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A Very Fast Copy-Move Forgery
Detection Method for 4K Ultra HD
Images
Laura Bertojo, Christophe Néraud and William Puech*

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Centre National de la Recherche Scientifique,
University of Montpellier, Montpellier, France

Copy-move forgery detection is a challenging task in digital image forensics. Keypoint-
based detection methods have proven to be very efficient to detect copied-moved forged
areas in images. Although these methods are effective, the keypoint matching phase has a
high complexity, which takes a long time to detect forgeries, especially for very large
images such as 4K Ultra HD images. In this paper, we propose a new keypoint-based
method with a new fast feature matching algorithm, based on the generalized two nearest-
neighbor (g2NN) algorithm allowing us to greatly reduce the complexity and thus the
computation time. First, we extract keypoints from the input image. After ordering them,
we perform a match search restricted to a window around the current keypoint. To detect
the keypoints, we propose not to use a threshold, which allows low intensity keypoint
matching and a very efficient detection of copy-move forgery, even in very uniform or
weakly textured areas. Then, we apply a new matching algorithm, and finally we compute
the cluster thanks to the DBSCAN algorithm. Our experimental results show that the
method we propose can detect copied-moved areas in forged images very accurately and
with a very short computation time which allows for the fast detection of forgeries on 4K
images.

Keywords: digital image forensics, fast copy move forgery detection, SURF, keypoints, DBSCAN

1 INTRODUCTION

In recent decades, the democratisation of the Internet and the apparition of social networks have
given people the opportunity to easily access and produce multimedia content. Images and videos are
the most exchanged data and are usually perceived as undeniable proof. In addition, image and video
editing softwares have become more powerful than ever and are now accessible to everyone. In the
past decades, it has never been easier to remove or insert elements in images or videos (Chen et al.,
2016; D’Amiano et al., 2019; Aloraini et al., 2021), to change the hue (Hou and Lee, 2017), to make
images more aesthetic or sometimes to modify the meaning of multimedia contents and therefore
spread false information. In this context, it is difficult to establish their integrity and authenticity
when published online and in particular on social networks. If most of the manipulations carried out
remain harmless, some can be carried out for malicious purposes. This has become a problem in
various fields such as politics, journalism, military security and even medical imaging.

During the last few years, several active and passive approaches have been proposed to tackle the
image authentication problem. The active approaches consist in embedding a digital watermark or a
signature in the image in advance (Cox et al., 2002). Although these methods can be effective, they
alter the image quality and they do not match real-life applications. The second class of approaches is

Edited by:
Cecilia Pasquini,

University of Trento, Italy

Reviewed by:
Roberto Caldelli,

Consorzio Nazionale Interuniversitario
Per Le Telecomunicazioni, Italy

Guzin Ulutas,
Karadeniz Technical University, Turkey

*Correspondence:
William Puech

william.puech@lirmm.fr

Specialty section:
This article was submitted to

Image Processing,
a section of the journal

Frontiers in Signal Processing

Received: 28 March 2022
Accepted: 02 May 2022
Published: 24 June 2022

Citation:
Bertojo L, Néraud C and Puech W

(2022) A Very Fast Copy-Move Forgery
Detection Method for 4K Ultra

HD Images.
Front. Sig. Proc. 2:906304.

doi: 10.3389/frsip.2022.906304

Frontiers in Signal Processing | www.frontiersin.org June 2022 | Volume 2 | Article 9063041

ORIGINAL RESEARCH
published: 24 June 2022

doi: 10.3389/frsip.2022.906304

http://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2022.906304&domain=pdf&date_stamp=2022-06-24
https://www.frontiersin.org/articles/10.3389/frsip.2022.906304/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.906304/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.906304/full
http://creativecommons.org/licenses/by/4.0/
mailto:william.puech@lirmm.fr
https://doi.org/10.3389/frsip.2022.906304
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2022.906304


passive and allows us to detect forgeries in an image without any
prior knowledge of the original image. There exists three main
types of forgeries. First copying-and-moving an area of an image
to duplicate it or hide it in another area of the same image, second
impainting an area of an image in order to remove an element
within it, and finally copying-and-pasting of an area of an image
into another. There are multiple approaches to detect forgeries.
For example it is possible to analyze the incoherence of light
inside the scene (De Carvalho et al., 2013; Pomari et al., 2018), to
look for double-JPEG compression areas(Li et al., 2008; Amerini
et al., 2014) or to analyze some features inside the image in order
to distinguish tampered areas from genuine ones (Cozzolino
et al., 2015b). Another method has been developed for tamper
detection in JPEG compressed image scenarios (Lin et al., 2011).
JPEG is the most commonly used format for storing or sharing an
image. It works by approximating the quantization table to detect
altered regions. Another way to detect spliced areas is to search
for noise inconsistencies on the border of the spliced area like in
(Rao and Ni, 2016). We can distinguish two classes of copy-move
forgery detection algorithms, the first class is based on block
division while the second class is based on keypoint extraction.
Some recent methods propose hybrid approaches which take
advantages of both classes. Although keypoint-based approaches
are faster than the block-based ones, the matching phase remains
time-consuming.

In this paper, we propose a very fast copy-move forgery
detection (VFCMFD) method with a reduced computation
time compared to current state of the art methods while
keeping a similar efficiency. Our proposed VFCMFD method
allows us to analyze 4K Ultra HD images. Our method starts by
extracting the keypoints using the SURF detector before
applying our new VFCMFD method. Indeed, the proposed
fast feature matching algorithm is used to match keypoints
found according to their gradient’s orientation. For each
keypoint, the search for matches is performed only on those
having an orientation close to the current keypoint. The results
are then filtered with the DBSCAN algorithm in order to obtain
a tampered area which can be extended to find convex hulls
giving us a final binary mask locating the tampered areas.
Unlike state-of-the-art approaches that are based on
keypoint matching, the method we propose does not use any
threshold for the detection of the keypoints. This allows low
intensity keypoint matching and a very efficient detection of
copy-move forgery, even in very uniform or weakly textured
areas. Consequently, the number of keypoints extracted from
the image increases significantly and due to the O(n2)
complexity, the computation time also increases strongly.
For that reason, we propose in our method to order all the
keypoints and to perform a match search restricted to a window
around the current keypoint. With this technique, we reduce
the complexity fromO(n2) to O(kn) with k being the size of the
search window. Our approach allows us to drastically reduce
the computation time while remaining very efficient with the
matching of keypoints and thus the copy-move forgery
detection in both uniform and weakly textured areas.

The main contribution and highlights of our proposed
VFCMFD method can be summarized as follows:

• The proposed method allows us to detect copied-moved
forged areas for 4K Ultra HD images.

• The method significantly reduces the computation time of
keypoint-based techniques by using a new and fast feature
matching algorithm.

• Even if our method strongly reduces the computation time,
the results obtained are comparable to current state of the
art methods in the case of plain copy-move.

The rest of the paper is organized as follows. First, in Section 2,
we present previous work on image forgery detection, in
particular for copy-move forgery detection. Then, in Section
3, our proposed Very Fast Copy-Move Forgery Detection
(VFCMFD) method is presented with details. In Section 4, we
present several experimental results applied to very large images
and we compare our method to the current state of the art
approaches. Finally, in Section 5, we conclude and present
future work.

2 PREVIOUS WORK

Copy-move forgery is one of the most classic attacks to tamper
with an image. This attack consists of copying one or more areas
in an image and move them elsewhere in the image. Detecting
them can be really challenging, especially when the forged areas
have been processed by several attacks like noise addition, JPEG
compression, blurring, scaling or rotation or if it involves a
smooth or small area. Since 2012, there exists common
databases to evaluate the copy-move forgery detectors, such as
the database FAU proposed by Christlein et al. (2012) which
contains 48 forged images with realistic copy-move manipulation
and where the average size is 3000 × 2300 pixels, and the database
GRIP proposed by Cozzolino et al. (2015a) created in 2015 which
contains 80 images of size 768 × 1024 pixels, where some very
smooth areas are tampered. Copy-move forgery detectors can be
classified into two main categories, these are block-based and
keypoint-based.

In Section 2.1 we detail previous block-based methods while
in Section 2.2 we present previous keypoint-based methods
which have been published before 2015. Finally, in Section 2.3
we present the most recent copy-move forgery detectors that we
have used to compare with our proposed VFCMFDmethod using
the GRIP and the FAU databases.

2.1 Block-Based Methods
Block-based methods follow a common pipeline. Firstly, the
detector divides the input image into overlapping circular or
square blocks. Then for each block, a feature vector is computed
in order to characterize a robust and low dimensional
representation of the local image characteristics. Then, similar
blocks are matched following the obtained descriptors. Most of
the methods use an euclidean distance between descriptors to
estimate the similarity between two blocks. Usually, there remains
some matches, such as those not involved in a tampered area.
Therefore, there is a filtering matching process to remove them.
An optional post processing step of the detected areas may also be
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performed. Themain purpose of block-based techniques is to find
the best descriptor for each block, which has to be low
dimensional and robust to various attacks, such as lossy
compression, blur, noise addition, contrast change or affine
transformation.

In 2003, Fridrich et al. (2003) proposed a frequency-based
feature, the quantized DCT coefficients. Later, Hu et al. (2011)
developed a method that introduces a truncating procedure to
reduce the dimension of the feature vectors in order to help
improve the detection performances based on DCT. The use of
DCT allows us to make the assumption that the more significant
features are captured in fewer coefficients. This method is time
consuming and is sensitive to additive noise or lossy compression.
To tackle this problem, Popescu and Farid (2004) suggested
reducing the feature dimension by using principal component
analysis (PCA) as a compact representation of the blocks. This
approach is robust to minor variations due to additive noise or
lossy compression and the computation cost is significantly
reduced, but the accuracy rate drops for small sized blocks or
when the signal to noise ratio is lower than 24 dB. Luo et al. (2006)
computed seven characteristic features based on the statistical
analysis of the pixels of each block based on the average intensity
of the pixels on the block in each channel (RGB) and the block
intensity ratio in four directions. This method is more robust
against JPEG lossy compression, blur and additive noise. To deal
with the blur attack, Mahdian and Saic (2007) implemented a
method based on blur moment invariants which is robust to blur
degradation, additive noise, contrast change and lossy
compression. It has a high detection rate but has a poor
computation time. Another approach is given by Lynch et al.
(2013) with an efficient expanding block algorithm. Direct block
comparison is employed instead of indirect comparisons based
on block features. Kang and Wei (2008) used singular value
decomposition (SVD) to produce algebraic and geometric
invariant vectors. While in previous algorithms blocks are
directly extracted from the original image, Li et al. (2007)
applied the DWT on the input image and SVD feature
extraction is used on the low-frequency component wavelet
subband to decrease the computation cost. The DWT reduces
the image size by four and the SVD reduces the dimension of the
descriptor. The computation cost is then drastically reduced. In
most cases, the methods presented previously can detect a copy-
move forgery, but they fail to detect forgery when the copied
region is rotated or scaled. In order to tackle this issue, Myna et al.
(2007) proposed applying a wavelet transform to the input image
and then to map each block to log-polar coordinate. However, the
phase correlation used as similarity criteria can only detect
moderate radius rotation. Bayram et al. (2009) used Fourier-
Mellin transform (FMT) as descriptors where each block data is
first Fourier transformed, and the magnitude values are re-
sampled into the log-polar coordinate. The log-polar values
are then projected to 1D feature vectors. This method works
only for small scaling and small rotations.Wang et al. (2009) tried
to overcome the effect of rotation by using circular blocks instead
of square ones and adopting the mean of pixel intensity on circles
of different radii as features. Liu et al. (2011) improved this
method by combining it with Hu moment. Later, Li et al. (2013)

proposed a method which also uses circular overlapping blocks
and extracts features thanks to Local Binary Patterns (LBP) which
are able to detect forged areas precisely against geometric
distortions like scaling, rotation, compression, additive noise
and blurring, but failed to detect the forged areas with
arbitrary rotated angles. Bravo-Solorio and Nandi (2009)
represent blocks with the log-polar coordinates and compute a
one dimensional feature vector which is the sum of the angle
values to have a rotational invariance. This method works directly
on pixel intensity and is therefore sensitive to a pixel change
attack. Ryu et al. (2010) use a detector based on the Zernike
moment whose magnitude is algebraically invariant against
rotation. This method achieved an average detection precision
rate of 83% in the case of region rotation.

2.2 Pioneering Keypoint-Based Methods
As presented in Section 2.1, block-based methods can be
robust against various attacks such as noise addition,
filtering and lossy compression, but they lack of robustness
against rotation and scaling. For that purpose, the second type
of copy-move forgery detection methods relies on keypoints
which aim to directly match keypoints in the image instead of
blocks. The detection of keypoints needs to be invariant to a
large number of operations. Huang et al. (2008) pioneered this
type of method in using Scale Invariant Feature Transform
[SIFT (Lowe, 2004)] and the Best-Bin-First algorithm derived
from the k-d tree to match the keypoints. This approach is
really robust against geometric transformation attacks. Pan
and Lyu (2010) improved this method by clustering the
matches thanks to a tree and estimated the geometric
transformation performed thanks to the RANSAC algorithm
(Fischler and Bolles, 1981). Amerini et al. (2010) proposed a
new way to match the keypoints by using the ratio between the
distance of the closest neighbor to that of the second-closest
one and used a cluster tree to filter the matches. This method
allows the detection of multiple duplicated areas, where the
matched correspondances may follow different geometric
transformations. But in this case, using a global RANSAC
algorithm does not work anymore. To deal with this problem,
Amerini proposed to use a hierarchical clustering algorithm to
group the matches into matching clusters and to apply the
RANSAC algorithm into matched clusters. Shivakumar and
Baboo (2011) proposed a method based on the Speed Up
Robust Feature [SURF (Bay et al., 2006)] which is a
descriptor inspired by SIFT but faster. Indeed, its descriptor
is twice less large and more robust against some image
transformation than SIFT descriptor. Tahaoglu et al. (2021)
presented a method using keypoints and an estimation of the
geometric transformations using the RANSAC algorithm to
determine whether an image is authentic. If the image is
tampered, the estimated homography is used to locate the
altered regions. Kakar and Sudha (2012) used a method based
on the MPEG-7 image signature tools they have modified to
manage copy-move forgery in an image. Another approach
proposed by Ardizzone et al. (2015) is based on keypoints in
order to generate a Delaunay triangulation and to compare
triangles instead of single points.
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2.3 Recent Copy-Move Forgery Detection
Methods
In this section we present the details of several recent copy-move
forgery detectors that we have used to compare with our proposed
VFCMFDmethod. The main drawback of the methods presented
in Section 2.2 is that they have difficulty in detecting forged areas
when they are located in smooth areas. Furthermore, copied-
moved areas are sparsely covered by matched keypoints. The
areas with few keypoints could be thenmissed and taken for noise
during the filtering process phase. To tackle this issue, Zandi et al.
(2016) proposed a method with a novel interest point detector
specialized for the copy-move forgery problem where even
smooth areas are covered by keypoints. The interest point
density is adjusted over the image and concentrated on the
suspected areas by an iterative improvement strategy. Recently,
Li and Zhou (2019) proposed a method which lowers the contrast
threshold in the SIFT algorithm and resizes the image in order to
generate a sufficient number of keypoints, even in smooth areas.
They use hierarchical keypoint matching to reduce the
computation costs due to the increase of keypoints, but also to
obtain appropriate matching. Recent approaches such as
Ardizzone et al. (2015) used a hybrid approach between block-
based and keypoint-based methods that take advantage of both.
After an over-segmentation of the host image, most of these
approaches can be divided into two steps. The first step consists of
approximately finding the blocks involved in the forgery and the
second step to refine the detection in order to increase the
precision rate. Li et al. (2015) proposed to segment the image
into semantically independent patches and to estimate an affine
transform matrix which is then refined thanks to an Expectation-
Maximization-based algorithm. Pun et al. (2015) suggested an
over-segmentation technique which segments adaptively to the
host image thanks to the SLIC algorithm. The method is based on
superpixels to refine the result in the second stage. Mei et al.
(2019) also proposed a method using SLIC to segment the image
before estimating the affine transformation performed between
the suspect superpixels followed by a two-stage local search
algorithm in order to generate the final binary mask. Most of
these methods eliminate superpixels with only one keypoint. In
order not to miss any forgery and to take into account these
blocks, Gupta and Singh (2021) proposed a method based on
FLANN matching. Wang et al. (2019) apply a superpixel
segmentation and classify each block into two categories:
smooth and textured areas. They use a SURF detector and the
PCET coefficients as descriptors. Thus, they find rectangle areas
with high density matched keypoints and use circular overlapping
blocks to these areas to refine the results obtained. Muzaffer et al.
(2020), and Meena and Tyagi (2020) also segmented the image
into smooth and textured areas. In (Muzaffer et al., 2020) the
authors used the quadtree decomposition: if a block does not
exceed a defined size, then it is judged as complex and therefore
textured, otherwise it is considered as smooth. A textured image is
generated from the smooth part using the rotation invariant
version of the LBP operator (LBPROT) in order to extract SIFT
keypoints. In (Meena and Tyagi, 2020), authors took advantage
that block-based methods are more efficient than keypoints based

ones on smooth regions. The image is segmented using a standard
deviation technique, SIFT points are extracted andmatched in the
textured regions while overlapping blocks are used in the smooth
regions. In a recent study, Lyu et al. (2021) segment the input
image into triangles using the Delaunay triangulation over the
keypoints that are matched thanks to the generalized two nearest-
neighbor (g2NN) algorithm. In the second stage, the obtained
triangles are extended by adding their adjacent triangles
iteratively and their vertices form a new subset of keypoints
that are matched thanks to the g2NN algorithm. New methods
focus on reducing time complexity while maintaining high
performance. Diwan et al. (2019) proposed a block-based
method using Local Linear Projection (LLP) which has a
similarity preserving property. Similar blocks are projected
close to each other in the LLP space which allows not to
lexicographically sort all the blocks in the image. Chen et al.
(2020) proposed to improve the time complexity of the keypoints
based methods by clustering the extracted SIFT points according
to their scale and colour.

In our proposed approach, we suggest a new method that
significantly reduces the computation time of keypoint-based
techniques by using the SURF detector algorithm to be able to
detect tampered areas in very large images such as 4K Ultra HD
images.

3 PROPOSED VFCMFD METHOD

In this section, we present with details our proposed Very Fast
Copy-Move Forgery Detection (VFCMFD) method. First, in
Section 3.1 we detail the overview of the VFCMFD method.
Then, the extraction of the keypoints is developed in Section 3.2.
The fast matching algorithm is presented in Section 3.3 and in
Section 3.4, we explain the clustering process we have developed.
Finally, Section 3.5 presents the binary mask generation.

3.1 Overview of the Method
As illustrated in Figure 1, the proposed approach uses the SURF
detector (Bay et al., 2006) in order to extract keypoints and
features from the original image. An efficient and very fast
matching algorithm is then applied on the extracted keypoints.
For each extracted keypoint, wemust calculate if at least one other
extracted keypoint is similar enough to it. Due to the very high
number of keypoints, the quadratic matching algorithm, as
described in (Wang et al., 2019), requires too much
computation time. For this reason, we have developed a very
fast matching algorithm, whose computation time is vastly
reduced, compared to the quadratic algorithm. In addition, the
efficiency of our algorithm is very similar to the original one. In
particular, our proposed very fast matching algorithm gives very
good results when a tampered area has been copied andmoved by
translation, without rotation or scaling.

In the next step, as presented in Figure 1, for each pair of matched
keypoints we consider the line segment between the two matched
keypoints. The idea is that if an area has been copied-moved in the
image, then there should be a large number of matches between the
copied area and the moved one. In this case, we should have quite a
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dense pack of nearly parallel line segments that are approximately the
same length. We then propose to use the DBSCAN clustering
algorithm in a four-dimensional space in order to detect clusters
the dense areas corresponding to the copied-moved areas (Ester et al.,
1996). The final step of the VFCMFD method, as illustrated in
Figure 1, consists in computing the convex hull from the
extracted keypoints belonging to the detected clusters in the
previous step. These convex hulls give us a rough idea of the
forged areas. In order to get more accurate results, we propose to
expand the hulls in order to get the final binarymask. Note that when
the original binary mask is given, we can compute accuracy scores
such as F1-score (Christlein et al., 2012).

3.2 SURF Keypoint Extraction
Our proposed algorithm extracts keypoints using SURF detector
(Bay et al., 2006). The SURF detector gives very similar results to
the SIFT detector (Lowe, 2004), but is much more efficient in
terms of computation time. Indeed, SURF algorithm gives
accurate enough keypoints for our proposed application.

The first step is, considering an input image, to extract n SURF
keypointsP= {p1, . . . , pn} and compute their respective descriptorsF
= {f1, . . . , fn}. Each extracted keypoint pi, with i ∈ {1, . . . , n}, is
characterized as well by an orientation noted θi. Note that the SURF
keypoints are well adapted to our method since, as SIFT keypoints,
they are robust to transformations such as rotations or scaling.
Moreover, they are also robust to blurring, JPEG compression and
noise addition which makes them really practical for forgery
detection. The SURF detector is based on an approximation of a
determinant of the Hessian blob detection method. Indeed, an
Hessian matrix is computed for each pixel, which is kept only if
the determinant of the Hessian matrix is larger than a threshold
τSURF. As a function of the τSURF value, the method can miss some
keypoint matches, in particular when the threshold value is too high.
In order to not miss any keypoints, we take into account in our
method all extracted keypoints with τSURF = 0. Note that in this case,
our algorithm extracts a very large number of keypoints. That is why
in the next step of our algorithm, we have to find both a very fast and
an efficient way to compute keypoint matching.

3.3 Fast Feature Matching Algorithm
Each extracted keypoint pi, with i ∈ {1, . . . , n}, is characterized by
its feature vector fi, called descriptor. A way to make matches
between keypoints is to compare their respective descriptors.
Intuitively, the best match for a keypoint {pi, fi} is the keypoint
whose descriptor fj is the closest to fi for the L

2 norm. However, as
stated in (Amerini et al., 2011), since the feature space is high-
dimensional (64 or 128 dimensions depending on whether we use
the regular or extended SURF detector) this L2 norm-based
approach does not give good enough results.

As suggested by Amerini et al. (2011), it is more efficient to use
a generalized two Nearest-Neighbor (g2NN) algorithm in order
to findmatches. Let i ∈ {1, . . . , n}, we consider the vectorDi = {d1,
. . . , dn−1} the sorted Euclidean distances between a keypoint pi
and all the other keypoints. The regular 2NN test consists of
checking whether:

d1

d2
< τ2NN, (1)

where τ2NN ∈ (0, 1) is a threshold.
Amerini et al. (2011) states that while this test is efficient, its

biggest flaw is that it does not let a keypoint have more than one
match. This happens when an area of the image has been copied-
moved more than once. In order to solve this problem, Amerini
et al. (2011) improved the 2NN test by making a g2NN in the
following way. Instead of only testing the ratio between the first
and the second Euclidean distances, this ratio is calculated:

di

di+1
< τg2NN. (2)

If we find a ratio that is greater than τg2NN, then we stop the
process. We then get a set of Euclidean distances
Di′ � {d1, . . . , dk}. The keypoints corresponding to the
distances in Di′ are the matching ones for the current keypoint
pi. This procedure is repeated for all the keypoints pi in order to
obtain a set of matched keypoints for each keypoint.

Even if this algorithm gives really good results, it is really slow
on large images such as 4K Ultra HD images because its

FIGURE 1 | Overview of our proposed VFCMFD method.
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complexity is O(n2), where n is the number of extracted
keypoints. This is why in this article we propose a solution to
find similar matches with a faster algorithm. First, we sort our
vector of keypoints by the value of their angles:

Pθ � pθ
1, . . . , p

θ
n{ }. (3)

For each keypoint pθ
i , with i ∈ {1, . . . , n}, of Pθ, we define the

vector:

Pθ
i,τθ � pθ

j ∈ Pθ | |θi − θj|≤ τθ{ }, (4)
where τθ is a threshold on the difference of the orientation of the
two keypoints.

With our proposed approach we do not have to loop over all
the keypoints to compute Pθ

i,τθ . Indeed, as we already have the
keypoints sorted by their angles, the vector Pθ

i,τθ only consists in a
small window around each keypoint pθ

i in Pθ. We then define the
function as:

g2NN: Pθ × P Pθ( ) → P Pθ( )
pθ
i , X( ) ⟼ Y,

(5)

which applies the g2NN algorithm described in (Amerini et al.,
2011) but only on a specific subset of keypoints.

The output of the algorithm consists of a set of keypoints
which are matched with pθ

i if at least one is found. We define then
the vector of matches as:

Mτθ � pθ
i , p

θ
j( )| pθ

i ∈ Pθ, pθ
j ∈ g2NN pθ

i ,P
θ
i,τθ( ){ }. (6)

Algorithm 1 presents with details all the steps of the proposed
approach. This algorithm is faster than the original g2NN
algorithm because there are far fewer matches to check. First,
we only select the keypoints whose angle is very close to the
current keypoint pθ

i . This step reduces a lot of the complexity of
the algorithm. Finally, we apply the g2NN algorithm on a vector
whose size is a lot smaller than in the original algorithm. In terms
of complexity, our proposed fast feature matching is in O(kn),
where n is the number of keypoints and k the size of the window
taken around each keypoint. The smaller the value of τθ, the
smaller the value of k.

Algorithm 1. Fast keypoint matching algorithm.

3.4 Clustering Algorithm
In this section we present with details the clustering algorithm we
have developed. Let pθ

i and pθ
j be two matched keypoints

(pθ
i , p

θ
j) ∈ Mτθ such as pθ

i ≤pθ
j for the lexicographical order.

We can then construct a line segment v from pθ
i , the start

point noted ps(xs, ys), to pθ
j , the end point noted pe(xe, ye).

From an image where an area has been copied and moved
to another area in the same image (copy-move forgery), as
presented in Section 3.2 we chose to use SURF keypoints
because they are robust to such operations. In particular if a
copied-moved area is only translated, we then obtain a set of
nearly parallel line segments between the two areas, as illustrated
in Figure 2.

The main objective of our proposed clustering algorithm is
to create clusters from sets of line segments and to reject
outlier line segments. Indeed, all the line segments of the same
cluster must be approximately parallel, of the same length and
close to each other. Since we want to cluster parallel line
segments we need to discriminate the line segments by their
orientation which is noted ϕ. We also want to have clusters
composed of line segments that all start in approximately the
same area by discriminating them by their start points (xs, ys).
Note that if we consider an area which is copied and moved
twice at two different places, the length ℓ of each line segment
and the angle ϕ to the abscissa axis should also be used to
discriminate the clusters. Each line segment v can be then
characterized by four elements which are xs, ys, ϕ and ℓ.

It is important to note that after thematching step presented in
Section 3.3, there may be a certain number of line segments that
do not correspond to a copy-move forgery. Usually, these line
segments are isolated. The usual representation of line segments
of a tampered area consists of large sets of nearly parallel line
segments between copied-moved areas, and some random line
segments that do not represent anything. The filtering process is
then performed by the DBSCAN algorithm (Ester et al., 1996)
which is a density-based algorithm that relies on the estimated
density of clusters to perform the partitioning without knowing
the number of clusters. The DBSCAN algorithm includes dense
areas of line segments in the same cluster, and classifies random
line segments as noise. Considering a line segment v characterized
by (xs, ys, ϕ, ℓ), the DBSCAN algorithm searches for line segments
that are within a radius ε around v. If in this radius, there are more
than minPts line segments, then v is considered to belong to this
cluster.

FIGURE 2 | Example of a tampered image where the red dots are the
matched keypoints and the clouds are the original and the copied-
moved areas.
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The problem with this approach comes from the fact that we
want to make a cluster out of nearly parallel and same-length line
segments, but the line segments set can be very wide. For example,
a large copy-move forgery may have a cluster that covers almost
half the image size. The clustering algorithm must then be able to
discriminate strongly between ϕ and ℓ and be more flexible on xs
and ys. So, we propose to add weights on each component to
obtain a weighted pseudo-distance between two line segments vi,
(xsi, ysi, ϕi, ℓi) and vj, (xsj, ysj, ϕj, ℓj):

d vi, vj( ) � wx

xsi − xsj( )
2

H + L( )/2 + wy

ysi − ysj( )
2

H + L( )/2
+wϕ

ϕi − ϕj( )
2

ϕi

+ wℓ

ℓi − ℓj( )
2

ℓi
,

(7)

whereH and L are the size of the image in order to obtain relative
distances.

3.5 Binary Mask Generation
Once the clusters are detected, we have to generate a binary mask
locating the tampered areas, noted M. To generate this binary
mask, for each cluster we consider all of the start and end points
of the line segments. Let us consider a cluster K = {v1, . . . , vm},
where a line segment vi, with i ∈ {1, . . . , m}, can be characterized
by its start point psi � (xsi, ysi) and its end point pei � (xei, yei).
We define the two following sets as:

S � psi | i ∈ 1, . . . , m{ }{ }, (8)
E � pei | i ∈ 1, . . . , m{ }{ }. (9)

The set S contains all the start points of the line segments in K
while the set E contains all of its end points. We compute the convex
hull of the points in S and the convex hull of the points in E, noted
respectivelyHS andHE. These two convex hulls make it possible to
locate the heart of the tampered areas since they are inside the real
tampered areas.We can observe that at the beginning the two convex
hulls HS and HE have the same shape. Since the two computed
convex hulls are inside the real tampered areas and do not fully
match them, we propose to expand them as presented in Algorithm
2. From the two convex hulls HS and HE and a threshold τPSNR,
Algorithm 2 describes how to obtain a binary mask M.

Algorithm 2. Colour clustering algorithm.

With a function border returning the pixels forming the
boundary hull of a convex hull, we can then extract two sets
of points BS and BE representing respectively the boundaries of
the two convex hulls HS and HE. For each couple of points
(psi, pei) ∈ BS × BE, we then compute its neighborhoodN psi

and
N pei

, as illustrated in Figure 3. TheN psi
andN pei

neighborhoods
are computed from two circular areas of radius k ∈ N pixels
around the start point psi and the end point pei respectively. We
then compute the mean squared error (MSE) between N psi

and N pei
:

MSE � 1
|N psi

| ∑
− k

2� �≤j≤ k
2� �

Y psi,j( ) − Y pei,j( )( )
2
, (10)

where Y(p) is the greylevel of a point p, and k the radius of the
circular areas around psiand pei, as illustrated in Figure 3.

For the first iterations, since the two convex hulls are entirely
inside the tampered areas, the value of MSE (Eq. 10) is very near
or equal to 0. Indeed, because of the copy-move forgery, the two
areas N psi

and N pei
contain the same pixel values. At the end of

each iteration, from theMSE we can calculate the PSNR between
N psi

and N pei
as:

PSNR N psi
,N pei

( ) � 10 log
2552

MSE
. (11)

As presented in Algorithm 2, if the PSNR value is greater than
a threshold τPSNR, then we merge the areas N psi

and N pei

respectively to the convex hulls HS and HE.
After several expansions of HS and HE they reach the border

of the real tampered areas. In this case, the expansion of HS and
HE no longer contains exactly the same pixels. In this case the
PSNR value decreases and becomes lower than the threshold
τPSNR. The convex hull expansion algorithm stops and the binary
maskM for this tampered area is returned. If more than one area
has been tampered, we repeat this algorithm for each cluster in
order to get the final binary mask M.

4 RESULTS AND DISCUSSION

In this section, we present several experimental results obtained
with our proposed VFCMFD method. First, in Section 4.1, we

FIGURE 3 | Expansion of two convex hullsHS andHE by computing the
MSE between the N psi

and N pei
neighborhoods of two matched keypoints

marked in red.
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present the databases used for our experimentation as well as
metrics used to evaluate the performances of the method we
propose. In Section 4.2 we present a full example of our method
and in Section 4.3 we compare it with existing state of the art
ones. In section 4.4, we analyze the performance of our proposed
VFCMFD method, first in terms of computation time and results
obtained as a function of the threshold τθ of the angle, and then in
terms of robustness against noise addition and JPEG compression
attacks.

4.1 Databases and Criteria
Two databases designed for the copied-moved forgery detection
have been used to perform our experimentation. The first one is
the FAU database, which was created in 2012 by Christlein et al.

(2012). It includes 48 source images taken by different cameras.
The aim of this database is to provide a common measurement
for each copy-move forgery detector by providing large images
with an average size of 3000 × 2300 pixels and realistic copy-move
forgeries with tampered areas around 10% of the image size. This
database provides different types of copy-move attacks which are
48 plain copy-move, where each image is tampered with a plain
copy-move, rotation, where the tampered areas are rotated
between 2° and 10°(with a step of 2°) before being translated,
scaling, where the tampered areas are scaled with different scale
factors between 0.91 and 1.09 with a step of 0.02, JPEG
compression, where the tampered area undergoes JPEG
compression with different quality factors (QF) between 100
and 20% with a step size of 10 before being pasted, noise
addition, where the images are normalized and a zero-mean
Gaussian noise is added with a standard deviation between 0.02
and 0.10 with step size 0.02, combined transformations, where
the images undergo several attacks from the previously
mentioned ones, and finally multiple copies, where a square
block of size 68 × 68 pixels are copied and pasted five times in
each image. The second database used is the GRIP one which was
created in 2015 by Cozzolino et al. (2015a). Its creation was
motivated by the need to set up a bank of images that would allow
realistic and accurate forgeries to be performed in a reasonable
amount of time to validate the different methods and to adjust the
different parameters. All 80 images provided have the same size of
1024 × 768 pixels. It consists of plain copy-move attacks with
manipulation that are difficult to detect, such as forgeries made
on very small areas (less than 1% of the image) or in very smooth
areas. For our experiments we also worked on 10 images of a very
large size provided by the DGA1. Five of them have a size of
around 2600−3000,× 2400−4000 pixels and the five others around
6000 × 4000 pixels. Images illustrated in Figure 4A, Figure 5A
and Figure 5D are from this database.

FIGURE 4 | The results obtained on a image from the DGA database: (A) A tampered image (2640 × 2360 pixels), (B) 117,631 keypoints are detected, (C) 809
keypoints are matched, (D) From 803 matched keypoints 1 cluster is generated, (E) Computation of the two convex hulls, (F) Comparison with the ground truth map,
Dice index = 0.94 (pixels in yellow are true positives, pixels in red false positives and pixels in green false negatives).

FIGURE 5 | Two other tampered images from the DGA database of size:
(A) 2640 × 2360 pixels), (D) 3024 × 4032 pixels), (B) and (E) Detection of the
tampered areas, (C) and (F) Comparison with the ground truth maps.

1The DGA (Direction Générale de l’Armement) is a partner in our project: https://
www.defense.gouv.fr/dga.
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We perform tests at image and pixel level. At image level the
goal is to measure how well a method can make the distinction
between tampered images and original ones. To test this, we took
the original images from each database as well as the forged ones.
The tests were carried out on 160 images from the GRIP database
and on 96 images for the FAU database. Measurements were
completed at pixel level and can be used to measure the quality of
detection of tampered areas in a non-authentic image. Indeed, a
method can detect an image as non-identical, but indicate pixels
that are not involved in the forgery. To test this, we took the
tampered images from each base (48 for FAU one and 80 for
GRIP one).

The metrics used to evaluate the performance are precision,
recall, F1-score, Dice and Jaccard indices. We define the number
of forged pixels (resp. images) that have been truly detected (TP),
the number of pixels (resp. images) that have been wrongly
detected as forged (FP) and finally the pixels (resp. images)
that are wrongly detected as authentic (FN). Precision refers to
the rate of pixels truly detected as tampered out of all pixels
detected as tampered: precision � TP

TP+FP. A precision close to 1
means that areas classified as tampered have a probability close to
1 to be tampered areas. Recall refers to the rate of pixels truly
detected as tampered out of all tampered pixels: recall � TP

TP+FN. A
recall value close to 1 means that all tampered areas have been
detected as such. The F1-score is a measure that combines both
precision and recall: F1 − score � 2 × precision × recall

precision+recall . The Jaccard
index indicates the rate of true positives on pixels that are
detected as tampered or that are really tampered. It is a tool
to evaluate the similarity between two binary masks:
Jaccard � TP

FN+FP. The Dice index is double the pixels truly
detected as tampered, over the sum of the pixels detected as
tampered or actually tampered. Like the Jaccard index, this gives a
goodmeasurement for evaluating the performance of themethod:
Dice � 2 × TP

2 × TP+FN+FP.
We have shown in Section 3 that parameters are needed for

the different steps of our method. In Table 1, we show the values
we used for each of these parameters to perform our experiments.
While for the keypoint extraction step (Section 3.2) we set τSURF
= 0, and for the fast g2NN (Section 3.3) we set τg2NN = 0.5 and τθ
= 4°, for the clustering step (Section 3.4), regarding equ. 7, we set

the four weights to 0.25, minPts = 10 and τℓ = 50 pixels. For the
binary mask generation (Section 3.5), for the expansion we set
τPSNR = 100 dB and the radius k = 13 pixels.

4.2 A Full Example
As the objective is to process 4K images, in this section first we
apply our algorithm to a large image (2640 × 2360 pixels),
illustrated in Figure 4, from the DGA database. In Figure 4A
the image representing a tree trunk is altered in the area of the tree
bark. This image is a new challenge, because of the patterns
formed by the tree bark and makes it much more difficult for
CMFD algorithms to find forgeries. Figure 4 shows the results
obtained after each step of our method until the convex hull is
obtained. In Figure 4B, 117, 631 keypoints are detected and
among all of these keypoints, 809 are matched (Figure 4C). From
these 809 matches, 803 are selected to generate 1 cluster as
illustrated in Figure 4D, from which the two convex hulls are
computed (Figure 4E).

Finally, Figure 4F shows a comparison between the mask we
obtain with our method and the ground truth mask. The pixels in
yellow correspond to the true positives, while the pixels in red are
the false positives and the pixels in green, the false negatives. We
can observe that our method correctly detects and locates the
tampered areas and does not produce many false positives.

Figure 5 illustrates two other examples applied to images from
the DGA database. The first image illustrated Figure 5A, of size
2640 × 3960 pixels, shows a dark scene with several similar
coasters. One of these coasters has been copied and moved while
the others remain unchanged. The main difficulty is not to
confuse the original coasters by making false positives. Our
proposed algorithm successfully detects and locates the two
areas involved in the forgery (Dice index = 0.90), as shown in
Figure 5B. In Figure 5C to compare with the ground truth mask,
the pixels in yellow are the true positives. The second image
illustrated in Figure 5D, of size 3024 × 4032 pixels, shows a very
small forgery on the belt loops of the jeans. The tampered area is
very small compared to the size of the image (less than 0.5%). The
difficulty lies in the size of the forgery, but also in the pattern of
shirt which can generate false positives. Our VFCMFD method
also succeeds in correctly locating the forgery with a Dice index
of 0.81.

4.3 Comparison With Previous Work
In this section, we compare the results obtained by our VFCMFD
method with previous ones. First, we present comparisons with
challenging images, then we compare our method with previous
ones on the whole FAU database and finally on the whole GRIP
database.

4.3.1 Comparison on Challenging Images
In this part we analyze the results obtained on copied-moved
images from the GRIP and FAU databases which have been tested
by Wang et al. (2019). These images are specially challenging
because the TP_C01_023 forgery occurs in smooth regions, the
TP_C01_005 and TP_C01_30 occur in high-brightness smooth
regions, the TP_C01_024 and the TP_C01_049 images (all four
from the GRIP database) occurs in images with similar patterns

TABLE 1 | Parameters used for our proposed VFCMFD method.

Parameters Value Part

τSURF 0 Keypoint extraction (Section 3.2)

τg2NN 0.5 Fast g2NN (Section 3.3)
τθ 4°

wℓ 0.25 Clustering DBSCAN (Section 3.4)
wϕ 0.25
wx 0.25
wy 0.25
ϵ 0.5
minPts 10
τℓ 50 pixels

τPSNR 100 dB Binary mask generation (Section 3.5)
Radius k 13 pixels
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and the image Bricks (from the FAU database) which occurs in
multiple regions. Our method is compared with the previous
methods of (Cozzolino et al., 2015a; Pun et al., 2015; Zandi et al.,
2016) and (Wang et al., 2019).

First, Table 2 presents the results obtained with our method
for these challenging images compared to the methods
(Cozzolino et al., 2015a; Zandi et al., 2016; Pun et al., 2015;
Wang et al., 2019). Table 2 shows that our VFCMFD method is
extremely accurate even when the forgery is carried out on a very

smooth area like the sky. The good results obtained in terms of
F1-score by our method (between 0.97 and 0.99) can be attributed
to the large number of keypoints generated by setting the τSURF
threshold to 0 and other appropriate parameters. For the
TP_C01_023 image, the results obtained with our method (F1-
score = 0.99) are very similar and even slightly higher than those
obtained by (Cozzolino et al., 2015a; Zandi et al., 2016) and
(Wang et al., 2019). In TP_C01_005 and TP_C01_030, the
difficulty is that very few keypoints are detected because the

TABLE 2 | Comparison of the F1-scores at pixel level obtained by our method with(Cozzolino et al., 2015a; Pun et al., 2015; Zandi et al., 2016) and(Wang et al., 2019)
methods on challenging images.

Methods Cozzolino et al.
(2015a)

Zandi et al.
(2016)

Pun et al.
(2015)

Wang et al.
(2019)

Proposed

TP_C01_023 0.97 0.97 0.23 0.96 0.99
TP_C01_005 0.00 0.88 0.00 0.94 0.98
TP_C01_030 0.82 0.82 0.21 0.92 0.97
TP_C01_024 0.72 0.83 0.85 0.97 0.99
TP_C01_049 0.16 0.87 0.54 0.96 0.99
Bricks 0.97 0.95 0.89 0.96 0.98

The values in bold are the F1 scores obtained using our method on the different databases (6 difficult images, FAU and GRIP)

FIGURE 6 | Results obtained from each step of our proposed VFCMFD method using challenging images. (A) Original images; (B) Tampered images; (C)
Keypoints; (D) Clustering; (E) Convex hulls; (F) Binary mask after expansion; (G) Comparison.

Frontiers in Signal Processing | www.frontiersin.org June 2022 | Volume 2 | Article 90630410

Bertojo et al. Very Fast Copy-Move Forgery Detection

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


tampered areas are small and occur in a high-brightness, smooth
region. Our method obtains similar results than those of (Wang
et al., 2019) and better results than (Cozzolino et al., 2015a; Pun
et al., 2015) and (Zandi et al., 2016). Images TP_C01_024 and
TP_C01_049 contain forged areas that are very similar to genuine
areas. The CMFD methods can generate false positives and
therefore has a low precision. Our method provides good
results due to fast feature g2NN matching process and the
DBSCAN filtering step. Our method even succeeds in
obtaining better results than those obtained by (Wang et al.,
2019). In the image Bricks (from the FAU database), the same
area is copied and moved four times. For these images, our
method also provides very good results due to the fast feature
g2NN matching process and the DBSCAN filtering step.

In Figure 6, we detail the results obtained for each step of our
method for these challenging images. While in Figure 6A, the
original images are presented (from left to right: TP_C01_023,
TP_C01_005, TP_C01_030, TP_C01_024, TP_C01_049 and
Bricks), in Figure 6B we can see the corresponding tampered
images. The extracted SURF keypoints and feature computation
are illustrated in Figure 6C, and the results of our proposed fast
g2NN matching and clustering algorithms are shown in
Figure 6D. The convex hulls are then obtained, as illustrated
in Figure 6E from which we can generate initial binary masks
before expansion. Finally the expanded convex hulls are
illustrated in Figure 6F, and we can compare them with the
original ground truth maps (Figure 6G). Even if these images are
very challenging, we can observe that the results obtained are
visually very good and confirmed by a F1-score between 0.97
and 0.99.

4.3.2 Comparison With the Entire FAU Database
In this part we compare our method with previous ones on the
entire FAU database. To do this, we compare ourmethod with the
previous methods of (Huang et al., 2008; Amerini et al., 2011;
Shivakumar and Baboo, 2011; Li et al., 2015; Pun et al., 2015;

Zandi et al., 2016; Li and Zhou, 2019; Mei et al., 2019; Chen et al.,
2020; Diwan et al., 2019) and(Lyu et al., 2021).

Table 3 presents the results obtained in terms of F1-score at pixel
level. At pixel level, our method is very efficient with an average F1-
score of 0.8963. The scores obtained are better than those of the
methods (Huang et al., 2008; Shivakumar and Baboo, 2011; Li et al.,
2015; Zandi et al., 2016; Lyu et al., 2021) with F1-scores between
0.6354 and 0.8607, and is comparable to the methods of (Amerini
et al., 2011; Pun et al., 2015; Li and Zhou, 2019) and (Mei et al.,
2019) which have respectively an F1-score of 0.8780, 0.8997, 0.8838,
and 0.9054. Only the (Diwan et al., 2019) and (Chen et al., 2020)
methods perform better and have respectively an F1-score of 0.9924
and 0.9976. The first approach is a block-basedmethod that uses the
LLP (Local Linear Projection) while the second is a keypoint-based
method which starts by extracting SIFT points before classifying
them by scale and colour. Even though these methods have higher
F1-scores, ours is much faster.

At image level, our method detects all tampered images. Indeed,
it does not produce any false negatives (FN = 0/48) but some
original images are detected as forged due to false keypoint
matching (FP = 22/48). The average F1-score at the image level
is 0.8136. Although ourmethod is less efficient than recent methods
such as the one proposed by Lyu et al. (2021) which has an F1-score
of 0.8624, it outperforms methods proposed by Zandi et al. (2016)
and (Li et al., 2015), which have F1-scores of 0. 7934 and 0.7447.

4.3.3 Comparison on the Entire GRIP Database
In this part we compare our method with the method of (Bravo-
Solorio and Nandi, 2009; Amerini et al., 2011; Cozzolino et al.,
2015a; Li et al., 2015; Silva et al., 2015; Zandi et al., 2016; Diwan
et al., 2019; Li and Zhou, 2019; Meena and Tyagi, 2020; Tahaoglu
et al., 2021; Chen et al., 2020) and (Gupta and Singh, 2021) on the
entire GRIP database.

Table 4 presents the results obtained in terms of F1-score at
pixel levels. Our method obtains an average F1-score of 0.9606

TABLE 3 |Comparison, in terms of F1-score at pixel level, obtained by ourmethod
with the methods (Huang et al., 2008; Amerini et al., 2011; Shivakumar and
Baboo, 2011; Li et al., 2015; Pun et al., 2015; Zandi et al., 2016; Li and Zhou,
2019; Mei et al., 2019; Chen et al., 2020; Lyu et al., 2021) and (Diwan et al., 2019)
on the entire FAU database.

Methods Pixel

F1-score

Huang et al. (2008) 0.6354
Shivakumar and Baboo (2011) 0.6954
Li et al. (2015) 0.7447
Lyu et al. (2021) 0.8142
Zandi et al. (2016) 0.8607
Amerini et al. (2011) 0.8780
Li and Zhou (2019) 0.8838
Proposed method 0.8963
Pun et al. (2015) 0.8997
Mei et al. (2019) 0.9054
Chen et al. (2020) 0.9924
Diwan et al. (2019) 0.9976

The values in bold are the F1 scores obtained using our method on the different
databases (6 difficult images, FAU and GRIP)

TABLE 4 | Comparison, in terms of F1-score at pixel level, obtained by our method
with the methods (Bravo-Solorio and Nandi, 2009; Amerini et al., 2011;
Cozzolino et al., 2015a; Li et al., 2015; Silva et al., 2015; Zandi et al., 2016; Diwan
et al., 2019; Li and Zhou, 2019; Meena and Tyagi, 2020; Chen et al., 2020; Tahaoglu
et al., 2021) and (Gupta and Singh, 2021) on the entire GRIP database.

Methods Pixel

F1-score

Li et al. (2015) 0.2774
Silva et al. (2015) 0.6662
Zandi et al. (2016) 0.6444
Bravo-Solorio and Nandi (2009) 0.8482
Cozzolino et al. (2015a) 0.9299
Tahaoglu et al. (2021) 0.9300
Li and Zhou, (2019) 0.9466
Diwan et al. (2019) 0.9469
Amerini et al. (2011) 0.9538
Meena and Tyagi (2020) 0.9581
Proposed method 0.9606
Gupta and Singh, (2021) 0.9748
Chen et al. (2020) 0.9972

The values in bold are the F1 scores obtained using our method on the different
databases (6 difficult images, FAU and GRIP)
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for the GRIP database, which is very efficient. We obtain better
results than the methods of (Bravo-Solorio and Nandi, 2009;
Amerini et al., 2011; Cozzolino et al., 2015a; Li et al., 2015; Silva
et al., 2015; Zandi et al., 2016; Li and Zhou, 2019; Diwan et al.,
2019) and (Tahaoglu et al., 2021) with F1-scores between 0.2774
and 0.9469. The methods of (Amerini et al., 2011) and (Meena
and Tyagi, 2020) which have respectively an F1-score of 0.9538
and 0.9581 are comparable to our method. Only the solutions of
(Gupta and Singh, 2021), and (Chen et al., 2020) obtain higher
results with F1-score of 0.9748 and 0.9972. This said, our results
stay close to theirs and as mentioned in Section 4.3.2, our method
is much faster.

At the image level, our method detects almost all tampered
images as such. Of the 80 images in the GRIP database, the method
generates only one false negative on image TP_C01_14. The
tampered area of this image is located at sky level. The method
detects only 14 matches, of which only one is related to forgery.
Forgeries in blurred and uniform areas remain a real challenge for
keypoints-based methods. Compared to the FAU database, the
method generates some false positives (FP = 26/80). These are due
tomatchesmade in similar areas in the original studied image, such
as on patterns. The average F1-score at the image level is 0.8541.

We can conclude that the very good results obtained by our
method can be explained by the large number of keypoints detected
as well as by our efficient fast featurematching algorithm. Note that
the distances used in our VFCMFD method (Table 1) are suitable
for plain copy-move forgery detection. Even if we decrease the
complexity (O(kn) instead of O(n2)), our VFCMFD method
produces results as good as other state-of-the-art methods in
plain copy-move forgery detection.

4.4 Performance Analysis
All the results presented in this paper have been computed using
OpenCV 4.0 and C++17 on a 64-bit Ubuntu 16.04.1 with the
Intel® CoreTM i7-7820X CPU, 16 cores, at frequency of 3.60 GHz
and 110 GB RAM. The fast feature matching algorithm described

in Section 3.3 is parallelized by separately applying the same
procedure on each keypoint. We ran all the tests using 50 threads,
we split the set of keypoints in 50 parts and each thread runs the
algorithm on its assigned set of keypoints. In this section, we first
present the performances of our VFCMFD method in terms of
computation time. Second we analyze the obtained results as a
function of the threshold τθ of the angle. Finally we analyze the
robustness of our VFCMFD method against noise addition and
JPEG compression attacks.

4.4.1 Computation Time Comparison
Our method significantly reduces the computation time of
keypoint-based techniques by using a new fast feature
matching algorithm. In this part, we analyse the performance
of our method compared to the standard g2NN proposed by
Amerini et al. (2011).

We provide, in Figure 7, as a function of the image size in
pixels, a plot in green showing the number of keypoints, in blue
the computation time of the standard g2NN matching algorithm
(Amerini et al., 2011) (with a complexity inO(n2)), and in red the
computation time of our method. In Figure 7, the tests were
carried out on 80 images from the GRIP database, 48 images from
the FAU database, DGA_1 which is composed of five images of a

FIGURE 7 | Computation time as a function of the image size.

TABLE 5 | Computational time for the different steps on an image from the FAU
database.

Step/Method Proposed Method (s) Classical g2NN (s)

KeyPoints 2.21 1.63
Matches 177.50 3871.23
Lines 0.00 0.00
Clusters 5.04 4.92
Hull 0.00 0.00
Mask 0.00 0.00
extendMask 1.79 1.27
Total 187.71 3880.19

Frontiers in Signal Processing | www.frontiersin.org June 2022 | Volume 2 | Article 90630412

Bertojo et al. Very Fast Copy-Move Forgery Detection

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


FIGURE 8 |Distribution of the matched keypoints according to their differences in angles and norms, with τSURF = 0: In green, the keypoints that are matched in the
same way with a standard g2NN and with our approach; In blue, the keypoints that are matched with a standard g2NN, but not with our approach; In yellow, the new
keypoints that are matched with our approach, with τθ = 4°, but not with a standard g2NN.

TABLE 6 | Same, false and new matches found by both algorithms on GRIP
database (Cozzolino et al., 2015a) and on FAU database (Christlein et al.,
2012).

GRIP Database In cluster Outs. Cluster Total

Same Matches 7506 25,447 32,953
— 94.02% 67.69% 72.30%
False matches 0 0 0
— 0.00% 0.00% 0.00%
New matches 477 12,148 12,625
— 5.98% 32.31% 27.70%

FAU Database In cluster Outs. Cluster Total

Same Matches 184,408 111,490 295,898
— 92.74% 68.55% 81.86%
False matches 3571 167 3738
— 1.80% 0.10% 1.03%
New matches 10,859 50,980 61,839
— 5.46% 31.35% 17.11%

FIGURE 9 | Obtained F1-score and computation time as a function of
the angle threshold used for our proposed approach.
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size of around 2600−3000 × 2400−4000 pixels and DGA_2 which
is composed of five images of a size around 6000 × 4000 pixels. As
we can see in Figure 7, the computation time increases drastically
when using the standard g2NN matching algorithm (Amerini
et al., 2011) with large images. In particular, for very large images
from the DGA_2 database with more than 24 million of pixels
and more than 500,000 keypoints extracted, the average
computation time exceeds 140,000 s corresponding to 38.9 h
(more than 1.5 days). With our method the necessary
computation time for such an image is on average 5830 s
which is around 1.6 h. The gain in time is mainly due to the
matching phase.

In order to evaluate the performance of our approach, Table 5
presents the average times for each phase on an image from the
FAU database. We can observe that the computation time
necessary for the matching phase is therefore considerably
reduced, thanks to our efficient method. This is due to the fact
that for this step we use a threshold τθ for the angle to limit the
number of matches.

4.4.2 Analysis of the Threshold τθ of the Angle
Even if our VFCMFD method strongly reduces the
computation time, the results obtained are comparable to

those of other state of the art methods as presented in
Section 4.3. Indeed, the main novelty of our fast matching
algorithm is the reduction of the number of comparisons
made between different keypoints. Our VFCMFD method
uses a threshold to select the keypoints that are most likely
to match. The higher the threshold, the more comparisons are
needed.

In Figure 8, we compare the matches obtained by a standard
g2NN algorithm with our proposed fast matching algorithm on
the entire database GRIP (Cozzolino et al., 2015a). Then, for all
matched keypoints, we compute the difference between the norm
of their descriptors and the difference between their angles. In
Figure 8, we plot the difference between the norms of the
keypoint descriptors as a function of the difference angles. In
green, we represent the keypoints that are matched in the same
way with a standard g2NN and with our approach. In blue, we
represent the keypoints that are matched with a standard g2NN,
but not with our approach. And in yellow, we represent the new
keypoints that are matched with our approach but not with a
standard g2NN. This means that our method eliminates the
matching of keypoints with angles that differ greatly, and thus
eliminates matches related to similarities in the image. With our
approach, there are no keypoints that would have been selected

FIGURE 10 | Red_tower image from FAU database (Christlein et al., 2012): (A) Original image, (B) Tampered image and (C) Detection of the tampered areas.

FIGURE 11 | Mask image from FAU database (Christlein et al., 2012): (A) Original image, (B) Tampered image and (C) Detection of the tampered areas.
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with a standard g2NN and matched with another point in our
method.

We can observe in Figure 8 that the majority of the matches
are close to (0, 0). This means that the matches are usually made
between keypoints whose orientations are very similar.
Consequently, instead of comparing a keypoint to all the other
keypoints, it is very interesting to compare it to the keypoints of
angle lower than the threshold τθ. As presented in Table 1, for our
experiments using our fast g2NN method we have used τSURF = 0
and τθ = 4°. As we can observe, our proposed VFCMFD method
correctly matches the majority of keypoints, but a lot of other
matches appear as well.

Table 6 presents the percentages of the same, the false and
the new matches between our method and the standard g2NN,
respectively for the GRIP database and the FAU database. The
first row “Same Matches” represents the keypoints that have
been matched by the standard g2NN method and are still
matched by the new method, the second row “False Matches”
represents the keypoints that are mapped by the standard g2NN
method and that are mapped to another keypoint with our
proposed fast g2NN while the last row “New Matches”
represents the keypoints that have not been matched by the

standard g2NNmethod and that are matched with our proposed
fast g2NN method. We can notice that with our proposed
VFCMFD method, most of the matches taking place in
clusters are keypoints that are matched by a standard
method. But more than 30% of the matches outside clusters
are new matches. These new matches can be explained by the
ratio used when applying the g2NN. For the GRIP database, in
Table 6, we can note that 0 false matches were detected.

Figure 9 illustrates the F1-score obtained and the computation
time as a function of the angle threshold used for our proposed
approach. We can observe that after a threshold of 4°, while the
computation time continues to increase, the F1-score hardly
changes.

This analysis enables us to conclude that the approach we
propose is very efficient in terms of F1-score and allows us to
drastically reduce the computation time.

4.4.3 Performance Analysis of Robustness Against
Noise Addition and JPEG Compression Attacks
In this section, we study the robustness of our VFCMFD
method on images that underwent JPEG compression or
Gaussian noise attacks. All the tests were performed on

FIGURE 12 | Tampered images, clusters found and comparison between the obtainedmask by ourmethod and the ground truth for the Red_tower image from the
FAU database using various JPEG QF. (A) Tampered images; (B) Clustering; (C) Comparison; (D) QF/F1-Score.
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both the entire FAU database (Christlein et al., 2012) and the
entire GRIP database Cozzolino et al. (2015a). The
performance of the proposed method is illustrated in detail
on two images from the FAU database. The Red_tower image,
Figure 10, is used to illustrate the robustness against JPEG
attacks, while the Mask image, Figure 11, is used for the noise
addition analysis.

For each figure, we present a set of three images provided by
the FAU database (Christlein et al., 2012): the original images,
Figure 10A and Figure 11A, the tampered images, Figure 10B
and Figure 11B, and the binary masks locating the tampered
areas in white, Figure 10C and Figure 11C. In the first set of
images, the red tower has been duplicated (Figure 10B), while
in the second set, the mouth of two faces have been substituted
by the mouth of two other faces (Figure 11B).

Figure 12 presents the results obtained on the image
illustrated Figure 10B when using JPEG compression with
quality factor (QF) ranging from 100 to 60%. Images in
Figure 12A illustrate the tampered images according to the
applied QF. Therefore, the two areas involved in the
tampering are not completely similar, making the detection
more difficult. A JPEG attack can be considered realistic and
undetectable by the human visual system (HVS) when the QF
is greater than or equal to 70%. Images in Figure 12B show
the clusters detected in each attacked image, each color
corresponds to a different cluster. As the QF decreases,
fewer clusters are detected because the g2NN algorithm
finds fewer matches due to JPEG compression. Indeed, the
detector finds 7, 235 matches for the image without JPEG

compression against 1, 662 matches for JPEG compression
with a QF of 60%. However, as illustrated in images of
Figure 12B the number of matches remains high
regardless of the QF from 100 to 60%. Above a QF of 70%,
only one cluster is detected and from a QF of 60%, two
clusters are observed due to the low density of matching.
In images of Figure 12C, we compare the masks obtained by
our method with the ground truth presented in Figure 10C.
Finally, in Figure 12D, the F1-scores obtained are presented.
We can note that the method we propose is very efficient.
Indeed, whatever the QF the F1-score is always higher than
0.95 and is equal to 0.978 for a QF of 100%. These results show
that the proposed VFCMFD method is robust to JPEG
compression. Regarding the F1-scores obtained on the
Red_tower image as a function of the JPEG QF, up to a QF of
60%, the evolution is almost constant and higher than 0.95. Below a
QF of 40%, the F1-score value drops to 0.6 for a QF of 20%, the
JPEG compression becomes too great and the copied and moved
areas have become too distinct to be properly matched. However,
in this case, as the image quality is strongly degraded, the attack is
no longer realistic.

Figure 13 shows the results obtained on the image
illustrated in Figure 11B when the copied and moved area
undergoes a white Gaussian noise attack of zero mean with
standard deviations between 0.02 and 0.08. Images in
Figure 13A present the tampered images as a function of
the Gaussian noise. Even for a standard deviation of 0.08, it is
very difficult for the HVS to detect this attack. Images in
Figure 13B show the clusters detected in each noisy image

FIGURE 13 | Tampered images, clusters found and comparison between the obtained mask by our method and the ground truth for the Mask image from the FAU
database using various Gaussian noises. (A) Tampered images; (B) Clustering; (C) Comparison.
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where each color corresponds to a cluster. As the standard
deviations of Gaussian noise increases, fewer clusters are
detected. As with JPEG compression, this is mainly because
the detector finds fewer matches when the image is heavily
degraded. The method finds 318 matches for the image that has
not been subject to a noise addition attack against 74 for an
image where additive Gaussian noise has been applied with a
standard deviation of 0.08. Although the density of matches
related to a forgery decreases, the method finds the two clusters
related to both forgeries for all images of Figure 13A. In
images of Figure 13C, we show the comparison between the
masks obtained by our method with the ground truth mask
presented in Figure 11C. Regarding the F1-score obtained,
even if they decrease when the standard deviation of the
Gaussian noise increases, we obtain very good performances
whatever the standard deviation, as shown in Figure 13.
Indeed, all F1-scores are higher than 0.65, and for a
Gaussian noise with a standard deviation lower than 0.04,
the F1-score remains higher than 0.78. Regarding the
evolution of the F1-score obtained on the Mask image as a
function of the standard deviation of the added Gaussian noise,
up to a standard deviation of 0.06 the F1-score is higher than
0.6. We notice a clear decrease when the standard

deviation reaches 0.1 due to the fact the noise becomes too
important and the copied and moved areas do not look similar
anymore.

Figure 14A and Figure 14B show the evolution of the
average F1-score obtained on the entire FAU database.
While Figure 14A illustrates this evolution as a function of
the JPEG QF used during compression, Figure 14B illustrates
this evolution as a function of the standard deviation of
Gaussian noise. We can see that the average F1-scores
obtained for both graphs decrease almost in a linearly way.
A slightly faster decrease can be observed for the JPEG
compression from a QF of 100% and between QF 30% and
20% (Figure 14A). The decrease is stronger in the case of the
addition of Gaussian noise, Figure 14B.

Regarding the GRIP database, Figure 14C illustrates the
evolution of the F1-score as a function of the JPEG QF used
during compression, and Figure 14D illustrates this evolution
as a function of the standard deviation of Gaussian noise. We
can see that the average F1-scores obtained for the two graphs
decrease a little more strongly than for the FAU database,
although this remains relatively linear. We can observe on
Figure 14C that for a JPEG compression up to a QF of 60%, the
F1-score obtained is higher than 0.6. The decrease is stronger

FIGURE 14 | Average F1-score obtained: (A)On the entire FAU database for JPEG compression, and (B) For Gaussian noise, (C)On the entire GRIP database for
JPEG compression, and (D) Gaussian noise.
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in the case of the addition of Gaussian noise, as illustrated in
Figure 14D.

In conclusion, we observe that the proposed VFCMFD
method is robust to JPEG compression and Gaussian noise
addition even if the results depend on the image content.
Regarding scaled and rotated images, this has not been
discussed in this paper because our method has not been
specially developed for such attacks, but the proposed
method succeeds in working with scaled images and rotated
images when the angle is less than 4°. For scaled images, we
obtain an F1-score always higher than 0.7, and for images
rotated with an angle lower than 4°, the F1-score obtained is
also higher than 0.7.

5 CONCLUSION

In this paper, we proposed a very efficient fast copy-move forgery
detection (VFCMFD) method to detect copied-moved forged
areas for 4K Ultra HD images.

This proposed method takes advantage of the robustness of
SURF keypoints in order to find the tampered areas of an image
with a high level of accuracy. The SURF detector provides for
each keypoint extracted from the image its coordinates, its main
orientation, computed from the gradient directions in a
neighbourhood around the current keypoint, and a feature
vector. Although standard keypoint-based methods are
effective in detecting different types of copied moved forgeries,
their matching phase usually has a quadratic complexity. Indeed,
in the classical methods, each keypoint is compared to all the
other keypoints extracted in the image. However, for forgeries
that do not undergo a large rotation, the matched keypoints have
a similar principal orientation. The method we propose does not
use any threshold for the detection of the keypoints. This allows
low intensity keypoint matching and a very efficient detection of
copy-move forgery, even in very uniform or weakly textured
areas. Consequently, without threshold the number of keypoints
extracted from the image increases significantly and due to the
O(n2) complexity, the computation time also increases strongly.
For that reason, we propose to order all the keypoints and to
perform a match search restricted to a window around the
current keypoint. By comparing each keypoint only with
keypoints of similar orientation, the computation time of the

matching phase is significantly reduced from O(n2) to O(kn),
where n is the number of keypoints and k the size of the window
taken around each keypoint. Finally a clustering algorithm
(DBSCAN) is used in order to build clusters out of large
patches of parallel equal length lines. We chose to use this
algorithm because of its ability to reject lines instead of
classifying everything. Eventually, clusters define convex hulls
that we expand in order to best fit the limits of the tampered areas
from which we compute the binary mask. Experimental results
show that our proposed approach is very efficient in terms of F1-
score and allows us to drastically reduce the computation time.
Our method detects forgeries very quickly in 4K images, unlike
more conventional methods.

In future work, we will investigate differentiating copied areas
from moved ones in the same image. Noise analysis on the
expanded convex hulls could help us make that difference.
Furthermore, we want to improve this method to make it
robust to various geometric attacks such as scaling or rotation.
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