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Abstract—Testing memory circuits is crucial for ensuring
the quality and reliability of System-on-Chip (SoC) designs,
especially as shrinking technology nodes increase susceptibility
to nanometer-scale defects. This paper introduces an enhanced
methodology for memory testing, leveraging the Cell-Aware (CA)
test concept. Building on prior work for SRAM array testing [1],
we extend the CA methodology to include periphery testing by
generating, for the first time, CA models for each memory Input-
Output (I/O) element, covering key components such as address
decoders, write drivers, and sense amplifiers. We present results
from testing these periphery components using the CA methodol-
ogy. Additionally, we compare existing SRAM testing techniques
with our CA methodology for the decoder and I/O circuitry.
To ensure a fair comparison, we selected minimal March tests
designed to detect functional faults in peripheral circuits, aligning
with the fault models targeted by our approach. A quantitative
analysis of fault coverage demonstrates the effectiveness of our
methodology compared to March algorithms, particularly in
terms of test complexity.

Index Terms—Memory testing, Structural testing, Memory
Periphery, Cell-Aware models, ATPG

I. INTRODUCTION

In modern IC applications like Edge Computing, Machine
Learning (ML), and the Internet of Things (IoT), there is a
growing need to process and store large amounts of data. As
a result, memory blocks now take up a substantial portion of
System-on-Chip (SoC) areas [2]. At the same time, CMOS
transistor technology has scaled down to nanometers, increas-
ing memory density. However, this miniaturization makes
memories more prone to defects and reliability issues [3],
making memory testing crucial for ensuring IC quality and
safety.

The most prominent memory testing approach is functional
testing, which verifies the proper memory operation through a
series of read and write operations. March tests are the most
well-known algorithms developed to functionally test memory
architectures [4], [5]. However, due to the high abstraction
level of functional testing and the increasing complexity
of circuit designs, including emerging memory technologies
like MRAM and RRAM, functional testing is insufficient to
ensure the optimal Defect Parts Per Million (DPPM) for these
advanced memories [3], [6]. Hence, the development of more
comprehensive and cost-effective testing methodologies, to

ensure the reliability and performance of advanced memory
technologies and modern ICs is imperative.

To address this issue, a paradigm shift from functional
to structural testing by using the CA test methodology has
been proposed in [1]. CA testing, originally developed for
digital IC testing, addresses intra-cell defects in standard cells
and has been proposed as a way to reduce test escapes
that are not caused by defects on interconnects [7]. The CA
methodology relies on the generation of CA models for each
standard cell. CA models are dictionaries that associate intra-
cell defects (specifically, transistor short and open defects)
with the input cell patterns that detect them. The information in
the CA models is then exploited by an Automatic Test Pattern
Generator (ATPG) to generate test patterns that target this set
of fault models. Although CA testing has been widely adopted
in digital IC testing, its application on memory circuits remains
novel.

The preliminary flow, presented in [1] for the adaptation of
the CA methodology to memory testing has been applied to
the SRAM bit-cell. In this paper, we address the limitations
of the aforementioned flow and propose an improved version
that is adapted to testing not only the SRAM memory array
but also the memory periphery since defects on the latter have
proven to have a significant impact on overall test escapes
[5], [8]. Initially, the proposed flow includes the generation
of CA models for the write driver, sense amplifier, and the
standard cells that compose the address decoders. However,
module-level simulations for defect detection prove to be
insufficient due to the nature of fault propagation in a memory
architecture. Hence, the UnDetected (UD) defects are further
analyzed. The proposed solution involves the generation of
custom CA models that contain additional information on the
detection conditions of UD defects. To generate the custom CA
models, the full memory architecture is used for simulations.
However, the number of defects included in these CA models
is significantly lower, since most of the defects are included
in module-level CA models.

The CA testing methodology offers significant advantages
by reducing the abstraction level of fault modeling from the
functional down to the physical and transistor levels, which
ensures the detection of intra-cell defects. One of the key



benefits of CA testing is its efficiency—SPICE simulations
are only required once per standard cell (or memory block
in memory testing contexts). These CA models can then be
reused across multiple designs, significantly reducing time,
resources, and testing costs. Furthermore, the CA methodology
enhances defect diagnosis by identifying the precise location
of defects, thereby accelerating physical failure analysis, which
is essential for improving yield and addressing customer
returns [9], [10].

It is essential to highlight the difference between fault types
in traditional memory testing and those used by the ATPG tool
in our methodology. Conventional FFMs represent functional
deviations in memory behavior due to defects. These models
guide the generation of March elements to detect specific
faults. In contrast, our approach shifts from functional to
structural fault modeling. Through ATPG, we introduce faults
in the interconnections of memory modules, as well as those
defined by the CA model tables, which directly represent
defects simulated during CA model generation. This approach
allows us to quantify fault coverage based on ATPG-generated
patterns targeting both interconnection and CA model faults.

Through this methodology, we provide the following con-
tributions:

• Firstly, transistor-level defects are systematically consid-
ered, and detailed information on defect location and
detection condition is provided in the module-level CA
model.

• Secondly, using the proposed flow, fewer SPICE simula-
tions ought to be carried out at the memory level, hence
reducing the test generation time.

• Thirdly, by structurally addressing each defect, the num-
ber of test patterns is optimized for each memory com-
ponent, in contrast with well-known March tests that
can often have high test complexity due to the linear
correlation with memory size.

The paper is organized as follows. In Section II, a back-
ground on existing literature regarding SRAM periphery test-
ing is given. In Section III, the flow of the CA methodology
adaptation for SRAM periphery testing is detailed. In Section
IV, the structural testing of address decoders is described. In
Sections V and VI, the obtained results on write driver and
sense amplifier testing are given, respectively. In Section VII,
a comparison between existing solutions and our methodology
is provided. Finally, conclusions and perspectives are drawn
in Section VIII.

II. BACKGROUND ON SRAM PERIPHERY TESTING

A. Address Decoders

Address decoders are crucial for memory cell selection
in read and write operations. Initially, researchers believed
testing the memory array would also test the decoders, as
defects would appear as faults in the array, with the MATS++
algorithm covering Address Decoder Faults (AFs), Stuck-At
Faults (SAFs), and Transition Faults (TFs) in SRAM [11].
However, with the shift from NMOS to CMOS, this approach

became inadequate, as CMOS decoder defects couldn’t be de-
tected by MATS++ [12]. To address these defects, researchers
proposed decoder-specific patterns for March tests and new
methods like combining Built-In Self Test (BIST) to detect
Address Decoder Delay Faults (ADFs) [13] and modifying
March C- for Address Decoder Open Faults (ADOFs) [14].
These solutions primarily rely on March tests, remaining in
the realm of functional testing.

B. Write Driver

The Write Driver (WD) is essential for accurate data writing
in memory systems, and defects, often modeled using resistors,
can occur due to manufacturing issues. These defects are
typically represented as static or dynamic functional fault
models. Static faults in the memory periphery, covered by tests
for memory cell array faults, are classified as memory cell
array faults [15]. Dynamic faults, like resistive open defects,
are modeled using the Slow Write Driver Fault or Un-Restored
Write Fault models [16], and larger defects may cause the Un-
Restored Destructive Write Fault (URDWF) model, affecting
other cells in the same column. The March C- algorithm is
commonly used for WD testing, but no structural approaches
are documented.

C. Sense Amplifier

The Sense Amplifier (SA) in a memory architecture is an
essential block. The ultimate purpose of a sense amplifier is
to reduce the time and power consumption during the reading
phase in a memory architecture. The correct functionality of
the sense amplifier ensures the intended reading operation to
be realized. Like in the case of the WD, defects in the SA can
be caused during the manufacturing process. Several works in
the literature have analyzed possible defects that can impair
the functionality of the SA. However, the focus is kept on
resistive opens, since they are known to cause dynamic faults
with more complex detection conditions. Some of the FFMs
that describe the faulty behavior of the SA are described in
[17], [18]. Moreover, March tests (i.e., March C-) are used to
test the aforementioned defects in the SA. Similarly to the WD,
a structural approach to SA testing is lacking in the literature.

III. CELL-AWARE METHODOLOGY FOR SRAM
PERIPHERY TESTING

A. An Overview of the CA Methodology

The CA test methodology is originally developed for digital
IC testing. As transistor size shrank to nanometer level, intra-
cell defects (at transistor level) became more prominent. Hence
a need for new fault models arose, apart from traditional
ones (i.e., stuck-at fault, transition fault) that are injected in
interconnections to represent inter-cell defects [7]. The CA
methodology is a systematic way of representing defects inside
standard cells that compose a digital IC. The basis of CA
testing is the generation of Cell-Aware models. These models
are files that contain information on the location of probable
defects that can occur inside a given standard cell, as well



as the detection conditions (i.e., the input-output patterns that
detect a defect).

The generation of CA models for each standard cell involves
multiple steps. First, all possible defects within each standard
cell, known as intra-cell defects, are identified. These defects
include transistor-level faults such as shorts and opens, as
well as layout-based defects arising from the physical circuit
layout. By modifying Design Rule Check (DRC) parameters
in existing DRC tools, adjacent polygons that are likely to
cause defects are identified, and the defects are modeled as
shorts (a low-value resistor) between the affected nets, whereas
locations with thin polygons can be modeled as opens (a high-
value resistor) [19]. Each identified defect is then injected into
the circuit, and SPICE simulations are run. If a deviation from
the expected behavior of the standard cell is observed in the
output signals, the injected defect is marked as detected and
associated with the corresponding input pattern.

At the end of the analog simulations, a dictionary mapping
all input patterns to the detected defects is generated. This
dictionary, presented in a table, along with the location and
size information for each injected defect, is compiled into
a file known as the CA model. The CA model includes
both statically detected defects (requiring only one pattern
for detection) and dynamically detected defects (requiring two
patterns). These CA models are then used by an Automatic
Test Pattern Generator, along with the gate-level digital IC
description (Verilog), to create circuit-level patterns that test
the overall IC performance for inter-cell and intra-cell defects.

B. CA Methodology Adaptation to SRAM Periphery Testing

Prior work in adapting the CA methodology to SRAM
testing is given in [1]. However, the work presented in [1]
only addresses the SRAM bit-cell testing, providing a limited
solution for holistic memory testing. In this section, an im-
proved flow that addresses defects not only in the memory
array but also in the periphery is described.

The flow, shown in Fig. 1, begins with the hierarchical
spice netlist of a 4x4 memory architecture designed in 28nm
FDSOI, used as a case study. The architecture includes the
memory array, address decoders, write driver, sense amplifier,
and pre-charge circuits and it is shown in Fig. 2 (a). The
fault-free simulation for a sequence of Write (W) and Read
(R) operations (i.e., W1R1W0R0) is given in Fig. 2 (b).
The first step in applying the CA methodology to memory
testing is to convert the SPICE netlist into a Verilog one,
such that gate-level memory models (resembling the standard
cells in the case of digital ICs) are obtained. A functional
verification tool, namely ESP from Synospsys, which is com-
monly used to perform equivalence checking between SPICE
and Verilog netlists, has been employed for this step. The
described 4x4 SRAM memory consists of combinational and
analog circuit blocks. Combinational blocks like the address
decoders and WD are straightforwardly represented at the gate
level. However, additional steps need to be taken for analog
blocks like the SA. The gate-level netlist is then simulated
using a Verilog simulator to verify correct behavior. The main
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Fig. 1: SRAM periphery testing flow using the CA methodol-
ogy

difference between SPICE and gate-level simulations is the
analog behavior of the Bit-Line (BL) and Bit-Line Bar (BLB)
signals, which discharge over time in analog simulations.
However, the final signal levels match in both SPICE and
Verilog simulations. This gate-level description methodology
is not limited to the SRAM architecture; it is technology and
size-independent, making it applicable to larger CMOS-based
SRAM architectures and other memory types like MRAM that
use transistor-based periphery blocks.

Since the objective is to use an ATPG for the generation
of test patterns, the netlist needs to be adapted such that it is
suited for a combinational ATPG. However, a combinational
ATPG does not allow the bidirectional nature of the memory.
Hence, the netlist is separated such that the write and read
operations are done in different time sequences. In the archi-
tecture used for write operations, the content of each cell is
considered as an output. In the read architecture, the inner
storing nodes are considered as inputs to represent the Stored
Bits STB.

In parallel, the process of CA model generation for each
memory block is realized. The first step is to identify all the
possible defects that can occur in each sub-circuit (intra-cell
defects). In CA models, intra-cell defects are represented by
transistor-level defects and layout-based defects. Transistor-
level defects include shorts and opens. Layout-based intra-
cell defects depend on the physical layout of a circuit. By
modifying the DRC rules, adjacent polygons that can cause
potential defects are identified. Consequently, the intra-cell
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Fig. 2: (a) The 4x4 SRAM memory and (b) its fault-free
simulation for a W1R1W0R0 sequence of operations.

defect list is enriched. Each defect is then injected into the
circuit one by one, and electrical simulations are run using
HSPICE. If a deviation in the output signals is observed due
to the presence of the injected defect, the defect is mapped as
detected by the corresponding input pattern. At the end of the
analog simulations, a dictionary that maps all input patterns
to the detected defects is generated. The CA model includes
two tables; the static table where a single pattern suffices to
detect the defect and the dynamic one where two patterns are
necessary to detect the defect.

Next, the generated CA models are used by an ATPG,
in conjunction with the circuit description at the gate level
(Verilog description), to generate external patterns that test
the overall performance of the memory in the presence of
intra-cell and inter-cell defects. The ATPG from TMAX from
Synopsys has been used for this purpose [20]. Inter-cell defects
are located in the interconnections of each memory gate-
level block, while intra-cell defects are the cell-aware defects
identified during the CA model generation step. The fault
models considered are Stuck-At-Fault (SAF) for statically-

detected defects and Transition Fault (TF) for dynamically-
detected defects.

The ATPG generates a list of test patterns and a list of
UnDetected (UD) defects. The next step of the flow is to
analyze the UD defects. For blocks such as the WD and SA,
the UD defects are injected into the corresponding blocks, and
memory-level SPICE simulations are performed to identify
the dynamic operations needed to detect them. Several studies
indicate that dynamic operations accessing more than one bit-
cell (i.e., dynamic 2-cell faults) are necessary for detecting
specific defects [16], [17], [21] in the memory periphery. Such
operations cannot be covered by module-level simulations
alone, resulting in UD defects after the first ATPG run. To
address this issue, the effects of UD defects are mapped into
the memory array through custom CA models generated for
bit-cells of the same column controlled by the same WD and
SA.

Like in the case of the WD and SA, detecting the UD
defects in the decoder requires dynamic patterns involving
more than one cell in the memory array. However, for address
decoders, it is possible to deduce the necessary address order
and operation using the information in the standard cells CA
model that compose the decoders, with no need for memory
level simulations. Since the row decoder controls the activation
of Word Lines (WLs), only one column of the memory array is
necessary for this task. To allow the ATPG to understand the
switching of WLs that enables addressing two cells, a new
CA model is generated for the first column (CLM0) of the
array. This emulates the detection conditions so the ATPG
can generate structural patterns. This step is detailed further
in Section IV. After generating the custom CA models, another
ATPG run is performed to obtain the additional patterns. The
process concludes by merging all test patterns and calculating
the fault coverage. In the ATPG tool, intra-cell defects are
treated as faults, so the tool computes fault coverage as the
ratio of detected faults to the total number of considered faults,
including both inter-cell and intra-cell faults.

It is important to note that the CA methodology targets
defects at the module level, which ensures that scalability re-
mains unaffected. The flow presented in Figure 1 is applicable
to SRAMs of varying sizes and types, as the fundamental
building blocks of the memory remain the same. While the
CA model generation process can be repeated for different
designs and technology nodes, this is a one-time procedure.
Once generated, the CA model for each module can be reused
as needed. Although SRAM arrays often constitute up to 80%
of the memory, the CA model for the SRAM bit-cell is created
once and reused to address all potential defects in each of
the bit-cells. The same principle applies to address decoders,
which are composed of reusable cells throughout the design.

Moreover, the CA methodology can be extended to other
memory technologies beyond SRAM. Since most memory
architectures share common blocks such as decoders, sense
amplifiers, write drivers, and bit-cells, the presented flow in
Figure 1 can be adapted for emerging memory technologies,
especially for the periphery circuitry. The primary difference



lies in the CA model generation process for the bit-cell itself.
For instance, MRAM and RRAM bit-cells differ from the
transistor-based SRAM bitcell, requiring adjustments in defect
modeling to account for technology-specific characteristics.

IV. STRUCTURAL TESTING OF ADDRESS DECODERS

To apply our structural testing methodology to address
decoders in SRAMs, we have considered a 2-bit NOR-based
row decoder, shown in Fig. 3. This decoder is part of the 4x4
SRAM memory architecture that has been used as a case study.
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Fig. 3: Row address decoder structure

A. CA Model Generation for Row Decoder Cells

CA models need to be generated for each module type
in the decoder. For this design, we utilize standard cells
from the 28nm technology library from STMicroelectronics.
Specifically, CA models are generated for NOR and AND
gates, following the steps described in the CA model gen-
eration process (see Section III-A). These CA model files
contain detailed information on defect types and their locations
within the cell, along with detection tables that include the
necessary patterns to detect these defects. Defects with similar
detection conditions are classified as equivalent. During the
CA model generation, non-resistive open and short defects are
considered, although resistive defects can also be addressed by
CA tests [22]. Each defect is individually injected and SPICE
simulations are run.

Defects are classified and organized into static and dynamic
tables based on their detection conditions. The location and
type of defects listed in the tables are depicted in Fig. 4 and
5. Tables I and II show the static detection tables for NOR
and AND gates. In these tables, a ‘1’ under a defect name
indicates that the pattern of the same row detects the defect,
while a ‘0’ means that it does not. It is important to note that
in the static table, each pattern corresponds to a maximum of
one stimulus.

The dynamic tables of the NOR and AND CA models are
shown in Tables III and IV, respectively. In these tables, the
‘R’ notation indicates a rising transition from logic ‘0’ to logic
‘1’. Conversely, the ‘F’ notation indicates a falling transition
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from logic ‘1’ to ‘0’. To better understand Table III we can
analyze pattern 1. The ’0R-F’ input-output pattern can detect
defects D9 to D11. This means that a logic ’0’ on input A
and a rising transition on input B of the NOR gate can cause
the output to deviate from its golden value, in the presence of
D9, D10, or D11.

B. Decoder to Memory Array Defect Mapping

Given the simple decoder architecture as a logic circuit, if
the ATPG is run only on the row decoder, achieving a 100%
fault coverage is straightforward. However, in the context of
a 4x4 memory architecture, the propagation of each inter-cell
and intra-cell defect from the decoder’s defective nets to the

Inputs Output Defects
A B Z D1 D2 D3 D4 D5 D6

Pt.1 0 0 1 1 0 1 1 0 0
Pt.2 0 1 0 1 1 0 0 0 1
Pt.3 1 0 0 0 0 0 1 1 1
Pt.4 1 1 0 1 0 0 1 0 1

TABLE I: Static CA model table for defects in the NOR gate

Inputs Output Defects
A B Z D1 D2 D3 D4 D5 D6 D7 D8

Pt.1 0 0 0 0 0 0 1 1 1 1 0
Pt.2 0 1 0 1 0 1 1 1 1 0 0
Pt.3 1 0 0 0 0 0 0 1 1 1 1
Pt.4 1 1 1 1 1 0 1 1 0 1 0

TABLE II: Static CA model table for defects in the AND gate



Inputs Output Defects
A B Z D7 D8 D9 D10 D11 D12

Pt.1 0 R F 0 0 1 1 1 0
Pt.2 R 0 F 0 1 0 0 1 1
Pt.3 0 F R 1 1 0 0 0 0

TABLE III: Dynamic CA model table for defects in the NOR
gate

Inputs Output Defects
A B Z D9 D10 D11 D12 D13

Pt.1 1 R R 0 0 1 0 0
Pt.2 F 1 F 1 0 0 1 1
Pt.3 1 F F 0 1 0 1 1

TABLE IV: Dynamic CA model table for defects in the AND
gate

memory’s output (i.e., the Sense Amplifier) is required. This
propagation can be hindered by other memory blocks, making
some defects, particularly open defects in the NOR gates,
undetectable using only detection tables from module-level
CA modules. For instance, a defect causing a falling transition
fault on a Word Line (WL) might be blocked from reaching
an observable output (z and zb nodes in Fig 2), preventing
defect propagation.

To illustrate this, consider defect D10, an open defect at
the gate terminal of transistor TN2 in the NOR gate (Fig. 4).
Suppose D10 is in the NOR gate controlling the WL0 signal
(Fig. 7). SPICE simulations shown in Figure 6 indicate that
the following detection conditions are necessary:

• W0 at address <A0, A1> = <0, 0>: WL0 is active
• W1 at address <0, 1>: WL2 is active. Due to a falling

transition delay caused by D3, WL0 remains active during
this W1 operation.

• Read at address <0, 0>: ‘0’ is expected, but ‘1’ is read.

Structurally, as shown in Table III, defect D10 is detected
only by Pt.1, requiring a level ‘0’ on input A and a rising
transition ‘R’ on input B of the NOR gate, causing a delay
in the output Z’s falling transition. The inputs (A, B) of
the defective NOR1 gate map to the row decoder inputs
<A0, A1>. Thus, to detect D10, the decoder address must
switch from <0, 0> to <0, 1>. In this memory architecture,
the falling transition delay propagates to WL0 when the
WL ENable signal (WLEN) is active. However, the falling
transition of WL0 (selecting S0) is blocked by the access
transistor primitive in the 6T SRAM bit-cell, preventing defect
propagation (see Fig. 7).

To account for the impact of UD defects on the memory
array, these defects can be incorporated into a new CA model
that allows for the control of multiple WLs. Since the row
decoder is responsible for activating the WLs, considering
just one column of the memory array for the CA model
is sufficient. Thus, the CLM0 CA model is created. It is
important to note that, apart from verification purposes (shown
for D10), SPICE simulations were not used for all defects
to generate this new CA model. Instead, the mapping of
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Fig. 6: Fault-free behaviour (a) for operations
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to D10 in NOR1
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the targeted defects was done only based on the information
provided in the CA models of the NOR gates.

The mapping process is illustrated in Table V for the
dynamic patterns in the NOR gate controlling WL0. Given that
the inputs of the NOR gates are controlled by the row address
input signals, we can deduce the necessary address switching
for the defect to become apparent. This address switching
indicates which WL should be deactivated and which should
be activated. Additionally, for the defect to be observable, the
data content must switch, so the bit lines are included in the
CLM0 CA model as inputs with rising and falling transitions
(the choice of transition is arbitrary).



NOR1 Input → CLM0 CA model Inputs
A0 A1 Address Order WL0 WL1 WL2 WL3 BL0 BLB0
0 R <0,0> to <0,1> F 0 R 0 R F
R 0 <0,0> to <1,0> F R 0 0 R F
0 F <0,1> to <0,0> R 0 F 0 R F

TABLE V: Address switching order to map defects from
decoder to memory array

An example of the CLM0 CA model dynamic table is shown
in Table VI. This table displays the pattern that detects the
previously analyzed D10 defect in NOR1. Since the defect
is manifested by two consecutive write operations, the write
architecture is utilized, and the observable outputs are the inner
nodes of the bit-cells in CLM0 that contain the written value.
This pattern detects all the defects identified by Pt.1 in the
NOR dynamic table. The same process is applied to all UD
defects in all the gates of the row decoder.

Inputs Outputs Defects
WL0 WL1 WL2 WL3 BL0 BLB0 S00 S10 S20 S30 D9,D10,D11

F 0 R 0 R F 0 0 R 0 1

TABLE VI: Dynamic table of the CLM0 CA model

C. ATPG Results for Row Decoder

The obtained CA models are used by an ATPG to generate
test patterns that detect defects in interconnections, as well as
static and dynamic CA model defects in the row decoder of a
4x4 SRAM architecture.

1) Static Faults
The SAF detection process in the decoder involves three

phases. Initially, only the SAFs on the interconnections are
targeted, and ATPG generates the necessary circuit-level pat-
terns for their detection. This set of patterns is saved for
later use. Afterward, Static Cell-Aware (SCA) defects from
the CA models are added, and a fault simulation is run
using the patterns from the first phase to check coverage. If
the coverage is below 100%, a second ATPG run generates
additional patterns for the undetected intra-cell defects. A total
of 112 inter and intra-cell defects are considered, resulting
in 12 patterns, 8 for W1R1 operations on CLM0 and 4 for
detecting D8 in the AND standard cell, which causes a Stuck-
At-1 Fault (SAF1) on each WL. The ATPG generates four
read patterns while the decoder is inactive, labeled as R EN0.

After the two ATPG runs, fault coverage reaches 96%. How-
ever, four defects (D3 in each AND gate) remain undetected.
D3 is detected only with a ‘01’ input, meaning the AND
gate’s output for the corresponding WL remains inactive. This
situation is similar to open defects, where activating another
WL is necessary to propagate the defect. To address this,
D3 is mapped to the CLM0 CA model, following the same
procedure as for open defects. This final step raises the SAF
fault coverage to 100%.

2) Dynamic Faults
The pattern generation process for TFs and defects in the

Dynamic Cell-Aware (DCA) detection table follows a similar

approach to SAFs. For the TF model, 92 inter and intra-
cell defects are considered. Initially, 4 static patterns target
inter-cell defects by writing values into each CLM0 cell,
producing 14 transition patterns (28 stimuli) in the first ATPG
run. Figure 8 (a) shows these patterns and corresponding
memory operations in terms of row decoder inputs <A0, A1>.
After adding intra-cell defects from the Dynamic Cell-Aware
(DCA) table, a fault simulation is run using these patterns.
No additional patterns are generated in the second ATPG run,
achieving 60% defect coverage.

As discussed in Section IV-B, some NOR intra-cell defects
causing falling TFs at the WL-s remain undetected. These
defects are mapped to the CLM0 CA model, and following
the procedure in Section IV-B, a second ATPG run increases
defect coverage to 100%. In Fig. 8 (b), the lined arrows
represent W0W1 operations between addresses (e.g., ’00’ to
’01’), while the curved lines show the read operation at the
initial address (e.g., ’00’). This step requires 20 additional
stimuli, bringing the total to 52 stimuli for full TF detection.
The cumulative defect coverage is shown after each ATPG run
in Fig. 8, and the transition patterns cover the entire graph.
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: R : R_EN0 : W0-1

Fig. 8: Address orders of TF detection patterns for each ATPG
run, where in (a) DC = 60%, (b) DC = 100%.

V. STRUCTURAL TESTING OF THE WRITE DRIVER

As previously mentioned in Section II, no structural ap-
proaches have been explored on WDs, so far. In this section
we demonstrate how the CA methodology can be used for WD
testing. Firstly, we show the generation of CA models for each
component of the WD. Then, the ATPG generated structural
patterns necessary for testing the SAF, TF and defects in CA
models are given. Moreover, we show the defect mapping
process for UD defects to a custom CA model to obtain
maximum fault coverage.

A. Write Driver Topology and its CA Model Generation

The WD is composed of two parts, as shown in Fig 9.
The first part (a) is called the WD controller and the purpose
of this block is to control the Data and WD Enable (WR)
signals. The outputs of the controller are the W0 and W1
signals that act as inputs for the WD core. When W1 is high
(W0 is low), the desired data to be written is ‘1’, hence the
WD core maintains BL to digital level ‘1’ and pulls down
BLB at digital level ‘0’. The inverse happens when the data



input is ‘0’. The controller part of the WD is composed of
NOR and NOT standard cells. The WD core needs to be
treated as a separate memory module, the CA model of which
has to be generated. The defects in the controller consist of
defects included in the NOR2 CA model, which is previously
explained. Note that this demonstrates another utility of the
CA model methodology since for several blocks that are used
several times in the design, the SPICE simulations do not need
to be repeated. Moreover, the defects in the NOT gate are only
modeled by SAF or TFs.

MN0

VDD

MN1

MP0 MP1

BL
BLB

W0Data
WR

W1
(a)

W0 W1
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D10D2

D1 (b)

NOR1
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Fig. 9: Write Driver Controller (a) and Core (b) and considered
defects

The considered defects in the WD core are shown in Fig.
9 (b) only for one side of the WD core since the design is
symmetrical. Hence, the detection conditions are inversed for
each symmetrical defect. Following the CA model generation
method, each defect is injected and the defective WD core is
simulated in SPICE. The results are compared with the golden
behavior of the WD core. Despite considering only defects
in the WD core, the simulated circuit also includes the Pre-
Charge (PCH) for pre-charging the WD output bit-lines to
VDD. This inclusion is motivated by Fig. 10, where defect
D2, an open defect in the source of transistor MP0, delays
the charging operation of BL during a write operation. With
this defect, the pull-up of node BL cannot occur, resulting in
Fig. 10 (c), where BL remains at digital level ‘0’ and a W1
operation fails. However, the bit-line outputs from the WD are
connected to a PCH circuit. Thus, simulating the WD core
with the PCH ensures the pull-up is enacted regardless of the
defect, preventing any faulty behavior, as shown in Fig. 10
(d). Consequently, D2 is not included in the CA model table,
presented in Table VII.

An example of the effect of one of the short defects (D3)
in the WD core is given in Fig. 11. Due to this defect, the
BL output of the WD is connected to VDD and cannot be
discharged. This means that a W0 operation cannot be acted
on the selected cell. The defect acts as a static fault in the
WD core. However, due to the nature of the memory, we have
to take into consideration the initial value of the selected bit-
cell. To ensure that we detect the lack of transition between
two written data values the sensitizing operation W0 has to
be preceded by a W1 operation. Hence, despite the static
behavior, all the defects in the WD core are mapped in the

Write '1' Write '0'

True W1 True W0

(a)

(b)

Faulty W1
with D2

True W0
with D2

True W1
with D2

True W0
with D2PCH PCH

(c)

(d)

Fig. 10: (b) Fault-free behavior of the WD core without PCH
and behavior of the WD due to D2 injection (c) without PCH
and (d) with PCH.

dynamic table since two operations are necessary to ensure
their detection.

Write '1' Write '0'

True W1 True W0

Faulty W0
with D3

True W1
with D3

PCHPCH
(a)

(b)

(c)

Fig. 11: (b) Fault-free behaviour of the WD core without D3
and (c) faulty behaviour due to D3

In the dynamic CA model table shown in Table VII, defects
under which a ‘1’ is denoted, manifest a faulty behavior on
the first output (BL). A ‘2’ is denoted when the effect of the
defect can be seen on the second output (BLB).

Inputs Outputs Defects
W0 W1 BL BLB D1 D3 D4 D5 D6 D7 D8

Pt.1 R F F R 1 1 1 1 0 0 1
Pt.2 F R R F 0 0 0 0 2 2 0

TABLE VII: Dynamic table of WD core CA model

B. ATPG Results for Write Driver Testing

The next step is to use the ATPG to generate memory-level
patterns that detect the defects located in the WD structure.
SAFs, TFs, and CA model defects are considered. Static faults
in the WD include the SAF on interconnections between each
sub-module in the WD and defects in the static tables of the
NOR CA models. A total of 38 defects is injected and the
first ATPG is run. The generated patterns correspond to static
W0 and W1 operations. However, as previously discussed, we



have to make sure that the selected bit-cell contains the inverse
value of the desired write operation. Hence, since the static
write operations are included in the dynamic ones, we consider
the resulting patterns for dynamic faults to be sufficient for
static ones as well.

From the first ATPG run for dynamic faults (TF and defects
in dynamic CA model table), the resulting patterns are shown
in Table VIII. The inputs of the memory level circuit are the 4
bits of address decoders (the first two bits select the WLs; the
last two bits select the columns), the WR: WD enable signal,
the Data, the CEq: signal that activates the pre-charge circuit
(PMOS based), and WLEN: the decoder Enable signal. The
outputs of the memory are the (storing nodes; See Fig. 7) S
nodes of each bit-cell that are observable points for the write
architecture.

Inputs Outputs
Address WR Data CEq WLEN S00 S01 S..

Sensitizing
Operations

P1/0 0000 1 0 1 1
P1/1 0000 1 1 1 1 1 X .. W0W1(R1)

P2/0 0000 1 1 1 1
P2/1 0000 1 0 1 1 0 X .. W1W0(R0)

TABLE VIII: Generated patterns from the 1st ATPG run

From the results, we notice that the ATPG selects one cell,
the output of which is S00, and the patterns correspond to
W0W1 and W1W0, both followed by a read operation. Note
that between each write operation, a PCH operation is also
carried. The obtained fault coverage is 84% after the first
ATPG run. To improve the fault coverage, the UD defects are
simulated in SPICE at memory-level. An example of one of
the simulated UD defects corresponds to D9 in Fig. 4, located
in NOR1 of the WD controller. This defect hinders the output
of NOR1 from discharging hence the WD is kept ON and
continuously writes ‘0’. After running the SPICE simulation
we conclude that the detection conditions for this defect are
as follows:

• W0 in address (A0, A1) = (0, 0)
• Read in address (1, 0) where 1 is previously stored: ‘1’

is expected yet ‘0’ is read.
The effect of D9 can be seen in Fig. 12. On the left side

of the figure, the correct behavior of the memory is shown
for operations W0 in cell S00 and R1 in cell S10. On the
right side, D9 in NOR1 is injected and the same simulation is
repeated. We observe that due to D9 the content of the cell S10
changes right before the read operation is realized since BL is
already discharged. Hence, the read operation is destructive to
the cell content and the wrong value is read. For this type of
defect a dynamic pattern in which a read is immediately acted
after a write is necessary. Since the defect is manifested and
detected during a read operation, the necessary patterns need
to be generated using the read architecture which has been
previously explained in Section III-B. All UD defects are of
the same nature, hence they are mapped in the custom CA
model used to detect dynamic 2-cell faults.

In Table IX, the inputs of the custom CA model are the
stored bit values of cells S00 and S10, as well as word lines

WL0 and WL1. The outputs are the bit lines of the first
column. The ensure the detection, the stored bit values in
the two cells are complementary values. To ensure the 2-cell
access the word lines WL0 and WL1 need to be falling and
rising. The outputs BL and BLB rise and fall according to the
cell contents. D9 has a similar effect if located on NOR2,
hence a second pattern has been included in the table, to
account for the inverse scenario.

In Table IX, the custom CA model receives inputs from
the stored bit values of cells S00 and S10, along with word
lines WL0 and WL1. The outputs are the bit lines of the first
column. To ensure detection, the stored bit values in the two
cells must be complementary. For 2-cell access, word lines
WL0 and WL1 need to transition, with WL0 falling and WL1
rising. The outputs BL and BLB signals rise and fall according
to the cell contents being read. A similar effect occurs with
D9 if placed on NOR2, where due to the defect the WD is
kept ON and continuously writes ‘1’. Hence a second pattern
is included in the table to represent the inverse scenario. The
number three in Table IX represents the fact that the effect of
the defect is observed on both outputs, since the outputs BL0
and BLB0 are complementary.

W0

R1 at S10

W0 at S00

R1

S10 contains '1'

(a)

W0 R0

W0 remains at '1'

R0 at S10

W0 at S00

S10 switches to '0'

(b)

Fig. 12: Fault-free behaviour (a) and faulty behaviour due to
D9 in WD (b) for operations W0(S00)R1(S10)

The generated patterns are shown in Table X. These patterns
ensure the address switching to access two different cells



Inputs Output Defects
S00 S10 WL0 WL1 BL0 BLB0 D9 (NOR1) D9 (NOR2)

Pt.1 0 1 F R R F 3 0
Pt.2 1 0 F R F R 0 3

TABLE IX: Custom CA model for 2-cell dynamic faults in
WD

containing complementary values. The selection of the two
cells is arbitrary, provided they are in the same column. The
fault coverage after the second ATPG run reaches 100%.
Hence, a total of 4 dynamic patterns is necessary for the
complete WD testing.

Inputs Outputs
Address WLEN CEq SA EN S00 S10 S.. z zb

P1/0 0000 1 1 X 0 1 X
P1/1 0100 1 1 1 0 1 X 1 1
P2/0 0000 1 1 X 1 0 X
P2/1 0100 1 1 1 1 0 X 0 0

TABLE X: Additional patterns generated from the 2nd ATPG
run for WD testing

VI. STRUCTURAL TESTING OF THE SENSE AMPLIFIER

In this section, we demonstrate the application of the CA
methodology for SA testing. First, we present the generation
of CA models for the SA block. Next, we provide the ATPG-
generated structural patterns necessary for testing SAF and
TF in interconnections, as well as, defects in the CA model.
Additionally, we describe the defect mapping process for UD
defects to a custom CA model to achieve maximum fault
coverage.

A. Sense Amplifier Topology and its CA Model Generation

To understand how manufacturing defects can alter the op-
eration of the sense amplifier, it is first important to understand
its operation and functionality. The ultimate purpose of a sense
amplifier is to reduce the time and power consumption during
the reading phase in a memory architecture. In between write
and read operations, the bit-lines (BL and BLB) are charged
to a specific voltage (in our work, at VDD). The operation
of the sense amplifier is enabled slightly after the pre-charge
phase has ended. This delay allows one of the bit-lines to
discharge according to the content of the accessed cell. If the
cell contains a ‘1’, the BL will remain at VDD, whilst the BLB
starts to discharge. If the cell contains a ‘0’, BL discharges,
while BLB remains at VDD. When the SA is activated, the
small difference between the bit-lines is detected, and given
that the SA operates correctly, the outputs of the SA will be
amplified to the expected bit values stored in the bit-cell.

The chosen structural topology for the SA is shown in
Fig. 13. Depending on design specifications, different SA
topologies can be used for the I/O circuitry of an SRAM [23],
[24]. The design presented here is a current-based SA. Apart
from the benefits regarding its low leakage power and high
speed for high-performance applications, the choice for the
design is intentional since it is important in the context of CA

model generation to have distinguished inputs and outputs for
each block. In this design, the bit-lines that serve as differential
inputs to the amplifier, are separated from the amplified SA
outputs. The expected behavior of the SA at memory-level has
been previously shown in Fig. 2. In a fault-free simulation,
when SA is enabled its outputs converge at either ‘1’ or ‘0’
depending on the stored data value on the selected cell.
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Fig. 13: Sense Amplifier and a subset of the injected defects

The generation of the CA model for the SA is done similarly
to the WD core. The module-level simulations are run for each
injected defect and the simulation results are compared with
the expected outputs of the SA. Defects shown in Fig. 13 are a
subset of all the injected defects. Equivalent and symmetrical
defects are not included. During SPICE simulations, several
types of defect behavior are observed, the examples of which
are given in Fig. 14. The inputs of the module are the SA
Enable signal (SA EN) and the bit-lines. The expected output
of the SA for operations R1R0 is given in Fig. 14 (a). In
PCH operations are carried out between each read. Figure 14
(b) shows the output of the sense amplifier when defect D3
is injected. Due to this defect, the SA OB output of the SA
is blocked from being pulled down. Hence, the output z is
stuck at ‘0’. This prevents the SA from correctly reading a
cell containing ‘1’. For this reason, the defect is mapped as
detected by Pt.1 of the static table of the CA model of SA,
given in Table XI. A similar static fault behavior is observed
for defects D1, D2, D8, D9, D10, and D12. Each of them is
detected by a single R0 or R1 operation.

Notice that in Table XI, BL and BLB values are digital,
whereas the signals BL and BLB shown in Fig. 14 are analog.
As previously discussed in Section III-B, one of the main
differences between the SPICE and Verilog representations of
the SRAM architecture is the lack of analog behavior of the
bit-lines that cannot discharge in time in the digital domain, but
achieve their final value without the need of a SA. This means
that the SA in the digital representation acts purely as a buffer
between its inputs and outputs, given that the SA is enabled.
Despite losing its functionality in the digital representation, the
defect injection and SPICE simulations are done in the analog
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Fig. 14: SA module simulations for R1R0 operations (a) Fault-
free, (b) Faulty due to D3, and (c) Faulty due to D6

domain, hence we can correctly map the effect of defects in
the SA to the CA model.

Inputs Outputs Defects
BLs BLBs SA EN z zb D1 D2 D3 D8 D9 D10 D12

Pt.1 0 1 1 0 0 3 3 0 3 3 0 0
Pt.2 1 0 1 1 1 0 0 3 0 0 3 3

TABLE XI: Static table of CA model of SA

Another type of defect in the SA is one that causes the
outputs of the sense amplifier to remain in a memory state.
An example of such a defect is D6, a short between the SA EN
and ground, as illustrated in Fig. 14. Due to this defect, the
tail transistor N1 remains OFF, preventing the SA from being
enabled. Consequently, the outputs of the SA do not converge
to a single value. This scenario is interpreted by the data output
circuitry as a memory state, in which the previous data read
is stored.

To detect such a defect, a dynamic pattern is necessary. To
ensure that a different value from the previously stored one
is read, two read operations in two distinct cells containing
complementary values need to be performed. Hence, this type
of defect can be mapped to the previously explained custom
CA model used to detect dynamic 2-cell faults in the WD. The
cells S00 and S10 activated by WL0 and WL1, respectively,
located in the first column of the architecture, are used as
inputs. The dynamic custom CA model table, including defects
D4 to D7 and D11, is shown in Table XII. Note that both
patterns can be used to detect this type of defect, since the
lack of transition in the read value can be detected in either
direction.

B. ATPG Results for Sense Amplifier Testing

The next step is to use the ATPG to generate testing
patterns for the SA at memory level. The CA models generated
previously, together with the Verilog description of the read
SRAM architecture are used by the ATPG for this step.

Inputs Defects
S00 S10 WL0 WL1 BL0 BLB0 D4-D7, D11

Pt.1 0 1 F R R F 3
Pt.2 1 0 F R F R 3

TABLE XII: Custom CA model for 2-cell dynamic faults in
SA

Initially, the SAF in interconnections and the defects from the
static table of the CA model are injected. A total of 24 (10
in interconnections and 14 from SCA table) are considered
for the stuck fault model. Two patterns shown in Table XIII
are generated. The patterns correspond to single R0 and R1
operations, that eventually need to be preceded by W0 and
W1 operations. The initial fault coverage is 92%. The UD
faults are the SAFs at the SA EN input. For a SA0 (Stuck-
At 0) fault, the defect that electrically represents the fault can
potentially be defect D6, shown in Fig. 13. This defect is a
short between the input SA EN and ground and its detection
conditions are explained in the previous section.

Inputs Outputs
Address WLEN CEq SA EN S00 S10 S.. z zb

P1 0000 1 1 1 0 X X 0 0
P2 0000 1 1 1 1 X X 1 1

TABLE XIII: Patterns generated for SAF and SCA in the SA

The SA1 (Stuck-At 1 fault) for SA EN is not identified
among the analyzed defects. To address this, we performed
memory-level SPICE simulations to determine the detection
conditions and properly map the defect. The simulation results
are shown in Fig.15. From these simulations, we observe that
the sense amplifier, which is constantly enabled, amplifies a
small difference between the bit-lines, causing the outputs to
get stuck at ‘0’. Therefore, the defect can be detected by a
simple R1 operation, and we have mapped this defect in the
static table. Even though this fault is not dynamic, it was
classified as undetectable (UD) by the ATPG because, for a
SA1 fault at the enable signal, a ‘0’ must be applied to SA EN.
Under this condition, the sense amplifier outputs remain at
high impedance values (ZZ), as BL and BLB cannot propagate
when SA EN = ‘0’. In this scenario, the ATPG cannot make
a decision on the detectability of the fault, hence a SPICE
simulation is necessary.

From this analysis, we can map the SA0 and SA1 faults
in both the dynamic table of the custom CA model and the
CA static table of SA. Re-running the ATPG after this step
improves the fault coverage to 100%.

For the TFs in the interconnections and the defects in the
dynamic table of the custom CA, the testing process follows
the same steps as for the static ones. A total of 10 TFs and
5 from the DCA table are injected. The initial fault coverage
is 86% and the transition faults on SA EN TF0 and TF1 are
the two faults to be classified as UD. The same procedure as
for SA0 and SA1 is followed. Through defect analysis, we
observe that the defects require dynamic 2-cell patterns and
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Fig. 15: Faulty behavior of SA due to SA1 at SA EN

can be mapped to the dynamic table of the custom CA model.
Another ATPG run is necessary to increase the fault coverage
to 100%. The resulting dynamic patterns are given in Table
XIV. For the first two patterns, a write operation is necessary
between the two reads to change the content on the selected
cell S00. However, accessing the same cell is not a necessary
condition to detect the TFs. Hence, the latter two patterns
are sufficient for the detection of all dynamic faults in the
SA. Moreover the static patterns are included in the dynamic
ones. Therefore, a total of 2 dynamic patterns (each containing
R0W1R1 or R1W0R1) are necessary for the complete testing
of the SA.

Inputs Outputs
Address WLEN CEq SA EN S00 S10 S.. z zb

P1/0 0000 1 1 X 0 1 X
P1/1 0100 1 1 1 0 1 X 1 1
P2/0 0000 1 1 X 1 0 X
P2/1 0100 1 1 1 1 0 X 0 0

TABLE XIV: Additional patterns generated from the 2nd

ATPG run for SA testing

VII. COMPARISON AND VALIDATION RESULTS

This section presents a comprehensive comparison between
existing SRAM testing techniques and the results achieved
using our CA methodology for the decoder and I/O circuitry.
To ensure a fair assessment in terms of test complexity,
we selected minimal March tests specifically designed to
detect functional faults in the peripheral circuits, aligning with
the fault models targeted by our approach. We provide a
quantitative analysis of the fault coverage obtained by our
methodology compared to that achieved with the selected
March algorithms.

A. Decoder Comparison Results

To evaluate and compare the functional and structural
testing approaches for address decoders, the MATS++ March

algorithm was used as a reference. This algorithm was selected
because it represents the simplest March algorithm capable
of detecting all address faults (AFs) [25] and it has a 6n
complexity, where n is the total number of cells in the
considered memory array. While other March algorithms, such
as the one proposed in [14], meet the conditions for detecting
open defects like defect D3 discussed in this paper, they utilize
algorithmic and generalized address switching rather than
focusing on the specific locations of the defects considered.
Moreover, these algorithms are significantly more complex
and not directly comparable to our methodology for decoder
testing.

The March elements in MATS++ have been translated
to ATPG compliant patterns that can be used to run fault
simulations in our Verilog memory description. The patterns
correspond to write and read operations in the address order
indicated for each March element. Specifically, we conducted
two fault simulations targeting SAFs and SCAs, correspond-
ing to W0R0 and W1R1 operations in both ascending and
descending address sequences. This approach achieved a
92% defect coverage for all considered SAFs, encompassing
both intra-cell and inter-cell defects. For TFs and DCAs,
we performed two fault simulations using transition patterns
derived from two March elements—namely, ⇑ (r0w1) and
⇓ (r1w0r0)—executed in the specified address orders. This
resulted in a 51% defect coverage for all considered TFs.
Analysis of the undetected defects revealed that they are
associated with falling transition faults and SAFs in the word
line enable (WLEN), as well as falling TFs in each word line.

Table XV, shows the results obtained in ATPG for both
functional (MATS++) and structural (CA methodology) ap-
proach. The complexity of the MATS++ algorithm is cal-
culated as 6 × 16, where 16 represents the total number of
memory cells in our 4x4 SRAM architecture. The number of
patterns necessary to detect all defects using the CA approach
is less than 96. This is because the ATPG considers only
the first column when targeting the generation of patterns for
row decoder defects. We have observed that the 52 stimuli
necessary to detect TFs include the 12 necessary static stimuli
for the detection of SAFs. Consequently, the total number
of stimuli for the detection of TF and SAF for both inter
and intra-cell defects in the considered row decoder is 52.
To further validate our methodology, we applied both testing
approaches to a 3-bit decoder within an 8x4 SRAM design.
The results, also shown in Table XV, are consistent with those
obtained for the 4x4 SRAM, demonstrating the feasibility and
efficiency of our CA test methodology.

ATPG MATS++
SAF+SCA TF+DCA SAF+SCA TF+DCA

2-bit Dec. 100% 100% 92% 51%
# of patt. 12 52 6x16 = 96
3-bit Dec. 100% 100% 93.44% 49.2%
# of patt. 26 100 6x64 = 384

TABLE XV: CA approach vs. MATS++



B. I/O Comparison Results

As discussed in Section II, research specifically targeting
defect analysis in the I/O circuitry of SRAMs remains limited.
For a long there has been a prevailing assumption in memory
testing that faults in the peripheral circuits would be covered
by tests designed for memory cell array faults [25]. However,
a study dedicated to detecting faults in SRAM peripherals
challenges this assumption and demonstrates that it is not
always accurate [26]. In this study, the authors introduce
minimal March tests specifically designed to detect peripheral
faults and provide a comparative analysis of different March
test performances. They explore several FFMs in the SRAM
peripherals, particularly the Slow Write Driver Fault (SWDF),
Slow Sense Amplifier Fault (SSAF), Slow Precharge Circuit
Fault (SPCF), and Bit Line Imbalance Fault (BLIF).

Given the scope of this paper, we focus on the first two
functional faults associated with the Write Driver (WD) and
Sense Amplifier (SA). The authors in [26] propose four
distinct minimal March tests to cover SWDF and SSAF. To
address these faults, various March tests were executed under
different algorithmic stresses. From the results, the March
SR test proved effective in detecting both SWDF and SSAF,
but it has a complexity of 14n and is designed to test the
entire memory. Since our methodology focuses on individual
memory blocks, we limit our comparison to minimal March
tests specifically designed to detect functional faults in the
peripheral circuits with minimal complexity, ensuring a fair
comparison.

The minimal March tests are provided in Table XVI. We
have selected the March test with the least complexity: March
#1 for testing the WD and March #3 for testing the SA. These
algorithms were translated into structural patterns that comply
with the 4x4 SRAM and the specific memory operation.
In Table XVI, the Data Background (DB) plays a crucial
role in the test requirements, as it is one of the Degrees
of Freedom (DOF) components of March tests, designed to
enhance coverage capabilities [27]. The four considered DBs
are the solid DB (sDB), checkerboard DB (bDB), column strip
DB (cDB), and row stripe DB (rDB). The DB is denoted as
D in the test sequence. Moreover, in Table XVI, the x value
denotes the fast X (fX) addressing order. Fast X refers to an
addressing order where each increment or decrement in the
address accesses the adjacent physical row.

# Name Fault DB Test
1 March WDm SWDF bSB, rDB x⇕(wD); x⇕ (rD); x⇕ (wD); x⇕ (rD)
2 March WDw SWDF sDB, cDB ⇕ (wD); x⇕(wD, rD, wD); ⇕ (wD); x⇕(wD, rD,wD)
3 March SAm SSAF sDB, cDB ⇕(wD); x⇕(rD,wD); x ⇕ (rD, wD)
4 March SAw SSAF bSB, rDB ⇕(wD); x⇕(rD,wD); x ⇕ (wD); ⇕ (rD, wD)

TABLE XVI: Minimal tests for SWDFs and SSAFs [26]

The first March test used for testing the SWDF has a com-
plexity of 4n, where 4 represents the number of operations in
the test, and n denotes the number of cells in the memory array
under test. The chosen data background for the translation is
bDB, and the address ordering is fX. From this translation,
a total of 64 patterns are generated. The CA model faults

are added to the fault list in the TMAX tool, followed by a
fault simulation. All defects listed in Table VII are detected;
however, the defects represented in the custom CA model in
Table IX are not detected by these 64 patterns. This is due to
the fact that the detection condition specified in the CA model
is not fulfilled. Specifically, in March Test #1, the transition
WriteD on one cell and the ReadD on another cell within the
same column are not fulfilled. As a result, the fault coverage
achieved is 78%. The 9 patterns obtained through the ATPG
can cover all of the considered faults in the WD core and WD
controller.

The third March test used for testing the SSAF has a com-
plexity of 5n. Five operations are necessary for each bitcell
and a total of 80 patterns are obtained from the translation.
The chosen data background is sDB and the address order is
fX. The CA model faults for the SA are added to the fault
list and a fault simulation is run. From this fault simulation,
100% of the considered faults are covered. The minimal March
test for SA fault detection proposed in [26] can cover the SA
CA model faults efficiently. However, one of the differences
between our approach and the March approach is the amount
of patterns applied to the memory array to target specific faults
in the periphery. The results are summarized in Table XVII.
From our obtained results, a total of 6 patterns are necessary
to cover the entire fault list in the CA model of the SA,
whereas the minimal March test #3 is composed of 80 patterns.
Moreover, in [26], faults are not attributed to specific defects
in the design. Through the use of CA models, the information
on defect location and the exact pattern that detects each
of them is known. This information can potentially aid the
diagnosis process, thereby highlighting another benefit of the
CA methodology.

Test Complexity Fault Coverage

WD March #1 64 78%
ATPG 9 100%

SA March #3 80 100%
ATPG 6 100%

TABLE XVII: I/O Comparison Results

VIII. CONCLUSION AND PERSPECTIVES

This study introduces an enhanced methodology for SRAM
memory periphery testing using the CA test concept, generat-
ing CA models for critical blocks such as the address decoder,
sense amplifier, and write driver. By systematically address-
ing transistor-level defects and incorporating detailed defect
detection conditions into custom CA models, the approach
significantly reduces test generation time and complexity (42%
less for the row decoder and 77.5% less for the I/O) while
ensuring maximum fault coverage compared to selected March
algorithms. Future work will consist in applying the method-
ology to the entire SRAM case study, allowing comparisons
with more complex March algorithms targeting static and
dynamic defects across the memory architecture. Additionally,
this methodology will be explored for use in emerging memory
technologies such as SOT and STT MRAMs.
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”Université Joseph Fourier de Grenoble” in 2004.
Employed after his studies by STMicroelectronics
as design engineer and customer support, he first
developed eDRAM controllers in the United States
for disk drive products. In 2006, he carried out this
activity from France for other business groups. In

2008, he started to work on eSRAM and oversaw the definition of optimal
test algorithms and the design of the corresponding BIST. In 2010, he focused
his activity on memory diagnosis and worked internally and with external tool
suppliers and laboratories to enhance test and diagnosis capabilities. In 2019,
his expertise has been recognized and he became member of technical staff
in this domain.

Patrick Girard received a Ph.D. degree in Mi-
croelectronics from the University of Montpellier,
France, in 1992. He is currently Research Direc-
tor at CNRS (French National Center for Scien-
tific Research) and works in the Microelectronics
Department of the Laboratory of Computer Sci-
ence, Robotics and Microelectronics of Montpellier
(LIRMM) - France. He is Coordinator of the Inter-
national Research Project INSIMIA (French-Italian
Research Program on the Integrity of Integrated
Systems in the Era of Artificial Intelligence) created

by the CNRS and the University of Montpellier, France, with the Politecnico di
Torino, Italy. He is deputy director of the French scientific network dedicated
to research in the fields of Systemon- Chip, Embedded Systems and Connected
Objects (SOC2). His research interests include all aspects of digital and
memory testing, with emphasis on critical constraints such as timing and
power. Robust design of neuromorphic circuits as well as machine learning
for test and diagnosis are also part of his new research activities. He has
supervised 45 PhD dissertations and has published 12 books or book chapters,
100 journal papers, and more than 250 conference and symposium papers on
these fields. Patrick Girard is a Fellow of the IEEE.

Arnaud Virazel received the Ph.D. degree in Mi-
croelectronics from the University of Montpellier,
France, in 2001. He is currently Professor at the
University of Montpellier – LIRMM (Laboratory
of Informatics, Robotics and Microelectronics of
Montpellier) where he is responsible of the TEST
(“Test and dEpendability of microelectronic inte-
grated SysTems”) team. He has published 9 books or
book chapters, 50 journal papers, and more than 170
conference and symposium papers spanning diverse
disciplines, including DfT, reliability, power-aware

and memory testing and he has supervised 28 PhD thesis in these fields. He
is the head of the electrical engineering department (about 450 students in
BSc and MSc programs) at the University of Montpellier. His teaching topics
are mainly focusing digital circuit design, test and reliability.


