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bUniversité Paris Cité, CNRS, MAP5, F-75006 Paris, France
cLaboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier. CNRS - UMR 5506.
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Abstract

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In
fact, existing probabilistic models in phylogeography or spatial population genetics generally do not
provide an adequate framework to define velocity in a relevant manner. For instance, the very concept
of instantaneous speed simply does not exist under one of the most popular approaches that models
the evolution of spatial coordinates as Brownian trajectories running along a phylogeny (Lemey et al.,
2010). Here, we introduce a new family of models – the so-called “Phylogenetic Integrated Velocity”
(PIV) models – that use Gaussian processes to explicitly model the velocity of evolving lineages
instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of
these models and show an increased accuracy of velocity estimates compared to previous approaches.
Analyses of West Nile virus data in the U.S.A. indicate that PIV models provide sensible predictions
of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the
feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.
Keywords— phylogeography | integrated velocity models | West Nile virus | PhyREX | BEAST

Introduction

Evaluating the pace at which organisms move in space during the course of evolution is an important
endeavor in biology. When considering deep evolutionary time scales, understanding past dispersal
events is key to explaining the spatial diversity of contemporaneous species. Over shorter time
frames, making sense of the migration patterns of closely related organisms is crucial in building
a detailed picture of a population’s demographic past, present and future dynamics. Tracking the
spatial dynamics of pathogens during a pandemic, in particular, is of utmost interest as it conveys
useful information about the means and the rapidity at which a disease is spreading in a population.
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Epidemiological data generally consists in records of incidence of the disease at various points in time
and space. Yet, estimating the speed at which an organism spreads at the onset of an epidemic from
count data is challenging (van den Bosch et al., 1992; Tisseuil et al., 2016). Similarly, characterizing
the migration process from occurrence data in cases where the organism under scrutiny is already
well-established in a region is not feasible. These difficulties mainly stem from the fact that count or
occurrence data do not convey information about the non-independence between observations due to
their shared evolutionary paths.

Genomes carry useful information about the relationships between pathogens. Observed differ-
ences between homologous genetic sequences is at the core of phylogenetic and population genetics
approaches which provide a sound framework to account for the non-independence between data
points in downstream analyses. This framework also accommodates for situations where nucleotide
(or protein) sequences are sampled at various points in time (Drummond et al., 2003). Heterochronous
samples combined with the molecular clock hypothesis (Zuckerkandl and Pauling, 1965) may then
serve as a basis to infer the rate at which substitutions accumulate and to reconstruct the time scale
of past demographic trajectories of the population under scrutiny (see e.g., (Ho and Shapiro, 2011)
for a review).

Designing models for the joint analysis of genetic sequences and their locations of collection was
initiated in the middle of the last century by Wright and Malécot who brought forward the isolation
by distance model (Wright, 1943; Malécot, 1948). The rise of statistical phylogeography over the last
decade proposed alternatives that are less mechanistic but still aim at capturing the main features
of the spatial diffusion process. These approaches are also well suited to deal with heterochronous
data and handle cases where the population of interest is scattered along a spatial continuum rather
than structured into discrete demes. Lemey et al. (Lemey et al., 2010), in particular, described
a hierarchical model whereby spatial coordinates evolve along a phylogenetic tree according to a
Brownian diffusion process with branch-specific diffusion rates. The so-called Relaxed Random Walk
(RRW) model has since then been used to characterize the spatial dynamics of several pathogens of
high public health, societal and agricultural impacts, including Ebola (Dellicour et al., 2018b) and
the rice yellow mottle (Issaka et al., 2021) viruses for instance.

One of the key objectives of the RRWmodel is to infer the rate at which organisms disperse. Pybus
et al. (Pybus et al., 2012) suggested using a diffusion coefficient which derives from the ratio of the
estimated squared displacement between the start and the end of a branch and the corresponding
elapsed time. The branch-level ratios are then averaged over the edges in the phylogeny. Pybus et
al. (Pybus et al., 2012) and then Dellicour et al. (Dellicour et al., 2017) later introduced wavefront-
through-time plots, deriving from the displacement between the estimated root location and the most
distant tip locations at various points in time. Trovao et al. (Trovão et al., 2015) considered instead
dispersal rates which are defined as ratios of estimated displacements (using great-circle distances)
by the elapsed time.

These statistics generally provide a rough characterization of the dispersal process. The limitations
of the dispersal statistics mainly stem from the very nature of the RRW model: because Brownian
trajectories are nowhere differentiable, the concept of instantaneous speed is simply not defined under
that family of models. Also, the sum of displacements deriving from the observation of a Brownian
particle at various points in time grows with the square root of the number of (equally spaced in time)
observations, making the estimation of an average speed sampling inconsistent. Finally, the analysis
of spatial data simulated under the Brownian motion model along birth-death trees shows that the
standard dispersal statistics often fail to provide accurate estimates of speed (Dellicour et al., 2024).

The present study tackles the issue of dispersal velocity and speed estimation by introducing a
new approach that models the instantaneous velocity of lineages explicitly. Under these models, the
spatial coordinates of lineages derive from integrating their velocities so that we refer to“Phylogenetic
Integrated Velocity” (PIV) models throughout this article. To our knowledge, this study is the first
to use the integrated velocity models in a phylogenetic context. Integrated processes are common
however in a variety of applications, ranging from population biology (Cumberland and Rohde, 1977)
to financial economics (Barndorff-Nielsen and Shephard, 2003). In virology, longitudinal studies
measuring CD4 T-cell numbers in cohorts of patients with AIDS have used them to test the hypothesis
of “derivative tracking”, in which an individual’s measurements over time tend to maintain the same
trajectory (Taylor et al., 1994). Closer to phylogeography, integrated processes are instrumental in
the field of animal movement ecology (Johnson et al., 2008; Hooten and Johnson, 2017). Unlike
simple random walks, these processes are not Markovian as the entire track provides information
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about the next step through the integration. They are thus relevant for accounting for directional
persistence. Furthermore, the integrated processes are related to physical models of particles moving
on a potential surface (Preisler et al., 2013; Russell et al., 2018), therefore permitting fine-grained
modeling of animal movement telemetry data. One of the goals of the present work is to explore the
potential of such approaches in the context of phylogeography, starting with the two simplest and
most common models, namely the integrated Brownian and Ornstein-Uhlenbeck processes.

Although velocity is not directly observable from heterochronous and geo-referenced genetic se-
quences, our results indicate that this quantity can be estimated reliably. Using simulations under
realistic spatial population genetics models, we show that the velocity inferred with the new mod-
els are more accurate than those deriving from the RRW approach. Velocities estimated from the
analysis of multiple West Nile virus data sets were also used to predict the spatial distribution of the
pathogen over a one-year time horizon in the U.S.A. Comparison of these predictions to incidence
data at the county-level suggests that important features of the spatial dynamics are indeed amenable
to reasonably accurate predictions.

Our ability to efficiently monitor and anticipate the spread of emerging epidemics depends on the
accuracy with which the pace of dispersal can be quantified. The family of new models introduced
in this study provides a relevant tool to achieve this objective. While important aspects of viral
evolution may escape prediction indefinitely (Holmes, 2013) and predicting the time and/or location
of the next virus outbreak remains out of reach (Wille et al., 2021; Holmes et al., 2018), the present
study shows how predictive phylogeography may complement classical approaches in epidemiology.

Results

PIV models: rationale

The main attributes of models that belong to the PIV family are presented first. We focus on the
process of interest along a given time interval [0, t], corresponding to the length (in calendar time
units) of a given branch in the phylogeny of a sample of the organism of interest. Let X(s) be the
random variable representing the location (i.e., the coordinates) of a lineage at time 0 ≤ s ≤ t. Y (s)
is its velocity, i.e., the vector that is made of the instantaneous rate at which a lineage changes its
position along each dimension of the habitat at time s. In all the following, we reserve the term
velocity for the vector, and speed for its scalar norm. Both X and Y are typically vectors of length
two, corresponding to latitude and longitude. The location X(t) at the end of the branch may then
be expressed as follows:

X(t) = x(0) +

∫ t

0

Y (s)ds, (1)

where x(0), the location at the time of origin, is fixed. The Brownian Motion (BM) and the RRW
models focus on {X(s), 0 ≤ s ≤ t}, i.e., the process describing the evolution of the location during
a time interval. While, in one dimension, BM models have a single dispersal parameter that applies
to all edges in the phylogeny, the RRW model has branch-specific dispersal parameters, in a manner
similar to the relaxed clock model (Drummond et al., 2006) used in molecular dating.

Instead of modeling the fluctuation of coordinates, PIV models deal with {Y (s), 0 ≤ s ≤ t}, i.e.,
the process describing the variation of velocity in that interval. The dynamics of spatial coordinates
then derive from the integration over the velocity as stated in (1) above, hence the name“phylogenetic
integrated velocity”. In the following, we introduce two stochastic processes for {Y (s), 0 ≤ s ≤ t}
and characterize the corresponding distributions of X(t). In order to simplify the presentation, we
provide formulas for univariate processes only in the main text. Formulas for bi-variate (and, more
generally, multivariate) processes are given in SI (sections C and D).

Behavior of PIV models

Velocities

The Integrated Brownian Motion (IBM) model relies on a Wiener process with shift and scale pa-
rameters y(0) and σ respectively to model {Y (t); t > 0}. That process is Gaussian and we have
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Figure 1: Simulated trajectories of classical random walk and PIV models on a simple tree. Each
process was simulated on the tree (a), with branches of matching colors. Movements along the latitude
and longitude axes were simulated independently. (b) Random walk using Brownian motion (BM)
with variance σ2 = 0.1, and starting point x(0) = (0, 0). (c) Ornstein-Uhlenbeck process (OU) with
stationary variance of σ2/(2θ) = 0.1, strength θ = 0.17, starting at x(0) = (0, 0), and converging to
its central value µ = (1, 1). (d) and (e) Velocity y and position x of an Integrated Brownian Motion
(IBM) with variance σ2 = 0.1, starting point x(0) = (0, 0), and starting velocity y(0) = (0, 0). (f) and
(g) Velocity y and position x of an Integrated Ornstein-Uhlenbeck (IOU) with stationary variance
σ2/(2θ) = 0.1, strength θ = 0.17, central trend of µ = (1, 1), starting point x(0) = (0, 0), and starting
velocity y(0) = (0, 0).

(Gardiner, 2009):

E(Y (t) | y(0)) = y(0), (2)

Cov(Y (u), Y (v)) = σ2u, with 0 < u ≤ v. (3)

The Integrated Ornstein-Uhlenbeck (IOU) model uses instead a Ornstein-Uhlenbeck (OU) process
to describe the evolution of velocity. The mean and variance of velocity at time t are given below
(Gardiner, 2009):

E(Y (t) | y(0)) = y(0)e−θt + µ(1− e−θt), (4)

Cov(Y (u), Y (v)) =
σ2e−θv

θ
sinh (θu), with 0 < u ≤ v. (5)

The parameter θ in the OU model governs the strength with which Y (t) is pulled towards the trend
µ.

Spatial coordinates

We now examine the evolution of spatial coordinates under the PIV models. Characterizing the
process governing the evolution of spatial coordinates will shed light on the biological relevance of
the proposed approach and exhibit the main difference in behavior in comparison with the BM and,
by extension, the RRW models. The stochastic processes modeling the fluctuation of velocity being
Gaussian, the coordinates also follow a Gaussian process (Cumberland and Rohde, 1977). We give
below the mean and variance of the distribution of X(t) given x(0) and y(0), the coordinates and
velocity at time 0.

When velocity follows a Brownian process (IBM process), we have:

E(X(t) | x(0), y(0)) = x(0) + y(0)t, (6)

V(X(t) | x(0), y(0)) =
σ2t3

3
. (7)
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A linear increase of the spatial coordinates is thus expected with a direction that is determined by
the initial velocity ((6)). Because of the inertia deriving from their velocity, spatial coordinates of
lineages evolving under IBM thus tend to resist changes in their direction of motion, i.e., they exhibit
directional persistence (Johnson et al., 2008). This mean drift is similar to the directional random
walk, used e.g. in (Gill et al., 2016) to model the spatial spread of HIV-1. The BM model has a
distinct behavior as it authorizes sudden changes of direction. The RRW can even lead to large
discontinuous “jumps” from one place to another (Bastide and Didier, 2023). In contrast, the IBM is
smoother (differentiable) by design, and well suited to model auto-correlated movements. Moreover,
as suggested by (7) above, the variance of coordinates grows cubically in time, thereby allowing the
IBM model to accommodate for dispersal events over long distances in short periods of time. This
process is thus able to handle fast spatial range expansion, yet with continuous and differentiable
trajectories.

The corresponding expectation and variance for the IOU model are given in SI (section A). Here
again, the average coordinates at the end of the branch of focus are determined by the coordinates at
the start of that branch (x(0)) plus the expected displacement (y(0)t) along that same edge. In this
simple IOU model, the velocity of the process converges to the central value µ, leading to trajectories
with a clear directional trend that are well suited for dispersal along an established spatial gradient.
While for small values of θ the IOU has a behavior that is similar to the IBM, for larger values of that
parameter, its variance grows linearly in time and the process behaves like a directional BM (Gill
et al., 2016). The auto-correlation (or strength) parameter θ is thus interpreted as the amount of
directional persistence present in the data (Johnson et al., 2008), with small values indicating more
dependence to the trajectory path for future moves.

Figure 1 illustrates the behavior of the classical random walk and integrated models along a 5-tip
tree. Trajectories of coordinates generated with the BM and Ornstein-Uhlenbeck (OU) versions of
the random walk model are intricate, showing abrupt changes of directions in the movements (Fig.
1b, c). The same behavior is displayed by the velocity trajectories under the IBM and IOU models
(Fig. 1d, f) as the models are here identical to that used for the BM and OU models indeed. Yet,
integrating over these rugged paths gives smooth (differentiable) trajectories of coordinates under
the corresponding models (Fig. 1e, g), with particles moving swiftly away from their initial points,
illustrating the cubic variance pointed above. The IOU model presented here converges to a (1,1)
velocity so that the coordinates of the five lineages show a clear directionality, stronger than that
obtained with the OU model (Fig. 1g vs. c).

Accuracy of speed estimation

Data sets were simulated under the spatial Lambda-Fleming-Viot (SLFV) model (Etheridge, 2008;
Barton et al., 2010) and an agent-based spatially explicit transmission chain simulator which aimed
at mimicking outbreaks of the Ebola virus in West Africa (Lequime et al., 2020). 100 data sets
were analyzed for each of these two simulation settings. As traditional speed statistics are typically
computed over the whole tree (Dellicour et al., 2020a), we assessed the ability of PIV models to
estimate tree-level speed by averaging node-level velocities across the tree. The classical “weighted
lineage dispersal velocity” (WLDV) (Dellicour et al., 2016) was used instead for all analyses performed
under the RRW model. As shown recently (Dellicour et al., 2024), we expect the WLDV statistic on
RRW models to perform poorly, and would like to asses the ability of PIV models to provide more
accurate speed estimates.

Examination of the estimated vs. true speed relationship (Fig. 2) indicates that the RRW model
systematically underestimates speed and the bias worsens with increasing speed. This bias is strong
with data simulated under the SLFV (Fig. 2a) and milder with the Ebola data sets (Fig. 2b), which
is expected since the transmission trees generated in the latter case are sampled in time and not
ultrametric, making the temporal signal to estimate speed stronger. Nonetheless, true speed values
are, on average, 1.6 times larger than those estimated with the RRW for the Ebola data and 22
times larger for the SLFV data (the ratios for IBM are 1.2 for both simulation settings). The SLFV
model assumes a finite-size habitat (a square here) and boundary effects, which occur for large and
small dispersal values, are expected to impact the estimation of speed under models that ignore this
constraint. Yet, the IBM model is largely immune to this issue. While the IOU model underestimates
speed for the SLFV data sets, its estimates are less biased than those deriving from the RRW model.
The IOU model also tends to overestimate speed on the Ebola data sets. Further examination of
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Figure 2: Accuracy of speed estimation under the RRW and PIV models. True (x-axis) vs. estimated
(y-axis) speed. Estimates were obtained under the IBM, IOU and RRW models. (a) 100 data sets
were simulated using the spatial Lambda-Fleming-Viot process on a 10 by 10 square. (b) 100 data
sets were simulated under a random walk model inspired by the Ebola epidemic in West Africa (see
main text). The insets give the log-log scatterplots of the estimated vs. true speeds. The y = x line
is shown in black on each plot.

these results shows a clear influence of the prior distribution on the strength parameter in the IOU
model, a phenomenon already observed in (Cornuault, 2022).

Dispersal dynamics of the West Nile virus in the U.S.A

The phylogeography of the WNV in the U.S.A. has been studied extensively (see, e.g., (Dellicour
et al., 2020a)). The origin of this epidemic took place in New York City during the summer 1999
(Lanciotti et al., 1999; Campbell et al., 2002). By 2004, human infections, veterinary disease cases
or infections in mosquitoes, birds, or sentinel animals had been reported to the Centers for Disease
Control and Prevention (CDC) in most counties.

We fitted the PIV and RRW models to several subsets of the 801 geo-referenced sequence data
set analyzed in (Dellicour et al., 2020a). PIV models are less flexible than the RRW approach as
they do not authorize sudden changes of direction, as noted earlier (and see SI, section B). Therefore,
ensuring that both approaches nonetheless provide comparable fit to the data is a prerequisite to
further analyses. We then used the IBM model to predict the dispersal patterns and evaluate these
predictions through the comparison with incidence data for the 2000-2007 time period.

Model comparison

We compared the fit of the RRW and PIV models to the WNV data using cross-validation of location
information. Cross-validation is a powerful model comparison technique in the context of phyloge-
netic factor analysis (Hassler et al., 2022). Using a subset of 150 data points chosen uniformly at
random among the 801 available observations, a leave-one-out procedure was applied to the sample
coordinates. Each tip location was first hidden and its posterior density was estimated using MCMC
from the remaining 149 locations and all 150 sequences (see SI, section G).

Figure 3 shows the distributions of the great circle distances between the observed and recon-
structed tip locations as inferred under the PIV and the RRW models, along with that of uniform at
random predictions. The three phylogeographic models have similar behavior overall with a majority
of distances between true and reconstructed tip locations ranging between 238 km (25% quantile of
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Figure 3: Distribution of the distance between true and estimated tip coordinates under the PIV,
the RRW models and uniform at random predictions, WNV data. Cross validation was used to
predict the locations of held-one-out tip lineages under the RRW and PIV models. ‘Random’ gives
the distance between two locations selected uniformly at random within the U.S.A. The y axis gives
the great circle distance between coordinates (in km).
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distribution from MCMC output pooled across models) and 950 km (75% quantile) with a median
of 450 km. In contrast, if inferred locations are uniform at random within the U.S.A. (excluding
Alaska and Hawaii), the median distance is 1,564 km, i.e., more than three times that estimated with
the phylogenetic models. This result demonstrates the ability of these models to extract meaningful
signal from the data, even though these approaches do not account for habitat borders (while the
uniform predictor does so). Examination of the posterior distribution deriving from each model taken
separately indicates that the median distances obtained under the IBM, IOU and RRW models are
474, 496 and 416 km respectively. While the fit of the RRW model is superior to that of the PIV
models, the performance of the three models are nonetheless qualitatively similar.

Incidence Prediction

2000

2001

2002

2003

Figure 4: Incidence and predicted occurrence of WNV in the early phase of the epidemic (model for
prediction: IBM). Purple dots correspond to sampled locations. Incidence data (left) for each year
and each county was obtained from the CDC. For year Y , predicted occurrence of the WNV (right)
was inferred using data collected earlier than the end of December of year Y − 1. The maps were
generated with EvoLaps2 (Chevenet et al., 2024)
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Incidence Prediction

2004

2005

2006

2007

Figure 5: Incidence and predicted occurrence of WNV in an endemic regime (model for prediction:
IBM). See caption of Fig. 4.

Predicting dispersal using PIV models

PIV models enable the estimation of dispersal velocity of each sampled lineage. These velocities may
then serve as a basis to predict the spatial distribution of the underlying population in the near future.
Here, we tested the ability of the IBM model to anticipate the dynamics of dispersal of the WNV in
the early and later stages of the epidemic.

Sequences collected earlier than December of year Y were randomly subsampled from the complete
data set with exponentially increasing weights given to recent samples. Data sets with 150 sequences
were obtained except for years 2000-2002 where smaller sample sizes were considered due to a lack
of observations in this time period. Estimated posterior distributions of velocities at the tips of the
obtained phylogeny under the IBM model were then used as predictors of the spatial distribution of
the virus in year Y + 1 (see section “Predictive phylogeography” in “Material and Methods”). The
predicted occurrences were compared to yearly incidence data collected at the county level.

Figure 4 shows the incidence and the predicted occurrence of the WNV in the early stages in the
epidemic. Samples for years 2000, 2001 and 2002 included only 7, 19 and 68 geo-referenced sequences,
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thereby making any prediction inherently challenging. For instance, predictions for year 2000 are
overly dispersed and sensitive to priors (see SI, section H). Also, while the virus had reached Florida
by 2001, our model failed to predict its presence south of North Carolina. Predictions for subsequent
years rely on larger numbers of observations and demonstrate the relevance of our approach. Indeed,
the PIV model successfully predicted the arrival of the pathogen along the west coast of the U.S.A.
by the end of 2002. It also correctly predicted that the north west corner of the country would remain
largely virus-free until the end of 2003. Predictions deriving from the RRW show qualitatively distinct
patterns with a widespread presence of the virus for years 2003 and 2004 that contrasts with incidence
data (see SI, section H). Overall, the RRW shows a higher sensitivity (average of 0.89 over all years
for the RRW, vs. 0.72 for the IBM), but a lower specificity (average of 0.36 for the RRW, vs. 0.56 for
the IBM), consistent with wider and rather vague predicted regions.

By 2004 the virus reached an endemic state and the spatial dynamics of the epidemic diverged from
that of the early stages. Figure 5 shows the results for the 2004-2007 time period. Prediction at local
spatial scales has limited accuracy. For instance, a high probability of occurrence was systematically
estimated for the states in the North East corner of the country and the south of Texas while incidence
was generally mild in these areas. Note that the difference between predicted and observed occurrence
could reflect a relatively lower ecological suitability of these regions to host local WNV circulation,
thereby serving a useful purpose. Moreover, the IBM model correctly predicts the expansion of the
epidemic north of California and Nevada between 2005 and 2006. Also, according to our predictions,
the pathogen covered limited distances in the 2004-2007 period compared to the early stages of the
epidemic. This quasi stasis is confirmed by the largely similar distributions of yearly incidences.
Hence, here again, our approach manages to capture changes in the spatial dynamics of the pandemic
that are central in the context of pathogen surveillance.

Discussion

The present study addresses shortcomings in the estimation of the velocity of lineages using popular
models in phylogeography. These approaches rest on the probabilistic modeling of the coordinates
of lineages along their phylogeny. Yet, the central concept of instantaneous speed does not exist
under the most popular Relaxed Random Walk (RRW) model. As a consequence, measuring speed
as a ratio between a displacement and the corresponding elapsed time leads to difficulties. In order
to circumvent these limitations, we introduce Phylogenetic Integrated Velocity (PIV) models. The
originality of this family of models lies in their modeling of the velocity of evolving lineages instead
of their coordinates. This approach enables a proper definition of instantaneous speed, which can be
inferred anywhere along the tree, including at its tips.

Data sets were simulated under two models of spatial evolution that are distinct from that under-
lying the PIV and RRW approaches. Results show that speed estimates obtained with PIV models
are generally more accurate than those deriving from the RRW approach, especially in cases where
the pace of dispersal is high. Also, unlike RRW, PIV models produce velocity vector estimates at each
node of the tree. We assessed the accuracy of these estimates at tip nodes in the IBM case, and found
that the velocity vectors were well estimated, with highest posterior density intervals having good
coverage (see SI, section I). Yet, PIV models are less flexible than RRW in their description of the
movement of lineages during the course of evolution. In particular, sudden changes in the direction
of dispersal are not well accounted for by PIV models. These changes would indeed require “breaks”
in the trajectory of velocities, which the underlying Gaussian processes do not allow. However, our
analysis of West Nile virus data in the U.S.A. indicates that the movements of lineages display here
enough inertia so that rapid changes in the spatial trajectories are seldom observed. Cross-validation
suggests in fact that the two PIV models tested here provide a fit to the data similar to that ob-
tained with the RRW. Moreover, the analytical expressions of the variance of coordinates under the
IBM model grows with time in a superlinear manner, thereby allowing large displacements in short
amounts of time.

Estimates of tip velocities can serve as a basis to model future dispersal events. Here, we evaluate
the accuracy of predicted movements through the analysis of subsets of a large data set of West Nile
virus geo-referenced sequences and county-level yearly incidence data in the U.S.A. Our predictions
focus on deciding whether the pathogen will occupy (or be absent from) a given county at a given time
interval in the future, i.e., a modest, yet challenging and critical endeavor compared to predicting
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future incidence. The proposed approach accurately predicted the arrival of the virus along the
west coast of the USA in 2002 from the analysis of data collected before the end of December 2001.
Furthermore, the predictions clearly point to a change of dispersal dynamics around 2004-2005 with a
transition from an expansion phase to an endemic regime whereby rapid east-to-west dispersal events
are replaced with short-distance migrations. While the proposed predictions have limited accuracy in
the early stages of the pandemic where data is scarce and sampling likely to be biased, the PIV models
successfully anticipate dispersal events in many instances. Altogether, our results indicate that the
predictive phylogeography approach put forward in the present study could indeed serve a useful
purpose in real time forecasting of the spread of an epidemic. Future work could aim at incorporating
data on the ecological suitability of the investigated areas in order to improve predictions, in a manner
similar to that used in “landscape phylogeography” (Dellicour et al., 2018a).

In addition to prediction, the PIV models are also expected to prove useful in many cases where
the RRW model has been applied to quantify and compare dispersal velocity. These applications
range from animal and human viruses to plant viruses. For instance, lower rates of dengue virus
dispersal in urban as opposed to rural settings has implicated a major role for mosquito-mediated
dispersal (Raghwani et al., 2011). Also, dispersal velocity has often been estimated for rabies lineages
with dogs as the main host species, resulting in hypotheses of their spread being impacted by human
activities (Talbi et al., 2010). More recently, a slow dispersal has been estimated for Lassa virus in
its rodent reservoir, which could in part explain the restricted distributions of the virus (Klitting
et al., 2022). Finally, increasing dispersal rates of the rice yellow mottle virus in Africa has led to
the suggestion that intensification of rice cultivation could have enhanced the spread of that virus
(Rakotomalala et al., 2019). Applications of the PIV models could increase the credibility of these
and many more hypotheses of viral spread.

The proposed new models and predictions have limitations however. In a manner similar to that
of the classical RRW framework, PIV models assume that (i) the geographical position does not
impact the fitness or the molecular evolution of the pathogen, (ii) all the lineages are independent
from one another, excluding any competition effect and (iii) the geographical spread of the pathogen
is independent from its current position. While limiting, these assumptions permit efficient compu-
tations and provided a sound methodological framework for important phylodynamics studies (see
e.g. (Baele et al., 2018) for a review). In some specific contexts such as discrete phylogeography,
some of these assumptions were relaxed, see e.g. (FitzJohn, 2010; Müller et al., 2017) and references
therein for (i), (Drury et al., 2016; Manceau et al., 2017; Bartoszek et al., 2017) for (ii), and (Lemey
et al., 2014) for (iii). Similar extensions to the PIV framework proposed here should be considered.
In particular, models of animal movement also rely on integrated processes, with an additional po-
tential function that links the dynamics of velocity evolution of an individual to its position at each
point in time (Preisler et al., 2013; Russell et al., 2018). Such a potential function could be extended
to include prior knowledge on the environmental layers impacting the spread of pathogens, includ-
ing natural barriers such as coastline, or could be used to test the impact of specific environmental
variables on the dispersion (Dellicour et al., 2020b). However, the pruning algorithm used here (see
“Material and Methods”) would not apply to these kinds of models, which are thus likely to be highly
computationally intensive.

Furthermore, sampling is likely to impact the results in case it is driven by practical aspects (e.g.,
the distribution of genomic surveillance facilities is not uniform throughout the habitat) and does
not reflect the underlying spatial distribution of the population under scrutiny (Kalkauskas et al.,
2021). Recent work (Guindon and De Maio, 2021) shows how different sampling strategies can be
incorporated in the RRW model. A similar framework could apply to PIV models and mitigate
the impact of sampling. Additionally, when available, incidence data conveys information about the
demographic dynamics of an epidemic. Hence, increased accuracy of the predictions may be achievable
through the incorporation of past incidence data in the new models presented in this work.

Material and Methods

Likelihood calculation and Bayesian inference

Let X∗ and X correspond to random variables denoting the vectors of positions at the tips and the
internal nodes respectively. x∗ = {x1, . . . , xn} and x = {xn+1, . . . , x2n−1} are realizations of the
corresponding random variables, where n is the number of tips and 2n − 1 is the index of the root
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node. Y∗ and Y are the vectors of velocities at tip and ancestral nodes respectively. Here, we describe
two different approaches for the Bayesian inference of PIV model parameters.

Data augmentation: sampling velocities

The first method, implemented in PhyREX (Guindon and De Maio, 2021), relies on data augmen-
tation. It starts with the computation of p(x∗,x,y∗,y), i.e., the joint density of all (i.e., ancestral
and tip) locations and velocities. This density is also conditioned on the phylogeny, i.e., a rooted
tree topology with node heights, which is not included in the formula below for the sake of concise-
ness. Given the locations and velocities at all nodes in the tree, the evolutionary process taking place
along every branch is independent from that happening along the other edges. The likelihood is then
evaluated as follows:

p(x∗,x,y∗,y)

= π(yρ, xρ)
2n−2∏
i=1

p(xi | xpa(i), yi, ypa(i))p(yi | ypa(i), xpa(i))

= π(yρ, xρ)
2n−2∏
i=1

p(xi | xpa(i), yi, ypa(i))
2n−2∏
i=1

p(yi | ypa(i)) (8)

where the subscript pa(i) corresponds to the direct parent of node i. Also, π(yρ, xρ) is the velocity and
location density at the root node. In the present work, we use a normal density for the corresponding
distribution. Since (Xi | xpa(i), yi, ypa(i)) is normally distributed, we can use the pruning algorithm
as described in (Pybus et al., 2012) to integrate over X, giving the following likelihood:

p(x∗,y∗,y) = π(yρ, xρ)ϕ(x
∗;y∗,y)

2n−2∏
i=1

p(yi | ypa(i)) (9)

where ϕ(x∗;y∗,y) is obtained through a post-order tree traversal, assuming the movements along
both spatial axes are independent from one another and using the means and variances for either the
IBM or the IOU model (see SI, section B). The calculation just described relies on augmented data
since velocities at all nodes in the tree are considered as known. Uncertainty around these latent
variables is non-negligible. Samples from the joint posterior distribution of all model parameters,
including ancestral and contemporaneous velocities, were obtained through Markov Chain Monte
Carlo integration.

Direct likelihood computation with the pruning algorithm

The second method for evaluating the likelihood of PIV models is implemented in BEAST (Suchard
et al., 2018). It relies on the direct computation of p(x∗), the likelihood of the observed positions at
the tips conditionally on the tree. It uses the fact that the stochastic process Z(t) = (Y(t),X(t))
that describes the joint evolution of both the velocity and position is a multivariate Markov process,
that can be framed as linear Gaussian as in (Mitov et al., 2020; Bastide et al., 2021). Indeed, as
shown in SI (section C), for any node i with parent pa(i), the joint velocity-position vector Zi can
be written conditionally on Zpa(i) the vector at the parent node pa(i), as: Zi = qiZpa(i) + ri + ϵi,
with ϵi a Gaussian random variable with variance Σi that is independent from Zpa(i), and Σi, qi

and ri, two matrices and a vector of dimension 4 that only depend on the tree and the parameters of
the PIV process considered. In this approach, all the velocities at the tips are considered as missing:
we only observe the last two entries of vector Z corresponding to the position, but the velocities
are unknown. In (Bastide et al., 2021), a general pruning algorithm is described to deal with this
kind of process (with missing values), that provides not only the likelihood (one post-order traversal)
but also the conditional distribution of non-observed traits conditioned on observed traits at the tips
(one additional pre-order traversal). This algorithm hence readily gives the posterior distribution of
velocities without the need to sample from them using MCMC. Moreover, it does not need to assume
that movements along the spatial axes are independent from one another.
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Phylogeographic Bayesian inference

In both approaches, standard operators were used to update the topology of the phylogenetic tree,
the node ages along with the parameters of a HKY (Hasegawa et al., 1985a) nucleotide substi-
tution model. The diffusion parameters of the Brownian process were also updated using standard
Metropolis-Hastings steps. Most results in this study were derived with PhyREX even though BEAST
outperformed PhyREX in terms of speed of parameter inference (see SI, section E). The two inde-
pendent implementations of Bayesian samplers under the same models provide a robust validation of
most results presented in this study.

Simulations

Spatial Lambda-Fleming-Viot model

Genealogies and the accompanying spatial coordinates were first generated according to the“individual-
based” spatial Lambda-Fleming-Viot (SLFV) model (Etheridge, 2008; Barton et al., 2010). In this
model, individuals give birth to descendants which locations are normally distributed. Death events
are also governed by the same kernel so that the spatial density of the population is constant, on
average, during the course of evolution. The normal kernel is truncated, allowing the SLFV model
to accommodate habitats of finite size, as opposed to most continuous phylogeographic models. We
selected the SLFV model as it describes the evolution of a population of related individuals along a
spatial continuum as opposed to discrete demes. It is not subject to the shortcomings that hinder
other popular spatial population genetics models such as sampling inconsistency (Barton et al., 2013)
or Felsenstein’s infamous “pain in the torus” (Felsenstein, 1975). Finally and most importantly, be-
cause lineages’ coordinates evolve here according to a jump process, the exact spatial coordinates of
each lineage at each point in time can be monitored. This information may then serve as a basis to
evaluate the total distance covered by all lineages in the genealogy. The ratio of this distance by the
corresponding elapsed time gives an (average) speed that genuinely reflects the dispersal ability of
the organisms under scrutiny.

50 individuals were sampled on a 10 by 10 square defining the habitat of the corresponding
population. The rate of events where lineages die and/or give birth to descendants (the so-called
REX events in (Guindon et al., 2016)) was set to 103 events per unit of time per unit area and the
variance of the normal density that defines the radius parameter in the SLFV model was chosen
uniformly at random in [0.1, 0.3]. These parameter values are such that lineage jumps are short and
frequent, thereby mimicking the behavior of a Brownian process (Wirtz and Guindon, 2023).

Ebola-like simulations

Here, we used the agent-based spatially explicit simulator implemented in the R package nosoi

(Lequime et al., 2020). Parameters were chosen so as to mimic the Ebola epidemic in West Africa
over a time period of 365 days, starting from a single infected host in Guéckédou (Guinea). nosoi is
a discrete time, continuous space simulator that explicitly models within-host dynamics and between-
host transmissions. It can exploit a geographic raster to simulate a full transmission tree where the
geographic position of each infected host is tracked at all time. We simulated datasets using the
same parameters as in (Lequime et al., 2020) which are informed by the literature describing human
infections by Ebola. Spatial demographic data from WorldPop (www.worldpop.org) was also taken
into account for these simulations.

Each host had a probability of 20% to move every day. These migrations were governed by a
bivariate Gaussian distribution centered at the location of the lineage under scrutiny, with diagonal
covariance matrix and equal standard deviations for longitude and latitude. The standard deviation
was set constant for each simulation, and drawn from a log-normal distribution with mean and
standard deviation equal to approximately 15 km in each direction. We used a raster of the entire
West Africa, ensuring that no epidemic reached the border of the map within the time frame of the
simulation.

As previously, we sampled 50 infected individuals randomly from the transmission tree, and ex-
tracted the sampled genealogy as well as the realized speed, that exploits the simulated position at
each time of the chain. Note that the genealogies produced by these simulations are sampled through
time and not ultrametric, making the estimation of speed easier.
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Sequence simulation

In both simulation settings, edges in the obtained genealogy were rescaled so that the average length
of an edge after scaling was 0.05 nucleotide substitutions per site. Nucleotide sequences were then
generated under a strict clock model according to the HKY model of evolution (Hasegawa et al.,
1985a) with transition/transversion ratio set to 4.0. 100 genealogies along with the corresponding
spatial coordinates and homologous nucleotide sequences were generated this way for the SLFV and
Ebola simulations.

Statistical inference

Each simulated data set was processed using the RRW, IBM and IOU models with independent
coordinates. When considering their spatial components only, these models have have 3, 2 and 6
parameters respectively. The RRW model used a log-normal distribution of branch-specific dispersal
rates, which is the standard parametrization for that model. The nucleotide substitution rate was set
to its simulated value by taking the ratio of the tree length as expressed in molecular and calendar
units. The tree-generating process was assumed to be Kingman’s coalescent (Kingman, 1982) with
constant effective population size and a flat (improper) prior distribution on that parameter. Although
sequences evolved according to a strict clock model, we used an uncorrelated relaxed clock model
(Drummond et al., 2006) with a log-normal distribution of edge-specific substitution rate multipliers.
An exponential prior with rate set to 100 was used for the variance of this log-normal density.

For each data set, the true average speed was taken as the actual euclidean (SLFV) and great-
circle (Ebola) distance covered by every lineage divided by the tree length in calendar time unit. For
RRW, distances between the (observed or estimated) coordinates at each end of every branch in the
tree were used to derive the dispersal rate through the “weighted lineage dispersal velocity” statistic
(Dellicour et al., 2016). The posterior median of that statistic was used as our speed estimate. For
PIV models, speed at the tree-level was obtained by averaging the speed estimated at each node, the
latter deriving from the corresponding velocities. Here again, we obtained the posterior distribution
of the tree-level speed and use the median as our estimate. Note that none of the processes used for
inference is the “true” process used for simulation, but simplified versions of it.

Predictive phylogeography

The PIV models provide an adequate framework to estimate velocities at the tips of the inferred
phylogenies. It thus makes sense to apply them to predicting dispersal patterns. Here, we designed
a prediction technique which goal is to assess whether the organism under scrutiny may be found in
a given region at a given point in time after the most recent sample was collected. Our approach
utilizes the posterior distribution of the velocities estimates at each tip of the phylogeny to build
a predictor. The latter is obtained by linear extrapolation of the estimated velocity at each tip in
the tree that assumes a constant speed of lineages after their sampling. Survival of these linear
trajectories is taken into account so that older samples are less likely than recent ones to survive to
a given time point in the future. This approach therefore puts more weight on recent samples to
predict dispersal patterns (see SI, section F). Incidence data used for comparison was extracted from
https://www.cdc.gov/west-nile-virus/data-maps/historic-data.html.

Data and code availability

The data and code to reproduce all analyses and figures displayed in this study are available at https:
//github.com/pbastide/integrated_phylogenetic_models. The PhyREX and BEAST programs
are open source and freely available from https://github.com/stephaneguindon/phyml and https:

//github.com/beast-dev/beast-mcmc respectively.
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A Distribution of coordinates for the IOU process conditioned on

the initial velocity

The distribution is normal with expectation and variance given below:

E(X(t) | x(0), y(0)) = x(0) + (y(0)− µ)

(
1− e−θt

θ

)
+ µt (10)

V(X(t) | x(0), y(0)) = σ2

θ3

(
tθ − 3

2
− e−2tθ

2
+ 2e−tθ

)
(11)

On expectation, the coordinates thus grow linearly with time, with a rate given by the trend µ of the
underlying OU, when the process has reached its equilibrium, which happens when e−θt ≃ 0. The
variance of X(t) grows exponentially for values of θt smaller than ∼ 2 and linearly beyond that. Note
that when θ goes to 0, the variance converges to σ2t3/3, so that the IOU converges to an IBM.

B Distributions of velocity and coordinates for PIV models condi-

tioned on the initial and final velocities

Velocities

We consider the situation where velocities at the start and the end of a branch of length t, y(0) and
y(t), are given, and aim at deriving the distribution of the location at the end of the branch, X(t),
given the location at the start, x(0). Characterizing this distribution is required in the calculation of
the likelihood of the PIV models in the PhyREX approach (see Section “Likelihood calculation and
Bayesian inference” in the “Material and Methods” of the main text).

In case the velocity evolves according to a Brownian bridge starting at y(0) and stopping at y(t),
the corresponding process is defined as follows:

Y (s) =
s

t
y(t) +

(
t− s

t

)
y(0) +W (s)− s

t
W (t) (12)

where W denotes the Wiener process (with W (0) = 0). The expected value and variance of velocity
at time s (with 0 ≤ s ≤ t) are thus as given below:

E(Y (s) | y(0), y(t)) = s

t
(y(t)− y(0)) + y(0) (13)

Cov(Y (u), Y (v)) = σ2u(t− v)

t
(14)

with u ≤ v ≤ t and s ≤ t.
When the velocity follows a OU bridge, Lemma 1 in (Papież and Sandison, 1990) shows that:

Y (s) =
sinh (θs)

sinh (θt)
y(t) +

sinh (θ(t− s))

sinh (θt)
y(0) +W (s)− sinh (θs)

sinh (θt)
W (t) (15)

where W is the non-tied OU process with W (0) = 0. The distribution of velocity is thus normal with
expectation and covariance as follows:

E(Y (s) | y(0), y(t)) = sinh (θs)

sinh (θt)
y(t) +

sinh (θ(t− s))

sinh (θt)
y(0) + µ

(
1− e−θs

)
− sinh (θs)

sinh (θt)
µ
(
1− e−θt

)
(16)

Cov(Y (u), Y (v)) =
σ2

θ

sinh (θu) sinh (θ(t− v))

sinh (θt)
(17)

with u ≤ v ≤ t and s ≤ t.
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Spatial coordinates

We use the mean and covariance of the constrained velocity derived in the previous section in order
to derive that of the spatial coordinates at the end of an edge of length t, given the coordinates at
the start of that branch along with the velocity at both extremities of the same edge. We thus focus
on
∫ t

0
E(Y (s) | y(0), y(t))ds and

∫ t

0

∫ t

0
Cov(Y (u), Y (v))dudv and obtain the following expressions:

E(X(t) | x(0), y(0), y(t)) = x(0) +
t

2
(y(t) + y(0)) (18)

V(X(t) | x(0), y(0), y(t)) = σ2t3

12
. (19)

The expectation of X(t) therefore grows linearly with t at a pace determined by the velocity averaged
over the two nodes at the extremity of the branch under scrutiny.

Using an approach equivalent to that applied to the IBM process, the expectation and variance of
the coordinates given the velocities at both extremities of an edge are given below for the IOU model:

E(X(t) | x(0), y(0), y(t)) = x(0) +

(
cosh (θt)− 1

θ sinh (θt)

)
(y(t) + y(0)) + µt− µ

θ

(
1− e−θt

)(
1 +

cosh (θt)− 1

sinh (θt)

)
(20)

V(X(t) | x(0), y(0), y(t)) = σ2

θ3

(
θt− 2

(cosh(θt)− 1

sinh(θt)

))
(21)

When θ ≪ 1, i.e., the pace to reach the equilibrium is slow with respect to t, we have (1−e−θt)/θ → t
and (cosh(θt) − 1)/ sinh(θt) ∼ θt/2 so that E(X(t) | x(0), y(0), y(t)) ≃ x(0) + (t/2)(y(t) + y(0)). In
addition, developing the variance term up to order 4 at the numerator and order 3 at the denominator,
we get that (cosh(θt)− 1)/ sinh(θt) ∼ (θt)/2− (θt)3/24, so that V(X(t) | x(0), y(0), y(t)) ≃ σ2t3/12.
As expected, when θ goes to 0, the IOU and the IBM processes thus behave similarly. Also, note that
the function f : x 7→ x− 2(cosh(x)− 1)/ sinh(x) converges to 0 when x → 0+ and the derivative of f
with respect to x is non negative, so that f is non negative for x ≥ 0, and V(X(t) | x(0), y(0), y(t)) as
expressed above is non negative for all values of θt ≥ 0. If θ is large, then E(X(t) | x(0), y(0), y(t)) ≃
x(0) + ((y(t)− µ) + (y(0)− µ))/θ + µt) ≃ x(0) + µt, and V(X(t) | x(0), y(0), y(t)) ≃ σ2

θ3 (θt− 2).
Hence, in both regimes of θ, the expected value of the coordinates grows linearly with time. It is

doing so in a manner that is proportional to the velocities at both extremities of the branch (if θ is
small) or proportional to the drift term (if θ is large). In terms of variance, as previously, the IOU
behaves similarly to the IBM when θ is small, and grows linearly in t when θ is large.

C The pruning approach for the IBM and IOU processes

Joint process

We assume here a general multivariate integrated process of dimension p (typically, p = 2 for phy-
logeography), and denote by Z(t) = (YT (t),XT (t))T the joint process of dimension 2p describing
the evolution of both the velocity and position vectors. This joint process is then a linear Gaussian
process, and it can be fully described by the Gaussian distribution of the trait at any node i given
the trait at its parent pa(i) (Mitov et al., 2020; Bastide et al., 2021):

Zi

∣∣ Zpa(i) ∼ N
(
qiZpa(i) + ri,Σi

)
, (22)

with qi an actualization matrix and Σi a variance matrix both of size 2p × 2p, and ri a vector or
size 2p, that are all independent from the data, and depend only on the tree and its branch lengths.
For the IBM, assuming that the velocity vector follows a BM with constant directional drift δ and
variance Σ, we get:

qi =

(
Ip 0p,p

Ipti Ip

)
=

(
1 0
ti 1

)
⊗ Ip (23)

ri =

(
δti

δt2i /2

)
=

(
ti

t2i /2

)
⊗ δ (24)

Σi =

(
Σti Σt2i /2

Σt2i /2 Σt3i /3

)
=

(
ti t2i /2

t2i /2 t3i /3

)
⊗Σ, (25)
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where ti is the length of the branch going from pa(i) to i, and ⊗ denotes the Kronecker product. For
the IOU, assuming that the velocity vector follows a OU with actualization matrix Θ, central vector
µ and variance Σ, we get (Cumberland and Rohde, 1977):

qi =

(
e−Θti 0p,p

Θ−1(Ip − e−Θti) Ip

)
(26)

ri =

(
(Ip − e−Θti)µ

µti −Θ−1(Ip − e−Θti)µ

)
(27)

Σi =

(
KY(ti) KX,Y(ti)

T

KX,Y(ti) KX(ti)

)
, (28)

with, for any t, KY(t), KX(t), and KX,Y(t), the variance and covariance of the velocity and position
vectors at time t, given by:

KY(t) = S− e−ΘtSe−ΘT t (29)

KX(t) = ∆t− (Ip − e−Θt)Θ−1∆−∆Θ−T (Ip − e−ΘT t) +Θ−1SΘ−T − e−ΘtΘ−1SΘ−T e−ΘT t

(30)

KX,Y(t) = SΘ−1[Ip − e−Θt]− [Ip − e−Θt]Θ−1Se−ΘT t (31)

with S the stationary variance of the OU, and ∆ = Θ−1S+ SΘ−T .

Pruning algorithm

As showed in (Mitov et al., 2020; Bastide et al., 2021), for a general linear Gaussian process of the
form of Eq. 22 we can compute the likelihood of the traits at the tips of the tree in an efficient way by
integrating over all the internal states using a pruning algorithm. This yields an algorithm in O(np3),
that is linear in the number of tips. In the case of an integrated process, the velocity is never observed
at the tips, only the spatial coordinates are. As shown in (Bastide et al., 2021), missing data can be
accounted for in this algorithm, and because the velocity and position traits are correlated, we can
still get information on the velocity, even though it is not observed. This approach is implemented
in BEAST (Suchard et al., 2018), and allows for the Bayesian fit of the model without resorting to
stochastic integration of the internal node velocities as is done in PhyREX. Note that, although we
used a standard Metropolis-Hastings update for the parameters of the processes, from (Bastide et al.,
2021) we could also get derivative with respect to the parameters of the IBM or IOU, allowing for
efficient Hamiltonian Monte Carlo sampling schemes (Neal, 2011).

D Marginal tip position distribution under the IBM and IOU pro-

cesses

In the previous sections, we used the conditional distribution of a node given its parent to derive
efficient pruning algorithm for the computation of the likelihood. However, as the IBM and IOU
are Gaussian processes, it is also possible to directly derive the marginal distribution of the observed
positions at the tip of the process. Denote by Xt the n× p matrix of observations at the tips of the
tree, and by Xi

t the vector of p observations at tip i (Xt = (X1
t · · · Xn

t )
T ).

Marginal distribution under a BM

Recall that for a simple multivariate BM on a tree with rate variance Σ and root position parameter
Xρ ∼ N

(
µX,ΓX

)
, then we get that Xt has a matrix normal distribution, with, for any two vectors

of observations at tips i and j, an expectation vector and variance covariance matrix given by:

E[Xi
t] = µX and V[Xi

t;X
j
t ] = Στij + ΓX (32)

with τij the time between the root and the most recent common ancestor of i and j (see e.g. (Felsen-
stein, 1973)).
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Marginal distribution under an IBM

We now assume that the process is an IBM, with a root position parameter Xρ ∼ N
(
µX,ΓX

)
, a root

velocity parameter Yρ ∼ N
(
µY,ΓY

)
, and rate variance matrix of the velocities equal to Σ. Then

the distribution of the traits at the tips is still matrix normal. More precisely, as the velocities are
simply Brownian, we get that:

E[Yi
t] = µY and V[Yi

t;Y
j
t ] = Στij + ΓX. (33)

For the positions, we get:

E[Xi
t] = µYτi + µX (34)

V[Xi
t;X

j
t ] = ΓX + ΓYτiτj +Στij

[
τiτj + τij

(
τij
3

− τi + τj
2

)]
. (35)

Note that, if i = j, then τii = τi, and we recover that the variance of a tip is cubic in the time of
evolution. We can also get the covariances between velocities and positions:

V[Xi
t;Y

j
t ] = ΓYτi +Στij

[
τi −

τij
2

]
. (36)

The proof of these formulas rely on the following equality:

V[Xi
t;X

j
t ] =

∫ τi

0

∫ τj

0

V[Yi(t);Yj(s)]dtds (37)

V[Xi
t;Y

j
t ] =

∫ τi

0

V[Yi(t);Yj
t ]dt, (38)

where Yi(t) denotes the value of the velocity process on lineage leading to tip i at time t, and the
covariance function is equal to:

V[Yi(t);Yj(s)] =

{
Σmin(s, t) + ΓY if s ≤ τij or t ≤ τij

Στij + ΓY otherwise.
(39)

Marginal distribution under an IOU

We now assume that the process is an IOU, with a root position parameter Xρ ∼ N
(
µX,ΓX

)
, a root

velocity parameter Yρ ∼ N
(
µY,ΓY

)
, rate variance matrix of the velocities equal to Σ, actualization

matrix Θ, central vector µ and stationary variance S. Then the distribution of the traits at the tips
is still matrix normal, and we get that the velocities are OU distributed as (see e.g. (Clavel et al.,
2015)):

E[Yi
t] = e−ΘtµY + (Ip − e−Θt)µ and (40)

V[Yi
t;Y

j
t ] = e−Θ(τi−τij)Se−ΘT (τj−τij) − e−ΘτiSe−ΘT τi + e−ΘτiΓYe−ΘT τi . (41)

For the positions, we get:

E[Xi
t] = µX +Θ−1(Ip − e−Θt)(µY − µ) + µt and (42)

V[Yi
t;Y

j
t ] = ΓX + [Ip − e−Θτi ]Θ−1ΓYΘ−T [Ip − e−ΘT τj ] +∆τij + (Ip − eΘτij )e−ΘτiΘ−1∆

+∆Θ−T e−ΘT τj (Ip − eΘ
T τij )e−Θτi

[
eΘτijΘ−1SΘ−T eΘ

T τij −Θ−1SΘ−T
]
e−ΘT τj

(43)

using the same notations as in section C for ∆.
The proof of the formulas rely on the integration of the following covariance function (see (Cum-

berland and Rohde, 1977)), defined, for any 0 ≤ s ≤ t, as:

V[Yi(t);Yj(s)] = Se−Θ(t−s) − e−ΘsSe−ΘT t + e−ΘsΓYe−ΘT t, (44)

if s ≤ τij or t ≤ τij , and:

V[Yi(t);Yj(s)] = e−Θ(s−τij)Se−ΘT (t−τij) − e−ΘsSe−ΘT t + e−ΘsΓYe−ΘT t (45)

otherwise.

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2024. ; https://doi.org/10.1101/2024.06.06.597755doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597755
http://creativecommons.org/licenses/by-nc-nd/4.0/


PhyREX BEAST

parameter ESS/s mean 95% HPDI ESS/s mean 95% HPDI

σ2 lat 9.73 2.37 ( 1.7, 3.1) 100.15 2.29 ( 1.7, 3.0)
σ2 lon 10.82 11.81 ( 8.7, 15.3) 111.90 11.32 ( 8.4, 14.5)

root lat 5.74 39.88 ( 32.9, 47.1) 164.66 40.65 ( 33.7, 47.6)
root lon 6.78 -71.07 ( -86.2, -55.7) 164.11 -74.62 ( -90.3, -59.3)

root veloc lat 17.63 -0.13 ( -3.4, 3.3) 166.60 -0.26 ( -3.5, 3.1)
root veloc lon 17.81 -3.80 ( -11.0, 3.7) 161.19 -2.32 ( -9.6, 4.9)

Table S1: Comparison of PhyREX and BEAST estimations of variance and root parameters for a
bi-variate IBM on a fixed tree (WNV data of (Pybus et al., 2012) with 104 tips).

Likelihood computation checks

The formulas above give the full distribution of the observed positions at the tips of the tree, that
is matrix normal. They are therefore used to compute the likelihood of the data directly. As in the
standard BM case, this direct computation involves the inversion of large matrices, and the pruning
approach of section C is to be preferred, as it is linear in the number of tips (see e.g. (Mitov et al.,
2020; Bastide et al., 2021)). However, these formulas can be used to test that the likelihoods obtained
by BEAST and PhyREX do match with the direct “näıve” formulas. We implemented these direct
formulas in R (R Core Team, 2024), and checked on small examples that the two software gave
matching likelihoods.

E Comparison of PhyREX and BEAST implementations

We compared two independent implementations of the IBM model in PhyREX and BEAST, with
the WNV data from (Pybus et al., 2012) (104 tips), independent IBM models for the latitudes and
longitudes, and a vague Gaussian prior centered at 0 and with variance 1000 for the root trait. We
compared the two implementations first using a common fixed tree, and then starting from sequences
and inferring the tree.

Settings

For the fixed tree analysis, as PhyREX needs to sample interval velocities, we ran a longer MCMC
chain for this software, with 10 million iterations sampled every 10 thousands steps, while we used
a chain with only 10 thousands iterations sampled every 10 steps for BEAST. We reproduced this
analysis 10 times on a 13-inch M2 2022 MacBook Pro, and took the mean times and estimates.

For the inferred tree analysis, we ran a MCMC chain with 50 million iterations sampled every
10 thousands steps for both software. Since the analyses are computationally intensive, we only ran
the chain once with the same set up and compared running times. For both analyses, we used a
constant population coalescent prior, an HKY substitution model (Hasegawa et al., 1985b), and an
uncorrelated relaxed random local clock (Drummond et al., 2006) with a log-normal distribution of
rates with a strong prior on a small standard error to speed up convergence. Tip heights were fixed
at their sampling times.

We used R (R Core Team, 2024) to run analyses, using packages ape (Paradis and Schliep, 2019)
and treeio (Wang et al., 2019) for tree manipulation, tracerer (Bilderbeek and Etienne, 2018) for
reading and summarizing log files, ggplot2 (Wickham, 2016) and cowplot (Wilke, 2024) for plotting
results, here (Müller, 2020) for file manipulation, and kableExtra (Zhu, 2024) for extracting tables
automatically for display.

Results for the fixed tree analysis

We found that the two approaches gave very similar results for the estimation of the variance and
root parameters (see Table S1). Unsurprisingly, as BEAST only needs to sample two parameters
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Figure S1: Effective sample size per seconds of all node velocities (internal and tips) of BEAST versus
PhyREX for a bi-variate IBM on a fixed tree (a) or with an inferred tree (b). WNV data of (Pybus
et al., 2012) with 104 tips, i.e. 208 velocity estimates per software program.
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Figure S2: Comparison of PhyREX and BEAST estimations of variance and root parameters for a
bi-variate IBM when the tree is inferred using WNV data of (Pybus et al., 2012) with 104 tips.

(the variance parameters), it was faster in this setting, with analyses taking around 5.2 seconds,
versus 33.6 seconds with PhyREX. This led to a mean approximate 15.3 times factor increase of the
BEAST versus PhyREX implementation in terms of effective sample size per seconds (see Table S1).
Because velocities are sampled during the MCMC in PhyREX, but directly sampled in their posterior
distribution in BEAST, their ESS in BEAST was more reliably high and less spread out than PhyREX
estimations (see Fig. S1-a). Note that each PhyREX iteration was about 155.0 times faster than each
BEAST iteration, as it requires less computations.

Results for the inferred tree analysis

As inferring the tree is much more computationally intensive, these analyses took longer to run,
taking, respectively, 1.05 hours for BEAST and 2.85 hours for PhyREX. PhyREX convergence was
slower, taking around 10 million iterations to warm up, while BEAST reached a reasonable sampling
area within less than 1 million iterations. This led to a mean approximate 13.70 times factor increase
of the BEAST versus PhyREX implementation in term of effective sample size per seconds. As in the
fixed tree case, ESS in BEAST was more reliably high and less spread out than PhyREX estimations
(see Fig. S1-b). Because many operators are involved in the tree search, it is difficult to pinpoints
the exact reasons for these different convergence behaviors, and it may not be entirely due to the
different IBM implementations. Contrary to the fixed tree case, each BEAST iteration was faster
than a PhyREX iteration by a factor of about 2.70. This time difference is likely due to the use of
BEAGLE (Ayres et al., 2012) in the BEAST analyse, which allows for efficient parallelization and
GPU use. The two approaches gave very similar results for the estimation of the root time and
position, but gave slightly different variance parameter estimations, although with intersecting HPD
intervals (see Fig. S2). Reconstructed velocities at tips were highly similar in both approaches (not
shown).
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F Dispersal prediction via linear extrapolation of tip velocities

Let αi(t) design the coordinates of tip i at time t that occurs after the sample corresponding to tip
i was observed, which is noted as ti (i.e. t ≥ ti). αi(t) then corresponds to the position of lineage i,
should it survive up to time t. Also, we assume that, after time ti, lineage i dies at rate λ so that
the probability of surviving up to time t is exp(−λ(t− ti)). Finally, A represents a particular region,
e.g., a state or county. Below is the probability that one or more lineage occupies A at time t, where
t ≥ ti for all tips i = 1, . . . , n. Let PA,t be that probability. We have:

PA,t = 1−
n∏

i=1

Pr(αi(t) /∈ A) (46)

where Pr(αi(t) /∈ A) is the probability that lineage i is not within A at time t. We have Pr(αi(t) /∈
A) = 1 − Pr(αi(t) ∈ A) and Pr(αi(t) ∈ A) is the probability that (1) lineage i survives up to time
t and (2) the linear extrapolation of its position from time ti to time t given its velocity at time ti,
falls within A. In practice, we are interested in the probability of occupation for a given time interval
[t, t+ s], which we approximate as follows:

PA,[t,t+s] =
1

s

∫ t+s

t

PA,xdx (47)

≃ 1

K + 1

K∑
i=0

PA,t+i s
K

(48)

The time unit considered in this study is the year and we used K = 4 so that one year is split up into
four parts of equal lengths. Also, we fixed the value of λ to 1.0 so that the probability of a lineage to
survive for a period of one year is 0.37. This value of λ derived from the observation that the length
of external branches in WNV phylogenies are generally close to 1.0. Assuming a critical birth-death
model approximates the branching process here, Theorem 3 in (Mooers et al., 2012) states that the
rate of death of lineage is given by the inverse of the average length of an external edge. Note that PIV
models allow us to derive the joint distribution of the velocity and position of each tip conditionally
on all other tips thanks to the pruning algorithm described in Section C. We could therefore derive
the distribution of the particle starting from this tip after a time t, assuming that the velocity is
constant. Probabilities PA,x would then be obtained by integrating this distribution over on domain
A. Such an approach could be computationally expensive and would need to be carefully examined
for possible use in future work.

G Cross-validation of tip coordinates

In an attempt to compare the fit of the PIV and the RRW models to the WNV data sets, we assessed
the ability of these two models to recover coordinates at tips where only sequence data is made
available. A MCMC analysis was first performed on the full data set. Then, for each tip taken in a
sequential manner, coordinates were hidden and considered as parameters of the model. The posterior
distribution of the standard model parameters (including the tree topology, age of internal nodes plus
the dispersal parameters of the model considered) along with that of the missing tip location, were
obtained and the posterior distribution of the great circle distance between the true and estimated
tip locations was recorded.

Let x∗
i be the tip coordinates at tip i and x∗

−i the set of coordinates observed at all tips except i.
Also, let s∗ be the set of observed sequences at the tips. θ is a generic parameter that encompasses all
the parameters of the model excluding the tip and ancestral velocities, noted as y∗ and y respectively.
Our objective is to draw samples from the distribution of x∗

i ,y
∗,y, θ | x∗

−i, s
∗. Given samples from

this joint distribution, one marginalizes over y∗,y and θ in order to recover the posterior distribution
of interest. We have:

p(x∗
i ,y

∗,y, θ | x∗
−i, s

∗) ∝ p(x∗
i ,x

∗
−i, s

∗,y∗,y, θ) (49)

∝ p(s∗ | θ)p(x∗,y | θ) (50)

so that samples from the target distribution can be obtained by standard MCMC with xi considered
as a parameter of the model along y∗,y and θ. As explained above, we ran a first MCMC on the
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Figure S3: Predicted occurrence of WNV in the early phase of the epidemic (model for prediction:
IBM). Here, the prior distribution for the velocity at the root had a variance set to (10−2, 10−2)
(mean set to (0, 0)) as opposed to a virtually flat prior (variance set to (102, 102)) by default (see Fig.
4 of the main text).

full data set so as to reach the stationary distribution of the Markov chain that generates correlated
samples from p(y∗,y, θ | x∗, s∗). Each tip coordinates is then hidden sequentially. For each hidden tip
coordinates x∗

i , a shorter MCMC analysis is ran with p(x∗
i ,y

∗,y, θ | x∗
−i, s

∗) as its target distribution.
Note that, thanks to the pruning algorithm described in Section C, one could directly get the

distribution of left-out tips conditionally on observed ones, to carry out a cross validation relying on
the expected log predictive density similar to (Hassler et al., 2022).

H Prediction of WNV incidence deriving from alternative models

By default, predictions were performed using the IBM model with a flat prior on each of the two
parameters making up the variance of the velocity vector. A normal distribution centered on (0, 0)
and variance (102, 102) was used here. Figure S3 gives the predicted occurrence of WNV in the early
stages of the epidemic using a more informative prior with variance vector (10−2, 10−2). While the
predictions for years 2001-2003 are similar to that obtained with a flat prior, the occupied area for year
2000 is smaller when using the informative prior compared to that obtained with a non-informative
one. The sensitivity to priors observed here is a likely consequence of the lack of signal conveyed by
the limited amount of data (only seven sequences with coordinates are available for this time point).

We also performed prediction analyses using the RRW model. Velocity at each tip was estimated
during the MCMC analysis as follows: (1) ancestral location were sampled from their joint posterior
density; (2) great-circle distances between each tip location and that sampled for its direct ancestor
were evaluated; (3) the obtained distance was divided by the time elapsed along the corresponding
(external) edge. Predictions were then made using the same approach as that used with the IBM
model (see SI, section F). Figures S4 and S5 show the incidence from the CDC data (see main text)
and the corresponding predictions using the RRW model. We note that the predictions of the RRW
are much more spread out than the ones of the IBM (see main text and Figure S3), which is consistent
with the fact that the RRW can allow for jumps in the process, i.e. large dispersion events in small
time scales, so that, according to this model, a spread far away from the origin is not unlikely, even
in the early phases of the epidemics.

We compared the IBM and RRW models by evaluating their sensitivity (true positive rate) and
specificity (true negative rate) corresponding to the predicted occurrence of the virus in each county.
More specifically, for each year in the 2000-2007 time period, a county was said to be predicted as
“infected” as soon as at least one lineage was predicted in this county. This county was then labeled
as a “true positive” if the corresponding incidence from the CDC data (see main text) showed at least
one case. Figure S6 shows that the RRW has a greater sensitivity, but a lower sensitivity. This is
consistent with the spatial patterns observed on Fig. S5 and S4, that showed a wider dispersion for
the RRW.

Using the empirical cumulative distribution function, we transformed the predicted count data of
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Figure S4: Incidence and predicted occurrence
of WNV in the early phase of the epidemic
(model for prediction: RRW). Purple dots corre-
spond to sampled locations. Incidence data (left)
for each year and each county was obtained from
the CDC. For year Y , predicted occurrence of
the WNV (right) was inferred using data col-
lected earlier than the end of December of year
Y − 1. The maps were generated with EvoLaps2
(Chevenet et al., 2024)

Figure S5: Incidence and predicted occurrence
of WNV in an endemic regime (model for pre-
diction: RRW). See caption of Figure S4.

both methods into probabilities. These probabilities were then used to predict the occurrence of the
virus in each county. This allowed us to compute Receiver Operating Characteristic (ROC) curve for
both predictor for each year, using the R package ROCR (Sing et al., 2005). Results in Fig. S7 show
that the IBM predictor is generally further from the diagonal than the RRW predictor, indicating
a better overall performance of the IBM. We also note that the predictor are more accurate for the
early stages of the epidemics, when the spatial distribution of the virus is limited.
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Figure S6: Sensitivity and specificity of the predicted county level occurrences by the IBM and RRW
models.
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Figure S7: ROC curves for the predicted county level occurrences by the IBM and RRW models.

I Tip velocity estimation under the IBM model

We performed a simulation study using the IBM both for simulation and inference in order to check
that our model and implementation produced correct results when presented with datasets that
matched its assumptions.

We took a fixed and dated WNV tree inferred from previous analyses, and simulated 100 datasets
using an IBM with independent movements on the latitude and longitude axes, with variances respec-
tively set to 0.1 and 1. The root location was set to the New-York region (latitude 40.65°, longitude
-74.33°) with root velocity vector (-0.24, -2.48) degrees per year.

We then used the BEAST implementation of the IBM, using the true fixed tree, but inferring all
other parameters from the data. For each dataset, we ran an MCMC chain for 50 000 iterations, log
every 100, with a standard log-transformed random walk operator on the variance parameters, and
vague half-t priors. We then extracted estimates and 95% highest posterior density intervals (HPDI)
for variance parameters, root position and velocity, and all tip velocity vectors.

Fig. S8 shows that the true variance parameters and root position and velocity are correctly
recovered, with unbiased estimates, as expected. Further, Fig. S9 shows that the 104 tip velocity
vectors are also correctly estimated, with unbiased estimates, and HPDI reaching coverages close to
their nominal values.

In this simple setting with a fixed tree and an IBM used for both simulation and inference, this
experiment shows that our implementation can recover the correct velocity dynamic of the epidemic
over the different regions of the tree. Further investigations, using other velocity-explicit simulation
models, could be the focus of future work which goal would be to asses the robustness of PIV models
and its ability to recover specific propagation dynamics.
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Figure S8: Variance and root parameter IBM estimate. Difference between the estimated and true
value, normalized by the true value, for the IBM variance parameter (first panel) and the root position
and velocity vectors (in degrees, second and last panels). Violin plot over 100 replicates. Data was
simulated using an IBM on the WNV tree with 104 tips. BEAST was used for inference, using the
true fixed tree, and an IBM model.
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Figure S9: Tip speed and velocity estimates. (a) Estimated vs. true speed (in km/year) for the 104
tips and the 100 replicates. (b) Estimated minus true tip velocity vector (in degrees). (c) Realized
coverage of the 95% highest posterior density intervals for the tip velocity vectors. Violin plot over
100 replicates and 104 tips. Data was simulated using an IBM on the WNV tree with 104 tips.
BEAST was used for inference, using the true fixed tree, and an IBM model.
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