
HAL Id: lirmm-04795634
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04795634v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Auto-Tuning of Model Predictive Control for Bilateral
Teleoperation with Bayesian Optimization

Fadi Alyousef Almasalmah, Hassan Omran, Chao Liu, Thibault Poignonec,
Bernard Bayle

To cite this version:
Fadi Alyousef Almasalmah, Hassan Omran, Chao Liu, Thibault Poignonec, Bernard Bayle. Auto-
Tuning of Model Predictive Control for Bilateral Teleoperation with Bayesian Optimization. CPHS
2024 - 5th IFAC Workshop on Cyber-Physical and Human Systems, Dec 2024, Antalya (TR), Turkey.
�lirmm-04795634�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04795634v1
https://hal.archives-ouvertes.fr


Auto-Tuning of Model Predictive Control
for Bilateral Teleoperation with Bayesian

Optimization ⋆

Fadi Alyousef Almasalmah ∗ Hassan Omran ∗ Chao Liu ∗∗

Thibault Poignonec ∗ Bernard Bayle ∗

∗ ICube lab, University of Strasbourg, France, (e-mail: {alyousef,
homran, tpoignonec, bernard.bayle}@unistra.fr)

∗∗ LIRMM, University of Montpellier-CNRS, France, (e-mail:
chao.liu@lirmm.fr)

Abstract: Model Predictive Control (MPC) is becoming a popular control method for
teleoperation due to its ability to ensure safety constraints. However, tuning MPC is a non-
intuitive process that requires significant expertise and effort. In this work, we propose a method
for auto-tuning a model predictive controller in bilateral teleoperation settings. We use the
Bayesian Optimization algorithm (BO) to seek the optimal weights of the MPC cost function
for precise teleoperation. Our simulations and experiments show the effectiveness of the proposed
tuning method.

Keywords: Bilateral Teleoperation, Model Predictive Control, Controller Auto-Tuning,
Bayesian Optimization, Physical Human-Robot Interaction.

1. INTRODUCTION

Recently, Model Predictive Control (MPC) has gained
more attention in teleoperation applications due to its
success in solving practical problems, especially the ability
to respect constraints, which is essential for guaranteeing
safety. In addition, MPC is an online optimization-based
method with the potential to manage the compromise
between safety and transparency in a better way than
the controllers that separate those two goals (Piccinelli
and Muradore, 2020). MPC also offers several ways to
improve the closed-loop performance from data (Hewing
et al., 2020). This is why a growing number of authors are
using MPC in the teleoperation domain, such as Cheng
et al. (2022); Piccinelli and Muradore (2020); Almasalmah
et al. (2023); Sheng and Spong (2004).

Despite its importance, the choice of the MPC parame-
ters is rarely an intuitive task and it requires theoretical
knowledge, experience, and iterative tuning through trial
and error. The MPC cost function in teleoperation is often
designed to reduce the matching errors between the oper-
ator and remote side robots in terms of position, velocity,
and force. Previous studies, such as those by Piccinelli
and Muradore (2020) and Sheng and Spong (2004), have
explored methods for optimizing these errors. In addition,
the cost function usually contains a term related to the
control inputs. However, it should be noted that accurately
matching forces and matching positions are two compet-
ing objectives, such that the controller must compromise
between the two (Hashtrudi-Zaad, 2000). Assigning the
weights in the MPC cost function may not always give
⋆ This work was supported by the Investissements d’Avenir program
(ANR-21-CE33-0004, ANR-11-LABX-0004, Labex CAMI) and by
Région Grand Est doctoral program.

the intended results in the actual behavior due to several
reasons, such as model errors, short prediction horizon,
and the choice of control input weights. Thus, an efficient
method for auto-tuning is still needed.

The MPC tuning process can be seen as an optimization
problem whose goal is to minimize a certain metric that
evaluates the controller performance. This metric can de-
pend implicitly on the controller parameters, such as the
MPC cost function. Unfortunately, such a metric does not
have a simple analytical form and it can only be evaluated
point-wise by performing experiments (or simulations).
Hence, black-box optimization methods were used in the
teleoperation literature for controller tuning. For example,
early work by Kress and Jansen (1992) used the Hooke
and Jeeves search method to search for optimal PID gains
for a simulated 2-Degrees-Of-Freedom (DOF) robot. Other
authors have used Particle Swarm Optimization (PSO)
(Shokri-Ghaleh and Alfi, 2014; Alfi et al., 2014), genetic
algorithms (Kim and Ahn, 2009), or Artificial Bee Colony
Algorithm (Said et al., 2019). Evolutionary learning Neu-
ral Networks were used by Talavatifard et al. (2006) to
learn the optimal gains for a PID controller based on the
current environment. Barbé et al. (2006) used a method
called relay auto-tuning to tune the PID controller of the
operator robot in a medical needle insertion scenario. Most
of the aforementioned methods require a large number of
experiments to find the optimal tuning, which limits their
applicability to simulations. Optimal tuning obtained in
simulations can be applied to the real system, but this
might make it suboptimal due to model-plant mismatch.

Bayesian Optimization (BO) is a black-box optimization
method that has become particularly popular due to its
sample efficiency and ability to deal with noise-corrupted



objective functions. The algorithm iteratively balances the
exploration of promising regions and exploitation of known
high-performing areas by fitting and exploiting a surrogate
model of the objective function. A review of the method
can be found in Shahriari et al. (2016). Recently, BO
has been applied to tune controllers in many contexts.
For instance, Marco et al. (2016) auto-tuned an LQR
controller for balancing an inverted pendulum held by a
robotic arm in hardware experiments. Holzmann et al.
(2024) used BO to find energy-efficient trajectories for a
robotic manipulator by tuning the MPC weights. Dries
et al. (2017) auto-tuned a robot controller to interact with
unknown objects robustly without causing any damage.
Zahedi et al. (2022) designed a user-adaptive variable
damping controller for human-robot interaction tasks and
used BO to find the optimal user-specific parameters.

In this work, we use the BO algorithm to auto-tune an
MPC controller for bilateral teleoperation tasks. There-
fore, safety guarantees can be enforced by the MPC con-
troller, while ensuring an accurate teleoperation by finding
the optimal MPC weights. The method balances the trade-
off between position tracking and force tracking for the op-
erator and remote robots. Moreover, the sample efficiency
of the method makes it applicable for tuning on hardware
directly with a relatively low number of experiments as
demonstrated through our simulations and experiments.

The paper is organized as follows: Section 2 describes
the model of the teleoperation system and the MPC
controller design. Section 3 presents a brief introduction
to the Bayesian Optimization algorithm. In Section 4, an
overview of our approach is given. The simulations and
hardware experiments are compared in Section 5. Finally,
Section 6 concludes the paper.

2. SYSTEM MODELLING AND CONTROLLER
DESIGN

2.1 Teleoperation system model

We consider a teleoperation system that consists of the
following components: the human operator, the operator
robot (or the haptic device), the communication channel,
the centralized controller, the remote robot, and the envi-
ronment. Considering two general multi-DOF robots, each
robot’s dynamics can be decoupled by feedback lineariza-
tion, allowing us to view each single axis separately as a 1-
DOF robot. Therefore, in the rest of the paper, we consider
two 1-DOF robots, and the method can be generalized for
more DOFs. The 1-DOF operator robot dynamic equation
is given by:

moao + bovo + koxo = fh + uo (1)

where ao, vo, xo are the acceleration, velocity, and position
of the operator robot, respectively, mo, bo, ko are the mass,
damping coefficient, and stiffness of the operator robot,
respectively, uo is the control force applied by the robot,
and fh is the force applied by the human hand. Assuming a
linear time-invariant environment model, the dynamics of
the remote robot that is in contact with the environment
are described by:

mrar + brvr + krxr = fe + ur (2)

fe = −kexr − bevr

where ar, vr, xr are the acceleration, velocity, and position
of the remote robot, respectively, mr, br, kr are the mass,
damping coefficient, and stiffness of the remote robot,
respectively, ur is the control force applied by the remote
robot motor, fe is the force applied by the environment,
and be, ke are the damping coefficient and stiffness of
the environment. The remote robot dynamics with the
environment can be written as:

mrar + (be + br) vr + (ke + kr)xr = ur (3)

In this work, the environment parameters ke and be are
assumed constant and known. The discretized system
model can be written from (1) and (3) as:

xt+1 = Axt +But

yt = Cxt +Dut
(4)

where (·)t refers to the discretized variable (·) at time
instant t, x ∈ R5 = [xo, vo, xr, vr, fh]

⊤ is the state
vector, where fh is considered constant in the prediction
model, but in practice, it is measured and updated at
each time step, u ∈ R2 = [uo, ur]

⊤ is the control input
vector, matrices A,B,C,D are known constant matrices
that depend on the robots and environment models, and
y ∈ R6 = [xo, vo, xr, vr, fh, fe]

⊤ is the measured output
vector. This model constitutes the basis of the following
MPC controller design.

2.2 MPC controller design for teleoperation

Equation (4) is used as a prediction model in the MPC
controller. Knowing the state xt, the state trajectory is
predicted on a horizon of N steps by deciding which inputs
[ut, . . . , ut+N−1] will be applied. Here, we assume fh is
constant during the horizon, as in Piccinelli and Muradore
(2020). Our goal is to maximize the teleoperation trans-
parency, which means the matching between positions and
forces of the operator and the remote robots, while also
respecting any safety constraints that could be imposed
on system inputs, states, and outputs. To evaluate the
transparency, we define the following vector:

zt = Eyt + Fut (5)

where z ∈ R3 = [xo−xr, vo−vr, uo−fe]
⊤ is the matching

error vector and E,F are known constant matrices. It
should be noted that we minimize (uo−fe) in the formula-
tion instead of (fh−fe) since fh is an external input to the
system that we can only measure. Indeed, it is desired to
reflect the environment force fe to the operator. To achieve
this, we follow the work of Sheng and Spong (2004) and
minimize (uo−fe), assuming uo will be close to the actual
force perceived by the human if the operator robot has low
impedance and friction. We can now formulate the MPC
optimization problem as follows:

[
u∗
0, . . . , u

∗
N−1

]
= argmin

u0,...,uN−1

N−1∑
k=0

(
ẑ⊤k Qẑk + u⊤

k Ruk

)
s.t. x̂0 = xt,

x̂k+1 = Ax̂k +Buk,

ŷk = Cx̂k +Duk,

ẑk = Ex̂k + Fuk,

umin ≤ uk ≤ umax,

Gx̂k ≤ g,

(6)



where Q is a positive semi-definite matrix, R is a positive-
definite matrix, (̂·) refers to predicted variables, umin and
umax are set based on the motor torque limits or for
safety reasons, G and g are, respectively, a constant matrix
and a vector that define linear constraints on the states.
Note that unlike the traditional bilateral teleoperation
architectures, where signals are directly sent and used
by the controllers on each side, the MPC-based bilateral
teleoperation uses the optimization problem (6) to connect
the models (1) and (3) to minimize the matching errors in
zt (5).

At each time step t, the state is updated from the mea-
surement and the problem (6) is solved. As usually done
in MPC, only u∗

0 is applied as input ut, and the whole
process is repeated at t + 1. The auto-tuning method
focuses on finding the best Q and R to achieve good
teleoperation performance by minimizing the closed-loop
matching errors of position, velocity, and force between
both robots.

3. BAYESIAN OPTIMIZATION FOR AUTO-TUNING

In this section, we provide a brief background about the
Bayesian optimization algorithm that we use to find the
optimal weights Q,R of the MPC cost function. Interested
readers are referred to (Garnett, 2023) for more details
about the algorithm. We consider Q and R as diagonal
matrices as in Fröhlich et al. (2022) to reduce the search
space dimension, and we write Q = diag(θ1, θ2, θ3), R =
diag(θ4, θ5) where diag(.) is a diagonal matrix with the
arguments on its main diagonal. Finally, we search for the
optimal θ = [θ1, θ2, θ3, θ4, θ5] ∈ R5.

3.1 Background

We define a performance metric J (θ) that measures the
performance of a certain MPC controller parameterized by
θ. The tuning process is to find:

θ∗ = argmin
θ∈Θ

J (θ) (7)

J (θ) does not have a known analytical form, and the eval-
uation at a certain point θ could be done experimentally
by evaluating the performance, which is time-consuming.
Bayesian Optimization helps find θ∗ efficiently with a
low number of experiments. The algorithm constructs a
surrogate function Ĵ (θ) that approximates J (θ) in critical
regions by sampling the latter. The optimization problem
turns into iteratively fitting Ĵ (θ) to J (θ) and minimizing

Ĵ (θ) using more efficient methods such as derivative-based
methods. To choose which points to evaluate J (θ) at, the
algorithm uses an acquisition function α(θ) that balances
the exploration-exploitation trad-off. Specifically, α(θ) en-
courages exploring new regions in the space where the
surrogate function has high uncertainty and is likely not
close to the actual function. Conversely, α(θ) promotes ex-
ploitation by selecting points that minimize the surrogate
function, which are likely to approximate the minimizer of
the true function J (θ).

Gaussian Processes (GPs) are the most popular choice
for the surrogate model, which allows for a closed-form
inference of the posterior mean and variance based on
noisy function values Dn = {

(
θi,J i = J (θi) + ϵi

)
}ni=1

where (·)i refers to the i-th evaluation, ϵi is the evaluation
noise with ϵ ∼ N (0, σ2

ϵ ). The GP is completely specified
by its mean function µ(·) and covariance function or kernel
k(·, ·). Finally, the surrogate model can be modeled as:

Ĵ (θ) ∼ GP
(
µ(θ), k(θ, θ

′
)
)

(8)

Based on the set of observations Dn, and assuming a zero
prior mean, we can query the GP at a new point θ and get
the predicted mean and variance as follows:

µn(θ) = k⊤
nK

−1y

σ2
n(θ) = k(θ, θ)− k⊤

nK
−1kn

(9)

with kn a kernel vector with entries [kn]i = k(θ, θi), and
the kernel matrix K with entries [K]i,j = k(θi, θj)+δi,jσ

2
ϵ ,

where δi,j is the Kronecker delta and i, j = {1, . . . , n}.
Note that calculating the predicted mean and variance at
a new point depends directly on all previously measured
points. Given the predictive distribution in (9), the algo-
rithm proposes the next point θn+1 to be evaluated by
minimizing the acquisition function. We use the standard
Upper Confidence Bound (UCB) function given by:

αUCB(θ|Dn) = µn(θ)− βσn(θ) (10)

with the exploration hyper-parameter β, where higher
values of β encourage the exploration of unknown regions
with high uncertainty in the GP, and lower values encour-
age finding the minimum using the current learned surro-
gate model. For the GP kernel, we employ the standard
Matérn kernel 3/2, and infer its hyperparameters and noise
level by evidence maximization (Rasmussen and Williams,
2006). In order to search for the optimal weights of the
MPC, we need to define a bounded search space and a
performance metric. The algorithm builds a surrogate GP
model that captures the relation between the MPC weights
and the value of the performance metric, which is used
iteratively to find the optimal weights.

4. PROPOSED APPROACH OF AUTO-TUNING

In this section, we present the proposed approach to auto-
matically tune the MPC weights using the BO algorithm
in bilateral teleoperation.

4.1 Performance Metric Design

To compare different weights of the MPC, we design a
function that measures the performance based on an ex-
periment (or simulation). One of the advantages of BO
is the ability to handle complex non-convex performance
metrics. Many examples of such functions were used in
the literature in different applications. For example, in au-
tonomous racing cars, Fröhlich et al. (2022) used lap time
and the deviation from the center line as a performance
metric. Catkin and Patoglu (2023) used human preference
as a measure of performance to tune a haptic rendering
system. Zahedi et al. (2022) used BO to adapt the damping
in a physical Human-Robot Interaction (pHRI) scenario.
The authors used a combination of agility measures, user
effort, and stability-related measures such as overshoot
and settling time. Dries et al. (2017) used compliance
and force smoothness at the moment of contact to tune
a robot that interacts with an uncertain environment. In
teleoperation, the matching errors between the operator



and the remote robots are often used. In this work, we use
the matching errors of positions, velocities, and forces to
measure the performance after each experiment i as:

J i =
1

Texp

Texp∑
j=1

z⊤j Wzj (11)

where W is a scaling matrix that takes into account
measurement units and the relative importance between
the signals as defined by the user, Texp is the duration
of the experiments measured in time steps, and z is
defined in (5). In practice, we set an upper bound to
prevent large values of the performance metric since a
point with an excessively high value can deteriorate the
accuracy of the GP fitting for neighboring low points.
It is important to point out the difference between the
MPC cost function (6) and the performance metric (11).
Although both depend on the matching errors, the former
minimizes the predicted errors based on the system model
on a short horizon, while the latter evaluates the closed-
loop measured errors on a much longer window in a
model-independent manner. Note that the closed-loop
errors are different from the predicted ones due to the
limited prediction horizon and the potential model-plant
mismatch. The MPC cost function also includes a cost for
control inputs while the performance metric does not.

4.2 Auto-Tuning the MPC

We perform nexp experiments of interaction with an envi-
ronment with parameters ke, be. Each experiment lasts for
Texp seconds. The human operator applies a force profile
on the operator robot, while the remote robot interacts
with the environment. Before each experiment i, the BO
algorithm proposes a certain θi that contains the diagonal
values of Q and R. After Texp time steps, we calculate
the performance metric as in (11), and we update the
surrogate model with the new noisy measurement of the
performance metric

(
θi,J (θi) + ϵi

)
where ϵ is the un-

known noise value included in the measurement. Using
the updated mean and kernel functions, the next promising
point is found by maximizing the acquisition function from
(10). After testing nexp different points, we can either
take the best one as the optimal tuning, or we can find
the minimizer of the learned surrogate (GP) model using
gradient-based techniques with multiple restarts. The lat-
ter choice is preferred due to its robustness against noisy
measurements and human input variability.

In this work, we assume that we know a range of pa-
rameters that can stabilize the system, which is used as
the search space for the algorithm. In practice, theoretical
stability guarantees can be achieved through other means,
for instance, using so-called energy tanks (Piccinelli and
Muradore, 2020). Fig. 1 shows the architecture of the
teleoperation system with the proposed algorithm.

5. SIMULATION AND EXPERIMENT RESULTS

In this section, we show the results of the proposed algo-
rithm for auto-tuning. We repeat the same process with a
similar setup in simulation and hardware experiments and
compare their results. The simulation is done to validate
the proposed method under perfect conditions.

Fig. 1. Block diagram of the proposed auto-tuning ap-
proach with the teleoperation system

Each experiment (or simulation) involves 3 seconds of
interaction with a low-frequency sinusoidal-like human
force as input to the system (1 ∼ 2 Hz). At the end
of each interaction, we calculate the performance metric
value J (θi)+ϵi and we assign it to the corresponding MPC
weights, where the measurement noise ϵi can be caused, for
instance, by human variability. The BO algorithm updates
the surrogate model with the noisy measured value, and
the acquisition function proposes new weights to test,
which are then used in the next experiment. The process
is repeated for nexp trials until acceptable tuning is found.

5.1 Experiment and Simulation Setup

The goal of the tuning is to minimize the performance met-
ric in (11). We set W from (11) as W = diag(1500, 5, 500),
and we impose an upper bound of 10 on the performance
metric value. In the BO algorithm, we set the exploration
parameter in (10) to β = 3 initially, and decrease it linearly
until 0.5 at the last point to encourage the exploitation.
The BO algorithm also requires defining the bounds of the
parameters, which is set as the element-wise inequalities:

[0, 0, 0] ≤ [θ1, θ2, θ3] ≤ [104, 10, 104]

[1, 1] ≤ [θ4, θ5] ≤ [103, 103]

where the search space of stabilizing parameters results
from empirical tests and scaling of measuring units. The
code is implemented in ROS2 framework under Linux.
Acados library (Verschueren et al., 2021) is used to formu-
late and implement the MPC solver in C++. The BO code
is based on the software in Fröhlich and Carron (2021).

The experimental setup includes two identical 1-DOF
robots. Each robot is composed of a Maxon motor, which
is controlled by EPOS3 driver board, and connected to
a high-precision encoder with 4000 readings per rotation.
The motor shaft is connected to the robot joint by a cable-
driven capstan mechanism with a reduction ratio of 10,
as shown in Fig. 2. Finally, a load cell force sensor is
embedded in the robot handle to measure the external
force. The remote robot is in contact with a linear spring,
which could be approximated by a rotational spring in the
range of motion with stiffness ke = 0.7 Nm.rad−1.

The robot models were identified using MATLAB Identifi-
cation Toolbox. The model parameters for (1) and (3) are:
mo = mr = 0.00092 kg.m2, ko = kr = 0.015 Nm.rad−1,
bo = br = 0.0032 Nm.s.rad−1. The remote robot is in-
teracting with a spring with stiffness ke = 0.7 Nm.rad−1,
and be = 0 Nm.s.rad−1. The identified model parameters
values are used in the simulation for comparison. All



Fig. 2. The hardware setup. The operator robot is on the
left, and the remote robot is on the right. The remote
robot is attached to a spring (the environment).

forces and torques are projected on the joint axis and
measured as torques (Nm). The sampling time is set to
Ts = 0.002 s, and the MPC prediction horizon is set to
15 steps. We set a constraint on both control inputs as
follows: −0.33 Nm ≤ uo, ur ≤ 0.33 Nm.

5.2 Simulation Results

The BO performs the auto-tuning using 9 simulated in-
teractions, and the results are reported in Fig. 3. The
top figure illustrates the performance metric computed at
the end of each experiment. The first 3 points are chosen
around the middle of the search space to initialize the
surrogate model with no optimization yet. Afterward, a
general downward trend can be noticed, indicating that the
algorithm is finding better weights, with occasional rises
due to exploration. In the bottom figures, we compare dif-
ferent tested weights, where on the left, position and force
tracking are acceptable, and on the right, both position
and force tracking are almost perfect with performance
metric value close to zero. Fig. 4 displays the performance
of the found optimal tuning by minimizing the learned sur-
rogate model, where perfect tracking in position, velocity,
and force matching can be observed. In the bottom right
figure, we show the moving average of the performance
metric, with a window of 3 seconds, which maintains a
low value due to the good controller performance.

0.2

0.0

0.2

0.4

xh
xe

10.5 11.0 11.5 12.0 12.5 13.0
0.4

0.2

0.0

um
fe

Experiment 3 with Performance Metric = 2.0

Time (Sec)

To
rq

u
e
 (

N
m

)
Po

si
ti

o
n
 (

ra
d
)

Time (Sec)

0.0

0.2

0.4

xh
xe

72.0 72.5 73.0 73.5 74.0 74.5

0.2

0.0

um
fe

Experiment 9 with Performance metric = 0.07

0 10 20 30 40 50 60 70
Time (sec)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Performance Metric

Pe
rf

o
rm

a
n
ce

 M
e
tr

ic

Fig. 3. Auto-tuning experiment in simulation.

5.3 Hardware Experiments Results

We show the efficiency of the algorithm in tuning the MPC
through 14 experiments of 3 seconds each. Fig. 5 shows
the performance metric, computed at the end of each
experiment. The model is initialized with 3 experiments,
after which the optimization starts and the performance
metric starts decreasing. We show a comparison between
different tested weights during the search for the optimal

0.0

0.2

0.4

Po
si

ti
on

 (
ra

d
)

xh
xe

2

1

0

1

2

Ve
lo

ci
ty

 (
ra

d
/s

)

vh
ve

90.0 90.5 91.0 91.5
Time (sec) Time (sec)

0.3

0.2

0.1

0.0

0.1

To
rq

u
e 

(N
.m

)

um
fe

90.0 90.5 91.0 91.5

0.25

0.00

0.25

0.50

Pe
rf

or
m

an
ce

 M
et

ri
c

J_MW

Fig. 4. Performance of the found optimal weights in
simulation with near-perfect tracking.

value. The comparison displays the improvement in the
matching between the robots positions (xh, xe) and forces
(um, fe). We present the performance of the found optimal
controller in Fig. 6 with a 3-second moving average of the
performance metric on the bottom right.

5.4 Discussion

Overall, the hardware experiment results are consistent
with the simulation results. In both cases, the auto-tuning
shows an improvement compared to the initial tuning,
without prior knowledge about the role of each parameter
on the closed-loop performance. The auto-tuning achieved
nearly perfect tracking in simulation. In the hardware
experiment, we observe that while tracking improves after
tuning, it remains imperfect, due to unmodeled static
friction. Addressing such nonlinearities requires more than
tuning the MPC cost weights. However, since the goal of
this work is to show the feasibility of the auto-tuning,
handling unmodelled nonlinearities is beyond the paper’s
scope. We observe in Fig. 3 that even the initial per-
formance is acceptable in simulation, unlike the initial
weights in the hardware experiment in Fig. 5. This shows
the importance of tuning directly on hardware compared
to using the optimal weights found in simple simulations.
Finally, the auto-tuning took around 80 seconds in hard-
ware, which corresponds to 3 seconds for each experiment,
plus 1.5 seconds of transient time between the experi-
ments, and the rest is for the BO computations.

0.10

0.15

0.20

xh
xe

65.0 65.5 66.0 66.5 67.0 67.5
0.15

0.10

0.05

um

fe

Experiment 11 with Performance Metric = 0.24

Time (Sec)

0.10

0.15

0.20

xh
xe

15.0 15.5 16.0 16.5 17.0 17.5

0.15

0.10

0.05

um
fe

Time (Sec)

To
rq

u
e
 (

N
m

)
Po

si
ti

o
n
 (

ra
d
) Experiment 4 with Performance Metric = 6.09

0 10 20 30 40 50 60 70 80

0

2

4

6

8
Performance Metric

Pe
rf

o
rm

a
n
ce

 M
e
tr

ic

Time (sec)

Fig. 5. Auto-tuning experiment with hardware.

6. CONCLUSION

In this work, we presented an approach for auto-tuning
an MPC in a bilateral teleoperation scenario, which can
be applied directly to hardware. We formulated the tun-
ing problem as a black-box optimization and used the



Fig. 6. Performance of the found optimal weights in
hardware experiment.

Bayesian Optimization algorithm to efficiently search for
the optimal MPC weights, which gave good results in a
few minutes. In the future, we plan to extend the method
to work with several environments, for example, by testing
each proposed MPC weights on a range of environments
and evaluating the performance metric accordingly. An-
other possibility is learning the optimal MPC weights as
a function of the environment using Contextual Bayesian
Optimization as was done by Fröhlich et al. (2022). Finally,
incorporating the stability constraints in the BO problem
itself would be an interesting perspective.

REFERENCES

Alfi, A., Khosravi, A., and Lari, A. (2014). Swarm-
based structure-specified controller design for bilateral
transparent teleoperation systems via µ synthesis. IMA
J. of Math. Control and Information, 31(1), 111–136.

Almasalmah, F.A., Omran, H., Liu, C., and Bayle, B.
(2023). Adaptive Robust Model Predictive Control for
Bilateral Teleoperation. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 7069–7074.

Barbé, L., Bayle, B., and de Mathelin, M. (2006). Towards
The Autotuning of Force-Feedback Teleoperators. IFAC
Proceedings Volumes, 39(15), 482–487.

Catkin, B. and Patoglu, V. (2023). Preference-Based
Human-in-the-Loop Optimization for Perceived Realism
of Haptic Rendering. IEEE Trans. Haptics, 16, 470–476.

Cheng, J., Abi-Farraj, F., Farshidian, F., and Hutter,
M. (2022). Haptic Teleoperation of High-dimensional
Robotic Systems Using a Feedback MPC Framework. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 6197–6204.

Dries, D., Englert, P., and Toussaint, M. (2017). Con-
strained Bayesian optimization of combined interaction
force/task space controllers for manipulations. In IEEE
Int. Conf. Rob. and Automation (ICRA), 902–907.

Fröhlich, L.P. and Carron, A. (2021). Bayesopt4ros:
A Bayesian optimization package for the robot
operating system. https://github.com/
IntelligentControlSystems/bayesopt4ros.

Fröhlich, L.P., Küttel, C., Arcari, E., Hewing, L., Zeilinger,
M.N., and Carron, A. (2022). Contextual Tuning of
Model Predictive Control for Autonomous Racing. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 10555–10562.

Garnett, R. (2023). Bayesian Optimization. Cambridge
University Press, 1 edition.

Hashtrudi-Zaad, K. (2000). Design, Implementation and
Evaluation of Stable Bilateral Teleoperation Control Ar-
chitectures for Enhanced Telepresence. Ph.D. thesis,
University of British Columbia.

Hewing, L., Wabersich, K.P., Menner, M., and Zeilinger,
M.N. (2020). Learning-Based Model Predictive Control:
Toward Safe Learning in Control. Annual Review of
Control, Robotics, and Autonomous Systems, 3(1), 269–
296.

Holzmann, P., Maik Pfefferkorn, M., Peters, J., and Find-
eisen, R. (2024). Learning energy-efficient trajectory
planning for robotic manipulators using bayesian opti-
mization. European Control Conference (ECC).

Kim, B.Y. and Ahn, H.S. (2009). Bilateral teleoperation
systems using genetic algorithms. In IEEE Int. Sym-
posium on Computational Intelligence in Robotics and
Automation - (CIRA), 388–393.

Kress, R. and Jansen, J. (1992). Automatic tuning for a
teleoperated arm controller. In IEEE Conf. on Decision
and Control (CDC), 2692–2695.

Marco, A., Hennig, P., Bohg, J., Schaal, S., and Trimpe,
S. (2016). Automatic LQR tuning based on Gaussian
process global optimization. In IEEE Int. Conf. on
Robotics and Automation (ICRA), 270–277.

Piccinelli, N. and Muradore, R. (2020). A passivity-based
bilateral teleoperation architecture using distributed
nonlinear model predictive control. IEEE Int. Conf. on
Intelligent Robots and Systems (IROS), 11466–11472.

Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian
processes for machine learning. Adaptive computation
and machine learning. MIT Press, Cambridge, Mass.

Said, A., Khalil, A., Petra, R., Yunus, S., Peng, A.S., and
Khan, S. (2019). PID Controller Optimization of Tele-
operated 2DOF Robot Manipulator Using Artificial Bee
Colony Algorithm. In IEEE Int. Conf. on Engineering
Technologies and Applied Sciences (ICETAS), 1–6.

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., and
de Freitas, N. (2016). Taking the Human Out of the
Loop: A Review of Bayesian Optimization. Proceedings
of the IEEE, 104(1), 148–175.

Sheng, J. and Spong, M. (2004). Model predictive control
for bilateral teleoperation systems with time delays.
In IEEE Canadian Conf. on Electrical and Computer
Engineering (CCECE), volume 4, 1877–1880.

Shokri-Ghaleh, H. and Alfi, A. (2014). A comparison be-
tween optimization algorithms applied to synchroniza-
tion of bilateral teleoperation systems against time delay
and modeling uncertainties. Applied Soft Computing, 24,
447–456.

Talavatifard, H.A., Razi, K., and Menhaj, M.B. (2006). A
Self-Tuning Controller for Teleoperation System using
Evolutionary Learning Algorithms in Neural Networks.
In B. Reusch (ed.), Computational Intelligence, Theory
and Applications, 51–60. Springer, Berlin, Heidelberg.

Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., van
Duijkeren, N., Zanelli, A., Novoselnik, B., Albin, T.,
Quirynen, R., and Diehl, M. (2021). acados – a mod-
ular open-source framework for fast embedded optimal
control. Mathematical Programming Computation.

Zahedi, F., Chang, D., and Lee, H. (2022). User-Adaptive
Variable Damping Control Using Bayesian Optimization
to Enhance Physical Human-Robot Interaction. IEEE
Robotics and Automation Letters, 7(2), 2724–2731.


