
HAL Id: lirmm-04746015
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04746015v1

Submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fast interpolation and multiplication of unbalanced
polynomials

Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray, Daniel S Roche

To cite this version:
Pascal Giorgi, Bruno Grenet, Armelle Perret Du Cray, Daniel S Roche. Fast interpolation and
multiplication of unbalanced polynomials. ISSAC 2024 - International Symposium on Symbolic
and Algebraic Computation, Jul 2024, Raleigh (North Carolina), United States. pp.437-446,
�10.1145/3666000.3669717�. �lirmm-04746015�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04746015v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Fast interpolation and multiplication of unbalanced

polynomials

Pascal Giorgi
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
pascal.giorgi@lirmm.fr

Bruno Grenet
LJK, Univ. Grenoble Alpes, CNRS

Grenoble, France
bruno.grenet@univ-grenoble-alpes.fr

Armelle Perret du Cray
University of Waterloo
Waterloo, ON, Canada

aperretducray@uwaterloo.ca

Daniel S. Roche
United States Naval Academy
Annapolis, Maryland, U.S.A

roche@usna.edu

October 21, 2024

Abstract

We consider the classical problems of interpolating a polynomial given a black box for evalu-
ation, and of multiplying two polynomials, in the setting where the bit-lengths of the coefficients
may vary widely, so-called unbalanced polynomials. Let f ∈ Z[x] be an unknown polynomial
and s,D be bounds on its total bit-length and degree, our new interpolation algorithm returns f
with high probability using Õ(s logD) bit operations and O(s logD log s) black box evaluation.
For polynomial multiplication, assuming the bit-length s of the product is not given, our algo-
rithm has an expected running time of Õ(s logD), whereas previous methods for (resp.) dense
or sparse arithmetic have at least Õ(sD) or Õ

(
s2
)
bit complexity.

1 Introduction

Consider a univariate polynomial with integer coefficients, written

f = c1x
e1 + c2x

e2 + · · ·+ ctx
et , (1)

and write H = height(f) = maxi |ci| and D = deg f = maxi ei.
Traditionally, fast algorithms have either used the dense representation as a list of coefficients

with total size O(D logH), or in the sparse representation (a.k.a. supersparse or lacunary) as a list
of t nonzero coefficient-exponent pairs with total size O(t log(DH)). Considerable effort has been
made since the 1970s to develop quasi-linear algorithms for many problems with dense and sparse
polynomials, but notice that in either case, there is an implicit assumption that all coefficients have
the same bit-size log2 H.

Instead, we focus on the total bit-length of f , which we write as s =
∑

i(log2 |ci|+ log2 ei). Note
that both sizes above — and therefore also any quasi-linear time algorithms in those models — can
be as large as quadratic in s. Our goal of quasi-linear complexity with respect to s can be viewed as
a natural progression: dense algorithms use log2 H bits to represent every possible coefficient; sparse
algorithms are more refined by avoiding storage of zero coefficients; and unbalanced algorithms (as
we are proposing) refine further by using the exact number of bits for every term.

1.1 Our contributions

We provide new algorithms for interpolation and multiplication of polynomials with unbalanced
coefficients:

• (Theorem 5.2) There is a Monte Carlo randomized algorithm that takes a modular black box (see
Definition 2.3) for evaluating an unknown polynomial f ∈ Z[x], and bounds D, s on its degree
and total bit-size, and produces the sparse, unbalanced representation of f with high probability.
It uses O(s logD log s) black box evaluations and Õ(s logD) additional bit operations.

• (Theorem 6.3) There is a randomized algorithm that takes two polynomials f, g ∈ Z[x] and with
high probability produces their product fg with expected running time Õ(s logD), where s,D are
upper bounds on the total bit-sizes and degree of the inputs and outputs. Note that s needs not
be known in advance.

Unbalanced interpolation works by recovering terms in slices according to coefficient size, starting
with the largest ones (Section 5). It relies on a new technique (Section 4) that first recovers a
superset of the exponents of terms of interest, in order to avoid carry propagation from smaller
terms which have not yet been identified. We leverage the interpolation to handle unbalanced
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multiplication, exploiting a probabilistic product verification to discover adaptively the total bit-
length of the product (Section 6).

Our ultimate goal is to achieve quasi-optimal Õ(s) running time in terms of total bit-size of all
coefficients and exponents; Section 7 gives some insights on the barriers to achieving this so far.
Along the way, we also carefully define a new black box model which acts as a precise specification
for the interface between our various subroutines (Section 2), and give some separation bounds on
carry propagation between terms of different coefficient sizes (Section 3).

1.2 Related work

Dense polynomial multiplication The product of two polynomials f, g ∈ R[z] over a generic
ring can be computed using the schoolbook algorithm, Karatsuba’s algorithm [49], Toom-Cook
algorithm [67, 15] or FFT-based algorithms à la Schönhage-Strassen [66, 58, 12]. The best ring
complexity is O(D logD loglogD) via the Cantor-Kaltofen algorithm [12]. For finite fields one can
get a better bit complexity using more specialized algorithms [26, 25].

When R = Z, one must take into account coefficient growth during the computation. In partic-
ular, FFT-based algorithms require a height bound on the output. If H is the height (i.e. largest
coefficient magnitude) of the input polynomials, then the height of the product is at most H2D,
which is O(log(DH)) in terms of bit-length.

Then the fastest method for integer polynomial multiplication is Kronecker substitution [50,
65, 17, 13], which translates the problem into the multiplication of two integers of bit-length
O(D log(DH)), by evaluating the polynomials at sufficiently high power of 2. The complexity is
therefore O(D log(DH) log(D log(DH))) using the fast integer multiplication [24].

None of these can efficiently handle unbalanced coefficients. To the best of our knowledge, only
the Toom-Cook algorithm has been adapted to the case of unbalanced coefficients, by Bodrato and
Zanoni [11]. They reduce the problem to bivariate Toom-Cook multiplication, but do not provide a
formal complexity analysis.

Sparse polynomial multiplication When f , g are t-sparse polynomials as in (1), the schoolbook
algorithm for computing fg requires O(t2) ring operations plus O(t2 logD) bit operations on the ex-
ponents. In the worst case this is the best complexity possible, though many practical improvements
have been proposed [41, 54, 55]. Output-sensitive algorithms have been designed to provide a better
complexity when fewer terms are expected [63, 28, 27, 14, 6]. More recent algorithms, based on
sparse interpolation, managed to reach quasi-linear dependency in the output sparsity [57, 20, 22].

Sparse interpolation Modern algorithms to interpolate a sparse integer polynomial given a black
box function for its evaluation started with Zippel [69], Ben-Or and Tiwari [7], the latter of which
is based on Prony’s method from exponential analysis [62]. Numerous extensions have been pro-
posed [70, 45, 37] to handle finite field coefficients [23, 33, 40, 19, 35], discover the sparsity adaptively
via early termination [43], or extend to (sparse) rational function recovery [44, 42, 46, 48, 16, 31].
Some algorithms require slight extensions of the normal black box model [23, 53, 1, 56, 48, 19, 9, 29].

Algorithms whose complexity is polynomial in logD rather than D are termed supersparse, and
date from [47, 53, 1]. Garg and Schost [18] gave a supersparse algorithm for white-box interpolation
of a straight-line program; that technique has now been extended to (some kinds of) black boxes
over finite fields, or modular rings [3, 4, 38, 36, 34]. More details on these algorithms and techniques
can be found in [2, 30, 59]. The first quasi-linear algorithm in terms of Õ(t log(DH)) was recently
given by the authors [22].

Despite this considerable progress, no prior work provides a complexity estimate in terms of the
total (possibly unbalanced) bit-length of the output.

Multivariate polynomials A common approach to handling multivariate polynomials is to re-
duce to the univariate case via variable substitution [47, 5, 37, 22, 32], where such polynomials
naturally become (super)sparse. The univariate algorithms we propose will work well when the bit-
length of exponents all have bit-lengths close to the maximum logD, where the normal Kronecker
substitution preserves the total exponent bit-length. But effectively handling unbalanced exponents
remains an open problem.

Linear algebra Tangentially related to our work is the study of integer and polynomial matrices
with unbalanced entry sizes, where recent work has focused on complexity in terms of average degree
or total bit-length rather than maximum. A cornerstone result is for order basis computation [68],
which led to algorithms with similar complexity for Hermite normal form, determinant, and rank,
and recently Smith form of an integer matrix [52, 51, 8].

2 Preliminary

2.1 Bit lengths

We use the usual notion of the bit-length of an integer, that is bitlen+(a ∈ N) = ⌈log2(a+ 1)⌉ and
bitlen(a ∈ Z) = 1 + bitlen+(|a|).
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The bit-length of a sparse polynomial f as in (1) is defined as

bitlenx(f) =
∑t

i=1 (bitlen(ci) + bitlen+(ei)) ,

and as usual we define height(f) = maxi |ci|.
Useful for us will be this simple lower bound on the sparsity of f in terms of its bit-length.

Lemma 2.1. Let f ∈ Z[x] be a nonzero polynomial with bit-length s = bitlenx(f). The number of
nonzero terms in f is bounded by #f < 2s/ log2 s.

Proof. For any t ≥ 0, the smallest (in terms of bit-length) polynomial with t terms is 1+x+· · ·+xt−1,
which has total bit-length

t−1∑
i=0

(bitlen(1) + bitlen+(i)) = 2t+

t∑
i=1

⌈log2 i⌉ > 2t+ log2 t!

Taking this value as s and t as #f , the lemma is easily confirmed for all s ≤ 16. So assume s ≥ 17.
We first apply Stirling’s approximation of factorial to get

s = 2t+ log2 t! > 2t+ t log2
t
e = t log2

4t
e > t log2 t.

Note also that because s ≥ 17, we have log2 log2 s <
1
2 log2 s.

Finally, by way of contradiction, if t ≥ 2s/ log2 s, then

t log2 t >
2s

log2 s (log2 s− log2 log2 s) > s,

which is a contradiction to the inequality shown above.

2.2 Reducing bit length of a polynomial

We will often need to reduce a sparse polynomial f ∈ Z[x] modulo xp − 1 over Z/mZ, for some
integers p,m with p ≤ m, which we denote as f mod ⟨xp − 1,m⟩.

Lemma 2.2. Given f ∈ Z[x] and p,m ∈ Z with p ≤ m, computing f mod ⟨xp − 1,m⟩ requires
O(bitlenx(f) loglogm) bit operations.

Proof. Consider a single coefficient ci. Reducing ci modulo m requires O
(

log |ci|
logm

)
multiplications

of log2(m)-bit integers using the standard method, which has bit complexity O(log |ci| loglogm).
Summing over all coefficients, and doing the same for the exponents modulo p, gives the stated total
bit complexity.

2.3 Black Boxes: MBBs and MDBBs

We begin with the standard definition of a modular black box for evaluating a sparse integer poly-
nomial, with additional parameters B,L for the later complexity analysis.

Definition 2.3. A modular black box (MBB) π for unknown f ∈ Z[x] parameterized by B,L is a
procedure which, given a,m ∈ N where a < m, computes and returns π(a,m) that equals f(a) mod m,
using O(B + L logm loglogm) bit operations.

Intuitively, this corresponds to the notion that the MBB works by performing O(L) operations
in Z/mZ plus O(B) other operations. Moreover, in the final complexity measure, B tracks the total
number of calls to the MBB, whereas L (ignoring sub-logarithmic factors) tracks the total size of
the outputs produced by the MBB.

Our algorithms for interpolation and multiplication are composed of multiple subroutines and
interconnected procedures, both in this paper and from prior work. Of particular importance is
defining carefully the interface of these procedures as it concerns the unknown polynomial black
box.

While the MBB model above is an appropriate starting point (and indeed can serve as the input
for our algorithms), in subroutines we frequently need to update the unknown f with an explicitly-
constructed partial result f∗. This update creates a problem for the MBB model, as we do not know
any quasi-linear time algorithm for MBB evaluation of a known sparse polynomial where the degree
and evaluation modulus may both be large. For instance, computing ab mod p when log b ≈ log p
costs Õ(log2 p) bit operations.

Instead, we will rely on a more specific black box for evaluation.

Definition 2.4. A multi-point modular derivative black box (MDBB) π for an unknown f ∈ Z[x]
is a procedure which, given p, ω,m, k ∈ N where ω is a pth primitive root of unity (PRU) in Z/mZ,
produces two length-k sequences containing the evaluations of both f and xf ′ at 1, ω, ω2, . . . , ωk−1,
where f ′ is the formal derivative of f .

We now show four efficient MDBB constructions: from a MBB, an given polynomial, or the sum
or product of two MDBB.

Producing MDBB evaluations from a MBB black box follows the same technique already present
in prior work, which exploits the fact that (1 +m)e ≡ 1 + em mod m2, see e.g. [6, 22].
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Algorithm 1 MBBtoMDBB(π, p, ω,m, k)

Input: MBB π for unknown f ∈ Z[x] and MDBB inputs p, ω,m, k
Output: Evaluations of f and xf ′ at 1, ω, . . . , ωk−1 modulo m
1: for i = 0, 1, . . . , k − 1 do
2: αi ← π(ωi,m2) ▷ αi = f(ωi) mod m2

3: βi ← π((1 +m)ωi,m2) ▷ βi = f((1 +m)ωi) mod m2

4: γi ← (βi − αi)/m using exact integer division

5: return (αi mod m)0≤i<k and (γi)0≤i<k

Lemma 2.5. If π is an MBB for f ∈ Z[x] with cost parameters B,L as in Definition 2.3, then
Algorithm 1 MBBtoMDBB correctly produces a single set of MDBB evaluations of f and xf ′ and
has bit complexity O(Bk + (L+ 1)k logm loglogm) .

Proof. Any single term cxe in f is mapped to (c + cem)xe in f((1 + m)x) modulo m2. Therefore
f((1 + m)x) − f(x) ≡ xmf ′(x), and the γi’s are indeed evaluations of xf ′(x) as required. The
bit complexity comes from the cost of performing O(k) MBB evaluations and ring operations in
Z/mZ.

To perform MDBB evaluations of a given polynomial f , we compute the derivative f ′ explicitly,
reduce both f, f ′ modulo ⟨xp − 1,m⟩, and then perform two multi-point evaluations. If p < #f ,
then the reduced polynomial is dense and we use a DFT for the multi-point evaluations. Otherwise,
we treat it as a sparse multi-point evaluation on points in geometric progression, which is a matrix-
vector product with a transposed Vandermonde matrix (see e.g., [22, Fact 3.2]). The bit complexity
is Õ(min(p logm+ s loglogm, (s+ k) log p logm), or more precisely:

Lemma 2.6. There exists a procedure ExplicitMDBB that, given a polynomial f with bitlenx(f) =
s, and MDBB inputs p, ω,m, k ∈ N, correctly computes the MDBB evaluations of f and f ′ in time

O
(
min

(
p log p logm loglogm+ s loglogm,

(s+ k log s) log(sp) loglog s logm loglogm
))
.

Proof. First we reduce f modulo ⟨xp − 1,m⟩ in O(s loglogm) according to Lemma 2.2, and in the
same time separately reduce exponents modulo p and compute each coefficient-exponent product
(ce mod m) to derive the coefficients of xf ′.

Treating the reduced polynomials as dense with size p, we can use Bluestein’s algorithm for the
DFT [10] in O(p log p) operations modulo m to get the k ≤ p evaluations, i.e. ω ∈ Z/mZ is a p-PRU.

Alternatively, we may use a sparse approach: compute ωei for each exponent in the reduced f
(which are the same as in xf ′) in O(#f log p) and then perform two k × #f transposed Vander-
monde matrix-vector products, for a total of O

(
(#f + k) log2 #f loglog#f

)
operations modulo m.

Applying the bound on #f from Lemma 2.1 gives the stated complexity.

Finally we consider computing an MDBB for the sum or product of two MDBB polynomials.
The sum is straightforward; one can simply sum the corresponding evaluations. For the evaluations
of the derivative of the product h = fg, we can use the product rule from elementary calculus:

xh′(x) = xf ′(x) · g(x) + xg′(x) · f(x).

Lemma 2.7. There exist procedures SumMDBB and ProdMDBB which, given two MDBBs π1, π2

for unknown f1, f2 ∈ Z[x], and any MDBB input tuple (p, ω,m, k), compute respectively MDBB
evaluations of the sum f1 + f2 or product f1f2. The cost is a single MDBB evaluation each of π1

and π2 plus (resp.) O(k logm) or O(k logm loglogm) bit operations.

2.4 Images of MDBBs

Our main subroutines for unbalanced interpolation need at each step to recover f and xf ′ modulo
⟨xp − 1,m⟩, and to update such images with respect to a partially-recovered explicit polynomial
f∗. The next (almost trivial) algorithm shows how to compute such modular images from MDBB
evaluations.

Algorithm 2 MDBBImage(π, p, ω,m)

Input: MDBB π for unknown f ∈ Z[x]; and p, ω,m ∈ N s.t. ω is a p-PRU modulo m
Output: f and xf ′ modulo ⟨xp − 1,m⟩
1: (αi)0≤i<k, (γi)0≤i<k ← π(p, ω,m, p)
2: α̂0, . . . , α̂p−1 ← IDFTω(α0, . . . , αp−1) over Z/mZ
3: γ̂0, . . . , γ̂p−1 ← IDFTω(γ0, . . . , γp−1) over Z/mZ
4: return

∑t−1
i=0 α̂ix

i and
∑t−1

i=0 γ̂ix
i

The running time is straightforward using Bluestein’s algorithm [10] for the IDFTs.

Lemma 2.8. Algorithm 2 MDBBImage always produces the correct output using 2 calls to the
MDBB with k = p and an additional O(p logm log p loglogm) bit operations.
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3 Coefficient collisions and carries

Our general approach to find the terms of f with largest coefficients will be to exploit the fact that
there cannot be too many of them. So we will take images of f mod (xp − 1), for small values of p,
and extract the largest terms. The goal of this section is to define certain coefficient size boundaries,
bound the probability of larger terms colliding modulo xp−1, and prove that the carries from smaller
terms colliding will not affect the larger terms too much.

For the remainder, assume s,D,H are bounds (resp.) on the bit-length, degree, and height of
an unknown nonzero f ∈ Z[x].

We define 4 categories of coefficients according to size:

Definition 3.1. For any nonzero term cxe of f :

• If |c| < H1/6, we say c is small

• If |c| ≥ H1/6, we say c is medium

• If |c| ≥ 1
2H

13/30, we say c is large

• If |c| ≥ H1/2, we say c is huge

Note that every huge term is also considered large, and every huge or large term is also considered
medium. The number of terms in each category is also limited by s; for example, the number of
huge terms is at most 2s/ log2 H.

We now provide conditions on a randomly chosen prime p to avoid collisions modulo (xp − 1).
Formally, we say two nonzero terms c1x

e1 and c2x
e2 collide modulo p iff e1 ≡ e2 mod p. The

following lemma follows the standard pattern from numerous previous results (see for example [21,
Proposition 2.5]) relying on the density of primes in an interval [64].

Lemma 3.2. Let D,n > 0 be given and e0, e1, . . . , en be n+1 distinct exponents with each 0 ≤ ei ≤
D. If λ ≥ max (21, 3n log2 D), and if p a random prime from (λ, 2λ), then with probability at least
1
2 , exponent e0 does not collide with any of e1, . . . , en modulo p.

By repeatedly choosing primes, we can ensure that every term in f avoids collisions at least once.
Note here that the set a1, . . . , an need not be actual exponents in f .

Corollary 3.3. Let D,n > 0 be given and a1, . . . , an be distinct integers all satisfying 0 ≤ ai ≤ D,
and let P be a list of primes in (λ, 2λ), each chosen independently and uniformly at random. If
λ ≥ max(21, 3n log2 D) and #P ≥ 2 log2 s + 3, then with probability at least 1 − 1/(4s log2 s), for
every term cix

ei of f , there exists at least one p ∈ P such that ei does not collide (modulo p) with
any aj ̸= ei.

Proof. For any single term, by Lemma 3.2 the probability it is in collision with at least one of the
aj ’s for every p ∈ P is at most 1/22 log2 s+3 < 1/(8s2). Applying the bound on #f from Lemma 2.1,
and taking the union bound, gives the stated result.

Similar to prior works on sparse interpolation, our algorithm will recover the exponent e0 of
a term c0x

e0 by division of coefficients between f and xf ′ as produced by the MDBB. But this
division is not exactly equal to e0c0/c0 because we cannot avoid collisions with small terms in f .
The following crucial lemma shows that such collisions still allow exact recovery of the exponent e0
whenever the coefficient c0 is large.

Lemma 3.4. Suppose log2 H ≥ max (61, 15 log2 s, 6 log2 D) and p,m ∈ N with m ≥ 4H7/6, and
let c0x

e0 be any large term of f as in Definition 3.1. If this term does not collide with any other
medium term modulo p, then e0 can be accurately recovered by approximate division of coefficients
in f and f ′ modulo ⟨xp − 1,m⟩.

Proof. Let S be the set of indices of terms cix
ei in f that collide with e0, so that ei ≡ e0 mod p

for all i ∈ S. By assumption, all corresponding coefficients are “small” as in Definition 3.1, so each
each |ci| < H1/6 for i ∈ S.

First we establish a bound on the magnitude of the sum of any number of small coefficients.
Using the fact that #S ≤ #f ≤ s and the assumption log2 H ≥ 15 log2 s, we have, for any set of
small term indices S, ∣∣∑

i∈S ci
∣∣ ≤∑

i∈S |ci| < #SH1/6 ≤ sH1/6 ≤ H7/30. (2)

Then the terms corresponding to c0x
e0 in xf ′ and in f mod ⟨xp − 1,m⟩ are respectively

c0e0 +
∑

i∈S ciei mod m

c0 +
∑

i∈S ci mod m

Note that, from the bound (2) above, and the facts that |c0| ≤ H and ei ≤ D ≤ H1/6, both of
these are less than 2H7/6 in absolute value, and therefore modulo m ≥ 4H7/6 they can be recovered
exactly as signed integers.
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Our aim is to show that the quotient of these integers, rounded to the nearest integer, equals e0
exactly, or equivalently that ∣∣∣∣∑i∈S ciei − e0

∑
i∈S ci

c0 +
∑

i∈S ci

∣∣∣∣ < 1

2
(3)

Using (2), along with the bound D ≤ H1/6 from the statement of the lemma, the numerator
magnitude from (3) is at most∣∣∑

i∈S ci(ei − e0)
∣∣ ≤ D

∑
i∈S |ci| < DH7/30 ≤ H2/5.

A lower bound on the denominator from (3) can be obtained similarly, since |c0| ≥ 1
2H

13/30 by
the definition of a large term:∣∣c0 +∑

i∈S ci
∣∣ ≥ |c0| −∑

i∈S |ci| ≥ H2/5( 12H
1/30 −H−5/30)

Because log2 H ≥ 61, one can easily confirm that 1
2H

1/30−H−5/30 > 2. Therefore the denominator

is at least 2H2/5 and the inequality from (3) is satisfied.

4 Recovering huge terms

This section presents the heart of our new algorithm for unbalanced interpolation, Algorithm 4
UinterpolateSlice, which recovers an explicit partial interpolant f∗ ∈ Z[x] such that, with high
probability, height(f − f∗) ≤

√
H.

Recall the formal notion of small/medium/large/huge terms from Definition 3.1. Slice interpola-
tion works in two phases, first calling subroutine Algorithm 3 SupportSuperset to find (a superset
of) the support of all large terms, and secondly using this set to reliably recover the huge terms’
coefficients.

All the following algorithms need to find a p-PRU in Z/mZ for a random prime p in (λ, 2λ), and a
sufficiently large integer m. For that, we rely on [22, Fact 2.2] to find w.h.p a triple (p, q, ω) such that
ω is a p-PRU in Fq, and use [22, Algorithm LiftPRU] to lift ω to a p-PRU modulo m, where m = qk

is large enough. This will require Õ(logH log λ) + polylog(λ) bit operations for logm ∈ O(logH).
Since logH = O(s) this cost never dominates in our analysis.

The first subroutine, Algorithm 3 SupportSuperset, works by sampling from MDBBImage
multiple times, for sufficiently large exponent moduli p so that most of the medium (or larger) terms
do not collide. From Lemma 3.4 in the previous section, even with some small-term collisions, we
will be able to accurately recover the exponents of any large terms. Erroneous entries in T will
likely result from medium/large/huge collisions, but that is acceptable as long as we don’t “miss”
any true exponents of large terms.

Algorithm 3 SupportSuperset(π, s,D,H)

Input: MDBB π for unknown f ∈ Z[x], bounds s,D,H on (resp.) the bit-length, degree, and height
of f , satisfying the conditions of Lemma 3.4

Output: Set T ⊂ N which contains the exponents of all terms in f with large (or huge) coefficients
w.h.p.

1: λ← max(21, 18s log2 D/ log2 H); T ← {}
2: for i = 1, 2, . . . , ⌈2 log2 s⌉+ 3 do
3: Choose random prime p ∈ (λ, 2λ)
4: Construct m,ω with m ≥ 4H7/6, and ω a p-PRU mod m
5: g, h←MDBBImage(π, p, ω,m)
6: for each corresponding terms axe, bxe in g and h do
7: if |a| ≥ 1

2H
13/30 and 0 ≤ ⌊b/a⌉ ≤ D then

8: if #T < 60s(log2 s+ 2)/(13 log2 H) then
9: T ← T ∪ {⌊b/a⌉}

10: else return {}
11: return T

Lemma 4.1. Algorithm 3 SupportSuperset always produces a set T ⊆ {0, . . . , D} with #T ∈
O(s log s/ logH); makes O(log s) MDBB calls with p, k ∈ O(s logD/ logH) and logm ∈ O(logH);
and uses O

(
s logD log2 s loglogH)

)
additional bit operations. With probability at least 1−1/(4s log2 s),

T includes the exponents of every large term of f .

Proof. Let cxe be an arbitrary large term of f . By Definition 3.1, the number of medium terms in
f is at most 6s/ log2 H. Applying Corollary 3.3, we see that with at least the stated probability,
for each large term of f there exists an iteration i where that term does not collide with any other
medium (or larger) term. And then by Lemma 3.4, the actual exponent of that term is accurately
recovered from rounding division of coefficients on step i and added to T . This proves the stated
probabilistic correctness.

For the size of T , observe that the bit-length of f mod (xp− 1) is at most s, so there are at most
30
13s/ log2 H new integers added to T in each of the O(log s) iterations.
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The bit complexity is dominated by the cost of the O(log s) calls to MDBBImage, which by the
choices of p,m and from Lemma 2.8 gives the stated cost.

We now use the set T to recover the coefficients of the huge terms (only). The same number of
MDBBImage evaluations are performed, but with slightly larger p values to avoid collisions with all
exponents (whether correct or not) in T . Because T contains the exponents of all large terms, and
any errors from medium and small terms cannot propagate up to the “huge” level, every huge term
obtained on this step is accurately added to the result.

Algorithm 4 UinterpolateSlice(π, s,D,H)

Input: MDBB π for unknown f ∈ Z[x], and bounds s,D,H on (resp.) the bit-length, degree, and
height of f , satisfying the conditions of Lemma 3.4

Output: f∗ ∈ Z[x] such that w.h.p. height(f − f∗) ≤
√
H

1: T ← SupportSuperset(π, s,D,H)
2: λ← max(21, 3 ·#T · log2 D); f∗ ← 0
3: for i = 1, 2, . . . , ⌈2 log2 s⌉+ 3 do
4: Choose random prime p ∈ (λ, 2λ)
5: Construct m,ω with m ≥ 2H and ω a p-PRU mod m
6: π∗ ← SumMDBB(π,ExplicitMDBB(−f∗))
7: g.h←MDBBImage(π∗, p, ω,m)
8: Ej ← {} for 0 ≤ j < p
9: for each a ∈ T do

10: Ea rem p ← Ea rem p ∪ {a}
11: for each term cxi in g do
12: if |c| ≥ 1

2H
1/2 and #Ei = 1 then

13: e← the unique element of Ei

14: if f∗ does not contain a term with xe then
15: f∗ ← f∗ + cxe

16: if bitlenx(f
∗) > s then return 0

17: return f∗

Lemma 4.2. Algorithm 4 UinterpolateSlice always produces a polynomial f∗ ∈ Z[x] with
bit-length at most s, makes O(log s) MDBB calls with p, k ∈ O(s logD log s/ logH) and logm ∈
O(logH), and uses O

(
s logD log3 s loglogH

)
additional bit operations. It returns f∗ ∈ Z[x] such

that, with probability at least 1− 1/(2s log2 s), the height of (f − f∗) is less than
√
H.

Proof. Consider any set of non-large terms. By the upper bound on the total number of terms from
Lemma 2.1, the condition that log2 H ≥ 15 log2 s from Lemma 3.4, and from Definition 3.1, the sum
of these non-large terms is at most ∑

|ci| < 1
2sH

13/30 ≤ 1
2

√
H. (4)

For the probabilistic correctness, suppose that (i) the call to Algorithm 3 SupportSuperset
correctly returns a set T which contains the exponents of all large terms, and (ii) each large or huge
term does not collide with any of the other exponents in T for at least one of the chosen p’s in
the outer for loop. Taking a union bound with Lemma 4.1 and Corollary 3.3, both (i) and (ii) are
true with probability at least 1− 1/(2s log2 s), as required. We now prove the algorithm returns f∗

correctly under these two assumptions.
Consider any huge term c0x

e0 in f , i.e., with |c0| ≥
√
H. From (4), the resulting collision with

any number of non-large terms will still result in a coefficient larger than 1
2

√
H in absolute value,

so this term will be added to f∗. Conversely, consider any term cxe which is added to f∗ in the
algorithm. By assumption that T is correct, c must be the sum of exactly one large (or huge) term
plus some number of non-large coefficients. By (4) again, the coefficient of this term in f − f∗ is at
most the size of the colliding non-large coefficients’ sum, which is less than 1

2

√
H.

Because f∗ contains some term corresponding to each huge term in f , and every term added to
f∗ reduces the height of that coefficient in f − f∗ below

√
H, we conclude that height(f − f∗) <√

H. For the complexity analysis, we have #T ∈ O(s log s/ logH) from Lemma 4.1, which means
p ∈ O(s logD log s/ logH). As before, the cost of the evaluations MDBBImage dominates the
complexity, which comes from Lemma 2.8.

In most cases, UinterpolateSlice will be called with a MDBB π which is a sum of an actual
unknown black-box polynomial minus an explicit partial interpolant f∗ ∈ Z[x] recovered so far, via
ExplicitMDBB and SumMDBB. As soon as bitlenx(f

∗) ≤ s, next corollary shows that the bit
complexity is not affected.

Corollary 4.3. Let π be any MDBB and f∗ ∈ Z[x] such that bitlenx(f
∗) ≤ s. Then calling

UinterpolateSlice(π∗, s,D,H) with π∗ = SumMDBB(π,ExplicitMDBB(−f∗)) has the same
asymptotic cost as UinterpolateSlice(π, s,D,H).
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Proof. From Lemma 2.6 and Lemma 2.7, the cost of a single MDBB evaluation of π∗ with p, ω,m, k
is a single call to π plus

O(s loglogm+ p log p logm loglogm)

bit operations. When k ∈ O(p), logm ∈ O(logH), and p logm ∈ O(s logD log s), this simplifies to
O
(
s logD log2 s loglogH

)
.

Then from Lemma 4.2, the total cost of calls to π∗ in UinterpolateSlice is the same calls
to π, plus an additional bit cost which is always bounded by the bit-cost of UinterpolateSlice
itself.

5 Unbalanced interpolation

Our overall algorithm calls Algorithm 4 UinterpolateSlice repeatedly starting with H = s,
until the height decreases such that the conditions of Lemma 3.4 are no longer satisfied, and then
switches to a balanced sparse interpolation algorithm for the base case. For that, we use Algorithm
2 Interpolate mbb from [22], which solves the problem in Õ(T logD + T logH) time. In the
base case when Lemma 3.4 no longer applies, we have logH ∈ O(logD + log s), so this complexity
becomes simply Õ(s logD) as required.

The only slight change from [22] is that Interpolate mbb must take a MDBB rather than a
usual MBB as the black-box for unknown f ∈ Z[x]. But the MDBB model already fits the case
perfectly; the algorithm in [22] is using the MBB only to evaluate f at consecutive powers of a
p-PRU, which is precisely what a MDBB does already.

All this discussion is summarized in the following claim, where the precise complexity bound
comes from Theorem 3.18 in [59].

Fact 5.1. Let π be a MDBB for f ∈ Z[x], and bounds D,T,H on (resp.) the degree, sparsity, and
height of f . Write n = T (log2 D + log2 H). Then Interpolate mbb(π,D, T,H) is a Monte-Carlo
algorithm that always produces a polynomial f∗ within the given bounds using O(log T ) calls to the
MDBB and O

(
n log3 n log2 T (loglog n)2

)
bit operations. In each MDBB call, we have p ∈ O(n log T )

and logm ∈ O(log(DH)), and the sum of k values over all O(log T ) calls is O(T ). If the unknown f
satisfies the given bounds D,T,H, then with probability at least 2

3 , the returned polynomial f∗ equals
f .

As mentioned in [22], one can decrease the failure probability to any ϵ > 0 by iterating the call
at least 48 ln 1

ϵ times and returning the majority result. We now present our main algorithm that
recovers an unknown polynomial with possibly unbalanced coefficients from a given MDBB and
bounds only on the degree and total bit-length.

Algorithm 5 Uinterpolate(π, s,D)

Input: MDBB π for unknown f ∈ Z[x], and bounds s,D on (resp.) the bit-length and degree of f
Output: f∗ ∈ Z[x] such that f = f∗ w.h.p.
1: H ← 2s; f∗ ← 0; π∗ ← π
2: while H ≥ max (61, 15 log2 s, 6 log2 D) do
3: f∗ ← f∗ +UinterpolateSlice(π∗, s,D,H)
4: if bitlenx(f

∗) > s then return 0

5: π∗ ← SumMDBB(π,ExplicitMDBB(−f∗))
6: H ←

√
H

7: R← empty list
8: for i = 1, 2, . . . , ⌈48 ln(2s)⌉ do
9: f∗∗ ← Interpolate mbb(π∗, 2s/ log2 s,D,H)

10: Append f∗∗ to R

11: if R has a majority element f∗∗ and bitlenx(f
∗∗) ≤ s then

12: return f∗∗

13: else return 0

The precise cost estimate is given in the following theorem.

Theorem 5.2. Algorithm 5 Uinterpolate always returns a polynomial with bit-length at most s
and uses O

(
log2 s

)
MDBB calls plus an additional

O
(
s logD log5 s(loglog s)2

)
bit operations. Each MDBB call has p ∈ O(s logD), logm ∈ O(s), but (p+k) logm ∈ O(s logD log s);
furthermore, the sum of k over all MDBB calls is O(s logD log s). If the unknown f actually satisfies
bit-length and degree bounds s,D, then with probability at least 1− 1/s, the returned f∗∗ equals f .

Proof. First observe that due to the checks in the algorithm, f∗ and f∗∗ always have bit-length at
most s and degree at most D.

For the bit complexity, notice that at the end of the first loop we have logH ∈ O(logD + log s).
And then because the bit-length s could never be more than D log2 H, we see that in fact log s +
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logH ∈ O(logD) at this point in the algorithm. Applying Fact 5.1, the total bit-cost of the O(log s)
calls to Interpolate mbb dominates the (non-black box) bit complexity and gives the stated
bound.

The black box calls are dominated instead by the first loop, whose cost is verified by applying
Lemma 4.2 and observing that, since logH is exponentially decreasing from s down to at least log s,
the sum of k values in all calls to Lemma 4.2 is as claimed.

For probabilistic correctness, the union bound over all calls to UinterpolateSlice, Lemma 4.2
gives at most a 1

2s chance that any of those steps does not return the correct result. In the subsequent
calls to Interpolate mbb, setting T = 2s/ log2 s is valid by Lemma 2.1. From the preceding dis-
cussion, we have the same probability of failure of the majority vote approach at the end. Therefore
the total failure probability is at most 1/s as claimed.

Similarly to Corollary 4.3, we first clarify that adding an explicit polynomial to the black box π
does not affect the bit complexity. This is clearly the case as the MDBB π∗ in the algorithm in fact
already includes a sum with an explicit polynomial whose bit-length is at most s.

Corollary 5.3. Let π be any MDBB and f∗ ∈ Z[x] such that bitlenx(f
∗) ≤ s. Then calling

Uinterpolate(π∗, s,D) with π∗ = SumMDBB(π,ExplicitMDBB(−f∗)) has the same asymp-
totic cost as Uinterpolate(π, s,D).

The following corollary gives the concrete cost to runUinterpolate when the input is a modular
black box (MBB). The stated bit complexity, which provides the clearest comparison to prior works
in the literature, can be even more simply stated as Õ((B + L)s logD).

Corollary 5.4. If π is a MBB for unknown f ∈ Z[x] with cost parameters B,L as in Definition 2.3,
and if f has bit-length at most s and degree at most D, then Uinterpolate(MBBtoMDBB(π), s,D)
correctly return f with probability at least 1− 1

s and total bit cost

O
((
B + L log3 s+ log4 s(loglog s)2

)
s logD log s

)
Proof. Follows directly from Theorem 5.2 and Lemma 2.5.

6 Unbalanced multiplication

In this section we will show how to multiply two polynomials f, g ∈ Z[x] with degree less than D and
bit-lengths ℓ, in time Õ(s logD), where s = 2ℓ+bitlenx(fg) is the total input and output bit-length.

As motivated in the introduction, this is the first algorithm which is sub-quadratic in s for
unbalanced coefficients, even for dense polynomials. For sparse integer polynomial multiplication,
the state of the art comes from [59, Algorithm 20], based on the (balanced) sparse interpolation
of [22], having a bit complexity Õ(t logH + t logD), which is Õ(s2 + s logD) in terms of the total
bit-length s. For the remainder we address only the case of sparse polynomials as the dense case
works in exactly the same way.

Our general approach is to construct a MDBB for the product fg and then use Algorithm 5
Uinterpolate to interpolate it with complexity dependent on (unbalanced) total bit-length of the
inputs and output. But we will show that the pessimistic bound on bitlenx(fg) is quadratic in the
input sizes, which means that a näıve use of Uinterpolate would not be quasi-linear in the actual
size of fg.

Instead, we develop an efficient probabilistic verification method, which allows us to try inter-
polating fg with smaller bounds on the output bit-length, then repeatedly doubling the optimistic
bound until the verification passes.

Unbalanced product bit-length Suppose f, g ∈ Z[x] have t non-zero terms and total bit-length
ℓ. The number of terms in h = fg is at most t2 but the total bit-length of h remains O(tℓ), instead
of O

(
t2(ℓ+ log t)

)
. Indeed, when no collision occurs, every entry of f and g will contribute exactly

t times to the bit length of h. Collision among non-zero terms can only decrease the sum of the bit-
length of the t2 coefficient products. Hence the bit-length of h is bounded by t times the bit-length
of the input. Using Lemma 2.1 we can derive the following lemma.

Lemma 6.1. If bitlenx(f) , bitlenx(g) ≤ ℓ, then bitlenx(fg) ≤ 4ℓ2/ log ℓ and height(fg) ≤ 4ℓ · ℓ

6.1 Unbalanced product verification

Our unbalanced interpolation algorithmUinterpolate takes a bit-length bound and always returns
a polynomial with that size, but gives (obviously) no correctness guarantee if that bound was too
small. To avoid relying on the pessimistic upper bound on bitlenx(fg), we provide an efficient
verification method. While deterministic verification seems to be a difficult task, a straightforward
analysis of the probabilistic algorithm proposed in [21, Section 5.2] is already satisfactory to reach
the needed complexity:
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Lemma 6.2. There is a one-sided error randomized algorithm, called VerifProd (f, g, h, ϵ), that,
given f , g, h ∈ Z[x] with degrees and bit-lengths at most D and s, and failure probability ϵ ∈
(0, 1), tests whether h = f × g with false-positive probability at most ϵ, using O(s log s

ϵ loglog
s
ϵ +

s log D
ϵ loglog D

ϵ ) bit operations.

Proof. The approach is exactly the same as in [21, Section 5.2]. We choose random primes p, q,
evaluate δ = (h−fg) mod ⟨xp−1, q⟩ at a random point α ∈ Fq, and check whether the result is zero.
If h = fg, then δ = 0 and the check always succeeds. Otherwise, from Lemma 6.1 and Lemma 2.2
one may show that taking p = Ω( 1ϵ max(s,D)) and q = O( 1ϵ s) is enough to guarantee that δ is zero
with a probability less than 2

3ϵ. Using [21, Theorem 3.1] one can show that evaluating δ(α) = 0
costs the claimed complexity and that α is a root of δ with probability less than 1

3ϵ.

6.2 Adaptative polynomial multiplication

One can easily construct an MDBB π for the product of two polynomials f, g ∈ Z[x] by composing
the procedures ProdMDBB and ExplicitMDBB given in Section 2.3. Feeding this MDBB into
our unbalanced interpolation algorithm Uinterpolate with a correct bit-length bound yields a
Monte-Carlo algorithm for computing the product fg. We now provide a probably correct and
probably fast randomized algorithm (sometime called Atlantic-City) for that computation where the
correct bit-length is discovered through our probabilistic verification of the computed result.

Algorithm 6 UnbalancedProd

Input: f, g ∈ Z[x] of degree at most D and bit-lengths ℓ;
Output: h ∈ Z[x] such that h = f × g w.h.p.
1: h← 0; s← ℓ
2: smax ← 2ℓ+ 4ℓ2/ log2(ℓ); ϵ← (smax(8ℓ+ 4))−1

3: π ← ProdMDBB(ExplicitMDBB(f),ExplicitMDBB(g))
4: while s < 2smax and not VerifProd (f, g, h, ϵ) do
5: h← Uinterpolate (π, s, 2D)
6: s← 2s
7: return h

Theorem 6.3. Let two polynomials f, g ∈ Z[x] of degree at most D and bit-lengths ℓ. Algorithm
UnbalancedProd is an Atlantic-City algorithm that returns the polynomial h = f × g with prob-
ability at least 1 − 1

s , using an expected total of O(s logD log5 s(log log s)2) bit operations where
s = O(ℓ+ bitlenx(h)). This is the actual complexity with probability at least 1− 1

s . In the worst-case

it requires O(s2 logD log4 s(log log s)2) bit operations.

Proof. First one should note that according to Lemma 6.1, smax bounds bitlenx(fg) + bitlenx(f) +
bitlenx(g). So taking s at most 2smax − 1 is enough to guarantee at least one iteration is done with
a correct bit-length. This iteration will fail with the same probability as Uinterpolate, which is
< 1/s. Let us assume that Uinterpolate never produces a correct answer even when s correctly
bounds the bit-length of fg. Since the algorithm requires at most ⌈log2(2smax/l)⌉ < 8ℓ+4 iterations
before terminating, the probability that at least one verification test fails is ≤ (8ℓ + 2)ϵ = 1/smax.
Hence, the probability of a wrong answer is < 1/smax.

For the running time we note that all returned polynomials have a bit-length smaller than s even
for wrong results. Therefore, each iteration of Uinterpolate has a cost ofO(s logD log5 s(log log s)2)
bit operations, plus the MDBB evaluations.

Evaluating the MDBB π entails one ProdMDBB and two ExplicitMDBBs on polynomials
whose bit-length is at most ℓ. From Lemma 2.6 and Lemma 2.7 this is dominated by the cost of
ExplicitMDBB, and then by Corollary 5.3 the cost of all MDBB evaluations does not dominate
the bit-cost of Uinterpolate itself.

The bit cost from Uinterpolate dominates the complexity of the corresponding call to Ver-
ifProd because log 1

ϵ = O(log ℓ) = O(log s). Since the value of s is doubling at each iteration, the
global running time is dominated by the cost of the last one, which is done with s = O(bitlenx(fg)).

It remains to see if there are extra iterations after reaching a bound sh ≥ bitlenx(fg). There are
γ < 8ℓ + 4 extra iterations if both Uinterpolate and VerifProd fail γ times in a row. Even
ignoring the probability of failure of VerifProd, this cannot happen with probability more than
( 1
sh
)γ . Let C(s) be the cost of one iteration. Since it is quasi-linear in s, the i-th extra iteration

costs O(2iC(sh)). Hence the expected cost is O
(∑γ

i=1 2
iC(sh)(

1
sh
)i
)
= O(C(sh)).

We remark that one might hope to simplify this approach by using early termination instead
of (probabilistic) verification, stopping the loop as soon as several interpolations in a row lead to
the same polynomial. But without any guarantees on the outputs of Uinterpolate when given a
too-small bit-length bound s, there is no way to analyze the early termination strategy.
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7 Open question

A natural question, which we leave open, is whether a soft-optimal algorithm for integer polynomial
interpolation with unbalanced coefficients and large, unbalanced exponents is possible. That is, we
have shown an algorithm that runs in Õ(s logD) time; is even better Õ(s) possible? We will outline
two possible approaches towards this improvement, and briefly explain why both do not seem to
work with our current techniques.

At a high level, our algorithm Uinterpolate and its subroutine UinterpolateSlice is top-
down in nature: it first retrieves only the largest terms by making relatively few evaluations at very
high precision. Then these are added to the result, and we proceed to find more terms at the next
level, using a greater number of lower-precision evaluations.

The complexity challenge comes at the point of performing evaluations; in particular we need
some p = Õ(k logD) evaluations at each step in order to retrieve the k largest terms. In prior work
such as [22], this extra logD factor in evaluations is avoided by using Prony’s method as in Ben-Or
and Tiwari [7], but that doesn’t work in this context because we do not actually have a k-sparse
polynomial ! Instead we have a polynomial with many more than k terms, from which we only want
to extract the k largest coefficients. So the Prony method (in exact arithmetic) cannot be used, and
we have to resort to a dense “over-sampling” approach and incur the extra logD factor in cost. Note
that the numerical sparse FFT and related methods [39, 61, 60] do tackle this problem of retrieving
only the largest coefficients via evaluation/interpolation. But numerical evaluation unfortunately
does not fit with our update step to cancel out the large terms once recovered.

A completely opposite approach to ours would be to instead start by recovering all of the small
terms of the unknown f , then cancel these and iterate, at each step retrieving fewer terms, at higher
size and evaluation precision. This bottom-up approach seems at first glance to work very well; in
particular it solves the aforementioned issue of sparsity because, at the point of attempting to recover
some k large terms, the difference polynomial f − f∗ really is k-sparse, and only O(k) evaluations
would be needed at each step.

But unfortunately there is a subtle and seemingly devastating obstacle to this approach, which
is the cost of evaluating the already-recovered terms f∗ at each step. For example, consider an
extreme case where f has roughly s/ log s very small terms with O(log s) bits each, and then a
constant number of very large terms with O(s) bits each. After recovering all the small terms, the
explicit polynomial f∗ has sparsity O(s) (but small height), and now to find the remaining few large
terms, we need to evaluate this polynomial to very high precision, that is, with a s-bit modulus.

But to our knowledge there is no known technique to evaluate a large low-height polynomial at
just a few points to very high precision. Instead, the standard approach to evaluate f∗(ω) mod m
with an s-bit modulus m would require first computing ωei mod m for each exponent ei in f∗, which
already results in a bit-cost of Õ

(
s2
)
, obviously not quasi-linear time.

Of course there could be an entirely different approach to achieving Õ(s) runtime, but we thought
it would be prudent to share these two (failed) attempts of ours so far, in the hopes of provoking
new ideas and future work.
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