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bLIRIS, Université Claude Bernard Lyon 1, CNRS, France

Abstract

Many applications in fields as diverse as chemistry, mechanics, medicine, eco-
nomics, robotics, environment, ecology, meteorology, etc. are based on the no-
tion of system modeling. A system is a real process associating in a deterministic
way an output value to one or more input values. A model is a mathematical
object that allows the analysis of real phenomena and the prediction of results
at a given level of approximation. One of the difficulties of modeling is the
choice of the model and how to control the level of approximation. The lin-
ear model, where the output is obtained by a weighted sum of the inputs, is
a simple model, based on a reduced number of parameters, but describing the
functioning of a system in a very approximate way, without the level of approxi-
mation being known. Non-linear models are much more specific but much more
difficult to use, the level of approximation being even more difficult to control.
What we propose in this article is an imprecise linear model, so the simplicity
of representation and use is quite comparable to a linear model. This model
is imprecise in the sense that the output is imprecise, although the inputs are
precise, thus potentially reflecting how close the model is to the system behav-
ior: the more imprecise the output, the less likely the model is to describe the
system correctly. This imprecise linear model can be seen as a convex set of
conventional linear models, the imprecise output of this model being the convex
set of outputs that would have been obtained by each linear model individually.
This modeling is based on non-monotonic real-valued concave set measures.

Key words: Imprecise linear system, Choquet integral, non-additive
aggregation, non-monotonic set functions

1. Introduction

Linear relationships between entities occupy a prominent place in a plethora
of subjects, as diverse as chemistry, mechanics, medicine, economics, robotics,
environment, ecology, meteorology, etc. Whether it is expressing the voltage as
a function of the current in an electronic circuit [1] or the budget constraint of
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a homo-economicus in a model of microeconomics [6], these questions require
knowledge of a precise proportionality relating the evolution of one variable
to another. Modeling a system, whether it is mechanical, economic, robotic,
chemical, biological, medical, etc., makes it possible to predict how this system
will behave when knowing the system inputs. For example, in medicine, this
allows for diagnostic assistance [16], in mechanics to predict the performance of
an assembly and thus optimize the manufacturing of objects [18], in chemistry
to develop new products without real tests thanks to simulation techniques
[32], in econometrics to improve predictive models [8], etc. In many of these
domains, linear models have a preponderant place because of their simplicity of
implementation, their efficiency and their predictive power. This preeminence
of linear models has increased with the popularization of computers.

A linear model can be seen as a linear aggregation operation involving a set
of weights, the output of the model being a weighted sum of the inputs, the
weights being symptomatic of the system that we want to describe. In the field
of systems and signal processing, this set of weights is called a convolution kernel
or impulse response. One of the difficulties is to choose the weights that best
represent the system that we want to model. Several methods exist under the
generic term of linear regression, potentially including a prior information on the
input-output relations of the system and the ability of the model to describe the
system. This fitness is usually characterized by the distance between the output
predicted by the model and the actual output of the system on a benchmark
data-set used to identify (or learn) the system.

Of course, a linear model is only an approximation of the system behavior
to be described, linearity being rare in our world. Using a linear model means
to use an approximation of the real system that we want to control, predict, ...
One of the problems we are often confronted with is that, although we are aware
that the linear model is an approximation of a real system, it is often not easy
to know how close the output predicted by the system is to the real output. The
identification of the weights characterizing the linear system is usually based on
an optimality criterion (a quadratic distance for example) but nothing really
allows to characterize the adequacy of this model to the real system: no robust
method is available to make use of this distance to predict how close is the
output of the model to the output of the system. More complex models are
proposed (non-linear models for example) which are less easy to use: a slight
gain in accuracy is generally made at the expense of the simplicity of use of the
model.

Several approaches are proposed in the literature to describe a system in an
approximate way. Some authors focus on dealing with parametric models whose
imprecise parameters are specified by numerical intervals. On a theoretical level,
for example, Shary [36] proposes to consider solving ill-conditioned systems of
linear algebraic equations by intervalizing the parameters of the sough after sys-
tem. They mention in a very relevant way the ambivalence of the meaning of an
interval in this context, which is known in the fuzzy literature under the name
of epistemic and ontic interpretation of the intervals [7]. On a more applied
level, Rinner and Weiss [34] propose using this interval-valued representation

2



to deal with incomplete knowledge about a system to be supervised. In [2],
Boukezzoula et al. propose to refine this imprecise representation by using a
gradual number-based representation of the parameters. They propose different
regression methods for identifying this sophisticate representation [3]. In a com-
pletely different manner, in [21], Jaulin et al. propose to approximate a function
by an interval-based decomposition of the domain of the function to be approx-
imated. This representation leads to very interesting tools for approximately
represent imprecise non-linear input-output systems [22] with applications to
robotics [20]. In a recent article [4], an attempt to fuse the two previous ap-
proaches is proposed. In the field of decision theory, it has been proposed to
approximate a system using imprecision on the model itself. Walley [43] first
and then many other authors in multi-criteria decision making [5, 24, 44, 35]
or random sets approximation [15] have proposed the imprecise probability the-
ory to represent the fact that the probabilistic model is poorly known, it could
not be summarized by a distribution of weights. They propose to move to a
more complex model inducing an imprecision on the prediction generated by
the model. This can be applied in many fields such as artificial intelligence [23].
However, most of the work carried out to date to represent both a model and its
approximate power leads to complex representations that are not easy to use.

In recent work, Loquin et al, inspired by a particular case of imprecise prob-
ability theory, possibility measures, have proposed an imprecise model of a con-
volution kernel under the name of maxitive kernel [25]. A maxitive kernel can
be seen as a convex set of convolution kernels. The extension of the aggregation
operation (also called convolution) proposed by Loquin et al. allows to compute
the (convex) set of outputs that would have been obtained using this convex set
of convolution kernels [33]. One of the main advantages of this representation is
that its complexity is low enough to be comparable with that of classical linear
models. A disadvantage of this representation is that it only allows to represent
linear systems whose kernel is positive and normalized, i.e. linear systems whose
weights are positive and sum to one.

What we propose in this paper is to extend the work of Loquin et al. to any
convolution kernel, thus to any linear system. We end up with what we call the
macsum representation of a system, which can be interpreted as an imprecise
linear representation of a system whose imprecision can be controlled.

2. Theoretical background

2.1. Notations

• Ω = {1, . . . , N} ⊂ N.

• x : Ω→ RN , is a function defined by a discrete subset of RN :
x = (x1, · · · , xN ) ∈ RN .

• d.e is the permutation that sorts the xi’s in increasing order:
xd1e ≤ xd2e ≤ · · · ≤ xdNe.
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• b.c is the permutation that sorts the xi’s in decreasing order:
xb1c ≥ xb2c ≥ · · · ≥ xbNc.

• Adie (i ∈ Ω) is the coalition of Ω defined by Adie = {die, . . . , dNe}.

• Abic (i ∈ Ω) is the coalition of Ω defined by Abic = {bic, . . . , bNc}

2.2. Kernels and capacities

The aim of this section is to define the fundamental notions that will be
used throughout this article.

• A kernel of Ω is a discrete function ϕ : Ω→ R defined by ϕ = (ϕ1, · · · , ϕN ).

• The set of kernels of Ω is denoted K(Ω).

• A set function is a function ϑ : 2Ω → R that associates a real value to any
subset of Ω.

• A set function ϑ of Ω is said to be concave if ∀A,B ⊆ Ω,
ϑ(A ∪B) + ϑ(A ∩B) ≥ ϑ(A) + ϑ(B).

• A set function ϑ of Ω is said to be convex if ∀A,B ⊆ Ω,
ϑ(A ∪B) + ϑ(A ∩B) ≤ ϑ(A) + ϑ(B).

• A set function ϑ of Ω is said to be additive if ∀A,B ⊆ Ω,
ϑ(A ∪B) + ϑ(A ∩B) = ϑ(A) + ϑ(B).

• To a set function ϑ of Ω can be associated a complementary set function ϑc

defined by ∀A ⊆ Ω, ϑc(A) = ϑ(Ω) − ϑ(Ac), Ac being the complementary
set of A in Ω.

• If a set function ϑ is concave (rsp. convex) then ϑc is convex (rsp. con-
cave).

• A capacity is a normalized increasing set function υ : 2Ω → R+ with
υ(∅) = 0. Normalized means υ(Ω) = 1 and increasing means that ∀A ⊆
B ⊆ Ω, υ(A) ≤ υ(B). To a capacity υ is associated its complementary
capacity υc: ∀A ∈ Ω, υc(A) = 1− υ(Ac).

• A maxitive kernel of Ω is a discrete function π : Ω→ [0, 1]N defined by
π = (π1, · · · , πN ) such that maxi∈Ω πi = 1.

• The set of maxitive kernels of Ω is denoted Km(Ω) ⊆ K(Ω).

• To a maxitive kernel can be associated a capacity Ππ defined by ∀A ⊆ Ω
Ππ(A) = maxi∈A πi. This function is called a possibility measure when
π is interpreted as a possibility distribution [11]. Its complementary set
function Πc

π(A) = 1 − Ππ(Ac) = 1 − maxi∈Ac πi is called a necessity
measure in the context of confidence measures (possibility theory).
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• A summative kernel of Ω is a discrete function ρ : Ω→ (RN )+ defined
by ρ = (ρ1, · · · , ρN ) such that

∑
i∈Ω ρi = 1.

• The set of summative kernels of Ω is denoted Ks(Ω) ⊆ K(Ω).

• To a summative kernel can be associated an additive set function Pρ de-
fined by ∀A ⊆ Ω, Pρ(A) =

∑
i∈A ρi. Pρ is called a probability measure

in the context of confidence measure. The complementary set function P cρ
of Pρ is Pρ itself since
P cρ (A) = Pρ(Ω)− Pρ(Ac) =

∑
i∈Ω ρi −

∑
i∈Ac ρi =

∑
i∈A ρi.

• This can be generalized to any kernel: let ϕ = (ϕ1, · · · , ϕN ) be an unnor-
malized (

∑
i∈Ω ϕi 6= 1) and signed (∃i ∈ Ω such that ϕi < 0) kernel. The

additive set function associated to ϕ is Pϕ(A) =
∑
i∈A ϕi.

• A maxitive kernel π ∈ Km(Ω) is said to dominate a summative kernel
ρ ∈ Ks(Ω) if ∀A ⊆ Ω, Ππ(A) ≥ Pρ(A). [10]

• The set of summative kernels dominated by a maxitive kernel π, denoted
as M(π), is defined by:
M(π) = {ρ ∈ Ks(Ω) : ∀A ⊆ Ω Πc

π(A) ≤ Pρ(A) ≤ Ππ(A)}. This definition
refers to the core of a capacity. The core of a capacity υ denoted asM(υ) is
the set of probability measures that it dominates. When υ is concave, this
can be written M(υ) = {P ∈ P(Ω) : ∀A ⊆ Ω, υc(A) ≤ P (A) ≤ υ(A)},
where P(Ω) is the set of probability measures defined on Ω.

2.3. Choquet-based aggregation

The Choquet integral is a way to aggregate real values with respect to a
capacity. The basic Choquet integral has been defined to extend the notion of
expectation to non-additive confidence measures (also called capacity) [9].

Let x ∈ RN . The literature generally reports two ways for computing the
discrete Choquet integral of x with respect to the capacity υ: y = Cυ(x) [30].

y = Cυ(x) =

N∑
k=1

xdke.(υ(Adke)− υ(Adk+1e)),with AdN+1e = ∅. (1)

y = Cυ(x) =

N∑
k=1

(xdke − xdk−1e).υ(Adke),with xd0e = 0. (2)

Those formulas need the values of x to be positive. The asymmetric Choquet
integral, denoted Čυ(x), has been defined to generalize the Choquet integral
for signed real values: Čυ(x) = Cυ(x+) − Cυc(x−), with x+ = max(x, 0) and
x− = max(−x, 0).

Proposition 2.1. Equations (1) and (2) can be used to compute the asymetric
Choquet integral.
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Proof. Remember that the asymetric Choquet integral coincides with the Cho-
quet integral for positive values. Moreover, its translative invariant, i.e. ∀a ∈ R,
Čυ(x+ a) = Čυ(x) + a.

Thus, let us define x′ = x−a, with a = mink∈Ω xk. By construction ∀k ∈ Ω,
x′k ∈ R+. Moreover, the permutation that sorts the vector x sorts also the
vector x′. Thus:

Čυ(x′) = Cυ(x′) =

N∑
k=1

x′dke.(υ(Adke)− υ(Adk+1e)) = Čυ(x)− a.

y = Čυ(x) = Čυ(x′)+a =

N∑
k=1

(x′dke+a).(υ(Adke)−υ(Adk+1e)) =

N∑
k=1

xdke.(υ(Adke)−υ(Adk+1e)).

In the same way:

y = Čυ(x) = Cυ(x′) + a =

N∑
k=1

(x′dke − x
′
dk−1e).υ(Adke) + a

= (x′dke − 0).υ(Ad1e) + a+

N∑
k=2

(xdke − xdk−1e).υ(Adke),

because ∀i, j ∈ Ω, xi − xj = x′i − x′j . Thus:

y = (x′dke+a−0).υ(Ad1e)+

N∑
k=2

(xdke−xdk−1e).υ(Adke) =

N∑
k=1

(xdke−xdk−1e).υ(Adke)

�

The Choquet integral with respect to υc, the conjugate operator of υ, can
be computed easily by remembering that Čυc(x) = −Čυ(−x).

2.4. Recent advances in non-monotonic set functions and integrals

Choquet capacities are increasing and normalized, i.e. monotonic. Choquet
integral has been defined to extend expectation to non-additive confidence mea-
sures. However, as shown by the seminal work of Murofushi et al. [40], except
when set functions have to be interpreted as confidence measures, monotonicity
is inessential. A non-monotonic set function (also called fuzzy measure) is a
function µ : 2Ω → R such that µ(∅) = 0.

Several work, including [14, 30, 41, 31] proposed to extend Choquet integral
to non-monotonic set functions. In particular, in [41], Waegenære and Wakker
shown that Expressions (1) and (2) can be used to compute the Choquet integral
w.r.t. a non-monotonic set function. Among the properties mentioned in [40]
we have that the non-monotonic Choquet integral is homogeneous positive that
is to say Čµ(λ.x) = λ.Čµ(x) with λ ≥ 0. Moreover Čµ is comonotically additive,
which means that if f and g are two comonotic measurable functions , we have
Čµ(f + g) = Čµ(f) + Čµ(g).
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2.5. Representing a convex set of linear aggregations by a maxitive aggregation

A linear aggregation, also called a weighted mean, is a function that as-
sociates to each vector x ∈ RN a real value y computed as: y = Eρ(x) =∑
k∈Ω ρk.xk, where ρ ∈ Ks(Ω) is a summative kernel of Ω. When ρ is inter-

preted as a probability distribution, then the value y is called the expectation
of x. Let Pρ be the additive set function associated to ρ, then Eρ(x) = ČPρ(x).

In [26], Loquin et al. propose a new aggregation, under the name of max-
itive expectation, denoted Eπ, where π ∈ Km(Ω) is a maxitive kernel of Ω.
The goal of this representation is to deal with the idea that the appropriate
summative kernel to be used to aggregate the information of x is imprecisely
known. Contrarily to the linear aggregation , Eπ leads to an imprecise expec-
tation Eπ(x) = [y, y] = [ČΠcπ

(x), ČΠπ (x)]. It has been shown that:

Proposition 2.2. ∀π ∈ Km(Ω), ρ ∈M(π)⇔ Eρ(x) ∈ Eπ(x).

Therefore, the maxitive aggregation Eπ(x) of x w.r.t. the maxitive kernel
π can be seen as the convex set of all additive aggregations Eρ(x) of x w.r.t.
a summative kernel ρ ∈ M(π). This has many potential applications in signal
processing [28], image processing [27, 12, 13], statistics [25], etc.

However, in most domains except statistics, the fact that this modeling can
only represent convex sets of weighted sums w.r.t. a summative kernel can be
perceived as very restrictive. For example, in signal processing, high-pass filters
cannot be represented by using a summative kernel based aggregation since
the weights are signed. The same acts, in image processing, with interpolation
operations, since, except for the nearest neighbor and linear interpolations, most
interpolation kernels are signed [38].

To circumvent this problem, in [39] Rico and Strauss have proposed a signed
extension to the concept of maxitive kernels. This method is based on consid-
ering separately the positive and negative part of a summative kernel. A signed
maxitive kernel can be seen as a pair of two maxitive kernels (π+, π−), one rep-
resenting a convex set of positive parts and the other one a convex set of negative
parts of summative kernels. To a maxitive kernel is associated a particular non-
monotonic set function µπ+,π− that is still normalized (i.e. µπ+,π−(Ω) = 1) but
that is not increasing w.r.t. union in Ω. Aggregating x w.r.t. µπ+,π− requires
the use of an extension of the Choquet integral as proposed in [42]. This ex-
tension is relevant in the context of signal processing but insufficient to deal
with any application since only kernels summing to one can be represented. For
example, in image processing, kernels summing to 0 are used to estimate the
gradient of an image, which is one of the fundamental building blocks in image
processing. The gradient of an image can be used for edge detection, interest
points localization, image editing, seamless image stitching, etc.

What we propose in this article is a new way for representing a convex set
of linear kernel-based aggregations that can work with any kind of kernels.
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3. Generalizing the maxitive domination

In this section, we propose to extend the work of Loquin et al. to any
kernel-based linear application.

We define an operator as being a concave kernel-based set function µϕ :
2Ω → R, with ϕ ∈ K(Ω) (µϕ(∅) = 0) where, ∀A ∈ Ω, the value of µϕ(A) only
depends on the N values of the kernel ϕ. As for capacities, we can associate
to µϕ a complementary operator µcϕ: µcϕ(A) = µϕ(Ω) − µϕ(Ac), Ac being the
complementary set of A in Ω [30].

The additive set function presented in Section 2.2 is a good example of an
operator: a set function Pϕ defined by: ∀A ⊆ Ω, Pϕ(A) =

∑
k∈A ϕk can be

defined for any kernel ϕ ∈ K(Ω). Moreover, because P is additive, we have
P cϕ = Pϕ.

The maxitive set function proposed in [26] does not comply with our defini-
tion of an operator since it is only defined for maxitive kernels.

3.1. The macsum operator

What we propose here is an extension of the work of [39] i.e. define a new
set function that can be associated to any kernel of ϕ ∈ K(Ω). The aim of
this extension is to represent a convex set of kernels to account for imprecise
knowledge in a linear aggregation. The extension we propose under the name
of macsum operator is an operator denoted νϕ, defined by:

∀A ⊆ Ω, νϕ(A) = max
i∈A

ϕ+
i + min

i∈Ω
ϕ−i − min

i∈Ac
ϕ−i , (3)

where Ac is the complementary set of A in Ω, ϕ+ = max(0, ϕ) and ϕ− =
min(0, ϕ).

As a consequence: νϕ(Ω) = maxi∈Ω ϕ
+
i + mini∈Ω ϕ

−
i = α+ α,

with α = maxi∈Ω ϕ
+
i and α = mini∈Ω ϕ

−
i .

The term macsum comes from the fact that νϕ can be expressed as a
sum of two maxitive operators: νϕ(A) = maxi∈A ϕ

+
i + α − mini∈Ac ϕ

−
i =

maxi∈A ϕ
+
i + maxi∈Ac

(
α− ϕ−i

)
.

The complementary set function of νϕ, denoted νcϕ, is given by:

∀A ⊆ Ω, νcϕ(A) = νϕ(Ω)− νϕ(Ac) (4)

= α+ α−
(

max
i∈Ac

ϕ+
i −min

i∈A
ϕ−i + α

)
,

= min
i∈A

ϕ−i + α−max
i∈Ac

ϕ+
i = min

i∈A
ϕ−i + min

i∈Ac

(
α− ϕ+

i

)
.

Thus νϕ(Ω) = νcϕ(Ω) = α+α. Moreover, νϕ(∅) = maxi∈∅ ϕ
+
i −mini∈Ω ϕ

−
i +

mini∈Ω ϕi = 0 and νcϕ(∅) = α−maxi∈Ω ϕ
+
i + mini∈∅ ϕ

−
i = 0.

Lemma 3.1. ∀A,B ⊆ Ω, maxi∈A∪B ϕi+maxi∈A∩B ϕi ≤ maxi∈A ϕi+maxi∈B ϕi.
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Proof. Let τ = maxi∈A∪B ϕi + maxi∈A∩B ϕi −maxi∈A ϕi −maxi∈B ϕi, and let
us prove τ ≤ 0.
Let a = maxi∈A ϕi, b = maxi∈B ϕi and c = maxi∈A∩B ϕi.
By construction maxi∈A∪B ϕi = max(a, b) and c ≤ a, b.
We can consider without any loss of generality that a ≤ b, therefore maxi∈A∪B ϕi =
b. Thus c ≤ a ≤ b which implies τ = b+ c− a− b = c− a ≤ 0. �

Lemma 3.2. ∀A,B ⊆ Ω, mini∈A∪B ϕi+mini∈A∩B ϕi ≥ mini∈A ϕi+mini∈B ϕi.

Proof. Let τ = mini∈A∪B ϕi + mini∈A∩B ϕi−mini∈A ϕi−mini∈B ϕi, and let us
prove τ ≥ 0.
Let a = mini∈A ϕi, b = mini∈B ϕi and c = mini∈A∩B ϕi.
By construction mini∈A∪B ϕi = min(a, b) and a, b ≤ c.
We can consider without any loss of generality that a ≤ b, therefore mini∈A∪B ϕi =
a. Thus a ≤ b ≤ c, then τ = a+ c− a− b = c− b ≥ 0. �

Proposition 3.3. νϕ is concave and thus νcϕ is convex.

Proof. The proof is trivial considering Lemmas 3.1 and 3.2. Let A,B ⊆ Ω.
Let τ = νϕ(A ∪B) + νϕ(A ∩B)− νϕ(A) + νϕ(B).
τ = τ1−τ2, with τ1 = maxi∈A∪B ϕ

+
i +maxi∈A∩B ϕ

+
i −maxi∈A ϕ

+
i −maxi∈B ϕ

+
i ,

and τ2 = mini∈(A∪B)c ϕ
−
i + mini∈(A∩B)c ϕ

−
i −mini∈Ac ϕ

−
i −mini∈Bc ϕ

−
i .

τ2 = mini∈Ac∩Bc ϕ
−
i + mini∈Ac∪Bc ϕ

−
i −mini∈Ac ϕ

−
i −mini∈Bc ϕ

−
i .

Due to Lemma 3.1, τ1 ≤ 0 and due to Lemma 3.2, τ2 ≥ 0. Thus τ = τ1− τ2 ≤ 0
and therefore νϕ is concave. Proving νcϕ being convex can be done in the same
way. �

Remark 1. The maxitive operator defined in Expression (3) is an extension
of the one proposed by Loquin et al. [26] since if π ∈ Ks is a maxitive kernel,
then νπ = Ππ is a maxitive aggregation fonction defined by: ∀A ∈ Ω, νπ(A) =
Ππ(A) = maxi∈A πi.

Proposition 3.4. νϕ is a weak-maxitive set function
i.e. ∀A,B ⊆ Ω, νϕ(A ∪B) ≥ max(νϕ(A), νϕ(B)).

Proof. Let A,B ⊆ Ω,

νϕ(A ∪B) = max
i∈A∪B

ϕ+
i + min

i∈Ω
ϕ−i − min

i∈(A∪B)c
ϕ−i

= max(max
i∈A

ϕ+
i ,max

i∈B
ϕ+
i ) + min

i∈Ω
ϕ−i − min

i∈(A∪B)c
ϕ−i

≥ max(max
i∈A

ϕ+
i ,max

i∈B
ϕ+
i ) + min

i∈Ω
ϕ−i −min(min

i∈Ac
ϕ−i , min

i∈Bc
ϕ−i )

≥ max(νϕ(A), νϕ(B))

�
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3.2. Domination of the macsum operator over additive operators

First, let us defineM(ϕ) as being the core of a kernel ϕ ∈ K(Ω) by extending
the notion of core of a maxitive kernel proposed by Loquin et al. [26]:

M(ϕ) =
{
ψ ∈ K(Ω) / ∀A ⊆ Ω, νcϕ(A) ≤ Pψ(A) ≤ νϕ(A)

}
. (5)

Remark 2. This definition coincides with the one of [26] when ϕ is a maxitive
kernel.

Remark 3. To be inline with the work of [26], let ψ,ϕ ∈ K(Ω), if ψ ∈ M(ϕ)
we say that ϕ dominates ψ because the macsum operator based on ϕ dominates
the additive operator base on ψ. ψ belongs to the convex set represented by ϕ.

Remark 4. Since νcϕ(Ω) = νϕ(Ω), if ψ ∈M(ϕ),
then Pψ(Ω) =

∑
i∈Ω ψi = maxi∈Ω max(0, ϕi) + mini∈Ω min(0, ϕi).

Now, two questions of instrumental interest arise, especially in the context
of signal processing:

• let ϕ ∈ K(Ω) be a kernel of Ω, is there a simple way to check whether a
kernel ψ ∈ K(Ω) belongs or not to M(ϕ)?

• let ψ ∈ K(Ω) be a kernel of Ω, is there a simple way to define a kernel
ϕ ∈ K(Ω) such that ψ ∈M(ϕ)?

In [26], Loquin et al. have used some known properties defined in the con-
text of possibility theory [11] to partially answer to those questions by defining
particular relations between maxitive and summative kernels. Let us briefly
recall some useful Lemma in this paper.

Lemma 3.5. (weak domination) Let ρ ∈ Ks(Ω) be a summative kernel of Ω,
then the maxitive kernel π̆ ∈ Km(Ω), defined by ∀i ∈ Ω, π̆i =

∑
j∈Ω min(ρi, ρj),

dominates ρ, i.e. ρ ∈M(π̆).

Lemma 3.6. (strong domination) Let ρ ∈ Ks(Ω) be a summative kernel of Ω,
then the maxitive kernel π̊ ∈ Km(Ω), defined by ∀i ∈ Ω, π̊i =

∑
j∈Ai ρj, where

Ai = {j ∈ Ω/ρj ≤ ρi}, dominates ρ i.e. ρ ∈M(̊π).

As shown in [26], π̆ is said to weaker dominate ρ than π̊ sinceM(̊π) ⊆M(π̆).

What we propose here is to use Lemma 3.5 and 3.6 to define also weak and
strong domination relations between two kernels of K(Ω).

Proposition 3.7. (general weak domination) Let ψ ∈ K(Ω) be a kernel of
Ω, then the kernel ϕ̆ ∈ K(Ω) defined by ∀i ∈ Ω, ϕ̆i =

∑
j∈Ω min(ψ+

i , ψ
+
j ) +∑

j∈Ω max(ψ−i , ψ
−
j ), where ψ+ = max(0, ψ) and ψ− = min(0, ψ) dominates ψ

i.e. ψ ∈M(ϕ̆).

Proof. Let us define α+ =
∑
i∈Ω ψ

+
i and α− =

∑
i∈Ω ψ

−
i , then the kernels ρ+

and ρ− defined by: ∀i ∈ Ω, ρ+
i = ψ+

i /α
+ and ρ−i = ψ−i /α

− are summative by
construction (i.e. positive and normalized). Thus according to Lemma 3.5 we
can define two maxitive kernels π̆+ and π̆− by:
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∀i ∈ Ω, π̆+
i =

∑
j∈Ω min(ρ+

i , ρ
+
j ) and π̆−i =

∑
j∈Ω max(ρ−i , ρ

−
j ).

Let us define two kernels ϕ̆+ and ϕ̆−, such that

∀i ∈ Ω, ϕ̆+
i = α+.π̆+

i =
∑
j∈Ω min(ψ+

i , ψ
+
j ) and

ϕ̆−i = α−.π̆−i =
∑
j∈Ω max(ψ−i , ψ

−
j ).

By construction ∀i ∈ Ω, ϕ̆+
i ≥ 0 and ϕ̆−i ≤ 0. Let us define ϕ̆ = ϕ̆+ + ϕ̆−.

According to Lemma 3.5 we have, ∀A ⊆ Ω, Ππ̆+(A) = maxi∈A π̆
+
i ≥

Pρ+(A) =
∑
i∈A ρ

+
i and Ππ̆−(A) = maxi∈A π̆

−
i ≥ Pρ−(A) =

∑
i∈A ρ

−
i .

Let us consider the two set functions µϕ̆+ and µϕ̆− , defined by: ∀A ⊆ Ω,
µϕ̆+(A) = maxi∈A ϕ̆

+
i and µϕ̆−(A) = mini∈A ϕ̆

−
i .

We have, ∀A ⊆ Ω, µϕ̆+(A) = maxi∈A ϕ̆
+
i = α+ maxi∈A π̆

+
i ≥ α+.Pρ+(A) =∑

i∈A α
+.ρ+

i = Pψ+(A) and µϕ̆−(A) = mini∈A ϕ̆
−
i = α−maxi∈A π̆

−
i ≤ α−.Pρ−(A) =∑

i∈A α
−.ρ−i = Pψ−(A). Remarking that mini∈Ω ϕ̆

−
i =

∑
i∈Ω ψ

−
i , we also have

µcϕ̆−(A) = mini∈Ω ϕ̆
−
i − mini∈Ac ϕ̆

−
i ≥

∑
i∈Ω ψ

−
i −

∑
i∈Ac ψ

−
i =

∑
i∈A ψ

−
i =

Pψ−i
(A). Thus, ∀A ⊆ Ω, νϕ̆(A) = maxi∈A ϕ̆

+
i + mini∈Ω ϕ̆

−
i − mini∈Ac ϕ̆

−
i =

µϕ̆+(A) + µcϕ̆−(A), and therefore νϕ̆(A) ≥ Pψ+(A) + Pψ−(A) = Pψ(A). �

Proposition 3.8. (general strong domination) Let ψ ∈ K(Ω) be a kernel of Ω,
then the kernel ϕ̊ ∈ K(Ω) defined by ∀i ∈ Ω, ϕ̊i =

∑
j∈A+

i
ψ+
j +

∑
j∈A−i

ψ−j ,

where ψ+ = max(0, ψ), ψ− = min(0, ψ), A+
i =

{
j ∈ Ω / ψ+

j ≤ ψ
+
i

}
and A−i ={

j ∈ Ω / ψ−j ≥ ψ
−
i

}
dominates ψ i.e. ψ ∈M(ϕ̊).

The proof of Proposition 3.8 follows the same pattern as the proof of Propo-
sition 3.7.

Proof. As previously, we define the summative kernels ρ+ and ρ− by: ∀i ∈ Ω,
ρ+
i = ψ+

i /α
+ and ρ−i = ψ−i /α

−, with α+ =
∑
i∈Ω ψ

+
i and α− =

∑
i∈Ω ψ

−
i .

As proposed in Lemma 3.6 we can define two maxitive kernels π̊+ and π̊−

by: ∀i ∈ Ω, π̊+
i =

∑
j∈A+

i
ρ+
j , π̊−i =

∑
j∈A−i

ρ−j , with A+
i =

{
j ∈ Ω/ρ+

j ≤ ρ
+
i

}
={

j ∈ Ω / ψ+
j ≤ ψ

+
i

}
and A−i =

{
j ∈ Ω / ρ−j ≤ ρ

−
i

}
=
{
j ∈ Ω / ψ−j ≥ ψ

−
i

}
. Ac-

cording to Lemma 3.5 we have, ∀A ⊆ Ω, Ππ̊+(A) = maxi∈A π̊
+
i ≥ Pρ+(A) =∑

i∈A ρ
+
i and Ππ̊−(A) = maxi∈A π̊

−
i ≥ Pρ−(A) =

∑
i∈A ρ

−
i . We also have

Πc
π̊−(A) = 1−maxi∈Ac π̊

−
i ≤ Pρ−(A).

Let ϕ̊+ = α+.π+ =
∑
j∈A+

i
ψ+
j and ϕ̊− = α−.π− =

∑
j∈A−i

ψ−j .

We define ϕ̊ = ϕ̊+ + ϕ̊−. We have ∀A ⊆ Ω, νϕ̊(A) = µϕ̊+(A) +µcϕ̊+(A), with

µϕ̊+(A) = maxi∈A ϕ̊
+
i = α+.Ππ̊+(A) and µϕ̊−(A) = mini∈A ϕ̊

−
i = α−.Ππ̊−(A).

Thus ϕ̊(A) = α+.Ππ̊+(A)+α−.Πc
π̊−(A) ≥ α+.Pρ+(A)+α−.Pρ−(A) = Pψ+(A)+

Pψ−(A) = Pψ(A). �

Finally, we have the following property:

Proposition 3.9. ∀ϕ ∈ K(Ω), M(ϕ) is not empty.

Proof. To prove Proposition 3.9, it is enough to be able to associate to each
kernel ϕ ∈ K(Ω) a kernel ψ ∈ K(Ω) such that ψ ∈ M(ϕ). This proof is based
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on constructing ψ such that ϕ strongly dominates ψ as suggested in Proposition
3.8.

If ϕ is the kernel that strongly dominates ψ then: ϕi =
∑
j∈A+

i
ψ+
j +∑

j∈A−i
ψ−j , where ψ+ = max(0, ψ), ψ− = min(0, ψ), A+

i =
{
j ∈ Ω / ψ+

j ≤ ψ
+
i

}
and A−i =

{
j ∈ Ω / ψ−j ≥ ψ

−
i

}
.

We can suppose, without any loss of generality, that ϕ is sorted in increasing
order: ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕN . Let ϕ+ = max(0, ϕ) and ϕ− = min(0, ϕ) –

i.e. ϕ = ϕ+ + ϕ−. Then, if ϕ strongly dominates ψ, ϕ+
i =

∑i
j=1 ψ

+
i and

ϕ−i =
∑N
j=i ψ

−
i .

Based on this, we can built iteratively the values of ψ+ and ψ−:

∀i ∈ {2, . . . N}, ψ+
i = ϕ+

i −
i−1∑
j=1

ψ+
j = ϕ+

i − ϕ
+
i−1, with ψ+

1 = ϕ+
1 , and

∀i ∈ {N − 1, . . . 1}, ψ−i = ϕ−i −
N∑

j=i+1

ψ−j = ϕ−i − ϕ
−
i+1, with ψ−N = ϕ−N .

This guarantees that the so-constructed ψ = ψ+ + ψ− belongs to M(ϕ) and
thus M(ϕ) 6= ∅. �

4. Representing a convex set of linear aggregations

In this section, we define two operator-based aggregations of the function
x ∈ RN w.r.t. a kernel ϕ ∈ K(Ω): the linear aggregation denoted zϕ(x) and
the macsum aggregation denoted zϕ(x).

The linear aggregation is simply a weighted sum defined by:

zϕ(x) =
∑
i∈Ω

ϕi.xi = ČPϕ(x). (6)

The macsum aggregation is defined by:

zϕ(x) =
[
zϕ(x),zϕ(x)

]
=
[
Čνcϕ(x), Čνϕ(x)

]
. (7)

This extend the work of Loquin et al. since:

Proposition 4.1. Let ϕ ∈ K(Ω), ∀ψ ∈ M(ϕ), ∀x ∈ RN , zψ(x) ∈ zϕ(x).

Moreover, ∀y ∈ zϕ(x), ∃ψ such that y = zψ(x).

Proof. The fact that ∀ψ ∈ M(ϕ), ∀x ∈ RN , zψ(x) ∈ zϕ(x) is simply a refor-

mulation of the Schmeidler-Denneberg theorem [9] in a more particular case.
Indeed, whereas this theorem has been proven for any concave set function, we
here use it only for kernel-based set functions. Now lets prove that ∀y ∈ zϕ(x),

∃ψ such that y = zψ(x). We have Čνϕ(x) =
∑N
k=1 xdke.(νϕ(Adke)−νϕ(Adk+1e))

and Čνcϕ(x) =
∑N
k=1 xdke.(ν

c
ϕ(Adke)−νcϕ(Adk+1e)) as zϕ(x) =

[
zϕ(x),zϕ(x)

]
=
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[
Čνcϕ(x), Čνϕ(x)

]
is a convex set, and y ∈ zϕ(x) we then have y = λzϕ(x) +

(1− λ)zϕ(x) with λ ∈ [0, 1] therefore y = λČνcϕ(x) + (1− λ)Čνϕ(x)

and y = λ
∑N
k=1 xdke.(ν

c
ϕ(Adke)− νcϕ(Adk+1e)) + (1− λ)

∑N
k=1 xdke.(νϕ(Adke)−

νϕ(Adk+1e)) which gives that y =
∑N
k=1 xdke.(λ((νcϕ(Adke)− νcϕ(Adk+1e)) + (1−

λ)((νϕ(Adke)− νϕ(Adk+1e))).
Thus we have that ψ = {ψdke}k∈Ω is a kernel such that
ψdke = λ((νcϕ(Adke)− νcϕ(Adk+1e)) + (1− λ)((νϕ(Adke)− νϕ(Adk+1e))

and finally y =
∑N
k=1 ψdke.xdke = zψ(x) as the sum is commutative. �

5. Computing the macsum aggregation

This section aims at proposing a simple algorithm for computing y = [y, y] =
z[x].

5.1. Formulæ

Let us first consider y.
y = Čνϕ(x) =

∑N
k=1(xdke − xdk−1e).νϕ(Adke),with xd0e = 0.

Remember that νϕ(Adke) = maxi∈Adke ϕ
+
i − mini∈Acdke ϕ

−
i + mini∈Ω ϕ

−
i ,

with Adke = {dke, . . . dNe} and Acdke = {d1e, . . . dk − 1e} thus νϕ(Adke) =

maxNi=k ϕ
+
die −mink−1

i=1 ϕ
−
die + mini∈Ω ϕ

−
i

(by convention min0
i=1 ϕ

−
die = 0).

Therefore Čνϕ(x) =
∑N
k=1(xdke−xdk−1e).

(
maxNi=k ϕ

+
die −mink−1

i=1 ϕ
−
die + mini∈Ω ϕ

−
i

)
.

Let us decompose this sum:
Čνϕ(x) =

∑N
k=1(xdke−xdk−1e).maxNi=k ϕ

+
die−

∑N
k=1(xdke−xdk−1e).mink−1

i=1 ϕ
−
die

+
∑N
k=1(xdke − xdk−1e).mini∈Ω ϕ

−
i ,

Note that
∑N
k=1(xdke−xdk−1e).mini∈Ω ϕ

−
i = mini∈Ω ϕ

−
i .
∑N
k=1(xdke−xdk−1e) =

xdNe.mini∈Ω ϕ
−
i .

Thus, y =
∑N
k=1(xdke−xdk−1e).maxNi=k ϕ

+
die−

∑N
k=1(xdke−xdk−1e).mink−1

i=1 ϕ
−
die+

xdNe.mini∈Ω ϕ
−
i .

Let y+ =
∑N
k=1(xdke − xdk−1e).maxNi=k ϕ

+
die.

and y− = xdNe.mini∈Ω ϕ
−
i −

∑N
k=1(xdke − xdk−1e).mink−1

i=1 ϕ
−
die

First, let us consider y+, and b.c the permutation that sorts the x in de-
creasing order:
xdke = xbN−k+1c. Thus let k′ = N − k + 1→ k = N − k′ + 1.

y+ =
∑N
k′=1

(
xbk′c − xbk′+1c

)
.maxNi=N−k′+1 ϕ

+
bic

Now, let αk = maxNi=N−k+1 ϕ
+
bic, then, by construction, αk+1 = max(αk, ϕ

+
bk+1c)

and α0 = 0. Thus y+ =
∑N
k=1

(
xbkc − xbk+1c

)
.αk =

∑N
k=1 xbkc. (αk − αk−1).

Le us now rearrange the expression of y−.
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y− = xdNe.minNi=1 ϕ
−
die − xdNe.minN−1

i=1 ϕ−die + xdN−1e.minN−1
i=1 ϕ−die − · · · +

xd1e.min1
i=1 ϕ

−
die.

y− =
∑N
k=1 xdke.

(
minki=1 ϕ

−
die −mink−1

i=1 ϕ
−
die

)
.

Let βk = minki=1 ϕ
−
die, by construction βk+1 = min(βk, ϕ

−
dk+1e)

Therefore y− =
∑N
k=1 xdke. (βk − βk−1) =

∑N
k=1

(
xdke − xdk+1e

)
.βk.

The complete algorithm is reported in Algorithm 1.

Computation of y can be obtained in the same way by simply remembering

that y = Čνcϕ(x) = −Čνϕ(−x). Thus the algorithms are the same, we have
simply to exchange the permutation that sorts the x in decreasing order by the
permutation that sorts the x in increasing order and vice versa.

The complete algorithm is reported in Algorithm 2.

5.2. Algorithms

Computing the upper and lower values of the interval-valued output of an
maxitive operator based aggregation is provided by the Algorithm 2 to compute
y and Algorithm 1 to compute y.

Algorithm 1: Computation of y

Input: x = {xi}i=1...N , ϕ = {ϕi}i=1...N

Output: y
sort (x, ϕ) w.r.t. x in decreasing order ;
α = 0, β = 0 ;
y = 0 ;
for k = 1 . . . N do

β = α ;
α = max(α,ϕk) ;
y = y + (α− β).xk ;

sort (x, ϕ) w.r.t. x in increasing order (i.e. reverse the sorting) ;
α = 0, β = 0 ;
for k = 1 . . . N do

β = α ;
α = min(α,ϕk) ;
y = y + (α− β).xk ;

6. Experiment

In this section, we propose an experiment that consists in deriving a digital
signal. A digital signal is generally a continuous signal that has been sampled
and quantified. Being sampled, a digital signal is not continuous and thus
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Algorithm 2: Computation of y

Input: x = {xi}i=1...N , ϕ = {ϕi}i=1...N

Output: y

sort (x, ϕ) w.r.t. x in increasing order ;
α = 0, β = 0 ;
y = 0 ;

for k = 1 . . . N do
β = α ;
α = max(α,ϕk) ;
y = y + (α− β).xk ;

sort (x, ϕ) w.r.t. x in decreasing order (i.e. reverse the sorting) ;
α = 0, β = 0 ;
for k = 1 . . . N do

β = α ;
α = min(α,ϕk) ;
y = y + (α− β).xk ;

cannot be derived. Therefore, deriving a digital signal refers to as estimating
the sampled derivative of the original continuous signal.

The estimation of this derivative can be seen as the succession of three
steps: first reconstructing a continuous signal based on the samples of the digital
signal, then deriving this continuous signal and finally sampling the result of
this derivation.

As explained in [37] in the context of image processing, this three steps
procedure can be achieved in one step by convoluting the input digital signal by
the sampled derivative of a reconstruction signal. In their paper, the authors
propose the exponential filter for being a good candidate since it can be derived
and, as a reconstruction operator, it lows the effect of noise and quantization
on the obtained continuous signal.

The Shen-Castan derivating kernel is obtained by deriving then sampling
the reconstruction kernel κ defined by:

∀x ∈ R, κ(x) = − 2

ln(β)
.β|x|, (8)

with β ∈]0, 1[ being a smoothing factor: the bigger β the smoother the output
reconstructed signal.

Sampling this reconstruction kernel leads to a discrete (summative) kernel
ρ defined by:

∀k ∈ Z, ρk =
1− β
1 + β

.β|k|, (9)

this kernel is summative in the sense of Loquin [28] since
∑
k∈Z ρk = 1.

Deriving the kernel κ leads to the continuous kernel η defined by:

∀x ∈ R, η(x) = 2.sign(x).β|x| = −sign(x). ln(β).κ(x). (10)
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And therefore, sampling this derivation leads to the derivation kernel ψ
defined by:

∀k ∈ Z, ψk = −sign(k). ln(β).ρk = −sign(k). ln(β).
1− β
1 + β

.β|k| = −sign(k).γ.β|k|,

(11)
with γ = ln(β). 1−β1+β .

Let us now consider computing y the discrete signal that is the derivative of
x. This derivation can be obtained by convoluting x with ψ: y = x ? ψ, ? being
the convolution. This operation can be written [26]:

yn = (x ? ψ)n =

N∑
k=1

xk.ψ
n
k = ČPψn

k
(x), (12)

ψn being the kernel ψ translated in n and truncated on Ω defined by: ψnk =
ψn−k, k ∈ {1, . . . , N}. Remark that this assumes that un-sampled values of the
underlying unknown signal whose sampled values are x are null. It is interesting
to note that Pψnk (Ω) = βn−N − βn ∈ [βN − 1, 1− βN ] can be positive, negative
or even null.

Now, we can use the Proposition 3.8 to define, for each n ∈ Ω, ϕ̊n, a kernel
that is the smallest that dominates ψn (i.e. ψn ∈M(ϕ̊n)).

In most applications using signal derivation, one of the main difficulties
is to define both shape and parameter of the kernel that is optimal for this
application. Assuming, with the authors, that the Shen-Castan kernel is optimal
for this application, the remaining problem is the smoothing parameter β.

First note that the granularity (in the sense of Loquin or Shannon) of the
Shen-Castan kernel increases with β, i.e. the bigger β, the smoother the recon-
structed continuous signal.

Therefore, let ψ and ψ′ be two derivating kernels defined by Expression (11)
using β and β′, with β′ < β. Let ϕ̊ and ϕ̊′ the two kernels that strongly dominate
ψ and ψ′. Then, by construction, the set of derivatives computed by using ϕ̊
are the derivatives of smoother signals than the set of derivatives computed by
using ϕ̊′.

Moreover, as shown in [29], the width of the interval-valued signal is repre-
sentative of the conflict between the different kernels dominated in the derivative
computation, and thus sensitive to noise. The imprecision of the interval-valued
derivative can be used to define thresholds for detecting local maxima, like in
[19] or use a posteriori criteria, other than frequency criteria, to define the
optimal candidate to be the derivation of x (see e.g. [17]).

In this experiment, we propose to compute the derivative of a digital signal
obtained by sampling (sampling frequency 100Hz) and quantizing the composite
signal whose equation is: x(t) = sin(21.t)+sin(12.t+5)+sin(−4.t+3)+10.(1+
t)−1, that is pictured in Figure (1).

In this experiment, we compute both precise and imprecise derivatives by
using either the kernel ψ with Equation (12) or the kernel ϕ̊ with Equation (7).

This experiment illustrates two properties. First, the more appropriate the
reconstruction kernel, the closer the precise derivative from the bounds of the
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Figure 1: The signal to be derivated.
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Figure 2: Precise derivative (black) and imprecise derivative (blue upper, red lower) of the
signal depicted in Figure (1) with β = 0.7

18



0 1 2 3 4 5 6 7 8 9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3: Precise derivative (black) and imprecise derivative (blue upper, red lower) of the
signal depicted in Figure (1) with β = 0.9
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Figure 4: Details of Figure (2) (a) and Figure (3) (b)
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imprecise derivative (see for example, in Figure (4.a) that the precise (black)
curve is pretty close to the bounds near the extrema). Second, the less appro-
priate the kernel, the higher the imprecision of the imprecise derivative. This is
obvious when comparing Figure (4.a) with Figure (4.b).

We also have computed precise derivatives by varying β in [0.88, 0.96]. Those
derivatives are superimposed on the imprecise derivative with β = 0.9 on Fig-
ure (5.a) and zoomed in Figure (5.b). What we can observed is that the vari-
ation of β corresponds to a variation of the estimation of the derivative in
the interval-valued derivative computed by using the macsum approach. Note,
however, that when β varies outside of [0.88, 0.96] some precise derivatives fall
outside the interval-valued signal computed with β = 0.9.

7. Conclusion

In this paper, we are interested in a new way of representing a relation be-
tween the inputs and outputs of a system, or, to be more precise, in a new
representation of a function linking N inputs to one output. The classical ap-
proach is based on the notion of accurate representation: defining a parametric
model and trying, by an optimization process, to find the values of the param-
eters of the model that best fits its behaviour. One of the most used models is
the linear model. It has the advantage of being simple to set up and use, but the
disadvantage of leading to a description of the functioning of the system that is
too approximate, without it being possible to control this approximation. The
use of non-linear models makes the representation more accurate but less simple
and robust, and with more parameters to tune (or learn). Controlling how the
modeling approximates the real system is even less easy.

The approach we have proposed in this article exploits a completely dif-
ferent paradigm. Instead of trying to describe a system precisely, we propose
to represent it by an imprecise linear modeling. Within this model, a system
is associated to a set of weights, as in a linear model, but what we obtain is
the description of a convex set of linear relations. Within this approach, how
this modeling is close to the behaviour of the system to be represented can be
controlled.

We believe that this approach can allow extending the notion of domination,
widely used in decision theory, to many other domains. We have mainly given
examples in signal processing. However, the macsum approach can be used to
make approximate representations in any domain where the linear representa-
tion is relevant and where it would be interesting to model how well it describes
a real aggregation process.

One important remaining question, that will be our main track for future
work, is how to identify a system? i.e. how to learn the weights of a macsum
representation of a function with benchmark values as in the classical approach?
Finally, this modeling can suffer from lack of specificity (i.e. representing a too
wide set of linear relations). Thus another path of investigation would be to
tighten these boundaries to get a more accurate approximation while keeping
the simplicity of the model.
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Figure 5: Precise derivatives with β ∈ [0.88, 0.96] (in cyan) superimposed on Figure (3) (a)
with detailled view (b)
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