
HAL Id: lirmm-04738312
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04738312v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Graph-Based Methodology for Speeding up
Cell-Aware Model Generation

Gianmarco Mongelli, Xhesila Xhafa, Eric Faehn, Dylan Robins, Patrick
Girard, Arnaud Virazel

To cite this version:
Gianmarco Mongelli, Xhesila Xhafa, Eric Faehn, Dylan Robins, Patrick Girard, et al.. A Graph-
Based Methodology for Speeding up Cell-Aware Model Generation. IOLTS 2024 - IEEE 30th Interna-
tional Symposium on On-Line Testing and Robust System Design, Jul 2024, Rennes, France. pp.1-6,
�10.1109/IOLTS60994.2024.10616062�. �lirmm-04738312�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04738312v1
https://hal.archives-ouvertes.fr


A Graph-Based Methodology for Speeding up
Cell-Aware Model Generation

G. Mongelli1,2, X. Xhafa2, E. Faehn1, D. Robins1, P. Girard2, A. Virazel2

1STMicroelectronics
Crolles, France

gianmarco.mongelli, eric.faehn, dylan.robins@st.com

2LIRMM - University of Montpellier/CNRS
Montpellier, France

gmongelli, xxhafa, girard, virazel@lirmm.fr

Abstract—The reduction in transistor size in modern Inte-
grated Circuits (ICs) has led to an increase in manufacturing
defects within standard cells, also known as intra-cell defects.
Detecting these defects and localizing them through diagnosis
is crucial for achieving a fast yield ramp-up and ensuring a
low test escape rate. Traditional fault models, such as stuck-
at and transition, do not effectively represent intra-cell defects.
To address this issue, the Cell-Aware (CA) methodology was
introduced. However, this technique involves time-consuming
analog SPICE simulations to characterize standard cells. This
paper presents a methodology, called Transistor Undetectable
Defect eLiminator (TrUnDeL), based on graph theory to speed
up the CA model generation process. Our methodology identifies
undetectable defects for each stimulus applied at the inputs of the
cell, which are then excluded from the analog simulations. We
applied TrUnDeL to two libraries from STMicroelectronics (P28
and C28) to identify the undetectable stimulus/defect pairs, so
that analog simulations are performed only on the remaining
pairs. As a result, the CA model generation process time is
reduced by a factor 3. Finally, we applied TrUnDeL to a SRAM
bitcell case study and demonstrated that the obtained results are
consistent with its existing CA model.

Index Terms—Intra-cell defects, test and diagnosis, graph
theory, cell-aware model.

I. INTRODUCTION

In modern industrial technologies, the number of gates in
Integrated Circuit (ICs) is increasing as transistor feature sizes
get smaller and smaller [1]. This leads to an increasing number
of manufacturing defects (i.e., opens, shorts) inside standard
cells (i.e., intra-cell defects). Finding the correct test patterns
to detect these defects in ICs and then performing diagnosis
to localize them is a key issue to achieve a fast yield ramp-up
and ensure a low Defective Parts Per Million (DPPM).

To generate the smallest and most effective set of test pat-
terns, Automatic Test Pattern Generation (ATPG) algorithms
have been developed. For this purpose, ATPG algorithms use
fault models to represent the behavior of the defect and its
effect on ICs [2]. However, traditional fault models, such
as stuck-at or transition fault models, model defects at the
interconnections between cells (i.e., inter-cell defects), so
intra-cell defects can only be detected fortuitously [3].

Cell-Aware (CA) methodology has been introduced to tar-
get intra-cell defects. The CA methodology characterizes a

standard cell by building a dictionary (i.e., a defect-detection
matrix) that contains the information about which defects are
detectable by which stimuli [4], [5]. The CA characterization
is usually performed using analog SPICE simulators, applying
each possible stimulus at the cell inputs for each defect
injected (i.e., pure shorts and pure opens) in the design
netlist and evaluating the cell outputs. The problem of this
approach is that analog SPICE simulations are time-consuming
operations and the characterization of a full CA library can
take up to several months [6].

To accelerate the adoption of the CA methodology in the
qualification process of silicon products and its deployment
on industrial ICs [7], it is essential to minimize the time and
cost required for library characterizations. A machine learning-
based methodology, proposed in [8], can predict whether a
defect is detectable on the outputs of a cell, without the need
for analog simulations. However, its drawback is that accurate
predictions can only be made for cell structures that have
already been evaluated in the past, while analog simulation is
necessary for other cells. Another approach, proposed in [9],
uses the graph theory to model standard cells (from Cadence’s
GPDK045 library) and reduce the computation time of CA
models. Although effective (i.e., CA characterization time-cost
is improved by a factor of 2), in this methodology, defects are
injected one by one for each stimulus, making it not suitable
for cells with large number of transistors. Moreover, the paper
only explains the effects of source and drain defects while
defects related to bulk and gate are not mentioned.

Therefore, the goal of our work is to develop a methodology
(TrUnDeL), able to further accelerate the CA model generation
process while preventing a loss of accuracy, targeting the
complete set of static and dynamic defects. The list of targeted
defects include open and short defects that affect source, drain,
bulk and gate of the transistors. TrUnDeL is inspired by [9]
and it is based on graph-theory. In the proposed solution,
generic standard cells are modeled as a graph. Then, for
each stimulus applied to the graph and propagated through
the different nodes, additional metadata are attached to the
graph. These metadata are then exploited to identify the
Undetectable defects, for each stimulus previously applied,
through two techniques used in sequence: Transistor Rules



and Defect Injection and Propagation. Thanks to Transistor
Rules, TrUnDeL can manage several defects at a time and not
only one by one as in [9].

First experiments performed on two different libraries,
P28 and C28 by STMicroelectronics, show that applying
our methodology before the analog simulations reduces the
computation time for CA characterization by a factor of 3. For
validation purpose, the obtained results are compared with ex-
isting CA models generated using analog SPICE simulations.
The main outcome using TrUnDeL is that no misclassifications
occur. In other words, a detectable stimulus/defect pair in the
CA model is never classified as undetectable by TrUnDeL.
Moreover, TrUnDeL has been applied on a SRAM bitcell case
study. The obtained results are consistent with the available
CA model [10].

This paper is organized as follows. Section 2 describes ba-
sics and backgrounds on CA methodology and on graph theory
applications for defect-detection or circuit modelling purposes.
Section 3 presents the TrUnDeL graph-based methodology.
Validation results are presented in section 4 and finally our
conclusions and perspectives are given in section 5.

II. RELATED PRIOR WORK

The CA methodology involves characterizing a standard
cell by creating a dictionary, which is a matrix known as
the Defect-Detection Matrix (DDM) [4]. To build the DDM
for a cell, one analog SPICE simulation is performed for
each stimulus s applied to the cell inputs and each defect
df (pure shorts and pure opens) injected into the cell design
netlist. After conducting s ∗ df analog SPICE simulations,
the characterization is complete, and a status, that can be
Detectable (D) or UnDetectable (UD), is assigned to each
stimulus/defect (s, df) pair. UD means that the cell outputs
are not affected by the defect injection in the design netlist
under a given stimulus. Respectively, D means that output is
affected.

The DDM has rows that represent stimuli and columns that
represent defects. For each (s, df) pair, if the corresponding
entry in the matrix is greater than or equal to 1, it indicates
that this pair is D. For instance, if a (s, df) pair only affects
the first output, the corresponding entry in the matrix is 1. If
it affects the second output, the entry in the matrix is 2. If it
affects both outputs, the entry in the matrix is 3. Conversely,
if the entry is 0, it means that the pair is UD. An example of
a DDM for a generic two output cell is shown in Table I.

TABLE I
EXAMPLE DEFECT-DETECTION MATRIX.

df0 df1 df2 df3 ... dfj−1

s0 0 3 3 0 0
s1 1 2 0 0 0
... 0 0 0 2 0
si−1 0 0 0 0 3

Characterizing each library cell using the CA methodology
is a time-consuming process, as it requires conducting s ∗ df
analog SPICE simulations. Therefore, the time required to

characterize each cell depends on its number of inputs and
transistors. The methodology proposed in [9] aims to reduce
CA characterization time-cost by performing structural anal-
ysis, based on graph theory, of each cell of a library. Graph
theory has found wide application in various fields, such as
logic simulation [11], [12] , timing analysis [13] and defect-
detection purposes [14]. This demonstrates its high flexibility
and effectiveness.

In the methodology presented in [9], the authors divide
the cells into compartments (i.e., communicating compo-
nents in switch-level algorithms [12]). Compartments are sub-
structures of cells that are characterized by an output net that
is connected to VDD through a PMOS pull-up network and to
GND through an NMOS pull-down network. A compartment
contains transistors that have their gates controlled by external
compartment nets and contains nets that control external
compartment transistors. It does not contain nets that control
internal compartment transistors. An example of NAND cell
divided in compartments is shown in Fig. 1.

OUT
net1

Vdd

N1

N2

P1 P2

N3

P3

Vdd

IN1 IN2

IN1

IN2

net2

Compartment 1

Compartment 2

Fig. 1. Nand gate divided in two compartments.

Once compartments are identified, a graph is built for each
cell and for each pattern applied. Edges represent the active
transistors while nodes represent nets. If a short is injected,
an edge is added. If an open is injected, an edge is removed.
Finally, a (s, df) pair is D if a path between VDD and
GND exists for a short defect, or if an output is floating
for an open defect. The solution is designed to detect both
static defects, which are identified by one-cycle stimuli, and
dynamic defects, which are identified by two-cycle stimuli.
However, the solution only considers open defects for dynamic
detection, which may not be entirely accurate as some shorts
can also be detected dynamically in CA models. Thanks to
this methodology, the generation time of CA models has been
reduced by a factor of 2. However, the CA models generation
process time can be further reduced, as the methodology
only targets defects that affect the source and drain. The
bulk and gate are not considered at all. If the bulk and gate
were also taken into account, more (s, df) pairs could be
identified as UD, so more pairs could be excluded from time-
consuming analog simulations. Additionally, the run-time of
the methodology could be an issue, as only one defect is
analyzed at a time. This is suitable for small cells with a small



number of input pins and transistors, but it could affect the
efficiency of the methodology for larger cells.

III. TRANSISTOR UNDETECTABLE DEFECT ELIMINATOR
(TRUNDEL)

The proposed graph-based methodology, called TrUnDeL,
is based on the three-step flow shown in Fig. 2. First, the graph
is computed based on the cell. Then, we apply a stimulus to
the graph and propagate it through the different nodes. In the
last step, detection techniques are applied to identify the U
defects. These three steps are presented in detail in the next
subsections.

Once TrUnDeL is applied to a cell, a set of (s, d) pairs
is classified as UD and will not require any analog SPICE
simulations. Only the remaining pairs, classified as PD, will
be simulated, reducing the time-cost for CA model generation
process. A (s, d) pair, classified as PD, implies that the cell
outputs may be affected by the injection of a given defect
under a given stimulus. After the analog simulation, all the
PD (s, d) tuples will be classified as U or D.

CDL netlist

Building Graph

Circuit 
Graph

Apply Stimulus 
and Propagate

Simulation 
Graph

Detection 
Techniques

PD
defect list

stimulus

Fig. 2. TrUnDeL flow.

A. Building Graph

The input of this step is the Circuit Design Language (CDL)
netlist that describes the cell with all the information about
transistors and their connections. The Circuit Graph (CG) is
built by extracting the information about the nets and the
transistors from this file. CG is composed of two types of
nodes: i) the devices (i.e. transistors), and ii) the nets. The
edges represent the connections between devices and nets. CG
of the cell in Fig. 1 is shown in Fig. 3. As we can see, the
transistor node P1 is connected to three net nodes (VDD, IN1,
net1) through three edges (source, drain, gate). Bulk is not
modeled in this example for the sake of readability.

Once the CG is built, we identify the different compartments
(i.e, sub-graphs of CG) that compose it. In a compartment, we
can distinguish four types of net nodes:

• internal nets: nets that are connected to transistor devices
through only their sources and drains;

• input nets: nets that are connected to at least one transistor
of the same compartment through its gate;

• output nets: nets that are connected to at least one
transistor of another compartment through its gate;

• in/out nets: nets that are both input and output of the
same compartment.

The in/out nets are required to manage loop cell structures
and they are an extension to the definition of compartment
given in [9], where only internal, input and output nets were

defined. All additional information is attached to the graph as
metadata. The division in compartments of CG is highlighted
in Fig. 3.

G

G

G

G

S

D

D

S

S

S

D D

G

G

S

D

D

S

VDD

GND

net1

net2

OUT

IN1

IN2

P1

N1

N2

P2
P3

N3

Compartment 1 Compartment 2

Fig. 3. CG corresponding to a nand cell.

B. Apply Stimulus and Propagate

In this step, we apply a stimulus to CG. A stimulus is
composed of one cycle in static stimuli and two cycles in
dynamic stimuli. Each stimulus cycle is a set of logical ones
or zeros assigned to the input nets where ’1’ maps to VDD
and ’0’ maps to GND. Once the stimulus cycle is applied to
the graph, it is propagated through all the nodes. Propagation
starts from the devices connected to the input nets and it is
performed following different propagation rules. Then, net to
device and device to net propagation continues until all the
nodes are covered. Then, the process starts again for the next
stimulus cycle (i.e., for dynamic stimuli). At the end of the
stimulus application and propagation process, every net node
has a vector of logical values associated, where the logical
value is ’0’, ’1’ or ’None’ (’None’ means that that node is
isolated, i.e., connected to neither VDD nor GND). Every
transistor nodes has a vector of states, where state is ’Active’
(A) or ’Inactive’ (I), based on the value connected to the
gate. Each entry in the vector logical values and vector states
corresponds to a stimulus cycle. At the end of this step, a new
graph is obtained: the Simulation Graph (SG). An example of
SG, with a given static stimulus applied (IN1 = ’1’, IN2 = ’0’)
to CG of Fig. 3, is shown in Fig. 4.

G

G

G

G

S

D

D

S

S

S

D D

G

G

S

D

D

S

VDD

GND

net1=1

Net2=1

OUT=0

IN1=1

IN2=0

P1=I

N1=A

N2=I

P2=A
P3=I

N3=A

Fig. 4. SG of nand, with stimulus: IN1 = ’1’ and IN2 = ’0’.



C. Detection Techniques

The last step of the flow in Fig. 2 is to identify the total
list of defects that can affect the cell before excluding those
that we are unable to detect for the given stimulus. We start
by computing the list of all defects that are possible in the
cell. This initial list is composed of all shorts and opens that
can affect the different transistors. The shorts (Sh) are made
up of all possible combinations of Source (S), Drain (D),
Bulk (B) and Gate (G) for each transistor as shown in Fig.
5. The Opens (O) are OS, OD and OG. As opens can only be
detected dynamically [15], static analysis considers only the
shorts while dynamic analysis considers shorts and opens.

OG

ODOS

ShBG
ShGDShGS

ShBS ShBD
ShDS

S D

G

B

Fig. 5. Targeted defects for a transistor.

We then apply two detection techniques to exclude UD
defects from this initial list: Transistor Detection Rules and
the Defect Injection and Propagation. During static analysis,
a one-cycle stimulus is applied. A defect is classified as UD
for a given stimulus, if one of the two techniques identifies it
as UD, for the unique cycle applied. During dynamic analysis,
a defect is classified as UD for a given stimulus, if the defect
is UD by at least one of the two detection techniques for both
cycles of the two-cycle stimulus applied. By doing so, we
construct the PD defect list as shown in Fig. 6.

Transistor 

Detection

Rules

Defect 

Injection 

and 

Propagation

Initial

defect 

list

Reduced 

defect

list

PD defect 

list

Fig. 6. Detection Techniques flow.

1) Transistor Detection Rules: The input of this technique
is the initial defect list for a given SG. The rules are applied to
all the defects affecting each transistor in one shot, proceeding
with one transistor at a time. In order to do so, no further
action is needed on the SG and the rules directly use the
available transistor metadata contained in SG. The majority of
UD defects are identified and removed from the initial defect
list. A first reduced defect list can therefore be produced.
Some examples of transistor level rules are shown in Fig. 7. In
example a, since the transistor is active (i.e., G=1) the ShSD
has no impact. In example b, since transistor is inactive (i.e.,
G=0), OS and OD have no impact. In the last example c, if
G is equal to B, ShBG has no impact.

2) Defect Injection and Propagation: The input to this
technique is the reduced list of defects obtained after transistor
detection rules. The idea is to inject each defect of the reduced
list into the graph one at a time, and then propagate its effects
throughout the graph. If the output node is not affected by

ShSDG=1

Aa) b)

G=0

I

OD

OS

c)

G=0

ShBG

Fig. 7. Examples Transistor Detection Rules.

this propagation, then the defect is classified as UD. Once all
the defects are injected and propagated, all the identified UD
defects can be removed from the list and the final PD defect
list is obtained.

To inject a defect into the graph, we modify it by adding
a Resistor Device Node (RDN). Then, if there is a conflict
(i.e., two opposite logic values) between the two nets con-
nected through the resistor, the propagation is performed. It
is performed compartment by compartment, starting from the
compartments connected to RDN. A decision tree can be
applied to the current compartment of SG to verify if the
injected defect affects the current compartment or not:

• if a path connecting VDD to GND and containing only
active transistors exists, the defect affects the compart-
ment;

• if the output has a path with only VDD or only GND in
which all the transistor device nodes are in state ’A’, the
output is compared with the fault free one. If they are
equal the defect does not affect the compartment.

• if the output has not a path in which all the transistor
device nodes are in state ’A’ with both VDD and GND,
the defect affects the compartment.

If the current compartment is not affected, it means that
its output does not change with respect to the fault free
propagation, therefore the defect is classified as UD for the
cell and the propagation is stopped. Otherwise, the defect is
propagated to the next compartment where the output of the
current compartment becomes the input of the next one and so
on. Propagation continues until one of two conditions occur:
either we reach the output of the last compartment of the cell,
or the defect becomes UD in one of the compartments along
the propagation path.

IV. VALIDATION RESULTS

For validation purpose, TrUnDeL was applied to two li-
braries, P28 and C28, designed by STMicroelectronics and to a
SRAM bitcell case study. Next subsections detail the different
experiments performed.

A. P28 and C28 standard cell libraries

In experimental results on P28, TrUnDeL was applied to
932 combinational cells, resulting in 110,092 defects. By the
end of the analysis, 3,669,967 (s, df) pairs were processed
(1,215,792 static and 2,454,175 dynamic). Figure 8 highlights
the comparison between classical CA models (i.e., based on
analog SPICE simulations) and TrUnDeL. An important result
is that no misclassifications are generated by TrUnDeL (i.e,
D pair classified as UD). TrUnDeL is able to identify 66%



of UD (s, d) pairs. The remaining 34% are classified as PD.
These ambiguous cases are unable to be resolved by TrUnDeL
because a conflict arises in the cell and, when propagated,
it causes an unknown value at the cell output. Having an
unknown value on the cell output means that establishing
if these pairs are UD is impossible, so analog simulation is
needed to determine their status. This explains the gap (23%)
that can be observed when comparing the obtained results with
those achieved with classical CA models.

Focusing on the (s, d) pairs classified as UD (66%), 44.1%
were identified only by using the Transistor Detection Rules
technique, while the remaining 21.9% were identified by the
Defect Injection and Propagation technique. Using both the
detection techniques in sequence, TrUnDeL took about 5h,
using 1 CPU, to analyze the 932 cells of P28. The first
detection technique allows us to analyze the tuples more
efficiently because it analyzes all the defects of a transistor
simultaneously, while the second one analyzes each defect one
at a time. In fact, the same 66% of UD (s, d) pairs could be
reached by using only the Defect Injection and Propagation
technique, but this would be 30% slower in terms of CPU
time.

89.00%
66.00%

11.00%

34.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CA models TrUnDeL

CA vs TrUnDeL P28
(s, d) pairs

Undetectable Detectable Possibly Detectable

gap

44.1%

21.9%

Transistor 
Rules

Defect
Injection and
Propagation

23%

Fig. 8. Classical CA models vs TrUnDeL for P28 library cells.

Figure 9 shows the comparison between TrUnDeL and clas-
sical CA models for the C28 library. Here, 536 combinational
cells are analyzed, resulting in 119,088 defects and 4,545,684
(s, df) pairs (1,351,920 static and 3,193,764 dynamic). Also in
this case, no misclassification pairs are generated and 77.6%
of UD (s, df) pairs are identified by TrUnDeL with a gap of
14.8%.

The smaller gap and the greater number of UD (s, df) pairs
in C28 than P28 is explained by two reasons:

• In C28, cells are bigger than in P28. So, more (s, df)
pairs cannot propagate their effects in the cells with more
transistors, resulting to be UD at the end of the TrUnDeL
process.

• In C28, the bulk of every PMOS transistors is connected
to VDD. As a result, all ShBS defects of PMOS transis-
tors which the source is connected to VDD are classified
as UD, regardless of the stimulus applied. In P28, this
is not the case as bulk of every PMOS transistors is

92.40%
77.60%

7.60%
22.40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CA models TrUnDeL

CA vs TrUnDeL C28
(s, d) pairs

Undetectable Detectable Possibly Detectable

gap

48.7%

28.9%

Transistor 
Rules

Defect
Injection and
Propagation

14.8%

Fig. 9. Classical CA models vs TrUnDeL for C28 library cells.

connected to GND. The bulk of NMOS transistors are
connected to GND in both P28 and C28.

TrUnDeL, using Transistor Detection Rules and Defect Injec-
tion and Propagation detection techniques took about 10h to
analyze the 536 cells of C28 library, using 1 CPU. Using only
the second detection technique would be 30% slower also in
this case.

As an example to estimate the improvement, in CA model
generation time achieved with TrUnDeL, we can refer to
the experiments conducted on P28. Initially, we performed
the classical CA model generation based on analog SPICE
simulations on the 932 cells of P28, which took approximately
92 days and 5 hours using a single SPICE license on 1 CPU.
Next, we run TrUnDeL on the same cells of P28, and the CPU
time (using 1 CPU) was about 5 hours. TrUnDeL identified
66% of UD (s, d) pairs that were not analog simulated. Then,
analog SPICE simulations on the remaining 34% of PD pairs
(using 1 SPICE license), took approximately 33 days and 12
hours. Therefore, TrUnDeL + analog simulations on PD pairs
took around 1 month, resulting in a reduction in time by a
factor of 3 compared to the classical CA model generation.

B. SRAM bitcell case study

Memories are critical components in modern System-on-
Chips (SoCs). Considering the higher incidence of manufac-
turing defects in shorter node technologies, the testing and
diagnosis of these circuits becomes crucial for the overall
quality of SoCs [16]. A preliminary work that uses the CA
methodology to target these defects in SRAM bit-cells is
presented in [10]. Here after, we evaluate TrUnDeL on the 1-
bitcell SRAM case study to verify whether TrUnDeL’s output
is consistent with the bitcell CA model.

The bitcell with its defects is shown in Fig. 10. These
defects (i.e., df1-df7) are sensitized during write operations.
Consequently, BL, BLB and WL nets are considered to be
inputs, while S and SB nets are considered to be outputs in
the CA model of the bitcell. Table II shows CA model of the
bitcell obtained with analog SPICE simulations. In order to
generate the necessary stimuli to detect the considered defects,
a single SRAM bitcell surrounded by the precharge circuit, the



S SB

WL

BL BLB

df1

df2

df3
df4

P1

N1

N2 N3

df5
df6

df7

Fig. 10. SRAM bitcell with defects analyzed.

TABLE II
CA MODEL SRAM BITCELL WITH BITCELL STIMULI

BL BLB WL S SB df1 df2 df3 df4 df5 df6 df7
0 1 1 0 1 D D D UD UD UD UD
1 0 1 1 0 D UD UD D UD UD UD
R F 1 R F D D D D UD D D
F R 1 F R D D D D D UD UD

sense amplifier and the write driver circuit was considered.
The input signals of the circuit are DATA, WR EN (WRite
ENable), WL (Word Line), SA EN (Sense Amplifier ENable)
and Pch EN (Precharge ENable) while the output signals are
S, SB and SA O (Sense Amplifier Output). The stimuli able
to detect the seven defects in Fig. 10 were generated using an
Automatic Test Pattern Generator (ATPG), and they are shown
in Table III.

TABLE III
ATPG MEMORY STIMULI TO DETECT THE CONSIDERED DEFECTS.

Stimuli Data WR EN WL SA EN Pch EN S SB SA O
stimulus1 0 1 1 X 1 0 1 X
stimulus2 1 1 1 X 1 1 0 X
stimulus3 R 1 1 X 1 R F X
stimulus4 F 1 1 X 1 F R X

The purpose of this validation case study is to use the
stimuli obtained by the ATPG to identify the UD defects using
TrUnDeL on the SRAM bitcell. Then, TrUnDeL’s output,
shown in Table IV, is compared with the bitcell CA model,
shown in Table II.

TABLE IV
TRUNDEL’S OUTPUT ON A BITCELL.

Stimuli df1 df2 df3 df4 df5 df6 df7
stimulus1 PD PD PD PD PD UD UD
stimulus2 PD UD UD PD UD UD UD
stimulus3 PD PD PD PD PD PD PD
stimulus4 PD PD PD PD PD PD PD

TrUnDeL is consistent with bitcell CA model, as no mis-
classification occurs, like in standard cell cases. Additionally,
TrUnDeL is able to identify 25% of UD (s, d) pairs with a gap
of 5 pairs (i.e., pairs highlighted in gray in Table IV). These

experiments demonstrates that the proposed methodology is
suitable not only for standard cell libraries but also for SRAM
memories in generating effective CA models.

V. CONCLUSIONS AND PERSPECTIVES

A new methodology, called TrUnDeL, has been developed
to reduce the CA model generation time for standard cell
libraries. This methodology, based on graph theory, is able to
generate effective CA models without any misclassifications
compared to classical CA models generated by analog SPICE
simulations, on combinational cells. Moreover, we have expe-
rienced TrUnDeL on a SRAM bitcell case study. Compared
to existing CA models, our methodology is able to efficiently
generated CA models that will be helpful for SRAM intra-
cell test and diagnosis purposes. Next step will be to apply
and adapt TrUnDeL to sequential cells. Further improvements
will consist in reducing the gap by incorporating more tech-
nological information (e.g., transistor strength, timing, defect
size) as metadata in the graph.

REFERENCES

[1] M. G. Bardon et al., ”Extreme scaling enabled by 5 tracks cells: Holistic
design-device co-optimization for FinFETs and lateral nanowires,” 2016
IEEE International Electron Devices Meeting, San Francisco, CA, USA,
pp. 28.2.1-28.2.4.

[2] Kyoung Youn Cho et al., ”Gate exhaustive testing,” IEEE International
Conference on Test, 2005., Austin, TX, USA, 2005, pp. 7 pp.-777.

[3] S. Eichenberger et al., ”Towards a World Without Test Escapes: The Use
of Volume Diagnosis to Improve Test Quality,” 2008 IEEE International
Test Conference, Santa Clara, CA, USA, 2008, pp. 1-10.

[4] Z. Gao et al., ”Defect-Location Identification for Cell-Aware Test,” 2019
IEEE Latin American Test Symposium (LATS), Santiago, Chile, 2019,
pp. 1-6.

[5] P. Maxwell et al., ”Cell-aware diagnosis: Defective inmates exposed in
their cells,” 2016 21th IEEE European Test Symposium, Amsterdam,
Netherlands, pp. 1-6.

[6] Z. Gao et al., ”Application of Cell-Aware Test on an Advanced 3nm
CMOS Technology Library,” 2019 IEEE International Test Conference
(ITC), Washington, DC, USA, 2019, pp. 1-6.

[7] R. Guo et al., ”Efficient Cell-Aware Defect Characterization for Multi-
bit Cells,” 2018 IEEE International Test Conference in Asia (ITC-Asia),
Harbin, China, 2018, pp. 7-12.

[8] P. d’Hondt et al., ”A Learning-Based Methodology for Accelerating
Cell-Aware Model Generation,” 2021 Design, Automation & Test in
Europe Conference & Exhibition, Grenoble, France, pp. 1580-1585.

[9] F. Lorenzelli et al., ”Speeding up Cell-Aware Library Characterization
by Preceding Simulation with Structural Analysis,” 2021 IEEE European
Test Symposium (ETS), Bruges, Belgium, 2021, pp. 1-6.

[10] X. Xhafa et al., ”On Using Cell-Aware Methodology for SRAM Bit Cell
Testing,” 2023 IEEE European Test Symposium, Venezia, Italy, pp. 1-4.

[11] J. P. Hayes, ”An Introduction to Switch-Level Modeling,” in IEEE
Design & Test of Computers, vol. 4, no. 4, pp. 18-25, Aug. 1987.

[12] R. E. Bryant, ”A Survey of Switch-Level Algorithms,” in IEEE Design
& Test of Computers, vol. 4, no. 4, pp. 26-40, Aug. 1987.

[13] A. Rjoub and A. B. Alajlouni, ”Graph modeling for Static Timing
Analysis at transistor level in nano-scale CMOS circuits,” 2012 16th
IEEE Mediterranean Electrotechnical Conference, Yasmine Hammamet,
Tunisia, 2012, pp. 80-83.

[14] Kuang-Wei Chiang and Z. G. Vranesic, ”On Fault Detection in CMOS
Logic Networks,” 20th Design Automation Conference Proceedings,
Miami Beach, FL, USA, 1983, pp. 50-56.

[15] James Chien-Mo Li and E. J. McCluskey, ”Diagnosis of resistive-open
and stuck-open defects in digital CMOS ICs,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no.
11, pp. 1748-1759, Nov. 2005.

[16] S. Borkar et al., “Microarchitecture and design challenges for gigascale
integration,” in MICRO, vol. 37, pp. 3–3, 2004


