK

NCK

NCK

NCK

D

C

C

C

X5

X6

X7

X8

X9

Q

CE8

CE9

CE10

C

C

CE11

CE12

CE15

Y2

Y1

C

C

CE16

M1

M2

M3

C

CE14

C

CE17

Y4

M4

C Y3

CE13

CLK

CLK

CLK

CLK

C

C

C

Y5

Y6

Y7

Y18

Y19

OUT

CE18

CE19

CE20

CLK

NCK

NCK CLK

(d) 4-input (see N1 to N4)

C

C

CE1

CE2

CE5

X2

X1

X5C

C

CE6

C

X6

CE8

N1

N2

N3

C

CE4

C

CE7

X4

C

X7

CE9

N5

C

CE10

C

N4

X3

CE3

X8

NCK

NCK

NCK

NCK

D

NCK

X9

Q

C

C

CE11

CE12

CE15

Y2

Y1

Y5C

C

CE16

C

Y6

CE18

M1

M2

M3

C

CE14

C

CE17

Y4

C

Y7

CE19

M5

C

CE20

C

M4

Y3

CE13

Y8

CLK

CLK

CLK

CLK

CLK

Y9

OUT
CLK NCK

NCK CLK

 (e) 5-input (see N1 to N5)

Fig. 2. Proposed baseline Flip-Flop designs.

In Fig. 2-(a), the first stage includes two parallel CEs (CE1

and CE2), the second stage includes one CE (CE3), and the

outputs (X1 and X2) are used as the inputs of the CE in the

second stage to tolerate SNUs. The 3-input FF in Fig. 2-(b) is

constructed by splitting N1 of Fig. 2-(a) into two new inputs

(N1 and N3) to tolerate DNUs. By adding two stages of CEs to

Fig. 2-(a), a 4-input FF as in Fig. 2-(d) is constructed to tolerate

TNUs. Figure 2-(e) shows the 5-input FF with quadruple node

upset tolerance. Note that D is the input and OUT is the output.

Let us now take the 3-input FF as an example to discuss its

working principle.

(1) When CLK = 1, the master latch works in transparent

mode. D value can pass to the master latch through three TGs

so that N1, N2, N3, X1 and X2 can be determined. However, Q

value can be only determined through the left-bottom TG

instead of clock-gated CE3 so as to reduce current competition

on Q to reduce delay and power. Moreover, the TGs in the slave

latch that works in hold mode are off, preventing them from

receiving values from the master latch.

(2) When CLK = 0, the master latch works in hold mode and

the slave latch works in transparent mode. D value cannot pass

to N1, N2, N3 and Q through TGs and the Q value can output

through CE3. The slave latch now can receive the value from

the master latch and output the value to OUT through a bottom

TG in the slave latch in a fast way.

Let us now discuss the fault-tolerance of the proposed FFs.

Since the master latch is similar to the slave latch, only the

fault-tolerance of the master latch is considered here. Let us

first analyze the SNU-tolerance of the proposed 2-input FF.

Since the FF is symmetrically constructed, only single nodes

N1, X1, and Q need to be considered. When only N1 is affected

by an SNU, since CE1 and CE2 can intercept this error, their

outputs (X1 and X2) can still have their original correct values,

and thus the output (Q) of CE3 can still have the original correct

value. In another scenario, when X1 or Q is impacted by an

SNU, since the input values of CE1 and CE2 remain unaffected,

all output nodes of CEs in the FF, i.e., X1, X2, and Q, will

refresh to output the original correct value. To summarize, the

proposed 2-input FF can provide the correct value when

suffering from an SNU. It should be noted that the proposed

2-input FF cannot tolerate DNUs. There is a counter-example

where the FF will output an incorrect value if node pair <N1,

N2> is impacted by a DNU. Considering the incapability of the

2-input FF to tolerate DNUs, the 3-input FF is introduced.

Let us analyze the DNU-tolerance principle of the proposed

3-input FF. When both affected nodes belong to a single latch

(e.g., the master latch) in the worst case, there are only three

representative cases: (D1) Any two internal nodes of the FF are

affected; (D2) one input node of the first-stage CE and another

internal node of the FF are affected; (D3) two input nodes of the

first-stage of CE of the FF are affected.

In the case of (D1), since the input nodes of the first-stage of

CEs of the FF are not affected, thus having their original correct

output values, internal nodes X1, X2, and Q will be refreshed to

output their previous correct values. In the case of (D2), since

the master latch is symmetrically constructed, the indicative

key node-pairs are only <N2, X1> and <N2, Q>. When <N2,

X1> is hit by a DNU, since one input (N2) and the output (X1)

of CE1 are simultaneously impacted, CE1 will retain the

flipped value at X1. However, since only one input (N2) of CE2

is affected, CE2 still has the original value at X2. Clearly, only

one input (X1) of CE3 has an error. Thus, the master latch can

still have the correct value since the error at X1 can be

intercepted by CE3. When <N2, Q> is hit by a DNU, since only

one input (N2) of CE1 and CE2 is affected, CE1 and CE2 can

still have the original correct values at X1 and X2. Thus, the

master latch can still have the original correct output value

because the inputs (X1 and X2) of CE3 are still correct. In the

case of (D3), since the master latch is symmetrically

constructed, there is only one indicative node-pair <N1, N2>.

When <N1, N2> is hit by a DNU, since the inputs of CE1 are

impacted by the DNU, the output (X1) of CE1 will be flipped.

Then, this case becomes similar to the case where <N2, X1> is

hit by a DNU in case D2. Therefore, the master latch can still

have the correct output value since the soft errors can be

intercepted by CE3. To summarize, the proposed 3-input FF

can provide the correct value when suffering from a DNU. In

the same manner, the TNU-tolerance of the 4-input FF and the

quadruple-node upset-tolerance of the 5-input FF can be got.

B. Proposed Extended Flip-Flop Designs

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3426271

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Figure 3 shows the extended N-1 and N inputs FFs. Note that

the N-1 inputs FF in Fig. 3-(a) is an extension of the 2-input FF

in Fig. 2-(a), and that the N inputs FF in Fig. 3-(b) is an

extension of the 3-input FF in Fig. 2-(b).

For the N-1 inputs FF in Fig. 3-(a), if it simultaneously

suffers from N-2 errors, it can be easily found that the following

issues can never happen: (M1) all inputs of the first-stage of

CEs have flipped values, (M2) N-1 CEs have flipped values on

both their input and output, (M3) all inputs of the last-stage of

CE (CE1, n-1) have flipped values. Consequently, the FF can

still provide the previous correct output value. To summarize,

the N-1 inputs FF can tolerate N-2 errors.

C

C

CE1,1

CE2,1

CE1,2

X2,1

X1,1

X1,2C

C

CE2,2

C

X2,2

CE1,3

N1

N2

N3

Xn-3,2

C

CEn-1,1

C

CEn-2,2

Xn-1,1

C

Xn-2,2

CEn-3,3

Nn-1

Q

C

C

CE1,n-3

CE1,n-2

X2,n-3

X1,n-3

X1,n-2

C

C

C

CE2,n-2

X3,n-3

C

X2,n-2

CE1,n-1

CE2,n-3

CE3,n-3

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

...

...

...

C

N4

X3,1

Xn-2,1

CE3,1

X1,3

Xn-3,3

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

NCK

NCK

NCK

NCK

D

C

C

CE1,1

CE2,1

CE1,2

Y2,1

Y1,1

Y1,2C

C

CE2,2

C

Y2,2

CE1,3

M1

M2

M3

Ym-3,2

C

CEm-1,1

C

CEm-2,2

Ym-1,1

C

Ym-2,2

CEm-3,3

Mm-1

Out

C

C

CE1,m-3

CE1,m-2

Y2,m-3

Y1,m-3

Y1,n-2

C

C

C

CE2,m-2

Y3,m-3

C

Y2,m-2

CE1,m-1

CE2,n-3

CE3,m-3

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

...

...

...

C

M4

Y3,1

Ym-2,1

CE3,1

Y1,3

Ym-3,3

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

CLK

CLK

CLK

CLK

CLK NCK

NCK CLK

 (a) N-1 input (see N1 to Nn-1)

C

C

CE1,1

CE2,1

CE1,2

X2,1

X1,1

X1,2C

C

CE2,2

C

X2,2

CE1,3

N1

N2

N3

Xn-3,2

C

CEn-1,1

C

CEn-2,2

Xn-1,1

C

Xn-2,2

CEn-3,3

Nn-1

Nn

Q

C

C

CE1,n-3

CE1,n-2

X2,n-3

X1,n-3

X1,n-2

C

C

C

CE2,n-2

X3,n-3

C

X2,n-2

CE1,n-1

CE2,n-3

CE3,n-3

... ...
...

.
.
.

.
.
.

.
.
.

...

...

...

...

C

N4

X3,1

Xn-2,1

CE3,1

X1,3

Xn-3,3

.
.
.

.
.
.

.
.
.

NCK

NCK

NCK

NCK

NCK

D

... ...
...

C

C

CE1,1

CE2,1

CE1,2

Y2,1

Y1,1

Y1,2C

C

CE2,2

C

Y2,2

CE1,3

M1

M2

M3

Ym-3,2

C

CEm-1,1

C

CEm-2,2

Ym-1,1

C

Ym-2,2

CEm-3,3

Mm-1

Mm

OUT

C

C

CE1,m-3

CE1,m-2

Y2,m-3

Y1,m-3

Y1,m-2

C

C

C

CE2,m-2

Y3,m-3

C

Y2,m-2

CE1,m-1

CE2,m-3

CE3,m-3

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

...

...

...

C

M4

Y3,1

Ym-2,1

CE3,1

Y1,3

Ym-3,3

..
.
..
.

..
.

CLK

CLK

CLK

CLK

CLK

.
.
.

.
.
.

.
.
.

CLK NCK

NCK CLK

(b) N input (see N1 to Nn)

Fig. 3. Proposed extended Flip-Flop designs.

In the same manner, as for the N inputs FF in Fig. 3-(b), if the

FF simultaneously suffers from N-1 errors, after an extensive

investigation, it can be found that the above-mentioned issues

(M1), (M2), and (M3) can never happen. Hence, the FF can still

provide the original correct value. To summarize, the N inputs

FF can tolerate N-1 errors. Note that the first-stage of CEs of

the proposed extended FFs can be split to have more inputs to

intercept soft errors.

C. Proposed Algorithm-based Verification Methodology

To verify the MNU-tolerance of each proposed FF, we use a

method that maps its structure into a forest. Figure 4 illustrates

the transformation of the proposed 3-input FF into a forest

model. The forest comprises multiple trees, with the number of

trees corresponding to the number of CEs within the FF. In each

tree, the hierarchical relationship between nodes signifies the

connectivity between the inputs and outputs of the CEs.

Taking CE1 as an example, X1 serves as its output node,

while N1 and N2 act as its input nodes. When converting CE1

into a corresponding binary tree, X1 becomes the root node of

the tree, with N1 and N2 as its child nodes. Similarly, for an

N-input CE, the root node corresponds to the output node,

while the child nodes represent the input nodes. The primary

distinction between converting an N-input CE and a 2-input CE

into their corresponding trees lies in the number of child nodes.

To verify the MNU-tolerance of the proposed FFs, we propose

a novel algorithm for MNU-tolerance verification (see Alg. 1).

The inputs of this algorithm consist of three parts.

Algorithm 1: MNU-Tolerance Verification for a Flip-Flop.

Input: A Flip-Flop with a forest structure, Output node of Flip-Flop, Flipped

Node Count Flip_Node_Count

Output: (see the print function)

1: Total_list  Create all possible combinations of Flip_Node_Count number

of nodes from the Node_List

2: for each TNU_list in Total_list do

3: Real_list  TNU_list

4: do

5: is_add_node_to_real_list  false

6: for each node in the Node_List but not in Real_list do

7: if all child nodes of the current node are in Real_list then

8: add the current node to Real_list

9: is_add_node_to_real_listtrue

10: break

11: end if

12: end for

13: while (is_add_node_to_real_list)

14: Affected_listremoves parent node whose child nodes not in Real_list

15: if root is in Affected_list then

16: print (“Error kept, i.e., the Flip-Flop cannot tolerate the errors.”)

17: break

18: end if

19:end for

(1) The forest representing the FF structure. Once the FF is

transformed into a forest model, it can be input into the

algorithm as the base model.

(2) A count of flipped nodes. This count indicates how many

single nodes are simultaneously affected to simulate an MNU.

(3) The output node of the FF structure to be verified. Since

each node of a different FF has a unique flag, it is necessary to

specify the flag of the output node of the FF when performing

the MNU-tolerance verification.

Through this method, we can accurately and efficiently

verify the MNU-tolerance of the FF structure. To simulate all

MNUs comprehensively, the algorithm first obtains the

complete list of FF nodes from the input forest structure. Based

on the provided count of flipped nodes, the algorithm calculates

all possible combinations of flipped node groups in the

Total_list. For each combination, the algorithm executes a

series of steps to update the list, determining what extra nodes

are flipped, resulting in the final real_list. Note that, during

these steps, every node in the FF may be directly or indirectly

affected by an MNU. Subsequently, the algorithm traverses the

tree structure hierarchically, deciding to retain or remove a

parent node based on the states of its child nodes. If a parent

node exists in the real_list, yet all its child nodes do not exist in

the real_list, the parent node is considered recoverable to the

correct state and can be removed from the real_list. This

process is recursively executed throughout the entire tree

structure until all parent nodes have been checked, ensuring the

integrity of the validation. Finally, the affected node

combination Affected_list is obtained. Affected_list contains all

unrecoverable nodes and it verifies the MNU-tolerance by

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3426271

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

determining whether the root node is in Affected_list.
Q

X1 X2

X1

N1 N2

X2

N2 N3

Y1 Y2

Y1

M1 M2

Y2

M2 M3

OUT

Fig. 4. Modeled forest for the proposed 3-input Flip-Flop.

Q

X1 X2

X1

N1 N2

X2

N2 N3

Q

X1 X2

X1

N1 N2

X2

N2 N3

Q

X1 X2

X1

N1 N2

X2

N2 N3
 (a) (b) (c)

Q

X1 X2

X1

N1 N2

X2

N2 N3

Q

X1 X2

X1

N1 N2

X2

N2 N3

 (d) (e)

Fig. 5. The process to verify the MNU-tolerance of the proposed 3-input

Flip-Flop. (a) Initially real_list = <X1, X2>, (b) add the affected node Q, and

thus the updated real_list = <X1, X2, Q>, (c) remove the recoverable node X1
and thus the updated real_list = <X2, Q>, (d) remove the recoverable node X2

and the thus updated real_list = <Q>, and (e) the final Affected_list is null.

Let us discuss the verification process in detail. Consider the

scenario where the master latch of the proposed 3-input FF is

affected by a DNU, with the initial real_list containing <X1,

X2> (see Fig. 5-(a)). As the real_list is updated, we notice that

Q is the output node of CE3, with input nodes X1 and X2 in the

real_list. Since Q serves as the root node of the binary tree, and

both X1 and X2 as its child nodes are all affected, we conclude

that Q is also affected and thus include it in the real_list (see

Fig. 5-(b)). After this update, the real_list becomes <X1, X2,

Q>. We iterate this process until we obtain the final updated

real_list. When completing the hierarchical traversing of the

forest structure and reaching the root node X1, we observe that

its child nodes N1 and N2 do not exist in real_list. This

observation prompts us to remove node X1 (see Fig. 5-(c)).

Similarly, node X2 should also be removed from real_list (see

Fig. 5-(d). Until the root node Q is traversed, its child nodes X1

and X2 are not in real_list, and thus node Q should be removed

from real_list (see Fig. 5-(e)). This recursive process continues

until all nodes have been inspected, resulting in the

Affected_list after eliminating recoverable nodes. Finally, we

verify if the root node Q persists in the Affected_list. Upon

verification, node Q is absent in the Affected_list, indicating

that the FF can tolerate the DNU for nodes <X1, X2>. We can

subsequently examine the other node combinations to simulate

all DNUs. Through successive validations, it becomes evident

that node Q consistently remains absent in the Affected_list,

implying the FF's ability to tolerate DNUs.

A counter-example is discussed here to demonstrate the

TNU-not-tolerance for the 3-input FF. Let us assume the FF is

impacted by a TNU, with the initial real_list comprising nodes

<N1, N2, N3>. The verification process of the algorithm is

shown in Fig. 6. The real_list undergoes continuous updates

until it stabilizes, resulting in real_list = <N1, N2, N3, X1, X2,

Q>. When traversing each tree's root node, the roots that can be

restored to the correct states are eliminated from the real_list.

When traversing to the root node Q, it is found that its child

nodes X1 and X2 both remain in the real_list, indicating that

node Q cannot be restored to the correct state. The node Q still

exists in Affected_list (see Fig. 6-(d)). Thus, it is concluded that

the proposed 3-input FF cannot tolerate the TNU.
Q

X1 X2

X1

N1 N2

X2

N2 N3

Q

X1 X2

X1

N1 N2

X2

N2 N3

Q

X1 X2

X1

N1 N2

X2

N2 N3

Q

X1 X2

X1

N1 N2

X2

N2 N3

 (a) (b) (c) (d)
Fig. 6. A counter-example for the proposed 3-input Flip-Flop but considering

three node-upsets. (a) Initially real_list = <N1, N2, N3>, (b) add the affected

node X1, and thus the updated real_list = <N1, N2, N3, X1>, (c) add the
affected node X2, and thus the updated real_list = <N1, N2, N3, X1, X2>, (d)

add the affected node Q, and thus the updated real_list = <N1, N2, N3, X1, X2,

Q> and thus the final Affected_list = <N1, N2, N3, X1, X2, Q>.

In summary, through the algorithm-based validations for the

MNU-tolerance of the proposed 3-input FF, it is found that the

FF can tolerate all SNUs and DNUs. Nevertheless, for triple

and more node-upsets, the FF fails to tolerate them since there

is at least a counter-example that cannot provide tolerance.

Note that the running of the algorithm was performed on a

laptop equipped with an Intel Core i7-12700 processor, 8GB

DDR4 memory, and an Intel(R) UHD Graphics 770. Windows

11 OS and Python 3.9 were used. To ensure the consistency and

repeatability of the results, all experiments were repeated three

times under the same environmental parameters. Through the

algorithmic evaluation, we found that the runtime of the 3-input

FF verification is 1.99 ms only. This significantly reduces the

verification time required when compared to the traditional

verification method using EDA tools that also require manual

intervention. Note that, all of our proposed FFs in this paper can

be quickly verified using this algorithm, and the verification

running-time is very short as well.

 2

Q

0

V
o

lt
a
g

e
 (

V
)

CLK

Time (ns)

X2

N2

N1

D
0.8 -

0 -

-

0 -

0 -
-

0 -

-

-

-

0
-

0 -
-

0 -

0.8

0.8

0.8

0.8

0.8

0.8

N3

0.8 -
0 -

 4 51 3

X1

- - - - - -

 20

V
o

lt
a
g

e
 (

V
)

CLK

Time (ns)

X2

X1

N2

N1

D

0.8-

0-

-

0 -

0-
-

0 -

-

1 3

-

-
0 -

0 -
-

0 -

0.8

0.8

0.8

0.8

0.8

0.8

- - - -

Q

Fig. 7. Simulation results for the proposed baseline FFs. (a) 2-input FF with

SNU injections (the left), and (b) 3-input FF with DNU injections (the right).

D. Simulations

The proposed FFs were designed/implemented using the

same conditions, i.e., a 22 nm advance CMOS library, a 0.8V

Vdd, and W/L of PMOS transistors with 90nm/22nm and W/L

of NMOS transistors with 45nm/22nm. Extensive simulations

using HSPICE from Synopsys were performed. Note that we

used a controllable double exponential current source model to

perform all the SNU injections. The injected amount of charge

was up to 25fC in the worst case which is large enough to flip

the correct value of the node and demonstrate the efficiency of

the error injections. The time constants of the rise and fall of the

current pulse were set to 0.1ps and 3.0ps [1], respectively. This

is true for all error injections in this paper.

It can be seen from Fig. 7-(a) that the proposed FFs can

tolerate all the injected SNUs and/or DNUs with red-lightening

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3426271

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

marks (when Q is impacted, it only resulted in a small pulse)

and the algorithm-based verification results are completely

consistent with the HSPICE-based simulation results. Note that

we used two simultaneous SNUs to mimic a DNU.

III. EVALUATION AND COMPARATIVE RESULTS

To make a fair comparison, all the compared FFs in this

paper are implemented under the same conditions mentioned in

the previous section, i.e., a 22 nm advanced CMOS library, a

0.8V Vdd and the room temperature.

TABLE I

RELIABILITY AND OVERHEAD COMPARISONS AMONG HARDENED FLIP-FLOPS.

Flip-Flop Ref.
SNU

Tol.

DNU

Tol.

TNU

Tol.

QNU

Tol.

Area

(μm2)

Delay

(ps)

Power

(μW)

 10-2×

ADPP

Quatro-FF [6] YES NO NO NO 6.14 38.99 4.95 11.85

TMR-FF - YES NO NO NO 9.66 45.38 2.97 13.02

DNUR-FF [7] YES NO NO NO 11.29 42.70 2.26 10.89

DICE-FF [8] YES NO NO NO 5.64 17.13 1.79 1.73

DRRH-FF [9] YES NO NO NO 5.94 43.16 1.58 4.05

SNUR-NVFF [10] YES NO NO NO 5.94 18.30 1.03 1.12

HPST-FF [11] YES NO NO NO 8.32 23.00 1.00 1.91

DUT-FF [4] YES YES NO NO 14.60 14.00 2.13 4.35

HRLPFF [5] YES YES NO NO 8.02 29.24 0.71 1.66

2-input Proposed YES NO NO NO 5.94 9.15 0.39 0.21

3-input Proposed YES YES NO NO 6.53 8.99 0.40 0.23

4-input Proposed YES YES YES NO 15.44 15.03 1.34 3.11

5-input Proposed YES YES YES YES 16.04 14.49 1.36 3.16

Table I shows the reliability and overhead comparisons of

FFs. Note that “Tol.” denotes “Tolerant”. Also note that, some

works, e.g., those in [2-3, 14-16], are not compared, since they

not mainly focus on FF designs. According to the comparison

data in Table I, the proposed baseline FFs have excellent fault

tolerance against node-upsets; however, most existing FFs are

limited to tolerating SNUs and/or DNUs. As mentioned above,

the N input FF exhibits tolerance against N-1 node upsets

which demonstrates the high reliability and high scalability of

our proposed FFs with adjustable count of inputs.

Table I also describes the cost comparison among FFs.

"Area" is the silicon area extracted as in [1], "Power" is the

average power dissipation (dynamic and static), "Delay" is D to

OUT transmission delay, i.e., the average of rise and fall delays

from D to OUT, and "ADPP" denotes the area-delay-power

product calculated by multiplying area, delay, and power.

In terms of area, the FFs in [8-10] and the proposed 2-input

FF consume small silicon area due to the small number of

transistors used. However, to achieve MNU-tolerance, the

proposed 4-input FF and 5-input FF necessitate additional

transistors, resulting in extra silicon area. In terms of delay, the

proposed FFs have small delay, while the other FFs exhibit

large delay. This discrepancy arises from the presence of

redundant transistors on the D to OUT path in the other FFs,

thereby increasing the delay. In terms of power, the proposed

2-input FF exhibits the lowest power consumption, attributed to

its structure with no current competition. In contrast, Quatro-FF

has the highest power dissipation due to its utilization of Quatro

cells, resulting in significant current competition among its

internal nodes. In terms of ADPP, the proposed 2-input FF and

3-input FF have small ADPP due to their small delay, area, and

power. Conversely, the proposed 4-input FF and 5-input FF

exhibit a moderate ADPP compared to some of the other FFs,

primarily due to their extra silicon area required to

accommodate MNU-tolerance. The proposed FFs shows high

superiority over the other FFs. Compared to the DNU-tolerant

FFs, the proposed 3-input FF achieves an average reduction of

36.03% in silicon area, 52.52% in delay, 62.44% in power, and

90.43% in ADPP. In summary, the proposed 2-input FF and

3-input FF almost have the smallest overhead compared to the

same type of FFs. The proposed more input FFs have moderate

delay and power while ensuring the highest reliability; although

extra area is required, the modest sacrifice accompanies a

significant improvement in performance.

IV. CONCLUSION AND FURTHER WORKS

This paper has proposed a series of flip-flops tolerating node

upsets with cost effectiveness especially in terms of delay and

power. This paper has also proposed an algorithm-based

node-upset tolerance verification method. Simulation results

have demonstrated the efficiency of the proposed solutions. In

our further work, the proposed algorithm-based methodology

will be further investigated and expanded to make it applicable

to the verification for large circuits with more node upsets.

REFERENCES

[1] A. Yan, Z. Li, J. Cui, et al, "LDAVPM: A Latch Design and

Algorithm-based Verification Protected against Multiple-Node-Upsets in

Harsh Radiation Environments," IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 42, no. 6, pp. 2069-2073, 2023.

[2] A. Amirany, et al, "High-Performance and Soft Error Immune Spintronic

Retention Latch for Highly Reliable Processors," Iranian Conference on
Electrical Engineering, pp. 1-5, 2020.

[3] A. Amirany, et al, "Low Power, and Highly Reliable Single Event Upset

Immune Latch for Nanoscale CMOS Technologies," Iranian
Conference on Electrical Engineering, pp. 103-107, 2018.

[4] A. Yan, et al., “Two Double-Node-Upset-Hardened Flip-Flop Designs for

High-Performance Applications,” IEEE Trans. on Emerging Topics in
Computing, vol. 11, no. 4, pp. 1070-1081, 2023.

[5] A. Yan et al., “A Highly Robust and Low-Power Flip-Flop Cell with
Complete Double-Node-Upset Tolerance for Aerospace Applications,”

IEEE Design & Test, vol. 40, no. 4, pp. 34-41, 2023.

[6] Y. Li, H. Wang, R. Liu, et al., “A Quatro-Based 65 nm Flip-Flop Circuit
for Soft-Error Resilience,” IEEE Trans. on Nuclear Science, vol. 64, no. 6,

pp. 1554-1561, 2017.

[7] F. Alghareb and R. DeMara, “Design and Evaluation of DNU-Tolerant
Registers for Resilient Architectural State Storage,” ACM Great Lakes

Symposium on VLSI, pp. 1-4, 2019.

[8] K. Kobayashi, et al., “A Low-Power and Area-Efficient Radiation-Hard
Redundant Flip-Flop, DICE ACFF, in a 65 nm Thin-BOX FD-SOI,”

IEEE Trans. on Nuclear Science, vol. 61, pp. 1881-1888, 2014.

[9] G. Jaya, S. Chen, and S. Liter, “A Dual Redundancy Radiation-Hardened
Flip-Flop Based on C-element in 65nm Process,” IEEE International

Symposium on Integrated Circuits, pp. 1-4, 2016.

[10] F. S. Alghareb, R. Zand and R. F. Demara, "Non-Volatile Spintronic
Flip-Flop Design for Energy-Efficient SEU and DNU Resilience," IEEE

Trans. on Magnetics, vol. 55, no. 3, pp. 1-11, 2019.

[11] Z. Huang, G. Liang and S. Hellebrand, “A High Performance SEU
Tolerant Latch,” J. of Electronic Testing, vol. 31, pp. 349-359, 2015.

[12] E. Abbasian, et al, "A Reliable Low Standby Power 10T SRAM Cell

With Expanded Static Noise Margins," IEEE Trans. on Circuits and
Systems I: Regular Papers, vol. 69, no. 4, pp. 1606-1616, 2022.

[13] A. Yan, et al, "Quadruple and Sextuple Cross-Coupled SRAM Cell

Designs with Optimized Overhead for Reliable Applications," IEEE
Trans. on Device and Materials Reliability, vol. 22, pp. 282-295, 2022.

[14] A. Dweik and Y. Iraqi, "Error Probability Analysis and Applications of

Amplitude-Coherent Detection in Flat Rayleigh Fading
Channels," IEEE Trans. Communications, vol. 64, pp. 2235-2244, 2016.

[15] S. Campitelli, et al, "F-DICE: A multiple node upset tolerant flip-flop for

highly radioactive environments," IEEE Internat. Symp. Defect & Fault
Tolerance in VLSI & Nanotechnology Systems, pp. 107-111, 2013.

[16] V. Bakhtiary, et al, "An SEU-hardened ternary SRAM design based on

efficient ternary C-elements using CNTFET technology,"
Microelectronics Reliability, vol. 140, 2023.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3426271

