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A B S T R A C T
This paper presents a novel approach for controlling parallel kinematic manipulators (PKMs) using a
feedforward augmented model reference adaptive control (MRAC) scheme. The original direct MRAC
approach lacks the knowledge of the dynamic model and does not ensure boundedness of the feedback
gains. To overcome these limitations, our proposed approach incorporates a feedforward dynamic
term to enhance the tracking performance, and a projection operator to guarantee the boundedness
of the feedback gains. The proposed controller is validated through real-time experiments using a 6-
degree-of-freedom (DOF) PKM, and is compared with the original direct MRAC and some state-
of-the-art controllers in various scenarios, including nominal and robustness cases. The obtained
experimental results demonstrate the superiority of the proposed approach in terms of trajectory
tracking performances and adaptation efficiency.

1. Introduction
Due to their innovative design, parallel kinematic manip-

ulators (PKMs) offer numerous advantages in comparison
with their serial counterparts [1]. These benefits encompass
remarkable precision, substantial velocity and acceleration
capabilities, and a remarkable payload-to-weight ratio [1].
Consequently, they stand as an optimal choice for a variety
of industrial applications, including machining [2], micro-
positioning [3], and motion simulation [4]. Furthermore,
they have garnered increasing interest within both scientific
and industrial communities [5]. Topics of exploration may
include mechanism optimization [6], kinematic and dynamic
modeling [7], kinematic calibration [8], as well as control
design [9, 10, 11].

However, the formulation of effective control schemes
assumes paramount importance in the operation of PKMs,
given their highly nonlinear dynamics, uncertainties, and
the presence of time-varying parameters [12]. Additionally,
certain PKMs might behave challenges due to actuation
redundancy [13], and the closed kinematic chain structure
can potentially raise singularity issues [14]. The combi-
nation of these factors renders the task of control design
for PKMs notably intricate [15]. Besides, PKMs are usu-
ally used for some applications, where trajectory tracking
with high precision and micrometer-scale positioning are
highly required, making the design of an efficient controller
strongly recommended [3].

The existing literature includes a wide range of pro-
posed control solutions dedicated to PKMs, where many of
them have been both applied and successfully tested. Some
control methodologies, such as PID-based controllers [16],
are designed without the necessity of the robot’s dynamic
model knowledge. These controllers mainly rely on joint
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measurements and are often considered as non-model-based
control approaches. While PID-based feedback controllers
can offer satisfactory tracking performance under typical
operational conditions, they may encounter issues related to
stability or tracking performance when faced with uncertain-
ties or external disturbances. This prompted the development
of advanced control techniques to enhance the tracking
performance of PID controllers [17, 18, 19]. Furthermore,
the constant feedback gains may be designed as nonlin-
ear gains [20]. The application of variable nonlinear feed-
back gains has demonstrated superior tracking performance
compared to their constant counterparts, thereby conferring
better disturbance rejection capabilities [20]. To strengthen
the robustness of non-model-based control strategies, the
integration of robustness aspects has proven its utility in
improving tracking performance, particularly in the presence
of uncertainties and external disturbances [21]. As example,
the formulation of the RISE (Robust Integral Sign of the
Error) feedback control strategy [22], which can also be
further enhanced by considering nonlinear feedback gains
[23].

To counteract high non-linearities and dynamic effects,
these non-model-based controllers can be enhanced by in-
corporating the robot’s dynamic model. This model can be
introduced through either a computed torque formulation
[24] or a feedforward formulation [25, 26]. Nevertheless,
the efficacy of the computed torque formulation can be
diminished by internal disruptions, including measurement
noises. Furthermore, the presence of the Jacobian matrix in
the model compensation, makes control inputs theoretically
infinite in the presence of singularities within the workspace
[14]. The feedforward approach can provide better robust-
ness by replacing measured signals with desired ones and
segregating feedback gains from the dynamic compensation.
However, it can also lead to poor performance due to a
false compensation in the presence of large uncertainties or
inaccurate modeling [27].
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The effectiveness of the computed torque formulation
can be further enhanced by incorporating robustness control
terms, such as first-order Sliding Mode Control (SMC) [28].
This controller is known for its robustness against uncertain-
ties and external disturbances, achieved through the incorpo-
ration of a discontinuous term. However, it is worth noting
that this discontinuous term may lead to a chattering phe-
nomenon [29]. To mitigate this issue, an advanced approach
known as higher-order sliding mode control, such as the
super-twisting algorithm, can be adopted [27]. To address
the convergence challenges associated with the first-order
sliding mode control, a Terminal Sliding Mode Control (T-
SMC) strategy [30] can be used. This approach ensures
finite-time convergence, overcoming the asymptotic conver-
gence limitations of the first-order sliding mode control.

The dynamic model of the controlled system may also be
used to design optimal control schemes. These approaches
have been developed from a dynamic optimization problem
that allows to generate optimal control inputs. The basic ap-
proach of this class is the Linear Quadratic Regulator (LQR)
[31]. This controller can be augmented by an estimation filter
using a locally optimal estimation, the resulting controller is
known as Linear Quadratic Gaussian (LQG) controller [32].
Besides, the idea behind Model Predictive Control (MPC) is
to optimize future control inputs through a robot dynamic
model-based predictor [33]. However, when dealing with
nonlinear models, predictive control might need a significant
amount of computation burden.

An alternative approach to address the issue of large
uncertainties is to design adaptive control schemes [34]. The
objective here is to render the controller capable of adapting
itself to variations within the system and its environment.
This target can be accomplished by estimating the dynamic
parameters and subsequently adapting the feedforward term
[35]. The resulting design allows for real-time estimation
and compensation of uncertainties. However, the process
of adjusting the adaptation gains might need a significant
amount of time. Additionally, for these controllers, the possi-
bility of oscillations in the estimated parameters may appear
for high adaptation gains, potentially leading to instability.
Adaptive controllers can alternatively be developed without
using the dynamic model. These controllers are designed
especially in cases where obtaining or accurately charac-
terizing the dynamic model is challenging. The objective
behind this control design is to be adaptable to system
variations and uncertainties without the need of estimating
its parameters. One example of such design is Model Ref-
erence Adaptive Control (MRAC), which is based on stable
reference model response [36]. The goal is to achieve the
same behavior as a reference model. Another example is
the 𝐿1 Adaptive Control, which is an extension of MRAC
including a state predictor and a low-pass filter applied to
the control input [37]. Besides, neural networks can serve
as potential tool for intelligent-based adaptive controllers
[38, 39]. Their application holds particular significance in
addressing uncertain nonlinear systems [38]. However, it is
worth noting that such controllers may not account for the

physical nature and structure of uncertainties and external
disturbances.

Since MRAC is typically classified as a non-model-
based control scheme, our approach seeks to harness the
advantages of modeling and identification processes by com-
puting a precise dynamic model. Accordingly, our study
introduces a novel enhancement to the direct MRAC scheme
through the incorporation of the robot’s inverse dynamic
model. This augmentation aims to design a comprehensive
controller applicable to any PKM, while effectively compen-
sating for the inherent dynamic effects in the control law.
The resulting controller consists of two parts. The first one
is a feedforward term derived from the robot’s inverse dy-
namic model [36]. This term serves to compensate for high
non-linearities and dynamic effects, thereby improving the
tracking performance and adaptation efficiency. The second
part is a non-model-based feedback term, characterized by
adaptive feedback gains. These gains are designed to ensure
a stable dynamic behavior aligned with a predefined refer-
ence model, to compensate for unmodeled phenomena, and
residual errors. Additionally, the feedback gain adaptation
laws are improved by incorporating a projection operator to
prevent excessive gain values [37]. The main contributions
of this paper are as follows:

• Design of a novel adaptive controller by integrating
model-based feedforward compensation into MRAC
control scheme.

• Enhanced adaptation mechanism by considering the
projection operator, to ensure the boundedness of the
feedback gains while guaranteeing fast adaptation.

• Exponential stability of the resulting closed-loop dy-
namics proved using Lyapunov arguments. The mo-
tivation behind this study is the novel design of the
proposed controller, which incorporates a feedforward
term and uses projection operators in one control
solution.

As an application, and to demonstrate the efficiency and
robustness of the proposed control scheme, it has been
implemented through real-time experiments on a 6-DOF
parallel kinematic manipulator (FOEHN robot). The rest of
the paper is structured as follows. In Section 2, the structure
along with the kinematic and dynamic modeling of the PKM
testbed (FOEHN robot) are discussed. Section 3 provides a
detailed presentation of the proposed control solution with
a full stability analysis of the resulting closed-loop system.
Section 4 presents the obtained experimental results. Finally,
in Section 5, concluding remarks are provided, along with a
discussion of potential future research directions.

2. Robot Description and Modeling
In this section, FOEHN parallel robot, a Gough-Stewart

platform is described along with its mechanical structure.
Then, its kinematic and dynamic models are detailed.
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Figure 1: Virtual three-dimensional view of FOEHN 6-DOF
parallel robot.

2.1. Robot description
A Gough-Stewart platform is a 6-DOF parallel kinematic

manipulator, consisting of six independently actuated legs
[40]. Its movement is generated by controlling the lengths
of the six legs, allowing the moving platform of the robot
to be manipulated. It offers several advantages, such as
high accuracy, high repeatability and stiffness, making it a
versatile tool for various applications, like motion simulation
and micro-positioning [40].

FOEHN is a non-redundant Gough-Stewart platform,
manufactured by the company SYMETRIE (cf. Figure 1 for
illustration). It is the R&D Hexapod of the company and
is designed as a special version of the MISTRAL Hexa-
pod. With a maximum payload capacity of 500 𝑘𝑔, FOEHN
features six independently actuated legs powered by direct
current (DC) motors.
2.2. Kinematics

The relationship between the joint and Cartesian coordi-
nates is known as the kinematic model [41]. For the Gough-
Stewart platform, this model gives the relationship between
the lengths of the legs and the Cartesian coordinates of the
moving platform. Let us consider a 6-DOF coordinate vector
𝐱 = [𝑥 𝑦 𝑧𝜙 𝜃 𝜓]𝑇 ∈ ℝ6 representing the position and ori-
entation of the moving platform in the operational reference
frame 𝑅0 (see Figure 1). Also, let us consider another 6-
DOF coordinate vector 𝐪 = [𝑞1 ⋯ 𝑞6]𝑇 ∈ ℝ6 representing
the lengths of the six legs. The six points 𝐚𝐢, 𝑖 = 1, 2, ..., 6
are the position coordinate vectors in the reference frame
𝑅0 of the attachments between the fixed base and the robot
legs. For the moving platform, the attachment points are
represented by 𝐛𝐢, 𝑖 = 1, 2, ..., 6, which denote the position
coordinate vectors of these points in the moving platform
reference frame. The inverse kinematic model giving the
vector 𝐪 in terms of the vector 𝐱 is expressed as follows [40]:

𝑞𝑖 = ‖𝐏 + 𝐑𝐛𝑖 − 𝐚𝑖‖, 𝑖 = 1, 2, ..., 6 (1)

where 𝐩 = [𝑥 𝑦 𝑧]𝑇 ∈ ℝ3 is the position of the moving
platform in the operational reference frame. 𝐑 ∈ ℝ3×3 is
its rotation matrix. The symbol ‖.‖ denotes the standard
Euclidean norm. Furthermore, for the description of the
transformation between the joint and the Cartesian spaces
velocities, the differential kinematic model can be used [5].
This model can be expressed as follows:

𝐪̇ = 𝐉𝐱̇ (2)
where 𝐱̇ ∈ ℝ6 is the vector of Cartesian velocities, 𝐪̇ ∈ ℝ6

is the vector of joint velocities and 𝐉 ∈ ℝ6×6 is the Jacobian
matrix expressed by:

𝐉 =
⎡

⎢

⎢

⎣

𝐬𝟏𝑇 (𝐑𝐛𝟏 ∧ 𝐬𝟏)𝑇
⋮ ⋮
𝐬𝟔𝑇 (𝐑𝐛𝟔 ∧ 𝐬𝟔)𝑇

⎤

⎥

⎥

⎦

(3)

where 𝐬𝐢 ∈ ℝ3, 𝑖 = 1, 2, ..., 6 is the nominal vector as-
sociated to the 𝑖𝑡ℎ robot’s leg, and the symbol ∧ denotes
the cross product of two vectors. This differential kinematic
relationship is also used to convert the leg forces 𝐟𝐥 into
the forces and moments acting on the moving platform 𝐟𝐩,
through the Jacobian matrix as, 𝐟𝐩 = 𝐉𝑇 𝐟𝐥 [2]. In the case
of PKMs, the forward kinematic model is often solved with
numerical methods [42].
2.3. Dynamic model

In order to accurately describe the dynamics of FOEHN,
a dynamic analysis is conducted using the Euler-Lagrange
formulation. This analysis is formulated in both joint and
mobile platform spaces, resulting in two separate dynamic
equations, and it is compatible with many PKM architec-
tures. The final dynamic model of the robot is obtained by
combining these two dynamic equations. In order to reduce
the complexity of the model, the following assumptions can
be considered:

• Assumption 1: The effects of elastic phenomena, at
the leg and mobile platform levels, are neglected
thanks to the materials used in the design.

• Assumption 2: The passive universal joints of the
robot are designed for optimal actuation performance,
allowing to neglect the friction effects in these joints.
For the active joints, both Coulomb and viscous fric-
tion effects are considered, as they are the most signif-
icant [43].

• Assumption 3: Since the movements of the legs are
slow compared to those of the mobile platform, and
the actuation occurs at the leg level, their dynamics
have been neglected.

The dynamic model of the platform represented as wrench
vector 𝐟𝐩 of the forces and moments applied by the legs
onto the moving platform composed of (i) the inertial forces,
(ii) the Coriolis and centrifugal forces, and (iii) the gravity
vector:

𝐟𝐩 = 𝐌𝐩(𝐱)𝐱̈ + 𝐂𝐩(𝐱, 𝐱̇)𝐱̇ +𝐆𝐩(𝐱) (4)
Fitas et al.: Preprint submitted to Elsevier Page 3 of 15



A Novel Feedforward Extended Model Reference Adaptive Control of PKMs

where 𝐟𝐩 is the wrench vector of the legs acting on the plat-
form, 𝐱̈ ∈ ℝ6 is the Cartesian acceleration vector, 𝐌𝐩(𝐱) ∈
ℝ6×6 is the moving platform mass matrix, 𝐂𝐩(𝐱, 𝐱̇) ∈ ℝ6×6

is its Coriolis and centrifugal matrix, and 𝐆𝐩(𝐱) ∈ ℝ6 is
its gravitational force vector. The associated torque contri-
bution of the resulting force 𝐟𝐩, obtained using the Jacobian
matrix, is expressed as follows:

𝚪𝐩 = 𝑘𝑓𝐉−𝑇
(

𝐌𝐩(𝐱)𝐱̈ + 𝐂𝐩(𝐱, 𝐱̇)𝐱̇ +𝐆𝐩(𝐱)
) (5)

where 𝑘𝑓 is the conversion gain between the force applied by
the leg and the motor torque. The actuator dynamic model
can be expressed as follows:

𝚪𝐦 = 𝑘𝑓
(

𝑘𝛼𝐈𝐌𝐪̈ + 𝐅𝐯𝐪̇ + 𝐅𝐬𝑠𝑖𝑔𝑛(𝐪̇)
) (6)

where 𝐪̈ ∈ ℝ6 is the joint acceleration vector, 𝐈𝐌 = 𝐼𝑚𝐈𝟔 ∈
ℝ6×6 is the actuator equivalent inertia matrix at the motor
level, and the coefficients 𝐅𝐯 = 𝑓𝑣𝐈𝟔 ∈ ℝ6×6 and 𝐅𝐬 =
𝑓𝑠𝐈𝟔 ∈ ℝ6×6 represent the viscous and dry friction matrices,
respectively. Finally, 𝑘𝛼 is the conversion gain between the
leg length and the motor angular position, and 𝐈𝟔 ∈ ℝ6×6

denotes the identity matrix. The resulting FOEHN complete
inverse dynamic model, in the joint space, can be expressed
as follows:

𝐌(𝐪)𝐪̈ + 𝐂 (𝐪, 𝐪̇) 𝐪̇ +𝐆(𝐪) + 𝚪𝐟 (𝐪̇) + 𝚪𝐝 = 𝚪 (7)
where:

𝐌(𝐪) = 𝑘𝑓
(

𝐉−𝑇𝐌𝐩(𝐱)𝐉−1 + 𝑘𝛼𝐈𝐌
)

,

𝐂(𝐪, 𝐪̇) = 𝑘𝑓𝐉−𝑇
(

𝐂𝐩(𝐱, 𝐱̇) −𝐌𝐩(𝐱)𝐉−1𝐉̇𝐉−𝟏
)

,

𝐆(𝐪) = 𝑘𝑓𝐉−𝑇𝐆𝐩(𝐱),
𝚪𝐟 (𝐪̇) = 𝑘𝑓

(

𝐅𝐯𝐪̇ + 𝐅𝐬𝑠𝑖𝑔𝑛(𝐪̇)
)

,

𝚪𝐝 ∈ ℝ6 is the vector of external disturbances, uncertainties,
and non-modeled phenomena, and 𝚪 ∈ ℝ6 is the vector of
control input torques. Besides, for the dynamic model of
robotic manipulators, the following properties are consid-
ered:

• Property 1: The inertia matrix 𝐌(𝐪) is symmetric,
positive-definite and satisfies the following bounds:
𝑚𝑚𝑖𝑛‖𝜚‖

2 ≤ 𝜚𝑇𝐌(𝐪)𝜚 ≤ 𝑚𝑚𝑎𝑥(𝐪)‖𝜚‖2,∀𝜚 ∈ ℝ6 (8)
where 𝑚𝑚𝑖𝑛 is a positive constant and 𝑚𝑚𝑎𝑥(𝐪) ∈ ℝ is
a positive non-decreasing function

• Property 2: If 𝐪(𝑡) and 𝐪̇(𝑡) are also bounded, then
𝐂(𝐪, 𝐪̇), 𝐆(𝐪) and 𝚪𝐟 (𝐪̇) are also bounded. Moreover,
the dynamic model elements are differentiable with
respect to 𝐪(𝑡) and 𝐪̇(𝑡), respectively.

• Property 3: All the elements of the vector 𝚪𝐝 are
bounded, that is:

‖𝚪𝐝‖ ≤ 𝑑𝑚𝑎𝑥 (9)
where 𝑑𝑚𝑎𝑥 is a positive constant.

Table 1
Summary of FOEHN robot parameters.

Parameter Description Value
𝑚𝑝 Moving platform mass 66 𝑘𝑔
𝐼𝑥 𝑥 axis moving platform inertia 6.44 𝑘𝑔.𝑚2

𝐼𝑦 𝑦 axis moving platform inertia 6.44 𝑘𝑔.𝑚2

𝐼𝑧 𝑧 axis moving platform inertia 12.86 𝑘𝑔.𝑚2

𝐼𝑚 Actuator inertia 0.001018 𝑘𝑔.𝑚2

𝑓𝑣 Viscous friction coefficient 4.3283𝑁.𝑠∕𝑚
𝑓𝑠 Dry friction coefficient 51.8714𝑁
𝑘𝑓 Gain force to torque 0.0037𝑚
𝑘𝛼 Gain leg length to motor angle 356.0472𝑚−1

The FOEHN robot parameters are summarized in the
Table 1. These parameters are determined using different
procedures. The conversion gains are calculated mathemati-
cally using the characteristics of the robot components. The
moving platform mass is measured experimentally, while
its inertia is calculated by the material assignment func-
tionality of the computer-aided design software SolidWorks.
For this procedure, high fidelity in replicating the materials
and components of the manufactured robot is ensured to
achieve better calculation accuracy. Finally, the actuator
dynamic parameters are obtained through an identification
procedure [44]. For the identification procedure, the vector
of dynamic parameters, as well as the regressor must be
explicitly formulated from the robot’s dynamic model. Then,
an input/output database is generated through the execution
of high-acceleration trajectories. The objective is to estimate
the values of those parameters by the solution of an optimiza-
tion problem [44].

3. Proposed Control Scheme
In this section, the proposed control solution with the

full stability analysis of the resulting closed-loop system are
detailed.
3.1. Motivation

The design of adaptive control schemes for Gough-
Stewart platform can greatly enhance its performances [36].
This platform requires a high level of robustness and accu-
racy, especially in the presence of uncertainties and external
disturbances [11]. Developing a non-model-based control
scheme, such as model reference adaptive control (MRAC),
can provide a relevant solution to this challenging prob-
lem [36]. MRAC is designed to adapt the controller to the
changes in the system behavior or environment, without
the need for estimating its dynamic parameters [37]. The
direct MRAC approach involves defining a reference model
to force the desired performances by adjusting the controller
parameters. This design is capable of enforcing nonlinear
systems to follow reference dynamics, even in the presence
of uncertainties and external disturbances [37]. The direct
MRAC law can be expressed as follows:

Γ = 𝐊𝐩(𝑡)𝐞 +𝐊𝐝(𝑡)𝐞̇ (10)
Fitas et al.: Preprint submitted to Elsevier Page 4 of 15
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with
𝐞 = 𝐪𝐝 − 𝐪 (11)

where 𝐪𝐝 ∈ ℝ6 is the desired joint position vector, 𝐊𝐩(𝑡) is
the proportional adaptive feedback gain matrix, and 𝐊𝐝(𝑡) is
the derivative adaptive feedback gain matrix. Their adapta-
tion rules are based on the following second order reference
system:

𝐞̈𝐦(𝑡) + 2𝜉𝜔0𝐞̇𝐦(𝑡) + 𝜔0
2𝐞𝐦(𝑡) = 0 (12)

where 𝐞𝐦(𝑡) ∈ ℝ6 is the reference tracking error vector,
𝐞̇𝐦(𝑡) ∈ ℝ6 is its first time derivative, and 𝐞̈𝐦(𝑡) ∈ ℝ6 is its
second time derivative. The reference system damping ratio
𝜉 and natural frequency 𝜔0 are also important parameters
that should be carefully tuned to achieve the desired dynamic
for the trajectory tracking errors. In order to adapt the con-
trol gain matrices, the following positive-definite symmetric
matrix is considered:

𝐏 =
[

𝐏𝟏 𝐏𝟐
𝐏𝟐 𝐏𝟑

]

(13)

where 𝐏 ∈ ℝ12×12 is the solution of the following static
Lyapunov equation:

𝐏𝐃 + 𝐃𝑇𝐏 +𝐐 = 0 (14)
where 𝐃 ∈ ℝ12×12 is the state matrix of the reference system
(12), and 𝐐 ∈ ℝ12×12 is a diagonal positive-definite weight
matrix, expressed as follows:

𝐐 =
[

2𝐐𝟏 0
0 2𝐐𝟐

]

(15)

where 𝐐𝟏,𝐐𝟐 ∈ ℝ6 are two diagonal positive-definite
matrices to be tuned. Consequently, the adaptation rules of
𝐊𝐩(𝑡) and 𝐊𝐝(𝑡) feedback gains are given as follows:

𝐊̇𝐩 = 𝚷𝟏𝛀𝐞𝑇 (𝑡) (16)

𝐊̇𝐝 = 𝚷𝟐𝛀𝐞̇𝑇 (𝑡) (17)
where𝚷𝟏 and𝚷𝟐 are the positive adaptation gain matrices to
be tuned, with 𝛀 = 𝐏𝟐𝐞(𝑡) + 𝐏𝟑𝐞̇(𝑡) [36]. This control law is
expected to improve the tracking performance compared to
non adaptive controllers, such as the standard PD controller,
and can provide further robustness against variations and
uncertainties [36]. However, this design does not guarantee
the boundedness of the feedback gains, which may lead to
potential overshoots, oscillations, and even instability [37].
Additionally, for this kind of control schemes, the consid-
ered uncertainties and external disturbances are mainly of
unknown structure, which may degrade the control perfor-
mance.

3.2. Proposed controller: Feedforward Model
Reference Adaptive Control (FF-MRAC)

Our study aims at proving the performance and stabil-
ity of a MRAC-based control scheme, incorporating the
robot’s dynamic model as a feedforward term. The goal is
then to leverage the knowledge of the dynamic model for
improved performances [27]. The added feedforward term
is derived from the inverse dynamic model of the robot,
and has the ability to counteract the nonlinear dynamics,
thereby improving the reactivity of the controller without
introducing any measurement noise into the control loop
[27]. To achieve this, the proposed control solution (FF-
MRAC) can be structured as follows:

𝚪 = 𝐊𝐩(𝑡)𝐞 +𝐊𝐝(𝑡)𝐞̇ + 𝚪𝐟 𝐟 (18)
where 𝚪𝐟 𝐟 is the feedforward term, given from (7) as follows:

𝚪𝐟 𝐟 = 𝐌(𝐪𝐝)𝐪̈𝐝 +𝐂(𝐪𝐝, 𝐪̇𝐝)𝐪̇𝐝 +𝐆(𝐪𝐝) + 𝚪𝐟 (𝐪̇𝐝) (19)
Thanks to the quality of the developed dynamic model,

which accounts for the majority of dynamic phenomena,
the inclusion of this term in the control law can have the
potential to enhance the tracking performance by compen-
sating for high nonlinear dynamics [27]. This nominal term
was implemented based on the dynamic model (7) and the
nominal values of the dynamic parameters provided in Table
1. Furthermore, it also has the advantage of improving the
adaptation effect. The idea is to limit the MRAC adaptation
to react only for the residual errors between the desired and
actual trajectories, unmodeled uncertainties, and some ex-
ternal disturbances [25]. As a result, the proposed controller
will gain both the benefits of dynamic compensation and
reference-model-based adaptation for uncertain nonlinear
systems. Additionally, the adaptation laws presented in (16)
and (17) can be further improved through the incorporation
of a projection operator. This will ensure that the gains
remain bounded and do not diverge, thereby maintaining
the feedback gains (𝐊𝐩 and 𝐊𝐝) within admissible ranges
[37]. This will also provide the opportunity to increase the
adaptation gains (𝚷𝟏 and 𝚷𝟐), making the adaptive correc-
tion faster and increasing the robustness of the proposed
adaptive controller [37]. The resulting adaptation laws for
the feedback gains can be then expressed as follows:

𝐊̇𝐩 = 𝚷𝟏𝑃𝑟𝑜𝑗
(

𝐊𝐩,𝛀𝐞𝑇 (𝑡)
) (20)

𝐊̇𝐝 = 𝚷𝟐𝑃𝑟𝑜𝑗
(

𝐊𝐝,𝛀𝐞̇𝑇 (𝑡)
) (21)

As the projection operator is used, the feedback gains
should remain within their admissible limits. This constraint
is guaranteed by considering a convex function to restrict
the adaptive gains. For more details about this operator, the
reader can refer to [45]. Consequently, two upper bounds
are defined, namely 𝐾𝑝𝑏 for the proportional gain matrix,
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Figure 2: Block diagram of the proposed control solution.

and 𝐾𝑑𝑏 for the derivative gain matrix [45]. This can be
accomplished through the consideration of a smooth convex
function to guarantee the limitation of the adaptive feedback
gains. In our case, the smooth convex functions 𝑔𝑝 and 𝑔𝑑are defined as:

𝑔𝑝(𝐊𝐩) =
(1 + 𝛽)‖𝐊𝐩‖𝐹

2 −𝐾𝑝𝑏
2

𝛽𝐾𝑝𝑏
2

(22)

𝑔𝑑(𝐊𝐝) =
(1 + 𝛽)‖𝐊𝐝‖𝐹

2 −𝐾𝑑𝑏
2

𝛽𝐾𝑑𝑏
2

(23)

where 𝛽 is the projection tolerance bound to be tuned.
Then, they should always satisfy the constraints ‖𝐊𝐩‖𝐹 ≤
𝐾𝑝𝑏, ‖𝐊𝐝‖𝐹 ≤ 𝐾𝑑𝑏, where ‖.‖𝐹 denotes the Frobenius
Euclidean norm. The block diagram of the proposed control
scheme is depicted in Figure 2

3.3. Closed-loop stability analysis
The contribution of this paper includes the stability anal-

ysis of the resulting closed-loop system under the proposed
control scheme. To this end, let us introduce the following
theorem.

Theorem 1: The joint position tracking errors 𝑒(𝑡) of the
robotic system whose dynamics is governed by (7), under the
control law (18), where the feedback gains are adjusted with
the adaptation rules (20), and (21), converge asymptotically
to the origin.

Proof: To simplify the mathematical developments, let
us first define the residual dynamics of robotic manipulators:

𝐡(𝐪, 𝐪̇) =
[

𝐌(𝐪𝐝) −𝐌(𝐪)
]

𝐪̈𝐝
+
[

𝐂
(

𝐪𝐝, 𝐪̇𝐝
)

− 𝐂 (𝐪, 𝐪̇)
]

𝐪̇𝐝
+
[

𝐆(𝐪𝐝) + 𝚪𝐟 (𝐪̇𝐝) −𝐆(𝐪) − 𝚪𝐟 (𝐪̇)
] (24)

Then, applying the control law in (18) to the robot’s dynamic
model (7) leads to:

𝐌(𝐪)𝐞̈+
(

𝐂(𝐪, 𝐪̇) +𝐊𝐝
)

𝐞̇+𝐊𝐩𝐞+𝐡(𝐪, 𝐪̇)−𝚪𝐝 = 0 (25)
By considering the reference model given in (12), and by
taking 𝐞𝐳 = 𝐞 − 𝐞𝐦 ∈ ℝ6, the following state-space model
can be defined:

̇̂𝐞𝐳 = 𝐃𝐞̂𝐳 + 𝐁𝐞̂𝐦 + 𝛿 (26)

where 𝐞̂𝐳 = [𝐞𝐳𝑇 𝐞̇𝑇𝐳 ]
𝑇 ∈ ℝ12, and 𝐞̂𝐦 = [𝐞𝐦𝑇 𝐞̇𝑇𝐦]

𝑇 ∈ ℝ12.
The state-space model matrices and the vector 𝛿 are given as
follows:

𝐃 =
[

𝟎𝟔 𝐈𝟔
−𝐃𝟏 −𝐃𝟐

]

,

𝐁 =
[

𝟎𝟔 𝟎𝟔
𝐌(𝐪)−1𝐊𝐩 𝐌(𝐪)−1

(

𝐂(𝐪, 𝐪̇) +𝐊𝐝
)

]

,

𝛿 =
[

𝟎𝟔
𝐌(𝐪)−1

(

𝐡(𝐪, 𝐪̇) − 𝚪𝐝
)

]

where 𝐃𝟏 = 𝜔0
2𝐈𝟔 ∈ ℝ6×6, 𝐃𝟐 = 2𝜉𝜔0𝐈𝟔 ∈ ℝ6×6, and

𝟎𝟔 ∈ ℝ6×6 is 6 × 6 matrix of zeros.
For the stability analysis of the resulting closed-loop

system, let us consider the following positive-definite, radi-
ally unbounded, Lipschitz continuous Lyapunov candidate
function:

𝑉 (𝐲) = 𝐞̂𝑇𝐳 𝐏𝐞̂𝐳 + 𝑡𝑟
(

𝐊̃𝑇
𝐩 𝐊̃𝐩

)

+ 𝑡𝑟
(

𝐊̃𝑇
𝐝 𝐊̃𝐝

) (27)

where 𝐲 =
[

𝐞̂𝑇𝐳 𝑡𝑟
(

𝐊̃𝑇
𝐩 𝐊̃𝐩

)

𝑡𝑟
(

𝐊̃𝑇
𝐝 𝐊̃𝐝

)

]𝑇
∈ ℝ2𝑛+2, with

𝐊̃𝐩 = 𝐊𝐩
∗−𝐊𝐩, and 𝐊̃𝐝 = 𝐊𝐝

∗−𝐊𝐝, where𝐊𝐩
∗ and𝐊𝐝

∗ are
the optimal proportional and derivative gains, respectively.
This function 𝑉 (𝐲) satisfies the following bounding inequal-
ity:

𝑘1‖𝐲‖2 ≤ 𝑉 (𝐲) ≤ 𝑘2‖𝐲‖2 (28)
where 𝑘1 = 𝑚𝑖𝑛{𝜆𝑚𝑖𝑛 (𝐏) , 1} and 𝑘2 = 𝑚𝑎𝑥{𝜆𝑚𝑎𝑥 (𝐏) , 1},
with 𝜆𝑚𝑖𝑛(.) and 𝜆𝑚𝑎𝑥(.) being the minimum and maximum
eigenvalues of their arguments. Upon the use of the state-
space model defined in (26), the adaptation laws (20)-(21),
and the Lyapunov equation defined in (14), the first time-
derivative of the Lyapunov function leads to the following:

𝑉̇ (𝐲) = −𝐞̂𝑇𝐳 𝐐𝐞̂𝐳−2𝑡𝑟
((

𝐊̃𝐩𝚷1 −𝐌(𝐪)−1𝐊𝐩
) (

𝛀𝐞𝑇
))

− 2𝑡𝑟
((

𝐊̃𝐝𝚷𝟐 −𝐌(𝐪)−1
(

𝐂(𝐪, 𝐪̇) +𝐊𝐝
)) (

𝛀𝐞̇𝑇
))

+ 𝐞̂𝐳𝐏𝛿 (29)
Considering the dynamic model properties, and given that
𝐊̃𝐩 ≤ 𝐊𝐩

∗ +𝐾𝑝𝑏𝐈𝟔 and 𝐊̃𝐝 ≤ 𝐊𝐝
∗ +𝐾𝑑𝑏𝐈𝟔, upon the use of

(20) and (21), respectively. The function 𝑉̇ (𝐲) can be upper-
bounded as follows:

𝑉̇ (𝐲) ≤ −𝜆𝑚𝑖𝑛(𝐐)‖𝐞̂𝐳‖2

− 2𝑡𝑟
((

(

𝐊𝐩
∗ +𝐾𝑝𝑏𝐈𝟔

)

𝚷𝟏 −
𝐾𝑝𝑏
𝑚𝑚𝑖𝑛

𝐈𝟔
)

(

𝛀𝐞𝑇
)

)

−2𝑡𝑟
((

(

𝐊𝐝
∗ +𝐾𝑑𝑏𝐈𝟔

)

𝚷2 −
𝐾𝑐𝑚𝑎𝑥 +𝐾𝑑𝑏

𝑚𝑚𝑖𝑛
𝐈𝟔
)

(

Ω𝑒̇𝑇
)

)

+ 𝐞̂𝐳𝐏𝛿 (30)
where 𝐾𝑐𝑚𝑎𝑥 = 𝐾𝑐 𝑞̇𝑚𝑎𝑥, and 𝑞̇𝑚𝑎𝑥 = 𝑚𝑎𝑥{‖𝐪̇‖}, with
𝐾𝑐 is positive constant. By selecting Π1 and Π2 such that
(

𝐊𝐩
∗ +𝐾𝑝𝑏𝐈𝟔

)

𝚷𝟏−
( 𝐾𝑝𝑏
𝑚𝑚𝑖𝑛

− 1
)

𝐈𝟔 > 0 and (𝐊𝐝
∗ +𝐾𝑑𝑏𝐈𝟔

)

𝚷𝟐−
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(

𝐾𝑐𝑚𝑎𝑥+𝐾𝑑𝑏
𝑚𝑚𝑖𝑛

− 1
)

𝐈𝟔 > 0, the following matrices can be
defined as follows:

𝚼𝟏 =
(

𝐊𝐩
∗ +𝐾𝑝𝑏𝐈𝟔

)

𝚷𝟏 −
𝐾𝑝𝑏
𝑚𝑚𝑖𝑛

𝐈𝟔 (31)

𝚼2 =
(

𝐊𝐝
∗ +𝐾𝑑𝑏𝐈𝟔

)

𝚷𝟐 −
𝐾𝑐𝑚𝑎𝑥 +𝐾𝑑𝑏

𝑚𝑚𝑖𝑛
𝐈𝟔 (32)

Then, considering the fact that the Euclidean norm of
the residual dynamics can be upper bounded ‖𝐡(𝐪, 𝐪̇)‖ ≤
𝐾ℎ1‖𝐞̇‖+𝐾ℎ2‖𝐞‖, and ‖𝚪𝑑‖ ≤ 𝐾ℎ3‖𝐞̂‖, with 𝐾ℎ1 , 𝐾ℎ2 and
𝐾ℎ3 being three positive constants. The time-derivative of
𝑉 (𝐲) can then be upper-bounded as follows:
𝑉̇ (𝐲) ≤ −𝜆𝑚𝑖𝑛(𝐐)‖𝐞̂𝑧‖2−2𝜖‖𝐞̂‖2+𝜆𝑚𝑎𝑥(𝐏)𝐾ℎ‖𝐞̂𝑧‖‖𝐞̂‖ (33)
where 𝐞̂ = [𝐞𝑇 𝐞̇𝑇 ]𝑇 ∈ ℝ12, 𝐾ℎ = 𝑚𝑎𝑥{𝐾ℎ1 , 𝐾ℎ2} + 𝐾ℎ3 ,
and 𝜖 = 𝜆𝑚𝑖𝑛(𝚺), with 𝚺 being a positive-definite symmetric
matrix, defined as follows:

𝚺 =
[

𝐏𝟐𝚼𝟏 𝐏𝟐
𝐏𝟑 𝐏𝟑𝚼𝟐

]

(34)

By computing the squares, the following upper-bound can
be obtained:

𝑉̇ (𝐲) ≤ −

(

𝜆𝑚𝑖𝑛(𝐐) −
𝜆𝑚𝑎𝑥(𝐏)𝐾ℎ2

8𝜖

)

‖𝐞̂𝐳‖
2 (35)

Designing the adequate reference system matrix 𝐃, with
adequate weighting matrix 𝐐, the following inequality can
be deduced:

𝜆𝑚𝑖𝑛(𝐐) −
𝜆𝑚𝑎𝑥(𝐏)𝐾ℎ2

8𝜖
> 0

which means that ‖𝐞̂𝑧‖ converges asymptotically to zero,
thereby ‖𝐞̂‖ converges also to zero as 𝐞̂𝑚 has the behavior
of a stable reference system (i.e. Hurwitz). Consequently,
the tracking errors converge asymptotically to zero, and this
concludes the proof.

4. Real-time Experimental Results
In this section, the efficiency and robustness of the pro-

posed FF-MRAC control scheme is demonstrated through
real-time experiments conducted on FOEHN parallel robot,
a Gough-Stewart platform, described in Section 2.1. The ob-
jective is to showcase its high performance and superiority.
For this purpose, the proposed controller is compared with
MRAC-based adaptive control, and with two model-based
controllers: The sliding mode controller (SMC) detailed in
[28], and the augmented Feedforward PD (FF-PD) controller
proposed in [43]. To validate the proposed control solution
through real-time experiments, the following scenarios are
considered:

• Scenario 1 – nominal case: The controllers are ap-
plied to FOEHN parallel robot under nominal condi-
tions, without uncertainties nor external disturbances.

• Scenario 2 – robustness towards payload changes:
To assess the robustness of the controllers, a series
of tests are conducted with three distinct payloads
individually fixed at the center of the mobile platform
(cf. Figure 3 for illustration). These payloads weight
respectively 100 𝑘𝑔, 150 𝑘𝑔, and 200 𝑘𝑔.

• Scenario 3 – robustness towards velocity changes:
The robustness of the controllers can also be tested
by applying reference trajectories with higher veloci-
ties. Indeed, two high-velocity tests are proposed: the
first one with a maximum joint velocity of 𝑉𝑚𝑎𝑥1 =
310𝑚𝑚∕𝑠, and a second with a maximum velocity of
𝑉𝑚𝑎𝑥2 = 390𝑚𝑚∕𝑠.

4.1. Experimental platform and some
implementation issues

4.1.1. Experimental platform
The FOEHN parallel robot is equipped with high-dynamic

brushless DC motors and absolute EnDat 2.2 encoders.
The motors have a maximum torque of 18𝑁.𝑚 and a
maximum velocity of 3500 𝑟𝑝𝑚. The encoders are used to
measure the angular positions in real time and calculate
the corresponding prismatic joint lengths. The motors are
controlled by two multi-axis servo drives, each of them
controlling three motors. The control torque inputs are sent
to the drives from an OMRON CK3E controller with a
servo cycle of 2 𝑘𝐻𝑧 through an EtherCAT fieldbus. The
controller consists of a two-core armv7l CPU with a clock
frequency of 1𝐺𝐻𝑧. The servo control is designed in
joint space with real-time prismatic joint length feedback.
The controllers are implemented in Matlab/Simulink from
MathWorks and then converted to C language. Finally, the
code is compiled and uploaded into the CK3E controller.
Since the servo cycle is set to 2 𝑘𝐻𝑧, the CPU should
perform the calculations and send the commands to the
drives within 0.5𝑚𝑠. If this time limit is exceeded, a safety
mechanism activates to stop the robot and prevent potential
damage. In order to avoid overshoots in the input torques for
the sliding mode controller, the sign function was replaced
by a smooth approximation based on the hyperbolic tangent
function.

The parameters 𝜉 and 𝜔0 of the reference model are
determined based on its time performance specifications.
These specifications are selected according to the type of the
controlled system [46]. A maximum first overshoot of 5 %
(𝑀𝑝 = 5%) and a settling time of 0.2 seconds at 5 % (𝑡𝑟5% =
0.2 𝑠) are used in our case. The other control parameters
are experimentally tuned using the trial-and-error method.
The adaptive gains are gradually increased to achieve a
reactive adaptation, while carefully avoiding oscillations and
excessive variation. Additionally, these gains are higher for
the proposed controller, as the boundedness of the feedback
gains is ensured through the use of projection operators.
The results of this tuning are summarized in Table 2. The
upper limits of the adaptive gains have been tuned to avoid
vibrations and oscillations in the control signal. This tuning
was performed for the nominal case, and the same limits
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Figure 3: Illustrative views of the experimental setup of
FOEHN parallel robot.

Table 2
Summary of the control design parameters.

MRAC SMC FFPD FF-MRAC
𝐊𝐩(0) = 8550𝐈𝟔 𝚲 = 55𝐈𝟔 𝐊𝐩 = 8550𝐈𝟔 𝐊𝐩(0) = 8550𝐈𝟔
𝐊𝐝(0) = 56.5𝐈𝟔 𝐊𝐬 = 8.2𝐈𝟔 𝐊𝐝 = 56.5𝐈𝟔 𝐊𝐝(0) = 56.5𝐈𝟔

𝐾𝑝𝑏 = 10920
𝐾𝑑𝑏 = 68.25
𝛽 = 0.1

𝐐𝟏 = 10𝐈𝟔 𝐐𝟏 = 10𝐈𝟔
𝐐𝟐 = 100𝐼6 𝐐𝟐 = 100𝐈𝟔

𝚷𝟏 = 100000𝐼6 𝚷𝟏 = 200000𝐼6
𝚷𝟐 = 0.15𝐼6 𝚷𝟐 = 0.5𝐼6
𝜉 = 1

√

2
𝜉 = 1

√

2
𝜔0 = 20 𝑟𝑎𝑑∕𝑠 𝜔0 = 20 𝑟𝑎𝑑∕𝑠

were maintained for other scenarios to test the robustness
of the proposed solution.

The desired trajectories are sent to the CK3E con-
troller from the SYM_Motion software, a GUI developed
by SYMETRIE. This software allows the creation, val-
idation, and execution of multiple movement types and
establishes communication with the controller through a
TCP/IP Ethernet connection. It is worth noting that during
the experimental validation, all the limits for the robot were
respected. Furthermore, all singularities are located outside
of the robot’s workspace, thanks to the robot’s mechanical
design and the SYM_Motion software limitations.

0

0.05
0.1

0.05

z
 (

m
)

0.05

y (m)

0

x (m)

0

0.1

-0.05-0.05 -0.1

C
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D

B

Figure 4: 3D-view of the elliptical cylinder-shaped reference
trajectory A-B-C-D-A.

4.1.2. Trajectory generation and evaluation criteria
The desired trajectories are generated in the operational

space using the SYM_Motion software. Consequently, these
trajectories are designed to respect the robot’s workspace
constraints and avoid singularities. A 3D-view of the result-
ing trajectory is illustrated in Figure 4. As displayed, the
moving platform undergoes a linear trajectory from point A
(0𝑚𝑚, 0𝑚𝑚, 0𝑚𝑚) to point B (0𝑚𝑚,
60𝑚𝑚, 0𝑚𝑚), followed by an elliptical trajectory leading to
point C (0𝑚𝑚,−60𝑚𝑚, 100𝑚𝑚). It subsequently traverses
point D (0𝑚𝑚, 0𝑚𝑚, 100𝑚𝑚) before retracing its path back
to point A. For the rotational component, a sinusoidal trajec-
tory is employed with an amplitude of 3◦ and a frequency
of 0.3𝐻𝑧. A phase shift of 120◦ is maintained between
the rotational angles. The total duration of the reference
trajectory is of 50 seconds.

Regarding the scenario of robustness towards velocity
changes, and in order to create high velocities in the joint
space, an helicoidal trajectory is proposed, described by the
following analytical expressions:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥(𝑡) = 0.02𝑠𝑖𝑛 (2𝜋𝑓𝑡)
𝑦(𝑡) = 0.02𝑐𝑜𝑠 (2𝜋𝑓𝑡)
𝑧(𝑡) = 0.01 − 0.02𝑐𝑜𝑠

(

2𝜋𝑓
8 𝑡

)

𝜙(𝑡) = 𝜋
60𝑠𝑖𝑛 (2𝜋𝑓𝑡)

𝜃(𝑡) = 𝜋
60𝑐𝑜𝑠 (2𝜋𝑓𝑡)

𝜓(𝑡) = 0

(36)

It is worth noting that the translations are expressed in
meter and the rotations in radian. The frequency of the first
test is chosen as 𝑓 = 1.3𝐻𝑧 and for the second one as
𝑓 = 1.6𝐻𝑧. The whole duration of the trajectory is of 60
seconds. Additionally, this trajectory is smoothed out at both
the beginning and end with a 5 seconds fade period.

For the comparative analysis purpose, the evaluation
of performance is established using quantitative metrics,
based on the root mean square error (RMSE) for translation
(𝑅𝑀𝑆𝑡), rotation (𝑅𝑀𝑆𝑟), and joint positions (𝑅𝑀𝑆𝑞).
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These criteria are mathematically expressed as follows:

𝑅𝑀𝑆𝑡 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑒𝑥2(𝑖) + 𝑒𝑦2(𝑖) + 𝑒𝑧2(𝑖)
) (37)

𝑅𝑀𝑆𝑟 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑒𝜙2(𝑖) + 𝑒𝜃2(𝑖) + 𝑒𝜓 2(𝑖)
) (38)

𝑅𝑀𝑆𝑞 =

√

√

√

√

√

1
𝑁

𝑁
∑

𝑖=1

( 6
∑

𝑗=1
𝑒2𝑞𝑗 (𝑖)

)

(39)

where 𝑒𝑥, 𝑒𝑦, 𝑒𝑧, 𝑒𝜙, 𝑒𝜃 , and 𝑒𝜓 are the Cartesian tracking
errors, 𝑒𝑞𝑗 , 𝑗 = 1, 2, ..., 6 are the joint tracking errors and 𝑁
is the total number of samples. It is worth noting that the
Cartesian tracking errors are calculated from the measured
joint ones using the forward kinematic model [5].
4.2. Experimental results
4.2.1. Scenario 1: Nominal case

The evolution versus time of the tracking errors is de-
picted in Figures 5 and 6, with a zoomed in plot between 30
and 35 seconds for a better readability. The proposed control
solution enhances the tracking performance with respect
to alternative controllers. When compared to MRAC, this
improvement can be attributed to dynamic compensation,
and the fast adaptation obtained thanks to the projection op-
erators. Compared to SMC, the improvement arises from the
adaptive design and the use of desired trajectories through
the incorporation of a feedforward term. Despite the robust
performance of SMC and its efficiency in translations, as
shown in Figure 6, the proposed approach offers enhanced
results. Besides, compared to the FF-PD controller, the
improvement can be attributed to the adaptive feedback
mechanism based on MRAC, where the proposed controller
can be adjusted in real-time with its adaptive feedback gains,
in contrast to the constant gains used in the FF-PD con-
troller. Numerical calculation of the RMSE-based metrics
confirms these improvements, as summarized in Table 3.
The evolution of the adaptive feedback gains is depicted
in Figures 7 and 8. The projection operator ensures the
non-divergence of the adaptive feedback gains, unlike the
original MRAC controller, thereby increasing the adaptation
gains to improve the reactivity of the controller results in a
more effective and precise control.

The generated control input torques, for the fourth con-
trollers, are illustrated in Figure 9 with a zoomed in plot
within the range [30 𝑠, 35 𝑠] for more readability. These
torques remain in their admissible range, and since the SMC
controller includes a discontinuous term, it leads to a chatter-
ing, even with the use of a hyperbolic tangent approximation
to mitigate this effect.

Figure 5: Evolution versus time of the joint tracking errors
(Scenario 1).

Figure 6: Evolution versus time of the Cartesian tracking errors
(Scenario 1).

4.2.2. Scenario 2: Robustness towards payload
changes

The evolution of the tracking errors for this scenario,
involving a 200 𝑘𝑔 payload, are plotted in Figures 10 and
11. To highlight the difference between the implemented
controllers, the plot has been zoomed in to cover the time
span between 15 and 20 seconds. As the previous scenario,
the proposed solution improves the tracking performance,
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Figure 7: Evolution versus time of the derivative feedback gains
(Scenario 1).
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Figure 8: Evolution versus time of the proportional feedback
gains (Scenario 1).

with a limited degradation with respect to the nominal sce-
nario. By designing MRAC-based adaptive feedback gains
with model-based dynamics compensation, a better track-
ing performance is obtained. This enhancement is also ob-
served even when the feedforward term does not consider
the additional payload. Despite some degradation due to
uncertainties, the proposed controller consistently yields im-
proved outcomes, as it is highlighted from the summarized
RMSE values in Tables 4, 5 and 6. The evolution of the
adaptive feedback gains is depicted in Figures 12, and 13.

Figure 9: Evolution versus time of the control input torques
(Scenario 1).

Table 3
Scenario 1: Tracking performance evaluation with the calcu-
lated improvements.

Controllers 𝑅𝑀𝑆𝑞 (𝜇𝑚) 𝑅𝑀𝑆𝑡 (𝜇𝑚) 𝑅𝑀𝑆𝑟 (𝑚𝑑𝑒𝑔)
MRAC 116.4157 103.1585 3.5695
SMC 58.4582 33.5699 2.62608

FF-PD 49.4263 36.0550 1.6746
FF-MRAC 42.3012 29.6635 1.3768

Imp./MRAC 63.66 % 71.24 % 61.42 %
Imp./SMC 27.64 % 11.63 % 47.57 %

Imp./FF-PD 14.41 % 17.72 % 17.78 %

Thanks to the projection operator, even in the presence of
uncertainties, the proposed controller feedback gains do not
exceed their maximum values. On the contrary, the MRAC
controller might need high feedback gains to minimize the
tracking errors, which can inadvertently result in vibrations
and oscillations in the input torque and tracking errors. The
evolution of the generated control input torques is depicted
in Figure 14. Once again, the plot has been zoomed in, this
time within the interval [15 𝑠, 20 𝑠] for readability purpose.
The obtained torques remain within their admissible range,
and the energy consumption remains nearly identical among
the various controllers.
4.2.3. Scenario 3: Robustness towards velocity changes

The resulting tracking errors from the second robustness
test involving high velocities are depicted in Figures 15 and
16. To highlight the difference between the implemented
controllers, the plot has been zoomed in within the range of
[20 𝑠, 25 𝑠]. The effectiveness of the proposed model-based
feedforward term in compensating for dynamic variations
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Figure 10: Evolution versus time of the joint tracking errors
(Scenario 2 – 200 kg).

Figure 11: Evolution versus time of the Cartesian tracking
errors (Scenario 2 – 200 kg).

is rather evident. This stands in contrast to the computed
torque formulation, where the feedback signals introduce
measurement noise into the control loop. Moreover, the in-
corporation of the adaptation rules based on reference model
dynamics, used to update the feedback gains, enhances the
tracking performance of the proposed controller. This im-
provement is corroborated by the calculation of RMSEs,
where the results are summarized in Table 7. Besides, it is
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Figure 12: Evolution versus time of the derivative feedback
gains (Scenario 2 – 200 kg).
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Figure 13: Evolution versus time of the proportional feedback
gains (Scenario 2 – 200 kg).

worth noting that since the reference input for 𝜓 is zero,
then dynamic compensation for this coordinate is absent,
resulting in practically equivalent performances for all the
controllers, as shown in Figure 16. The evolution of the
adaptive feedback gains is depicted in Figures 17, 18. As
the previous scenarios, the inclusion of a projection operator
ensures that the proposed controller’s feedback gains remain
within their admissible limits. In Figure 19, the generated
control input torques are displayed, with the plot zoomed in
within the interval [20 𝑠, 25 𝑠] for improved visual clarity.
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Figure 14: Evolution versus time of the control input torques
(Scenario 2 – 200 kg).

Table 4
Scenario 2 (100 kg): Tracking performance evaluation with the
calculated improvements.

Controllers 𝑅𝑀𝑆𝑞(𝜇𝑚) 𝑅𝑀𝑆𝑡(𝜇𝑚) 𝑅𝑀𝑆𝑟(𝑚𝑑𝑒𝑔)
MRAC 154.4285 129.0201 3.7190
SMC 78.7294 40.1313 3.0186

FF-PD 63.8796 41.4154 1.6787
FF-MRAC 52.3329 35.8561 1.3932

Imp./MRAC 66.11 % 72.05 % 62.54 %
Imp./SMC 33.52 % 10.15 % 53.84 %

Imp./FF-PD 18.07 % 13.42 % 17.00 %

Table 5
Scenario 2 (150 kg): Tracking performance evaluation with the
calculated improvements.

Controllers 𝑅𝑀𝑆𝑞 (𝜇𝑚) 𝑅𝑀𝑆𝑡 (𝜇𝑚) 𝑅𝑀𝑆𝑟 (𝑚𝑑𝑒𝑔)
MRAC 186.5788 149.5045 4.0607
SMC 104.9665 52.2725 3.3477

FF-PD 85.8536 50.0791 2.0763
FF-MRAC 68.3133 39.7636 1.6221

Imp./MRAC 63.38 % 73.40 % 60.05 %
Imp./SMC 34.91 % 23.93 % 51.54 %

Imp./FF-PD 20.43 % 20.59 % 21.87 %

Throughout this real-time experiment, the generated torques
remain consistently within their permissible ranges, while
energy consumption remains almost identical for the various
implemented controllers.

Table 6
Scenario 2 (200 kg): Tracking performance evaluation with the
calculated improvements.

Controllers 𝑅𝑀𝑆𝑞 (𝜇𝑚) 𝑅𝑀𝑆𝑡 (𝜇𝑚) 𝑅𝑀𝑆𝑟 (𝑚𝑑𝑒𝑔)
MRAC 224.9295 170.9349 4.3934
SMC 140.4936 71.9010 3.7672

FF-PD 103.3227 65.8095 2.6336
FF-MRAC 79.6162 51.8343 2.1131

Imp./MRAC 64.60 % 69.67 % 51.90 %
Imp./SMC 43.33 % 27.90 % 43.91 %

Imp./FF-PD 22.94 % 21.23 % 19.76 %

Figure 15: Evolution versus time of the joint tracking errors
(Scenario 3 – 1.6 Hz).

5. Conclusion and Future Work
In this paper, a novel augmented MRAC approach for

PKMs is proposed, including a feedforward dynamic term
and enhanced adaptation gain rules. Furthermore, the stabil-
ity analysis of the resulting closed-loop system is provided.
The proposed control scheme has been validated through
real-time experiments on FOEHN parallel robot, demon-
strating the effectiveness and the superiority of the proposed
controller, particularly in terms of robustness towards uncer-
tainties. As future work, it is planned to make the feedfor-
ward term adaptive, with a real-time estimation of the PKM
dynamic parameters. Alternatively, the friction model can
be enhanced by incorporating the Stribeck effect, along with
a sensitivity study to evaluate how the MRAC adaptation
efficiency is influenced by different friction models.

in order to compensate for larger uncertainties and fur-
ther enhance the tracking performance.
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Table 7
Scenario 3: Tracking performance evaluation with the calculated improvements.

Case 𝑓 = 1.3𝐻𝑧 𝑓 = 1.6𝐻𝑧
Controllers 𝑅𝑀𝑆𝑞 (𝜇𝑚) 𝑅𝑀𝑆𝑡 (𝜇𝑚) 𝑅𝑀𝑆𝑟 (𝑚𝑑𝑒𝑔) 𝑅𝑀𝑆𝑞 (𝜇𝑚) 𝑅𝑀𝑆𝑡 (𝜇𝑚) 𝑅𝑀𝑆𝑟 (𝑚𝑑𝑒𝑔)

MRAC 139.6882 82.3290 7.7412 175.6005 111.1531 9.3685
SMC 91.5442 32.7780 5.9048 115.9243 45.7528 7.8002

FF-PD 76.9159 34.5941 4.9163 110.1537 50.4053 7.0608
FF-MRAC 64.1976 29.2155 4.0883 88.6642 41.3279 5.6377

Imp./MRAC 54.04 % 64.51 % 47.18 % 49.51 % 62.82 % 39.82 %
Imp./SMC 29.87 % 10.86 % 30.76 % 23.51% 09.67 % 27.72 %

Imp./FF-PD 16.53 % 15.54 % 16.84 % 19.51 % 18.01 % 20.15 %

Figure 16: Evolution versus time of the Cartesian tracking
errors (Scenario 3 – 1.6 Hz).
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