
HAL Id: lirmm-04737573
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04737573v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost Efficient Flip-Flop Designs With Multiple-Node
Upset-Tolerance and Algorithm-Based Verifications

Aibin Yan, Yuting He, Zhengfeng Huang, Wenjie Yan, Jie Cui, Xiaolei Wang,
Tianming Ni, Patrick Girard, Xiaoqing Wen

To cite this version:
Aibin Yan, Yuting He, Zhengfeng Huang, Wenjie Yan, Jie Cui, et al.. Cost Efficient Flip-
Flop Designs With Multiple-Node Upset-Tolerance and Algorithm-Based Verifications. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, In press.
�10.1109/TCAD.2024.3426271�. �lirmm-04737573�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04737573v1
https://hal.archives-ouvertes.fr


IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 
 

1  Abstract—This paper presents radiation-hardened 

flip-flop (FF) designs capable of tolerating soft errors, e.g., 

single-node upsets (SNUs), double-node upsets (DNUs) and 

multiple-node upsets (MNUs). First, a 2-input FF and a 

3-input FF are proposed as the baseline FFs that not only 

respectively tolerate SNUs and DNUs but also exhibit cost 

efficiency in terms of delay, power, and area. Through 

adding two stages of C-elements, a 4-input FF and a 5-input 

FF are proposed as the baseline FFs as well. Utilizing the 

structural characteristics of these FFs, an N-1 input FF and 

an N input FF are proposed as the extended FFs capable of 

tolerating more node upsets. Moreover, a highly efficient 

algorithm for verifying MNU-tolerance of these FFs is 

proposed. Algorithm and HSPICE-tool-based verification 

results both demonstrate the MNU-tolerance for the 

proposed FFs with more inputs.  
Index Terms—Flip-Flop, verification algorithm, C-element, 

radiation hardness, multiple-node-upset 

I. INTRODUCTION 

ITH the advancement of complementary metal oxide 

semiconductor (CMOS) technologies, the manufacturing 

process of integrated circuits (ICs) has reached the deep 

nano-scale level, and the performance of modern systems has 

been considerably improved. However, ICs are increasingly 

becoming more vulnerable to radiative particles causing soft 

errors, seriously affecting the reliability of ICs [1]. Common 

soft errors include single-node upsets (SNUs) and double-node 

upsets (DNUs). However, because of the rapid decrease of node 

spacing between adjacent nodes in advanced CMOS 

technologies, the impact of a single radiative particle can lead 

to multiple-node upsets (MNUs), including triple-node upsets 

(TNUs) and more-node upsets. Therefore, it is crucial to 

propose and implement advanced flip-flops (FFs) protected 

against MNUs to construct highly robust ICs and systems used 

in safety-critical applications. 

In recent decades, many radiation-hardened circuits, e.g., 

latches [1-3], FFs [4-11], and static random access memories 
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(SRAMs) [12-13], have been proposed, to improve robustness. 

This paper focuses on the design innovation of FFs, aiming to 

mitigate MNUs. Note that, a preliminary version of this paper 

has been proposed [5], in which the slave latch includes a 

keeper to keep the output stable. However, for 

high-performance applications, the keeper is redundant leading 

to extra overhead. In existing designs, C-elements (CEs) are 

widely used. Figure 1 shows the transmission gate (TG) and the 

adopted implementation of a 2-input CE. The clock-gated CE 

can be controlled by system clock (CLK) and negative CLK 

(NCK) as well. A CE works as an inverter outputting a reversed 

value if its input values are identical. If its inputs change and 

have different values, its output can temporarily have the 

previous correct value due to intrinsic parasitic capacitance. 
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Fig. 1. Schematic of transmission gate (TG) and C-element (CE). (a) TG. (b) 

2-input CE. (c) Clock-gating based 2-input CE. 

Note that existing FFs cannot tolerate more-node upsets and 

HSPICE-tool-based exhaustive simulations are impractical for 

error injections with too many combinations. In this paper, cost 

effective and robust FFs are firstly proposed for safety-critical 

applications. The proposed 2-input and 3-input baseline FFs 

comprise two-stage of CEs providing SNU and DNU tolerance, 

respectively. The proposed FFs are extended to tolerate more 

node upsets. Note that the N-input FF in this paper means that 

the first-stage of CEs totally has N input nodes (i.e., N1 to Nn). 

Moreover, a highly efficient algorithm is proposed in this paper 

to automatically verify the MNU-tolerance of FFs. Simulation 

results demonstrate the efficiency of the proposed solutions. 

The rest of this paper is organized as follows. Section II 

introduces the proposed FFs as well as their algorithm-based 

MNU-tolerance verification solution. Section III shows the 

results of comprehensive comparisons between the proposed 

FFs and the existing designs. Section IV summarizes the paper.  

II. PROPOSED SOLUTIONS 

A. Proposed Baseline Flip-Flop Designs 

Figure 2 presents the proposed baseline FF designs. It can be 

seen that the 2-input and 3-inputs FFs in Fig. 2-(a) and (b) 

mainly consist of two-stage of CEs. Fig. 2(c) shows the layout 

of the 2-input FF (the layouts of the other FFs are not provided 
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due to page limitation). Fig. 2 (d) and (e) show the 4-input and 

5-input FFs extended from the 2-input and 3-input FFs. The 

proposed FFs consists of a master latch (see the left side) and a 

slave latch (see the right side).  
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(a) 2-input (see N1 and N2) 
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           (b) 3-input (see N1, N2 and N3)                (c) Layout of the 2-input 
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(d) 4-input (see N1 to N4) 
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 (e) 5-input (see N1 to N5) 

Fig. 2. Proposed baseline Flip-Flop designs. 

In Fig. 2-(a), the first stage includes two parallel CEs (CE1 

and CE2), the second stage includes one CE (CE3), and the 

outputs (X1 and X2) are used as the inputs of the CE in the 

second stage to tolerate SNUs. The 3-input FF in Fig. 2-(b) is 

constructed by splitting N1 of Fig. 2-(a) into two new inputs 

(N1 and N3) to tolerate DNUs. By adding two stages of CEs to 

Fig. 2-(a), a 4-input FF as in Fig. 2-(d) is constructed to tolerate 

TNUs. Figure 2-(e) shows the 5-input FF with quadruple node 

upset tolerance. Note that D is the input and OUT is the output.  

Let us now take the 3-input FF as an example to discuss its 

working principle. 

(1) When CLK = 1, the master latch works in transparent 

mode. D value can pass to the master latch through three TGs 

so that N1, N2, N3, X1 and X2 can be determined. However, Q 

value can be only determined through the left-bottom TG 

instead of clock-gated CE3 so as to reduce current competition 

on Q to reduce delay and power. Moreover, the TGs in the slave 

latch that works in hold mode are off, preventing them from 

receiving values from the master latch. 

(2) When CLK = 0, the master latch works in hold mode and 

the slave latch works in transparent mode. D value cannot pass 

to N1, N2, N3 and Q through TGs and the Q value can output 

through CE3. The slave latch now can receive the value from 

the master latch and output the value to OUT through a bottom 

TG in the slave latch in a fast way. 

Let us now discuss the fault-tolerance of the proposed FFs. 

Since the master latch is similar to the slave latch, only the 

fault-tolerance of the master latch is considered here. Let us 

first analyze the SNU-tolerance of the proposed 2-input FF. 

Since the FF is symmetrically constructed, only single nodes 

N1, X1, and Q need to be considered. When only N1 is affected 

by an SNU, since CE1 and CE2 can intercept this error, their 

outputs (X1 and X2) can still have their original correct values, 

and thus the output (Q) of CE3 can still have the original correct 

value. In another scenario, when X1 or Q is impacted by an 

SNU, since the input values of CE1 and CE2 remain unaffected, 

all output nodes of CEs in the FF, i.e., X1, X2, and Q, will 

refresh to output the original correct value. To summarize, the 

proposed 2-input FF can provide the correct value when 

suffering from an SNU. It should be noted that the proposed 

2-input FF cannot tolerate DNUs. There is a counter-example 

where the FF will output an incorrect value if node pair <N1, 

N2> is impacted by a DNU. Considering the incapability of the 

2-input FF to tolerate DNUs, the 3-input FF is introduced. 

Let us analyze the DNU-tolerance principle of the proposed 

3-input FF. When both affected nodes belong to a single latch 

(e.g., the master latch) in the worst case, there are only three 

representative cases: (D1) Any two internal nodes of the FF are 

affected; (D2) one input node of the first-stage CE and another 

internal node of the FF are affected; (D3) two input nodes of the 

first-stage of CE of the FF are affected. 

In the case of (D1), since the input nodes of the first-stage of 

CEs of the FF are not affected, thus having their original correct 

output values, internal nodes X1, X2, and Q will be refreshed to 

output their previous correct values. In the case of (D2), since 

the master latch is symmetrically constructed, the indicative 

key node-pairs are only <N2, X1> and <N2, Q>. When <N2, 

X1> is hit by a DNU, since one input (N2) and the output (X1) 

of CE1 are simultaneously impacted, CE1 will retain the 

flipped value at X1. However, since only one input (N2) of CE2 

is affected, CE2 still has the original value at X2. Clearly, only 

one input (X1) of CE3 has an error. Thus, the master latch can 

still have the correct value since the error at X1 can be 

intercepted by CE3. When <N2, Q> is hit by a DNU, since only 

one input (N2) of CE1 and CE2 is affected, CE1 and CE2 can 

still have the original correct values at X1 and X2. Thus, the 

master latch can still have the original correct output value 

because the inputs (X1 and X2) of CE3 are still correct. In the 

case of (D3), since the master latch is symmetrically 

constructed, there is only one indicative node-pair <N1, N2>. 

When <N1, N2> is hit by a DNU, since the inputs of CE1 are 

impacted by the DNU, the output (X1) of CE1 will be flipped. 

Then, this case becomes similar to the case where <N2, X1> is 

hit by a DNU in case D2. Therefore, the master latch can still 

have the correct output value since the soft errors can be 

intercepted by CE3. To summarize, the proposed 3-input FF 

can provide the correct value when suffering from a DNU. In 

the same manner, the TNU-tolerance of the 4-input FF and the 

quadruple-node upset-tolerance of the 5-input FF can be got.  

B. Proposed Extended Flip-Flop Designs 
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Figure 3 shows the extended N-1 and N inputs FFs. Note that 

the N-1 inputs FF in Fig. 3-(a) is an extension of the 2-input FF 

in Fig. 2-(a), and that the N inputs FF in Fig. 3-(b) is an 

extension of the 3-input FF in Fig. 2-(b). 

For the N-1 inputs FF in Fig. 3-(a), if it simultaneously 

suffers from N-2 errors, it can be easily found that the following 

issues can never happen: (M1) all inputs of the first-stage of 

CEs have flipped values, (M2) N-1 CEs have flipped values on 

both their input and output, (M3) all inputs of the last-stage of 

CE (CE1, n-1) have flipped values. Consequently, the FF can 

still provide the previous correct output value. To summarize, 

the N-1 inputs FF can tolerate N-2 errors.  
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Fig. 3. Proposed extended Flip-Flop designs. 

In the same manner, as for the N inputs FF in Fig. 3-(b), if the 

FF simultaneously suffers from N-1 errors, after an extensive 

investigation, it can be found that the above-mentioned issues 

(M1), (M2), and (M3) can never happen. Hence, the FF can still 

provide the original correct value. To summarize, the N inputs 

FF can tolerate N-1 errors. Note that the first-stage of CEs of 

the proposed extended FFs can be split to have more inputs to 

intercept soft errors.  

C.  Proposed Algorithm-based Verification Methodology 

To verify the MNU-tolerance of each proposed FF, we use a 

method that maps its structure into a forest. Figure 4 illustrates 

the transformation of the proposed 3-input FF into a forest 

model. The forest comprises multiple trees, with the number of 

trees corresponding to the number of CEs within the FF. In each 

tree, the hierarchical relationship between nodes signifies the 

connectivity between the inputs and outputs of the CEs. 

Taking CE1 as an example, X1 serves as its output node, 

while N1 and N2 act as its input nodes. When converting CE1 

into a corresponding binary tree, X1 becomes the root node of 

the tree, with N1 and N2 as its child nodes. Similarly, for an 

N-input CE, the root node corresponds to the output node, 

while the child nodes represent the input nodes. The primary 

distinction between converting an N-input CE and a 2-input CE 

into their corresponding trees lies in the number of child nodes. 

To verify the MNU-tolerance of the proposed FFs, we propose 

a novel algorithm for MNU-tolerance verification (see Alg. 1). 

The inputs of this algorithm consist of three parts. 

Algorithm 1: MNU-Tolerance Verification for a Flip-Flop. 

Input: A Flip-Flop with a forest structure, Output node of Flip-Flop, Flipped 

Node Count Flip_Node_Count  

Output: (see the print function) 

1: Total_list  Create all possible combinations of Flip_Node_Count number 

of nodes from the Node_List 

2: for each TNU_list in Total_list do 

3:       Real_list  TNU_list 

4:       do 

5:             is_add_node_to_real_list  false 

6:             for each node in the Node_List but not in Real_list do 

7:                   if all child nodes of the current node are in Real_list then 

8:                        add the current node to Real_list 

9:                        is_add_node_to_real_listtrue 

10:                      break 

11:                 end if 

12:           end for 

13:      while (is_add_node_to_real_list) 

14:      Affected_listremoves parent node whose child nodes not in Real_list  

15:      if root is in Affected_list then 

16:           print (“Error kept, i.e., the Flip-Flop cannot tolerate the errors.”) 

17:           break 

18:      end if 

19:end for 

(1) The forest representing the FF structure. Once the FF is 

transformed into a forest model, it can be input into the 

algorithm as the base model.  

(2) A count of flipped nodes. This count indicates how many 

single nodes are simultaneously affected to simulate an MNU. 

(3) The output node of the FF structure to be verified. Since 

each node of a different FF has a unique flag, it is necessary to 

specify the flag of the output node of the FF when performing 

the MNU-tolerance verification. 

Through this method, we can accurately and efficiently 

verify the MNU-tolerance of the FF structure. To simulate all 

MNUs comprehensively, the algorithm first obtains the 

complete list of FF nodes from the input forest structure. Based 

on the provided count of flipped nodes, the algorithm calculates 

all possible combinations of flipped node groups in the 

Total_list. For each combination, the algorithm executes a 

series of steps to update the list, determining what extra nodes 

are flipped, resulting in the final real_list. Note that, during 

these steps, every node in the FF may be directly or indirectly 

affected by an MNU. Subsequently, the algorithm traverses the 

tree structure hierarchically, deciding to retain or remove a 

parent node based on the states of its child nodes. If a parent 

node exists in the real_list, yet all its child nodes do not exist in 

the real_list, the parent node is considered recoverable to the 

correct state and can be removed from the real_list. This 

process is recursively executed throughout the entire tree 

structure until all parent nodes have been checked, ensuring the 

integrity of the validation. Finally, the affected node 

combination Affected_list is obtained. Affected_list contains all 

unrecoverable nodes and it verifies the MNU-tolerance by 
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determining whether the root node is in Affected_list. 
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Fig. 4.  Modeled forest for the proposed 3-input Flip-Flop.       
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Fig. 5. The process to verify the MNU-tolerance of the proposed 3-input 

Flip-Flop. (a) Initially real_list = <X1, X2>, (b) add the affected node Q, and 

thus the updated real_list = <X1, X2, Q>, (c) remove the recoverable node X1 
and thus the updated real_list = <X2, Q>, (d) remove the recoverable node X2 

and the thus updated real_list = <Q>, and (e) the final Affected_list is null. 

Let us discuss the verification process in detail. Consider the 

scenario where the master latch of the proposed 3-input FF is 

affected by a DNU, with the initial real_list containing <X1, 

X2> (see Fig. 5-(a)). As the real_list is updated, we notice that 

Q is the output node of CE3, with input nodes X1 and X2 in the 

real_list. Since Q serves as the root node of the binary tree, and 

both X1 and X2 as its child nodes are all affected, we conclude 

that Q is also affected and thus include it in the real_list (see 

Fig. 5-(b)). After this update, the real_list becomes <X1, X2, 

Q>. We iterate this process until we obtain the final updated 

real_list. When completing the hierarchical traversing of the 

forest structure and reaching the root node X1, we observe that 

its child nodes N1 and N2 do not exist in real_list. This 

observation prompts us to remove node X1 (see Fig. 5-(c)). 

Similarly, node X2 should also be removed from real_list (see 

Fig. 5-(d). Until the root node Q is traversed, its child nodes X1 

and X2 are not in real_list, and thus node Q should be removed 

from real_list (see Fig. 5-(e)). This recursive process continues 

until all nodes have been inspected, resulting in the 

Affected_list after eliminating recoverable nodes. Finally, we 

verify if the root node Q persists in the Affected_list. Upon 

verification, node Q is absent in the Affected_list, indicating 

that the FF can tolerate the DNU for nodes <X1, X2>. We can 

subsequently examine the other node combinations to simulate 

all DNUs. Through successive validations, it becomes evident 

that node Q consistently remains absent in the Affected_list, 

implying the FF's ability to tolerate DNUs.  

A counter-example is discussed here to demonstrate the 

TNU-not-tolerance for the 3-input FF. Let us assume the FF is 

impacted by a TNU, with the initial real_list comprising nodes 

<N1, N2, N3>. The verification process of the algorithm is 

shown in Fig. 6. The real_list undergoes continuous updates 

until it stabilizes, resulting in real_list = <N1, N2, N3, X1, X2, 

Q>. When traversing each tree's root node, the roots that can be 

restored to the correct states are eliminated from the real_list. 

When traversing to the root node Q, it is found that its child 

nodes X1 and X2 both remain in the real_list, indicating that 

node Q cannot be restored to the correct state. The node Q still 

exists in Affected_list (see Fig. 6-(d)). Thus, it is concluded that 

the proposed 3-input FF cannot tolerate the TNU. 
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Fig. 6. A counter-example for the proposed 3-input Flip-Flop but considering 

three node-upsets. (a) Initially real_list = <N1, N2, N3>, (b) add the affected 

node X1, and thus the updated real_list = <N1, N2, N3, X1>, (c) add the 
affected node X2, and thus the updated real_list = <N1, N2, N3, X1, X2>, (d) 

add the affected node Q, and thus the updated real_list = <N1, N2, N3, X1, X2, 

Q> and thus the final Affected_list = <N1, N2, N3, X1, X2, Q>. 

In summary, through the algorithm-based validations for the 

MNU-tolerance of the proposed 3-input FF, it is found that the 

FF can tolerate all SNUs and DNUs. Nevertheless, for triple 

and more node-upsets, the FF fails to tolerate them since there 

is at least a counter-example that cannot provide tolerance. 

Note that the running of the algorithm was performed on a 

laptop equipped with an Intel Core i7-12700 processor, 8GB 

DDR4 memory, and an Intel(R) UHD Graphics 770. Windows 

11 OS and Python 3.9 were used. To ensure the consistency and 

repeatability of the results, all experiments were repeated three 

times under the same environmental parameters. Through the 

algorithmic evaluation, we found that the runtime of the 3-input 

FF verification is 1.99 ms only. This significantly reduces the 

verification time required when compared to the traditional 

verification method using EDA tools that also require manual 

intervention. Note that, all of our proposed FFs in this paper can 

be quickly verified using this algorithm, and the verification 

running-time is very short as well. 
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Fig. 7. Simulation results for the proposed baseline FFs. (a) 2-input FF with 

SNU injections (the left), and (b) 3-input FF with DNU injections (the right). 

D. Simulations  

The proposed FFs were designed/implemented using the 

same conditions, i.e., a 22 nm advance CMOS library, a 0.8V 

Vdd, and W/L of PMOS transistors with 90nm/22nm and W/L 

of NMOS transistors with 45nm/22nm. Extensive simulations 

using HSPICE from Synopsys were performed. Note that we 

used a controllable double exponential current source model to 

perform all the SNU injections. The injected amount of charge 

was up to 25fC in the worst case which is large enough to flip 

the correct value of the node and demonstrate the efficiency of 

the error injections. The time constants of the rise and fall of the 

current pulse were set to 0.1ps and 3.0ps [1], respectively. This 

is true for all error injections in this paper. 

It can be seen from Fig. 7-(a) that the proposed FFs can 

tolerate all the injected SNUs and/or DNUs with red-lightening 
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marks (when Q is impacted, it only resulted in a small pulse) 

and the algorithm-based verification results are completely 

consistent with the HSPICE-based simulation results. Note that 

we used two simultaneous SNUs to mimic a DNU.  

III.   EVALUATION AND COMPARATIVE RESULTS 

To make a fair comparison, all the compared FFs in this 

paper are implemented under the same conditions mentioned in 

the previous section, i.e., a 22 nm advanced CMOS library, a 

0.8V Vdd and the room temperature. 

TABLE I 

RELIABILITY AND OVERHEAD COMPARISONS AMONG HARDENED FLIP-FLOPS. 

Flip-Flop Ref. 
SNU 

Tol. 

DNU 

Tol. 

TNU 

Tol. 

QNU 

Tol. 

Area  

(μm2) 

Delay  

(ps) 

Power  

(μW) 

 10-2×  

ADPP 

Quatro-FF [6] YES NO NO NO 6.14 38.99 4.95 11.85 

TMR-FF - YES NO NO NO 9.66 45.38 2.97 13.02 

DNUR-FF [7] YES NO NO NO 11.29 42.70 2.26 10.89 

DICE-FF [8] YES NO NO NO 5.64 17.13 1.79 1.73 

DRRH-FF [9] YES NO NO NO 5.94 43.16 1.58 4.05 

SNUR-NVFF [10] YES NO NO NO 5.94 18.30 1.03 1.12 

HPST-FF [11] YES NO NO NO 8.32 23.00 1.00 1.91 

DUT-FF [4] YES YES NO NO 14.60 14.00 2.13 4.35 

HRLPFF [5] YES YES NO NO 8.02 29.24 0.71 1.66 

2-input Proposed YES NO NO NO 5.94 9.15 0.39 0.21 

3-input  Proposed YES YES NO NO 6.53 8.99 0.40 0.23 

4-input  Proposed YES YES YES NO 15.44 15.03 1.34 3.11 

5-input Proposed YES YES YES YES 16.04 14.49 1.36 3.16 

Table I shows the reliability and overhead comparisons of 

FFs. Note that “Tol.” denotes “Tolerant”. Also note that, some 

works, e.g., those in [2-3, 14-16], are not compared, since they 

not mainly focus on FF designs. According to the comparison 

data in Table I, the proposed baseline FFs have excellent fault 

tolerance against node-upsets; however, most existing FFs are 

limited to tolerating SNUs and/or DNUs. As mentioned above, 

the N input FF exhibits tolerance against N-1 node upsets 

which demonstrates the high reliability and high scalability of 

our proposed FFs with adjustable count of inputs. 

Table I also describes the cost comparison among FFs. 

"Area" is the silicon area extracted as in [1], "Power" is the 

average power dissipation (dynamic and static), "Delay" is D to 

OUT transmission delay, i.e., the average of rise and fall delays 

from D to OUT, and "ADPP" denotes the area-delay-power 

product calculated by multiplying area, delay, and power. 

In terms of area, the FFs in [8-10] and the proposed 2-input 

FF consume small silicon area due to the small number of 

transistors used. However, to achieve MNU-tolerance, the 

proposed 4-input FF and 5-input FF necessitate additional 

transistors, resulting in extra silicon area. In terms of delay, the 

proposed FFs have small delay, while the other FFs exhibit 

large delay. This discrepancy arises from the presence of 

redundant transistors on the D to OUT path in the other FFs, 

thereby increasing the delay. In terms of power, the proposed 

2-input FF exhibits the lowest power consumption, attributed to 

its structure with no current competition. In contrast, Quatro-FF 

has the highest power dissipation due to its utilization of Quatro 

cells, resulting in significant current competition among its 

internal nodes. In terms of ADPP, the proposed 2-input FF and 

3-input FF have small ADPP due to their small delay, area, and 

power. Conversely, the proposed 4-input FF and 5-input FF 

exhibit a moderate ADPP compared to some of the other FFs, 

primarily due to their extra silicon area required to 

accommodate MNU-tolerance. The proposed FFs shows high 

superiority over the other FFs. Compared to the DNU-tolerant 

FFs, the proposed 3-input FF achieves an average reduction of 

36.03% in silicon area, 52.52% in delay, 62.44% in power, and 

90.43% in ADPP. In summary, the proposed 2-input FF and 

3-input FF almost have the smallest overhead compared to the 

same type of FFs. The proposed more input FFs have moderate 

delay and power while ensuring the highest reliability; although 

extra area is required, the modest sacrifice accompanies a 

significant improvement in performance. 

IV. CONCLUSION AND FURTHER WORKS 

This paper has proposed a series of flip-flops tolerating node 

upsets with cost effectiveness especially in terms of delay and 

power. This paper has also proposed an algorithm-based 

node-upset tolerance verification method. Simulation results 

have demonstrated the efficiency of the proposed solutions. In 

our further work, the proposed algorithm-based methodology 

will be further investigated and expanded to make it applicable 

to the verification for large circuits with more node upsets. 

REFERENCES 

[1] A. Yan, Z. Li, J. Cui, et al, "LDAVPM: A Latch Design and 

Algorithm-based Verification Protected against Multiple-Node-Upsets in 

Harsh Radiation Environments," IEEE Trans. on Computer-Aided Design 
of Integrated Circuits and Systems, vol. 42, no. 6, pp. 2069-2073, 2023. 

[2]     A. Amirany, et al, "High-Performance and Soft Error Immune Spintronic 

Retention Latch for Highly Reliable Processors," Iranian Conference on 
Electrical Engineering, pp. 1-5, 2020. 

[3]     A. Amirany, et al, "Low Power, and Highly Reliable Single Event Upset 

Immune Latch for Nanoscale CMOS Technologies," Iranian 
Conference on Electrical Engineering, pp. 103-107, 2018. 

[4] A. Yan, et al., “Two Double-Node-Upset-Hardened Flip-Flop Designs for 

High-Performance Applications,” IEEE Trans. on Emerging Topics in 
Computing, vol. 11, no. 4, pp. 1070-1081, 2023. 

[5]     A. Yan et al., “A Highly Robust and Low-Power Flip-Flop Cell with 
Complete Double-Node-Upset Tolerance for Aerospace Applications,” 

IEEE Design & Test, vol. 40, no. 4, pp. 34-41, 2023. 

[6] Y. Li, H. Wang, R. Liu, et al., “A Quatro-Based 65 nm Flip-Flop Circuit 
for Soft-Error Resilience,” IEEE Trans. on Nuclear Science, vol. 64, no. 6, 

pp. 1554-1561, 2017. 

[7] F. Alghareb and R. DeMara, “Design and Evaluation of DNU-Tolerant 
Registers for Resilient Architectural State Storage,” ACM Great Lakes 

Symposium on VLSI, pp. 1-4, 2019.  

[8] K. Kobayashi, et al., “A Low-Power and Area-Efficient Radiation-Hard 
Redundant Flip-Flop, DICE ACFF, in a 65 nm Thin-BOX FD-SOI,” 

IEEE Trans. on Nuclear Science, vol. 61, pp. 1881-1888, 2014. 

[9] G. Jaya, S. Chen, and S. Liter, “A Dual Redundancy Radiation-Hardened 
Flip-Flop Based on C-element in 65nm Process,” IEEE International 

Symposium on Integrated Circuits, pp. 1-4, 2016. 

[10] F. S. Alghareb, R. Zand and R. F. Demara, "Non-Volatile Spintronic 
Flip-Flop Design for Energy-Efficient SEU and DNU Resilience," IEEE 

Trans. on Magnetics, vol. 55, no. 3, pp. 1-11, 2019. 

[11] Z. Huang, G. Liang and S. Hellebrand, “A High Performance SEU 
Tolerant Latch,” J. of Electronic Testing, vol. 31, pp. 349-359, 2015. 

[12] E. Abbasian, et al, "A Reliable Low Standby Power 10T SRAM Cell 

With Expanded Static Noise Margins," IEEE Trans. on Circuits and 
Systems I: Regular Papers, vol. 69, no. 4, pp. 1606-1616, 2022. 

[13] A. Yan, et al, "Quadruple and Sextuple Cross-Coupled SRAM Cell 

Designs with Optimized Overhead for Reliable Applications," IEEE 
Trans. on Device and Materials Reliability, vol. 22, pp. 282-295, 2022. 

[14] A. Dweik and Y. Iraqi, "Error Probability Analysis and Applications of 

Amplitude-Coherent Detection in Flat Rayleigh Fading 
Channels," IEEE Trans. Communications, vol. 64, pp. 2235-2244, 2016. 

[15] S. Campitelli, et al, "F-DICE: A multiple node upset tolerant flip-flop for 

highly radioactive environments," IEEE Internat. Symp. Defect & Fault 
Tolerance in VLSI & Nanotechnology Systems, pp. 107-111, 2013. 

[16] V. Bakhtiary, et al, "An SEU-hardened ternary SRAM design based on 

efficient ternary C-elements using CNTFET technology," 
Microelectronics Reliability, vol. 140, 2023. 

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3426271





