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Abstract

Objectives: Many molecular imaging diagnoses involve comparing two regions of interest
(ROIs) in the image or different images. Since the images are obtained by measuring a
random phenomenon, such comparisons should be based on a statistical test to ensure
reliability. Recent studies have shown that use of the bootstrap approach provides ac-
cess to the statistical variability of reconstructed values in molecular images. However,
although there is general agreement that this increase in information should make diag-
nosis based on molecular images more reliable, no approach has been proposed in the
relevant literature to use bootstrap replicates to enhance the reliability of comparisons
of two ROIs. In this paper, we propose to fill this gap by introducing the first statistical
test that allows us to compare two sets of pixels/voxels for which bootstrap replicates
are available.
Material and methods : After presenting the theoretical basis of this non-parametric
statistical test, this article describes how to calculate it in practice. Finally, it proposes
two experiments based on quantitative comparisons and expert judgment to assess its
relevance.
Results : The results obtained are consistent with expert diagnosis on synthetic data.
This validates the relevance of the D-test.
Conclusion : This paper presents the first statistical test to compare two ROIs in recon-
structed images for which the statistical variability information is accessible.
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Statistical test, ROI comparison, statistical variability, bootstrap replicates, positron
emission tomography (PET).
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1. Introduction

This type of comparison is usually visually performed by a physician expert. S/he can
be assisted by semi-quantitative ROI description metrics such as the widely used stan-
dard uptake value (SUV) that corresponds to the ratio of the image-derived radiotracer
concentration and the whole body injected radioactivity concentration (1). However,
the reliability of this metric for comparison is poor and its limits are well documented
(2; 3; 4; 5).
For organ specific tasks such as brain ROI comparison, some quantitative analysis soft-
ware packages like Scenium (6) are provided by the positron emission tomography (PET)
manufacturer. Mean SUV are measured in each cortical ROI and normalized to the mean
whole brain SUV to produce cortical SUV ratios (SUVr). Lastly, these cortical SUVr are
converted to standard deviation scores (SUVr SD), commonly called z-score, based on
reference distributions from age-matched control populations (7). However, this compar-
ison requires a database, which means that it is dependent on numerous parameters such
as the reconstruction method used, the tomograph version, the ethnic origin of controls,
etc. Thus, it is essential for the development of reliable statistical tools to help physicians
compare two regions of interest and thus to ensure more reliable diagnosis (9; 10; 11).
For such a statistical tool, the spatial distribution in the ROI would have to be representa-
tive of the statistical distribution of each pixel, i.e. the phenomenon should be somewhat
ergodic, or the prior distribution in each pixel should be known. Since the images used in
nuclear medicine are obtained through a reconstruction process, the statistical properties
of each reconstructed value is unknown and ergodicity cannot be hypothesized, although
the statistics of the original measurements are known. Bootstrap-based methods have
been proposed for quantifying the uncertainty associated with reconstructed activity val-
ues in reconstructed images (12; 13; 14). Bootstrap-based variability quantification is
currently considered to be the ground truth approach. It consists of drawing repeated
samples from the original data for generating samples of the reconstructed values. Those
samples, also called replicates, are considered as being samples of the distribution under-
lying the reconstructed data. Bootstrap replicates have been shown to accurately esti-
mate image noise for various reconstruction algorithms (13; 15; 8). The main limitation
of bootstrap approaches could be the computation time. However, current computing
capacities have overcome this limitation. Surprisingly, even though this approach is con-
sidered to be the gold standard method for statistical variability quantification, no direct
application of the reconstructed replicates to improve the reliability of ROI comparison
has been proposed in the relevant literature to our knowledge.
Here we aim to fill this gap by proposing a statistical method dedicated to the comparison
of ROIs in images whose replicates are available by either bootstrap or repeated acqui-
sitions/ reconstructions. We propose to perform this comparison using a statistical test,
i.e. the drop-out test. The idea behind this test is as follows. Two regions RX and RY

will be considered different if, by randomly drawing values from both regions, swapping
the values of the RX region with those of the RY region causes discernible changes in
the distribution of values of the host region. This test is based on a concept that is not
often used in statistics, i.e. concentration intervals. Section 2 details the background of
the study. Section 3 develops the theoretical basis and justifications of the drop-out test
(D-Test). The use of the D-test assumes the stationarity of the regions to be compared,
i.e. that any pixel/voxel is interchangeable in the same region. In practice, this assump-
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tion is seldom verified. Section 4 thus presents a modified version of the D-test, i.e. the
so-called KD-test. Section 5 details the construction of the test and proposes a way to
compute it in practice. Section 6 illustrates the performance of the D-Test and KD-Test
with an experiment with simulated PET data.

2. Background

2.1. Notations
• R is the set of real values.

• IR is the set of bounded and closed real intervals.

• Let I ∈ IR, then I (rsp. I) denotes its lower bound (rsp. upper bound). Thus
I = [I, I].

• Let I ∈ IR, then |I| = I − I being the length of I.

• Let S be a random variable, with PS denoting its induced probability measure.

• Given β ∈ [0, 1], then a β–concentration interval Iβ ∈ IR will be an interval satis-
fying:

– PS(Iβ) ≥ β

– ∀I ∈ IR such that PS(I) ≥ β, |Iβ | ≤ |I|.

Hence, a β–concentration interval covers the value of S with probability of at least
β while having a minimal length among all intervals meeting that condition.

2.2. Materials and methods
Let RX and RY be the two ROI to be compared. ROI RX (resp. RY ) consists of
nx (resp. ny) pixels. If only one measurement is available, then one measured value
xi ∈ R (resp. yi ∈ R) is associated with the ith pixel of ROI X (resp. ROI Y ). We
denote x = (x1, . . . , xnx) and y = (y1, . . . , yny ). From a resampling process, we obtain
m replicates of the corresponding tuples in each region. Thus, ROI RX (resp. ROI RY )
is associated with m tuples tx = (tx1, . . . ,t xnx

)t=1...m (resp. (ty1, . . . ,t yny
)t=1...m) of

bootstrapped values.

3. Drop-out test (D-test)

3.1. Formal statement of the problem
Each pixel is associated with a numerical quantity that, due to the process adopted for
its measurement, can be considered random. Thus, each pixel j ∈ {1, . . . , nx} of ROI
RX is identified with a random variable Xj , j = 1, . . . , nx which induces the distribution
Pj . Similarly, each of the ny pixels of ROI RY is identified with a random variable Yj ,
j = 1, . . . , ny, thus inducing the distribution Qj .
Subsequently, we can consider a random variable X resulting from choosing a pixel j at
random (from among nx pixels, using a discrete uniform distribution) and subsequently
observing a value of the corresponding random variable Xj (analogously, we can consider
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a random variable Y , combining the choice of a pixel j among the ny pixels of the second
ROI and an observation of the corresponding variable Yj). Finally we search for a
suitable procedure to test the null hypothesis that the probability distribution of X (P )
coincides with that of Y (Q), against the alternative that they do not coincide. Readers
should note that the probability distribution of X can be understood as the convex
linear combination of nx distributions associated with the corresponding pixels, that is
P = P1+...+Pnx

nx
. Analogously, Q = Q1+...+Qny

ny
. On the other hand, the distributions

P1, . . . , Pnx
do not necessarily coincide with each other (and similarly, we also do not

assume that Q1 = . . . = Qny ). Our ultimate goal is to determine whether or not the
probability distribution of the numerical observations in the first region matches that of
the second region, without hypothesizing or trying to infer anything additional about
the distribution within the various pixels that make up each region.
As explained in the previous section, we start from a sample of m independent tuples of
nx-dimensional (resp. ny-dimensional) vectors.

3.2. Proposed family of tests
First, we choose a threshold β > 0 and, for each pixel, we randomly take one of the
m observations and use the remaining m − 1 observations to construct an estimate of a
concentration interval at the β level, according to the estimation procedure described in
Subsection 5.1. The corresponding concentration intervals are denoted A1, . . . , Anx

(for
the nx pixels of the first ROI), B1, . . . , Bny (for the ny pixels of the second ROI), and
are fixed. For technical reasons, we assume that these nx and ny pixels are part of larger
regions in each of which arbitrarily large sequences of n and n′ pixels could have been
respectively chosen. Let the remaining (randomly selected from each pixel) observations
be respectively denoted X1, . . . Xn, . . . , Y1, . . . , Yn′ , . . . . For every i = 1, . . . , nx and every
j = 1, . . . , n, . . . we define a random (binary) variable δi

j as follows:

δi
j =

{
1 if Xj ∈ Ai

0 otherwise.

Analogously, for every i = 1, . . . , nx and every j = 1, . . . , n′, . . ., we define (δi
j)′ as follows:

(δi
j)′ =

{
1 if Yj ∈ Ai

0 otherwise.

Let us now consider, for each j = 1, . . . , n, . . . , the random variable Nj representing the
number of concentration intervals Ai (each of them constructed from each pixel of region
RX) that contain the value of the random variable Xj . Mathematically:

Nj = #{i = 1, . . . , nx : Ai ∋ Xj} = δ1
j + . . . δnx

j .

Analogously, for every j = 1, . . . , n′, . . ., let N ′
j denote the number of those concentration

intervals (also from RX) containing Yj , that is:

Mj = #{i = 1, . . . , nx : Ai ∋ Yj} = (δ1
j )′ + . . . (δnx

j )′.

Let us also consider the following random variables for each i, k = 1, . . . , nx, any n and
n′:
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• N i = #{j ∈ {1, . . . , n} : Xj ∈ Ai},

• M i = #{j ∈ {1, . . . , n′} : Yj ∈ Ai}.

• N i,k = #{j ∈ {1, . . . , n} : Xj ∈ Ai ∩ Ak},

• M i,k = #{j ∈ {1, . . . , n′} : Yj ∈ Ai ∩ Ak},

where we implicitly assume the convention N i,i = N i and M i,i = M i for all i = 1, . . . , nx.
We also consider the following notation, for every pair of indices i, k = 1, . . . , nx:

p̂i = N i

n
, q̂i = M i

n
, p̂i,k = N i,k

n
, q̂i,k = M i,k

n′ . (1)

Based on these constructions, let us consider the following averages:

N =
∑n

j=1 Nj

n
=
∑nx

i=1 N i

n
and M =

∑n′

j=1 Mj

n′ =
∑nx

i=1 M i

n′ .

Remark 1. Let us recall that the random variables δi
j and (δi

j)′ respectively follow a
Bernoulli distribution with success parameter pi

j = Pj(Ai) and qi
j = Qj(Ai), i = 1, . . . , nx.

Their respective expectations and variances are:

• E(δi
j) = pi

j , V (δi
j) = pi

j · (1 − pi
j), and

• E((δi
j)′) = pi

j , V ((δi
j)′) = qi

j · (1 − qi
j).

Furthermore, the covariance between two of those variables can be calculated as follows:

Cov(δi
j , δk

j ) = E(δi
j · δk

j ) − E(δi
j) · E(δk

j ) =
Pj(Ai ∩ Ak) − Pj(Ai) · Pj(Ak) = pi,k

j − pi
j · pk

j .

And analogously,
Cov((δi

j)′, (δk
j )′) = qi,k

j − qi
j · qk

j .

Thus, Nj = δ1
j + . . . + δnx

j is the sum of nx (not necessarily independent) Bernoulli
random variables and its expectation and variance are respectively:

• E(Nj) =
nx∑
i=1

pi
j and

• V (Nj) =
nx∑
i=1

V (δi
j) +

∑
k,i

Cov(δi
j , δk

j ).

Thus, the variance of Nj can be easily expressed in terms of the probability distribu-
tion Pj, and more concretely in terms of the probabilities Pj(Ai) and Pj(Ai ∩ Ak),
i = 1, . . . , nx, k = 1, . . . , nx. Something analogous can be said about the distribution
of each of the random variables N ′

j = (δ1
j )′ + . . . (δnx

j )′, j = 1, . . . , ny, this time with
respect to the probability distribution Qj.
For the sake of concision and readability, hereafter we will use the symbols µj and σ2

j to
denote the expectation and variance of Nj (respectively µ′

j and (σ′
j)2 to denote the mean

and variance of N ′
j). We will furthermore denote µ = 1

n

∑n
i=1 µj and µ′ = 1

n′

∑n′

i=1 µ′
j .
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Remark 2. Hereafter, we will consider sequences of random variables
(Nn, Tn, Dn, Kn etc) and parameters (σn, cn, dn etc), all indexed by n. Furthermore, to
involve a single index in the corresponding sequences, we will assume that there is a fixed
natural value r such that either n′ = n + r, or n = n′ + r. From a theoretical viewpoint,
we need to refer to numerable sequences of variables and parameters, since we intend to
determine the asymptotic distributions of certain statistical sequences in order to be able
to determine the asymptotic size of the D-test and the KD-test to be respectively defined
in Sections 3 and 4. However, in practice, when using these tests in concrete situations,
we will assume that the numbers of pixels, nx and ny, observed respectively in regions Rx

and Ry, are large enough to approximate the distribution of the corresponding statistics
by such an asymptotic distribution. In such cases, we will implicitly identify, nx and ny

with sufficiently large values of n and n′ respectively. In cases where it does not give rise
to confusion, we will avoid the use of the subscript n in order to simplify the notation.
Thus, as long as there is no confusion, we will use the notation N, T, D, K, etc. instead
of Nn, Tn, Dn, Kn, etc.

We aim to test the null hypothesis H0 : P = Q against the alternative hypothesis
H1 : P , Q. Hence, we propose a nested family of tests, (DTα)α∈(0,1), each based on the
comparison of between the absolute value of a certain statistic and the standard normal
1 − α

2 -quantile.
Specifically, the statistic is calculated as follows:

Definition 1. The D-statistic is defined as follows:

D = N − M√
T

, with (2)

T = 1
n

nx∑
i=1

nx∑
k=1

(p̂i,k − p̂i · p̂k) + 1
n′

nx∑
i=1

nx∑
k=1

(q̂i,k − q̂i · q̂k)

Based on the calculation of the absolute value of the D-statistic, we propose the following
decision procedure to test H0 : P = Q against H1 : P , Q:

Definition 2. Let us consider the test of the null hypothesis H0 : P = Q against the
alternative hypothesis H1 : P , Q. D-test is the procedure that consists of rejecting H0
when |D| > z1− α

2
, and not rejecting it otherwise.

In the next subsection, we will prove that the asymptotic size of each test in the above
family is not α, but f(α) < α, where f : (0, 1) → (0, 1) is a strictly increasing function.
Furthermore, we will show that the gap between α and f(α) depends on the degree
of difference between the distributions over the different pixels in the same ROI, i.e.
the extent to which each region can be considered stationary. The more similar those
distributions then the less the difference α − f(α).
In particular, if P1 = . . . = Pnx = P and Q1 = . . . = Qny = Q (regardless of the degree
of resemblance between P (region RX) and Q (region RY )) the size f(α) will coincide
with α, for every α. In other words, in this particular situation, the mapping f is the
identity function. In the general case, the difference α − f(α) will depend on a pair of
unknown population parameters that quantify those differences inside regions RX and
RY .
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Such parameters are respectively:

θ1 =
nx∑

j=1

nx∑
j′=j+1

[
E(Nj) − E(Nj′)

]2
and

θ2 =
ny∑

j=1

ny∑
j′=j+1

[
E(Mj) − E(Mj′)

]2
.

The greater their values, the greater the difference between α and f(α). In particular,
when both parameters are 0 (which happens when the distributions over the nx pixels
of Rx are similar, and also when the distributions over the ny pixels of Ry are similar),
the mapping f coincides with the identity.

3.3. Asymptotic distribution of the D-test statistic
In this section, we will prove that, for each α ∈ (0, 1), the asymptotic distribution of the
statistic of Equation (2) is that of the standard normal. This requires some preliminary
results.

Lemma 1. Suppose the following conditions are satisfied:

(a) The sums of covariances
∑n

j=1
∑

k,i(pik
j − pi

j · pk
j ) and

∑n′

j=1
∑

k,i(qik
j − qi

j · qk
j ) are

non-negative.

(b) ϵ > 0 and at least one index i = 1, . . . , nx such that pi
j = Pj(Ai) > ϵ, for every

j = 1, . . . , n, . . .

Consider an arbitrary but fixed r ∈ N∪ {0}. Suppose that either n′ = n + r or n = n′ + r.
Then the sequence of random variables whose nth term is:

(N − M) − (µ − µ′)
σn

(3)

where σn =

√√√√ 1
n2

n∑
j=1

σ2
j + 1

(n′)2

n′∑
j=1

(σ′
j)2 converges in law to a standard normal.

Proof: According to our experiment (one measurement taken at random in each pixel,
independently of the remaining pixels), the random variables in the sequence N1, . . . , Nn, . . . ,
M1, . . . , Mn′ , . . . are independent and thus are the quotients N1

n , . . . , Nn

n , . . . , M1
n′ , . . . , Mn

n′ , . . ..
According to the central limit theorem, if such a sequence of independent variables satis-
fies the so-called Lyapunov condition, i.e. if:

lim
n→∞

(n′=n+r)

E
[

1
n3

∑n
j=1 |Nj − µj |3 + 1

(n′)3

∑n′

j=1 |Mj − µ′
j |3
]

(
1

n2

∑n
j=1 σ2

j + 1
(n′)2

∑n′

j=1(σ′
j)2
) 3

2
= 0,

then the quotient
(N − M) − (µ − µ′)

σn7



converges in law to the standard normal distribution.

Regarding the Lyapunov condition, the numerator of the n term of the sequence is:

E

 1
n3

n∑
j=1

|Nj − µj |3 + 1
(n′)3

n′∑
j=1

|Mj − µ′
j |3


= E

 1
n3

n∑
j=1

|
nx∑
i=1

(
δi

j − pi
j

)
|3 + 1

(n′)3

n′∑
j=1

|
nx∑
i=1

(
(δi

j)′ − qi
j)
)

|3


≤ 1
n3

n∑
j=1

nx∑
i=1

|E(δi
j) − pi

j |3 + 1
(n′)3

n′∑
j=1

nx∑
i=1

|E((δi
j)′) − qi

j |3

= 1
n3

n∑
j=1

nx∑
i=1

(1 − pi
j)3pi

j + (1 − pi
j)(pi

j)3 + 1
(n′)3

n′∑
j=1

nx∑
i=1

(1 − qi
j)3qi

j + (1 − qi
j)(qi

j)3

≤ 1
n3

n∑
j=1

nx∑
i=1

(1 − pi
j)pi

j + 1
(n′)3

n∑
j=1

nx∑
i=1

(1 − qi
j)qi

j

The last inequality is obtained by taking out, as a common factor, the product pi
j(1 − pi

j)
in the first n summands and the product qi

j(1 − qi
j) in the last n′ summands, based on

the fact that (1 − p)2 + p2 ≤ (1 − p) + p = 1 for all p ∈ [0, 1].
Let us now study the denominator of the Lyapunov quotient. To do so, we must check
the variance of some statistics involved in our computations. The variance of each Nj

is:

σ2
j =

nx∑
i=1

V (δi
j) +

∑
k,i

Cov(δi
j , δk

j ) =
nx∑
i=1

nx∑
k=1

(pik
j − pi

j · pk
j )

=
nx∑
i=1

(
pi

j(1 − pi
j) +

∑
k,i

(pik
j − pi

j · pk
j )
)

as previously calculated. Something similar applies to the variance of each Mj. Thus,
the denominator of the Lyapunov quotient is:

 1
n2

n∑
j=1

[
nx∑
i=1

(
pi

j(1 − pi
j) +

∑
k,i

(pik
j − pi

j · pk
j )
)]

+

1
(n′)2

n′∑
j=1

[
nx∑
i=1

(
qi

j(1 − qi
j) +

∑
k,i

(qik
j − qi

j · qk
j )
)] 3

2

.

Now, according to Assumption (a), the following weighted average of sums of covariances
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is non-negative:

1
n2

n∑
j=1

∑
k,i

(pik
j − pi

j · pk
j ) + 1

(n′)2

n′∑
j=1

∑
k,i

(qik
j − qi

j · qk
j )

Therefore, according to this assumption, the denominator of the Lyapunov quotient is
greater than or equal to 1

n2

n∑
j=1

nx∑
i=1

pi
j(1 − pi

j) + 1
(n′)2

n′∑
j=1

nx∑
i=1

qi
j(1 − qi

j)

 3
2

.

In short, under the above assumption regarding the sum of the covariances, the Lyapunov
quotient proves to be less than

1
n3

∑n
j=1

∑nx

i=1(1 − pi
j)pi

j + 1
(n′)3

∑n
j=1

∑nx

i=1(1 − qi
j)qi

j(
1

n2

∑n
j=1

∑nx

i=1 pi
j(1 − pi

j) + 1
(n′)2

∑n′

j=1
∑nx

i=1 qi
j(1 − qi

j)
)− 1

2
.

Now, if n′ = n + r with r ≥ 0, the above numerator is less than

1
n3

n∑
j=1

nx∑
i=1

(1 − pi
j)pi

j + 1
n3

n∑
j=1

nx∑
i=1

(1 − qi
j)qi

j

and the denominator is greater than 1
(n′)2

n∑
j=1

nx∑
i=1

pi
j(1 − pi

j) + 1
(n′)2

n′∑
j=1

nx∑
i=1

qi
j(1 − qi

j)

− 1
2

,

and thus the quotient is upper bounded by

(
n + r

n

)3
 n∑

j=1

nx∑
i=1

pi
j(1 − pi

j) +
n+r∑
j=1

nx∑
i=1

qi
j(1 − qi

j)

− 1
2

.

An analogous argument would serve to prove that the quotient is upper bounded by the
quantity (

n′ + r

n′

)3
 n∑

j=1

nx∑
i=1

pi
j(1 − pi

j) +
n+r∑
j=1

nx∑
i=1

qi
j(1 − qi

j)

− 1
2

. (4)

in the case that n = n′ + r, with r ≥ 0.
We easily observe that Expression 4 tends to 0, when

lim
n→∞

n∑
j=1

nx∑
i=1

pi
j(1 − pi

j) +
n+r∑
j=1

nx∑
i=1

qi
j(1 − qi

j) = ∞. (5)

According to Assumption (b), the above equality holds (i.e., the above sequence of sums
tends to infinity).
In summary, the so-called Lyapunov condition is satisfied, and therefore the sequence of
random variables in Equation 3 converges in law to a standard normal. □
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Remark 3. We assume that a convex linear combination of the two following sums of
covariances:

n∑
j=1

∑
k,i

(pik
j − pi

j · pk
j ) and

n′∑
j=1

∑
k,i

(qik
j − qi

j · qk
j )

is non-negative. This is a natural assumption in our problem. Informally speaking, this
assumption is based on the fact that we can assume that the probability distributions Pi i =
1, . . . , nx (corresponding to nx pixels of the same region RX), or at least a high proportion
of them, are sufficiently similar to each other so that the (set-)difference between the
corresponding concentration intervals Ai∆Aj = (Ai ∩ Aj) ∪ (Ai ∩ Aj) is small enough for
the following inequalities to be satisfied:

Pj(Ai ∩ Ak) ≥ Pj(Ai) · Pj(Ak) and Qj(Ai ∩ Ak) ≥ Qj(Ai) · Qj(Ak)

for most of the triplets (i, j, k).

Remark 4. We also assume that Equation (5) is satisfied. For the above premise to
apply, we assume that some ϵ > 0 such that pi

j > ϵ, for every pair (i, j). In fact, in such
cases the nth term of the sequence is lower bounded by ϵ(1 − ϵ)n · nx, which clearly tends
to infinity when n → ∞. This last assumption about the lower bound of the probabilities
pi

j is consistent with our idea that:

• the distributions at different pixels in region RX are not too different from each
other, hence pi

j is not too different from pi
i, and

• the fact that Ai are concentration intervals at the β level (i.e. pi
i > β) for some

sufficiently large β.

Now, to be able to apply the test we need no unknown parameter to appear in the test
statistic expression. Thus, we have to get rid of the values of the population variances
in Equation (3), and replace them by the corresponding sample variances. But first we
will prove some of the auxiliary results.

Lemma 2. Consider the concentration intervals A1, . . . , Anx
and the sequences of vari-

ables X1, . . . , Xn, . . . and Y1, . . . , Yn′ , . . .. For each n, n′ ∈ N consider the collection of
random variables p̂i, q̂i, p̂i,k and q̂i,k, i, k = 1, . . . , nx, as defined in Equation (1). Then:

E(p̂i) = pi, E(p̂i,k) = pi,k, E(q̂i) = qi, E(q̂i,k) = qi,k,

where pi, pi,k qi and qi,k respectively denote the parameters:

• pi = pi
1 + . . . + pi

n

n
, pi,k = pi,k

1 + . . . + pi,k
n

n

• qi = qi
1 + . . . + qi

n′

n
, qi,k = qi,k

1 + . . . + qi,k
n′

n′

Proof: The proof is immediate, based on the linearity of the expectation. □
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Lemma 3. Consider a sequence of independent Bernoulli random variables Xn ≡ B(1, pn)
(not necessarily equally distributed), and the sequences of variables Xn and constants pn

calculated from the above as:

Xn = X1 + . . . + Xn

n
, pn = p1 + . . . + pn

n
, n ∈ N.

Then, given a pair of arbitrarily small ϵ > 0 and δ > 0, n0 ∈ N such that

P
(
|Xn − pn| > ϵ

)
< δ, ∀ n ≥ n0.

Proof: Given n ∈ N, taking into account the fact that the variables X1, . . . , Xn are
independent and that the variance of each of them is upper bounded by 1

4 , we conclude that
the variance of Xn is upper bounded by 1

4n . Thus, according to Bienaymé-Chebyshev’s
inequality, we can prove the thesis of the lemma. □

Corollary 1. Consider the concentration intervals A1, . . . , Anx
and the sequences of

variables X1, . . . , Xn, . . . and Y1, . . . , Yn′ , . . .. For each n and each n′, consider the col-
lection of random variables p̂i, q̂i, p̂i,k and q̂i,k, i, k = 1, . . . , nx, as defined in Equation
(1). Then, given a pair of arbitrarily small ϵ > 0 and δ > 0, and given an arbitrary pair
i, k = 1, . . . , nx, we have n0 ∈ N such that

• P
(
|p̂i,k − pi,k| > ϵ

)
< δ

• P
(
|p̂i − pi| > ϵ

)
< δ

• P
(
|q̂i,k − qi,k| > ϵ

)
< δ

• P
(
|q̂i − qi| > ϵ

)
< δ,

for all n ≥ n0
1.

Lemma 4. Consider two values 0 < p, q < 1 and two positive random variables X and Y
defined in the same probability space. If, for a pair of arbitrarily small positive quantities
ϵ > 0 and δ > 0, P (|X − p| > ϵ) < δ and P (|Y − q| > ϵ) < δ, then P (|XY − pq|) >
2ϵ(1 + ϵ

2 ) < 2δ.

Corollary 2. Consider the concentration intervals A1, . . . , Anx
and the sequences of

variables X1, . . . , Xn, . . . and Y1, . . . , Yn′ , . . .. For each n ∈ N and for n′ = n + r, con-
sider the collection of random variables p̂i, q̂i, p̂i,k and q̂i,k, i, k = 1, . . . , nx, as defined
in Equation (1). Now consider the random variable

Tn = 1
n

nx∑
i=1

nx∑
k=1

(p̂i,k − p̂i · p̂k) + 1
n

nx∑
i=1

nx∑
k=1

(q̂i,k − q̂i · q̂k)

and the constant

dn = 1
nx

nx∑
i=1

nx∑
k=1

(pi,k − pi · pk) + 1
ny

nx∑
i=1

nx∑
k=1

(qi,k − qi · qk)

Then the sequence
(

Tn

dn

)
n∈N

converges in probability to 1.

1Note that the index n appears implicitly in the expressions defining the statistics p̂i,k,, p̂i, q̂i,k, q̂i as
well as in the definitions of the constants pi,k, pi, qi,k and qi.
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Lemma 5. For each n ∈ N and n′ = n + r consider the quantities:

σ2
n = 1

n2 σ2
j + 1

(n′)2 (σ′
j)2

= 1
n

nx∑
i=1

nx∑
k=1

(pi,k − pi · pk) + 1
n′

nx∑
i=1

nx∑
k=1

(qi,k − qi · qk),

dn = 1
n

nx∑
i=1

nx∑
k=1

(pi,k − pi · pk) + 1
n′

nx∑
i=1

nx∑
k=1

(qi,k − qi · qk),

and

cn = 1
n3

∑
j,j′

(
nx∑
i=1

(pi
j − pi

j′)
)2

+ 1
(n′)3

∑
j,j′

(qi
j − qi

j′)

2

.

Then:
σ2

n = dn − cn.

As a corollary of Lemma 5 and Corollary 2, we have:

Corollary 3. The sequence of random variables
(

Tn − cn

σ2
n

)
n∈N

converges in probability

to the constant 1.

Now, in the light of the two previous results, and taking the basic properties of conver-
gence in probability into account, we see that:

Corollary 4. Under the null hypothesis, the sequence of random variables

Nn − Mn√
Tn − cn

(6)

converges in law to a standard normal.

Now, as a consequence of Lemma 1 and Corollary 2 we can easily prove the following
result:

Lemma 6. For every n ∈ N consider the constant an = dn

σ2
n

= dn

dn−cn
. Then the sequence

√
an ·

∑n
j=1

Nj

n −
∑n′

j=1
Mj

n′√
Tn

converges in law to a standard normal.

Remark 5. In the previous section we proposed a nested family of hypothesis tests in-
dexed by α ∈ (0, 1). For each α we proposed to reject the null hypothesis if and only if

The absolute value
∑n

j=1

Nj
n −
∑n′

j=1

Mj

n′
√

Tn
exceeds the quantile 1 − α

2 of the standard normal.
Now, the condition

Nn − Mn√
Tn

> z1− α
2

12



is equivalent to
√

an · Nn − Mn√
Tn

>
√

an · z1− α
2

.

The size of this test is therefore

f(α) = 2
[
1 − ϕ(an · z1− α

2
)
]

.

We can easily see that and an = dn

dn−cn
≥ 1 for all n ∈ N. Thus, for a given an, the

function f is strictly increasing and f(α) < α for all α ∈ (0, 1). We also note that
when the distributions at the different pixels (within each region) are coincident, then
cn = 0 and therefore the equality an = 1 holds. In that case, f coincides with the identity
function.

To conclude this section, we can say that a nested family of hypothesis tests has been
constructed to test H0 : P = Q against H1 : P , Q. The asymptotic test size correspond-
ing to each index α ∈ (0, 1) is f(α) = 2

[
1 − ϕ(an · z1− α

2
)
]

< 2
[
1 − ϕ(z1− α

2
)
]

= α. From
the sample data, we cannot give a precise value of the difference α − f(α). We simply
know that the difference is 0 when the equalities P1 = . . . = Pnx and Q1 = . . . = Qny

are satisfied.
In case we want to use a test but do not need to know its size (probability of rejection
under the null hypothesis) we can use the above test (the D− test). Otherwise, if we
need to select a specific size, we have to modify the test statistic. This modification will
involve a higher computational cost.
In the next section we construct a new family of modified tests (KD-tests), KTα)α∈(0,1),
with approximate size α for each of them. Each test is based on the use of another
statistic that results from the application of a variation to the statistic used in this
section. That variation involves determining an unbiased estimator of the cn value that
allows us to construct an unbiased estimate of the σ2

n = dn − cn value. The cn estimator
involves more complex calculations and is based on the selection of two random values
(instead of 1) from each of the pixels of the two regions.

4. Known-size D-test (KD-test)

In the previous section we proposed to use the statistic:

D = N − M√
T

to test the hypothesis H0 : P = Q against H1 : P , Q. The so-called D-test consists
of comparing the absolute value of this statistic with the quantile z and rejecting the
hypothesis when the former is greater than the latter. We have also seen that, under the
null hypothesis, the asymptotic distribution of the sequence

√
an · Nn − Mn√

Tn

is standard normal, and that an > 1, so that for a sufficiently large n, n′ ∈ N, the size of
the α-D−test is approximately f(α) = 2

[
1 − ϕ(an · z1− α

2
)
]
, which is upper bounded by

a known threshold α, but is not precisely determined (as an is unknown for us).
In the next subsections, we will construct a family of tests of known size.
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4.1. Unknown variance of the previous statistic
As we mentioned above, the asymptotic variance of

√
an · Nn − Mn√

Tn

is 1, and therefore, for a sufficiently high n value, the variance of our D−statistic

NnX
− MnX√
TnX

is approximately equal to 1
anX

, which is never greater than 1.
This implies that the variance of |D| (absolute value of the D−statistic) is also less than
the variance of the absolute value of a standard Gaussian.
In the next subsections, we will construct a new statistic as a modification of the D-
statistic, in which the denominator represents an unbiased estimate of the variance of
N−M , even in the case where the distributions over the different pixels of the same region
do not coincide. As mentioned above, this new statistic involves a greater computational
investment.

4.2. The KD-statistic and the KD-test
We randomly choose two observations, out of the m available observations in each pixel,
and construct concentration intervals with the remaining m − 2 observations. We thus
have two independent tuples of dimension nx in the RX region, (x1r, . . . , xnxr), r = 1, 2
and two tuples of dimension ny in the RY region, (y1r, . . . , ynyr), r = 1, 2 that can be
considered as observations of two independent copies of (X1, . . . , Xnx

) and (Y1, . . . , Yny
),

respectively. We define Njr, j = 1, . . . , nx Mjr, j = 1, . . . , ny, 1, 2 as follows:

• Njr = #{i ∈ {1, . . . , nx} : Ai ∋ Xjr}, r = 1, 2

• Mjr = #{i ∈ {1, . . . , nx} : Ai ∋ Yjr}, r = 1, 2.

Definition 3. The KD-statistic is defined as follows:

K = N − M√
T − R

(7)

where

T = 1
n

nx∑
i=1

nx∑
k=1

(p̂i,k − p̂i · p̂k) + 1
n′

nx∑
i=1

nx∑
k=1

(q̂i,k − q̂i · q̂k)

and

R = 1
n3

∑
j,j′

(
Nj1

nx
− Nj′1

nx

)
·
(

Nj2

nx
− Nj′2

nx

)

+ 1
(n′)3

∑
j,j′

(
Mj1

nx
− Mj′1

nx

)
·
(

Mj2

nx
− Mj′2

nx

)
.
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Based on the calculation of the absolute value of the KD-statistic, we proceed as follows
to test hypothesis H0 : P = Q against H1 : P , Q.

Definition 4. Let us consider the test of the null hypothesis H0 : P = Q against the
alternative hypothesis H1 : P , Q. KD-test refers to the procedure that consists of
rejecting H0 when |K| > z1− α

2
, and not rejecting it otherwise.

In the next subsection we justify why the asymptotic size of this test is α.

4.3. Asymptotic distribution of the KD-test statistic
Theorem 1. Under the null hypothesis H0 : P = Q, the sequence of KD-statistics
(Kn)n∈N converges in law to an N(0, 1) distribution.

Corollary 5. The test constructed in Subsection 4.2 has an asymptotic α size.

5. Technical details on test construction

5.1. Parzen-Rozenblatt based concentration interval estimation
The D-test is based on estimations of most specific concentration intervals. Let s =
{si, . . . , sn} be n samples of the random variable S. We can suppose without any loss
of generality that the samples are sorted in ascending order: s1 ≤ s2 ≤ · · · ≤ sn. The
Parzen-Rosenblatt estimate of fS(u), which is the density of S at location u ∈ R, is given
by:

f̂S(u) = 1
∆

n∑
i=1

κ

(
u − si

∆

)
, (8)

where ∆ ∈ R+ is a bandwidth and κ is a kernel, i.e. a unimodal positive function summing
to one:

∫
R κ(u)du = 1. As recommended in (18), we propose to use the Epanechnikov

kernel defined by:

κ(u) =
{

3
4.

√
5 .
(

1 − u2

5

)
, if |u| ≤

√
5

0 else,

and estimate the bandwidth ∆ by ∆ = 0.79.R.n− 1
5 where R is the interquartile range of

s.
We suggest to reduce the search for the most specific β-concentration interval to finding
two indices i, j ∈ {1, . . . , n} such that [si, sj ] is the best choice among others for being
the most specific β-concentration interval, i.e. being the smallest interval such that∫ sj

si
f̂S(u) du ≥ β.

We thus compute, for each sample value, the f̂S(si) value by using Eq. (8). We normalize
this distribution to obtain a discrete distribution over all the samples: ∀i ∈ {1, . . . , n},
ρi = λ.f̂S(si), with λ = 1∑n

i=1
f̂S(si)

.
Now, let (.) be a permutation that sorts the discrete distribution in descending order:
ρ(1) ≥ ρ(2) ≥ . . . ρ(n). Finding the most specific β-concentration intervals consists of
finding the highest value k such that

∑k
i=k ρi ≤ β, where k is the highest value such that

maxi=1...k ρi < ρ(k) and k is the smallest value such that mini=k...n ρi < ρ(k).
The most specific β-concentration interval is defined as Iβ = [sk, sk].

15



5.2. D-test computations
The D-test aims at comparing two ROIs RX and RY made of nx and ny pixels respec-
tively. To the ith pixel of ROI X (resp. ROI Y ) is associated a set of m (bootstrapped)
measured values (1xi, . . . ,m xi) (resp. (1yi, . . . ,m yi)).
The D-statistic is computed in five steps.

Step 1
The first step, called the drop-out step, consists of creating two tuples x̊ = (̊x1, . . . , x̊nx

)
and ẙ = (ẙ1, . . . , ẙny

). x̊ (resp. ẙ) is obtained by randomly selecting, for each i ∈
{1, . . . , nx}, (resp. i ∈ {1, . . . ny}), a single index in the set {1, . . . , m}, and then taking
the corresponding value from the bootstrapped tuple of measured values (1xi, . . . ,m xi)
(resp. (1yi, . . . ,m yi)). The selected samples in RX are removed from the original set
which only have m − 1 values left. We can assume, without loss of generality, that these
sets are renumbered in order to associate, for each ith pixel of ROI X, a set of m − 1
(bootstrapped) measured values xi = {1xi, . . . ,m−1 xi}.

Step 2
The second step involves associating, to each ith set xi = (1xi, . . . ,m−1 xi), a concentra-
tion interval [xi, xi] by using the Parzen-Rozenblatt based concentration interval estima-
tion presented in Section 5.1.

Step 3
The third step consists of computing {N i}i=1...nx

, {M i}i=1...nx
, {N i,j}i,j=1...nx

and
{M i,j}i,j=1...nx

.
For each i ∈ {1 . . . nx}, N i is the number of values of x̊ that belong to [xi, xi] and M i is
the number of values of ẙ that belong to [xi, xi].
For each i, j ∈ {1 . . . nx}, N i,j is the number of values of x̊ that belong to [xi, xi]∩ [xj , xj ]
and M i,j is the number of values of ẙ that belong to [xi, xi] ∩ [xj , xj ].

Step 4
The fourth step consists of using the above computed values to estimate the D-Test
parameters.
We set:

i) N = 1
nx

∑nx

i=1 N i,

ii) M = 1
nx

∑nx

i=1 M i,

iii) νx = 1
n2

x

∑nx

i=1
∑nx

j=1 N i,j − 1
nx

· N i · N j ,

iv) νy = 1
n2

y

∑nx

i=1
∑nx

j=1 M i,j − 1
ny

· M i · M j .

Step 5
This final step involves computing the D-test (see Expression (2)):

D = N − M
√

νx + νy
.
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5.3. Computations of the KD-test
Computing the KD-statistic follows almost the same steps as computing the D-statistic,
with three notable differences:

1 – during step 1, two values need to be randomly extracted from each set, thus four
sets are created x̊ = {x̊1, . . . , x̊nx

}, x̊′ = {x̊′
1, . . . , x̊′

nx
}, ẙ = {ẙ1, . . . , ẙny

} and ẙ′ =
{ẙ′

1, . . . , ẙ′
ny

}. The set xi thus contains only m − 2 values: xi = {1xi, . . . ,m−2 xi},

2 – during step 3, doubling of the drop-out allows us to compute four new sets of values:
{Ei}i=1...nx , {E′

i}i=1...nx , {Fi}i=1...ny , {F ′
i }i=1...ny , .

For each i ∈ {1 . . . nx}, Ei (rsp.E′
i) is the number of intervals [xi, xi] (i = 1 . . . nx)

that contain the ith value of x̊ (rsp. x̊′), and Fi (rsp. F ′
i ) is the number of intervals

[xi, xi] (i = 1 . . . nx) that contain the ith value of ẙ (rsp. ẙ′).

3 – during step 4, we need to add the computation of two parameters:

v) ςx = 1
n4

x

∑nx

i=1
∑nx

j=1(Ei − Ej).(E′
i − E′

j),

vi) ςy = 1
n3

x.ny

∑ny

i=1
∑ny

j=1(Fi − Fj).(F ′
i − F ′

j).

4 – The final step, i.e. computing the KD-statistic, is very similar to computing the
D-statistic:

K = N − M
√

νx + νy − ςx − ςy
.

5.4. Some practical advice
Although this test is non-parametric and does not require prior knowledge of the distri-
bution of values in the regions being compared, the values of a few parameters must be
defined, namely the significance level α, the probability of rejecting the null hypothesis
falsely, and β, the concentration rate of representative intervals.

• For α, the usual values are 1% and 5%. Based on the experiments we carried
out, these values are quite suitable. The values of the associated thresholds are
respectively τ0.01 = z1− 0.01

2
= 2.57 for α = 0.01 and τ0.05 = z1− 0.05

2
= 1.96 for

α = 0.05.

• Concerning β, its value defines the extent to which the interval [xi, xi] represents
the distribution of values associated with the ith pixel/voxel. The larger beta is,
the greater the degree of representativeness, but also the wider the interval is and
the more sensitive it is to outliers. Experimentally, we noted that choosing β = 0.9
is a good trade-off between the degree of representativeness and the sensitivity to
outliers.

6. Experimentation

In this paper, we propose an application of the proposed statistical test over the problem
of ROI comparison in molecular imaging, specifically in PET.
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(a) (b)

Figure 1: (a) Simulated phantom. (b) Example of a transaxial slice reconstruction with 30 ML-EM
iterations of a 30s GATE simulation of phantom (a)

6.1. Simulation setup
In order to obtain ground truth data, all experiments are performed using the widely
used GATE (16) statistical simulation framework. The chosen imaging modality was
positron emission tomography (PET).

6.1.1. GATE simulation
For the simulation, an ECAT system configuration for PET scan was designed as it is
appropriate for modelling recent PET scanners such as the Siemens Healthineers mCT20
Flow (Knoxville, TN, U.S.A.) that we use at out institution. The generated sinograms
had 400 bins of projections and 312 angular views each. For these experiments, atten-
uation, random and scatter were not taken into account. Only transaxial coincidences
were recorded.

6.1.2. Phantom description
We used a phantom made of 8 distinctive cylinders enclosed in a larger cylinder. Each
of the 8 cylinders of the same diameter (8 cm) were simulated with different fluoro-
deoxyglucose (18F-FDG) activity (respectively with 300 kBq, 310 kBq, 325 kBq, 375
kBq, 475 kBq, 600 kBq, 1000 kBq, 1500 kBq activity). The bigger cylinder, referred to
as ”background”, of 50 cm diameter is filled with 200 kBq of 18F-FDG. A schematic rep-
resentation of a section of the phantom with ground truth cylinder indexing highlighted
can be found in Figure 1(a).

6.1.3. Bootstrapping and image reconstruction
For the bootstrap approach, for each of the 109 transaxial slices, the total 30 s acquisition
is divided into 30 sub-sinograms of 1 s each. From these 30 sub-sinograms, we created a
series of 15k bootstrapped sub-sinograms. We grouped those bootstrapped sub-sinograms
30 by 30 to obtain 500 bootstrapped sinograms (13). Then, we obtained 500 bootstrap
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ROIi

ROIj 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

KD-test D-test
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 0 1 1 1 1 1 1
3 0.22 0 1 1 1 1 1 0.22 0 1 1 1 1 1
4 1 0.96 0.13 1 1 1 1 1 0.91 0.2 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1: Sensitivity (in orange cells) versus specificity (in blue cells) table for the 5% threshold.

replicates that, once reconstructed, can be considered as samples of the distribution
underlying the reconstructed data.
For the reconstruction process, for all transaxial slices, each of the 500 bootstrap repli-
cates are reconstructed with a 2D ML-EM statistical iterative algorithm (17) with 30
iterations. An example of phantom reconstruction is presented in Figure 1(b).

6.2. Results
In Tables (1) and (2), we present the results of the experiments that were carried out over
the reconstructions of the phantom presented in Figure 1(a) for two different significance
levels (1% and 5%).
In order to have a range of comparisons and to be able to characterize the performance
of the proposed test in terms of sensitivity and specificity, the reconstruction of n = 10
adjacent trans-axial slices was performed in 2D mode. Each ROIi of each slice was
compared to the same ROIi in the other slices that were considered to be equal resulting
in n(n − 1)/2 test results values. In the same way, each ROIi of each slice are compared
with KD-test and D-test to ROIj in all the reconstructed slices, which also corresponds
to n(n − 1)/2 tests.
Notice that in the experiment section of this paper, the medical interpretation of sensitiv-
ity and specificity are used. Thus, sensitivity can be seen as the probability of rejecting
H0 if a difference is observed between two ROI distributions’ and the specificity is seen
as the probability of H0 if two ROIs have the same distribution.
Under ambiguous conditions (ROIs of close activity or very noisy), the results of both
the D-test and KD-test may vary. In order to take the variability related to drop-out
choice into account, each comparison was performed 10 times and the test result was
averaged.

Sensitivity and specificity levels are 100% when comparing all combinations of ROI of
index greater than or equal to 5. Comparison of ROI 4 (375 kBq) against ROI 2 (310 kBq)
gives good results for a 5% significance level (specificity of 96% and 91%, respectively, for
the KD-Test and D-Test with 100% sensitivity). The results for this specific comparison
are worse for the 1% significance level (specificity drops to 49% and 35%, respectively,
for KD-Test and D-Test still with 100% sensitivity).
For ROI lower than or equal to 3 (ROI simulated with 300 kBq, 310 kBq, 325 kBq of
radiotracer), the two tests are not able to discriminate these ROI between them.

19



ROIi

ROIj 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

KD-test D-test
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 0 1 1 1 1 1 1
3 0 0 1 1 1 1 1 0 0 1 1 1 1 1
4 0.98 0.49 0 1 1 1 1 1 0.35 0 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: Sensitivity (in orange cells) versus specificity (in blue cells) table for the 1% threshold.

6.3. Experts visual comparison
The results highlighted in Tables (1) and (2) are interesting but do not clarify the ef-
ficiency D-Test and the KD-Test are in comparison to visual inspection by physician
experts.
Using the same experimental setup as described in the previous section, we proposed
nuclear medicine physicians of our institution (Montpellier University Hospital - 7 physi-
cians answered) to independently compare different regions of interest two-by-two.
As ROI 7 and 8 are really easy to compare to other ROIs, we limited the random selection
of the ROI indice to indices from 1 to 6 (see Figure 1(a)). A sequence of 20 ROI indices
were randomly drawn. For each ROI, the corresponding reconstructed slice (among the
10 adjacent) was also randomly drawn to ensure that every ROI have different statistics
even if they share the same count number. Reconstructed ROI of the sequence were
segmented and presented to the experts as in Figure 2. They thus were asked to perform
19 comparisons (16 different and 3 identical pairs of ROI).

Figure 2: Sequence of randomly chosen ROI drawn from different adjacent slices given to physician
experts for visual comparison. The identical adjacent ROI are highlighted in orange.

The results are presented in Table (3). For the D-test and KD-test, the results are given
for both 1% and 5%. For each comparison, the tests were performed 10 times to account
for drop-out variability. The results are expressed in percentage of right answers (1 for
identical ROI, 0 for different) for expert evaluation and in proportion to the acceptance
(1) or rejection (0) of the null hypothesis for D-test and KD-tests.
Table (3) shows that where the D-test and KD-test failed to reject the null hypothesis in
the most critical cases (ROI 1 vs ROI 2, comparison 5 in the table), the visual inspection
also failed to discriminate them (86% of wrong answers for physicians). In cases where
the ROIs have the same distribution (comparison 10, 13 and 14), no tests rejected the
null hypothesis whatever the chosen significance level. When no experts failed to find a
difference between the two tested ROI, the statistical tests always reject H0, except for
comparison 8 (ROI 1 vs ROI 4).
The fact that the tests never rejected H0 when the regions had identical activity is
consistent with its expectations as it is designed to minimize the incorrect rejection
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CI 1 - 4 5 6-7 8 9 10 11 12 13 14 15 16 17-18 19
GT 0 0 0 0 0 1 0 0 1 1 0 0 0 0
Experts 0 0.86 0 0 0.14 1 0 0.29 1 1 0.43 0.14 0 0.14
D-test* 0 1 0 0.6 0.2 1 0 0.9 1 1 1 0.3 0 0.1
D-test** 0 1 0 0.4 0.1 1 0 0.8 1 1 0.6 0 0 0
KD-test* 0 1 0 0.5 0.3 1 0 1 1 1 1 0.2 0 0.3
KD-test** 0 1 0 0.2 0 1 0 1 1 1 0.7 0 0 0

Table 3: Visual expert comparison versus D-test and KD-test evaluations to compare different segmented
ROI. CI: Comparison indices, GT: Ground truth, *: 1%, **: 5%

of H0. Considering a significance level α set at 5% for both tests, it tends to be less
conservative than 1% but still not enough to wrongly reject H0.

7. Conclusion

Here we presented a new test to compare two bootstrapped regions in images: the D-
test. This research is innovative because, to our knowledge, it is the first statistical test
proposed in the literature to compare two regions of interest for which the statistical
variability information is accessible. The problem of comparing regions of interest is
substantial in some medical disciplines such as nuclear medicine. In case of a poor
signal-to-noise ratio or when the activity difference between the two regions of interest
is too small, it may be very hard for the physician experts to discriminate those regions
in a reliable way.
The statistical test that we have proposed provides a reliable solution to this problem if
bootstrap replicates are available (always if list-mode data are registered). It is a non-
parametric test for which no hypothesis on the statistical nature of the data is necessary.
The core idea of this test is based on a drop-out procedure that relies on concentration
intervals built from bootstrap replicates that provide several iterations of the random
variable associated with each reconstructed pixel. The KD-test is a variant of the D-Test
for which the size and therefore the rejection thresholds are guaranteed. The D-Test
applies when the distribution of each region can be assumed to be stationary. When
no stationarity can be ensured (or estimated) then using the KD-test is more adapted.
We have shown that the behavior of the two tests are very close in the experiments we
carried out. This could be easily explained by the fact that, in these experiments, the
distribution in each region was stationary.
The procedures described respectively in the D-test and the KD-test do not treat the two
compared regions symmetrically. In both cases, we chose as reference the concentration
intervals calculated from one of them (region RX by default) and checked whether the
drop-out values of both regions were equally compatible with these concentration inter-
vals. It seems logical to ask whether it makes sense to construct a symmetrical version of
both tests. Clearly, the same process can be repeated, taking region RY as a reference,
and the corresponding statistic Dy can be calculated. It is also clear that the D-test
based on this new statistic will not result in the same decision (rejection/non-rejection)
for all patients. A natural way to make the initial test symmetrical is to reject the null
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hypothesis when the maximum value max{|Dx|, |Dy|} exceeds a pre-specified threshold
z1− α

2
. The significance level α′ of this new (symmetric) test is clearly lower than α. In

fact, the probability of rejection decreases, as a stricter condition for the rejection is
imposed. As future work, we propose to compare the power of these symmetrical tests
with the respective powers of the non-symmetrical D-tests and KD-tests. An increase
in power would mean a higher sensitivity for a similar specificity level, 1 − α, and the
computational cost of these tests would only double the cost of the original tests.
As future prospects, it would be interesting to assess the ability of this statistical test
to correctly compare regions of interest in a particular clinical application for which the
ground truth about the definitive diagnosis is known. This will require a prospective
clinical study. The applications are potentially numerous: from the diagnosis of neu-
rodegenerative dementia to the monitoring of responses to treatment of hematological
pathologies or solid cancers.
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