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On Maxitive Image Processing

Olivier Strauss, Kevin Loquin, Florentin Kucharczak

Abstract Digital image processing has become the most common form of image

processing. Many transformations can be achieved by very simple and versatile al-

gorithms such as contrast enhancing, restoration, color correction, etc. However, a

wide branch of image processing algorithms make an extensive use of spatial trans-

formations that are only defined in the analog domain such as rotation, translation,

zoom, anamorphosis, homography, distortion, derivation, etc. Designing a digital

image processing algorithm that mimic a spatial transformation is usually achieved

by using the so-called kernel based approach. This approach involves two kernels

to ensure the continuous to discrete interplay: the sampling kernel and the recon-

struction kernel, whose choice is highly arbitrarily made. The maxitive kernel based

approach can be seen as an extension of the conventional kernel based approach

that reduces the impact of such an arbitrary choice. Replacing a conventional kernel

by a maxitive kernel in a digital image spatial transformation leads to compute the

convex set of all the images that would have been obtained by using a (continuous

convex set) of conventional kernels. Using this set induces a kind of robustness that

can reduce the risk of false interpretation. Medical imaging for example would be a

kind of applications that could benefit of such an approach.

1 Introduction

In digital image processing, fuzzy subsets have been used from its very first in-

troduction for representing image information at different levels (seen e.g. [2] for
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a nice overview on fuzzy set based image processing). Digital image processing

refers to the set of algorithms used to transform, filter, enhance, modify, analyze,

distort, fuse, etc., digital images. Many of these algorithms are designed to mimic

an underlying physical operation defined in the continuous illumination domain and

formerly achieved via optical or electronic filters or through manipulations, includ-

ing painting, cutting, moving or pasting of image patches. Spatial domain operations

like derivation [22], morphing, filtering, geometric and perspective transformations

[12], super-resolution [16], etc. are usually derived by using a kernel based approach

[23]. In kernel-based approaches, the choice of a particular kernel shape or spread is

usually prompted more by practical aspects than by any theoretical purpose. Unfor-

tunately, this choice can highly impact the output of the obtained discrete operator.

Figure 2 illustrates this fact by highlighting the noise introduced by a digital approx-

imation of a continuous rigid transformation operation. Two different interpolation

methods have been used to rotate a detail of Figure 1 (see Figures 2.a,b). The ob-

tained images are not identical as illustrated by enhancing their absolute difference

(Figure 2.c).

This dependance is not a real problem when the considered operations are ded-

icated to artistic modifications of an image. Photographs have their own rule to

choose among the three main interpolation methods (nearest neighbor, bilinear,

bicubic), while some dedicated softwares have developed their own interpolation

(or more generally reconstruction) method. It is more problematic when the infor-

mation carried on by an image is quantitative, e.g. in medical applications where

quantization is expected.

Fig. 1 A digitalized version of an illustration of Ivan Bilibin for Fairytale of the Tsar Saltan (1905).
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For example to study a lung tumor growth, the patient is subjected to hybrid PET-

CT scan, where the CT gives the anatomical structure information and PET gives

quantitative information about the tumor metabolism. After image acquisition, it is

necessary to bring the image of either of one the modality w.r.t to other (PET w.r.t

CT or vice versa). This operation involves geometrical rigid or non rigid transforma-

tions. If details in the images are comparable to the image resolution, the choice of

registration algorithm can be critical. As an example, on Figure 3, a small ganglion

that is a negative marker of recovery could be ignored.

A more careful approach would be to compute not a single transformed image

but the set of all images that could have been obtained by using different kernels. In

medical diagnosis, this can lead to confirm a diagnosis (if all the images lead to the

same diagnosis) or highlight the need for a complementary medical investigation

(if different images lead to different diagnosis). This is what the maxitive approach

proposes.

a) b) c)

Fig. 2 Rotation of 3◦ of a detail of Figure 1 by using bilinear interpolation (a) bicubic interpolation

(b) and an enhanced view of the difference between the two rotated images (c)

large tumor

low resoluted 
tumors

PET scan CT scan

hybrid

PET-CT scan

Fig. 3 The large tumor is visible on the PET scan but the low resoluted tumors are fuzzy. They are

almost not visible on the hybrid PET-CT scan, due to a not appropriate choice of kernel during the

registration.
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Maxitive image processing takes advantage of the obvious analogy between

probability density functions (pdf) and positive kernels to extend the signal process-

ing theory to the case where the modeling is imprecisely known [13]. Within this

technique, the possibilistic interpretation [5] of fuzzy subsets is used to define max-

itive kernels that can be seen as convex sets of conventional positive kernels. These

convex sets aim at representing scant knowledge on the appropriate kernel to be used

in a given application. Maxitive-based signal processing extensions lead to interval-

valued signal that includes the set of all signals that would have been obtained by the

corresponding conventional method using a positive kernel that belongs to the core

of the maxitive kernel [17]. This approach has been extended into two dimensions

and involved in image processing applications (see e.g. [9, 6, 19, 10]).

In this article, we propose a formalization of the maxitive approach for extend-

ing geometrical transformations in digital image processing, i.e. we show how this

technique can be used to compute the convex set of all images that would have been

obtained by considering a convex set of possible kernels when applying geometrical

transformations to digital images.

After this introduction, Section 2 provides some notations and some necessary

background knowledge. In Section 3.2 we present the kernel-based method to de-

sign discrete operators mimicking continuous geometrical transformations. We then

propose the maxitive approach as a simple extension of the former method. We pro-

pose to use this extension to design a rigid transformation. We then conclude this

article.

2 Preliminary considerations, definitions and notations

2.1 Notations

Let R be the real line and IR be the set of all intervals of R. Let Ω be the image

plane, i.e. a box of R2: Ω = Ω1 ×Ω2, where Ω1,Ω2 ⊆ R. Let P(Ω) be the set of

all Lebesgue measurable subsets of Ω . With N being a positive integer, we define

ΘN by ΘN = {1, . . . ,N} ⊂ N. Let P(ΘN) = 2ΘN be the power set of ΘN .

2.2 Capacities and expectations

A capacity is a confidence measure that is more general than a probability measure.

It can be defined on both continuous and discrete domains. A capacity defined on

a continuous reference set is called a continuous capacity, while a capacity defined

on a discrete reference set is called a discrete capacity. Let Φ be either Ω or ΘN .

Definition 1. A (continuous or discrete) capacity ν is a set function ν : P(Φ) →
[0,1] such that ν(∅) = 0, ν(Φ) = 1 and ∀A,B ∈ P(Φ), A ⊆ B ⇒ ν(A)≤ ν(B).
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Given a capacity ν , its conjugate νc is defined as: νc(A) = 1− ν(Ac) for any

subset A ∈ P(Φ), with Ac being the complementary set of A in Φ . A capacity

ν such that for all A,B in P(Φ), ν(A∪B)+ν(A∩B) ≤ ν(A)+ν(B) is said to be

concave. Here we only consider this kind of capacity. The core of a concave capacity

ν , denoted M (ν), is the set of probabilities P on P(Φ) such that ν(A)≥ P(A) for

all subsets A ∈P(Φ). A probability measure is a capacity that equals its conjugate.

Thus, if ν is a probability, ν(A∪B)+ν(A∩B) = ν(A)+ν(B) [4].

The concept of expected value associated with a probability measure has been

extended to concave capacities by means of a Choquet integral (see e.g. [18]). Let

ν be a concave capacity defined on Φ and let f : Φ → R be a L1 bounded function.

The (imprecise) expectation of f w.r.t. ν is the real interval Eν ( f ) defined by:

Eν ( f ) =
[

Eν( f ),Eν( f )
]

=
[

Čνc( f ), Čν ( f )
]

,

where Č denotes the asymmetric Choquet integral (see e.g. [21]). One of the

important properties of this extension is that Eν( f ) is an interval that contains all of

the EP( f ) with P ∈ M (ν). Conversely, any value of this interval corresponds to an

expected value of the form EP( f ) with P ∈ M (ν) [4].

Remark 1. Upper expectations and concave capacities coincide when consider-

ing the characteristic function. Let ν be a concave capacity, ∀A ∈ P(Φ), ν(A) =
Eν (χA), with χA being the characteristic function of A.

2.3 Summative and maxitive kernels

In discrete image processing, the role of a kernel is to define a weighted neighbor-

hood of spatial locations in the image plane, with those weights being used in an

aggregation process. Among different kernels, summative kernels play an important

role since they define normalized positive weighted neighborhoods. They are inten-

sively used to establish discrete operators defined in the continuous domain [14].

Let N ∈ N and Φ be either Ω or ΘN .

A summative kernel is a positive function κ : Φ −→ R+ complying with the

summative property, i.e.
∫

Ω κ(x)dx = 1 (if Φ = Ω ) or ∑n∈ΘN
κn = 1(if Φ = ΘN).

Such a function defines a probability measure Pκ on Φ by: ∀A ∈ P(Φ), Pκ(A) =
∫

A κ(x)dx (if Φ = Ω ) or Pκ(A) = ∑n∈A κn (if Φ = ΘN). K (Φ) is the set of all

summative kernels defined on Φ .

A maxitive kernel [14] is a function π : Φ −→ [0,1] complying with the max-

itive property, i.e. supx∈Φ π(x) = 1. Such a function defines a concave capacity

on Φ called a possibility measure Ππ by: Ππ(A) = supx∈A π(x). A maxitive ker-

nel π defines a convex subset of K (Φ) as follows: M (π) = {κ ∈ K (Φ)|∀A ∈
P(Φ),Pκ(A)≤ Ππ(A)} called its core.
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2.4 Crisp and fuzzy partitions

In image processing, partitioning is mandatory to define the relation between the

continuous domain, where the illumination function is defined, and the discrete do-

main, where the measured illumination is depicted. Traditional image processing is

based on crisp partition, while more advanced image processing has been based on

fuzzy partition (see e.g. [15, 6]).

An image partition of Ω is a set of N subsets {Cn}n∈ΘN
such that (i) ∀(n,m)∈ΘN ,

Cn ∩Cm 6=∅⇐⇒ n = m, (ii) ∀ω ∈ Ω , ∃n ∈ΘN such that ω ∈Cn.

An image partition is said to be uniform if it can be generated by a simple generic

subset E: let χE be the characteristic function of E, ∀n ∈ ΘN , ∃ωn ∈ Ω such that

∀ω ∈ Ω , χCn(ω) = χE(ω −ωn).
A fuzzy image partition of Ω is a set of N fuzzy subsets {Cn}n∈ΘN

such that

∀ω ∈ Ω : (i) ∑N
n=1 µCn(ω) = 1 and (ii) µCn is continuous, with µCn being the

membership function of Cn (n ∈ ΘN). A fuzzy partition is said to be uniform if

it can be generated by a simple generic fuzzy subset E: let {ωn}n∈ΘN
be a set

of N regularly spaced locations of Ω , then Cn is generated by E i.e. ∀ω ∈ Ω ,

µCn(ω) = µE(ωn − ω). A fuzzy partition is said to be normalized if ∀n ∈ ΘN ,

∃ω ∈ Ω such that µCn(ω) = 1 [20]. Usually, in image processing, partitions are

uniform to comply with the geometry of the image sensors.

Fuzzy partitions are instrumental for performing reconstructions. Let {Fn}n∈ΘN

be a discrete function, a reconstructed continuous function F̂ : Ω → IR can be de-

fined by ∀ω ∈ Ω , F̂(ω) = ∑n∈ΘN
FnµCn(ω). The following definition will allow us

to extend this instrumentality to link the continuous space Ω to the discrete space

ΘN .

Definition 2. Let A ⊆ ΘN , then we define ϒA as being the membership function of
⋃

n∈A Cn, where the union is defined by the Łukasiewicz T-conorm: ∀ω ∈Ω , ϒA(ω)=
min(1,∑n∈A µCn(ω)) = ∑n∈A µCn(ω) due to Property (i).

Remark 2. Note that a uniform crisp partition is a special case of fuzzy partition

where the generic fuzzy subset E is a crisp subset.

3 From continuous to digital image processing

3.1 Continuous image / digital image

In the continuous domain, an image can be seen as a measurable physical illumina-

tion phenomenon, i.e. the projection, via an optical device, of the real-world light

information in a particular direction. It is generally modeled by a bounded posi-

tive integrable function I defined on IR2. More precisely I is a L1(IR
2)+ function

defined on a compact subset Ω (e.g. a closed rectangle) of IR2. This function is usu-
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ally extended throughout the continuous domain IR2 by assigning an arbitrary value

γ (usually 0) to Ω c (the complementary set of Ω in IR2).

There are some optical systems that allow to perform image processing in the

continuous domain. But nowadays image processing is mainly performed on com-

puter or smartphones, i.e. on image stored in computer memory is a discrete quan-

tity. From a signal processing point of view, a sampled image can be considered as

being obtained by measuring the continuous illumination function I defined on IR2

projected by an optical device on a matrix of sensors called the retina (see Figure 4).

The sensors are usually regularly spaced along each axis at a limited number N of

locations, called the sampling locations. Those measurement values or locations are

usually referred to as pixel values or locations. Let ΘN = {1, . . . ,N} ⊂ IN be the set

of indices of the sampling locations and {ωn}n∈ΘN
be the set of sampling locations

also referred to as the sampling grid.

Ideally, each measure In can be modeled by integrating the illumination function

I in a crisp neighborhood around ωn. Let φωn ⊂ IR2 be this neighborhood, then the

relation between I and I can be expressed by: ∀n ∈ΘN , In =
∫

φ ωn I (ω)dω . When

χφ ωn is the characteristic function of the subset φωn , it can be rewritten as:

∀n ∈ΘN , In =

∫

IR2
I (ω)χφ ωn (ω)dω . (1)

Finally, the measured pixel values are quantized to obtain the digital image. What

has to be kept in mind is that what we have at hand is not the image but discrete

measures of it.

There are many operations for which accounting for the underlying continuous

nature of the image is mandatory: derivation, morphing, filtering, geometric and

perspective transformations, etc. For those operations, the aim is to define a dis-

crete operator that can mimic the equivalent operation in the continuous domain.

The idea is illustrated in Figure 5 when considering a rotation of a detail of the im-

age depicted in Figure 1 around the optical axis. Let us consider the input discrete

Fig. 4 Measure of a continuous image.
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image as being obtained by sampling a continuous image. The image we would

like to obtain by using the discrete rotation operator is the image that would have

been obtained by rotating and then sampling the original continuous image. Such

an operation is not possible due to the loss of information induced by the sampling.

It has to be approximated in a way that preserves at best the original (discrete) in-

formation. For example, a particularly desirable property would be the reversibility

of a digital operation. However, continuous based discrete operations always lead

to information loss [3]. Therefore, the original information cannot be reconstructed

from the processed image.

3.2 Kernel-based image processing

Kernel-based image processing, as illustrated in Figure 5, consists in defining dis-

crete operations on digital images that are analog to operations defined on con-

tinuous images in the continuous domain. Kernels are used for defining weighted

neighborhoods of a location in the image plane, aiming at reconstructing a continu-

ous image from a discrete image, or sampling a continuous image to built a discrete

image.

sampling sampling

discrete rotation

continuous rotation

discrete input image

original continuous image rotated continuous image

discrete output image

Fig. 5 How to go from continuous to discrete image processing?
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3.2.1 Kernel-based image sampling and reconstruction

Let {ωn}n∈ΘN
be the N sampling locations. As a very straightforward modeling,

sampling a continuous image can be seen as the integration of the illumination func-

tion I in a neighborhood around each sampling location ωn.

Let κ be a sampling kernel, the link between the sampled pixel values I and the

continuous illumination I can be written as [7]:

∀n ∈ΘN , In =

∫

IR2
I (ω)κ(ω −ωn)dω . (2)

A certain consistency has to be kept between the continuous and the discrete

domain. Since the scaling of intensity values induced by quantization is usually un-

known, the original illumination measurement scale is usually replaced by the avail-

able grayscale. Thus, we need to assume that the original image can be expressed

in the digital grayscale. The consistency of both continuous and discrete images can

be expressed in that way: “if I is a constant image such that ∀ω ∈ Ω , I (ω) = a,

then ∀n ∈ΘN , In = a”. This implies that κ is a summative kernel.

Reconstruction can be thought of as a converse procedure. However, since sam-

pling induces information loss, the recomposed image usually cannot be seen as a

perfect reconstruction of the original continuous illumination I , but rather as an

estimate Î of the continuous function in Ω . This estimate is obtained by a finite

weighted sum of the pixel values In (n ∈ΘN):

Î (ω) = ∑
n∈ΘN

Inη(ωn −ω) = ∑
n∈ΘN

Inηω
n , (3)

η being a continuous reconstruction kernel and ηω
n being the discrete kernel

induced by sampling η translated in ω on the sampling grid.

The same consistency between continuous and discrete domain will imply that

∀ω ∈Ω , ∑n∈ΘN
η(ω−ωn)=∑n∈ΘN

ηω
n = 1: sampling a reconstruction kernel trans-

lated at any location ω ∈ Ω leads to a discrete summative kernel. Moreover, if the

sampling is uniform, then η is even.

3.2.2 Kernel-based image processing

Let ϕ be a linear spatial domain operation transforming a continuous image I into

another continuous image I ′ such that ∀ω ∈ Ω , I ′(ω) = I (ϕ(ω)). Let ψ be

the inverse of ϕ , i.e. ∀ω ∈ Ω , ϕ(ψ(ω)) = ψ(ϕ(ω)) = ω . Let {ωn}n∈ΘN
be the

sampling locations and {In}n∈ΘN
be the pixel values of the original discrete image –

supposedly obtained by sampling I .

Kernel based image processing consists in deriving a discrete operation that is

equivalent to sampling I ′ on the sampling grid.

Sampling the continuous image I ′ leads to the sampled image I′ such that:
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∀k ∈ΘN , I
′
k =

∫

IR2
I

′(ω)κ(ω −ωk)dω , (4)

κ being the sampling kernel. Considering I ′(ω) =I (ϕ(ω)), Equation 4 becomes:

∀k ∈ΘN , I
′
k =

∫

IR2
I (ϕ(ω))κ(ω −ωk)dω . (5)

Now, let η be a reconstruction kernel, i.e. ∀ω ∈ Ω , I (ω) = ∑n∈ΘN
Inη(ωn−ω),

then ∀k ∈ΘN :

I′k =

∫

IR2
∑

n∈ΘN

Inη(ϕ(ωn −ω))κ(ω −ωk)dω

= ∑
n∈ΘN

In

∫

IR2
η(ϕ(ωn −ω))κ(ω −ωk)dω = ∑

n∈ΘN

Inρk
n ,

(6)

with ρk
n =

∫

IR2 η(ϕ(ωn −ω))κ(ω −ωk)dω .

By two simple variable changes (ωn−ω)→ ω thenϕ(ω)→ ωn, ρk
n can be rewritten

in:

ρk
n =

∫

IR2
η(ωn −ω)κ(ωn −ωk −ψ(ωn −ω))

δψ

δω
(ω −ωk)dω . (7)

Thus, estimating the discrete values of I′ based on I comes down to defining, for

each location k, a positive discrete kernel ρk by sampling the transformed kernel

κψ , defined by ∀ω ∈ Ω , κψ(ω) = κ(ψ(ω)) δψ
δω (ω), on the sampling grid formed by

translating the interpolation kernel η on each sampling location.

Let Cn be the (possibly non normalized) fuzzy subset whose membership func-

tion is defined by: ∀ω ∈ Ω , µCn(ω) = η(ω −ωn). Since η is a positive even kernel,

by construction ∀ω ∈ Ω , ∑n∈ΘN
µCn(ω) = 1. Therefore the subsets {Cn} (n ∈ ΘN)

form a fuzzy partition.

Now, let Qk
κψ be the measure defined by: ∀A ⊆ΘN , Qk

κψ (A) = ∑n∈A ρk
n , the value

I′k can be seen as being the estimate of I w.r.t. Qk
κψ :

I′k = EQk
κψ
(I). (8)

The measure Qk
κψ can also be seen as an estimate:

∀A ⊆ΘN , Qk
κψ (A) =

∫

IR2
µCnκ(ψ(ω −ωk))

δψ

δω
(ω)dω

=

∫

IR2
κ(ψ(ω −ωk))

δψ

δω
(ω) ∑

n∈A

µCndω

=

∫

IR2
κ(ψ(ω −ωk))

δψ

δω
(ω)ϒA(ω)dω ,

(9)

ϒA being defined in Definition 2. Thus Equation 9 becomes:
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∀A ⊆ΘN ,Q
k
κψ (A) = EPκψ (ϒA), (10)

Pκψ being the set measure whose density is defined by the kernel κψ .

As an example, let ϕ be a rigid transformation, then ϕ(ω) = R.ω+T , where R is

a rotation matrix and T a translation vector. Then ψ(ω) =RT
.ω−RT

.T •T being the

transpose operator and
δψ
δω (ω) = RT . Therefore, ∀ω ∈ Ω , κψ(ω) = RT

.κ(RT ω −

RT
.T ). This is illustrated in Figure 6.

3.2.3 Maxitive kernel-based image processing

The maxitive extension of the kernel-based image processing simply consists in

replacing the summative sampling kernel by a maxitive sampling kernel. This re-

placement aims at representing imprecise knowledge on the sampling kernel, either

because the original sampling kernel is unknown, either because the kernel that

would lead to the least distortion in the transformed image is unknown.

Let π be a maxitive kernel. Replacing κ by π in Equation 2 leads to an interval-

valued discrete image I such that ∀n ∈ ΘN , In = EΠ
πωk

(I ), Ππωk being the possi-

bility measure induced by πωk , the maxitive kernel π translated on ωk. This interval

valued discrete image represents the convex set of all the discrete images that could

have been obtained by sampling I with a kernel κ ∈ M (π) (see [14]).

Let πψ be the maxitive kernel π transformed by the application ψ such that:

∀ω ∈ Ω , πψ(ω) = π(ψ(ω)) δψ
δω (ω). Then, Expression 10 can be extended to define

the capacity νk, for each location ωk (k ∈ΘN):

∀A ⊆ΘN ,ν
k
πψ (A) = EΠπψ (ϒA). (11)

By construction, νk
πψ is a concave capacity such that ∀κ ∈ M (π) and ∀A ⊆ΘN ,

Qk
κψ (A)≤ νk

πψ (A).
The final step of this extension consists of estimating the interval valued image

I
′

by replacing, in Equation 8, the discrete additive set measure Qk
κψ by the discrete

non additive set measure νk
πψ . This leads to:

x

x ω − ωkκ(           )

(ω − ω )
k

κ 
ψ

inverse rotation

Fig. 6 Transformation of the sampling kernel κ translated in ωk when ϕ is a rigid transformation.
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∀k ∈ΘN , Ik
′
= Eνk

πψ
(I). (12)

The estimation operator E propagates imprecise knowledge of the sampling ker-

nel to the interval-valued transformed image.

3.3 Example: rigid transformations

Computation of the transformed maxitive kernel πψ is as easy as computing the

transformed summative kernel κψ . But one instrumental question is “which maxi-

tive kernel has to be chosen?”. As in image processing, mostly separable kernels or

radial kernels are considered, a very interesting kernel would be a one that dominates

any sampling kernel whose support is bounded. This problem has been addressed

in [6] by considering separable kernels and separable estimations. As mentioned by

the authors, such an approach is not suitable for transformations like rotations. A

nice answer to this problem is proposed in [1] that gives different 2D maxitive ker-

nels depending on which summative kernels have to be considered. For example, the

continuous maxitive kernel π̆(ω) = max(0,1−‖ω‖2) dominates every bell-shaped

radial continuous summative kernel whose support is included in [−1,1]. This is

very convenient because it can represent the fact that the support of the sampling

kernel is at most the distance between two pixels but all what is known about the

shape is that it is bell-shaped and radial. Note that the Dirac impulse is included in

M (π̆), ensuring a kind of guaranteed preservation of the information carried on by

the digital original image.

Thus now let us choose π̆ to be the sampling maxitive kernel, then ∀ω ∈ Ω ,

π̆ψ(ω) = π̆(RT ω −RT
.T ). For seek of simplicity, let us choose the partition {Cn}

(n ∈ΘN) to be a crisp partition, each Cn being a box centered on ωn. Then Equation

11 leads to:

∀A ⊆ΘN ,ν
k
πψ (A) = EΠπψ (ϒA) = sup

ω∈
⋃

n∈A Cn

π̆(RT ω −RT
.T ).

In that case νk
πψ is a possibility measure associated to the discrete possibility

distribution β k defined by:

∀n ∈ΘN ,β
k
n = sup

ω∈Cn

π̆(RT ω −RT
.T ).

If the partition is not crisp, then νk
πψ is not a possibility measure but can be

computed analytically (see [7] for an example of such a computation).
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4 Conclusion and discussion

In many applications, images are subject to geometric distortions introduced by per-

spective, misalignment, optical aberrations, movement of the imaging sensor etc.

which need to be corrected for further interpretation. Digital geometrical transfor-

mations are instrumental for reversing these distortions, align different images in a

common frame or simply enable image contain analyse or interpretation. Many of

those transformations aim a mimicking a physical operation defined in the continu-

ous illumination domain. Kernel-based approach is a convenient way for designing

digital transformations that may ensure a certain preservation of digital image topo-

logical and illumination properties. However, this method relies on modeling the

interplay between continuous and discrete domain via two arbitrarily chosen ker-

nels that model the sampling (to go from continuous to discrete domain) and the

reconstruction (to go from discrete to continuous domain) operations. The arbitrari-

ness of this choice can have severe consequences in applications where details have

to be preserved that are comparable with image resolution.

Maxitive image processing can be an interesting solution to preserve the infor-

mation carried on by the original image. It allows to compute de (convex) set of all

images that would have been obtained by considering a (convex) set of kernels that

could have been appropriate to compute this transformation. This computation can

be achieved with a very low increase of the computation complexity (see e.g. [6]).

This article is focussed on modeling imprecise knowledge on the sampling ker-

nel. Imprecise knowledge on the approximation kernel has to be taken into account

in another way. Note however that, due to the interchangeable role of kernels in Ex-

pression 7, this modeling in fact addresses imprecise knowledge on the convolution

of both reconstruction and sampling kernels (see e.g. [8]). This needs to be further

investigated. Other problems have to be investigated including reversibility – how

both illumination and topological information preserved when an image is subject

to a transformation and then its inverse transformation? – and selection, in the con-

vex set of obtained images, of a representative image to be presented to the expert

(see e.g. [11]).
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