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Humanoid-Human Sit-to-Stand-to-Sit Assistance
Hugo Lefèvre1, Tomohiro Chaki2, Tomohiro Kawakami2, Arnaud Tanguy1,

Takahide Yoshiike2, Abderrahmane Kheddar3, Fellow, IEEE

Abstract—Standing and sitting are basic tasks that become in-
creasingly difficult with age or frailty. Assisting these movements
using humanoid robots is a complex challenge, particularly in
determining where and how much force the robot should apply
to effectively support the human’s dynamic motions. In this letter,
we propose a method to compute assistive forces directly from
the human’s dynamic balance, using criteria typically employed
in humanoid robots. Specifically, we map humanoid dynamic
balance metrics onto human motion to calculate the forces
required to stabilize the human’s current posture. These forces
are then applied at the appropriate locations on the human body
by the humanoid. Our approach combines the variable height
3D divergent component of motion with gravito-inertial wrench
cones to define a 3D balance region. Using centroidal feedback,
we compute the required assistance force to maintain balance
and distribute the resulting wrenches across the human’s body
using a humanoid robot dynamically balanced according to the
same criteria. We demonstrate the effectiveness of this framework
through both simulations and experiments, where a humanoid
assists a person in sit-to-stand and stand-to-sit motions, with the
person wearing an age-simulation suit to emulate frailty.

Index Terms—humanoids, human assistive humanoids, dy-
namic balance criteria, multi-body motion control.

I. INTRODUCTION

CLOSE-PHYSICAL interactions between humans and hu-
manoids hold significant promise for assisting frail and

elderly individuals. Given the rapid advancements in humanoid
robotics, it is increasingly plausible that humanoids may play
a central role in providing in-home assistance to people with
limited mobility in the future. A representative scenario for this
vision is a humanoid helping an individual to stand up or sit
down —an example that captures the essence of the challenges
ahead. To perform such tasks effectively, a humanoid must
possess various interrelated capabilities (this list is not exhaus-
tive): (i) the ability to position itself appropriately and establish
contact with the person to provide assistance; (ii) continuous
tracking of the person’s posture and movement, as well as
the location of supports in the surrounding environment;
(iii) the ability to maintain the balance of both the human
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Figure 1: HRP-4 assisting a human standing-up and sitting again.

and humanoid during multi-contact interactions, accounting
for possible changes in contact during the motion; (iv) the
ability to apply forces to assist the person in achieving the
intended motion. Other aspects are outlined in Sec. VI.

Item (i) is not the focus of this work and has been addressed
in [1], [2]. In brief, guidelines in geriatric care provide recom-
mendations for caregivers on how to position themselves and
where to offer support through physical contact with patients,
depending on the specific task at hand. A humanoid, with
its anthropomorphic shape, would be well-suited to adhere to
these recommendations. Item (ii) is assumed readily available,
as discussed in Sec. IV-A. Item (iii) represents a key challenge.
Although human balance has been extensively studied using
force measurements and motion capture (e.g., [3], [4]), these
methods generally rely on simplified criteria. In contrast, static
and dynamic balance are well-explored in the context of
humanoid bipedal locomotion control and planning, an area
that is considerably more mature. A brief overview of existing
methods is provided in Sec. II. The most complex challenge
lies in computing the assistive forces and the resulting motion.
To illustrate the difficulty, consider a simplified case involving
a point mass m, which can generate a force finner along the x-
axis. To move from an initial position x0 to a target position xt,
a specific force is required according to the dynamic equation
ẍ. If finner is insufficient, it must be supplemented by an
additional force fassist, as given by the following equation:

mẍ = finner + fassist (1)

In this analogy, m represents the person’s weight (at the
center of mass), ẍ is the acceleration of this center of mass,
finner is the force the person can exert through their own
muscles, and fassist is the force that the robot must provide.
The challenge for the humanoid lies in the fact that it does not
have direct access to the desired dynamics of ẍ, nor does it
know the exact value of finner. Overestimating finner can result
in insufficient assistance, while underestimating it can disrupt
the person’s motion, both of which can lead to undesirable
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outcomes. This is why we refer to the optimal amount of
fassist as the “synergistic force.” This issue is relevant not
only for humanoid assistance but also for other human-robot
physical interaction, such as exoskeletons. Several approaches
to computing fassist have been proposed, including model-
based adaptive control and machine learning (see Sec. II).

In this letter, we propose a novel approach to computing
fassist in a closed-loop fashion. Since sit-to-stand and stand-
to-sit motions are dynamic, our method focuses on computing
the assistive force that best ensures the dynamic balance of
the person during these motions.

Our approach links items (iii) and (iv) from the previous
list. To enforce the balance of both the human and humanoid
during multi-contact assistance, we leverage advanced tech-
niques commonly used in humanoid dynamic balance control
and apply them to the human-humanoid dyad. Specifically, we
combine robust static balance regions with the 3D divergent
component of motion (DCM) (Sec. III-A) to assess whether
the person is in dynamic balance while being assisted. The
assistive force (fassist) is then computed to adjust the DCM
when it falls outside the computed balance region, using the
virtual repellent point (VRP) and the external forces exerted
by the person on the environment (Sec. III-C). While dynamic
balance parameters can be directly measured using sensors and
observers on the humanoid, these must be estimated for the
human. This is achieved through motion capture (Sec. IV-A)
and the use of force sensors worn by the person (Sec. IV-B).
The robot then applies the computed assistive force to the
person (Sec V-A) while also ensuring its own dynamic balance,
similar to the way a caregiver would maintain balance during
physical assistance (Sec. V-B).

We evaluate our method with three humanoids: Honda’s
E2-DR and Kawasaki’s Friend in simulation, and the HRP-4
in real experiments assisting with sit-to-stand and stand-to-sit
motions. To simulate frailty, the three human participants wore
a commercially available age-simulation suit1. Our results
show that the humanoid is capable of compensating for the
lack of human strength in these motions, as illustrated in Fig 1.
Additionally, participants were asked to reach the limits of
their balance to test the humanoid’s ability to apply forces that
restore them to a stable position (Sec. VI). We have integrated
the proposed method into our multi-robot whole-body QP open
framework, mc_rtc2 (Sec. IV).

II. BACKGROUND AND RELATED WORKS

Several approaches exist for humanoid-human physical as-
sistance (see Table I). In contrast to existing work, we propose
an automated assessment of whether a person needs help, and
exactly how much. Our algorithm computes dynamic balance
criteria for persons to be assisted based on those used in
humanoids, which has not been done before and explained
hereafter.

A. 3D Robust static balance region
Let c ∈ R3 be the CoM position and m the mass of a

humanoid under n unilateral contact points. For each contact

1https://www.age-simulation-suit.com
2https://jrl-umi3218.github.io/mc rtc/index.html

Refs Human movement target Assistance criterion
[1] Sit-to-stand Pre-set force
[5] Pre-set arm movement Torque computed online
[6] Bed transfer Pre-set trajectory
[7] Wheelchair transfer Pre-set trajectory

Tencent Wheelchair transfer Pre-set trajectory
Ours Balanced 3D motions Balance computed online

Table I. Comparison with some existing methods of humanoid-
human physical assistance. All methods apply force control on human
except [6] and [7], which use full lifting of human.

i, let ri ∈ R3 be its contact position, ui ∈ R3 its normal,
f i,ni ∈ R3 the force and moment applied at the contact
and µi its friction coefficient, g the gravity vector, L ∈ R3

the CoM angular momentum. The Newton-Euler equations
governing the CoM motion write,

n∑
i=1

f i+mg = mc̈ and
n∑

i=1

(ri−c)×f i+ni = L̇ (2)

Unilateral contacts with non–slippage condition add:

uT
i f i ≥ 0 and ‖(I− uiu

T
i )f i‖ ≤ µiu

T
i f i (3)

Static balance regions (c̈ = 0) are computed efficiently
in [8]. Another multi-contact criterion for balance enforces
the contact resultant wrench to remain in a polyhedral convex
cone [9]. In [10] a multi-contact robust static balance criterion
is proposed. This criterion is simplified in [11] by using
the Chebychev center to avoid the direct computation of
the region, and by [12] that accelerated the computation by
discretization of the friction cones to apply to sliding contacts.
These methods do not scale to highly dynamic motions.

B. Dynamic balance criterion

Several virtual points were successively developed to track
dynamic balance in humans and humanoids. The Zero-tilting
Moment Point (ZMP) is the point where the accumulated
inertia and gravity force cancels the horizontal moment [13].
The Centroidal Moment Pivot (CMP) instead represents the
point where a line parallel to the ground reaction force
passing through the CoM intersects the contact surface [14].
It provides complementary information about the whole-body
rotation dynamics as it accounts for the moments about the
CoM (e.g., hip movements [15]), that are not encoded by
the ZMP. Controlling both ZMP and CMP enforces balance
with non-zero angular momentum, and they coincide when
there is none. Yet these centroidal balance methods are less
suited for scenarios with vertical CoM motions (e.g., sit-to-
stand transitions) because of the coupling between vertical and
horizontal CoM dynamics in formulating these points in the
linear inverted pendulum model.

To address this, two new points in 3D are proposed in [16]:
the extended CMP (eCMP) recmp, and the Virtual Repellent
Point (VRP) v, separated by a vertical offset ∆z such that

v = recmp + [0, 0,∆z]T (4)

The eCMP generalizes the CMP by allowing it to encode
the magnitude of the sum of external forces without being

https://www.age-simulation-suit.com
https://jrl-umi3218.github.io/mc_rtc/index.html


LEFÈVRE et al.: HUMANOID-HUMAN SIT-TO-STAND-TO-SIT ASSISTANCE 3

constrained to the ground plane. It is defined as:

Fext =
m

b2
(c− recmp) (5)

Fext sums external forces on the CoM, b =
√

∆z
g a constant

equivalent to 1
ω0

in other notations, the natural frequency of the
inverted pendulum model formed by the CoM and the eCMP.

Adding gravity to the external forces, the VRP v writes:

F =
m

b2
(c− v) (6)

with F the total force sum acting on the CoM.
These formulations of the eCMP and VRP allow the CoM

dynamics to be decoupled vertically and horizontally, facili-
tating CoM control for complex movements.

As a last concept for dynamic balance, the Divergent
Component of Motion (DCM) ξ combines the CoM pose and
velocity such that ξ = c + bċ. In 2D it is also called the
capture point [17] or the foot placement estimator (FPE) [18]
as it represents the point on the ground where a robot or human
should shift its ZMP to come to a stop. The introduction of
the eCMP and VRP allowed extending the DCM to 3D and
account for vertical movements as well, and its dynamics are:

ξ̇ =
1

b
(ξ − v) (7)

with ξ diverging away from v, keeping the 3D decoupling.
Note that b depends on ∆z; it is introduced to decouple the

vertical dynamics from the horizontal one. If only horizontal
motions are planned, the average height of the CoM is chosen,
placing the VRP at the CoM’s height assuming the eCMP is on
the ground. As shown in [19], modifying b along movements
enables kinematically feasible CoM height variations.

In short, to track the dynamics in decoupled 3D movements
we can choose to control the DCM instead of the CoM, using
the VRP instead of the ZMP. In this work we apply the same
philosophy to infer human balance.

C. Variable height pendulums and variable VRP offsets
We chose the ω notation for the 1

b coefficient. The 3D DCM
with constant height inverted pendulum writes:

ξ = c+
1

ω0
ċ (8)

ω0 =
√

g
∆z is the pendulum frequency, taken constant when

the CoM is at a nominal height ∆z. The DCM dynamics is

ξ̇ = ω0(ξ − v) (9)

with
v = c− Fext

mω2
0

+ [0, 0,∆z]T (10)

from (4) and (5). Yet a constant ∆z means that for a substantial
change of the CoM height, the VRP (and so the eCMP) need
to move vertically. For a constant ω, this is not possible if
one wants to maintain the ground reaction forces, and hence
the eCMP, at the contact points. The DCM formulation for a
time-varying natural frequency can expand as in [20].

ξ = c+
1

ω(t)
ċ (11)

ξ̇

ξ c
ċ
c̈

F ext

v

∆z

recmp

ξ̇

ξ
c

ċ c̈

F ext

v

∆z

recmp

Figure 2: Virtual points of interest in the standing motion of a human
without any assistance (left), and with humanoid assistance (right).

with ω(t) =
√

g+c̈z
∆z(t) accounting for the CoM vertical accel-

eration (c̈z). From now on we use the notation of ω meaning
ω(t). Differentiating ξ gives:

ξ̇ = ċ− ω̇

ω2
ċ+

1

ω
c̈ =

(
ω − ω̇

ω

)(
ξ −

(
c− c̈

ω2 − ω̇

))
=

(
ω − ω̇

ω

)
(ξ − v) (12)

The new expression for v is

v = c− c̈

ω2 − ω̇
(13)

assuming the CoM linear acceleration c̈ is produced by the
gravity and the contact forces, we can write

v = c− Fext −mg

m(ω2 − ω̇)
= recmp +

g

ω2 − ω̇
(14)

with the eCMP as

recmp = c− Fext

m(ω2 − ω̇)
(15)

In [21] the pendulum’s time-varying frequency is defined
by a Ricatti equation leading to an input gain for the time
variation of ω. The DCM is set by controlling ω in the internal
state (the DCM is 4-dimensional: 3 spatial components and 1
frequencial). Here, as we accompany the human movement,
we treat the ∆z change as a variation of ω measurable at
every time-step. The links between these points are illustrated
in Fig. 2 on a person in the same manner as in [19], [20].

III. PROPOSED APPROACH

We apply Sec. II’s humanoid balancing knowledge to the
assisted person, see Fig. 2. First, we compute the 3D balance
region of the person and the required DCM position for the
human to be balanced (Sec. III-A). The VRP to steer the
DCM to its desired value (Sec. III-C) gives us the wrench
to be applied to the human’s CoM. Then, the assistive wrench
is deduced from either the total measured acceleration at the
human’s CoM, or from the estimated human external forces.
This wrench is distributed among the contacts (Sec. III-D) the
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Joint commands

Multi-robot QP Assistive force computation

Human perception

c, ċ, c̈

mc rtc

Human model

Assisted person

Segments
dynamics

Robot

Shoes contact
forces

Fr

Polytope
computation

Robot model

Real world

DCM target
choice

VRP control
law

Wrench
distribution QP

Sensors contact
forces

Human
model state

3D balance
region

ξd

FrwRH,wLH

Xsens modelForce shoes

Figure 3: All the components of the control system for humanoid assistance of a human.

robot makes on the person and gives us the target for each
contact; Fig. 3 illustrates the entire framework.

A. Generating a reference DCM

The 3D-DCM is a suitable balance indicator for standing
and sitting tasks as both involve sagittal and vertical motions.
Recent works using the DCM-VRP dynamics still use the
projection of the DCM on a 2D balance region [22]. Whereas
works leveraging the gravito-inertial wrench cones to generate
3D balance regions use it as a criterion for the CoM posi-
tion and hence for a quasi-static case [10]–[12]. Instead, we
propose using 3D balance regions as a criterion for a 3D-
DCM; creating a polytope in which the DCM must lie to
guarantee the CoM will converge inside. We compute this
polytope using the iterative projection and software proposed
in [10], [12]. This results in a dynamic balance criterion that
we apply to both agents: human and humanoid. In particular,
the human DCM objective ξd is set to the current measured
DCM ξ if it belongs to the human 3D balance region;
otherwise (unbalanced state) the human DCM objective ξd
is set (by projection) to the closest point belonging to the
human 3D balance region. This triggers robot assistance to
enforce dynamic balance of the assisted person.

B. DCM feedback

Generating a VRP reference to achieve ξd can be done
through feedback control of the DCM [20]. Using (12) we get
the VRP value in function of the current measured dynamics:

v = ξ − 1

ω − ω̇
ω

ξ̇ (16)

The reference VRP vr (to be applied by the humanoid) is
computed as a command law on the DCM error, generated
from the human’s movements alone. From (16) we have:

vr = ξ − 1

ω − ω̇
ω

[
ξ̇d + kP (ξd − ξ)

]
(17)

subscripts r and d mean reference and desired resp.; kP ∈
R3×3 is a diagonal matrix of the DCM error proportional gain.

C. Control of the reference VRP

Now, we compare vr in (17) with the estimated human VRP
from the ongoing motion. The VRP discrepancy is corrected

by the humanoid applying forces on the human. Equations (13)
and (14) offer two ways to determine such a force [23]:

1) by measuring the wrench applied on the human and
computing the missing force at the CoM directly; or

2) by measuring the acceleration of the human’s CoM, and
deducing the force from the missing acceleration.

The first uses (14) and assumes that human CoM accelera-
tion (except gravity) is the result of the sum of environment
contact forces Fext, that is:

c̈ = Fext −mg and Fext = Fr + fLF + fRF (18)

with Fr the sum of forces applied on the human by the
humanoid, and fLF, fRF the individual environment reaction
forces at the left and right foot of the person respectively.

From (18) and (13) we deduce the total force to be applied
on the person to achieve the desired VRP vr:

Fext = m(ω2 − ω̇)(c− vr) +mg

Fr = m(ω2 − ω̇)(c− vr) +mg − fLF − fRF
(19)

Note that this is assuming the human makes no other contact
than its feet. To handle efficiently contacts for which there is
no direct force sensor, see later Sec. IV-B.

If one opts for estimating human’s CoM acceleration to
determine an acceleration error from the VRP error and deduce
the forces to be applied by the robot, we use:

c̈d = (ω2 − ω̇)(c− vr)

c̈e = (ω2 − ω̇)(c− vr)− c̈
Fr = m(ω2 − ω̇)(c− vr)−mc̈

(20)

subscripts d, and e meaning desired and error respectively.
We get the missing force Fr to be applied on the human’s

CoM to achieve the desired VRP.
In fact, the two options use the same equations but the

variables measured are different. One can use them in alternate
or complementary modes. This combination is possible using
complementarity filter, i.e., composition of low pass filtering
of the human force model VRP (14) with high pass filtering
of the acceleration model VRP (13).

D. Force distribution

Using either (19) or (20) we formulate a least squares
minimization problem to apply the total missing force at the
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CoM using both robots ‘hands’ on the human. The objectives
are the sum of contact forces resulting in the total desired force
at the CoM, and the minimization of the contacts’ moment
about the CoM. With w the 6D wrenches, f the 3D forces,
and subscripts LH and RH the left and right hand contact of
the robot we have:

min
wRH,wLH

||fRH + fLH − Fr||2 + ||wRH||2 + ||wLH||2

+ ||(rRH − c)× fRH + (rLH − c)× fLH||2

s.t. wRH ∈ RH contact wrench cone
wLH ∈ LH contact wrench cone
fRHz + fLHz < Max total force
fRHz > Min contact force
fLHz > Min contact force

(21)

The contact wrench cone constraints for the hand contacts
are formulated as in [24], assuming rigid contacts. The three
last constraints on the contacts’ normals impose a maximum
opposite force on the sum of the contacts to avoid applying
uncomfortable forces on the person, and a minimal force to
ensure the contacts sustainability during the movement. All
of these computations result in the 6D target wrenches for
the humanoid’s hands. Note that our method is not linked to
a particular robot and the assistive forces can be applied by
other suitable robotic systems.

IV. HUMAN MODELING

The assisted human model is added to the task-space multi-
robots QP as an additional ‘robot’ (this was stated as future
work in [25]) as follows: (i) human motions are tracked on-line
from which the CoM is estimated, e.g., [26]; (ii) human/en-
vironment contact forces are obtained on-line from sensors or
observed (Sec. IV-B), (iii) persons anthropomorphic data set
a URDF human model with inertial parameters, e.g., [27].

A. Human motion tracking

Reliably estimating human kinematics state (pose and ve-
locity) from on-line video processing is an actively researched
problem. While recent works using machine learning show
impressive results, e.g., [28], they fail to scale to robotic
requirements. Indeed, humanoid embedded perception from
a close-human-contact interaction perspective is not precise
enough to be used in closed-loop control. To counter this
problem temporarily, we opted for motion capture [29] by
means of the Xsens motion capture suit; it consists of 17
inertial sensors updated at 60 Hz to continuously monitor the
human kinematics. Our controller assumes the human shape
and kinematics can be obtained reliably. This functionality is
implemented as a standalone module that can be replaced shall
humanoid vision-based human tracking become robust.

Let pi ∈ R3 and Ri ∈ R3×3 be the translation and rotation
of the ith rigid body, defining its pose ri = (Ri,pi). The
Xsens units return in real-time the body parts states of the
person in the world frame (pose r, velocity ṙ and acceleration
r̈), as well as those related to the human’s CoM estimate.

In order to scale the Xsens human model to the measured
person we measure the followings: body height, foot length,

shoulder height, shoulder width, elbow span, wrist span, arm
span (middle finger to middle finger in T pose), hip height,
hip width, knee height, ankle height and sole height. Then, a
dynamic calibration is performed, requiring the person to walk
in line and make a turn to go back to the initial position. This
initializes the filters for the Awinda motion capture software.

Having all these, human motion can be tracked in the
controller by retargeting the body segment measurements from
the IMUs to the actuated human model in the multi-robot QP
controller. The measured pose rd, velocity ṙd and acceleration
r̈d of each body are given as task-space objectives for each
body of the human model as follows:

r̈ = r̈d −KD∆ṙ −KP ∆r

where ∆r =

[
∆rL
∆rA

]
=

[
p− pd

ln
(
RRT

d

)]
,

(22)

subscript d means desired, subscripts L and A are the linear
and angular part of the pose, ln(R) ∈ R3 the operator
from rotation matrix to axis angle, and KP , KD ∈ R6×6

proportional and damping matrices, respectively.
This way the human model, scaled to the measured person,

reproduces the assisted person’s filtered motion. Note that the
human (as a ‘robot’ in the QP) is obviously not controlled,
and serves as an observer.

B. Force observers

If human motion tracking is reliable, [30], [31] showed that
it is possible to infer a good estimate of the contact locations
and interaction forces from vision alone. In this study, the
human is equipped with a pair of Xsens force shoes. Each
sole embeds 2 force/moment sensors (ATI-Mini 45) each of
which has a linked IMU (one at the heel and one at the toe).
These shoes are interfaced through a modified version of the
MT Manager software, a proprietary GUI for Xsens devices
connected to an Xsens bus. The low level implementation of
the MT communication protocol is open3 but not the high-level
MT Manager software, nor the prototype version handling the
force sensors. So, we reconstructed the low level protocol for
the force sensors. The four devices are linked in a row to an
Xbus Master device via a wire, and both shoes are attached
to it. This Master device is then linked to a computer running
the interface via a bluetooth dongle and sends data packets
containing the data sent on the bus by every connected device.
Sampled force sensor data is applied at the location of the force
sensors on the feet of the human model; this mc_rtc plugin
is made available4. These forces are transformed back to the
CoM frame to get the resulting wrench; which is in turn used
for the VRP computations (90 Hz) in Sec. III-C.

C. Controlled human model

Human worn sensors operate at a lower frequencies (60 Hz
and 90 Hz) w.r.t our controller (200 Hz). Yet, the human
model state is made continuous by interpolating missing
measurements using velocity and acceleration objectives to

3https://www.movella.com/support/software-documentation
4https://github.com/Hugo-L3174/mc force shoe plugin

https://www.movella.com/support/software-documentation
https://github.com/Hugo-L3174/mc_force_shoe_plugin
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the retargeting tasks. These objectives are updated when new
measurements are received from the sensors.

The human model is a generic template comprising 15 rigid
bodies and 34 dof. Each body is controlled by an associate
task whose objective is the measured pose of the real person’s
corresponding body part. This model is dynamically scaled to
the Xsens data received online: the kinematic chain for the
human is reconstructed from its floating base (the hip). The
measured Xsens position of a body is translated in the local
frame of the parent link in the model; the rigid body dynamics
representation in the controller is updated accordingly. From
these modifications we deduce the scaling of each body of
the model, allowing also to scale the corresponding convex
shapes. The latter are used to build collision constraints in
the multi-robot QP: non-desired human-humanoid collisions
are enforced using the convex shapes of each model. Desired
humanoid-human assistive contacts are guided with feedback
of associated force sensors using damping control to softly
make contact with the desired surfaces. The position of the
end effector is used as reference for the relative position of the
body surface, leading to match the morphology of the assisted
person. This allows the effective human model’s surface to
match as closely as possible that of the real person.

V. ROBOT FORCE CONTROL AND BALANCING

A. Force control on a moving target

The assistive forces are applied by the robot at desired
locations on the person. Position control of the robot end-
effectors is made by tracking the task error ∆EF in our QP,

∆EF = KP ∆r +KD∆ṙ + ∆r̈ (23)

where ∆r is defined in (22).
On the other hand, force control is achieved by steering the

end-effector from the wrench error following an impedance
with mass M spring K damper D system such that

M∆r̈ +D∆ṙ +K∆r = Kf (wm −wd) (24)

where wm and wd are measured and desired 6D wrenches,
respectively. Kf ∈ R6×6 is the gain matrix on the wrench
feedback, resulting in the computation of a compliance-frame
position, noted rcd, which dynamics is

∆r̈cd = M−1 (Kf (wm −wd)−D∆ṙcd −K∆rcd) (25)

The gains KP ,KD in (23) are different from those in (25):
the first are the end-effector task’s that tracks the position
of the person and their dynamics; whereas the latter define
the desired behavior of the force control. The latter gains
are set from experimental data (high wrench gain to react to
small force errors). The compliance acceleration (25), and its
integrated compliance velocity and position are added to their
respective counterparts in (23). By doing so, and by having
the human model in the multi-robot QP, we obtain the desired
surfaces’s second order dynamics; which is accurately targeted
by the end-effector task (23). The position, and first and second
order dynamics of this task are then offset following the
desired force dynamics (25), ensuring properly applied force
at the correct target during the whole movement.

B. Balancing with external wrenches
Manipulating a human during assistance affects the balance

of the humanoid robot. The effects of such manipulation can
either be treated as external perturbations or incorporated as
prior knowledge [32]. The humanoid is balanced using DCM
feedback accounting for the intentional errors induced by the
applied external forces. This is notably similar to previous
implementations in [33], [34] where the DCM error resulted in
a ZMP reference converted to a CoM acceleration command,
which in turn resulted in a wrench to be distributed. In contrast,
we do not track a 2D ZMP to guide a 2D DCM. Instead,
we steer a 3D DCM using a 3D VRP, allowing for free 3D
movements of the humanoid CoM, as well as a simple linear
relation between the external forces and the VRP (no need to
account for the dynamics modification of a pendulum model).

The feedback is translated into a VRP reference command,
following the same principles outlined in Sec. III-A. This
resultant force is then distributed between the feet contacts
using a simple QP, as described in Sec. III-D. While it would
be possible to include hand contacts in the distribution of
forces across all end-effectors, we treat the hand contacts as
planned external perturbations in our current framework.

VI. EXPERIMENTS AND RESULTS

All the modules described in Fig. 3 are integrated by
means of the real-time control framework mc_rtc. Prior
to an experiment with real persons, we went through two
intermediary validation stages. First, the assistance control
is thoroughly implemented and tested in simulation using
MuJoCo. A human model scaled to each person and the model
of three humanoids (the Kawada’s HRP-4, the Honda’s E2DR
and Kawasaki’s Friends) are integrated to MuJoCo (Fig. 4).
Once worst testing conditions were satisfactory in simulation
we moved to the second validation stage.

The second validation step consists in emulating the hu-
man’s motion using a Panda robotic arm. We attached to its
end-effector a cardboard box of the size of a human torso. The
Panda plays recorded motion of a real human torso obtained
from Xsens tracking (as in simulation). The humanoid (HRP-
4) provides assistance to the fake torso and accompanies the
Panda emulated motion. All three robots (counting the human
as a robot) are running in the same controller. Both physical
robots are controlled in real-time and receive commands at
their respective frequencies (1 kHz for the Panda arm, 200 Hz
for the HRP-4). The controller runs at 5 ms iterations so
the movements of the Panda are made continuous by sending
acceleration and velocity commands from the QP. The com-
mands are then updated every iteration of the controller and
the movements of both robots are continuous, see Fig. 5.

After intensive testing of the Panda experiment repeatability
and the safety of the force control, we experimented our assis-
tive controller with three real persons (1 male and 2 females,
all labmates). The humanoid HRP-4 is set near each person so
it has to position itself w.r.t the person in a few step motions.
Then humanoid left and right effectors contacts are made on
the person and the human motion tracking starts. All subjects
wear the elderly suit emulating the need for more effort and
difficulty in standing.
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(a) Assistance of a person with Kawada Robotics’s HRP-4.

(b) Assistance of a person with Honda’s E2DR.

(c) Assistance of a person with Kawasaki’s Friends.

Figure 4: Simulated humanoid-to-human assistance in MuJoCo.

Figure 5: Validation with the Panda human-torso motion emulator.

Each person is asked to perform sit-to-stand, followed by
stand-to-sit motion after the humanoid makes both supporting
contacts on their body. No timing is given, as the person’s
whole-body dynamics is accounted for, only the person’s
movement determine if and when assistance is needed.

In fact the motion is dynamically balanced in large parts of
the motions. Therefore the subjects are asked to bend up to
reach or go out of the balance region limits to show how the
assistive control reacts (Fig. 7). In such cases, the computed
assistive force is successfully applied as shown in Fig. 6. The
tracking is subject to human unforeseeable motions, therefore
discrepancies in tracking are unavoidable. Indeed as the human
moves, as far as the motion is feasible the applied force
drops to near zero (light touch) as the desired offset (5 N) is
necessary to track the motion using admittance. Notice that
the robot kinematics limitations do not allow to reach the
computed desired force in some configurations.

VII. DISCUSSION

The experiments highlight the importance of designing
humanoid robots capable of replicating human motions with
similar postural behaviors. A lack of anthropomorphic design
could result in postures that significantly deviate from those
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Figure 6: Target and measured force on the robot gripper on 3
subjects S1-S3 bending to the limits of their balance region.
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Figure 7: Desired and measured DCM of subject 3 bending to the
limits of the balance region (light gray areas).

of caregivers, leading to loss of contact during certain config-
urations due to limited manipulability and range of motion.

While the force tracking could be further optimized, the
results indicate that the amount of assistive force applied
is relatively small, with no saturation of the forces. We
hypothesize that this is not due to the specific movements
of any one subject, but rather a reflection of the forces
required to assist frail individuals. In this context, the role
of the humanoid is likely not to provide high forces, but
rather to act as a reconfigurable aid, offering the user the
ability to select the most appropriate supporting contact for
their motion. Additionally, we hypothesize that a person’s
engagement behavior would differ when a contact is present,
even if no force is applied by the robot, as shown in previous
studies (e.g., [35]). To explore this further, we plan to conduct
specific human studies, as these results could influence the way
human-robot physical interaction is approached in assistive
technologies.

Ethical clearance is required to conduct experiments with
frail individuals, and most existing humanoid robots are not yet
certified for physical interaction. However, we hope that the
current experiments demonstrate how certain safety guarantees
can be achieved, potentially serving as a milestone toward
obtaining research-specific clearance for such studies.

The computation of the balance region also remains an
area for improvement (ongoing work). The current model
assumes that a person can place their entire weight on a
single contact point, which may not be accurate for frail or
impaired individuals. Incorporating data on human articulation
torque limitations could enhance the accuracy of the dynamic
balance region calculations. This data could potentially be
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gathered from repeated experiments when the balance region
is violated. Moreover, the assistive force could be computed
using a damped DCM before reaching the boundaries of the
balance region. While this implementation would likely lead
to more conservative assistance, it would also provide a safer,
more proactive approach to assisting individuals in motion.

VIII. CONCLUSION

This letter presents a framework for assisting frail or
impaired individuals using a humanoid robot. The system
evaluates the assisted person’s balance in real-time to calculate
the necessary assistive forces, enabling the robot to provide
support while ensuring safe, close interactions. By utilizing
the 3D DCM-VRP relationship, the framework can balance
both the humanoid robot and the human user simultaneously,
demonstrating how advancements in humanoid design can be
effectively applied to analyze and support human movement.

Our framework is applicable to scenarios involving any
number of non-coplanar contacts. Future work will focus on
conducting broader human studies to better understand the
forces required for assistance, improving the balance region
computation, and exploring more complex assistive cases, in-
cluding contact switching by the humanoid during assistance.
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