
HAL Id: lirmm-04738192
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04738192v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fast and Efficient Graph-Based methodology for
Cell-Aware Model Generation

Gianmarco Mongelli, Eric Faehn, Dylan Robins, Patrick Girard, Arnaud
Virazel

To cite this version:
Gianmarco Mongelli, Eric Faehn, Dylan Robins, Patrick Girard, Arnaud Virazel. A Fast and Efficient
Graph-Based methodology for Cell-Aware Model Generation. ITC 2024 - IEEE International Test
Conference, Nov 2024, San Diego, United States. In press. �lirmm-04738192�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04738192v1
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Fast and Efficient Graph-Based methodology for
Cell-Aware Model Generation

Gianmarco Mongelli1,2 Eric Faehn1 Dylan Robins1 Patrick Girard2 Arnaud Virazel2

1STMicroelectronics Crolles, France
gianmarco.mongelli, eric.faehn, dylan.robins@st.com

2LIRMM – University of Montpellier/CNRS Montpellier, France
gmongelli, girard, virazel@lirmm.fr

Abstract—As modern Integrated Circuits (ICs) feature ever-
smaller transistors, the prevalence of manufacturing defects
within standard cells (intra-cell defects) has increased. Detecting
and localizing these defects is crucial to guarantee a fast yield
ramp-up and to maintain a low-test escape rate. Unfortunately,
traditional fault models such as stuck at and transition fail to
adequately represent intra-cell defects. The Cell-Aware (CA)
approach was introduced to tackle this problem, but it requires
time-consuming analog SPICE simulations for standard cell
characterization. To speed-up the CA model generation process,
this paper presents a methodology based on graph theory called
Transistor Undetectable Defect Eliminator (TrUnDeL). This
methodology identifies undetectable defects for each stimulus
applied to the inputs of the cell, subsequently excluding them
from the analog simulations to perform. TrUnDeL uses rule-
based and propagation-based techniques and was trialed on
combinational and sequential cells of two libraries from
STMicroelectronics (P28 and C28) to identify the undetectable
stimulus/defect pairs, so that analog simulations are performed
only on the remaining pairs. As a result, the CA model
generation process time was reduced by a factor of 3 compared
to a standard SPICE-based generation process.

Keywords—Intra-cell defects, test and diagnosis, graph
theory, cell-aware model

I. INTRODUCTION
In advanced industrial technologies, as transistor feature

size becomes increasingly smaller, the complexity of
Integrated Circuits (ICs) grows with more gates being added
[1]. Consequently, the occurrence of manufacturing defects
such as opens and shorts within standard cells (i.e., intra-cell
defects) is increasing. Identifying precise test patterns that can
detect these defects in ICs and having a diagnosis process to
pinpoint their location is crucial for quickly improving yield
ramp-up and maintaining a low Defective Parts Per Million
(DPPM) rate.

Automatic Test Pattern Generation (ATPG) algorithms are
designed to create the most compact and efficient possible set
of test patterns. ATPG algorithms use fault models to
represent the behavior of the defect and its effect on ICs [2].
Traditional fault models like stuck-at or transition fault
models typically represent defects occurring in the
connections between cells (i.e. inter-cell defects). Defects
within the cells themselves (i.e., intra-cell defects) are
detected more by chance than by design [3].

The Cell-Aware (CA) approach has been developed to
address intra-cell defects. This method involves the
characterization of standard cells through the creation of a

defect-detection matrix, which is essentially a reference that
maps which defects can be detected by specific
stimuli [4], [5]. Characterization typically involves the use of
analog SPICE simulators to apply every potential input
stimulus to the cell’s design netlist, in which we inject every
possible intra-cell defect, in order to observe the effect on the
functionality. The drawback of this method is the extensive
time requirement: analog SPICE simulations are slow, and
fully characterizing a CA library may take several months [6].

To accelerate the integration of the CA approach in the
qualification process of silicon products and its application on
industrial ICs [7], it is essential to reduce the time-cost related
to library characterizations. A methodology based on machine
learning, proposed in [8], can predict the detectability of a
defect at a cell's outputs without additional analog
simulations. This is achieved by using a prediction model
trained on existing CA models, generated in the past by
performing exhaustive analog simulations. The limitation of
this method is that the speed-up only applies to cell structures
that have already been analyzed previously (i.e., cells that had
at least one cell in the training data set with an identical or
highly similar transistor configuration). In other words, cells
with structures that never appeared in the cells of the training
dataset still require the same analog simulations as before.
Another approach, proposed in [9], uses a different strategy to
decrease the computational generation time of CA models.
The standard cells from the Cadence GPDK045 library are
modeled using graph theory. With a structural analysis of the
graph representations of the cells, the methodology decreases
the computational generation time of the CA models, doubling
the efficiency in terms of CA characterization time and cost.
However, it injects defects one by one for each stimulus,
making it not suitable for cells with large number of
transistors. Additionally, the paper only mentions source and
drain defects, omitting those related to the bulk and gate.

Our research aims to develop a methodology, called
TrUnDeL, that further speeds up the generation of CA models,
without compromising accuracy. TrUnDeL targets static and
dynamic defects, including open and short defects affecting
the source, drain, bulk, and gate of transistors. TrUnDeL
draws inspiration from the approach in [9]: in our approach,
we model generic standard cells as graphs. When a stimulus
is applied, it propagates through the nodes, and we attach
additional metadata to the graph to help identify undetectable
defects for each stimulus by employing four detection
techniques: Graph Detection Rules, Compartment Detection
Rules, Transistor Detection Rules and Defect Injection and

Propagation. Also, unlike the method in [9], TrUnDeL is
capable of handling multiple defects in parallel.

Initial tests conducted on the combinational and sequential
cells from two distinct standard cell libraries, P28 and C28
from STMicroelectronics, demonstrate that applying
TrUnDeL before the analog simulations reduces the
computational duration of CA characterization by a factor
of 3. For the purpose of validation, we compare the results
with those from existing CA models created through analog
SPICE simulations. It is critical for TrUnDeL to have the
highest possible accuracy which means that the number of
misclassifications must be reduced to the minimum (i.e., a
detectable stimulus/defect pair in the CA model is never
classified as undetectable by TrUnDeL). The results show that
for combinational cells we reached an accuracy of 100% for
both P28 and C28 libraries (i.e., no misclassifications). For
sequential cells we reached an accuracy of 97.9% for C28 and
94.2% for P28 (i.e., a percentage of misclassifications exists).

This paper is organized as follows. Section II describes
related prior work on CA methodology and on graph theory
applications for defect-detection or circuit modelling
purposes. Section III presents the TrUnDeL graph-based
methodology. Validation results are presented in section IV.
Finally, conclusions and perspectives are given in section V.

II. RELATED PRIOR WORK
Graph theory's versatility and efficiency are well-

documented, with applications in various fields. For example,
[10]-[11] present different approaches for switch-level
simulations used in different areas applicable with graph
theory, such as logic simulation, hardware verification and
fault simulation. Most of the switch-level programs partition
a circuit into a set of communicating components. A
component consists of a set of transistors connected by source
and drain terminals, and the nets corresponding to the different
connection between the transistors. The barrier between the
different components are the input nodes because no effect can
be transmitted from one node to another through an input. For
illustration, an OR cell segmented into components is shown
in Fig. 1. Once the components are identified, the simulation
evaluates a component each time its inputs change (i.e., steady
state response).

Fig. 1. OR gate divided into two components or compartments.

Switch-level simulators can also use iterative or direct
methods. The first one is based on an event-driven simulator
in which each time a node changes its value state, an iteration
step starts. An iteration step is an operation in which the value
of the event net is propagated through the transistors to the
neighboring nodes. Then, the algorithm combines the new
value of the node with its old value. The iterations continue

until the algorithm reaches a condition called “convergence”
(i.e., no more events are scheduled). Finally, the direct
methods are based on systems of Boolean equations that are
used to calculate the steady state response of the simulated
circuit. This method is more effective for small circuits or
small fractions of a circuit.

Another example given in [12] proposes a graph model of
a circuit for static timing analysis. Its goal is to calculate all
the static timing parameters, such as critical time and timing
constraints. It uses a graph-based transistor level model of the
circuit. This method uses two directed graphs to describe the
circuit. In both graphs, the vertices are transistors while edges
represent wires. However, this model is not easily usable for
our purpose because once the graph is constructed, identifying
which terminals are represented by each edge is difficult. This
is important because in our method, all combinations of
defects involving source, drain, gate and bulk must be
considered.

Graph theory has also been used for a long time for defect
detection. For example, [13] describes a method to detect open
and short defects in combinational CMOS networks by
applying specific test sequences to a graph-based model of the
circuit. An open defect is a break in a connection between two
nets while a short defect is an unwanted connection between
two nets. In this graph model, transistors are represented as
labeled edges, in which the label represents the conducting
state of the transistor (0 or 1). Nets are represented as nodes.
Two complementary graphs, G and G′, are extracted from a
CMOS circuit, one representing the PMOS pull-up network
and the other representing the NMOS pull-down network. A
transmission function is assigned to each graph. Each time an
open defect is injected, the label of the corresponding edge is
set to 0. An open fault is detected when it is part of a
conducting path activated by the defect and the applied
stimulus. Moreover, if an open is detectable on a transistor t
in G, then the corresponding short on t ′ in G′ is detectable too.
However, this method does not consider defects affecting the
bulk and gate of the transistors.

The approach suggested in [9] aims at reducing the time
needed for CA characterization by applying structural analysis
through graph theory to each library cell. The CA
methodology is used to characterize a standard cell by
building a dictionary in the form of a matrix, called Defect-
Detection Matrix (DDM) [4]. To construct the DDM for a
given standard cell, a single analog SPICE simulation is
performed for each input stimulus s and for every potential
defect df (consisting in pure shorts and pure opens) injected
into the cell’s design netlist. After completing s * df analog
SPICE simulations, the characterization process is finished.
Then, a status is assigned to each pair of stimulus/defect
(s, df): either Detectable (D) if the cell's outputs are affected
by the defect under the stimulus, or UnDetectable (UD) if the
outputs are not affected. The DDM includes both static and
dynamic stimuli. Static stimuli consist of one-cycle patterns,
whereas dynamic stimuli consist of two-cycle patterns.

The DDM is structured with rows corresponding to stimuli
and columns to defects. Within this matrix, any entry of 1 or
higher for a specific (s, df) pair means that the pair is
designated as 'D'. For instance, considering a cell with two
outputs, a (s, df) pair that affects only the first output has its
corresponding entry matrix equal to 1. For a (s, df) pair that
affects only the second output, the corresponding entry matrix
is 2. Finally, if the (s, df) pair affects both outputs, the

corresponding entry matrix is 3. Conversely, if the entry is 0,
it means that the pair is UD. An example of a DDM for a
generic two output cell is shown in 0

EXAMPLE DDM.

 df0 df1 df2 df3 df4 … dfj-1
s0 1 0 1 0 0 0
s1 0 2 2 1 0 3
… 0 0 0 1 2 0
si-1 1 0 0 3 0 3

Using the CA methodology to characterize each cell in a
library is a time-consuming operation as it requires conducting
a series of s * d analog SPICE simulations. The time it takes
to characterize each cell is influenced by its number of inputs
and transistors.

In the methodology presented in [9], the authors divide the
cells into compartments. Compartments are subunits within
the circuit defined by an output net linked to VDD via a PMOS
pull-up network and to GND through an NMOS pull-down
network. Each compartment is composed of transistors with
gates driven by nets external to the compartment and includes
nets that control transistors in external compartment.
However, it excludes nets that control transistors within the
same compartment. This definition of compartments is very
similar to the one of the communicating components
explained in [11]. The difference can be noticed if, for
instance, we suppose that the circuit in Fig. 1 has a pass
transistor or a Transmission Gate (TG) between the NOR and
the inverter. For the definition in [11], the pass transistor or
the TG would be incorporated in the first compartment with
the NOR. On the other hand, the definition provided by [9]
does not suggest how to handle a pass transistor or a TG.

After identifying compartments, a graph is constructed for
each cell and the corresponding pattern. In this graph, active
transistors are represented by edges, and nets by nodes.
Injecting a short circuit adds an edge to the graph, whereas
injecting an open circuit removes an edge. A (s, df) pair is
considered as D if a short circuit creates a path between VDD
and GND, or if an open circuit results in a floating output. This
method is designed to detect static and dynamic defects.
However, this solution focuses only on detecting open defects
dynamically, which might not capture the full picture since
some shorts can also be dynamically detected in CA models.
Thanks to this approach, the time to generate CA models is
reduced. Nonetheless, there is potential for further reduction
in generation time since the method currently only addresses
defects impacting the source and drain, neglecting the bulk
and gate. Including these could allow for more (s, df) pairs to
be classified as 'UD', eliminating them from time-consuming
analog simulations. Moreover, the methodology's runtime can
be challenging as it processes one defect at a time. This is
manageable for small cells with few inputs and transistors but
may reduce the method's efficiency for larger cells.

III. TRANSISTOR UNDETECTABLE DEFECT ELIMINATOR
(TRUNDEL)

TrUnDeL is a graph-based methodology that involves
three sequential stages as shown in Fig. 2. The flow starts with
building the graph of the cell based on the information
extracted from the corresponding netlist. The second step
applies a stimulus to the input nodes of the graph. Then, it
performs the propagation through the different nodes. The last

step exploits different detection techniques to identify the UD
defects, to remove them from the initial Defect List (DL) and
produce as output the Possibly Detectable (PD) DL.

Fig. 2. TrUnDeL flow.

When TrUnDeL is run on a cell, a set of (s, df) pairs is
identified as UD, eliminating the need for analog SPICE
simulations for them. The remaining pairs, categorized as PD,
will undergo simulation, reducing the time-cost for the CA
model generation process. PD (s, df) pair means that an output
can be affected by the injection of a defect under a given
stimulus. These PD (s, df) pairs are then simulated by analog
simulations and further classified into UD or D categories.

A. Building Graph
This step has the Circuit Design Language (CDL) netlist

as input. The netlist contains all the information about
transistors and their interconnections. The Building Graph
phase is divided into three sub steps: graph construction,
compartments identification and standard compartments
structural info extraction.

1) Graph Construction
In this step, the Circuit Graph (CG) is built by extracting the
details on the nets and transistors from the CDL netlist. It
consists of two kinds of nodes: i) the devices, such as
transistors, and ii) the nets, with edges representing the
interconnections between devices and nets. A metadata is
attached to the edges to understand the typology of the
connection between the device nodes and the net nodes.
Another metadata is attached to the transistor nodes to specify
the type (i.e., N or P). For example, a net driving a gate of a
transistor is connected to the device through a gate edge. CG
of the cell in Fig. 1 is shown in Fig. 3. In this example, the
transistor N1 is connected to three net nodes via a gate (G)
edge, a source (S) edge and a drain (D) edge. The bulk
connection is omitted here for the sake of clarity.

Fig. 3. CG corresponding to an OR cell.

2) Compartments Identification
After constructing the CG, we identify the compartments

composing CG (i.e., sub-graphs of CG). We can distinguish
three types of compartments: the standard compartments, the
pass compartments and the in-out compartments. The standard
compartments follow the definition previously explained in
[9]. For instance, in Fig. 1, the cell is composed of two
standard output compartments (i.e., a NOR + an Inverter).
These types of compartments are characterized by a single
output and have three net categories:

• internal nets: nets that are connected to transistor
devices through only their sources and drains.

• Input nets: nets that are connected to at least one
transistor of the same compartment through its gate.

• Output nest: nets that are connected to at least one
transistor of another compartment through its gate.

 The first extension of the concept of a compartment is the
pass compartment. For us, all pass transistors and TGs are
considered as stand-alone compartments. This second type of
compartment includes the input net category while another
one is added: bidirectional net. This net category is added to
take care about the bidirectionality of the transistors. In fact,
in some cases a bidirectional net can behave as an input while
other times it can behave as an output, depending on the state
of the nets and transistors. The bidirectional nets are the source
and drain of the transistors of a generic pass compartment. A
pass compartment with its net categories is shown in Fig. 4 in
the example a. The last type of compartment is the in-out
compartment. It includes the internal net category as in
standard compartment, but it includes a new net category,
called in-out nets. This type of net can be at the same time
output of the compartment or gate of a transistor inside the
compartment, differently from the concept expressed in [9]
where a net cannot drive a transistor inside the same
compartment. An example of an in-out compartment is shown
in Fig. 4 in case b.

Fig. 4. Example of a pass compartment and an in-out compartment.

3) Standard Compartments Structural Info Extraction
Once compartments are identified, structural information

is extracted from each standard compartment. Before
explaining how we extract this information, defining some
concepts about the structure of a standard compartment is
essential. A standard compartment is composed of an NMOS
network and a PMOS network that are connected via a
common output. More specifically, a generic network can be
either a parallel network, composed of subnetworks that we
call branches, or a series network, composed of subnetworks
that we call sections. Each subnetwork can be composed of
other subnetworks either in parallel or in series, and so on. The
smallest possible network is composed of only one transistor.

An example of parallel network is shown in Fig. 5. It is
composed of two branches (i.e., B1 and B2). B1 is composed
of only one transistor. B2 is composed of two sections (i.e., Sa
and Sb) in series, each one composed of only one transistor.

Fig. 5. Example of a parallel network.

Another example in Fig. 6 shows a complementary case with
respect to the one analyzed above. This case is a series
network composed of two sections (i.e., S1 and S2). S1 is
composed of one transistor and S2 is composed of two
branches (i.e., Ba and Bb) in parallel, each one composed of
only one transistor.

Fig. 6. Example of a series network.

Moreover, we describe a compartment as complementary
when its NMOS network is the complement of its PMOS
network. Two networks are considered complementary when
they have opposite structures, and the inputs drive
corresponding opposite transistors. For example, the network
in Fig. 5 is complementary to the one in Fig. 6. We extract all
the info about parallel and series networks in a tree form,
called structure tree. The structure tree is built for each PMOS
and NMOS network of every standard compartment. For
instance, Fig. 7, shows the structure trees of the networks in
Fig. 5 and Fig. 6, respectively.

Fig. 7. Structure trees of the two networks in Fig. 5 and Fig. 6.

To determine whether a standard compartment is
complementary, we examine its corresponding PMOS and
NMOS networks. This involves analyzing the structure trees

of both networks, comparing each node, and ensuring that the
inputs are connected to the gates of matching transistors in
both networks. Through this method, we can confirm the
complementarity of the standard compartment.

B. Apply Stimulus and Propagate
This step works as a classical event-driven switch level

simulator based on an iterative method. The step starts by
applying the stimulus to the input nets of CG. A stimulus
consists of a single cycle for static stimuli and a pair of cycles
for dynamic stimuli. Every cycle within a stimulus represents
a sequence of logical '1's or '0's that are assigned to the input
nets. Here, a '1' corresponds to the voltage supply level
(VDD), and a '0' corresponds to the ground level (GND). An
event is scheduled for each input net and propagation starts
from the device nodes driven by them. Propagation is
performed from net to device and device to net, raising a new
event each time a net changes its state value. The propagation
continues, until the algorithm reaches the convergence state
(no more events are scheduled). In dynamic stimuli case, the
process starts again to evaluate the second stimulus cycle.

Upon completion of the stimulus application and
propagation, each net node is linked with a vector of logical
values. These values can be '0', '1', or 'None', with 'None'
indicating that the node is isolated, meaning it is not connected
to either VDD or GND. Similarly, every transistor node has a
vector of switch states, which can be 'Active' (A) or
'Inactive' (I), determined by the value connected to its gate.
Each entry within the vectors of logical values and states
corresponds to a specific stimulus cycle. Moreover, a switch
state is also associated to each node of the structure trees. For
parallel nodes, the switch state is equal to the or operation
between its child nodes. The switch state of the series nodes is
equal to the and operation between its child nodes. The switch
state of each transistor node is equal to its own switch state.

Finally, a strength is assigned to each net value. The
strength can be a value between 1 and 4. We assign 4 to power
nets (i.e., VDD, GND), 3 to input nets, 2 to the nets driven by
transistors and 1 to all the nets that have the current cycle value
depending on the previous cycle. At the conclusion of this
step, a different graph, known as the Simulation Graph (SG),
is produced. For instance, referring to CG depicted in Fig. 3,
an SG is illustrated in Fig. 8 when a specific stimulus is
applied (IN1 is set to '0', IN2 is set to '0'). Each transistor node
has a given switch state while each net node has is associated
with a voltage value and a specific strength (i.e., Sth in the
figure).

Fig. 8. SG of OR, stimulus: IN1 = ‘0’, IN2 = ‘0’.

C. Detection Techniques
The goal of the final stage, depicted in Fig. 2, is to identify

a comprehensive set of potential defects impacting the cell
(i.e., PD defects), therefore eliminating those UD with a given
applied stimulus. At first, we build the initial DL of the cell,
comprising every short and open that could affect the different
transistors, as shown in Fig. 9. Shorts (Sh) consist of every
combination of Source (S), Drain (D), Bulk (B), and Gate (G)
connections for each transistor. Opens (O) include OS, OD,
and OG. Since opens are only identifiable through dynamic
detection [14], static analysis considers only the shorts,
whereas dynamic analysis evaluates both shorts and opens.

Fig. 9. Targeted defects for a transistor.

We apply in sequence four detection techniques to
eliminate UD defects from the initial DL: Graph Detection
Rules, Compartment Detection Rules, Transistor Detection
Rules and Defect Injection and Propagation. After each
technique, the initial DL is reduced. During the last technique,
the final reduced list is constructed (i.e., PD DL). In static
analysis, a single-cycle stimulus (i.e., static stimulus) is
applied. A defect is classified as UD for a given static stimulus
when any one of the four detection techniques classify it as
UD, during this single cycle. In dynamic analysis, a two-cycle
stimulus (i.e., dynamic stimulus) is applied. A defect is
classified as UD for a given dynamic stimulus when any one
of the four detection techniques classify it as UD, for each
cycle of the two-cycle stimulus. This process allows us to
build the list of PD defects. The detection techniques process
is presented in Fig. 10.

Fig. 10. Detection Techniques flow.

1) Graph Detection Rules
These rules can be applied to all the circuits that are

composed of pass compartments. After the stimulus is applied,
the pass compartments can be in two opposite states: either
conducting or non-conducting. Sometimes, a non-conducting
pass compartment can completely disconnect a part of the
circuit from the output. It means that any defect injected in this
disconnected part of the circuit is UD. An example of these
rules is shown in Fig. 11. The represented cell is composed of
three compartments. Specifically, standard compartment1 is
connected to standard compartment2 through a pass
compartment. Moreover, only standard compartment2 is
connected to the output. Suppose that the pass compartment is
in non-conducting state. It means that standard compartment1

is completely disconnected from standard compartment2,
therefore it is disconnected from the output. So, all the defects
injected that affect only standard compartment1 are UD, as
they cannot affect the output. Potentially, it means that in
specific conditions all the defects belonging to different
compartments can be classified as UD in one shot.

Fig. 11. Example graph rules.

2) Compartment Detection Rules
These rules are applied at compartment level, considering

one compartment at a time. This technique can evaluate more
defects inside a compartment simultaneously. To identify UD
defects, some compartment rules exploit the structural info
about each compartment, extracted during the stage A.3). For
example, suppose a stimulus is applied to the NMOS network
of Fig. 5 for which the transistor N1 is ‘A’. As we can see in
the corresponding structure tree of Fig. 7 (i.e., case a), B1 is
in parallel with B2. B1 is active, as N1 is active. It means that
the output is connected to GND whatever the state of the
parallel branch B2. So, OS, OD, OG, ShBG and ShDS of each
transistor of B2 are UD. In fact, these defects can only change
the switch state of N2 and N3, consequently the state of B2.
Therefore, considering that the output depends only on B1,
these defects are UD. The formal corresponding rule says that
if a branch Bx has an active branch in parallel, OS, OG, OD,
ShBG and ShDS of each transistor of Bx are UD. In the case
of series sections, the methodology is opposite to the parallel
branches case.

Another example of compartment rule can be explained by
looking at the complementary standard compartment in Fig.
12.

Fig. 12. Standard compartment rule for ShGS and ShGD.

In this case, the output (OUT) voltage value of the
compartment is equal to ‘0’. For the NMOS network the only
PD defects are ShGS and ShGD of the active transistors
connected to OUT. So, ShGS and ShGD of N2 are PD. The
reason is that these defects connect the gate to the OUT
through an active path. For N2 it means that IN2, with a
voltage value = ‘1’, is connected to OUT, with a voltage
value = ‘0’. This causes a conflict, and the defects are
considered PD. For the PMOS network, the only PD defects
are ShGD of the inactive transistors either directly connected
to the OUT or connected to the OUT through consecutive
active transistors. In PMOS network, only ShGD of P2 is PD

because it creates again a conflict between IN2 and OUT. On
the other hand, if the voltage of OUT is equal to ‘1’, the case
is opposite to the example just explained.

In the last example, we consider the case of a pass
compartment, specifically a TG. The structure is composed of
two transistors in parallel, one PMOS and one NMOS.
Suppose that the TG is conducting (i.e., PMOS and NMOS
switch states are ‘A’), and voltage values of the bidirectional
nets are equal to ‘1’. In this case, OS, OD, OG and ShDS of
the NMOS transistor are UD. In fact, if one of these defects is
injected, the state of the NMOS transistor could switch off and
the only remaining ‘A’ transistor would be the PMOS.
However, the PMOS transistor is good in conducting ‘1’ so,
the injection of one of these defects does not affect the
behavior of the TG. On the other hand, only the ShDS of the
PMOS transistor is UD. The opens injected in the PMOS
transistor could switch off its switch state and the only
remaining ‘A’ transistor would be the NMOS one. NMOS
transistor is not good in conducting ‘1’, so we cannot be sure
that the opens are UD too.

3) Transistor Detection Rules
This technique applies rules to all defects that impact each

transistor simultaneously, addressing each transistor one by
one. This process requires no additional steps for the SG, as it
uses the existing transistor metadata within the SG. Fig. 13
illustrates some rules at the transistor level.

Fig. 13. Examples transistor detection rules.

For instance, in example a, an active transistor (i.e., G=1)
means that ShDS defect is irrelevant if injected. In example b,
an inactive transistor (i.e., G=0) indicates that OS and OD
defects have no impact. Finally, in example c, G and B are
equals, so ShGS has no impact.

4) Defect Injection and Propagation
This is the last step of the detection techniques before

obtaining the final PD DL. It injects each defect of the reduced
DL into the graph subsequentially. Then, it propagates the
defect effects throughout the graph. Finally, it evaluates the
output voltage value. If it is equal to the fault free one, the
defect is UD, otherwise the defect is PD. After all the defects
have been injected and their effects propagated across the
graph, it is possible to eliminate all UD defects from the DL,
culminating in the creation of the final PD DL.

The first step of this technique is to inject the defect as a
Resistor Device Node (RDN) inside the graph. Then, the
propagation starts from the compartments connected to RDN,
and it continues compartment after compartment. In order to
verify if the current compartment is affected by a resistor
defect injection in the CG, a decision tree is applied:

• If there is a pathway from VDD to GND composed
only of active transistors, then the defect affects the
compartment.

• If the output is connected through a path exclusively
to VDD or GND, where all transistor device nodes are

active, the output is evaluated against the fault free
one. A match indicates that the defect does not affect
the compartment.

• If there is not a pathway, where all transistor device
nodes are active, connecting OUT to VDD, and OUT
to GND, then the defect is considered to affect the
compartment.

When the current compartment remains unaffected, it
means that its output is consistent with the fault free one. In
this scenario, the algorithm classifies the defect as UD and
propagation stops. Conversely, if the compartment is affected,
the defect injection can have an impact on the subsequent
compartment, with the output of the current one becoming the
input for the next. This propagation persists until either the
final cell compartment's output is reached, or the defect is
classified UD in any compartment along the propagation path.

IV. VALIDATION RESULTS
This section presents the validation results obtained when

applying TrUnDeL to combinational and sequential cells of
two standard cell libraries designed by STMicroelectronics
(i.e., C28 and P28). The following subsections detail the
different stages of the conducted experimental procedures.

A. Combinational cells of C28 and P28
In the C28 library case, TrUnDeL was applied on 536

combinational cells. In total, 119 088 defects were analyzed,
resulting in 4,545,684 (s, df) pairs (i.e., 1,351,920 static and
3,193,764 dynamic). Fig. 14 illustrates the comparison
between classical CA models, which rely on analog SPICE
simulations, and TrUnDeL. The graph on the left shows the
percentage of UD and D defects using classical CA models.
The graph in the middle represents TrUnDeL using Transistor
Detection Rules (TR) and Defect Injection and Propagation
(DIP) only. The last graph on the right represents the complete
TrUnDeL solution, that uses in sequence Graph Detection
Rules (GR), Compartment Detection Rules (CR), TR and DIP.

Fig. 14. Classical CA models vs TrUnDeL for C28 combinational cells.

A key result is that TrUnDeL does not produce any
misclassifications (i.e., no D pairs are incorrectly classified as
UD). TrUnDeL can identify 77.6% of the UD (s, df) pairs. The
remaining 22.4% are categorized as PD. TrUnDeL cannot
resolve these ambiguous cases due to conflicts within the cell
that lead to an unknown value at the output (i.e., X). This
unknown output value makes it impossible to confirm whether
these pairs are UD without performing analog simulation. The
gap of 14.8% observed in the results, when compared to those
from classical CA models, is attributed to this limitation.

Focusing on the (s, df) pairs classified as UD, we can notice
that for both TR + DIP and GR + CR + TR + DIP the
percentage of UD identified pairs is 76,6%. Adding the two
additional techniques (i.e., GR and CR) does not change the
overall percentage of UD pairs identified by TrUnDeL.
However, it decreases the number of UD pairs identified with
TR and DIP technique, as some are now identified by CR and
GR instead. This shift is particularly significant for DIP,
which is the most time-consuming method applied and it can
significantly impact TrUnDeL speed if overused. Specifically,
adding GR and CR reduces the number of pairs classified as
UD for DIP by 4 times (6.6 % compared to 28.9 %). In
summary, the complete TrUnDeL identifies 2.1% of UD with
GR. CR can identify most UD pairs (i.e., 50.9%) while TR
identify 18.0% of them. The rest, amounting to 6.6%, are
detected through DIP.

 In P28 case, TrUnDeL was applied on 932 combinational
cells. 110 092 defects were evaluated, resulting in 3,669,967
(s, df) pairs (1,215,792 static and 2,454,175 dynamic). Also in
this scenario, TrUnDeL does not generate any misclassified
pairs and identifies 66.0% UD (s, df) pairs, resulting in a 23%
gap. The comparison between the classical CA models and
TrUnDeL is shown in Fig. 15.

Fig. 15. Classical CA models vs TrUnDeL for P28 combinational cells.

In this case, 48.5% of UD (s, df) pairs are identified only using
CR. The remaining pairs are identified by TR (13.8%) and
DIP (3.7%). The percentage of pairs identified as UD with
DIP is reduced by 5 times, using the complete TrUnDeL.

 As we can see, comparing the result in C28 and P28, the
GR give their contribution to the C28 library cells only. This
happens because the GR conditions, as the one explained in
Fig. 11, never happened to the P28 library cells.

 The results indicate that a substantial portion of (s, df) pairs
can be classified as UD by TrUnDeL. This means that we can
exclude these pairs from the time-consuming analog
simulations. Only the remaining PD pairs will be analog
simulated for further categorization as either UD or D. As a
result, we obtain a CA model generation time reduction by a
factor of 3 compared to classical CA model generation
process, as explained in detail in the subsection F.

B. Sequential cells of C28 and P28
For sequential cells of C28, the validation results are

shown in Fig. 16. In total, 95 cells are analyzed, resulting in
47,810 defects and 586,021 (s, df) pairs (269,568 static and
316,453 dynamic). Here the gap is 29.8 %. Differently from
the combinational cells case, in sequential cells we obtained a
percentage of misclassifications (i.e., 2.1%). The contribution
of each technique is 0.7% for GR, 20.3% for CR, 17.0% for

TR and 14.7% for DIP. Using GR and CR decreases the usage
of DIP by 2 times.

Results on sequential cells of P28 are shown in Fig. 17.
We analyzed 45 cells, resulting in 16,955 defects and 146,387
(s, df) pairs (76 728 static and 69 659 dynamic). The gap for
these cells is 29.8%. A percentage of misclassifications also
exists here (i.e., 5.8%). Here, the contribution of each
technique is 18.7% for CR, 16.8% for TR and 20.8% for DIP.
Again, the percentage of UD defects identified by DIP is
reduced. As in combinational case, the GR technique does not
have a contribution in P28. The reason is the same explained
in subsection A.

Fig. 16. Classical CA models vs TrUnDeL for C28 sequential cells.

Fig. 17. Classical CA models vs TrUnDeL for P28 sequential cells.

A key difference between combinational and sequential
cells is the real number of cycles for static and dynamic
stimuli. A static stimulus, in a combinational cell is composed
of a single cycle. In a sequential cell case, a static stimulus is
composed of two cycles, as the clock (clk) goes from ‘0’ to ‘1’
to simulate the rising edge. Similarly, with dynamic stimuli,
the concept remains consistent. In sequential cells, the clk
rising edge occurs twice, resulting in a stimulus comprising
four cycles.

As in combinational cell case, in sequential cells the
percentage of UD (s, df) pairs identified by TrUDeL is big and
only the remaining PD pairs will be simulated. Consequently,
the CA model generation time is reduced by a factor of 3
compared with classical CA model generation process
(subsection F).

C. Observation about the gap in C28 and P28
As already explained in subsection A, the gap depends on

the ambiguous cases due to conflicts within the cell that lead

to an X value at the OUT. The propagation of the conflict to
the OUT in a cell mainly depends on two factors:

• The number of transistors inside the cell.

• How these transistors are distributed in the different
compartments inside the cell.

It is more probable that (s, df) pairs will not be able to
propagate their effects in cells containing more transistors, and
thus are ultimately classified as UD by the TrUnDeL process.
However, cells with the same number of transistors can have
a different probability to propagate or not the defect effect
until the OUT, considering how the transistors are distributed
inside the different compartments. To better understand this
concept, we can compare the examples a and b in Fig. 18. The
number of transistors is equal in both circuits (i.e., 6). In case
a, four transistors are inside compartment1 and two in
compartment2. In case b, the transistors are equally distributed
in the three compartments. In case a, if IN1 = ‘0’ and
IN2 = ‘1’. ShDS of N3 propagates an ‘X’ to the output of
compartment1. However, this ‘X’ does not affect
compartment2, as IN2 switches on N2 and switches off P2, so
OUT = ‘1’. It means that the defect is masked at
compartment2. In case b, if IN = ‘0’, the effect of the defect is
propagated until the OUT through the three compartments. So,
we see how two circuits have the same number of transistors
but the defect in one case is not propagated until the OUT and
in the other one it is propagated. This depends on how the
transistors are distributed in the different compartments of the
circuit.

Fig. 18. Different transistors distribution in two circuits.

 Comparing C28 and P28, in the case of combinational
cells, we see that C28 has a narrower gap and a higher number
of UD (s, df) pairs. This is attributed to C28 having generally
bigger cells (i.e., bigger number of transistors) with a
distribution of the transistors inside the compartments that
increases the probability of (s, df) pairs not propagating their
effects until the OUT. On the other hand, in sequential cells,
although cells in C28 are still bigger than in P28, the gap in
C28 is bigger than in P28. In fact, most of the UD (s, df) pairs
that are identified in C28 belong to the ambiguous case in
which X is propagated until the output of the circuit. This is
due to the distribution of the transistors in the different
compartments that decreases the probability of having a defect
effect masked during the propagation.

D. Discussion about misclassifications on sequential cells
If for combinational cells no misclassifications occur, this

is not the case for the sequential ones. Analyzing the different
misclassifications cases, we found the reasons that explain this
result. For example, Fig. 19 illustrates a high-level cell
composed of two compartments (i.e., C1 and C2) with a
feedback loop between the OUT and C1. In the example, clk
rising edge is represented and IN = ‘1’. Subsequentially, OUT
goes from ‘1’ to ‘0’. It is important to consider that the OUT
changes its voltage value with a small delay. This small delay
causes a “mini cycle” between the main two cycles. A conflict,
caused by a defect inside C1 or C2, can propagate its effect to
the output during cycle1 or cycle2, but also during the “mini
cycle”. This is one of the cases that are not captured from
TrUnDeL, that for now does not consider timing related
aspects of the cells.

Fig. 19. Feedback loop between compartments.

Another critical case in which the timing can create an
issue is the in-out compartment. In fact, this type of
compartment intrinsically includes a feedback loop between
the in-out nets and some transistors. This could create a similar
situation in terms of waveforms to the one shown in Fig. 19.
An additional mini cycle could be generated, in which a defect
injection could propagate its effect until the OUT.

The last case of misclassification that we analyze depends
on the initial state of the cell. In fact, in some cases, knowing
the initial state of a sequential cell, before the stimulus is
applied, is essential to understand if a defect is propagated
until the OUT. This kind of misclassification can be solved by
applying the correct initial state to the SG and consider it as a
new cycle to be evaluated through detection techniques.

E. TrUnDeL runtime
We also analyzed how TrUnDeL behaves in terms of

runtime using the different detection techniques, as shown in
0All the runtime estimations are done using 1 CPU. For all the
combinational and sequential cells of C28, using TrUnDeL
with only DIP took 18h 48m. Adding the TR using DIP
improves the runtime by 42%. If we apply the complete
TrUnDeL, the runtime is improved by 58% compared to the
TrUnDeL with only DIP applied. For combinational and
sequential cells of P28, the improvement is confirmed. Using
only DIP, TrUnDeL took about 9h. adding TR reduces the
runtime by 38% and the complete TrUnDeL improves the
runtime by 56%. In other words, using all the techniques in
sequence reduces the runtime for (s, df) pairs analysis by
TrUnDeL by more than one half.

TRUNDEL RUNTIME C28 AND P28.

 C28 runtime P28 runtime
DIP 18h 48m 9h 6m
TR + DIP 10h 44m 5h 36m
GR + CR + TR + DIP 7h 42m 4h 8m

Then, we analyzed the runtime for a cell in function of its
number of transistors. When more cells had the same number
of transistors, we made the average. This is useful to
understand the trend of the TrUnDeL runtime when the cells
become larger. Again, the runtime estimations were
performed using 1 CPU. We plotted all the points and the
quadratic regression that interpolates them in the graph, as
shown in Fig. 20.

Fig. 20. Quadratic regression runtime in function of number of transistors.

The graph shows three curves. The blue one represents
TrUnDeL using only DIP, the orange one represents
TrUnDeL using TR + DIP, and the green one represents the
complete TrUnDeL solution (i.e., GR + CR + TR + DIP). Each
curve has its corresponding equation:

• DIP: 𝑦 = 0.19𝑥! − 3.09𝑥 + 19.67

• TR + DIP: 𝑦 = 0.09𝑥! − 0.96𝑥 + 6.36

• GR + CR + TR + DIP: 𝑦 = 0.07𝑥! − 1.03𝑥 + 7.10

As the number of detection techniques incorporated into the
analysis grows, the coefficient of the quadratic term decreases.
Consequently, with a higher number of transistors, the runtime
decreases at a reduced rate when additional detection
techniques are used. Specifically, we graphically see that the
DIP curve is the one for which the runtime grows faster. TR
+ DIP curve grows much slower than DIP. Finally, the curve
with the complete TrUnDeL is the one with the minor slope.

F. CA model generation time reduction
To estimate the enhancement in CA model generation time

using TrUnDeL, we referred to the experiments performed on
P28. Initially, the classical CA models were generated through
analog SPICE simulations on 977 cells of P28 (i.e., 932
combinational and 45 sequential). The generation time took
approximately 96 days and 8 hours, using a single SPICE
license on 1 CPU. Subsequentially, we applied TrUnDeL to
the identical P28 cells. The CPU time (using 1 CPU) for

complete TrUnDeL was about 4 hours. TrUnDeL was able to
skip analog simulation for 66% of the UD (s, df) pairs for the
combinational cells and the 56.3% of the UD (s, df) pairs for
the sequential cells. The remaining 34% of PD pairs for
combinational cells and 43.7% PD pairs for sequential cells
were analog simulated (using a single SPICE license), taking
about 35 days and 1 hour. Therefore, combining TrUnDeL
with analog SPICE simulations for the PD pairs took
approximately 35 days and 5 hours, effectively reducing the
time for generating the CA models by a factor of 3 compared
with classical CA model generation process.

V. CONCLUSIONS AND PERSPECTIVES
In modern ICs the number of manufacturing defects inside

standard cells has increased a lot. CA methodology was
introduced to detect them and diagnosis purposes. The
drawback of CA methodology is that it is based on time-
consuming analog simulations. In this paper, we described the
different steps of TrUnDeL, a methodology that speeds up CA
models generation process (by a factor of 3 for P28 used as
test case). TrUnDeL can generate CA models for
combinational cells without any misclassifications (i.e., 100%
of accuracy for the combinational cells analyzed in P28 and
C28).

TrUnDeL has also been applied on sequential cells of the
same libraries, generating CA models with a percentage of
misclassifications (i.e., 97.9% of accuracy for C28 and 94.2%
of accuracy for P28). Analyzing the different types of
misclassifications that occur during the experiments, we have
seen how an important improvement is to handle the timing
aspects of the cells, to increase as much as possible the
accuracy of the generated CA models. Moreover, another
aspect that can further improve the accuracy is to consider an
additional cycle for the initial state in sequential cells. In order
to further reduce the gap, the plan is to incorporate more
information about the technology, the physical characteristics
and the strengths of the transistors, and the defect size.

Finally, we evaluated the runtime of TrUnDeL for the two
libraries, and we analyzed the runtime of TrUnDeL in function
of the number of transistors inside a cell, considering the
different detection techniques implemented. The results show
that using the techniques in sequence leads to a more gradual

rise in the runtime curve when the number of transistors within
the cell increases. This makes our solution suitable also for
larger circuits, such as memories.

REFERENCES
[1] M. G. Bardon et al.,” Extreme scaling enabled by 5 tracks cells:

Holistic design-device co-optimization for FinFETs and lateral
nanowires,” 2016 IEEE International Electron Devices Meeting, San
Francisco, CA, USA, pp. 28.2.1-28.2.4.

[2] Kyoung Youn Cho et al., ”Gate exhaustive testing,” IEEE International
Conference on Test, 2005., Austin, TX, USA, 2005, pp. 7 pp.-777.

[3] S. Eichenberger et al., ”Towards a World Without Test Escapes: The
Use of Volume Diagnosis to Improve Test Quality,” 2008 IEEE
International Test Conference, Santa Clara, CA, USA, 2008, pp. 1-10.

[4] Z. Gao et al., ”Defect-Location Identification for Cell-Aware Test,”
2019 IEEE Latin American Test Symposium (LATS), Santiago, Chile,
2019, pp. 1-6.

[5] P. Maxwell et al., ”Cell-aware diagnosis: Defective inmates exposed in
their cells,” 2016 21th IEEE European Test Symposium, Amsterdam,
Netherlands, pp. 1-6.

[6] Z. Gao et al., ”Application of Cell-Aware Test on an Advanced 3nm
CMOS Technology Library,” 2019 IEEE International Test
Conference (ITC), Washington, DC, USA, 2019, pp. 1-6.

[7] R. Guo et al., ”Efficient Cell-Aware Defect Characterization for Multi-
bit Cells,” 2018 IEEE International Test Conference in Asia (ITC-
Asia), Harbin, China, 2018, pp. 7-12.

[8] P. d’Hondt et al., ”A Learning-Based Methodology for Accelerating
Cell-Aware Model Generation,” 2021 Design, Automation & Test in
Europe Conference & Exhibition, Grenoble, France, pp. 1580-1585.

[9] F. Lorenzelli et al., ”Speeding up Cell-Aware Library Characterization
by Preceding Simulation with Structural Analysis,” 2021 IEEE
European Test Symposium (ETS), Bruges, Belgium, 2021, pp. 1-6.

[10] J. P. Hayes, ”An Introduction to Switch-Level Modeling,” in IEEE
Design & Test of Computers, vol. 4, no. 4, pp. 18-25, Aug. 1987.

[11] R. E. Bryant, ”A Survey of Switch-Level Algorithms,” in IEEE Design
& Test of Computers, vol. 4, no. 4, pp. 26-40, Aug. 1987.

[12] A. Rjoub and A. B. Alajlouni, ”Graph modeling for Static Timing
Analysis at transistor level in nano-scale CMOS circuits,” 2012 16th
IEEE Mediterranean Electrotechnical Conference, Yasmine
Hammamet, Tunisia, 2012, pp. 80-83.

[13] Kuang-Wei Chiang and Z. G. Vranesic, ”On Fault Detection in CMOS
Logic Networks,” 20th Design Automation Conference Proceedings,
Miami Beach, FL, USA, 1983, pp.

[14] James Chien-Mo Li and E. J. McCluskey, ”Diagnosis of resistive-open
and stuck-open defects in digital CMOS ICs,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 11, pp. 1748-1759, Nov. 2005.

