
HAL Id: lirmm-04738361
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04738361v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Structural Testing Approach for SRAM Address
Decoders using Cell-Aware Methodology

Xhesila Xhafa, Eric Faehn, Patrick Girard, Arnaud Virazel

To cite this version:
Xhesila Xhafa, Eric Faehn, Patrick Girard, Arnaud Virazel. A Structural Testing Approach for
SRAM Address Decoders using Cell-Aware Methodology. DFT 2024 - IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oct 2024, Harwell, United
Kingdom. In press. �lirmm-04738361�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04738361v1
https://hal.archives-ouvertes.fr

A Structural Testing Approach for SRAM Address
Decoders using Cell-Aware Methodology

X. Xhafa1, E. Faehn2, P. Girard1, A. Virazel1

1LIRMM - University of Montpellier/CNRS
Montpellier, France

xxhafa, girard, virazel@lirmm.fr

2STMicroelectronics
Crolles, France

eric.faehn@st.com

Abstract—Testing memory circuits is crucial to ensure the
quality of a System on Chip (SoC) as technology nodes shrink,
making circuits more prone to defects and reliability issues at
nanometer scales. This paper presents an efficient testing flow
based on an adaptation of the Cell-Aware (CA) test concept
for the testing of memory address decoders. With the use of
an Automatic Test Pattern Generator (ATPG), two different
decoder architectures are tested for stuck and transition faults,
addressing both intra and inter-cell defects. In this work, we
show that this methodology results in a 100% intra and inter-
cell defect coverage for both Transition Faults (TFs) and Stuck-At
Faults (SAFs). To compare our results with existing solutions, the
MATS++ algorithm has been used. A 51% improvement in TFs
and 8% improvement in SAFs test coverages have been obtained
through our Cell-Aware methodology.

Index Terms—Memory testing, Structural testing, SRAM ad-
dress decoders, Cell-Aware models, ATPG

I. INTRODUCTION

Recent applications of Integrated Circuits (ICs) require an
extensive amount of data to be stored and processed. There-
fore, memory blocks now occupy a significant proportion,
often up to 90%, of the System-on-Chip (SoC) area [1]. As
the technology node shrinks, the memory density has increased
significantly. However, with smaller transistor sizes and shorter
proximities in interconnects due to higher densities, memories
are now increasingly susceptible to defects and reliability
challenges [2]. Thus, the testing of advanced and newly
emerging memories has become a critical step in ensuring the
quality and functional safety of manufactured ICs.

The most prominent memory testing approach is based
on functional testing (i.e., March algorithms) [3]. However,
with the increasing complexity of circuit designs, including
emerging memory technologies such as MRAM and RRAM,
functional testing becomes impractical due to high develop-
ment costs and insufficient defect coverage to meet quality
standards [4]. To address this, a shift from functional to
structural testing is proposed in this paper. Structural testing
relies on precise defect location and its impact on the input-
output relationship, reducing fault modeling abstraction from
the functional to transistor level, resulting in fewer test escapes
and higher defect coverage. One implementation of structural
testing is the Cell-Aware (CA) methodology, which addresses

intra-cell defects in standard cells to reduce test escapes
not caused by interconnect defects [5]. An initial flow for
adapting CA to memory testing has been presented in [6] and
applied to an SRAM bit cell, tailored for the memory array
but insufficient for ensuring maximum coverage of defects
in blocks outside the array. The SRAM memory periphery,
particularly address decoders that comprise a large number of
transistors and interconnects, is highly prone to defects thus
contributing to overall test escapes [7], [8].

In this paper, we address the limitations of the aforemen-
tioned flow and propose an improved version that is adapted
to testing address decoders. We introduce a systematic and
comprehensive approach for SRAM address decoder testing
that is based on the CA methodology and aims to achieve
maximum defect coverage. The defects considered are located
on interconnections and at the transistor level in each standard
cell that composes the address decoders. A 4x4 array SRAM
architecture, including its periphery, has been used as case
study. The results are compared and validated with a functional
approach, the MATS++ algorithm that has been developed
to target address decoder faults with minimal complexity.
Our methodology has demonstrated a notable improvement
in defect coverage, achieving a 4% increase in SAFs and a
49% improvement in TFs fault coverages.

The paper is organized as follows. In Section II, the modi-
fied flow for address decoder testing using the CA methodol-
ogy is introduced. The structural testing of address decoders
is described in Section III. The obtained results and validation
are given in Section IV. Finally, conclusions and perspectives
are drawn in Section V.

II. CELL-AWARE METHODOLOGY
FOR ADDRESS DECODER TESTING

The flow presented in [6] introduces a preliminary adapta-
tion of the Cell-Aware (CA) methodology for memory testing
but is limited to detecting intra-cell defects in the SRAM bit-
cell, excluding the memory periphery. Here, we expand this
flow to test address decoders in an SRAM architecture (see
Fig. 1).

The CA methodology, initially designed for digital IC
testing, involves generating CA models for each standard cell

within a digital circuit. This process starts with identifying
potential intra-cell defects, such as transistor-level shorts and
opens, and layout-based defects. Defects are injected into the
circuit, and SPICE simulations are run to observe deviations
in output signals. Detected defects are associated with input
patterns, and this information is compiled into a CA model,
which includes both statically and dynamically detected de-
fects. These models are then used by an Automatic Test Pattern
Generator (ATPG) to produce patterns for testing inter-cell and
intra-cell defects in the overall IC.

A 4x4 memory array designed using a 28nm FDSOI tech-
nology that includes the memory array, address decoders,
sense amplifier, write driver and pre-charge circuits is used as a
case study. Following the initial flow, the memory is described
at the gate level (structural Verilog) to generate CA models.
These models, along with the gate-level structure, are used by
the ATPG to generate patterns for detecting interconnect and
cell-aware defects, considering SAF for static defects and TF
for dynamic defects (1st ATPG run, see Fig. 1).

The address decoders are purely composed of digital gates.
Hence, when the decoder is tested on its own, a test coverage
of 100% is achieved. However, when used in the full memory
architecture a considerable percentage of the defects located
in the decoder are classified as UnDetectable by the ATPG.
The UD defects are analyzed and we have observed that for
these defects dynamic patterns that address more than one cell
in the memory array are necessary. To address this issue, the
proposed solution is to map the effects of the UD defects into
the memory array (Decoder to Memory Array defect mapping,
see Fig. 1). Since the row decoder controls the activation of
Word Lines (WLs), only one column of the memory array is
sufficient for this task. In order for the ATPG to comprehend
the information regarding the switching of WLs that allows
two cells to be addressed, a new CA model is generated for the
first column (CLM0) of the array. The idea is to emulate the
detection conditions so that the ATPG can generate structural
patterns. This step will be further detailed in Section III.
To obtain the additional patterns after the CLM0 CA model
generation, another ATPG run is necessary (2nd ATPG run, see
Fig. 1). Finally, the flow ends by merging all the test patterns
and calculating the test coverage. The test coverage is a ratio
of detected defects over the total number of defects.

By using the CA methodology as a structural test approach
for address decoders we therefore inherit the advantages
that come with CA testing. Through CA models, the exact
location information of intra-cell defects is available, hence
also contributing to the diagnosis process [5].

III. STRUCTURAL TESTING OF ADDRESS DECODERS

A. CA model generation for row decoder cells

CA models need to be generated for each module type in
the decoder. In this case, the standard cells from the 28nm
technology library have been used for the design. A CA
model is generated for NOR and AND gates, using the steps
mentioned in the CA model generation flow (c.f. Section
II). The CA model files contain all the information on the

Hierarchical
SPICE netlist

1st ATPG run1st ATPG run

Verified gate-level
netlist

CA models + FMs

Spice to Verilog
translation

Spice to Verilog
translation

CAM generationCAM generation

Test
patterns

Decoder to Memory
Array defect

mapping

Decoder to Memory
Array defect

mapping

Column CA model
+ FMs

Module level SPICE
simulations

Module level SPICE
simulations

UD defect
list

2nd ATPG run2nd ATPG run

Additional Test
patterns

Test
Coverage (%)

Global test
patterns

Fig. 1: Address Decoder Test Flow using a CA methodology

defect type and its location within the cell, as well as the
detection tables with the necessary patterns to detect them.
Defects that have equivalent detection conditions are classified
as equivalent. When generating CA models, non-resistive open
and short defects are considered, although the CA test can
also address resistive defects [9]. Note that each defect is
considered separately when running the SPICE simulations.

VDD

Z

A

B

A B
TP1 TP2

TN1

TN2

TP3

TN3

D2

D3

D1

D6

D8

D5

D4 D7

(b) AND

A

A

B

B

Z

VDD

D3

TN2TN1

TP2

TP1

D6
D2

D4

(a) NOR

D1D5

Fig. 2: The (a) NOR and (b) AND schematics including a
subset of the injected defects

Depending on their detection conditions, the defects are
classified and organized in static and dynamic tables. For
demonstration purposes, we will show only one example for
each of the tables. The location and type of the given defects in
Tables I and II in the NOR gate and the AND gate are shown
in Fig. 2. The static table of the AND CA model is shown in
Table I. As seen under each defect name, the notation “1” is
used to indicate that the pattern detects the defect, and a “0”
indicates that the defect is not detected. Note that, in the static
table, each pattern corresponds to at most one stimulus.

The dynamic table of the NOR CA model is shown in Table
II. In the latter, the ‘R’ notation indicates a rising transition

Inputs Output Defects
A B Z D1 D2 D3 D4 D5 D6 D7 D8

Pt.1 0 0 0 0 0 0 1 1 1 1 0
Pt.2 0 1 0 1 0 1 1 1 1 0 0
Pt.3 1 0 0 0 0 0 0 1 1 1 1
Pt.4 1 1 1 1 1 0 1 1 0 1 0

TABLE I: Static detection table of AND

from logic ‘0’ to logic ‘1’. On the contrary, the ‘F’ notation
indicates a falling transition from logic ‘1’ to ‘0’. To better
understand Table II we can analyze pattern 1. The ’0R-F’
input-output pattern can detect defects D3 to D5. This means
that a logic ’0’ on input A and a rising transition on input
B of the NOR gate can cause the output to deviate from its
golden value, in the presence of D3, D4, or D5.

Inputs Output Defects
A B Z D1 D2 D3 D4 D5 D6

Pt.1 0 R F 0 0 1 1 1 0
Pt.2 R 0 F 0 1 0 0 1 1
Pt.3 0 F R 1 0 0 0 0 0

TABLE II: Dynamic detection table of NOR

B. Decoder to Memory Array Defect Mapping

In a memory circuit, the effect of each inter and intra-cell
defect needs to be propagated from the defective net/s located
in the decoder to the output of the memory, which in this
case is the output of the Sense Amplifier (SA) circuit. It is,
therefore, possible that the propagation of certain defects can
be hindered by other memory blocks. We have observed that
a part of the open defects, predominantly in the NOR gates,
are not detected using only the information provided by the
detection tables. This is due to the fact that while one defect
can cause one world line to have a falling TF, the access from
the targeted memory cell to the output is blocked. Therefore,
the defect is not propagated.

To better understand this issue, we can analyze defect D3,
which is an open defect located at the source net of transistor
TN2 of a NOR gate (see Fig. 2). After a SPICE simulation
with the injected defect, we observe the following detection
conditions:

• W0 in address <A0, A1> = <0, 0> : WL0 is active
• W1 in address <0, 1>: WL2 is active. Due to a falling

transition delay caused by D3, WL0 remains active during
this W1 operation

• Read in address <0, 0> : ‘0’ is expected yet ‘1’ is read.
The (A, B) inputs of the defective NOR gate correspond to
the row decoder inputs <A0, A1>. For D3 detection, as in the
SPICE simulation, the decoder address switches from <0, 0>
to <0, 1>. In this memory architecture, the delay in WL0’s
falling transition is blocked by the SRAM bit cell’s access
transistor primitive, preventing defect propagation (see Fig.
3). To address undetectable (UD) defects, these defects are
mapped into a new CA model allowing to control multiple
WLs. Since the row decoder activates the WLs, only one

memory column (CLM0) is needed for this CA model. The
new CA model is generated without SPICE simulations, using
existing CA model information for NOR gates.

A0A1

0

0→1

D3

0

1→0
0→1

1

1
1→0

0→1

CA model

S0

S2

W
L

E
N

WL0

WL2

1→0

B
L

0

B
L

B
0

NOR1

NOR2

Fig. 3: Propagation of D3

An example of the CLM0 CA model dynamic table is given
in Table III. In this table the pattern that detects the previously
analyzed D3 in NOR1 is shown. Since the defect is synthesized
by two consecutive write operations, the observable outputs
are the inner nodes of the bit cells of CLM0 that contain the
written value in the cell. This pattern detects all the defects
detected by Pt.1 (see Table II) in the NOR dynamic table. The
same procedure is followed for all UD defects in all of the
gates of the row decoder.

Inputs Outputs Defects
WL0 WL1 WL2 WL3 BL0 BLB0 S0 S1 S2 S4 D3,D4,D5

F 0 R 0 R F 0 0 R 0 1

TABLE III: Dynamic table of the CLM0 CA model

IV. RESULTS AND VALIDATION

The CA models obtained are utilized by ATPG to generate
test patterns for inter and intra-cell defects (SAF and TF
models) in the row decoder of a 4x4 SRAM architecture.

A. Static Faults

The SAF detection process in the decoder involves three
steps. First, the ATPG generates circuit-level patterns to detect
SAFs in interconnections. These patterns are saved, and then,
after adding Static Cell-Aware (SCA) defects, a fault simula-
tion is run using the initial patterns to check defect coverage. If
coverage is below 100%, another ATPG run generates patterns
targeting undetected intra-cell defects. For the SAF model, 112
inter and intra-cell defects are considered. After both ATPG
runs, 12 patterns are generated: 8 for W1R1 operation on
CLM0 and 4 for detecting D8 of the AND cell, which causes
an SAF1 on each WL detected by keeping the WLEN signal
at level ‘0’. The ATPG generates four read patterns while the
decoder is inactive, in the presence of D8, the SA reads an
unexpected value. This structural pattern is noted as R EN0.

After the two ATPG runs, the defect coverage is 96%, with
four undetected D3 defects on each AND gate. This defect,
detected with a ‘01’ input (see Table I), results in an inactive
output for each corresponding WL. Similar to an open defect,
D3 is mapped to the CLM0 CA model. Following this third
step, the SAF defect coverage reaches 100%.

B. Transition Faults

For the TF model, 92 inter and intra-cell defects are consid-
ered. The pattern generation process for TF detection is similar
to that for SAFs. First, inter-cell defects are targeted using
4 static patterns to write values in each cell of CLM0. The
initial ATPG run produces 14 transition patterns (28 stimuli).
Figure 4 (a) shows these patterns and corresponding memory
operations in terms of row decoder inputs <A0, A1>. Next,
intra-cell defects from the Dynamic Cell-Aware (DCA) table
are added, and a fault simulation is run using these patterns.
In the second run, no additional patterns are generated and a
defect coverage of 60% is achieved. As discussed in Section
III, a part of NOR intra-cell defects that correspond to open
defects causing a falling TF at the WL-s, are not detected.
For this reason, the defects are mapped in the CA model of
CLM0. The procedure explained in Section III-B is followed
and using a third ATPG run the defect coverage is increased
to 100%. In Fig. 4 (c), the lined arrow indicates the W0W1
operations from one address (e.g. ‘00’) to the other (e.g. ‘01’).
The curved lines indicate the read operation in the initial
address (e.g. ‘00’). This step requires an additional 20 stimuli,
resulting in a total of 54 stimuli needed for all TF detection.
In Fig. 4, the obtained defect coverage cumulative percentage
is indicated after each ATPG run. By combining the three
graphs (a), (b) and (c) in Fig. 4, we observe that the obtained
transition patterns cover the entire graph.

00

01

11

10

00

01

11

10

(a) (b)

: R : R_EN0 : W0-1

Fig. 4: Address orders of TF detection patterns for each ATPG
run, where in (a) DC = 60%, (b) DC = 100%.

C. Comparison Results

To compare functional and structural approaches for testing
the address decoder, the MATS++ algorithm is chosen as a
reference due to its ability to detect all AFs while maintaining
a low complexity [10]. The March elements in MATS++ were
translated to ATPG-compliant patterns for fault simulations in
our Verilog memory description, corresponding to write and
read operations in the specified address order. Four fault sim-
ulations for SAFs (W0R0 and W1R1 operations in ascending
and descending orders) yielded a 92% defect coverage for both
intra- and inter-cell defects. For TFs, two simulations using
transition patterns (⇑ (r0w1);⇓ (r1w0r0)) resulted in a 51%
defect coverage. The undetected defects are analyzed and we
have observed that the defects are related to the falling TF and
SAFs in the WLEN, as well as falling TFs in each WL.

Table IV shows ATPG results for both functional (MATS++)
and structural (CA methodology) approaches. The MATS++
algorithm’s complexity is 6x16 for the 4x4 SRAM case study
architecture. The number of patterns necessary to detect all de-
fects using the CA approach is less than 96. This is because the
ATPG considers only CLM0 when targeting the generation of
patterns for row decoder defects. We have observed that the 52
stimuli necessary to detect TFs include the 12 necessary static
stimuli for the detection of SAFs. For validation purposes, a
3-bit decoder in an 8x4 SRAM design has also been tested
using both methodologies. The results are shown in the two
last lines of Table IV. Similar results have been obtained for
the case of the 3-bit decoder as well, proving the feasibility
and efficiency of our CA test methodology.

ATPG MATS++
SAF+SCA TF+DCA SAF+SCA TF+DCA

2-bit Dec. 100% 100% 92% 51%
of patt. 12 52 6x16 = 96
3-bit Dec. 100% 100% 93.44% 49.2%
of patt. 26 100 6x64 = 384

TABLE IV: Proposed CA approach vs. MATS++

V. CONCLUSION

This study presents a modified CA methodology for struc-
turally testing of address decoders in SRAM architecture. By
using a custom CA model to map UD defects causing 2-cell
dynamic faults onto the memory array, we achieved a complete
defect coverage for both inter- and intra-cell defects in address
decoders. Comparing this with the MATS++ algorithm shows
significant improvement using CA methodology with minimal
test patterns. Future work will implement this methodology on
the entire SRAM memory architecture, generating CA models
for all memory blocks to compare with more complex March-
like algorithms targeting static and dynamic defects.

REFERENCES

[1] IRDS, “International roadmap for devices and systems,” in
https://irds.ieee.org/editions/2020, 2020.

[2] S. Borkar et al., “Microarchitecture and design challenges for gigascale
integration,” in MICRO, vol. 37, pp. 3–3, 2004.

[3] A. J. Van de Goor and Z. Al-Ars, “Functional memory faults: a
formal notation and a taxonomy,” in Proceedings 18th IEEE VLSI test
symposium, pp. 281–289, IEEE, 2000.

[4] P. Girard et al., “A survey of test and reliability solutions for magnetic
random access memories,” Proceedings of the IEEE, vol. 109, no. 2,
pp. 149–169, 2021.

[5] F. Hapke et al., “Cell-aware test,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1396–1409, 2014.

[6] X. Xhafa et al., “On using cell-aware methodology for sram bit cell
testing,” in 2023 IEEE European Test Symposium (ETS), pp. 1–4, 2023.

[7] S. Hamdioui, Testing static random access memories: defects, fault
models and test patterns, vol. 26. Springer Science, 2004.

[8] A. Bosio et al., Advanced test methods for SRAMs: effective solutions for
dynamic fault detection in nanoscaled technologies. Springer Science
& Business Media, 2009.

[9] F. Hapke et al., “Cell-aware analysis for small-delay effects and pro-
duction test results from different fault models,” in International Test
Conference, pp. 1–8, 2011.

[10] A. J. Van de Goor, Testing semiconductor memories: theory and practice.
John Wiley & Sons, Inc., 1991.

