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Abstract—As modern Integrated Circuits (ICs) feature ever-
smaller transistors, the prevalence of manufacturing defects 
within standard cells (intra-cell defects) has increased. Detecting 
and localizing these defects is crucial to guarantee a fast yield 
ramp-up and to maintain a low-test escape rate. Unfortunately, 
traditional fault models such as stuck at and transition fail to 
adequately represent intra-cell defects. The Cell-Aware (CA) 
approach was introduced to tackle this problem, but it requires 
time-consuming analog SPICE simulations for standard cell 
characterization. To speed-up the CA model generation process, 
this paper presents a methodology based on graph theory called 
Transistor Undetectable Defect Eliminator (TrUnDeL). This 
methodology identifies undetectable defects for each stimulus 
applied to the inputs of the cell, subsequently excluding them 
from the analog simulations to perform. TrUnDeL uses rule-
based and propagation-based techniques and was trialed on 
combinational and sequential cells of two libraries from 
STMicroelectronics (P28 and C28) to identify the undetectable 
stimulus/defect pairs, so that analog simulations are performed 
only on the remaining pairs. As a result, the CA model 
generation process time was reduced by a factor of 3 compared 
to a standard SPICE-based generation process. 

Keywords—Intra-cell defects, test and diagnosis, graph 
theory, cell-aware model 

I. INTRODUCTION  
In advanced industrial technologies, as transistor feature 

size becomes increasingly smaller, the complexity of 
Integrated Circuits (ICs) grows with more gates being added 
[1]. Consequently, the occurrence of manufacturing defects 
such as opens and shorts within standard cells (i.e., intra-cell 
defects) is increasing. Identifying precise test patterns that can 
detect these defects in ICs and having a diagnosis process to 
pinpoint their location is crucial for quickly improving yield 
ramp-up and maintaining a low Defective Parts Per Million 
(DPPM) rate. 

Automatic Test Pattern Generation (ATPG) algorithms are 
designed to create the most compact and efficient possible set 
of test patterns. ATPG algorithms use fault models to 
represent the behavior of the defect and its effect on ICs [2]. 
Traditional fault models like stuck-at or transition fault 
models typically represent defects occurring in the 
connections between cells (i.e. inter-cell defects). Defects 
within the cells themselves (i.e., intra-cell defects) are 
detected more by chance than by design [3].  

The Cell-Aware (CA) approach has been developed to 
address intra-cell defects. This method involves the 
characterization of standard cells through the creation of a 

defect-detection matrix, which is essentially a reference that 
maps which defects can be detected by specific 
stimuli [4], [5]. Characterization typically involves the use of 
analog SPICE simulators to apply every potential input 
stimulus to the cell’s design netlist, in which we inject every 
possible intra-cell defect, in order to observe the effect on the 
functionality. The drawback of this method is the extensive 
time requirement: analog SPICE simulations are slow, and 
fully characterizing a CA library may take several months [6]. 

To accelerate the integration of the CA approach in the 
qualification process of silicon products and its application on 
industrial ICs [7], it is essential to reduce the time-cost related 
to library characterizations. A methodology based on machine 
learning, proposed in [8], can predict the detectability of a 
defect at a cell's outputs without additional analog 
simulations. This is achieved by using a prediction model 
trained on existing CA models, generated in the past by 
performing exhaustive analog simulations. The limitation of 
this method is that the speed-up only applies to cell structures 
that have already been analyzed previously (i.e., cells that had 
at least one cell in the training data set with an identical or 
highly similar transistor configuration). In other words, cells 
with structures that never appeared in the cells of the training 
dataset still require the same analog simulations as before. 
Another approach, proposed in [9], uses a different strategy to 
decrease the computational generation time of CA models. 
The standard cells from the Cadence GPDK045 library are 
modeled using graph theory. With a structural analysis of the 
graph representations of the cells, the methodology decreases 
the computational generation time of the CA models, doubling 
the efficiency in terms of CA characterization time and cost. 
However, it injects defects one by one for each stimulus, 
making it not suitable for cells with large number of 
transistors. Additionally, the paper only mentions source and 
drain defects, omitting those related to the bulk and gate. 

Our research aims to develop a methodology, called 
TrUnDeL, that further speeds up the generation of CA models, 
without compromising accuracy. TrUnDeL targets static and 
dynamic defects, including open and short defects affecting 
the source, drain, bulk, and gate of transistors. TrUnDeL 
draws inspiration from the approach in [9]: in our approach, 
we model generic standard cells as graphs. When a stimulus 
is applied, it propagates through the nodes, and we attach 
additional metadata to the graph to help identify undetectable 
defects for each stimulus by employing four detection 
techniques: Graph Detection Rules, Compartment Detection 
Rules, Transistor Detection Rules and Defect Injection and 



Propagation. Also, unlike the method in [9], TrUnDeL is 
capable of handling multiple defects in parallel. 

Initial tests conducted on the combinational and sequential 
cells from two distinct standard cell libraries, P28 and C28 
from STMicroelectronics, demonstrate that applying 
TrUnDeL before the analog simulations reduces the 
computational duration of CA characterization by a factor 
of 3. For the purpose of validation, we compare the results 
with those from existing CA models created through analog 
SPICE simulations. It is critical for TrUnDeL to have the 
highest possible accuracy which means that the number of 
misclassifications must be reduced to the minimum (i.e., a 
detectable stimulus/defect pair in the CA model is never 
classified as undetectable by TrUnDeL). The results show that 
for combinational cells we reached an accuracy of 100% for 
both P28 and C28 libraries (i.e., no misclassifications). For 
sequential cells we reached an accuracy of 97.9% for C28 and 
94.2% for P28 (i.e., a percentage of misclassifications exists).  

This paper is organized as follows. Section II describes 
related prior work on CA methodology and on graph theory 
applications for defect-detection or circuit modelling 
purposes. Section III presents the TrUnDeL graph-based 
methodology. Validation results are presented in section IV. 
Finally, conclusions and perspectives are given in section V.  

II. RELATED PRIOR WORK 
Graph theory's versatility and efficiency are well-

documented, with applications in various fields. For example, 
[10]-[11] present different approaches for switch-level 
simulations used in different areas applicable with graph 
theory, such as logic simulation, hardware verification and 
fault simulation. Most of the switch-level programs partition 
a circuit into a set of communicating components. A 
component consists of a set of transistors connected by source 
and drain terminals, and the nets corresponding to the different 
connection between the transistors. The barrier between the 
different components are the input nodes because no effect can 
be transmitted from one node to another through an input.  For 
illustration, an OR cell segmented into components is shown 
in Fig. 1. Once the components are identified, the simulation 
evaluates a component each time its inputs change (i.e., steady 
state response). 

 
Fig. 1. OR gate divided into two components or compartments. 

Switch-level simulators can also use iterative or direct 
methods. The first one is based on an event-driven simulator 
in which each time a node changes its value state, an iteration 
step starts. An iteration step is an operation in which the value 
of the event net is propagated through the transistors to the 
neighboring nodes. Then, the algorithm combines the new 
value of the node with its old value. The iterations continue 

until the algorithm reaches a condition called “convergence” 
(i.e., no more events are scheduled). Finally, the direct 
methods are based on systems of Boolean equations that are 
used to calculate the steady state response of the simulated 
circuit. This method is more effective for small circuits or 
small fractions of a circuit. 

Another example given in [12] proposes a graph model of 
a circuit for static timing analysis. Its goal is to calculate all 
the static timing parameters, such as critical time and timing 
constraints. It uses a graph-based transistor level model of the 
circuit. This method uses two directed graphs to describe the 
circuit. In both graphs, the vertices are transistors while edges 
represent wires. However, this model is not easily usable for 
our purpose because once the graph is constructed, identifying 
which terminals are represented by each edge is difficult. This 
is important because in our method, all combinations of 
defects involving source, drain, gate and bulk must be 
considered. 

Graph theory has also been used for a long time for defect 
detection. For example, [13] describes a method to detect open 
and short defects in combinational CMOS networks by 
applying specific test sequences to a graph-based model of the 
circuit. An open defect is a break in a connection between two 
nets while a short defect is an unwanted connection between 
two nets. In this graph model, transistors are represented as 
labeled edges, in which the label represents the conducting 
state of the transistor (0 or 1). Nets are represented as nodes. 
Two complementary graphs, G and G′, are extracted from a 
CMOS circuit, one representing the PMOS pull-up network 
and the other representing the NMOS pull-down network. A 
transmission function is assigned to each graph. Each time an 
open defect is injected, the label of the corresponding edge is 
set to 0. An open fault is detected when it is part of a 
conducting path activated by the defect and the applied 
stimulus. Moreover, if an open is detectable on a transistor t 
in G, then the corresponding short on t ′ in G′ is detectable too. 
However, this method does not consider defects affecting the 
bulk and gate of the transistors. 

The approach suggested in [9] aims at reducing the time 
needed for CA characterization by applying structural analysis 
through graph theory to each library cell. The CA 
methodology is used to characterize a standard cell by 
building a dictionary in the form of a matrix, called Defect-
Detection Matrix (DDM) [4]. To construct the DDM for a 
given standard cell, a single analog SPICE simulation is 
performed for each input stimulus s and for every potential 
defect df (consisting in pure shorts and pure opens) injected 
into the cell’s design netlist. After completing s * df analog 
SPICE simulations, the characterization process is finished. 
Then, a status is assigned to each pair of stimulus/defect 
(s, df): either Detectable (D) if the cell's outputs are affected 
by the defect under the stimulus, or UnDetectable (UD) if the 
outputs are not affected. The DDM includes both static and 
dynamic stimuli. Static stimuli consist of one-cycle patterns, 
whereas dynamic stimuli consist of two-cycle patterns. 

The DDM is structured with rows corresponding to stimuli 
and columns to defects. Within this matrix, any entry of 1 or 
higher for a specific (s, df) pair means that the pair is 
designated as 'D'. For instance, considering a cell with two 
outputs, a (s, df) pair that affects only the first output has its 
corresponding entry matrix equal to 1. For a (s, df) pair that 
affects only the second output, the corresponding entry matrix 
is 2. Finally, if the (s, df) pair affects both outputs, the 



corresponding entry matrix is 3. Conversely, if the entry is 0, 
it means that the pair is UD. An example of a DDM for a 
generic two output cell is shown in 0  

EXAMPLE DDM. 

 df0 df1 df2 df3 df4 … dfj-1 
s0 1 0 1 0 0  0 
s1 0 2 2 1 0  3 
… 0 0 0 1 2  0 
si-1 1 0 0 3 0  3 

 

Using the CA methodology to characterize each cell in a 
library is a time-consuming operation as it requires conducting 
a series of s * d analog SPICE simulations. The time it takes 
to characterize each cell is influenced by its number of inputs 
and transistors. 

In the methodology presented in [9], the authors divide the 
cells into compartments. Compartments are subunits within 
the circuit defined by an output net linked to VDD via a PMOS 
pull-up network and to GND through an NMOS pull-down 
network. Each compartment is composed of transistors with 
gates driven by nets external to the compartment and includes 
nets that control transistors in external compartment. 
However, it excludes nets that control transistors within the 
same compartment. This definition of compartments is very 
similar to the one of the communicating components 
explained in [11]. The difference can be noticed if, for 
instance, we suppose that the circuit in Fig. 1 has a pass 
transistor or a Transmission Gate (TG) between the NOR and 
the inverter. For the definition in [11], the pass transistor or 
the TG would be incorporated in the first compartment with 
the NOR. On the other hand, the definition provided by [9] 
does not suggest how to handle a pass transistor or a TG. 

After identifying compartments, a graph is constructed for 
each cell and the corresponding pattern. In this graph, active 
transistors are represented by edges, and nets by nodes. 
Injecting a short circuit adds an edge to the graph, whereas 
injecting an open circuit removes an edge. A (s, df) pair is 
considered as D if a short circuit creates a path between VDD 
and GND, or if an open circuit results in a floating output. This 
method is designed to detect static and dynamic defects. 
However, this solution focuses only on detecting open defects 
dynamically, which might not capture the full picture since 
some shorts can also be dynamically detected in CA models. 
Thanks to this approach, the time to generate CA models is 
reduced. Nonetheless, there is potential for further reduction 
in generation time since the method currently only addresses 
defects impacting the source and drain, neglecting the bulk 
and gate. Including these could allow for more (s, df) pairs to 
be classified as 'UD', eliminating them from time-consuming 
analog simulations. Moreover, the methodology's runtime can 
be challenging as it processes one defect at a time. This is 
manageable for small cells with few inputs and transistors but 
may reduce the method's efficiency for larger cells. 

III. TRANSISTOR UNDETECTABLE DEFECT ELIMINATOR 
(TRUNDEL) 

TrUnDeL is a graph-based methodology that involves 
three sequential stages as shown in Fig. 2. The flow starts with 
building the graph of the cell based on the information 
extracted from the corresponding netlist. The second step 
applies a stimulus to the input nodes of the graph. Then, it 
performs the propagation through the different nodes. The last 

step exploits different detection techniques to identify the UD 
defects, to remove them from the initial Defect List (DL) and 
produce as output the Possibly Detectable (PD) DL. 

 
Fig. 2. TrUnDeL flow. 

When TrUnDeL is run on a cell, a set of (s, df) pairs is 
identified as UD, eliminating the need for analog SPICE 
simulations for them. The remaining pairs, categorized as PD, 
will undergo simulation, reducing the time-cost for the CA 
model generation process. PD (s, df) pair means that an output 
can be affected by the injection of a defect under a given 
stimulus. These PD (s, df) pairs are then simulated by analog 
simulations and further classified into UD or D categories. 

A. Building Graph 
This step has the Circuit Design Language (CDL) netlist 

as input. The netlist contains all the information about 
transistors and their interconnections. The Building Graph 
phase is divided into three sub steps: graph construction, 
compartments identification and standard compartments 
structural info extraction. 

1) Graph Construction 
In this step, the Circuit Graph (CG) is built by extracting the 
details on the nets and transistors from the CDL netlist. It 
consists of two kinds of nodes: i) the devices, such as 
transistors, and ii) the nets, with edges representing the 
interconnections between devices and nets. A metadata is 
attached to the edges to understand the typology of the 
connection between the device nodes and the net nodes. 
Another metadata is attached to the transistor nodes to specify 
the type (i.e., N or P). For example, a net driving a gate of a 
transistor is connected to the device through a gate edge. CG 
of the cell in Fig. 1 is shown in Fig. 3. In this example, the 
transistor N1 is connected to three net nodes via a gate (G) 
edge, a source (S) edge and a drain (D) edge. The bulk 
connection is omitted here for the sake of clarity. 

 
Fig. 3. CG corresponding to an OR cell. 



2) Compartments Identification 
After constructing the CG, we identify the compartments 

composing CG (i.e., sub-graphs of CG). We can distinguish 
three types of compartments: the standard compartments, the 
pass compartments and the in-out compartments. The standard 
compartments follow the definition previously explained in 
[9]. For instance, in Fig. 1, the cell is composed of two 
standard output compartments (i.e., a NOR + an Inverter). 
These types of compartments are characterized by a single 
output and have three net categories: 

• internal nets: nets that are connected to transistor 
devices through only their sources and drains. 

• Input nets: nets that are connected to at least one 
transistor of the same compartment through its gate.  

• Output nest: nets that are connected to at least one 
transistor of another compartment through its gate. 

 The first extension of the concept of a compartment is the 
pass compartment. For us, all pass transistors and TGs are 
considered as stand-alone compartments. This second type of 
compartment includes the input net category while another 
one is added: bidirectional net. This net category is added to 
take care about the bidirectionality of the transistors. In fact, 
in some cases a bidirectional net can behave as an input while 
other times it can behave as an output, depending on the state 
of the nets and transistors. The bidirectional nets are the source 
and drain of the transistors of a generic pass compartment. A 
pass compartment with its net categories is shown in Fig. 4 in 
the example a. The last type of compartment is the in-out 
compartment. It includes the internal net category as in 
standard compartment, but it includes a new net category, 
called in-out nets. This type of net can be at the same time 
output of the compartment or gate of a transistor inside the 
compartment, differently from the concept expressed in [9] 
where a net cannot drive a transistor inside the same 
compartment. An example of an in-out compartment is shown 
in Fig. 4 in case b. 

 
Fig. 4. Example of a pass compartment and an in-out compartment. 

3) Standard Compartments Structural Info Extraction 
Once compartments are identified, structural information     

is extracted from each standard compartment. Before 
explaining how we extract this information, defining some 
concepts about the structure of a standard compartment is 
essential. A standard compartment is composed of an NMOS 
network and a PMOS network that are connected via a 
common output. More specifically, a generic network can be 
either a parallel network, composed of subnetworks that we 
call branches, or a series network, composed of subnetworks 
that we call sections. Each subnetwork can be composed of 
other subnetworks either in parallel or in series, and so on. The 
smallest possible network is composed of only one transistor. 

An example of parallel network is shown in Fig. 5. It is 
composed of two branches (i.e., B1 and B2). B1 is composed 
of only one transistor. B2 is composed of two sections (i.e., Sa 
and Sb) in series, each one composed of only one transistor. 

 
Fig. 5. Example of a parallel network.  

Another example in Fig. 6 shows a complementary case with 
respect to the one analyzed above. This case is a series 
network composed of two sections (i.e., S1 and S2). S1 is 
composed of one transistor and S2 is composed of two 
branches (i.e., Ba and Bb) in parallel, each one composed of 
only one transistor. 

 
Fig. 6. Example of a series network. 

Moreover, we describe a compartment as complementary 
when its NMOS network is the complement of its PMOS 
network. Two networks are considered complementary when 
they have opposite structures, and the inputs drive 
corresponding opposite transistors. For example, the network 
in Fig. 5 is complementary to the one in Fig. 6. We extract all 
the info about parallel and series networks in a tree form, 
called structure tree. The structure tree is built for each PMOS 
and NMOS network of every standard compartment. For 
instance, Fig. 7, shows the structure trees of the networks in 
Fig. 5 and Fig. 6, respectively.  

 
Fig. 7. Structure trees of the two networks in Fig. 5 and Fig. 6. 

To determine whether a standard compartment is 
complementary, we examine its corresponding PMOS and 
NMOS networks. This involves analyzing the structure trees 



of both networks, comparing each node, and ensuring that the 
inputs are connected to the gates of matching transistors in 
both networks. Through this method, we can confirm the 
complementarity of the standard compartment. 

B. Apply Stimulus and Propagate 
This step works as a classical event-driven switch level 

simulator based on an iterative method. The step starts by 
applying the stimulus to the input nets of CG. A stimulus 
consists of a single cycle for static stimuli and a pair of cycles 
for dynamic stimuli. Every cycle within a stimulus represents 
a sequence of logical '1's or '0's that are assigned to the input 
nets. Here, a '1' corresponds to the voltage supply level 
(VDD), and a '0' corresponds to the ground level (GND). An 
event is scheduled for each input net and propagation starts 
from the device nodes driven by them. Propagation is 
performed from net to device and device to net, raising a new 
event each time a net changes its state value. The propagation 
continues, until the algorithm reaches the convergence state 
(no more events are scheduled). In dynamic stimuli case, the 
process starts again to evaluate the second stimulus cycle.  

Upon completion of the stimulus application and 
propagation, each net node is linked with a vector of logical 
values. These values can be '0', '1', or 'None', with 'None' 
indicating that the node is isolated, meaning it is not connected 
to either VDD or GND. Similarly, every transistor node has a 
vector of switch states, which can be 'Active' (A) or 
'Inactive' (I), determined by the value connected to its gate. 
Each entry within the vectors of logical values and states 
corresponds to a specific stimulus cycle. Moreover, a switch 
state is also associated to each node of the structure trees. For 
parallel nodes, the switch state is equal to the or operation 
between its child nodes. The switch state of the series nodes is 
equal to the and operation between its child nodes. The switch 
state of each transistor node is equal to its own switch state. 

Finally, a strength is assigned to each net value. The 
strength can be a value between 1 and 4. We assign 4 to power 
nets (i.e., VDD, GND), 3 to input nets, 2 to the nets driven by 
transistors and 1 to all the nets that have the current cycle value 
depending on the previous cycle. At the conclusion of this 
step, a different graph, known as the Simulation Graph (SG), 
is produced. For instance, referring to CG depicted in Fig. 3, 
an SG is illustrated in Fig. 8 when a specific stimulus is 
applied (IN1 is set to '0', IN2 is set to '0'). Each transistor node 
has a given switch state while each net node has is associated 
with a voltage value and a specific strength (i.e., Sth in the 
figure). 

 
Fig. 8. SG of OR, stimulus: IN1 = ‘0’, IN2 = ‘0’. 

C. Detection Techniques 
The goal of the final stage, depicted in Fig. 2, is to identify 

a comprehensive set of potential defects impacting the cell 
(i.e., PD defects), therefore eliminating those UD with a given 
applied stimulus. At first, we build the initial DL of the cell, 
comprising every short and open that could affect the different 
transistors, as shown in Fig. 9. Shorts (Sh) consist of every 
combination of Source (S), Drain (D), Bulk (B), and Gate (G) 
connections for each transistor. Opens (O) include OS, OD, 
and OG. Since opens are only identifiable through dynamic 
detection [14], static analysis considers only the shorts, 
whereas dynamic analysis evaluates both shorts and opens. 

 
Fig. 9. Targeted defects for a transistor. 

We apply in sequence four detection techniques to 
eliminate UD defects from the initial DL: Graph Detection 
Rules, Compartment Detection Rules, Transistor Detection 
Rules and Defect Injection and Propagation. After each 
technique, the initial DL is reduced. During the last technique, 
the final reduced list is constructed (i.e., PD DL). In static 
analysis, a single-cycle stimulus (i.e., static stimulus) is 
applied. A defect is classified as UD for a given static stimulus 
when any one of the four detection techniques classify it as 
UD, during this single cycle. In dynamic analysis, a two-cycle 
stimulus (i.e., dynamic stimulus) is applied. A defect is 
classified as UD for a given dynamic stimulus when any one 
of the four detection techniques classify it as UD, for each 
cycle of the two-cycle stimulus. This process allows us to 
build the list of PD defects. The detection techniques process 
is presented in Fig. 10. 

 
Fig. 10. Detection Techniques flow. 

1) Graph Detection Rules 
These rules can be applied to all the circuits that are 

composed of pass compartments. After the stimulus is applied, 
the pass compartments can be in two opposite states: either 
conducting or non-conducting. Sometimes, a non-conducting 
pass compartment can completely disconnect a part of the 
circuit from the output. It means that any defect injected in this 
disconnected part of the circuit is UD. An example of these 
rules is shown in Fig. 11. The represented cell is composed of 
three compartments. Specifically, standard compartment1 is 
connected to standard compartment2 through a pass 
compartment. Moreover, only standard compartment2 is 
connected to the output. Suppose that the pass compartment is 
in non-conducting state. It means that standard compartment1 



is completely disconnected from standard compartment2, 
therefore it is disconnected from the output. So, all the defects 
injected that affect only standard compartment1 are UD, as 
they cannot affect the output. Potentially, it means that in 
specific conditions all the defects belonging to different 
compartments can be classified as UD in one shot. 

 
Fig. 11. Example graph rules. 

2) Compartment Detection Rules 
These rules are applied at compartment level, considering 

one compartment at a time. This technique can evaluate more 
defects inside a compartment simultaneously. To identify UD 
defects, some compartment rules exploit the structural info 
about each compartment, extracted during the stage A.3). For 
example, suppose a stimulus is applied to the NMOS network 
of Fig. 5 for which the transistor N1 is ‘A’. As we can see in 
the corresponding structure tree of Fig. 7 (i.e., case a), B1 is 
in parallel with B2. B1 is active, as N1 is active. It means that 
the output is connected to GND whatever the state of the 
parallel branch B2. So, OS, OD, OG, ShBG and ShDS of each 
transistor of B2 are UD. In fact, these defects can only change 
the switch state of N2 and N3, consequently the state of B2. 
Therefore, considering that the output depends only on B1, 
these defects are UD. The formal corresponding rule says that 
if a branch Bx has an active branch in parallel, OS, OG, OD, 
ShBG and ShDS of each transistor of Bx are UD. In the case 
of series sections, the methodology is opposite to the parallel 
branches case. 

Another example of compartment rule can be explained by 
looking at the complementary standard compartment in Fig. 
12.  

 
Fig. 12. Standard compartment rule for ShGS and ShGD. 

In this case, the output (OUT) voltage value of the 
compartment is equal to ‘0’. For the NMOS network the only 
PD defects are ShGS and ShGD of the active transistors 
connected to OUT. So, ShGS and ShGD of N2 are PD. The 
reason is that these defects connect the gate to the OUT 
through an active path. For N2 it means that IN2, with a 
voltage value = ‘1’, is connected to OUT, with a voltage 
value = ‘0’. This causes a conflict, and the defects are 
considered PD. For the PMOS network, the only PD defects 
are ShGD of the inactive transistors either directly connected 
to the OUT or connected to the OUT through consecutive 
active transistors. In PMOS network, only ShGD of P2 is PD 

because it creates again a conflict between IN2 and OUT. On 
the other hand, if the voltage of OUT is equal to ‘1’, the case 
is opposite to the example just explained.  

In the last example, we consider the case of a pass 
compartment, specifically a TG. The structure is composed of 
two transistors in parallel, one PMOS and one NMOS.  
Suppose that the TG is conducting (i.e., PMOS and NMOS 
switch states are ‘A’), and voltage values of the bidirectional 
nets are equal to ‘1’. In this case, OS, OD, OG and ShDS of 
the NMOS transistor are UD. In fact, if one of these defects is 
injected, the state of the NMOS transistor could switch off and 
the only remaining ‘A’ transistor would be the PMOS. 
However, the PMOS transistor is good in conducting ‘1’ so, 
the injection of one of these defects does not affect the 
behavior of the TG. On the other hand, only the ShDS of the 
PMOS transistor is UD. The opens injected in the PMOS 
transistor could switch off its switch state and the only 
remaining ‘A’ transistor would be the NMOS one. NMOS 
transistor is not good in conducting ‘1’, so we cannot be sure 
that the opens are UD too. 

3) Transistor Detection Rules 
This technique applies rules to all defects that impact each 

transistor simultaneously, addressing each transistor one by 
one. This process requires no additional steps for the SG, as it 
uses the existing transistor metadata within the SG. Fig. 13 
illustrates some rules at the transistor level.  

 
Fig. 13. Examples transistor detection rules. 

For instance, in example a, an active transistor (i.e., G=1) 
means that ShDS defect is irrelevant if injected. In example b, 
an inactive transistor (i.e., G=0) indicates that OS and OD 
defects have no impact. Finally, in example c, G and B are 
equals, so ShGS has no impact. 

4) Defect Injection and Propagation 
This is the last step of the detection techniques before 

obtaining the final PD DL. It injects each defect of the reduced 
DL into the graph subsequentially. Then, it propagates the 
defect effects throughout the graph. Finally, it evaluates the 
output voltage value. If it is equal to the fault free one, the 
defect is UD, otherwise the defect is PD. After all the defects 
have been injected and their effects propagated across the 
graph, it is possible to eliminate all UD defects from the DL, 
culminating in the creation of the final PD DL. 

The first step of this technique is to inject the defect as a 
Resistor Device Node (RDN) inside the graph. Then, the 
propagation starts from the compartments connected to RDN, 
and it continues compartment after compartment. In order to 
verify if the current compartment is affected by a resistor 
defect injection in the CG, a decision tree is applied: 

• If there is a pathway from VDD to GND composed 
only of active transistors, then the defect affects the 
compartment. 

• If the output is connected through a path exclusively 
to VDD or GND, where all transistor device nodes are 



active, the output is evaluated against the fault free 
one. A match indicates that the defect does not affect 
the compartment. 

• If there is not a pathway, where all transistor device 
nodes are active, connecting OUT to VDD, and OUT 
to GND, then the defect is considered to affect the 
compartment. 

When the current compartment remains unaffected, it 
means that its output is consistent with the fault free one. In 
this scenario, the algorithm classifies the defect as UD and 
propagation stops. Conversely, if the compartment is affected, 
the defect injection can have an impact on the subsequent 
compartment, with the output of the current one becoming the 
input for the next. This propagation persists until either the 
final cell compartment's output is reached, or the defect is 
classified UD in any compartment along the propagation path. 

IV. VALIDATION RESULTS 
This section presents the validation results obtained when 

applying TrUnDeL to combinational and sequential cells of 
two standard cell libraries designed by STMicroelectronics 
(i.e., C28 and P28). The following subsections detail the 
different stages of the conducted experimental procedures. 

A. Combinational cells of C28 and P28 
In the C28 library case, TrUnDeL was applied on 536 

combinational cells. In total, 119 088 defects were analyzed, 
resulting in 4,545,684 (s, df) pairs (i.e., 1,351,920 static and 
3,193,764 dynamic). Fig. 14 illustrates the comparison 
between classical CA models, which rely on analog SPICE 
simulations, and TrUnDeL. The graph on the left shows the 
percentage of UD and D defects using classical CA models. 
The graph in the middle represents TrUnDeL using Transistor 
Detection Rules (TR) and Defect Injection and Propagation 
(DIP) only. The last graph on the right represents the complete 
TrUnDeL solution, that uses in sequence Graph Detection 
Rules (GR), Compartment Detection Rules (CR), TR and DIP.   

 
Fig. 14. Classical CA models vs TrUnDeL for C28 combinational cells. 

A key result is that TrUnDeL does not produce any 
misclassifications (i.e., no D pairs are incorrectly classified as 
UD). TrUnDeL can identify 77.6% of the UD (s, df) pairs. The 
remaining 22.4% are categorized as PD. TrUnDeL cannot 
resolve these ambiguous cases due to conflicts within the cell 
that lead to an unknown value at the output (i.e., X). This 
unknown output value makes it impossible to confirm whether 
these pairs are UD without performing analog simulation. The 
gap of 14.8% observed in the results, when compared to those 
from classical CA models, is attributed to this limitation. 

Focusing on the (s, df) pairs classified as UD, we can notice 
that for both TR + DIP and GR + CR + TR + DIP the 
percentage of UD identified pairs is 76,6%. Adding the two 
additional techniques (i.e., GR and CR) does not change the 
overall percentage of UD pairs identified by TrUnDeL. 
However, it decreases the number of UD pairs identified with 
TR and DIP technique, as some are now identified by CR and 
GR instead. This shift is particularly significant for DIP, 
which is the most time-consuming method applied and it can 
significantly impact TrUnDeL speed if overused. Specifically, 
adding GR and CR reduces the number of pairs classified as 
UD for DIP by 4 times (6.6 % compared to 28.9 %). In 
summary, the complete TrUnDeL identifies 2.1% of UD with 
GR. CR can identify most UD pairs (i.e., 50.9%) while TR 
identify 18.0% of them. The rest, amounting to 6.6%, are 
detected through DIP. 

 In P28 case, TrUnDeL was applied on 932 combinational 
cells. 110 092 defects were evaluated, resulting in 3,669,967 
(s, df) pairs (1,215,792 static and 2,454,175 dynamic). Also in 
this scenario, TrUnDeL does not generate any misclassified 
pairs and identifies 66.0% UD (s, df) pairs, resulting in a 23% 
gap. The comparison between the classical CA models and 
TrUnDeL is shown in Fig. 15. 

  
Fig. 15. Classical CA models vs TrUnDeL for P28 combinational cells. 

In this case, 48.5% of UD (s, df) pairs are identified only using 
CR. The remaining pairs are identified by TR (13.8%) and 
DIP (3.7%). The percentage of pairs identified as UD with 
DIP is reduced by 5 times, using the complete TrUnDeL. 

 As we can see, comparing the result in C28 and P28, the 
GR give their contribution to the C28 library cells only. This 
happens because the GR conditions, as the one explained in 
Fig. 11, never happened to the P28 library cells. 

 The results indicate that a substantial portion of (s, df) pairs 
can be classified as UD by TrUnDeL. This means that we can 
exclude these pairs from the time-consuming analog 
simulations. Only the remaining PD pairs will be analog 
simulated for further categorization as either UD or D. As a 
result, we obtain a CA model generation time reduction by a 
factor of 3 compared to classical CA model generation 
process, as explained in detail in the subsection F. 

B. Sequential cells of C28 and P28 
For sequential cells of C28, the validation results are 

shown in Fig. 16. In total, 95 cells are analyzed, resulting in 
47,810 defects and 586,021 (s, df) pairs (269,568 static and 
316,453 dynamic). Here the gap is 29.8 %. Differently from 
the combinational cells case, in sequential cells we obtained a 
percentage of misclassifications (i.e., 2.1%). The contribution 
of each technique is 0.7% for GR, 20.3% for CR, 17.0% for 



TR and 14.7% for DIP. Using GR and CR decreases the usage 
of DIP by 2 times.   

Results on sequential cells of P28 are shown in Fig. 17. 
We analyzed 45 cells, resulting in 16,955 defects and 146,387 
(s, df) pairs (76 728 static and 69 659 dynamic). The gap for 
these cells is 29.8%. A percentage of misclassifications also 
exists here (i.e., 5.8%). Here, the contribution of each 
technique is 18.7% for CR, 16.8% for TR and 20.8% for DIP. 
Again, the percentage of UD defects identified by DIP is 
reduced. As in combinational case, the GR technique does not 
have a contribution in P28. The reason is the same explained 
in subsection A. 

 
Fig. 16. Classical CA models vs TrUnDeL for C28 sequential cells. 

 
Fig. 17. Classical CA models vs TrUnDeL for P28 sequential cells. 

A key difference between combinational and sequential 
cells is the real number of cycles for static and dynamic 
stimuli. A static stimulus, in a combinational cell is composed 
of a single cycle. In a sequential cell case, a static stimulus is 
composed of two cycles, as the clock (clk) goes from ‘0’ to ‘1’ 
to simulate the rising edge. Similarly, with dynamic stimuli, 
the concept remains consistent. In sequential cells, the clk 
rising edge occurs twice, resulting in a stimulus comprising 
four cycles. 

As in combinational cell case, in sequential cells the 
percentage of UD (s, df) pairs identified by TrUDeL is big and 
only the remaining PD pairs will be simulated. Consequently, 
the CA model generation time is reduced by a factor of 3 
compared with classical CA model generation process 
(subsection F). 

C. Observation about the gap in C28 and P28 
As already explained in subsection A, the gap depends on 

the ambiguous cases due to conflicts within the cell that lead 

to an X value at the OUT. The propagation of the conflict to 
the OUT in a cell mainly depends on two factors: 

• The number of transistors inside the cell. 

• How these transistors are distributed in the different 
compartments inside the cell. 

It is more probable that (s, df) pairs will not be able to 
propagate their effects in cells containing more transistors, and 
thus are ultimately classified as UD by the TrUnDeL process. 
However, cells with the same number of transistors can have 
a different probability to propagate or not the defect effect 
until the OUT, considering how the transistors are distributed 
inside the different compartments. To better understand this 
concept, we can compare the examples a and b in Fig. 18. The 
number of transistors is equal in both circuits (i.e., 6). In case 
a, four transistors are inside compartment1 and two in 
compartment2. In case b, the transistors are equally distributed 
in the three compartments. In case a, if IN1 = ‘0’ and 
IN2 = ‘1’. ShDS of N3 propagates an ‘X’ to the output of 
compartment1. However, this ‘X’ does not affect 
compartment2, as IN2 switches on N2 and switches off P2, so 
OUT = ‘1’. It means that the defect is masked at 
compartment2. In case b, if IN = ‘0’, the effect of the defect is 
propagated until the OUT through the three compartments. So, 
we see how two circuits have the same number of transistors 
but the defect in one case is not propagated until the OUT and 
in the other one it is propagated. This depends on how the 
transistors are distributed in the different compartments of the 
circuit. 

 
 
Fig. 18. Different transistors distribution in two circuits. 

 Comparing C28 and P28, in the case of combinational 
cells, we see that C28 has a narrower gap and a higher number 
of UD (s, df) pairs. This is attributed to C28 having generally 
bigger cells (i.e., bigger number of transistors) with a 
distribution of the transistors inside the compartments that 
increases the probability of (s, df) pairs not propagating their 
effects until the OUT. On the other hand, in sequential cells, 
although cells in C28 are still bigger than in P28, the gap in 
C28 is bigger than in P28. In fact, most of the UD (s, df) pairs 
that are identified in C28 belong to the ambiguous case in 
which X is propagated until the output of the circuit. This is 
due to the distribution of the transistors in the different 
compartments that decreases the probability of having a defect 
effect masked during the propagation. 



D. Discussion about misclassifications on sequential cells 
If for combinational cells no misclassifications occur, this 

is not the case for the sequential ones. Analyzing the different 
misclassifications cases, we found the reasons that explain this 
result. For example, Fig. 19 illustrates a high-level cell 
composed of two compartments (i.e., C1 and C2) with a 
feedback loop between the OUT and C1. In the example, clk 
rising edge is represented and IN = ‘1’. Subsequentially, OUT 
goes from ‘1’ to ‘0’. It is important to consider that the OUT 
changes its voltage value with a small delay. This small delay 
causes a “mini cycle” between the main two cycles. A conflict, 
caused by a defect inside C1 or C2, can propagate its effect to 
the output during cycle1 or cycle2, but also during the “mini 
cycle”. This is one of the cases that are not captured from 
TrUnDeL, that for now does not consider timing related 
aspects of the cells. 

 
Fig. 19. Feedback loop between compartments. 

Another critical case in which the timing can create an 
issue is the in-out compartment. In fact, this type of 
compartment intrinsically includes a feedback loop between 
the in-out nets and some transistors. This could create a similar 
situation in terms of waveforms to the one shown in Fig. 19. 
An additional mini cycle could be generated, in which a defect 
injection could propagate its effect until the OUT.  

The last case of misclassification that we analyze depends 
on the initial state of the cell. In fact, in some cases, knowing 
the initial state of a sequential cell, before the stimulus is 
applied, is essential to understand if a defect is propagated 
until the OUT. This kind of misclassification can be solved by 
applying the correct initial state to the SG and consider it as a 
new cycle to be evaluated through detection techniques. 

E. TrUnDeL runtime 
We also analyzed how TrUnDeL behaves in terms of 

runtime using the different detection techniques, as shown in 
0All the runtime estimations are done using 1 CPU. For all the 
combinational and sequential cells of C28, using TrUnDeL 
with only DIP took 18h 48m. Adding the TR using DIP 
improves the runtime by 42%. If we apply the complete 
TrUnDeL, the runtime is improved by 58% compared to the 
TrUnDeL with only DIP applied. For combinational and 
sequential cells of P28, the improvement is confirmed. Using 
only DIP, TrUnDeL took about 9h. adding TR reduces the 
runtime by 38% and the complete TrUnDeL improves the 
runtime by 56%. In other words, using all the techniques in 
sequence reduces the runtime for (s, df) pairs analysis by 
TrUnDeL by more than one half. 

TRUNDEL RUNTIME C28 AND P28. 

 C28 runtime P28 runtime 
DIP 18h 48m 9h 6m 
TR + DIP 10h 44m 5h 36m 
GR + CR + TR + DIP 7h 42m 4h 8m 

 

Then, we analyzed the runtime for a cell in function of its 
number of transistors. When more cells had the same number 
of transistors, we made the average. This is useful to 
understand the trend of the TrUnDeL runtime when the cells 
become larger. Again, the runtime estimations were 
performed using 1 CPU. We plotted all the points and the 
quadratic regression that interpolates them in the graph, as 
shown in Fig. 20.  

 
Fig. 20. Quadratic regression runtime in function of number of transistors. 

The graph shows three curves. The blue one represents 
TrUnDeL using only DIP, the orange one represents 
TrUnDeL using TR + DIP, and the green one represents the 
complete TrUnDeL solution (i.e., GR + CR + TR + DIP). Each 
curve has its corresponding equation: 

• DIP: 𝑦 = 0.19𝑥! − 3.09𝑥 + 19.67 

• TR + DIP: 𝑦 = 0.09𝑥! − 0.96𝑥 + 6.36 

• GR + CR + TR + DIP: 𝑦 = 0.07𝑥! − 1.03𝑥 + 7.10 

As the number of detection techniques incorporated into the 
analysis grows, the coefficient of the quadratic term decreases. 
Consequently, with a higher number of transistors, the runtime 
decreases at a reduced rate when additional detection 
techniques are used. Specifically, we graphically see that the 
DIP curve is the one for which the runtime grows faster. TR 
+ DIP curve grows much slower than DIP. Finally, the curve 
with the complete TrUnDeL is the one with the minor slope. 

F. CA model generation time reduction 
To estimate the enhancement in CA model generation time 

using TrUnDeL, we referred to the experiments performed on 
P28. Initially, the classical CA models were generated through 
analog SPICE simulations on 977 cells of P28 (i.e., 932 
combinational and 45 sequential). The generation time took 
approximately 96 days and 8 hours, using a single SPICE 
license on 1 CPU. Subsequentially, we applied TrUnDeL to 
the identical P28 cells. The CPU time (using 1 CPU) for 



complete TrUnDeL was about 4 hours. TrUnDeL was able to 
skip analog simulation for 66% of the UD (s, df) pairs for the 
combinational cells and the 56.3% of the UD (s, df) pairs for 
the sequential cells. The remaining 34% of PD pairs for 
combinational cells and 43.7% PD pairs for sequential cells 
were analog simulated (using a single SPICE license), taking 
about 35 days and 1 hour. Therefore, combining TrUnDeL 
with analog SPICE simulations for the PD pairs took 
approximately 35 days and 5 hours, effectively reducing the 
time for generating the CA models by a factor of 3 compared 
with classical CA model generation process. 

V. CONCLUSIONS AND PERSPECTIVES 
In modern ICs the number of manufacturing defects inside 

standard cells has increased a lot. CA methodology was 
introduced to detect them and diagnosis purposes. The 
drawback of CA methodology is that it is based on time-
consuming analog simulations. In this paper, we described the 
different steps of TrUnDeL, a methodology that speeds up CA 
models generation process (by a factor of 3 for P28 used as 
test case). TrUnDeL can generate CA models for 
combinational cells without any misclassifications (i.e., 100% 
of accuracy for the combinational cells analyzed in P28 and 
C28).  

TrUnDeL has also been applied on sequential cells of the 
same libraries, generating CA models with a percentage of 
misclassifications (i.e., 97.9% of accuracy for C28 and 94.2% 
of accuracy for P28). Analyzing the different types of 
misclassifications that occur during the experiments, we have 
seen how an important improvement is to handle the timing 
aspects of the cells, to increase as much as possible the 
accuracy of the generated CA models. Moreover, another 
aspect that can further improve the accuracy is to consider an 
additional cycle for the initial state in sequential cells. In order 
to further reduce the gap, the plan is to incorporate more 
information about the technology, the physical characteristics 
and the strengths of the transistors, and the defect size.  

Finally, we evaluated the runtime of TrUnDeL for the two 
libraries, and we analyzed the runtime of TrUnDeL in function 
of the number of transistors inside a cell, considering the 
different detection techniques implemented. The results show 
that using the techniques in sequence leads to a more gradual 

rise in the runtime curve when the number of transistors within 
the cell increases. This makes our solution suitable also for 
larger circuits, such as memories. 
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