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Highlights
Robust super-twisting-based disturbance observer for autonomous underwater vehicles: design,
stability analysis, and real-time experiments
Jesus Guerrero,Ahmed Chemori,Vincent Creuze,Jorge Torres

• A new disturbance observer based on the Super-Twisting Algorithm is proposed.
• A nominal PD is enhanced through the designed disturbance observer.
• The stability analysis of the overall closed-loop system is proved.
• The resulting robust PD is validated in real-time experiments on Leonard AUV.
• The real-time experiments demonstrate the effectiveness and robustness of the proposed scheme.
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ABSTRACT
This paper proposes a new observation-based proportional-derivative control method for robust
trajectory tracking of autonomous underwater vehicles (AUVs). The proposed control scheme is
designed based on a new observation-based nonlinear model that captures the dynamics and uncer-
tainties of the AUV’s behavior. The proposed control method is formulated in such a way that it can
handle system nonlinearities and uncertainties, making it robust to external disturbances and model
uncertainties. The effectiveness of the proposed control method is demonstrated through extensive
real-time experiments in a real-world AUV trajectory tracking scenario. The obtained results show that
the proposed control method outperforms other control methods in the literature regarding trajectory
tracking accuracy, robustness, and disturbance rejection. Overall, the proposed observation-based
proportional-derivative control method can significantly improve the trajectory tracking performance
of AUVs in real-world applications.

1. Introduction and Related Work
Underwater vehicles have become increasingly impor-

tant in various fields, such as ocean exploration, envi-
ronmental monitoring, and underwater construction. How-
ever, the operation of these vehicles is often challenging
due to significant disturbances such as ocean currents and
waves, which can affect their stability and performance.
To overcome these challenges, several control techniques
have been proposed in the literature Tijjani, Chemori and
Creuze (2022). For example, some of the most popular
techniques used to control underwater vehicles thanks to
their simplicity and good performance are the Proportional-
Derivative (PD) and the Proportional-Integral-Derivative
(PID) controllers and their nonlinear versions (see for in-
stance, Herman (2009); Sarhadi, Noei and Khosravi (2016);
Campos, Chemori, Creuze, Torres and Lozano (2017);
Campos, Abundis, Chemori, Creuze and Torres (2019);
Guerrero, Torres, Creuze, Chemori and Campos (2019c)).
However, although PD control has the simplest control
structure, it is well known that it shows steady-state error and
is not robust towards external disturbances and parametric
uncertainties. The performance of the PID may be degraded
when dealing with highly nonlinear systems, time-varying
disturbances, or with time delays. To address these limita-
tions, nonlinear adaptations of PD/PID controllers have been
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designed, albeit at the cost of introducing more sophisticated
techniques, potentially complicating the control scheme.

Besides, robust control methods have been developed
to ensure accurate and reliable operation of underwater
vehicles as an alternative solution for the AUV control
problem. For instance, adaptive controllers Maalouf, Creuze
and Chemori (2012), fuzzy controllers Xiang, Yu and Zhang
(2017); Remmas, Chemori and Kruusmaa (2021), adaptive
fuzzy sliding mode controllers Bessa, Dutra and Kreuzer
(2008, 2010), neural network controllers Cui, Yang, Li and
Sharma (2017), Backstepping technique An, Wang, He and
Yuan (2022), Sliding Mode Controllers (SMC) Elmokadem,
Zribi and Youcef-Toumi (2016); Guerrero, Chemori, Tor-
res and Creuze (2023), adaptive SMC Guerrero, Torres,
Creuze and Chemori (2019b); Qiao and Zhang (2019); Tij-
jani, Chemori and Creuze (2021).

Another effective method to control underwater vehi-
cles is the disturbance observer based on the sliding mode
technique. The sliding mode control method is well-known
for its robustness and fast convergence in the presence of
disturbances and uncertainties, making it a suitable choice
for underwater vehicle control. The disturbance observer-
based on the sliding mode technique, estimates and com-
pensates for unknown disturbances by modifying the con-
trol input, improving the stability and performance of the
control system. The disturbance observer based on SMC has
been applied in several works such as in Chen (2003); Li,
Yang, Chen and Chen (2011); Ginoya, Shendge and Phadke
(2013); Wang, Meng and Huang (2017). In the paradigm
of underwater vehicles, a disturbance observer based on the
sliding mode technique was developed in Wang, Mihalec,
Gong, Pompili and Yi (2018). The authors designed a distur-
bance observer based on the Super-twisting algorithm (STA)
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for the trajectory tracking of an underwater vehicle. Then,
the estimation of the disturbance made by the observer is
introduced to a feedback linearization-based model predic-
tive controller. Finally, the authors proved the effectiveness
of the proposed controller through numerical simulations.
However, although it presents interesting results, the authors
proposed a disturbance observer and controller only consider
the partial model of the underwater vehicle, controlling the
x, y, and  dynamics. Moreover, the observer and controller
design needs the full knowledge of the dynamical system,
which complicates its implementation in an actual under-
water vehicle, because the hydrodynamic parameters change
depending on the vehicle’s operational condition.

In Guerrero, Torres, Creuze and Chemori (2019a), a
disturbance observer has been developed based on the Gen-
eralized Super Twisting Algorithm (GSTA) to improve some
non-robust controllers such as the non-linear PD control
Campos et al. (2017) and the Backstepping method. Based
on the obtained real-time experiments for the depth and
yaw trajectory tracking, one can notice the effectiveness of
the proposed methodology when dealing with parametric
uncertainties and external disturbances. However, one draw-
back of this disturbance observer lies in a large number of
observer gains to tune.

In the work of Nerkar, Londhe and Patre (2022), a distur-
bance observer based on the STAwas designed for trajectory
tracking of a linearized steering and the diving plane of
an underwater vehicle. Through numerical simulations, the
authors prove the effectiveness of the proposed scheme for
trajectory tracking of an AUV in vertical and horizontal
planes.

Finally, inGuerrero, Chemori, Torres andCreuze (2024),
the authors developed a disturbance observer with adaptive
laws for the tuning of the observer’s gains. The algorithm
was employed to improve the performance of the PD control
through several real-time experiments.

Based on the cited literature, it is worth noting that
the disturbance observers are designed to improve different
kinds of controllers. In our approach, we decided to improve
thewell-known PD controller. Because this scheme is widely
used when underwater vehicles are deployed at the sea. Gen-
erally, the ROV has an internal PD/PID controller to reach
the desired position commanded by the user. Our philosophy
is to maintain a simple structure for the controller while
preserving the robustness toward parametric uncertainties
and external disturbances. Moreover, this paper provides a
comprehensive analysis of a disturbance observer based on
the sliding mode technique for underwater vehicle control
derived from Guerrero et al. (2019a). Indeed, the main idea
is to simplify the design of the new disturbance observer
inspired by the cited works about STA-based designs. The
disturbance observer will be introduced in the nominal PD
controller to provide robustness toward parametric uncer-
tainties and external disturbances. The main contributions
of this paper can be summarized as follows:

1. We develop a disturbance observer based on the tech-
nique of the extended state observer (ESO) and the

STA. This observer will estimate the parametric un-
certainties and external disturbances online, and this
estimation will be inserted into a non-robust PD con-
troller. The stability analysis of the resulting closed-
loop, including both observer and controller, using the
Lyapunov arguments, is provided.

2. Compared to the works of Wang et al. (2018); Guer-
rero et al. (2019a); Nerkar et al. (2022); Guerrero et al.
(2024), the following features can be highlighted:
(a) The proposed observer addresses the complete

underwater vehicle nonlinear system.
(b) The proposed disturbance observer does not

need full knowledge of the hydrodynamics pa-
rameters.

(c) We propose a simpler version compared to Guer-
rero et al. (2019a) without sacrificing the robust-
ness of the proposed algorithm, with only two
feedback gains to be tuned.

(d) Compared to Guerrero et al. (2024), the pro-
posed disturbance observer here is based on
constant feedback gains. The proposed algo-
rithm was able to improve the performance
even of nonlinear controllers such as the Back-
stepping (BS) algorithm. Moreover, the non-
adaptive STA observer is not a trivial case of the
adaptive one. Indeed, the present contribution
can be considered complementary to the work
reported in Guerrero et al. (2024), where the
advantages and complexities related to both the
stability analysis and real-time applications are
enlightened.

3. The effectiveness and robustness of the resulting ro-
bust PD controller (RPD) are demonstrated through
several real-time experimental scenarios in different
operating conditions. Compared to our previous work,
we have added one more scenario in order to prove the
robustness of the proposed methodology.

The rest of the paper is organized as follows: the mathe-
matical modeling of underwater vehicles is given in Section
2. The design of the proposed robust disturbance observer
based on the Super Twisting Algorithm is detailed in Section
3, while the stability analysis of the proposed observer
is addressed in Section 4. In Section 5, the nominal PD
controller, enhanced with the designed disturbance observer,
is introduced, as well as its stability analysis. To demonstrate
the effectiveness of the proposed methodology, several real-
time experiments were carried out on a real platform and
reported in Section 6. Finally, a conclusion and final remarks
are drawn in Section 7.

2. Mathematical Model of the Underwater
Vehicle
The mathematical model of underwater vehicles has

been studied by several works such as Fossen (1999);Wadoo
and Kachroo (2017); Sarhadi et al. (2016). The dynamic
model in the body-fixed frame is given as follows:
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Figure 1: Illustration of the coordinate systems, including
the earth-fixed frame (xn, yn, zn) and the body-fixed frame
(xb, yb, zb).

M�̇ + C(�)� +D(�)� + g(�) =� +w�(t) (1)
The vector � = [u, v,w, p, q, r]T ∈ ℝ6 is the state vector of
velocity relative to the body-fixed frame. The inertia matrix
is denoted by M ∈ ℝ6×6, C(�) ∈ ℝ6×6 is the Coriolis-
centripetal matrix,D(�) ∈ ℝ6×6 is the hydrodynamic damp-
ing matrix, g(⋅) ∈ ℝ6 is the vector of the gravitational and
buoyancy forces andmoments. Vector � (∈ ℝ6) is the control
input acting on the vehicle and w�(t) ∈ ℝ6 is the vector of
the external disturbances effects.

The dynamics of the underwater vehicle can be ex-
pressed in the earth-fixed frame (as illustrated in Fig. 1)
using the matrix transformation J (�) ∈ ℝ6×6 defined as:

�̇ = J (�)� (2)
where � = [x, y, z, �, �,  ]T is the vector of position and
orientation of the vehicle in the earth-fixed frame; while, �̇
denotes the time derivative of the vector �. Applying (2) to
(1) yields to the following representation in the earth-fixed
frame:
M�(�)�̈+C�(�, �)�̇+D�(�, �)�̇+g�(�) = ��(�)+w�(t) (3)

where:
M�(�) =J−T (�)MJ−1(�)

C�(�, �) =J−T (�)
[

C(�) −MJ−1(�)J̇ (�)
]

J−1(�)

D�(�, �) =J−T (�)D(�)J−1(�) (4)
g�(�) =J−T (�)g(�)

��(�) =J−T (�)�

w�(t) =J−T (�)w�(t)

It is well known that model-based controllers require
the full knowledge of the dynamical model. However, in
underwater robotics, it is not easy to estimate the hydrody-
namic parameters because their values may depend on the
operating conditions, the salinity of the water, etc. For the
above mentioned reasons, we express the dynamics of the
vehicle shown in (3) in terms of the nominal parameters as
follows:
M̂�(�)�̈+Ĉ�(�, �)�̇+D̂�(�, �)�̇+ĝ�(�) = ��(�)+w�(t) (5)

where M̂� , Ĉ� , D̂� , ĝ� represent the estimation of the ma-
trices of the dynamical model. The vector w�(t) is definedas:

w�(t) = w� − f̃ (⋅) (6)
It is worth noting that the vector w�(t) includes the exter-
nal disturbances and the unknown dynamics of the model
denoted by f̃ (⋅) and is defined as:
f̃ (⋅) = (M�−M̂�)�̈+(C−Ĉ�)�̇+(D−D̂�)�̇+(g�−ĝ�) (7)
Note that the dynamics are rewritten in terms of the

known hydrodynamic parameters f̂ (⋅) and the lumped vector
w�(t) including the unknown dynamics and the bounded
external disturbances.

3. Proposed STA-Based Disturbance
Observer Design
In this section, a robust STA-Based disturbance observer

is designed. The proposed methodology is based on the
Extended State Observer methodology (ESO) Han (1995).
In brief, the ESO technique is applied to a chain systems
form,where the external disturbance is seen as an augmented
state. Then, the ESO will estimate both the state variables
and the external disturbances Han (2009).

To give a comprehensive and detailed explanation of the
disturbance observer, let us rewrite the dynamical model (5)
in integrator form, by selecting the following state variables:

z1 = � ; z2 = �̇

Then, the dynamical model (5) can be expressed as follows:
ż1 = z2
ż2 = F̂ (z) + Ĝ(z)u(t) + d(t) (8)

where:
F̂ (z) = −M̂�(�)−1

[

Ĉ�(�, �)�̇ + D̂�(�, �)�̇ + ĝ�(�)
]

Ĝ(z) = M̂n(�)−1J−T (�)

d(t) = M̂�(�)−1w�(t)
u(t) = ��

Finally, classical assumptions in underwater vehicles can
be pointed out:
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Assumption 1. The pitch angle is smaller than �∕2, i.e.,
|�| < �∕2.

Assumption 2. The time-derivative of the perturbation
d(t) is bounded.

Assumption 1 ensures that the inverse of the matrix
J (�) always exists; consequently, the term G(z) exists. In a
physical scenario, a pitch close to �∕2 implies that the robot
dives vertically, which is generally not required during sea
missions.

Assumption 2 ensures that the disturbance, and espe-
cially its time-derivative is bounded as follows:

|ḋi(t, x)| ≤ �i (9)
where �i ≥ 0 for i = 1, 6.Considering the following auxiliary variable defined:

�(t) = z2 + Γz1 (10)
where � ∈ ℝ6 and Γ = diag{1, 2,⋯ , 6} is a diagonal
positive definite matrix.

The time derivative of �(t) is computed as follows:
�̇(t) = f (z) + g(z)u(t) + d(t) (11)

where f (z) = F̂ (z) + Γż1, and g(z) = Ĝ(z)From the dynamics of the auxiliary variable (11), the
lumped disturbance will be considered as an extended state
ℎ(t), such that:

�̇(t) = f (z) + g(z)�� + ℎ(t)
ℎ̇(t) = �(t) (12)

where �(t) is the time derivative of the total disturbance d(t).
The proposed disturbance observer dynamics for the

system (12) can be defined as:
̇̂� = f (z) + g(z)�� −K1Φ1(�̃) + d̂(t)
̇̂d = −K2Φ2(�̃)

(13)

whereK1 = diag{k11, k12,⋯ , k16} andK2 = diag{k21, k22,
⋯ , k26} are diagonal positive definite matrices representing
the observer feedback gain. The vectors Φ1 and Φ2 are
defined as Φ1(�̃) = [�11, �12,⋯ , �16]]T and Φ2(�̃) =
[�21, �22,⋯ , �26]T , and each element of these vectors is
given by:

�1i(�̃i) = |�̃i|
1∕2sgn(�̃i)

�2i(�̃i) =
1
2
sgn(�̃i)

(14)

Finally, the estimation errors are deduced as:
�̃(t) = �̂(t) − �(t) (15)
d̃(t) = d̂(t) − d(t) (16)

where �̂(t) and d̂(t) are the estimated observer internal states.
̇̂�(t) and ̇̂d(t) are the dynamics of the estimated observer
internal states.

4. Disturbance observer stability analysis
This section presents the stability analysis of the dis-

turbance observer based on the STA algorithm (13)-(14).
The STA algorithm has two main characteristics: finite-
time stability and robustness against matched disturbances
Moreno (2009). For completeness, we recall the concept of
stability in finite time for a system ẋ = f (t, x) with initial
condition x(t0) = x0, where the solution of the system is
denoted by x(t, x0) for a given initial condition x0 belongingto a compact subspace  ⊂ Rn. It is assumed that x = 0 is
an equilibrium point of the system, see Orlov (2004).
Definition 1. The equilibrium point x = 0 of the system
ẋ = f (t, x) is said to be stable in finite time if it is
asymptotically stable and any solution x(t, x0) of the system
achieves equilibrium at some moment of finite time, i.e.

x(t, x0) = 0 for all t ≥ T (x0)

where T ∶ Rn → R+∪{0} is the so-called stabilization time
function.

In the following theorem, we establish the stability of the
disturbance observer.
Theorem 2. Consider the augmented system dynamics (12).
The Super Twisting-based Algorithm (13) is a finite-time sta-
ble disturbance observer provided that K1, K2 are positive
definite matrices.

PROOF. First of all, let us compute the time derivative of the
estimation errors (15) and (16), and this yields:

̇̃� = −K1|�̃|1∕2sgn(�̃) + d̃
̇̃d = −K2sgn(�̃) − ℎ(t)

(17)

To give a more comprehensive explanation of the stability of
the proposed observer, let us consider the following change
of variables:

s1i = �̃i

s2i = d̃ = −k2i ∫

t

0
sgn(�̃(�) + ℎ(�))d�

Then (17) can be rewritten in a scalar form for (i = 1, 6) as
follows:

ṡ1i = −k1i|s1i|
1
2 sgn(s1i) + s2i

ṡ2i = −k2isgn(s1i) + ℎi(t)
(18)

Without loss of generality, we can rewrite (18) with simpli-
fied notations as follows:

ṡ1 = −k1|s1|
1
2 sgn(s1) + s2

ṡ2 = −k2sgn(s1) + ℎ(t)
(19)
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Note that if we select the state vector � = [�1, �2]T =
[|s1|

1
2 sgn(s1), s2]T , then we can rewrite the dynamics (19)

as follows:
�̇ = 1

|�1|

[

A� + B�
]

(20)

with:

A =
[

− 12k1
1
2

−k2 0

]

; B =
[

0
1

]

(21)

and � = |�1|ℎ(t), which satisfies |�| ≤ �|�1|. Moreover,
the transformed perturbation satisfies the sector condition
as stated in Moreno (2009). This means that, !(�, �) =
−�2(t, �) + �2�21 ≥ 0.

To prove the stability of the equilibrium point (s1, s2) =
(0, 0), let us consider the strong Lyapunov function Moreno
and Osorio (2008):

V = �TP� (22)
where P is a positive definite matrix that satisfies the Lya-
punov equation:

Now, by selecting positive feedback gains, we can ensure
that the Lyapunov function is positive definite and radially
unbounded; this means that:

�min{P }‖�‖22 ≤ V (s) ≤ �max{P }‖�‖22 (23)
where �min and �max is the smallest and greatest eigenvalue
of P , respectively. ‖�‖22 = |s1| + s22 is the Euclidean norm
of � .

Taking the time derivative of V along the trajectories of
the system yields:

V̇ = 1
|�1|

[

�
�

]T [ATP + PA PB
BTP 0

] [

�
�

]

≤ 1
|�1|

{

[

�
�

]T [ATP + PA PB
BTP 0

] [

�
�

]

+ !(�, �)

}

= 1
|�1|

{

[

�
�

]T [ATP + PA + �2CTC PB
BTP −1

] [

�
�

]

}

= 1
|�1|

[

�
�

]T [ATP + PA + �2CTC + �P PB
BTP −1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W (⋅)

[

�
�

]

− �
|�1|
�TP�

From the above C = [1 0]. If we select the feedback
gains k1, k2 positive, the system (A,B, C) is controllable
and observable. Then, using the bounded-real lemma Boyd,
El Ghaoui, Feron and Balakrishnan (1994), we can ensure
that the LMI is feasible if the system is non-expansive. As a
consequence, it is always possible to ensure thatW (⋅) ≤ 0.

V̇ ≤ − �
|�1|

�TP� = − �
|�1|

V (� ) (24)

Then, it is possible to express (23) as follows:

|�1| ≤ ‖�‖2 ≤
V

1
2 (� )

�
1
2
min{P }

(25)

Substituting this in V̇ , leads to:

V̇ ≤ −��
1
2
min{P }V

1∕2(� ) (26)
The differential inequality guarantees the finite time

convergence of the equilibrium point to zero, Moreno and
Osorio (2008). Thismeans that, by the comparison principle,
the observer internal states (�̂, d̂) converge to (�, d) at latest
after a time given by:

T =
2V

1
2 (0)

��
1
2
min{P }

(27)

which ends the proof.

5. Enhancing non-robust controllers
The PD control is a well-known simple controller used

in the paradigm of AUVs. For instance, in the work Cam-
pos et al. (2017), the authors have developed a non-linear
PD (NLPD) controller for trajectory tracking. The authors
compare the proposed NLPD with the nominal PD design
in this work. The results section shows that both controllers
performwell when the nominal case is considered. However,
when the hydrodynamics parameters of the vehicle change,
the controller’s performance is severally degraded, even for
the NLPD. Taking this issue as a primary motivation, we
propose a new enhanced PD control based on the ESO
technique with the designed disturbance observer.

The PD nominal design is borrowed from Campos et al.
(2017) and is given by:
�nom = M̂� �̈d+Ĉ� �̇d+D̂� �̇d+g�(�)−Kpe(t)−Kd ė(t) (28)

where the trajectory tracking error is defined as e(t) =
[e1(t),⋯ , e6(t)] = � − �d and the desired trajectory �d =
[xd(t), yd(t), zd(t), �d(t), �d(t),  d(t)]T . In turn, Kp, Kd ∈
ℝ6×6 are diagonal positive definite matrices representing the
controller feedback gains.
5.1. Improved PD controller design

In order to improve the performance of the nominal PD
design, we propose to incorporate the estimated disturbance
to counteract its adverse effect. Then the following Robust
PD (RPD) controller is proposed:

��(�) = �nom − M̂� d̂ − K̂SGN(ė) (29)
where d̂(t) is the estimation of the disturbances provided
by the observer dynamics (13). The vector SGN(ė) =

J. Guerrero et al.: Preprint submitted to Elsevier Page 5 of 16
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[sgn(ė1(t)), sgn(ė2(t)),⋯ , sgn(ė6(t))] and K̂ is an adaptive
gain, computed from the following dynamic equation:

̇̂K = �‖ė‖ (30)
where � ∈ ℝ is a positive constant.

Finally, the closed-loop dynamics stability analysis is
given in the next section.
Remark 1. The PD controller enhanced with the STA-
based disturbance observer is described in Eq. (29). One
can notice that the controller has three main terms. The
first term is the nominal PD given in (28). The second term
is related to the disturbance estimation made by the STA-
based disturbance observer. The third term K̂SGN(ė) is an
adaptive term that is related to (40). In practical applications,
the term � is set to a small value near zero. Indeed, during
our real-time experiments, the described term had a value of
almost zero.
Remark 2. It is worth emphasizing that the proposed STA-
based enhanced PD controller is endowed with two impor-
tant features, including (i) it enables the estimation of the
external disturbance, and (ii) it allows also the attenuation
of the measurement noise, often present in most of the used
sensors in robotics.
5.2. Closed-loop stability analysis

Given the underwater vehicle dynamics (5), by injecting
the control law (29), we obtain the following closed-loop
system:

d
dt

[

e
ė

]

=

⎡

⎢

⎢

⎢

⎣

ė
−M�(�)−1

[

[Ĉ�(�, �) + D̂�(�, �) +Kd]ė +Kpe

+K̂SGN(ė)
]

− d̂(t) + d(t)

⎤

⎥

⎥

⎥

⎦

(31)
Consider the following candidate Lyapunov function:

V (e, ė) = 1
2
ėT M̂�(�)ė +

1
2
eTKpe +

1
2�
K̃2 (32)

where Kp is a diagonal definite positive matrix, � is a
positive constant, introduced in (40), and K̃ = K̂ − K is
the parameter estimation error.

Now, taking the time derivative of V yields:

V̇ (e, ė) = ėT M̂�(�)ë+
1
2
ėT ̇̂M�(�)ė+eTKpė+

1
�
K̃ ̇̂K (33)

Substituting the error dynamics (31) into the time derivative
of V , leads to:
V̇ (e, ė) = 1

2 ė
T
[ ̇̂M�(�) − 2Ĉ�(�, �)

]

ė − ėT
[

D̂�(�, �) +Kd
]

ė

+ėT [d(t) − d̂(t)] − K̂ėT SGN(ė) + 1
� K̃

̇̂K

(34)

Recalling that, within the Lagragian approach, [ ̇̂M�(�) −
2Ĉ�(�, �)] is a skew-symmetric matrix, Fossen (1999); then,
we obtain:

V̇ (e, ė) = −ėT
[

D̂�(�, �) +Kd
]

ė + ėT [d(t) − d̂(t)]

− K̂ėT SGN(ė) + 1
�
K̃ ̇̂K

= −ėT
[

D̂�(�, �) +Kd
]

ė + ėT [d(t) − d̂(t)]

− K̂
6
∑

i=0
|ėi| +

1
�
K̃ ̇̂K

≤ −�min{D̂�(�, �) +Kd}‖ė‖2 +K‖ė‖

− K̂‖ė‖ + K̃‖ė‖

= −�min{D̂�(�, �) +Kd}‖ė‖2 (35)
We can notice that the matrix Kd was selected positive
definite in the controller design and the damping matrix is
D̂� > 0 (see Fossen (1999)). This means that the function V̇
is negative semi-definite. However, by applying Krasovskii-
Lasalle’s invariance principle, we can conclude that the
equilibrium point is asymptotically stable.

6. Real-time experimental results
In order to demonstrate the practical viability of the

proposed controller that was developed, it was implemented
on the Leonard Tijjani, Chemori, Ali and Creuze (2023), an
Unmanned Underwater Vehicle (UUV) designed at LIRMM
laboratory (University of Montpellier, France). This under-
water robot is a tethered vehicle, measuring 75 x 55 x 45 cm
in size and weighing 28 kg. It is powered by six thrusters,
which make it a holonomic fully actuated vehicle.

The test-bed of the robot comprises an UUV controlled
by a laptop computer featuring an Intel Core i7-3520M 2.9
GHz CPU and 8 GB RAM. The computer operates under
Windows 10 OS, and the control software is coded using
Visual C++ 2015. The laptop collects data from the ROV’s
pressure and attitude (IMU) sensors, computes the control
algorithms, and transmits commands to 6 Syren10 Motor
Drive that regulate the ROV’s actuators. Table 1 provides
a summary of the primary features of the vehicle.

To validate the efficacy and robustness of the proposed
control algorithm, several experimental tests were conducted
in the engineering pool at LIRMM, depicted in Figure 2. The
basin measures 4 × 3 × 2 m and has a capacity of approxi-
mately 12 000 liters as illustrated in Figure 2. Although the
control laws developed are intended for the full six-degrees-
of-freedom system, the real-time experiments presented in
this paper concentrate on depth and yaw dynamics. The
primary goal of the proposed control law is to robustly
track a predefined trajectory for depth and yaw despite the
presence of external disturbances and/or parametric uncer-
tainties. However, it is considered, thanks to the design of
the vehicle, that the orientation angles � and � are naturally
stable. Concerning the positioning of the vehicle, the X-
Y measurements are not available because our underwater
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Table 1
Main Features of the underwater vehicle

Mass 28 kg
Buoyancy 9 N
Dimensions 75 × 55 × 45 cm
Maximal depth 100m
Thrusters 6 Seabotix BTD150
Power 24V - 600 W
Attitude Sensor Invensense MPU-6000 MEMS 3-axis gyro

and accelerometer
3-axis I2C magnetometer HMC-5883L
Atmega328 microprocessor

Camera Pacific Co. VPC-895A
CCD1/3 PAL-25-fps

Depth sensor Pressure Sensor MS5803-02BA
Sampling period 50 ms
Surface computer Dell Latitude E6230- Intel Core i7 -2.9 GHz

Windows 10 Professional 64 bits
Microsoft Visual C++ 2015

Tether length 30 m

vehicle lacks a DVL or a camera to estimate them. Ta-
ble 1 summarizes the control gains applied the real-time
experiments. The proposed controllers were implemented
on the Leonard underwater vehicle for the experimental
investigations presented in this paper.
6.1. Real-Time Experimental Scenarios

In order to validate the robustness of the proposed con-
troller, we test robust PD in different scenarios, including:

1. Nominal Scenario: This test is considered the case
without external disturbances, and the robot will track
a trajectory in depth and yaw at the same time.

2. Parametric uncertainties scenario: In this test, we
modify the underwater vehicle’s hydrodynamic pa-
rameters to test the proposed controller’s robustness.
To this end, we attach a floater to the vehicle’s body to
modify the robot’s buoyancy. To change the damping
of the robot, we have attached a rigid plastic sheet of
dimension 45 cm × 20 cm. Both, the floater and the
plastic sheet can be seen in Figure 3.

3. Robustness towards sudden mass variation: In this
scenario, we try to recreate the robot carrying an
object for a while and release it. For this purpose,
we attached a 60-cm long rope to the body of the
robot with a 335 grams mass at the end of the rope,
as illustrated in Figure 4.

4. Robustness towards external disturbances: In this
case, we apply disturbances to the robot when the
robot is tracking the trajectory. In this scenario, we
push the robot with a stick several times, as shown in
Fig. 5.

Figure 2: View of the test-bed for the real-time experiments. In
the figure, one can note the Leonard robot and the workstation
setup.

Figure 3: Configuration for the scenario 2. We add a 200g
floater to increase the buoyancy up to 100%. A rigid plastic
sheet of dimensions 45 cm×10 cm is also added to the robot’s
body to increase the rotational damping along the z-axis of
about 90%.

6.2. Performance Criteria
To fairly compare the performance of reference tra-

jectory tracking for each controller, we use the following
criteria:

• The Root Mean Square Error (RMSE) is defined as
follows:

RMSE =

√

1
Tf ∫

Tf

0
‖e(t)‖2dt (36)

where Tf denotes the duration of the experimental
test, and e(t) is the tracking error.

• To evaluate the energy consumption, we propose to
use the integral of the control input index (INT), which
is defined as follows:

INT = ∫

tf

ti
|�(t)|dt (37)
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Figure 4: Configuration for the scenario 3. A 335 gr weight
is attached to the body of the vehicle to introduce a sudden
mass change when the robot tracks a time-varying trajectory
in depth (when the weight touches the bottom, then it is like
its mass becomes null).

Figure 5: External disturbances applied to the underwater ve-
hicle for scenario 4. During the experiment, we applied to push
forces to disturb the depth and yaw dynamics simultaneously.

where �(t) is the vector of position/attitude control
input. The terms ti and tf denote the initial and final
time of the experiment, respectively.

6.2.1. Nominal Case
The trajectory tracking on depth and yaw for the nominal

case is depicted at the top of Figure 6. From this figure, we
can observe that both the PD and RPD controllers perform
well. However, it can be seen that the RPD’s behavior
has better tracking errors than the nominal PD. The better
performance of the proposed controller can also be numer-
ically quantified by the Root Mean Square Error (RMSE),
as seen in Table 2. The tracking errors for this scenario
are depicted in the middle of Figure 6. From this graph,
we can observe that the RPD performs better than the PD.
Finally, at the bottom of this figure, we plotted the force and
torque generated by the controllers for this experiment. As

expected, the RPD demands slightly more energy than the
nominal PD.

The RMSE criteria for the nominal case are summarized
in the first row of Table 2. As we can see, the RPD controller
performs better in trajectory tracking of the depth. However,
the PD performs slightly better than the RPD when the yaw
tracking is evaluated.

The energy consumption for this scenario is summarized
in the first row of Table 3. It is possible to observe that the
RPD requires more energy to reduce the trajectory tracking
errors compared to the nominal PD.

Finally, the estimated disturbance for the nominal case is
displayed in the first row of Figure 10.
6.2.2. Robustness towards parametric uncertainties

As stated above, to modify the hydrodynamic parameters
of the vehicle, we have attached a floater and a rigid plastic
sheet with dimensions of 45 cm × 10 cm to increase the
floatability up to 100% and the damping of the vehicle up
to 90%.

At the top of Figure 7, we observe the trajectory tracking
for the depth and yaw. As we can see, the nominal PD (blue
line) is not able to reject the added parametric uncertainties,
and the tracking error is constant during the whole test.
However, the proposed robust controller (red line) manages
the added disturbances and tracks the reference trajectory
with smaller errors. The same happens when we analyze
the trajectory tracking of the yaw, and it is also possible to
observe a better performance of the proposed RPD over the
nominal design. We can observe the evolution versus time of
the trajectory tracking errors in the middle of the figure. At
the bottom of the figure, the evolution of the control inputs
is shown. One can note that the RPD requires slightly more
energy to counteract the effect of the disturbance, as may be
expected.

The RMSE criteria for this scenario are summarized in
the second row of Table 2. As we can see, the RPD controller
performs better in both tracking trajectory tasks.

From the energy consumption point of view, the RPD re-
quires slightly more energy to compensate for the parametric
uncertainties. However, based on the obtained results of the
integral of the control input summarized in the second row
of Table 3, we can observe that the PD requires more energy
to try to reduce the steady-state error, this could be explained
because the controller gains were low.

Finally, the estimated disturbances in the current robust-
ness scenario is depicted in the second row of Figure 10.
6.2.3. Robustness towards sudden mass variation

The results for trajectory tracking, in the depth and yaw,
are depicted at the top of Figure 8. It is possible to observe
that the weight touches the floor 25 seconds after the test
has started. One can notice that the proposed RPD can
handle this sudden change without any problem. Then, the
robot moves towards the surface and carries the weight,
then at the time of 40 seconds, the weight is no longer in
contact with the ground, producing a persistent disturbance
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Figure 6: Scenario 1- Nominal Case. Experimental results of the trajectory tracking in depth and yaw, the desired trajectory is
represented by the black dashed line, the PD with a solid blue line, the PID with a solid green line, and the proposed RPD
controller with a solid red line.

due to the extra mass added to the robot. From this test,
we can observe that both controllers have a good tracking
performance. However, at the end of the test, it is possible
to observe that the RPD reduces the tracking error. In the
middle of the figure, we can see the plots of the evolution of
the tracking errors. Note that the depth tracking error goes
to zero, while the yaw error remains near to zero for the
RPD; however, the PD shows a steady state error of almost
2 degrees. Finally, at the bottom of the figure, the forces and
torques generated by the controllers are shown. Again, the
control effort of the RPD is higher than the PD because of
its disturbance rejection feature.

The RMSE values for this scenario are summarized
in the third row of Table 2. From the presented data, we
can conclude that the proposed RPD outperforms the PD
nominal design.

In this case, the RPD requires slightly more energy to
compensate for the extra weight attached to the robot, as we
can see in the third row of Table 3.

Finally, the estimated disturbances, in the case of an
aggregated external mass, are depicted in the third row of
Figure 10.

6.2.4. External disturbance rejection scenario
In this scenario, the robot will perform the same tracking

control goal as in the nominal case without considering any
parametric uncertainty. However, to test the robustness of the
proposed controller, we have applied several disturbances to
the robot body with a long stick, as illustrated in Figure 5.

The results of this scenario are depicted in Figure 9.
At the top of the figure, we can observe the effects of the
disturbance on both, depth, and yaw. We have applied six
disturbances throughout the experiment, and we can note
that the robot is able to recover from each disturbance
effect, as seen at the top of Figure 9. Besides, it is worth
highlighting that some of the applied disturbances at the end
of the experiment were conducted to disturb both dynamics
simultaneously, and the controller was capable of managing
both disturbances as well. The tracking errors are plotted in
the middle of the figure, and we can note the impact of the
applied disturbances. Finally, at the end of the figure, the
evolution of the control inputs (force and torque) given by
the controller is depicted.

The RMSE criterion of this experiment, for the proposed
controller, is summarized in the fourth row of Table 2. In this
stage, we do not compare this controller with the PD nominal
design because all the disturbances were applied by human
intervention and it is not possible to reproduce exactly the
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Figure 7: Scenario 2- Robustness towards parametric uncertainties. Experimental results of the trajectory tracking in depth and
yaw, the desired trajectory is represented by the black dashed line, the PD with a solid blue line, the PID with a solid green line,
and the proposed RPD controller with a solid red line.

same disturbance for different controllers. Also, the energy
consumption for this scenario is summarized in the fourth
row of Table 3.

Finally, the estimated disturbance for the current case is
shown in the fourth row of Figure 10.

Table 2
RMSE comparison criteria for PD, PID and RPD.

PD PID RPD

Case z(m)  (deg) z(m)  (deg) z(m)  (deg)

1 0.0151 0.1418 0.0083 0.2964 0.0027 0.2062
2 0.0613 2.1718 0.0319 0.2747 0.0173 0.0479
3 0.0074 1.0053 0.0058 0.3607 0.0068 0.1003
4 − − − − 0.0047 0.1444

6.3. Improving non-robust controllers with
STA-based disturbance observer

The main objective of the proposed STA-based observer
is to estimate external disturbances and parametric uncer-
tainties in finite time. Then, this estimation will be in-
jected into non-robust controllers to improve their trajectory-
tracking performance. In previous sections, we observed
that the proposed algorithm can enhance the nominal PD

Table 3
Energy consumption comparison criteria through the
INT indicator for PD, PID and RPD.

PD PID RPD

Case Depth Yaw Depth Yaw Depth Yaw

1 3221 414 2977 388 3570 323
2 7634 731 7605 540 6545 479
3 1902 509 2103 567 2338 573
4 − − − − 3711 558

controller design. Indeed, we have performed several sce-
narios to test its robustness against the nominal version and
the well-known PID controller. However, the question is
to affirm whether or not the proposed disturbance observer
is compatible with other control schemes. To answer this
question, we will test our proposed disturbance observer
with another controller. In this sense, we choose the Back-
stepping control method. Indeed, the BS is a nonlinear con-
trol technique that decomposes a complex nonlinear system
into simpler, controllable subsystems. The approach involves
designing controllers for each subsystem recursively, pro-
gressing backward from the system output to the input.
Using Lyapunov functions at each step, stability is ensured,
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Figure 8: Scenario 3- Robustness towards sudden mass change. Experimental results of the trajectory tracking in depth and yaw,
the desired trajectory is represented by the black dashed line, the PD with a solid blue line, the PID with a solid green line, and
the proposed RPD controller with a solid red line.
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Figure 9: Scenario 4- Robustness towards external disturbance rejection. Experimental results of the trajectory tracking in depth
and yaw, the desired trajectory is represented by the black dashed line, the PD with solid blue line and the proposed RPD
controller with a solid red line.
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Figure 10: Estimated disturbances for depth (left) and yaw (right) dynamics made by the proposed observer. The results for
the nominal case, robustness towards parametric uncertainties, robustness towards sudden mass change and robustness towards
external disturbances, are shown in the first, second, third and fourth rows of the figure, respectively.

and the global stability of the entire system is achieved by
combining Lyapunov functions from all subsystems. This
method is particularly effective for managing the control of
complex nonlinear systems by addressing each subsystem
individually and then integrating the results to attain a global
controller ensuring the whole system’s stability. In our pre-
vious work Guerrero, Torres, Antonio and Campos (2018),
we have developed a BS controller which has the following
structure:

�� = Ĝ(z)
[

z̈d1 − e1 − F̂ (z) + Γ(Γe1 − e2) − Υe2
]

(38)
where z̈d1 is the second time derivative of the desired trajec-
tory. The tracking errors are represented by e1 = z1 − zd1and e2 = ė1 + Γe1, and the matrices Γ = diag{1,⋯ , 6}and Υ = diag{�1,⋯ , �6} are selected diagonal and positive
definite.
The proposed controller (38) was validated on the under-
water robot LIRMIA III and from the trajectory tracking
results we observed that the BS shows a small constant
steady-state error during those experiments. Then,motivated
by this drawback, we test also this controller on Leonard
underwater vehicle. Also, we propose to compare its perfor-
mance against the robust Backstepping (RBS) which yields
from the combination of the nominal BS controller given by
(38), and the proposed STA-disturbance observer (13). The
control law of the resulting RBS is defined as follows:
�� = Ĝ(z)

[

z̈d1−e1−F̂ (z)+Γ(Γe1−e2)−Υe2−d̂−K̂SGN(e2)
]

(39)
Here, the d̂ is the estimated external disturbance provided by
the observer. The vector SGN(e2) ∈ ℝ6 and K̂ is a dynamic

adaptive gain, computed as follows:
̇̂K = �BS‖e2‖ (40)

where �BS ∈ ℝ is a positive constant.
Due to lack of space, we have compared the trajectory
tracking performance of the control laws (38) and (39)
under Scenario 1 (nominal case) and Scenario 2 (robustness
towards parametric uncertainties), only.
In Figure 11 we plot the results of trajectory tracking under
the nominal scenario. In the left upper part of the figure, we
can observe the performance of the BS (solid blue line) and
the RBS (solid red line) when they are tracking a trajectory
(dashed black line). One can observe that both controllers
show a good tracking performance. Also, in the right upper
part of the figure, we have plotted the yaw trajectory track-
ing, and we can notice also the good tracking performance
of both controllers. In the middle of the figure, we show
the corresponding trajectory tracking errors for both exper-
iments. It is important to highlight that the introduction of
the disturbance observer improves the tracking performance
of both dynamics depth and yaw. Finally, at the bottom of
the figure, we plot the evolution versus time of the control
inputs. As we can see, both controllers spend almost the
same amount of energy.
The obtained results for the trajectory tracking under para-
metric uncertainties are displayed in Figure 12. In the left
upper part of the figure, we can observe the performance
of the proposed controllers for the depth trajectory task. As
we can observe, the RBS outperforms the BS, showing a
lower tracking error, as can also be confirmed by the plot
of the middle part of the figure. Besides, the RBS shows
an improvement w.r.t the BS for the yaw trajectory tracking.
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Figure 11: Scenario 1- Nominal Case. Experimental results of the trajectory tracking in depth and yaw, the desired trajectory is
represented by the black dashed line, the BS with a solid blue line, and the proposed RBS controller with a solid red line.

In addition, at the bottom of the figure, the evolution of the
control input signals is depicted for both controllers. Finally,
the better performance of the RBS over the BS is numerically
confirmed by the RMSE summarized in Table 4.

Table 4
RMSE comparison criteria for BS and RBS.

PD RBS

Case z(m)  (deg) z(m)  (deg)

1 0.0136 0.3422 0.0034 0.5486
2 0.0565 1.1641 0.0018 0.4423

7. Conclusions and Future work
The present contribution deals with robustifying the fa-

mous and widely used classical PD controller when applied
to the trajectory tracking problem inAUVs. For this purpose,
a disturbance observer based on STA is proposed, which has
properties of convergence in finite time, reduced chattering,
and is robust to matching disturbances. In the theoretical
part, the Lyapunov stability analysis of the closed-loop
controller-observer scheme is presented. The experimental
investigation consists of a comprehensive real-time study
to test the capacities of the proposed scheme, including
undisturbed cases, parametric disturbances, and external
disturbances. In summary, the proposed control scheme,
consisting of a PD controller assisted by an STA-based

disturbance observer, presents essential advantages over
PD controller alone, both in performance and robustness
against parametric and external disturbances. At the same
time, the proposed design preserves the simplicity of the
PD controller as only two parameters of the STA observer
are required to be adjusted. The future work will consist in
analyzing and synthesizing the adaptive version of the pro-
posed disturbance observer and its real-time experimental
validation.
Acknowledgements
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A. Description of the UUV dynamic model
The matrices of the body-fixed frame dynamic model (1)

are detailed in the sequel.
The inertia matrix is defined asM =MRB +MA, where:

MRB =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Izx

mzG 0 −mxG −Iyx Iy −Iyz
−myG mxG 0 −Izx −Izy Iz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)
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Figure 12: Scenario 2- Robustness towards parametric uncertainties. Experimental results of the trajectory tracking in depth and
yaw, the desired trajectory is represented by the black dashed line, the BS with a solid blue line, and the proposed RBS controller
with a solid red line.

MA = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ
Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ
Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ
Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(42)

withm the mass of the vehicle, Ix, Iy and Iz are the moments
of inertia about the X0, Y0 and Z0-axes and Ixy = Iyx,
Ixz = Izx, and Iyz = Izy are the products of inertia. The
position of the center of gravity is defined by xG,yG and zG.The elements of the added inertia matrix, MA, are defined
in Fossen (1999).
The Coriolis matrix is defined as C(�) = CA(�) + CRB(�),where:

CA(�) =
[

CA11 CA12
CA21 CA22

]

(43)

where CA11 = 03×3, and CA21 = −CTA12 , with:

CA12 =
⎡

⎢

⎢

⎣

0 −Zẇw Yv̇v
Zẇw 0 −Xu̇u
−Yv̇v Xu̇u 0

⎤

⎥

⎥

⎦

CA22 =
⎡

⎢

⎢

⎣

0 −Nṙr Mq̇q
Nṙr 0 −Kṗp
−Mq̇q Kṗp 0

⎤

⎥

⎥

⎦

CRB(�) =
[

C11 C12
C21 C22

]

(44)

where C11 = 03×3

C12 =
⎡

⎢

⎢

⎣

m(yGq + zGr) −m(xGq −w) −m(xGr + v)
−m(yGp +w) m(zGr + xGp) −m(yGr − u)
−m(zGp − v) −m(zGq + u) m(xGp + yGq)

⎤

⎥

⎥

⎦

and C21 = −CT12, and

C22 =
⎡

⎢

⎢

⎣

0 ⋆ ⋆⋆
−⋆ 0 ⋆ ⋆ ⋆
− ⋆ ⋆ − ⋆ ⋆⋆ 0

⎤

⎥

⎥

⎦

where:
⋆ = − Iyzq − Ixzp + Izr (45)

⋆⋆ =Iyzr + Ixyp − Iyq (46)
⋆ ⋆ ⋆ = − Ixzr − Ixyq + Ixp (47)

Finally, it is worth noting that C(�) is skew-symmetrical.
The damping matrix, D(�), is defined as:

D(�) = −diag{Xu, Yv, Zw, Kp,Mq , Nr}
−diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|}

where {Xu, Yv, Zw, Kp,Mq , Nr} are the linear damping hy-
drodynamic terms, and {Xu|u|, Yv|v|, Zw|w|, Kp|p|,Mq|q|, Nr|r|}
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are the quadratic damping hydrodynamic elements.
The gravity vector, g(�), is defined as follows:

g(�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

WBs�
−WBc�s�
−WBc�c�

−(yGW − yBB)c�c� + (zGW − zBB)c�s�
(zGW − zBB)s� + (xGW − xBB)c�c�
−(xGW − xBB)c�s� + (yGW − yBB)s�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(48)
whereWB = W −B, withW andB representing the weight
and the buoyancy of the vehicle.
The transformation matrix, J (�), given in (2) is explicitly
defined as follows:

J (�) =
[

J1(�) 03×3
03×3 J2(�)

]

(49)

where

J1(�) =

[

c c� −s c� + c s�s� s s� + c c�s�
s c� c c� + s s�s� −c s� + s s�s�
−s� c�s� c�c�

]

and

J2(�) =
⎡

⎢

⎢

⎣

1 s�t� c�t�
0 c� −s�
0 s�∕c� c�∕c�

⎤

⎥

⎥

⎦

Where, for simplicity, we adopted the shorthand notations
cos(⋆) = c⋆, sin(⋆) = s⋆ and tan(⋆) = t⋆.
Finally, the matrices of the dynamic model with respect to
the earth-fixed frame shown in (3) can be obtained using
the relations developed in (4). However, the computation
of these matrices may produce very complex mathematical
expressions for each matrix element. Moreover, the full
and exact knowledge of the hydrodynamic parameters is
very complicated because they may vary depending on the
operating conditions. To simplify the computation of the
estimated matrices, based on the symmetry of the vehicle
and assuming that it is moving at low speeds. Then, based on
Fossen (1999), we can reduce the number of parameters of
each matrix and they can be found following the experimen-
tal approach given in Campos et al. (2017). For the case of
Leonard vehicle, we computed the following representation
for the inertia matrix:

M̂ =diag{m,m,m, Ix, Iy, Iz}
=diag{28, 28, 28, 0.35, 0.69, 0.65} (50)

The damping matrix is given as follows:

D̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

30 + 40s2 −20s(2 ) 0 0 0 0
−20s(2 ) 70 − 40s2 0 0 0 0

0 0 80 0 0 0
0 0 0 1.4 0 0
0 0 0 0 2.5 0
0 0 0 0 0 2.9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

Here, it is worth noting that the damping matrix D̂� is
positive definite.
The gravity vector is defined as follows:

ĝ(�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

WBs�
−WBc�s�
−WBc�c�
−zBBc�s�
zBBs�
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(52)

Finally, considering that the � and � of the vehicle are
stable by design, we can simplify the construction of the
transformation matrix as follows:

J (�) =
[

J1,1( ) 03×3
03×3 I3×3

]

(53)

with J1,1( ) =
⎡

⎢

⎢

⎣

c −s 0
s c 0
0 0 1

⎤

⎥

⎥

⎦

.
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