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CHAPTER

1
Introduction

The art and science of asking

questions is the source of all

knowledge.

T. BERGER

1.1 Introduction and motivation

This thesis presents original research in the field of Knowledge Representation and Rea-

soning, a central Artificial Intelligence issue.

The contribution of the thesis is providing the ALASKA platform, that is able to integrate

under a unified logical framework different implementation approaches for addressing

the RULE-BASED DATA ACCESS problem.

Knowledge Representation (KR) is one of the basic issues in Artificial Intelligence (AI)

research. In order to create applications that are capable of intelligent reasoning, human

knowledge about an application domain has to be encoded in a way that can be handled

1



2 CHAPTER 1. INTRODUCTION

by a problem-solving computing process. Representing knowledge inside the machine

has proved to be a non-trivial task. The main difficulty is to have a way to constrain and

to make explicit the intended conceptual models of a KR formalism, in order to facilitate

large-scale knowledge integration and to limit the possibility of stating something that is

reasonable for the system but not reasonable in the real world [Croitoru, 2006].

In this thesis we are interested in a particular subset of positive, existential fragment

of First Order Logic (FOL) expressed using a rule-based language [Calì et al., 2009]. This

language can be encoded in several manners and the encoding will impact the efficiency

of storage and querying mechanisms of the language. Despite the importance of the task,

a throughout analysis of how the language encoding affects storage and querying is non

existing in the literature.

The problem addressed in this thesis is the ONTOLOGY-BASED DATA ACCESS problem.

The problem consists in, given a knowledge base containing facts and ontological data,

and a conjunctive query, to determine whether there is an answer to the conjunctive query

in the knowledge base. There are currently two distinct manners to represent ontological

data: description logics languages and rule-based languages.

Rules

OBDA

Description
Logics

Figure 1.1: Approaches for the OBDA problem.

In this thesis, we will address the problem by representing ontological information

through a rule-based language. Such subpart of the problem is also denoted RULE-BASED
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DATA ACCESS (RBDA). Please note that in this thesis we will not focus on implementing the

rule application algorithms (briefly presented in Section 2), but will rather set up a soft-

ware architecture (ALASKA) and study then implement all the necessary pre-requirements

to make it a rule-based system for reasoning purposes. The integration of rules to the soft-

ware architecture developed in this thesis is discussed in Section 4.8.

1.2 Research Problem

The motivation behind this work relies on current limitations of existing tools for ad-

dressing the RBDA problem from a practical point of view. In this thesis we address the

above limitation to show how such practical issues can be addressed. Our contribution

proves how:

– To integrate different implementation approaches under the same framework uni-

fied by the means of a common logical vision (Chapter 3).

– To provide a generic architecture that communicates to different storage systems

through an unified language (Chapter 4)

– To provide higher-level reasoning algorithms on top of the above mentioned archi-

tecture and rendering thus independent of the storage used for the data (Chapter 3)

– To provide a practical means for enabling the storage of large knowledge bases on

disk avoiding out of memory limitations (Chapter 5)

– To provide a practical means for enabling querying knowledge bases via Constraint

Satisfaction methods (Chapter 5)
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The research problem we will address in this thesis is: “How to provide a platform

providing under a unified logical framework different implementation approaches for

addressing the rule-based data access problem?”

Our research hypothesis is that such platform can be build by following the logic based

definition of the language (atoms, terms etc) and by dealing with large file storage by the

means of buffering and Constrain Satisfaction proof of concept techniques.

1.3 Thesis structure

In addition to this chapter which provides the context of my research, the thesis con-

tains five chapters.

– Chapter 2 presents the RBDA, by formally defining all the elements of the fragment of

First Order Logic we use. The syntax and semantics for facts and rules are presented.

Then an overview about the two distinct methods for rule application (forward and

backwards chaining) is given, along with the complexity of those techniques. To

conclude this chapter, a parallel with other representation languages, such as RDF

and Description Logics and our rule-based language is made.

– Chapter 3 describes the evolution of the context of the problem w.r.t the nature

of data and storage systems available now. According to this context, the chapter

features the study of different available systems and compares them according to

the following topics: their ability of representing a knowledge base, performing a

conjunctive query on that base, and performing a conjunctive query on the base

when its facts are enriched by rules.

– Chapter 4 presents ALASKA, the generic and logic-based software platform we have

developed in order to address the RBDA problem. In this chapter, we introduce our
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motivations and inspirations upon the design phase of the project. We also detail

the multi-layered architecture of the platform. An example of generic algorithm (a

backtracking algorithm for homomorphism computing) is given highlighting the

use of generic functions implemented by any store connected to ALASKA. The stores

featured in this work are then quickly described, followed by an example. After an

explanation on how we aim using ALASKA for addressing the RBDA problem, we

also discuss the potential use of ALASKA in other domains.

– Chapter 5 features all the experimental work performed throughout this thesis. Algo-

rithms for loading a knowledge base and storing it on disk are given for all the stores

connected to ALASKA. Then some of the important generic functions of ALASKA are

detailed according to their implementation. After the input data we have used is

introduced, the chapter presents the workflows of our efficiency tests on storage and

querying. For storage, we present a buffered algorithm for storing a large knowledge

base without running out of memory, while in querying we present an adaptation of

the problem into a constraint satisfaction problem.

– Chapter 6 concludes the thesis by summarizing the achievements of the thesis. It

also presents other future research problems opened by my work.

1.4 Evaluation

This thesis, as a whole, demonstrates that we can provide an architecture able to plat-

form RBDA in a unified logical manner.

Based on this thesis’s research hypothesis “How to provide a platform providing

under a unified logical framework different implementation approaches for addressing

the rule based data access problem?”, we will consider this work successful if we can prove



6 CHAPTER 1. INTRODUCTION

that:

– Different implementation approaches have been integrated under the same frame-

work unified by the means of a common logical vision. This is highlighted in Chapter

3 where we show how the formalism presented in Chapter 2 can be retrieved from all

the listed approaches.

– A generic architecture that communicates to different storage systems through an

unified language was built. In Chapter 4 we present the ALASKA platform, a software

architecture that integrates different storage method by the means of an abstract

and logic-based abstract layer.

– The possibility of writing higher-level reasoning algorithms independent of the stor-

age used for the data is granted. This is explained in 4 where the foundations and the

architecture of ALASKA is presented. An example of this possibility is explained by

presenting the generic backtracking algorithm implemented in ALASKA for homo-

morphism computing.

– A practical method for storing large knowledge bases on disk avoiding running out

of memory was provided. This is presented in Chapter 5 where after explaining a

testing workflow, we explain the difficulties that may appear when performing such

operation and present a buffered algorithm as a solution.

– A practical method for querying knowledge bases using constraint satisfaction solver

is provided. This is also presented in Chapter 5, where we present two transforma-

tions of the initial RBDA problem to a constraint satisfaction problem. The two

methods presented differ according to the size of the knowledge base one wants to

query.



CHAPTER

2
Rule-Based Data Access (RBDA)

A mathematician is a device for

turning coffee into theorems.

P. ERDÖS

2.1 Chapter Overview

In this chapter, we introduce the research problem we address in this thesis, RULE-

BASED DATA ACCESS. The chapter starts by a very brief description of the problem (Section

2.2) followed by an example. Sections 2.3 and 2.4 introduce and list the theoretical defi-

nitions and properties for a better understanding of the problem. Equivalences between

RBDA and other families of languages are discussed in Section 2.5. We conclude the chap-

ter with a short conclusion that resumes the properties and characteristics seen through-

out the chapter.

7



8 CHAPTER 2. RULE-BASED DATA ACCESS (RBDA)

2.2 Foreword

2.2.1 Problem presentation

The RULE-BASED DATA ACCESS (RBDA) problem, derived from ONTOLOGY-BASED DATA

ACCESS [Lenzerini, 2002] knows today an interest in knowledge systems allowing for ex-

pressive inferences. In its basic form, its input consists in a set of facts, an ontology and a

conjunctive query, and the problem consists of finding if answers to the query can be de-

duced from the facts, eventually using inferences allowed by the ontology. This deduction

mechanism could either be done (1) previous to query answering by fact saturation using

the ontology (forward chaining) or (2) by rewriting the query according to the ontology

and finding a match of the rewritten query in the facts (backwards chaining).

Let us consider a knowledge base F that consists of a set of logical atoms, a set of rules

R written in some (first-order logic) language, and a conjunctive query Q. The RBDA

problem stated in reference to the classical forward chaining scheme is the following:

“Can we find an answer toQ in a database F ′ that is built from F by adding atoms that can

be logically deduced from F and R?”

Since forward chaining schemes can unreasonably increase the size of the database

(and thus cannot be relied upon when considering very large knowledge bases), some

algorithms use a backward chaining scheme (or query rewriting) for query answering. In

that case, the set of rules R (and sometimes the database itself F, leading to a complexity

increase) is used to build from Q a rewritten query Q ′ (that is often a disjunction of con-

junctive queries), such that there exists an answer to Q in F ′ if and only if there exists an

answer toQ ′ in F.

There are today two major approaches in order to represent an ontology for the OBDA

problem. The first one are the Description Logics. Description Logics are families of

languages used for defining concepts. Based upon constructors, the expressivity of the
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languages comes from the combination of these constructors. Description Logics allow

today for very large expressivity. However, such expressivity is responsible for exponential

blow-up when answering conjunctive queries. In order to be able to answer conjunctive

queries, people have defined and studied "lite" description logics, which are less expres-

sive but in which conjunctive query answering is decidable (e.g. EL([Baader et al., 2005])

and DL-Lite [Calvanese et al., 2007] families).

The second method is to represent the ontology via inference rules. Recent works

consider the Datalog+ [Calì et al., 2009] language to encode a generalization of Datalog

that allows for existentially quantified variables in the head of the rules. Such capacity

is also responsible for undecidability when answering conjunctive queries. Works have

focused on identifying and developing algorithms for particular fragments of Datalog+

that are decidable [Calì et al., 2010; Baget et al., 2011b]. For this reason we will focus on

this problem in this work. Later in this chapter, we rewind that using rules for encoding

the ontology cover the families of "lite" description logics.

While above work focuses on logical properties of the investigated languages, existing

approaches employ a less principled approach when implementing such frameworks. It is

well known [Abiteboul et al., 1995; Chein et Mugnier, 2009] that encoding such languages

can be equivalently done using (hyper)graphs or relational databases. However, none of

the existing systems make this possibility of different encodings explicit. The choice of the

appropriate encoding is left to the knowledge engineer and it proves to be a crafty task.

2.2.2 Example

Let us describe RBDA by the means of an example. In the following, we consider the

case of a very simple knowledge base represented by some facts and an ontology. The

knowledge base we take for example contains the following facts:

(a) Paris, Montpellier and Nîmes are cities.
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(b) Alice is a woman, and Bob is a man.

(c) Alice and Bob are friends.

(d) Alice lives and works in Paris.

(e) Alice works as a computer analyst.

(f) Bob lives in Montpellier, and works in Nîmes.

(g) Bob works as a school teacher.

The knowledge base is also composed of the following rules:

1. “A school teacher teaches Latin.”

2. “A computer analyst knows programming.”

3. “If a person lives in Montpellier and works in Nîmes, then it drives to work.”

Let us consider the conjunctive query “Does someone lives in Montpellier?". Such query

does not require any use of the information in the ontology to be answered, since all the

information contained in the facts is already enough to say that Bob lives in Montpellier.

On the other hand, queries such as “Is there anyone that drives to work?" or “Is there anyone

living in Paris that knows programming?", does have answers as well, but those can not be

found until the information located in the ontology is consulted by the query engine.

As previously stated, consulting the ontology information can either be done via for-

ward or backwards chaining. In a forward chaining algorithm, new information is added

to the facts when rules may apply on the current facts. The algorithm checks if there is new

information to be added according to the facts and rules. According to rule 1, (h) "Bob

teaches Latin" is a new fact added to the knowledge base. Rule 2 adds (i) "Alice knows

programming" and rule 3 adds (j) "Bob drives to work" to the knowledge base. As no new

information can be obtained by rule application, we say that the facts are saturated. The



2.3. FACTS 11

question “Is there anyone that drives to work?" has now an answer in the facts and can be

answered successfully.

On the other hand, a backwards chaining algorithm does not alter the facts but does

rewrite queries according to the ontology content. For the “Is there anyone living in Paris

that knows programming?" question, the algorithm looks for different manners to rewrite

the original query based on the rules. From the different possible rewritings, the query “Is

there anyone living in Paris that is a computer analyst?" is obtained according to rule 2 ("a

computer analyst knows programming") in the ontology. We see that this newly obtained

query has an answer in the facts. The answer for this rewriting is an answer to the initial

query.

2.3 Facts

2.3.1 Syntax

The syntax of the logical language we use is the following: we consider constants but

no other functional symbols. In order to represent a knowledge base, a vocabulary has to

be defined. A vocabularyW is composed of a set of predicates P and a set of constants C.

Constants are tokens that identify the individuals in the knowledge base, while predicates

represent relations between such individuals. We also consider X, a set of variables in the

knowledge base.

Definition 2.1 (Vocabulary) Let C be a set of constants and P a set of predicates. A vocab-

ulary is a pair W = (P,C) and arity is a function from P to N. For all p ∈ P, arity(p) = i

means that the predicate p has arity i.

We will also consider an infinite set X of variables, disjoint from P and C. Hence, an

atom on W is of form p(t1,...,tk), where p is a predicate of arity k in W and the ti are

constants in W or variables. A term is an element of C ∪ X. For a given atom A, we note
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terms(A), csts(A) and vars(A) respectively the terms, constants and variables occurring

inA.

Definition 2.2 (Fact) A fact is a finite, but possibly empty, set of atoms on a vocabulary. For

a given fact F, we note atoms(F) the atoms occurring in F.

Example Let us consider a vocabularyW = (P,C). P = {man,woman}, C = {Bob,Alice}

and arity = {(man,1),(woman,1)}. man(Bob) andwoman(Alice) are two distinct atoms

onW, and F = {man(Bob),woman(Alice)} is a fact onW.

2.3.2 Semantics

Definition 2.3 (Interpretation) LetW = (P,C) be a vocabulary. An interpretation ofW is a

pair I = (∆,.I) where ∆ is the domain of the interpretation, and .I a function where: ∀ c in

C, cI ∈∆ and ∀ p in P, pI ⊆∆arity(p).

An interpretation is non empty and can be possibly infinite.

Definition 2.4 (Model) Let F be a fact on W, and I = (∆,.I) be an interpretation of W. We

say that I is a model of F iff there exists an application v : terms(F)→∆ (called a justification

of F in I) such that:

– ∀ c ∈ csts(F), v(c) = cI and

– ∀ p(t1,...,tk) ∈ atoms(F), (v(t1),...,v(tk)) ∈ pI.

Definition 2.5 (Fact to logical formula) Let F be a fact. φ(F) is the logical formula that cor-

responds to the conjunction of atoms in F. AndΦ(F) corresponds to the existential closure of

φ(F).

Example Let us consider a fact F = {person(x), name(x,Bob), age(x,25)}.

– φ(F) = person(x)∧ name(x,Bob)∧ age(x,25).

– Φ(F) = ∃x person(x)∧ name(x,Bob)∧ age(x,25).
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Property 2.1 (Model equivalence) Let F be a fact and I be an interpretation ofW. Then I is

a model of F iff I is a model (in the FOL sense) ofΦ(F).

Definition 2.6 (Entailment) Let F andG be two facts, F entailsG if every model of F is also

a model ofG. The entailment relation is then noted F |=G.

2.3.3 Computing

Definition 2.7 (Homomorphism) Let F and F ′ be facts. Let σ: terms(F)→ terms(F ′) be

a substitution, i.e. a mapping that preserves constants (if c ∈ C, then σ(c) = c). We then

note σ(F) the fact obtained from F by substituting each term t of F by σ(t). Then σ is a

homomorphism from F to F ′ iff the set of atoms in σ(F) ⊆ F ′.

Example Let F = {man(x1)} and F ′ = {man(Bob),woman(Alice)}. Let σ :

terms(F) → terms(F ′) be a substitution such that σ(x1) = Bob. Then σ is a homo-

morphism from F to F ′ since the atoms in σ(F) are {man(Bob)} and the atoms in F ′ are

{man(bob),woman(Alice)}.

Property 2.2 (Entailment) Let F andQ be facts. F |=Q iff there existsΠ an homomorphism

fromQ to F.

2.3.4 Complexity

The entailment problem is a NP-Complete problem. However, there exist polynomial

cases of the problem, such as when Q has a tree structure. See [Chein et Mugnier, 2009;

Croitoru et Compatangelo, 2006] for polynomial subclasses.
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2.4 Rules

2.4.1 Syntax

Rules are objects used to express that some new information can be inferred from an-

other information. Rules are built upon two different facts, and such facts correspond to

the two different parts of a rule, called head and body. Once the body of a rule can be

deduced from a fact, then the information in the head should also be considered when

accessing information.

Definition 2.8 (Rule) Let H and B be facts. A rule is a pair R = (H,B) of facts where H is

called the head of the rule and B is called the body of the rule. A rule is commonly noted B→H.

2.4.2 Semantics

Definition 2.9 (Rule model) LetW be a vocabulary, I an interpretation onW, and R a rule

on W. We say that I is a model of R iff for every justification VB of B in I there exists a

justification VH ofH in I such that ∀t ∈ vars(B) ∩ vars(H), VB(t) = VH(t).

Definition 2.10 (Rule to logical formula) Let R = (H,B) be a rule. Let bx be the variables

from B, and hx be the variables fromH that are not in B, the logical formula corresponding

to R is the following: Φ(R) = ∀bx (φ(B)→ ∃hx φ(H)).

Example Let us consider a rule R = {person(x),person(y),sibling(x,y)} →
{person(z),parent(x,z),parent(y,z)}. Φ(R) = ∀x,y( person(x) ∧ person(y) ∧

sibling(x,y)→ ∃z person(z)∧ parent(x,z)∧ parent(y,z) ).

Property 2.3 (Model equivalence) Let R be a rule and I be an interpretation ofW. Then I

is a model of R iff I is a model (in the FOL sense) ofΦ(R).

Definition 2.11 (Knowledge base) LetW be a vocabulary. A knowledge base (KB) is a pair

K = (F,R) where F is a fact onW and R is a set of rules onW.
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Definition 2.12 (KB model) LetK = (F,R) be a knowledge base and I be an interpretation. I

is a model of K iff I is a model of F and also a model of every rule Ri in R.

Definition 2.13 (Entailment) Let K be a knowledge base andQ be a fact. K entailsQ iff all

models of K are also models ofQ.

The RULE-BASED DATA ACCESS is defined as the following:

Algorithm 1: Rule-Deduction

Input: K a knowledge base,Q a fact
Output: TRUE if all the models of K are also models ofQ

Definition 2.14 (Logical representation of a knowledge base) Let K = (F,R) be a knowl-

edge base. Φ(K) = (Φ(F),Φ((R))) is the logical representation of K. Φ(F) is the logical for-

mula of F andΦ(R) =
⋃
r∈RΦ(r).

Property 2.4 (Model equivalence) Let K be a knowledge base and I be an interpretation.

Then I is a model of K iff I is a model (in the FOL sense) ofΦ(K).

In other words, given a knowledge base K and a conjunctive queryQ, the RBDA prob-

lem consists in answering ifQ can be deduced from K, denoted K |=Q.

2.4.3 Algorithms

Rule application can be performed of two different methods, called FORWARD CHAIN-

ING and BACKWARDS CHAINING.

Forward chaining

Definition 2.15 (Applicable rule) Let R = (H,B) be a rule and F be a fact. R is applicable to

F if there exists an homomorphismΠ : B→ F. In this case, the application of R to F according

toΠ is a fact α(F,R,Π) = F ∪Πsafe(H).
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Please note the use of Πsafe instead of Π. Πsafe is an application that converts exis-

tential variables into fresh ones at the moment of joining new information with the initial

fact. Such process is important in order to avoid unnecessary specializations. A derivation

is the result of a finite sequence of rules application.

Definition 2.16 (Derivation) Let F be a fact. F ′ is a derivation of F iff there exists a finite

sequence of facts F = F0, ..., Fk = F ′ (called the derivation sequence) such that for every i there

exists R andΠ such that Fi = α(Fi−1,R,Π).

Definition 2.17 (Saturation) Let F be a fact andR be a set of rules. ΠR(F) = {Π:BR→ F} is the

set of homomorphisms of the body of applicable rules to F. α(F,R) = F
⋃
π∈ΠR(F) π

safe(HR)

is the result of the application of all those rules. The saturation of a fact is the process of

applying rules from the initial fact until no more new information can be added to the fact

via rule application. Let the initial fact F0 = F, and Fi = α(Fi−1,R), a fact is saturated when

Fi ≡ Fi+1.

Theorem 2.1 (Equivalence) Let K = (F,R) be a knowledge base andQ be a fact. The follow-

ing assertions are all equivalent:

– K |=Q

– there exists a derivation F ... F ′ such that F ′ |=Q

– there exists an n ∈N such that Fn,R |=Q

Backwards chaining

As opposed to forward chaining which enriches the facts with the rule application,

the backwards chaining rewrites the initial query in a union of several new queries. The

decomposition is obtained by applying rules on the query, i.e. by seeing which rule could

have generated the query and from which fact. All possibilities are kept and further de-

composed until the initial set of facts is reached or all possibilities are examined. The

backwards chaining approach does not enrich the facts but works on the query.
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One of the motivations of the ALASKA features is the big addition of facts due to for-

ward chaining rule application. This is the reason why in this work we do not focus on

backwards chaining. In the following we will simply define what a backwards chaining

decomposition is and then the reader is invited to further consult works cited below on

backwards chaining.

Definition 2.18 (Backwards chaining) Let Q be a fact and R a set of rules. We denote

B(Q,R) = {Qi | ∀F, (F,R) |=Q iff ∃Qi ∈ B(Q,R) such that F |=Qi}.

The work of [Salvat et Mugnier, 1996], corrected by [Baget et Salvat, 2006], and adapted

to First Order Logic in [Baget et al., 2011a] provides such a rewriting.

2.4.4 Complexity and decidability

The complexity of RBDA may vary according to the set of rules present in the ontology.

When there are no rules in the ontology, the problem is then equivalent to homomorphism

computation, which is a NP-complete problem.

In the presence of rules, the problem is undecidable. Both the forward chaining and

backwards chaining mechanisms are not certain of halting. This is easy to verify through

the means of very simple examples.

Forward chaining Let K = (F,R) be a knowledge base, F = person(Bob), and R =

{{person(x)}→ {parent(y,x),person(y)}}.

LetQ = {parent(x,Tom)} be a fact. Asking a forward chaining mechanism ifQ can be

deduced from K may eventually never stop. The mechanism will first verify if Q can be

deduced from F, if there is an x having Tom as parent in F. As it is not the case, rules will

be applied and F will be enriched into F ′ = {person(Bob),parent(p1,Bob),person(p1)}.

The mechanism will then verify if Q can be deduced from F ′. As it is still not the case, it

will once again apply rules and enrich F ′ into F". And it will do it infinitely as in this case,
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no answer will be ever found to the query.

Backwards chaining Let K = (F,R) be a knowledge base, and R = {{p(x,y),p(y,z)}→
{p(x,z)}}.

Let Q = {p(a,b)} be a fact. Asking a backwards chaining mechanism if Q can be de-

duced from K may also eventually never stop. The mechanism will first verify if {p(a,b)}

can be deduced from F. If that is the case, the mechanism will stop. Otherwise, it will

rewrite the initial queryQ into a new queryQ1 = {p(a,x0),p(x0,b)}. Q is deduced from K

ifQ1 is deduced from K. IfQ1 can not be deduced from F, the mechanism will rewrite the

query again, for example withQ2 = {p(a,xO),p(x0,x1),p(x1,b)}. Such sequence of rewrit-

ings may never end. Any finite rewriting corresponds to a finite sequence, for example, of

length k of form {p(a,xO) ... p(xk,b)}. The facts could always contain a sequence of length

k+1.

Works [Baget et al., 2010] have identified classes of rules in which the RBDA problem is

decidable. One of those is the class of Range-Restricted rules. Such class does only contain

rules in which no existential variable is present in the head of the rule, in other words, when

no new variable is created upon rule application. They are part of the Finite Expansion Set

class, a class in which the saturation process is finite. Another classes of rules in which the

problem is decidable are the FUS (Finite Unification Sets) and BTS (Bounded Treewidth

Sets) classes. The rules of BTS class have the particularity of generating and infinite fact

with an arborescent structure, while the ones in FUS have the particularity of generating a

finite sequence of query rewritings. See [Thomazo, 2013] for further details. Those classes

will appear once again in the next section, where a comparison between RBDA and other

languages will be established.
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2.5 Other languages

As stated earlier in this chapter, representing an ontology by the means of rules covers

different other languages. In this section, the cases of RDF and "lite" Description Logics

are treated. Without getting very deep in details, we present those languages and, through

the means of examples, we demonstrate how it is possible to convert the existing problems

of those languages into RBDA.

2.5.1 RDF

RDF is a data model introduced by the W3C [Klyne et al., 2004] in order to describe

formally resources and their metadata. An advantage of RDF, which is one the reasons

of its success is the simplicity to describe entities/resources in the model. Currently the

model is widely used to describe web resources, which makes RDF one of the founding

bricks of the Semantic Web development [Hitzler et al., 2011].

RDF data model is based upon the idea of describing resources through the means

of statements. A statement is a triple, composed of a subject representing the resource

(concept or individual) to describe, a property, representing a relation associated to the

subject, and an object, which is the value associated to the property. Blank nodes can also

be used to represent an unidentified resource. An object can either be raw data (number,

string), another resource, or a blank node. A set of RDF statements represents a labeled

and oriented multigraph. RDF syntax is the following:

– A RDF document is composed of a set of triplets t = (s,p,o), where s is the subject, p

the property and o the object.

– The subject of a triplet is either a resource identified by an URI either a blank node.

– The property of a triplet is a resource identified by an URI.

– The object of a triplet can either be a resource identified by an URI, either a blank

node, or raw data.
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Definition 2.19 (Triplet to atom) Let t = (s,p,o) be a triplet. ΦRDF(t) is the atom corre-

sponding to the triplet such that ΦRDF(t) = pred(s,p,o). In our formalism, s and o are

variable terms if they are blank RDF nodes. If not, they are constant terms.

Definition 2.20 (RDF to fact) Let R be a RDF document. ΦRDF(R) = {ΦRDF(t) | t ∈ R }.

Example Let us consider the following RDF document R:

_:x rdf:type foaf:Person.

_:x foaf:name "Bob".

The corresponding fact to the RDF document is ΦRDF(R) = {pred(x,rdf : type,foaf :

Person),pred(x,foaf :name, "Bob")}.

Property 2.5 (Simple entailment) Let RF and RQ be RDF documents. RF |= RQ iffΦRDF(F)

|=ΦRDF(Q). We say that RF simply entails RQ.

This property is detailed here [Baget, 2005]. The semantics of RDF and RDFS, based

on semantic rules, can easily be implemented in a rule-based ontology. We show it below

through an example.

Example We will use rule rdfs8 of [Hayes, 2001] as example. Let xxx, yyy and zzz be

resources identified by URI. In Stage 3 of the rdfs-closure computing, it is stated that the

presence of xxx [rdfs:subClassOf] yyy and yyy [rdfs:subClassOf] zzz in the document

lead to the add of xxx [rdfs:subClassOf] zzz to the original document.

This semantic rule can be translated into the following rule in our scope: {pred(x,rdfs :

subClassOf,y),pred(y,rdfs : subClassOf,z)}→ {pred(x,rdfs : subClassOf,z)}.

Such rule is Range-Restricted as it does not feature any existential variable in the head

of the rule. All the rules obtained through the transformation of RDF and RDFS semantic

rules are Range-Restricted, which makes it a decidable case of RBDA. [Baget, 2005] defines

RDF entailment as the entailment of a RDF document into another, potentially enriched



2.5. OTHER LANGUAGES 21

by the RDF entailment rules. This also applies to RDFS with the RDFS entailment rules.

We denote RRDF a set of rules that encodes the RDF entailment rules, and RRDFS a set that

encodes RDFS entailment rules. Both RDF and RDFS rules are detailed in [Hayes, 2004].

Property 2.6 (RDF Entailment) Let RF and RQ be RDF documents. RF |=RDF RQ iff

ΦRDF(F),RRDF |=ΦRDF(Q).

Property 2.7 (RDFS Entailment) Let RF and RQ be RDF documents. RF |=RDFS RQ iff

ΦRDF(F),RRDF ∪RRDFS |=ΦRDF(Q).

Please note that through this document, we will not work directly with RDF entailment,

but the RDF language will be featured in other chapters of the document, as it has been

used for the acquisition of large amount of data and also in the study of storage systems.

2.5.2 Description Logics

As previously said in this chapter, encoding the content of an ontology can also be done

through description logics. RBDA does not systematically covers all the description logic

languages: some of them allow different expressivity. Others can easily be transformed into

existential rules. In this section, we will have a closer look into a group of description logics,

the "lite" DLs. Such languages feature limited expressivity, but ensure the decidability of

the deduction mechanisms. Lite DLs are almost entirely covered by RBDA.

The EL family of description logics

As for RDF, we will show how a problem represented in EL can be transformed in a

RBDA instance through an example using the ELH⊥ language. This language features

the following constructors: >, ⊥, C, CuD et ∃R.C. It also features domain and range for

relations.

The assertions of type C vD can be translated into existential rules. For instance, the

following assertionCu∃R.Cv ∃S. (DuE) is equivalent to this rule: {C(x),r(x,y),C(y)}→
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{S(x,y ′),D(y ′),E(y ′)}. The presence of the ⊥ constructor adds a negative constraint (C⊥)

to the entailment computing. The presence of this constraint however does not bring any

change at decidability level.

Property 2.8 (EL Entailment) Let K = (A,T) be a knowledge base and let Q be a query.

A,T |=EL Q iffA,Φ(T),{C⊥} |=Q.

Using this translation into rules, all the new rules will generate facts with a tree struc-

ture. That property ensures the decidability of the rule application mechanism in this case

[Baget et al., 2011a].

DL-Lite family

Another family of "lite" description logics is DL-Lite family. Like EL, DL-Lite family is

also decidable and can also be almost entirely covered by RBDA. The elements of such lan-

guages that can not be represented by rules are the possibility of using functional values,

and also assertions of the type: Av¬C, that would imply a negative constraint ¬(A∧C).

DL-Lite family also introduces Equality-Generating Dependencies (EGD). In logics,

such rules would be of type {R(x,y),R(x,y ′)}→ {y = y ′}, when the result of the rule ap-

plication implies the equivalence between two terms.

2.6 Conclusion

As we have stated earlier, RBDA is a sub-problem of OBDA where the ontology is en-

coded using rules. As we have seen in this chapter, the choice of language for ontology rep-

resentation is very important, as the decidability of the algorithms depends on it. In this

work, we have chosen to represent the ontology via rules. The reason of this choice comes

from the expressivity of rule-based languages and also the fact that it can be defined as

a generic formalism for other ontology representations. Both expressivity and genericity
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arguments are put forward in the previous section, where we have highlighted how RBDA

covers in a generic way other languages for ontology encoding.





CHAPTER

3
Tools for RBDA

A prudent question is one-half of

wisdom.

F. BACON

3.1 Chapter Overview

In this chapter, an overview of the current context of the RULE-BASED DATA ACCESS

problem is given. Such context defines the nature and the volume of data we perform rea-

soning on. Previously, a few different solutions to address conjunctive query answering

problems have existed, and the first step of this work of designing a generic software archi-

tecture is to study such previous solutions, identifying their strengths and drawbacks in or-

der to have a clearer idea on how to proceed in order to address large and semi-structured

knowledge bases.

Section 3.2 describes the evolution of the nature of the problem according to differ-

ent factors, and Section 3.3 explains the motivation of this thesis by presenting the nov-

elty aspects of the work and how we pretend address the problem. Section 3.4 describes

25
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Prolog [Clocksin et Mellish, 1994], a logic programming language introduced in the early

1970s. Section 3.5 details classic relational databases, while Sections 3.6 and 3.7 present

two graph-based approaches for addressing the problem: CoGITaNT [Genest et Salvat,

1998] and the recent Graph Databases [Robinson et al., 2013]. We close this chapter bring-

ing a brief discussion on the methods and system previously presented and the manner we

expect those could fulfill our needs.

3.2 Problem Evolution

Derived from the ONTOLOGY-BASED DATA ACCESS problem, RBDA knows today a to-

tally renewed interest due to the recent evolutions in the KR and in the Information Tech-

nology (IT) field in general. Information sources have became larger and larger, reaching

sizes that one can not load entirely in a system’s main memory. Information has also be-

came more and more semi-structured [Abiteboul, 2009], which leads to a different chal-

lenge according to the manner one intends to query a knowledge base. Such emergence

of semi-structured knowledge bases has led to the emergence of non-relational database

models that fit best such kind of information structure.

3.2.1 Large KBs

It is very difficult not to see in the current context the continuous growth of the size

of datasets. BigData popularity has now became important, not only in the industrial

scope but also in the academic scope. Domains such as social networks and Semantic

Web are responsible for the emergence and treatment of a very large quantity of data. It is

sometimes difficult to quantify the sizes of certain of those knowledge bases. In academia,

projects such as DBPedia 1, UniProt 2 and GeoNames 3 are well known for having very large

amount of information. A consequence of such increase in the size of the data sources

is also the emergence of the XLDB acronym, for eXtremely Large Databases, in order to

1. http://dbpedia.org
2. http://www.uniprot.org/
3. http://www.geonames.org/
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replace/complete the former VLDB one (for Very Large Databases).

In the whole document, we consider as large, every knowledge base that can not be

entirely loaded in main memory when an application is run. Our work will focus only in

knowledge bases stored on disk and accessible via reading and writing interfaces.

3.2.2 Semi-structured

Semi-structured data is data that is not raw data, neither data structured according

to well defined schema. In [Abiteboul, 2009], several types of semi-structured data are

described. Most of the large data sources cited above contain a large amount of semi-

structured data, known for their evolutive or undetermined schema. Are also part of

semi-structured data the data in which it is impossible (or at least very hard) to dissociate

the schema from the data itself.

This kind of data is currently very widely spread inside Open Data, Linked Data [Bizer

et al., 2009] and data mining fields, where the integration of heterogeneous data sources

is often needed. Classical relational databases have already shown limited efficiency when

dealing with those kind of data. The emergence of databases based upon different data

models introduces a new interest in verifying whether those new databases are most suited

for semi-structured data than the classic (relational) one.

3.2.3 NoSQL

The idea of NoSQL was born around 1996 when Carlo Strozzi, unhappy with the per-

formances of relational databases has started developing a database management system

that would be based upon the relational model of Codd, but in which the querying would

not be performed via an SQL interface (hence the NoSQL name). This project was finally

a failure, and, when it was discontinued, Strozzi stated that the performance issues he

blamed on the databases at that time was not related to the querying interface itself, but
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rather to Codd’s relational model [Codd, 1970].

A few years later, several databases appeared using different data models. The NoSQL

movement is considered today as the regroupment of many database management sys-

tems using a data model other than Codd’s relational model. Because of that, the ques-

tion of the use of SQL as querying interface is not even major anymore, as some of those

management systems does not feature a SQL interface, and other feature it along with an-

other querying mechanism. In the list of the most known elements of NoSQL, one will find

the column-oriented databases, document-based databases, XML databases and graph

databases.

3.3 Novelty and motivation

After having defined the technical characteristics and challenges of the problem, we

are able to set as a goal to obtain a system that would be able to perform conjunctive

queries over knowledge bases of any size and of any structure. Those knowledge bases

could be stored in main memory but the case we intend to focus on is when the knowledge

base is located in a secondary device. In order to reach that goal, we will first study the

approaches and methods that already exist for storing and querying information. The

study of those systems will be based on their ability to answer the following questions:

1. - Can it be used for representing a knowledge base in our formalism?

2. - Can it be used for computing entailment?

3. - Can it be used for computing entailment with rule application?

The following sections of this chapter will introduce each of the systems studied and

present their characteristics according to the questions above. Answers will be followed by

examples to illustrate how our formalism can be retrieved from the internal representation
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of each system.

Figure 3.1: Example: Scene cut from Tintin movie, featuring Tintin and the Duponts.

Figure 3.1 is the image selected for the examples. It presents a scene from the latest

Tintin movie. The information we have extracted from the image is the following:

– F = {next-to(D1,D2), next-to(D2,T), reads(D1,N), reads(D2,N), reads(T,N),

dressed-in(D1,black), dressed-in(T,blue)}

– R = {{same-suit(X,Y),dressed-in(X,Z)}→ {dressed-in(Y,Z)}}

– Q = {next-to(X,Y), reads(X,Z), reads(Y,T), dressed-in(X,black), dressed-

in(Y,blue)}

One should notice that the queryQ does not have an answer in F unless it is enriched

by R.
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3.4 Prolog

Prolog [Clocksin et Mellish, 1994] is a general purpose, declarative, logic programming

language. The program logic is expressed in terms of relations, and represented as facts

and rules. Computations are initiated by running a query over these relations. The lan-

guage was first conceived by a research group in Marseille, France, in 1970, led by Alain

Colmerauer. The first Prolog system was developed in 1972 by Colmerauer with Philippe

Roussel.

3.4.1 Loading a knowledge base

It is very simple to represent a knowledge base according to our formalism in Prolog.

Prolog syntax is wider than the elements needed for our representation.

In Prolog, program logic is expressed in terms of relations, and a computation is initi-

ated by running a query over these relations. A fact in Prolog is what we consider an atom

in our notation. The following assertion is a fact in Prolog.

color(black).

As the syntax are much alike, the line represents the color(black) atom. Prolog syntax

rules indicate that black is a constant term. Variables exist natively in Prolog and those

are terms that have their first letter in upper-case.

As a fact is a set of atoms, it can be represented by multiple lines of Prolog facts. The

following Prolog program represents a fact.

next-to(D1,D2).

next-to(D2,T).

reads(D1,N).

reads(D2,N).

reads(T,N).
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dressed-in(D1,black).

dressed-in(T,blue).

Such program represents the fact F. It could also be interpreted as seven different

atoms, next-to(D1,D2), next-to(D2,T), reads(D1,N), reads(D2,N), reads(T,N),

dressed-in(D1,black), dressed-in(T,blue). This is not a problem as the union of two

(or more) facts is also a fact.

The Prolog syntax for rules differs a bit from our formalism. The head of the rule comes

first, followed by the body. By this definition, the ruleR previously presented is represented

as the following in Prolog:

dressed-in(Y,Z) :- same-suit(X,Y), dressed-in(X,Z).

A rule with an empty body is equivalent to the fact of the head of the rule. Also, one

important thing to notice is that Prolog does not allow the presence of existential variables

in the head of the rule. All the variables of the head must also appear in the body of the rule.

However, the skolem form of such a rule could be written since Prolog handles function

symbols.

3.4.2 F |=Q and F,R |=Q

Computing entailment is made in Prolog by querying the information previously en-

tered in the program. A query is a fact, therefore queries are constructed using the same

format as facts. Hence, the command:

?− next-to(X,Y), reads(X,Z), reads(Y,T), dressed-in(X,black), dressed-

in(Y,blue).

will call the reasoning engine to determine whether the queryQ can be deduced from
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the facts and the rules present in the program. As Prolog features rules natively, its reason-

ing mechanism handles the rule application process while processing the query.

The reasoning method it uses is called SLD resolution (Selective Linear Definite clause

resolution). Given a query, the engine attempts to find a refutation of the negated query. If

the negated query can be refuted, (i.e., an instantiation for all free variables is found that

makes the clauses of the negated query false), it follows that the original query, with the

found instantiation applied, is considered a logical consequence of the program. And thus

that the program, containing F and R entailsQ.

Prolog has a major drawback in the fact that it is a main memory only computation

process. Which means that it has to load the whole information of facts and rules in main

memory before starting answering queries. As we have previously stated, this behaviour

limits our interest in using it for implementing RBDA over large and semi-structured

knowledge bases.

3.5 Relational databases

The relational model for the management of databases has been formulated by Codd

in 1969. In this model, data is represented by tuples, regrouped into relations. This re-

groupment of relations is called a schema. The goal of the relational model was to provide

a declarative method to specify data and the queries on that data. It introduces then a sep-

aration between the user, that indicates which information the database must contain et

which content he wants to access, and the database management program that is in charge

of the operations of access to the internal data structure and the algorithms of search in or-

der to satisfy the users requests.



3.5. RELATIONAL DATABASES 33

3.5.1 Loading a knowledge base

As previously stated, in a relational database, data is organized by relations. Such rela-

tions can be considered as predicates in a vocabulary. The tuples of a relation correspond

to an atom, where the predicate is the relation and each element of the tuple is one of

atom’s terms. The union of all the atoms obtained that way from all the relations of the

database is a fact.

next-to
t1 t2
d1 d2
d2 t

reads

t1 t2
d1 n
d2 n
t n

dressed-in
t1 t2
d1 Black
t Blue

same-suit
t1 t2
d1 d2

Figure 3.2: Relational database corresponding to the fact in the example.

Figure 3.2 illustrates the instance of relational database corresponding to the fact F.

Relational databases does not represent rules natively. Deductive databases are rela-

tional databases that are able to make deductions by the introduction of the notions of

facts and rules. Most deductive databases use the Datalog language in order to represent

those. Datalog is a subset of Prolog and they share the same syntax.

3.5.2 F |=Q

Most (if not all) relational databases today feature a native SQL interface for adding new

information to the database and also for querying that information. The SQL language is

based upon the relational algebra, a language having the expressivity of First Order Logic

[Abiteboul et al., 1995]. However the implementations of SQL interfaces available today

implement a slightly modified version of the relational algebra. In those versions, the

relations are represented by tables, and the attributes of the relation are the columns of

the relation table. The data contained in the tuples of a relation become then the lines of
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this table. The union of all tables represents the whole database.

SQL syntax does provide different features when querying data, however it is possible

to extract a fact from a simple SQL query, or from a query stripped from the elements that

are not covered in our formalism. Executing the following SQL query statement to the

database is equivalent to try to deduceQ from the facts of the database.

SELECT * FROM next-to, reads r1, reads r2, dressed-in d1, dressed-in d2 WHERE

next-to.t1 == r1.t1 AND next-to.t2 == r2.t1 AND next-to.t1 == d1.t1 AND d1.t2 == ’black’

AND next-to.t2 == d2.t1 AND d2.t2 == ’blue’;

Renaming tables corresponding to the predicates that appear twice or more in the

query is mandatory in order for the system to properly identify the solutions according to

the atoms of the query. Work done further will lead us to write an algorithm for translating

a fact in a SQL query statement. Performing the opposite translation requires knowing the

name of the attributes of the relations in order to generate a correct query.

It is also possible to avoid the use of an SQL interface for answering conjunctive queries

in a relational database. Another solution is to write an homomorphism computing algo-

rithm that reads the atoms and terms informations directly from the database. In order to

do so, all the calls to the methods that read the knowledge base (such as finding possible

matchings for a term or verifying if an atom is in the database) need to be performed via

SQL statements that would obtain the same answers from the relational database manage-

ment system.

3.5.3 F,R |=Q

As previously stated, relational databases does not support rules natively, requiring the

presence of another language in order to define rules. A common language for this is the

Datalog language, which is a subset of the Prolog language. A major drawback of Datalog
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is that it only supports rules with no existential variables in the head of the rule, meaning

that no new terms can be added to the knowledge base by rule application. In a forward

chaining process, this makes no possibility of enriching a fact with ontological knowledge

without implementing it from scratch. Such work will not be featured in this thesis. Details

about it will be given in section 4.8.

3.6 CoGITaNT

CoGITaNT is a platform that implements the full model of Conceptual Graphs. Con-

ceptual Graphs [Sowa, 1976] are a data model that represent information by the means of

concepts, individuals, and relationships between concepts. CoGITaNT is an evolution of

CoGITo (Conceptual Graphs Integrated Tools) [Guinaldo et Haemmerlé, 1997], a software

architecture first designed and created by Ollivier Haemmerlé. CoGITo first versions did

only feature simple conceptual graphs (corresponding to F and a set of rules R expressing

concept and relation type hierarchies). In 1997, it was renamed to CoGITaNT with the

appearance of rules, typed nested graphs and co-reference links. CoGITaNT stands for

CoGITo allowing Nested Typed graphs. Since then, David Genest has been responsible of

the maintenance of the library.

CoGITaNT has had success enabling developers to manage graphs and perform sev-

eral graph operations to them, such as general graph homomorphism, tree query graph

homomorphism, maximal join and rule application. It is developed in C++ and the opera-

tions are performed by loading the graph(s) to be managed directly in main memory. The

conceptual Graphs model is implemented as a graph structure (where nodes denote the

concepts or the relations and the edges denote the links between them).



36 CHAPTER 3. TOOLS FOR RBDA

3.6.1 Loading a knowledge base

The fragment of Conceptual Graphs we are interested in are simple conceptual graphs

enriched by rules. Type and relation hierarchy will be considered, while nested graphs

will not. From the conceptual graph into our formalism, the concept types become unary

predicates and individuals become constants in the vocabulary. The conceptual graph in

Figure 3.3 represents the fact F. Note that Conceptual Graphs rely upon a typed version

of FOL (all terms are given a type, which is an unary predicate). Since no such type is

provided in our example, all terms (i.e. nodes in the graph) have been given the universal

type >.

> : black > : blue

dressed-in dressed-in

same-suit

> : d1 next-to > : d2 next-to > : t

reads reads reads

> : n

1

2

1

2

1 2

1 2 1 2

1

2

1

2

1

2

Figure 3.3: Conceptual graph corresponding to the fact in the example.

Rules have been introduced to conceptual graphs by [Chein et Mugnier, 2009]. A CG-

rule is also split in head and body. Dotted lines link the concepts or individuals that are

the same between the head and body of the rule.
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> : *

same-suit

>: *

dressed-in

> : *

> : *

dressed-in

> : *

2

1

1

2

1

2

Figure 3.4: Conceptual graph rule corresponding to the rule in the example.

The CG-rule in Figure 3.4 represent the rule R, which is = {{same-suit(X,Y),dressed-

in(X,Z)}→ {dressed-in(Y,Z)}}.

3.6.2 F |=Q and F,R |=Q

CoGITaNT is able to answer if a fact can be deduced from another one via a graph ho-

momorphism algorithm. Indeed, a fact F entails a queryQ iff there is an homomorphism

fromQ to F, and thus iff there is a graph homomorphism from the graph representingQ to

the graph representing F. The conceptual graph representing the query from the example

is represented in Figure 3.5.

The algorithm is bundled with a rule application mechanism. CoGITaNT implements

a forward chaining process.
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> : black > : blue

dressed-in dressed-in

> : * next-to > : *

reads reads

> : * > : *

1

2

1

2

1 2

1

2

1

2

Figure 3.5: Conceptual graph corresponding to the query in the example.

As for Prolog, the CoGITaNT platform only stores graphs to be reasoned upon in main

memory, thus making it unable to deal with large graphs. The idea of porting it in order to

enable it to handle secondary memory stored graphs has been declined due to the emer-

gence of new graph databases.

3.7 Graph databases

Most of the graph databases occurred in the context of the NoSQL movement share an

idea that the flexibility of representation is somehow the most important feature a graph

database should propose. As proof of concept thought, most of those graph databases

import RDF. This does not mean they are not interested in the logic, but more that they let

the user the choice of how to represent the data by giving them very simple tools.

Lately, most of the recent implementations of graph stores have agreed in using a

common data model [Robinson et al., 2013], which is called the Property Graph model.
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Like any other data model, the Property Graph model does only concern the data and does

not supply any guideline about stores technical issues or features. Most of the differences

between those emerging stores rely on scalability, indexing and transaction features, that

are implemented or not on such stores.

In this section, we describe more in detail the Property Graph model itself, instead of

listing the description of the stores in the category. Such description takes place in the

next chapter, along with their integration to the ALASKA platform. On the popular stores

that do not use the Property Graph model as data model, it is worth citing HyperGraph

DB, which data model relies on the use of hypergraphs (n-ary relations) instead of graphs

allowing only binary relations. A store based on hypergraphs would better match a logical

representation than a binary one, at least would fit it more naturally, as predicates in logic

are not restricted to an arity of 2.

However, due to implementation choices, HyperGraph DB is not featured in the list

of stores integrated to ALASKA due to its lack of a dynamic management of predicates.

Indeed, all predicates and arities must be defined prior to the data insertion in the store.

As discussed previously in Chapter 2 and also later in Chapter 5, such characteristic does

not suit our need to perform multiple insertions of new pieces of information in an already

instantiated knowledge base. For this reason, HyperGraph DB is not yet featured in the

ALASKA platform.

3.7.1 Loading a knowledge base

Retrieving a knowledge base from a property graph model can be done as follows:

– Every node in the graph represents a term.

– Edges represent the relations between the terms. As all edges in the graph are binary,

an edge represents a binary atom. The first term of the atom is the node correspond-

ing to the source of the edge.
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– Each node and edge possesses its own key-value table for storing raw information.

Values in this table are of primary datatypes only.

– Nodes and edges do not have labels in the graph, but only an identifier. If there is no

label specified in the key-value table, then the label of the term is its identifier.

– The same is valid if an edge does not have its predicate indicated in the key-value

table of the edge. If no label is found, a new predicate is introduced.

– The information contained in the key-value table of a node, excepted its label, is

represented via a new atom, in which the key is the predicate of the atom, the term

being the first term of the atom and the value associated to the key the second.

Figure 3.6 shows a property graph that represents the fact F in the example.

label: d1
dressed-in: black

label: d2
label: t

dressed-in: blue

label: n

same-suit

next-to next-to

reads
reads

reads

Figure 3.6: Property graph corresponding to the fact in the example.

As the Property Graph model only features binary edges, the knowledge bases extracted

from property graphs will only feature binary predicates. Further in this work, we will write

procedures for storing knowledge bases into graph databases. If the knowledge base given

as input only features predicates of arity 2, then a straight-forward transformation is used.

If not, it is needed to use a different graph representation, a bipartite one similar to concep-

tual graphs, where the two classes of nodes represent respectively concepts and relations.

More details will be given in Chapter 5.
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3.7.2 F |=Q and F,R |=Q

Conjunctive query answering over a graph database is performed through the graph

homomorphism operation, as it is for CoGITaNT. Figure 3.7 shows a property graph corre-

sponding to queryQ in the example.

dressed-in: black dressed-in: blue

next-to

reads reads

Figure 3.7: Property graph corresponding to the query in the example.

Some graph databases based on the property graph feature their own querying

method/engine within their software, like Neo4J 4 with the Cypher [Robinson et al., 2013]

language, which is able to perform conjunctive queries over a graph, and OrientDB 5 that

has adapted the SQL language to a graph-based data model instead of creating their own

graph querying language. However, those querying interfaces or engines are not available

through all the existing graph databases.

Rule application is also not natively featured on most graph databases implementa-

tions, which means that such feature is also to be developed on top of those stores when

one wants to benefit from it.

4. http://www.neo4j.org/
5. http://www.orientdb.org/
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3.8 Discussion

In this chapter, we have listed and evaluated the native capacities of different ap-

proaches for addressing the RBDA problem. The capacities evaluated were the ones of

being able to load and maintain a knowledge base, to answer conjunctive queries upon the

stored facts, and to answer conjunctive queries upon the stored facts potentially enriched

by rules. By doing so, we will have a clearer view on which systems are worth considering

and the ones that do not satisfy our needs. Figure 3.8 summarizes the capacities of each

approach.

- KB representation F |=Q F,R |=Q Sec. memory
Prolog Yes Native Native No

CoGITaNT Yes Native Native No
Relational Databases Yes Native (SQL) Not native Yes

Triple Stores Yes Native (SPARQL) Not native Yes
Graph Databases Yes Not native Not native Yes

Figure 3.8: Table comparing the features of the studied methods.

Prolog and CoGITaNT are the only systems previously described that integrate a native

support of rules. Unfortunately, both systems require the load of the whole knowledge

base in main memory prior to executing reasoning processes (a characteristic that we

agreed to avoid once we focus on studying the efficiency of reasoning activity of system-

s/algorithms when dealing with very large amount of data). For those reasons, we will not

consider both systems for the future.

On the other hand, relational databases are widely known for their ability of managing

information stored in secondary memory. They also feature a native SQL interface which

is able to perform conjunctive queries over the facts. Rules are not natively featured but

can be introduced upon it. An interesting subject of study will be the efficiency of the SQL

interface when performing queries over semi-structured data. As querying a relational
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database is not restricted to SQL, we will also be able to write a custom algorithm for

computing homomorphisms and verify its efficiency against the SQL interface. Those

aspects will be covered and detailed later on in this thesis.

The case of triples stores is similar to the one of relational databases. Most implemen-

tations of those stores feature a native SPARQL interface in order to perform conjunctive

queries. Comparisons between those and homomorphism computing will also be made.

Graph databases however does not always feature a native querying interface and in those

cases writing a querying algorithm is required in order to perform conjunctive queries

over the data. Graph homomorphism algorithms have already been used before on data

stored in main memory. The focus of this work will then be to check their efficiency when

dealing with data stored on disk.

Based on these conclusions, we propose a new software platform that will first serve as

a testing suite for all the systems that were not discarded after this first analysis. Our work

will focus in transforming and translating information in order to have a common data

language which is compatible to the formalism presented in Chapter 2 and shared by all

the connected storage systems. To this end, we aim creating a multi-layered architecture

featuring an abstract layer composed of classes and interfaces that would act as a physical

representation of the positive subset of First Order Logic we work with. Such layer would

ensure the equivalence between the operations on the data no matter which is the data

model of the storage system that holds the information.
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4
ALASKA

A single question can be more

influential than a thousand

statements.

B. BENNETT

4.1 Chapter Overview

In this chapter, we introduce ALASKA, a software architecture implemented for our re-

search purposes. We start this chapter by explaining our motivation in creating a software

architecture in 4.2. Section 4.3 details the foundations of ALASKA by describing each layer

of the architecture, while Section 4.4 explains the genericity aspects of the backtracking

algorithm featured in ALASKA. Section 4.5 presents the different storage methods used in

ALASKA, giving an overview of the storage systems integrated to the platform. Section 4.6

illustrates, through an example, how ALASKA manages information represented by logi-

cal expressions in order to store them in the available storage systems, while Section 4.7

explains how such software architecture may be used for addressing the RBDA problem.

45
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Finally, Section 4.8 provides a discussion about existing and possible future use cases for

ALASKA.

The contribution of this chapter is ALASKA itself, the software architecture designed

and implemented initially for addressing the RBDA problem, suitable for any knowledge

representation application dealing with resources not located in primary memory only.

4.2 Introduction to ALASKA

As explained in Chapter 3, different approaches have led to different methods to im-

plement software systems able to perform conjunctive query answering over a knowledge

base. Such approaches being with, or without, the presence of an ontology to enrich

such knowledge base. Although the description of the problem itself has remained the

same, several new factors have altered its current nature and, consequently, the manner to

proceed in order to address it. In the list of the main factors that have led to this situation,

the emergence of very large and unstructured knowledge bases. Setting the threshold

that defines what is a very large knowledge base may be a tricky task. We have defined

by "very large" a knowledge base containing an amount of information that cannot be

entirely stored in one single machine main memory at any part of the process. We tend

to consider large knowledge bases containing information going from approximatively

10 million triples up to 1 billion triples (and more...). This list of factors also features the

emergence of different database management systems using different data models than

the traditional relational one (See the NoSQL movement in Chapter 3).

As previously mentioned, such factors have led the existing methods to fail, or at least

to become obsolete due to inefficiency. Although the idea of having a working software

suite to allow users to perform conjunctive queries over knowledge bases stored in sec-

ondary memory is not new, there is still no tool able to give a more in-depth analysis of

the previous failures while, at the same time, integrate and test the latest algorithms and

storage technologies. The lack of such a tool has has led us to study how to proceed in
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order to develop a tool that would enable a better study of the ODBA problem. The study

has became the starting point of ALASKA [da Silva et al., 2012], a project that would enable

users to store pieces of information in predefined encodings directly into secondary mem-

ory, without having to perform any manual manipulations. ALASKA, an acronym for an

"Abstract and Logic-based Architecture for Storage and Knowledge bases Analysis" would

realize such task of translating information from one encoding to another in a totally

transparent manner for the user, using First Order Logic as intermediary language. Once

the information is stored, ALASKA would also work as a querying interface, allowing one

to query the stored information using queries presented in different querying languages.

Although efficient storage and querying is the aim of the work that has resulted in the

birth of ALASKA, it is also fundamental to state that its functionalities and features should

not be limited to the study of ODBA. The ability of using logical representations internally

and having an easy and simple connection to the stores on disk could directly enhance

performances of other studies in the KR field. Some applications, such as rule application

and record linkage studies [Newcombe et al., 1959] will be presented more in detail in

Section 4.8, but one thing to highlight is that any application requiring logical operations

over large amounts of data may benefit from the features of ALASKA.

In order to adapt to the different types of applications aiming to manage or manipulate

large amount of information, ALASKA will not only feature a range of options of storage

methods an user can choose, but also a range of readers and parsers, able to transform

different types of data as input into its internal logical representation before being stored

on disk. By doing this, ALASKA can be considered a software enabling users and program-

mers to store and manage their information into different aspects without having to reach

and manipulate the data itself.

The choice of using JAVA as language for the platform is based on several aspects. Even

if the fact of being run inside a virtual machine (VM) makes code execution less efficient,
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JAVA has become more and more popular and is today the best choice when one wants

to easily integrate libraries and other pieces of code into another project (such as ALASKA

does). Also, a lot of storage systems are currently written in JAVA, either come with a JAVA

client API. In this trade-off where a wide investigation of existing storage systems (inte-

grating many relevant systems) is opposed to a in-depth one (enhancing the efficiency of

ALASKA in certain circumstances), we have favored the wide choice. This choice is also

motivated by the priority of our research group to have a fully functional system able to

compare and address heterogeneous sources, and not necessarily to create the fastest sys-

tem for RBDA.

4.3 Foundations of ALASKA

The ALASKA core (data structures and functions) is written independently of any lan-

guage used by storage systems it will access. The advantage of using a subset of First Order

Logic to maintain this genericity is to be able to access and retrieve data stored in any

system by the means of a logically sound common data structure. Local encodings will

be transformed and translated into any other representation language at any time. The

operations that have to be implemented are the following: (1) retrieve all the terms of a

fact, (2) retrieve all the atoms of a fact, (3) add a new atom to a fact, (4) verify if a given

atom is already present in the facts.

Basically, the abstract layer of ALASKA is a logical layer. Storage systems are used to

store data that can be seen as sets of logical atoms of form p(t1, . . . ,tk). Wrappers are used

to encode this atom according to the storage system paradigm. For instance, this atom will

be encoded as the line (t1, . . . ,tk) in the table p in a relational database, and as a directed

hyperedge labeled p whose incident nodes are the ones encoding respectively t1, . . . ,tk in

a graph-based storage system.

Whatever this storage system, ALASKA only reads and writes atoms or sets of atoms. It
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is thus entirely possible, for instance, to read the RDF triples (s,p,o) stored in Jena (they

will be seen as atoms pred(s,p,o)), and write them in a SQL database, where they will be

stored as lines (s,o) in the table p.

This abstract layer is not only used to read and write in an uniform manner into various

storage systems, but also to process queries. A conjunctive query can also be seen a set

of atoms. ALASKA is able to transform them into, for example, SQL or SPARQL queries,

to benefit from the native querying mechanism of specific storage systems. Moreover, a

generic backtracking algorithm has been designed, that allows to process these queries

on any of these storage systems. This backtrack relies upon elementary queries, that

check whether or not a grounded atom is stored in the system, or enumerate all atoms

that specialize a given one. This backtrack does not incorporate powerful optimizations

and pruning features, since it is designed to process simple queries. For more difficult

queries, a constraint solver, based upon Choco [Jussien et al., 2008], relies upon the same

elementary queries (this constraint solver is currently under evaluation).

Though ALASKA is designed as a generic platform for RBDA (Rule-Based Data Access),

it does not yet integrate any ontological reasoning features. We have designed this plat-

form to be fully compatible with existential rules (also known as Datalog+/-) [Calì et al.,

2009]. These rules are powerful enough to encode the semantics of RDF(S), or "lite" de-

scription logics families such as DL-Lite or EL families. There is an ongoing work aiming

to integrate such families in ALASKA. More details about this project will be given in Sec-

tion 4.8.

The platform architecture is multi-layered. Figure 4.1 represents its class diagram,

highlighting the different layers.

The first layer is (1) the application layer. Programs in this layer use data structures and

call methods defined in the (2) abstract layer. Under the abstract layer, the (3) translation
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Figure 4.1: Class diagram representing the software architecture.

layer contains pieces of code in which logical expressions are translated into the languages

of several storage systems. Those systems, when connected to the rest of the architecture,

compose the (4) data layer. Performing higher level KRR operations within this architec-

ture consists of writing programs and functions that use exclusively the formalism defined

in the abstract layer. Once this is done, every program becomes compatible to any storage

system connected to architecture.

4.4 Querying Algorithms

4.4.1 Backtracking algorithm

Before performing any querying activity, we also need to define the purpose of using

ALASKA as a querying interface instead of using any native solution. We have agreed that

ALASKA would help us to define which are the most efficient solution for querying a large

knowledge base, by comparing systems and querying engines when answering conjunc-
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tive queries. Two different factors come into play when performing the queries: memory

consumption and execution time. In the test we will present, we are only considering

execution time to define efficiency. We acknowledge the fact that memory consumption

is certainly important, especially when performing complex queries over very large bases

stored in secondary memory, but we do not consider this aspect in our tests. Please note

that this is configurable and possible to control within ALASKA. The reason is twofold.

First handling memory consumption for each system (and optimizing it) is not part of our

comparing tests (or of the generic functionality offered by ALASKA). Second, intuitively,

comparing a generic algorithm over different storage systems (and thus calling the ele-

mentary operations of each) should not lead to important differences between the systems

at hand.

The generic backtrack algorithm used in ALASKA takes a query and for each term

explores the candidate answers in the KB. The backtrack is due to the fact that the terms

have to be correctly included in the right atoms (i.e. by the right predicates). The algo-

rithm relies on the state of the “level" and “goingUp" variables in order to proceed to

the exploration of the knowledge base. The algorithm starts by ordering the terms of the

query. The algorithm does not require any particular order to work properly, but ordering

strategies can enhance the efficiency of the algorithm. In the tests performed, our ordering

was very simple: it consisted in sorting the terms list by letting the constant terms ahead

of the variable terms. Inside the constant and variable parts of the list, the terms are

ordered as they appear in the query. More elaborate orderings can be implemented as it

relies on a custom function for ordering terms. level corresponds to the index of the term

the algorithm is trying to match, while goingUp indicates if the algorithm continues its

exploration, has reached a dead end or has found a match for all the terms. In the later

case, a successful answer to the query has been found.
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Algorithm 2: Backtrack algorithm

Input: A conjunctive queryQ, and a fact F
Output: lists all the answers ofQ in F

begin1

Q←− order(Q);2

level←− 0;3

goingUp←− false;4

ifH = ; then5

answerFound(Q);6

else7

while level 6= 0 do8

if level = |Q| then9

answerFound(Q);10

goingUp←− true;11

else currentTerm =Q[level];12

if goingUp then13

if otherCandidates(currentTerm,F) then14

goingUp←− false;15

level←− level + 1;16

else level←− level - 1;17

else18

if findCandidates(currentTerm,F) then19

level←− level + 1;20

else21

goingUp = true;22

level←− level - 1;23

end24

4.4.2 Abstract Procedures

As the mechanism of the algorithm is quite simple, its efficiency is then very tightly

linked to the efficiency of the sub-functions findCandidates and otherCandidates.

findCandidates is called once the algorithm goes a level below and has to search all the

terms in the knowledge base that can be a match for a given term of the query. The second

one is called every time the algorithm goes back up to a level previously visited, modifying
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the current matching of a term to a different candidate, and going back down to search for

new answers. If there are not any new candidates for such term of the query, the function

then returns false, and the algorithm goes back up again. The algorithm stops once there

are no candidates left for the first term of the query, which means that there is nothing left

to explore.

Considering that the otherCandidates function only modifies a value of the match-

ings set currently built, and that all the matching candidates for a given term are previously

computed using the findCandidates function, the otherCandidates function has a

very small impact to the time and memory usage of the algorithm. Technically, it only

consists of moving forward an iterator, thus the efficiency of the algorithm relies mainly

on the efficiency of the findCandidates function. We will explain in the following how

this function can be quite costly in certain cases.

Indeed the number of calls to its sub-functions (enumerate and check) depends on

the number of times a term appears in the query. enumerate and checkmay be consid-

ered as the elementary operations of the backtrack algorithm. When called, enumerate

returns a list containing all the terms in the knowledge base that has exactly for neighbours

the matchings of the neighbours of a given term of the query. While the check function

asks the system managing the knowledge base whether a given atom can be found in the

base or not. The number of calls to the check function depends directly on the quantity

of results returned by the calls to the enumerate function. As the enumerate function

computes the potential candidates for a match, the check function verifies if a given

candidate has to be maintained or discarded as a candidate. The number of calls to both

functions generally increases as the size of the knowledge base also grows.

It is very important to state that during the execution of the backtracking algorithm

the entire communication between the algorithm and the storage system in which the

knowledge base is stored is performed through the enumerate and check function calls.

No external communication between them is allowed, and that is what maintains the
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complete genericity of the algorithm. It is then mandatory to implement both functions

in every system one wants to integrate to ALASKA. Querying the knowledge base with

the generic algorithm is impossible if such implementation is not performed. Those

are however not the only functions required for every storage system integrated to the

platform. The enumerate and check functions require knowing from a knowledge base

whether a term exists in the base or not, whether a predicate exists in the base or not, and

whether two given terms belong to an atom with a given predicate or not. These are what

we call the consulting, or reading functions required by ALASKA. Along with the writing

functions needed to store a knowledge base, these functions compose the core functions

that ALASKA needs to manage a knowledge base stored in a given storage system. More

details about those functions are given in Chapter 5.

For each query, according to its structure and the degree of the terms of the query, the

number of calls to enumerate and check will differ. As the efficiency of the algorithm

relies on the efficiency of those two functions, we have added intermediary timers in order

to enable ALASKA to measure the time the algorithm spends in each of those calls. This

way, one performing a query is not only allowed to retrieve the total time of the execution

of a query, but also how much of that time was spent enumerating candidates or retrieving

atoms in the knowledge base.

4.5 Storage systems

By having several different stores connected to ALASKA, one of our main contributions

of the software is to help make explicit different storage system choices for the knowl-

edge engineer in charge of manipulating the data. More precisely, ALASKA can encode a

knowledge base expressed in the positive existential subset of first order logic in different

data structures (graphs, relational databases, 3Stores etc.). This allows for the transparent

performance comparison of different storage systems.
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The performance comparison is done according to the (1) storage time relative to the

size of knowledge bases and (2) query time to a representative set of queries. On a generic

level the storage time need is due to forward chaining rule mechanism when fast insertion

of new atoms generated is needed. We also needed to interact with a server of ABES,

the French Higher Education Bibliographic Agency, for retrieving their RDF(S) data. We

explain this more in detail in Section 4.8. The server answer set is limited to a given size.

When retrieving extra information we needed to know how fast we could insert incoming

data into the storage system. Second, the query time is also important. The chosen queries

used for this study are due to their expressiveness and structure. Please note that this does

not affect the fact that we are in a semi-structured data scenario. Indeed, the nature of

ABES bibliographical data with many information missing is fully semi-structured. The

generic querying allowing for comparison is done across storage using a generic backtrack

algorithm to implement the backtracking algorithm for subsumption. ALASKA also allows

for direct querying using native data structure engines (SQL, SPARQL).

In this work, we have given the priority to the integration of embeddable storage sys-

tems within ALASKA. By embeddable, we mean that the storage system core is packed and

is distributed inside the main application using the store. This kind of system is opposed to

the stores featuring the client-server architecture, where the client connects to the server

through a port and asks for the server to perform the operations it wants, while the server

takes care of the physical management of the data requested. Client-server stores is the

most appropriated choice when one is interested in deploying the content of the database

to several clients or throughout a network. Very often, an embeddable system is a simple

solution for an application in need of simple and direct access (non-secured very often) to

the data. In this case, the system features an API with the functions needed to manage the

data directly without calling a third-party server.

In some cases it may happen that a store is deployed as a client-server architecture,

but both client and server are located on the same host. In this case, no network com-
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munication is needed. Such solution may bring an efficiency loss when interacting with

the storage system. That is the case for instance when one executes multiple operations

that can not be regrouped over a database via a JDBC driver. The communication with

the driver, then with the server before having access to the information is responsible for

slowdowns when executing the program.

Next section will feature short descriptions of the current embeddable stores that were

connected to ALASKA and were also used for the experimental aspects of this thesis, fea-

tured in Chapter 5. This list is not final. Others systems were also connected and tested but

are not part of the work in this thesis. Also, there are also other stores in which the writing

of a connector is needed in order to use it within ALASKA. The stores featured in this work

are the following:

→ Relational databases: Sqlite→ Graph databases: Neo4J, DEX→ Triples stores: Jena TDB

4.5.1 Relational databases

Sqlite SQLite 1 is the embedded relational database used within ALASKA. It is a very

lightweight relational database management system written in C. SQLite is ACID-

compliant, which means that it supports transactions natively. and implements most

of the SQL standard. The fact that it is an embedded store has made SQLite be very

popular in the world of mobile and desktop applications. Plenty of different programs

1. http://www.sqlite.org/
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embed SQLite and use it for internal storage of data and options (cf. Mozilla Firefox). This

way, it differs itself from the "larger" relational database management systems, which are

deployed on servers and are very widely known for their use on business and industrial

applications (MySQL, Oracle, etc.). It was possible to connect SQLite to ALASKA thanks

to the existence of a JDBC driver for SQLite. Such driver was not provided by the SQLite

developers themselves but by a third-party project.

4.5.2 Graph databases

The following graph databases have been used within ALASKA:

Neo4J Neo4J 2 is a graph database, and is by far the most popular graph database at the

moment, at least in the industrial world. Started as a small project, Neo4J has seen its pop-

ularity being multiplied by a huge factor in the recent years. It is now distributed under two

distinct versions: Neo Technologies offers now a commercial version of the database along

with support, while the former open source version of the database is still available via a

"Community" version still maintained by the core developers of Neo and using the help

of a large community of developers that have embraced the Neo4j project. It is fully im-

plemented in JAVA. It is an embedded store but it is absolutely possible to deploy the store

on a server dedicated to store data and handle queries from distinct users. The internal

structure of Neo4j is based on the Property Graph model. It is also ACID-compliant, which

means that it ensures the properties defined by Codd for relational databases (Atomicity

Consistency Isolation Durability), that ensures the reliability of data transactions. For that,

it features a fully transactional persistence engine that secure transactions and data ma-

nipulation throughout time.

2. http://www.neo4j.org/
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DEX DEX 3 is a graph database management system written in Java and C++. It was orig-

inated by the research carried out at the DAMA-UPC research group in Barcelona. Since

2010 is maintained, upgraded and distributed by Sparsity Technologies. DEX is licensed

under a proprietary license of Sparsity Technologies, but is free for academic use. It is an-

other graph database that has been seeing a strong success both in academia and business

world. DEX internal model of a graph is fully compatible with the Property Graph. The

internal representation of a graph in DEX is very particular, as the graph is often parti-

tioned according to the graph structure, and also because of the fact that information such

as nodes and edges identifiers are regrouped and encoded into large bitmaps. The ma-

jor strength of DEX is the ability of having very fast reading and writing operators at lower

level able to manipulate those large bitmaps with great efficiency. At higher level, the sys-

tem features all the operations needed in order to enable the user to manage a graph stored

by DEX as any Property Graph. Unlike Neo4J, DEX is not ACID-compliant.

4.5.3 Triples stores

The following triples stores have been used within ALASKA:

Jena Jena 4 is a Semantic Web framework for Java. It provides an API to read data from

RDF content, to manage it, query it and then to write such content in different formats.

The project also provides an internal embedded Triple Store, which is called TDB. This is

the part of the framework we will be connecting to ALASKA and thus comparing it to the

3. http://www.sparsity-technologies.com/dex
4. http://jena.sourceforge.net/
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other kind of stores already connected to the platform. Other features of the framework

such as parsing and output will not be used in ALASKA for now. This is due to one of the

major drawbacks of the Jena framework which is that it keeps an internal representation

of the workbench as an abstract model in main memory. Which means for instance that

parsing a very large knowledge base located on disk could make the machine where the

parser is located to run out of memory very fast. More details on those issues will be related

on Chapter 5. Jena is an Open Source project, started by HP and now maintained by the

Apache Foundation.

4.6 Example

The translations detailed above will now be explained through the means of an ex-

ample. In this example, we will use a knowledge base represented by an image. Such

knowledge base contains a fact and no ontology. The fact corresponds to the information

contained in the image. This information will first be extracted (manually) from the im-

age and represented as a text. From the text, a knowledge base will be created, and the

information of the text will then be transformed into logics. Once the logical expression of

the fact is obtained, it will be then transformed in order to be stored in any of the storage

methods supported by ALASKA.

For this example, we will use once again Figure 3.1 presented in 3. The information we

have extracted from the image this time is the following:

The picture features three men. Two of them are twins. Both of them are wearing a suit.

Both suits are black. One of the twins is holding and reading a newspaper. The other man is

also reading the newspaper. He wears a blue shirt.

From this paragraph, we will manually create the knowledge bases for the example.

Two different knowledge bases, K1 and K2 will be created: one featuring only predicates of
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arity 2, and the other one without any restriction in the arities of predicates.

For K1, the predicates of the example are: type, twins, wears, reads, holds, color,

all of arity 2. The variables of the example are m1, m2 and m3 for the three men, s1 and

s2 to represent the suits, and s3 for the shirt. n will represent the newspaper. Colors and

object types are represented as constants: Black, Blue,Man, Suit, Shirt,Newspaper.

For K2, the predicates (with their arities) of the example are: man (1), suit (1), shirt

(1), newspaper (1), twins (2), wears (2), reads (2), holds (2), color (2). The variables

of the example are: m1, m2 and m3 for the three men. s1 and s2 represent the suits,

s3 the shirt and n will represent the newspaper. Now, only the colors are represented by

constants, Black and Blue.

Figure 4.2 summarizes the vocabularies of both knowledge bases:

K1
Predicates (6) Variables (6) Constants (5)

type m1 Black
color m2 Blue
twins m3 Man
wears s1 Suit
reads s2 Newspaper
holds s3

n

K2
Predicates (11) Variables (7) Constants (2)
man (1) m1 Black
suit (1) m2 Blue
hat (1) m3
shirt (1) s1

newspaper (1) s2
same-as (2) s3
twins (2) n
wears (2)
reads (2)
holds (2)
color (2)

Figure 4.2: Listing of the K1 and K2 vocabularies.

The logical expression of the fact in K1 is:

∃m1,m2,m3,s1,s2,s3,n ( type(s1,Suit) ∧ type(s2,Suit) ∧ type(s3,Shirt)

∧ type(h1,Hat) ∧ type(h2,Hat) ∧ type(m1,Man) ∧ type(m2,Man) ∧

type(m3,Man) ∧ type(n,Newspaper) ∧ twins(m1,m2) ∧ wears(m1,s1) ∧
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wears(m1,h1)∧wears(m2,s2)∧wears(m2,h2)∧wears(m3,s3)∧ reads(m2,n)∧

reads(m3,n)∧holds(m2,n)∧ color(s1,Black)∧ color(s2,Black)∧ color(s3,Blue)

While the logical expression of the fact in K2 is:

∃m1,m2,m3,s1,s2,s3,n ( man(m1) ∧ man(m2) ∧ man(m3) ∧ suit(s1) ∧

suit(s2) ∧ shirt(s3) ∧ newspaper(n) ∧ twins(m1,m2) ∧ wears(m1,s1) ∧

wears(m1,h1)∧wears(m2,s2)∧wears(m2,h2)∧wears(m3,s3)∧ reads(m2,n)∧

reads(m3,n)∧holds(m2,n)∧ color(s1,Black)∧ color(s2,Black)∧ color(s3,Blue)

ALASKA is now able to store such information in any storage system connected. The

transformations used within ALASKA are explained in Section 5.2. In the case of a rela-

tional database, different schemas are possible as the user has to choose if he wants to

have one table per predicate, or one single table (when it is possible), and also how to

keep track of which terms are variables or not. In this example, the atoms of K1 will all be

stored in one single table, as K1 only features predicates of arity 2, and the terms will be

renamed according to the fact that they are constants or variables. K2 will be stored in a

database with one table per predicate, with an extra table containing the list of variables

in the knowledge base. One should not forget that the schema definition and the tuples

insertion is still independent of the chosen RDBMS.

Figures 4.3 and 4.4 show how K1 and K2 will be stored in a relational database. The

storage process is detailed in Section 5.2.

In the case of graph databases, the transformation is not unique and straight-forward

as it is for relational databases, it depends on the data model of the chosen store. As seen

previously, in this work we will only focus on the graph databases using the Property Graph

model. For K1, which has only predicates of arity 2, the transformation is straight-forward

by representing the terms of the knowledge base by nodes and the atoms of the logical
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triples

colp col1 col2
type v:s1 c:Suit
type v:s2 c:Suit
type v:s3 c:Shirt
type v:m1 c:Man
type v:m2 c:Man
type v:m3 c:Man
type v:n c:Newspaper
twins v:m1 v:m2
wears v:m1 v:s1
wears v:m2 v:s2
wears v:m3 v:s3
reads v:m2 v:n
reads v:m3 v:n
holds v:m2 v:n
color v:s1 c:Black
color v:s2 c:Black
color v:s3 c:Blue

Figure 4.3: Storing K1 in the relational database.

formula by edges between the nodes of the terms of each atom. K2 will need, however,

a different transformation as it contains predicates with an arity different than 2. In this

case, ALASKA will use the transformation that represent the atoms predicates by nodes,

connecting each term node to its predicate node and precising the position of such term

in the atom.

Figures 4.5 and 4.6 illustrateK1 andK2 properly encoded in the Property Graph model,

using the two distinct transformations, ready for storage in a graph database.
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Figure 4.4: Storing K2 in the relational database.
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Figure 4.5: Storing K1 in a graph database using the Property Graph Model.
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Man Man Man
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Figure 4.6: Storing K2 in a graph database using the Property Graph Model.

4.7 ALASKA for RBDA

Previously in Chapter 2, we have explicited two distinct methods in order to perform

rule application to a knowledge base: forward and backwards chaining. In a forward

chaining process, several homomorphisms are computed in order to find which rules

have a body that can be projected to the facts and thus be applied. The applied rules

generate new pieces of information that are added to the facts, and new homomorphisms

computations are then made to find which rules can be applied to the enriched facts, until

facts are saturated. In a backwards chaining process, besides the need of a query rewriting

engine, it is also needed to compute a large amount of homomorphisms once the queries

are rewritten. This means that independently of the rule application method chosen, a

system able to perform a large amount of homomorphisms efficiently is highly needed.

Furthermore, we also need a system that is able to insert small pieces of information in a

knowledge base that can already be very large in an efficient manner. No forward chaining
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algorithm could work properly without such a feature.

During this work, we will not design nor implement rule application algorithms or

query rewriting engines (see Section 4.8). We will however focus on the insertion and

querying operations over knowledge bases. Both situations may be defined as elemen-

tary operations of RBDA. After having listed existing systems worth to check in Chapter 3,

the work in Chapter 5 will be to design testing protocols in order to verify the efficiency

of those systems in real use cases for those key situations. Studying the efficiency of such

systems might lead us to see how they adapt to our need of finding a system that would

perform both operations efficiently. Other objectives and future use cases of ALASKA will

be discussed in the next section.

4.8 Use cases for ALASKA

The use of ALASKA platform is evidently not limited to the analysis of the efficiency of

different storage systems according to the elementary operations of RBDA. The abstrac-

tion and genericity it has been granted at design phase allow the platform to be used in

any other application that would need to benefit from a logic based model or simply from

the connection to different storage systems at lower level. We believe that ALASKA may

become an useful element in any knowledge representation application in the future, as it

would only need the integration of new parsers and database connectors.

However, before thinking that far with the reutilisation possibilities of the ALASKA plat-

form in other environments, the first goal (or use case) for ALASKA is to be RBDA-ready,

which means to be able to perform conjunctive queries over a large and semi-structured

knowledge base with the possibility of having the facts from the knowledge base enriched

by rules. To this end, it is needed to implement and integrate rule application algorithms

and/or query rewriting engines to the platform, which was not covered by this thesis.

Such work requires an in-depth study of several classes of rules and the implementation



66 CHAPTER 4. ALASKA

of algorithms for the decidable cases identified. This topic has been the subject of study

for a quite large amount of time, and the implementation of rule application engines and

their integration within ALASKA has been initiated with the thesis projects of M. Thomazo

[Thomazo, 2013] and M. König [König et al., 2013].

We will also motivate and explain the contribution of ALASKA by the means of a real

world case from the ANR funded project Qualinca. Qualinca is aiming at the validation

and manipulation of bibliographic / multimedia knowledge bases. Amongst the partners,

the ABES (French Higher Education Bibliographic Agency) and INA (French National

Broadcasting Institute) provide large sets of RDF(S) data containing referencing errors.

Examples of referencing errors include oeuvres (books, videos, articles etc.) mistakenly

associated with the wrong author, or authors associated with a wrong / incomplete subset

of their oeuvres. In order to solve such referential errors Qualinca proposed a logic based

approach (as opposed to the large existing body of work mostly employing numerical

measures) [Croitoru et al., 2012]. In this approach, author data is extracted from the

loaded RDF(S) and stored as a graph. As the amount of data can be very large, this graph is

created at runtime and may require external storage due to its unknown size. No existing

tool in the literature can influence the knowledge engineer when it comes to helping him

to decide which system is the best for this particular use case. ALASKA was then used

in the project in order to create and manage the information in the graph obtained from

the RDF(S) data extraction, with the possibility of storing that information in different

available manners.

To conclude with the possible use cases of ALASKA, one should not forget that one of

the main goals of the project is to have a software architecture that enables the develop-

ment of several programs related to knowledge representation and information manage-

ment in any kind. Although the core of the architecture is a purely logical representation

of the information treated, the generic aspect of the platform, added to the large quantity

of input/output connectors highly extends the capacities of integrating ALASKA in several
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applications. One of those first use cases that comes in mind is the management and in-

terrogation of information provided by heterogeneous data sources.





CHAPTER

5
Experimental Work

Increasingly, the central question

is becoming who will have access

to the information these

machines must have in storage to

guarantee that the right decisions

are made.

J-F. LYOTARD

5.1 Chapter Overview

In this chapter, we summarize all the experimental work performed during this thesis

around the ALASKA platform. The chapter begins detailing the algorithms in ALASKA for

storing a knowledge base into different storage systems in Section 5.2. Section 5.3 isolates

some functions of the abstract layer of ALASKA and explains their implementation in

different systems. Section 5.4 details the data used to the experimental protocols of this

thesis. Finally, Sections 5.5 and 5.6 close the chapter by presenting the testing workflows,

69
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results and discussions around the storage and querying efficiency tests using ALASKA.

We will first explain the genericity aspects of ALASKA by giving an in-depth look to the

connections between the platform and the storage systems. We will then present the test-

ing protocols designed for investigating the efficiency of those systems according to their

storage and querying capacities. The contributions of this chapter are the following. We

were able to evaluate storage mechanisms w.r.t our requirements (no a priori knowledge

of data, no a priori indexation), to evaluate different algorithms for querying, and of the

elementary querying mechanisms thanks to the generic backtracking algorithm, and to

design a constraint-based programming algorithm for difficult instances.

5.2 Knowledge base storage

In this section, we explain how a knowledge base is stored in each of the storage systems

connected to ALASKA.

5.2.1 Relational databases

Storing facts in a relational database needs to be performed in two distinct steps.

First, the relational database schema has to be defined according to the vocabulary of the

knowledge base. The information concerning the individuals in the knowledge base can

only be inserted once this is done. According to the arities of the predicates given in the

vocabulary, there are two distinct manners to build the schema of the relational database:

In the classic case, one relation is created for each predicate in the vocabulary. The second

case occurs only when all the predicates in the vocabulary share the same arity (cf. RDF

[Hayes, 2004]). In this case, it is possible to define one single relation and to include the

whole knowledge content in this relation. Such encoding is very similar to the ones used

for Triples Stores [Hertel et al., 2009].
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One should not forget that there are no variables in a relational database. Indeed,

variables are frozen into fresh constants before being inserted into a table. In order not

to lose such information upon storing a fact, two alternatives exist: in the first method, a

prefix is added to the label of every term of the database. A term twould then be renamed

to c:t if it is a constant or v:t if it is a variable. In the second case, no changes are made to

the label of the terms, but an extra unary relation, Rvars is created. Tuples containing the

label of the variables in the database would then be added to the relation. Both alternatives

have advantages and drawbacks: the first one does not alter the schema of the database in

any case, but does rename every single term in it. On the other hand the second one does

not rename any term of the database but does add a relation to the database schema. By

adding a new table containing the variables information, a SELECT call is then needed to

answer whether a term is a constant or variable in the second case, while it can be directly

answered by reading the term’s label if the first method is used. For that reason, the first

method will be preferred to the second one for our experimental processes. However, both

solutions are available in ALASKA and the platform does leave the choice of use to the user,

according to what he seems more appropriate.

Four different manners for storing a knowledge base in a relational database are possi-

ble, combining the two different options to keep track of the variables and the two different

options according to the number of tables in the database. Below, we will present the al-

gorithms of two of those four manners, in a way that every technical option is covered.

Algorithms 3, 4 are used when storing a fact in a relational database. In the first algo-

rithm, one table is created in the database for each predicate in the knowledge base, while

the second one is only for cases when all the predicates share the same arity. Also, in the

first algorithm, an extra table named varswith a single column is created at the beginning

in order to store variables. That does not happen in the second, as the system keeps track

of the variables by renaming the terms inside the tables before insertion.
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Algorithm 3: KB to Relational Database algorithm

Input: K a knowledge base
Output: a boolean value

begin1

create table vars (col1);2

foreach Atom a inA do3

p←− a.predicate;4

if !exists table with label p then5

n←− p.arity;6

create table p (col1,...,coln);7

foreach Term t in a.terms do8

if t is a variable then insert into vars (t);9

insert into p (t1,...,tn);10

return true;11

end12

Algorithm 4: KB to Relational Database algorithm (v2)

Input: K a knowledge base,n the arity of all predicates of K
Output: a boolean value

begin1

create table tuples (colp,col1,...,coln); foreach Atom a inA do2

foreach Term t in a.terms do3

if t is a variable then t←− v : t;4

else t←− c : t;5

insert into tuples (a.predicate,t1,...,tn);6

return true;7

end8
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The relational database management system used within ALASKA is SQLite. Versions

3.0 or higher of the RDBMS use a separate B+tree per table and a B-tree per index in the

database. One can see that the algorithms defined above does not define any particu-

lar index and also does not define any primary or foreign keys. Indeed, the behaviour of

ALASKA is not to make any supposition about the data that it is given for storage/manage-

ment. Based on this idea, indexing the knowledge base in order to ensure a better efficiency

upon reading stage would require to index all the tables by all its attributes, which would

have a significant additional cost in space. As for tables, the fact that they do not have a

primary key suggests that the information is stored in the B+tree using the rowid, an iden-

tifier for each row of a table kept by the system. A B+tree is a variant of the B-tree in which

the sequential access has been improved by the use of pointers between leaves nodes of

the tree.

5.2.2 Graph databases

Storing a knowledge base into a Property Graph-based database can also be done in

two different manners, and as for relational database, the two manners differ according to

the arities of the predicates in the knowledge base. In the first case, when all the predicates

in the knowledge base are of arity 2, the transformation is straight-forward, with a node for

each term, and an edge for each atom, connecting the nodes corresponding to the terms

position in the atom. In the second case, it is needed to encode the bipartite graph with

different nodes for terms and predicates (as seen in Conceptual Graphs in Section 3.6)

corresponding to the knowledge base fact. The bipartite graph, being only composed of

binary relations, is then easily stored to the database.

In both cases, we have chosen to have limited use of the key-value tables associated

to the terms and edges of the graph. For terms, the term label and the information of

whether it is a variable or not is stored in the table. In the case of edges, the label is the

only information stored in the table.
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Algorithm 5: KB to Property Graph algorithm

Input: K a knowledge base
Output: a boolean value

begin1

g←− empty graph;2

foreach Atom a inA do3

if exists node with label a.terms[0].label then4

head←− node.id;5

else6

create new node with id newId;7

newId.put(label,a.terms[0].label);8

newId.put(variable,a.terms[0].isVariable);9

head←− newId;10

if exists node with label a.terms[1].label then11

tail←− node.id;12

else13

create new node with id newId;14

newId.put(label,a.terms[1].label);15

newId.put(variable,a.terms[1].isVariable);16

tail←− newId;17

create new edge with id edgeId from head to tail;18

edgeId.put(label,a.predicate);

return true;19

end20

Algorithm 5 displays the algorithm for storing a fact in a graph database for the first

case, when all the predicates are binary. Algorithm 6 displays the version for storing any

knowledge base into a property graph-based database.

In the first one, the graph creation process is very simple. For each atom of the fact, the

algorithm creates an edge from the node corresponding to the first term of the atom to the

node corresponding to the second one. The algorithm verifies first if both nodes already

exist in the graph. If that is not the case, such nodes are created prior to the edge creation.
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Algorithm 6: KB to Property Graph algorithm (v2)

Input: K a knowledge base
Output: a boolean value

begin1

g←− empty graph;2

foreach Atom a inA do3

create new node with id predId;4

predId.put(label,a.predicate);5

predId.put(arity,a.predicate.arity);6

predId.put(type,predicate);7

foreach Term t in a.terms do8

if exists node with label t.label then9

nodeId←− node.id;10

else11

create new node with id newId;12

newId.put(label,t.label);13

newId.put(variable,t.isVariable);14

newId.put(type,term);15

nodeId←− newId;16

create new edge with id edgeId from nodeId to predId;17

edgeId.put(label,pos);

return true;18

end19

In the second case, the graph representing the knowledge base will feature two types

of nodes: terms and predicates. For each atom of the fact, a new predicate node will be

created. Then, for each term of the atom, an edge from the node corresponding to the

term to the newly created predicate node is created. The label of such node corresponds

to the position of the term in the atom. Once again, terms nodes are verified prior to the

edge creation and created if needed. In this case, the arity of the predicate is introduced in

the key-value table of each predicate node.

Two graph databases are currently used within ALASKA, Neo4J and DEX. Neo4J storage

model is basically build upon pointers and linked lists. Every node has an ID in Neo4J, and
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the database provides a simple mapping from IDs to nodes. An edge is internally repre-

sented as a linked list, containing the IDs of the starting and ending nodes (as every edge

in the graph database is binary), and the relationship type of the edge (which corresponds

to our predicates). The list contains then 5 pointers: a pointer to the previous edge leading

from the start node, a pointer to the next edge leading from the start node, a pointer to

the previous edge leading to the end node, a pointer to the next edge leading to the end

node, and a pointer to the first pair (key,value) in the key-value table of the edge. This table

is implemented through a double-linked list. Searching for a node or an edge in Neo4j

is done by a search algorithm that navigates through the pointers to find the requested

information. As other databases, Neo4J supports external indices, such as B-trees and

text-based indices for edges. Adding those indices to the core of the database has not been

the priority of the developers, however.

As for DEX, the internal storage of a graph is the following. The graph is split into a

combination of links and bitmaps. Every object in the graph (node or edge) has an unique

ID in the database. The key-value table of nodes and edges is represented via attributes and

values. A link is an internal data structure in DEX that is the combination of a map with

multiple bitmaps. It ensures a bidirectional association between values and the IDs. Given

a value, the link allows for example obtaining a bitmap containing the IDs of all objects

containing such value. A graph in DEX features a bitmap that indexes nodes and edges by

their type. As all attributes in the key-value stores must be declared prior to added to the

graph, those are also indexed via a link structure. Two more links are used in order to index

the incoming and outgoing edges of each node. No details on the efficiency of the bitmap

compression and decompression have been given by the DEX developing staff.

5.2.3 Triples Stores

Storing a knowledge base in a triples store is very similar to performing it in a prop-

erty graph-based database, as both only support binary relations natively. As for graph

databases, a different encoding must be introduced in order to store knowledge bases with
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predicates with arities bigger than 2. No major differences should be highlighted, excepted

from the fact that as terms are only designed by URIs in a triples stores, the information of

the arity of a predicate must be entered to the store by the means of a new triple containing

the arity of a given predicate.

Algorithm 7 displays how a knowledge base with no restrictions on the arities of the

predicates is stored in a triple store.

Algorithm 7: KB to Triples Store algorithm

Input: K a knowledge base
Output: a boolean value

begin1

g←− empty store;2

foreach Atom a inA do3

foreach Term t in a.terms do4

pos←− the position of t in a;5

create new triple (t, alaska :pos, a.predicate);6

create new triple (a.predicate, alaska :arity, a.predicate.arity);7

return true;8

end9

The triples store used within ALASKA is Jena TDB. A TDB database corresponds to a

single folder on disk. The database is composed of a table for nodes, indexes on the triples,

and a table for prefixes. The table of nodes stores all the RDF terms in the database. As

each RDF term is internally represented by an ID, the node table provides two mappings in

order to easily obtain the ID from a node, or a node from an ID. Such mappings are particu-

larly helpful on storage and querying processes. The triples of the database are indexed by

subject, property and objects. Each of these indices contains all the information about all

the triples. If this may be helpful when processing queries, this is also the cause of a certain

redundancy on the data stored on disk, using more disk space than other stores. Indices

and mappings are implemented with a custom implementation of the B+tree. Such im-
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plementation is very similar to relational databases, with the advantage of having a native

index on terms and atoms.

5.3 ALASKA operations

As previously mentioned in Chapter 4, the genericity of ALASKA relies directly on the

use of the generic methods specified in the abstract layer of the platform. Writing pro-

grams, such as the backtracking algorithm presented, that have no communication with

the store except using those methods ensure that the program is automatically compatible

to any store integrated to ALASKA. Along with the addAtom function, that stores an atom

to disk and has been already presented in the last section, this section will list and detail

the principal functions of that abstract layer w.r.t RBDA.

A short explanation with an example of how does each of those functions is translated

in each type of storage system will also be given, as it differs from one data model to an-

other. The SQL statements given below assume that the information has been stored to

the database with the storage procedure detailed in 5.2.1, where all the column names are

known (col1 to colN). Also, one should note that the triples store used within ALASKA,

Jena TDB, does provide internal functions for triples search and filtering, thus making the

use of SPARQL statements for reading the knowledge base not necessary.

5.3.1 Retrieving all the atoms with a given predicate

Retrieving all the atoms with a given predicate is one of the functions that might be

useful to a higher-level application using ALASKA. In this example, we show how to retrieve

all the atoms with the p predicate in different systems.

– In a graph database, the procedure of obtaining all the atoms with a given predicate

starts with the search for all the predicate nodes with such predicate. The function

then asks the database whether there is a node in the database with the following
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information in its key-value table: {type:predicate, label: p}. The function does not

return any atom if no predicates nodes are found. If there is a match, however, the

function first reads the arity information of the predicate node. We assume that

the verification that the arities are respected for all atoms in the knowledge base.

For each positive result, the program searches for all the terms connected to the

predicate node, from 1 to the arity of p. Atom objects, as defined in ALASKA are

created with the searches result.

The complexity of the operation is O(np), np being the number of predicate nodes

of label p, for a graph database without edge type indexing, and O(n) otherwise, n

being the size of the knowledge base.

– In a relational database, obtaining all the atoms with a certain predicate is made

through a SELECT statement. One should notice that such statement is very

straight-forward if the table is stored with one table per predicate in the knowledge

base. The SQL statements are the following:

SELECT * FROM p (for the first algorithm presented).

SELECT * FROM tuplesWHERE colp = p (for the second one).

In both cases, the result needs to be fetched and returned as terms in ALASKA model.

In the first case, the rows returned will be read, and for each term, the vars table will

have to be accessed in order to check if a returned term is variable or not. Same thing

for the second case, where the information will be obtained by checking the prefix of

the term.

The complexity of the operation in a database with an index on predicates is O(m),

m being the number of tuples in table p, O(n) otherwise.

5.3.2 Listing the terms connected to a given term with a given predicate

Listing the terms connected to a given term requires, besides a term, a predicate and

two terms positions to be passed as input. The first term position indicates the position

of the given term in the atom, while the second one indicates which term of the atom



80 CHAPTER 5. EXPERIMENTAL WORK

in the knowledge base to return. There is always the possibility of returning the whole

atom, however this is not our aim. This function corresponds to the enumerate func-

tion previously presented in Chapter 4. As example, we will show how to retrieve all the

terms connected to a, the second term of the atom, via the p predicate that are at first

position in the atom. The function focus in the position of the term to retrieve and thus

does not consider the arity of the predicate (of course, the requested position must be

lower or equal to the arity of the predicate). In the case that p is a binary predicate, the

function returns all theX such that p(X,a) exist in the knowledge base. If for instance, p is

a predicate of arity 4, it would return all theX such thatp(X,a,?,?) is in the knowledge base.

– In a graph database, the listing of all the X terms connected to a via the p predicate,

at first position of the atom is computed by the following program. It first selects the

term node corresponding to the a term. If it is found, the program will now check if

there is an edge of label 2 between the selected node and a predicate node with label

p. For all results, the program will search for the term connected to the predicate

node by an edge of label 1. The label will be memorized, inserted into a Term object

as defined by ALASKA, and pushed to a collection. The list of candidates is then

returned by the program.

The complexity of the operation in a graph database is O(|an|), an being the size of

the neighbourhood of a.

– In a relational database, finding such a list of candidates is made through a SELECT

statement where one element of the row is instantiated, and only one is wanted in

return. In order to find all the X for the p(X,a) atom, the SQL statements are the

following (according to the manner the knowledge base is stored in the database):

SELECT col1 FROM pWHERE col1 = ’a’ (for the first algorithm presented).

SELECT col1 FROM tuplesWHERE colp = p AND col2 = ’c :a’ (for the second one).

The result also needs to be fetched and returned as terms in ALASKA model, and the

procedure is done exactly as for the previous operation.
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The complexity of the operation in a database with an index on predicates is O(m),

m being the number of tuples in table p, O(n) otherwise.

5.3.3 Verifying the existence of a given atom

Verifying the existence of a given atom corresponds to the other elementary operation

of the backtracking algorithm for computing homomorphisms presented in 4. This func-

tion is also referred as the check function. We will use the atom p(a,b,c) as example,

where a, b and c are constants.

– In a graph database, the procedure of verifying if p(a,b,c) starts with the search for

the predicate node. The function first asks the database whether there is a node in

the database with the following information in its key-value table: {type:predicate,

label: p, arity: 3}. For each positive result (as there can be more than one), the

program will now check if all the nodes corresponding to the terms are correctly

connected to this predicate node. In the case of the atom p(a,b,c), the program

asks the database if there is a node of type term and label a connected to the predi-

cate node, and if such edge has its label 1. If that is not the case, the predicate node is

discarded and the program tests another predicate node. If yes, the program verifies

the b and c term nodes. If the edges between all the terms nodes and the predicate

node are correct, the atom is found and the program returns a positive answer. If no

positive match is found for all the predicates nodes tested, the atom was not found

and the program returns a negative answer. The complexity of the operation in a

database without an index on the predicate is O(np).

– In a relational database, the verification of an atom is made through a SELECT state-

ment where all the elements of the query are instantiated. For the p(a,b,c) atom,

the SQL statements are the following (according to the manner the knowledge base

is stored in the database):

SELECT * FROM p WHERE col1 = ’a’ AND col2 = ’b’ AND col3 = ’c’ (for the first al-
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gorithm presented).

SELECT * FROM tuples WHERE colp = p AND col1 = ’c : a’ AND col2 = ’c : b’ AND

col3 = ’c : c’ (for the second one).

In both cases, there is no need to fetch and read the results obtained. Executing the

SQL operation will return an iterator, and the answer of whether the atom is found

or not can be given by verifying if the iterator is empty or not.

The complexity of the operation in a database with an index on predicates is O(m),

m being the number of tuples in table p, O(n) otherwise.

5.4 Input Data

In order to perform our experimental work, knowledge bases had to be selected for

our protocol. The knowledge base we have used has been introduced by the SP2B project

[Schmidt et al., 2008]. The SP2B project supplies a generator that creates arbitrarily large

knowledge bases maintaining a similar structure to the original DBLP 1 knowledge base,

which they have studied. The argument of the project members for choosing DBLP is that

it reflects the social network character of the Semantic Web, where many small pieces of

information are put together, creating a global network of data. The generated knowl-

edge bases are in RDF format (N-TRIPLES format), although our testing protocol within

the ALASKA platform uses logical expressions as input to the system. Using those gen-

erated knowledge bases then require an initial translation from RDF into first order logic

expressions. The use of the SP2B knowledge bases is relevant to this work since:→ logical knowledge bases are not easily available throughout the web.→ this kind of knowledge bases seem to be very similar to all the emergent knowledge

bases that have appeared with Social Networks and the Semantic Web, in which it

would be highly recommended to perform RBDA.

1. http://www.informatik.uni-trier.de/ ley/db/
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5.5 Storage

Storing information on disk may come into play in two different steps of RBDA. The

first is when one has to load a knowledge base and decides to store it locally in a particular

system. The second is when a rule application process is launched and the process gener-

ates brand new information to be added to the current fact. While in the first case speed is

not that relevant, as it could be considered a pre-processing step and often is only needed

once, it is crucial for the second. In this section we present in detail our experimental work

on storage efficiency.

5.5.1 Workflow

Let us consider the workflow used by ALASKA in order to store new facts. The fact will

first be parsed in the application layer (1) into the set of atoms corresponding to its logical

formula, as defined in the abstract layer (2). Then, from this set, a connector located in

layer (3) translates the fact into a specific representation language in (4). The set of atoms

obtained from the fact will be translated into different data models.

In this workflow, the RDF file is given as input to the Input Manager in the application

(layer 1). Information is then forwarded according to the selected output system. The fact

from file is first transformed in an IFact object (layer 2). It is then translated (layer 3) to

the language of the system of choice (graph, relational database, or triple store) before

being stored onto disk (layer 4). This workflow is visualised in Figure 5.1 where a RDF file

is stored into different storage systems.

5.5.2 Challenges

Storing large knowledge bases using a straight-forward implementation of the testing

protocol has highlighted different issues. We have distinguished three different issues

that have appeared during the tests: (1) memory consumption at parsing level, (2) use of
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Figure 5.1: Workflow for storing a knowledge base in RDF using ALASKA.

transactions, and (3) garbage collecting time.

Memory consumption at parsing level depends directly of the parsing method chosen.

A few experiences have shown that some parsers/methods use more memory resources

than others while accessing the information of a knowledge base and transforming it into

logic. We have initially chosen the Jena framework parsing functions in order to parse

RDF content, but we have identified that it loads almost the whole input file in memory at

reading step. We have thus replaced the RDF parser to a different one, which works only

with N-Triples encoded RDF files, that does not store the facts in main memory but feeds

them one at a time to the ALASKA.

Garbage collecting (GC) issues have also appeared as soon as preliminary tests were

performed. Several times, storing not very large knowledge bases resulted in a GC over-

head limit exception thrown by the Java Virtual Machine. The exception indicates that at

least 98% of the running time of a program is consumed by garbage collecting.

Managing transactions also became necessary in order to reduce the loss of effi-

ciency obtained in the preliminary tests. As we work with different storage methods, their
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transaction management systems also differ. While it is needed to manage transactions

manually in certain systems, transactions are enabled by default in others, thus needing

to be explicitly handled in order to obtain success. Tests have shown that trying to store all

the atoms of a knowledge base at once in a single transaction was effective up to a certain

point, and inefficient beyond this point as the transaction content is kept in memory until

the transaction is committed or discarded. In order to avoid too much memory consump-

tion, we have decided to run multiple transactions while storing a large knowledge base

on disk.

In order to address both transaction and garbage collection issues, a buffer of atoms

was set up. The buffer is filled with freshly parsed atoms at parsing level. At the beginning,

the buffer is full and then every parsed atom is pushed into the buffer before being stored.

Once the buffer is full, parsing is interrupted and the atoms in the buffer are sent to the

storage system for being stored. Once all atoms are stored, instead of cleaning the buffer

by destroying all the objects, the first atom of the buffer is moved from the buffer into a

stack of atoms to be recycled. Different stacks are created for each arity of predicates. In

order to replace this atom, a new atom is only created if there is no atom to be recycled

from the stack of the arity of the parsed atom. If there is an atom to be recycled, then it is

then put back in the buffer, with its predicate and terms changed by attribute setters. The

buffer is then filled once again, until it is full and the atoms in it are sent to storage system.

5.5.3 Contribution

In order to store large knowledge bases on disk using a single machine, preventing the

issues described above, we have implemented the storage algorithm of Figure 8. The al-

gorithm is run by an InputManager class within ALASKA that handles all the storage calls

from users.

Algorithm 8 illustrates the manner the Input Manager handles a stream of atoms re-

ceived as input. Other parameters passed as input are the fact where the stream of atoms

must be stored, and an integer representing the size of the buffer of atoms that will be
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Algorithm 8: Input Manager storage method

Input: S a stream of atoms,f an IFact,bSize an integer
Output: a boolean value

begin1

buffer←− an empty array of size bSize;2

counter←− 0;3

foreach Atom a in S do4

if counter = bSize then5

f.addAtoms(buffer,null);6

counter←− 0;7

buffer[counter] = a;8

counter++;9

f.addAtoms(buffer,counter); return true;10

end11

instantiated. The buffer along with a counter are created at the beginning of the proce-

dure. The procedure is very simple, as it puts the atoms of the stream in the buffer until

its capacity is reached. The buffer, full of atoms is then sent to the storage system that

manages the fact f. This is made through the addAtoms method, implemented in each

store connected to ALASKA.

The solution of using a buffer has been chosen after solutions storing atoms one-by-

one has shown to be very inefficient, and all-at-once solutions would load the whole trans-

action content in memory, going beyond the limit of memory usage for such process.

5.5.4 Results

As previously mentioned, the SP2B project supplies a generator that creates knowledge

bases with a certain parametrised quantity of triples maintaining a similar structure to

the original DBLP knowledge base. The generator was used to create knowledge bases of

increasing sizes (5 million triples, 20, 40, 75 and respectively 100). Each of the knowledge
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bases has been stored in Jena, DEX, SQLite and Neo4J. In Figure 5.2 we show the time for

storing the knowledge bases and their respective sizes on disk.
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Figure 5.2: Storage time and KB sizes in different systems

The user can see that the behaviour of Jena is worse than the other storage systems.

Let us also note that DEX behaves much better than Neo4J and this is due to the fact that

ACID transactions are not required for DEX (while being respected by Neo4J). Second, the

size of storage is also available to the user. One can see, for instance, that the size of the

knowledge base stored in DEX and Neo4J is well under the size of initial RDF file. However,

the size of the file stored in Jena is bigger than the one stored in SQLite and bigger than the

initial size of the RDF file.

The storage tests were performed on a dedicated server with the following character-

istics: 64-bit Quadcore AMD Opteron 8384 with 512 Kb of cache size and 64 Gb of RAM.

Please note that this second server is shared between multiple processes, therefore the

tests will only use part of all this computing power. The memory size of the JAVA Virtual

Machines created for executing the testing processes was of 4Gb.
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Size of the stored knowledge bases
System 5M 20M 40M 75M 100M

DEX 55 Mb 214.2 Mb 421.7 Mb 785.1 Mb 1.0 Gb
Neo4J 157.4 Mb 629.5 Mb 1.2 Gb 2.3 Gb 3.1 Gb
Sqlite 767.4 Mb 2.9 Gb 6.0 Gb 11.6 Gb 15.5 Gb

Jena TDB 1.1 Gb 3.9 Gb 7.5 Gb 13.9 Gb 18.1 Gb
RDF File 533.2 Mb 2.1 Gb 4.2 Gb 7.8 Gb 10.4 Gb

Figure 5.3: Storage time and KB sizes in different systems

5.6 Querying

Performing queries is at the heart of the RBDA problem. It is needed when no ontolog-

ical content is present to enrich facts, and also present in both methods of rule application

we have explained in Chapter 2. Unlike storage, querying efficiency does not rely only on

the storage systems, but in a triplet composed of storage systems, querying method and

also the queries chosen. After a first battery of tests, in which neat conclusions were diffi-

cult to obtain, we have focused in the adaptation of our problem into a CSP problem and

the integration of a CSP solving program in order to address conjunctive query answering.

In this section we present in detail our experimental work on querying.

5.6.1 Workflow

Querying tests within our architecture takes place as indicated in Figure 5.4. Queries

entered in ALASKA are processed and handled by the generic algorithms present in

ALASKA, or translated to different querying languages according to the user’s choice. As

discussed in 3 and seen in the picture, a fact stored in a property graph-based database can

only be queried in ALASKA using a generic querying algorithm. In addition to the back-

tracking algorithm described in Section 4.4, a CSP solving algorithm was also designed

for answering conjunctive queries. More details about this solution are given in Section

5.6.3. Facts stored in a relational database can of course still be queried via the native SQL

interface of the database, and fact stored in a triples store can also be queried using the
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native SPARQL interface of the store.

Q

Abstract
Architecture

Q→ SQLQ→ SPARQL
Backtracking

Algorithm CSP Solver

F stored in
Graph DB

F stored in
Relational DB

F stored in
Triple Store

Figure 5.4: ALASKA storage and querying workflow.

5.6.2 Results

We have tested all the systems previously listed in Section 4.5 with the generic back-

tracking algorithm detailed in Section 4.4 as well as the native query engines when avail-

able for each system. The knowledge bases used for the tests were generated using the

same data generator already used for the storage tests. The queries used for the tests are

the following:

1. type(X,Article)

Returns all the elements which are of type article.

2. creator(X,PaulErdoes) ∧ creator(X,Y)

Returns the persons and the papers that were written with Paul Erdoes.

3. type(X,Article) ∧ journal(X,Journal1-1940) ∧ creator(X,Y)

Returns the creators of all the elements that are articles and were published in Jour-

nal 1 (1940).
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4. type(X,Article) ∧ creator(X,PaulErdoes)

Returns all the articles created by Paul Erdoes.
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Figure 5.5: Querying efficiency results for query 1.

The queries in the set were slightly inspired from the queries featured in the SP2B

project [Schmidt et al., 2008]. However, the queries featured in the paper were designed

with the purpose of covering all the features of the SPARQL query language, which is not

our goal here. As we only deal with conjunctive queries, we have removed and also modi-

fied some queries in the set in order to have a set of queries that would be relevant for our

purposes. We also state that such queries could have been executed in real-use case such

as querying for articles and their properties in a bibliography management system such as

DBLP. The queries were executed over knowledge bases of 5, 25, 50, 75, and 100 thousand

triples.

The results presented above have shown the behaviour of the different storage systems

integrated to ALASKA against a set of queries manually input. We notice that systems
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Figure 5.6: Querying efficiency results for query 2.
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Figure 5.7: Querying efficiency results for query 3.
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Figure 5.8: Querying efficiency results for query 4.

behave differently against different queries. This is due to the fact that each query differs

from the others according to its structure, number of calls to the elementary operations

(enumerate,check) and number of answers in the knowledge base.

We observe in the results that Jena TDB has shown to be efficient in all cases. For the

only query it has not been the fastest system to answer, its response time was still very

close from the fastest ones. We note that the querying efficiency of Jena TDB is linked to

the efficiency of the index structures the system automatically builds at storage. Improving

its querying efficiency by increasing the disk usage might be a good solution for an use

case in which disk usage is not a constraint.

We also observe that independently of the internal data structure, both graph databases

have almost the same efficiency for all the queries. Using a SQL engine has shown to be less

efficient than using a backtracking algorithm for Q2. In this query, the number of answers

is fixed, as no new papers from Paul Erdoes appear after a certain time. As the backtracking
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algorithm over a graph database explores the neighbourhood of the Paul Erdoes term, the

answering time of the query in this case will remain constant even on a larger knowledge

base. On the other hand, the SQL engine has to join the creator table with itself, and as

the size of the table grows fast, the answering time of the engine for this query also grows.

Using a backtracking algorithm has however shown to be less efficient for the other queries.

We have seen that a backtracking algorithm can be a good solution on instances in

which a join algorithm does not perform well. However, the behaviour of the backtracking

algorithm we have implemented on knowledge bases under a million triples has raised

the question on how to optimize this backtracking algorithm. As using an SQL engine has

shown to be efficient enough for simple queries, we look forward optimizing the back-

tracking algorithm for complex queries.

Optimizing the backtracking algorithm can be done in two different manners. First, in

a technical point of view, it is possible to verify whether internal data structures used by

the algorithm are adequate and offer a good complexity for the operations required by the

program. Also, there are today libraries that propose new and optimized implementations

of the native data structures in JAVA. Second, at algorithmic level, several proposals for

optimizing the backtracking algorithm are available in the literature [Baget, 2001]. Most of

those have been studied in the constraint domain.

5.6.3 CSP

Instead of implementing all the available algorithmic optimizations, we have rather

preferred to adapt our problem into a constraint satisfaction problem. The reason of this

choice is twofold. First, in an algorithmic point of view, is that most of these existing

optimizations are already available in the CSP solvers. Second, the integration of a CSP

solver within ALASKA, added to a well written adaptation of our data access problem to a

constraint satisfaction problem would ensure that the updates and optimizations to the

solver program would make our instances of the problem benefit of such updates without



94 CHAPTER 5. EXPERIMENTAL WORK

having to change our implementation.

A constraint satisfaction problem is a triple (X,D,C), where X is a set of variables, D

is a domain of values, and C is a set of constraints. Every constraint c ∈ C is in turn a pair

(t,R) where t is a n-tuple of variables and R is an n-ary relation on D. An evaluation of

the variables is a function from the set of variables to the domain of values, v : X→D. An

evaluation v satisfies a constraint ((x1, . . . ,xn),R) if (v(x1), . . . ,v(xn)) ∈ R. A solution is an

evaluation that satisfies all constraints.

In order to integrate a CSP solver within ALASKA, we have chosen the Choco [Jussien

et al., 2008] solver. The fact that it has a complete documentation available on the web and

that it is written in JAVA have guided our choice. Finally, for our problem, which can be

considered particular in the CSP domain, the availability of the developers of Choco have

helped confirming our choice. We have defined two different manners to adapt our prob-

lem into a CSP problem. The first manner concerns knowledge bases that can be entirely

loaded in main memory. It has been later modified and extended to large knowledge bases,

which is the second manner we have defined.

Simple transformation to CSP

Transforming the entailment problem into a CSP problem is quite simple when the

knowledge base one wants to deduce a fact from is small enough to be entirely loaded in

main memory. The procedure of transformation is the following:

– The network is composed of variables and constraints between the variables. Each

variable has a domain. The domain of a variable contains the possible values for

that variable. In the representation of our problem, the variables of the network

correspond to the terms of the query Q, while the constraints will feature the list of

tuples that satisfy the given constraint. Each constraint corresponds to an atom ofQ.
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– No information about the values in the variables’ domains is known at start. Hence,

all the variables are instantiated with all the available integer values. (It is always

possible to filter the domain of a variable manually during the solver execution, but

it is impossible to add a value to the domain.)

– Constraints are added to the network once all the variables have been defined. One

constraint is created for each atom of Q. For each constraint, the variables con-

nected to this new constraint are all the variables corresponding to the terms of the

atom the constraint represents. The list of authorized tuples for this constraint is

then read in the knowledge base. Such proceeding can not be used when dealing

with a larger knowledge base, as computing all the authorized tuples may lead the

computer to run out of memory.

– The solver can now be run once the variables and constraints have been properly

instantiated.

Note that as the Choco library only manipulates integer values, each term in the knowl-

edge base has to be represented by an integer. Key-value stores will then be used by the sys-

tem to retrieve a term by its integer identifier and vice-versa. Filling such key-value stores

depends on the size of the knowledge base. In the case of a small knowledge base, it can be

done as a preprocessing step prior to creating the network.

Transformation with large KBs

As previously mentioned, some things presented in the previous section changed,

and the problem receives an additional difficulty when dealing with large knowledge

bases. One of the important changes is that it becomes forbidden to perform any op-

eration having its complexity depending on the size of the knowledge base. This is the

reason why a different transformation of our problem into a CSP problem had to be de-

signed, since it is now needed to be able to indicate that a variable, at instantiation time,
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contains all the possible values in the knowledge base without having to compute them all.

The method chosen to address this problem came with the technical limitations of the

Choco library itself. Indeed, Choco maintains the information concerning the variables’

domains in memory, and keeps track of the evolution of those values for the eventuality of

backtracking during the solver execution. The fact of keeping track of all this information

in memory introduces a physical limit to the size of a domain. According to our prelimi-

nary tests with Choco, the limit of values in the domain of a variable in Choco is around

35000 values. As we have not found any mature idea on how to bypass such technical

constraint, we will remain under such technical limit for this work.

One should not forget that this number of 35000 values in a domain does not mean that

we will be limited to knowledge bases with 35000 terms or less (as such size of knowledge

base fits perfectly in main memory) but rather that it will restrain every term of the query

(each variable in the network) to explore only 35000 terms of the knowledge base during

the execution of the solver. Indeed, the knowledge base size forbids us to precompute all

the lists of authorized tuples for each constraint in the network. Such procedure will now

be performing at solving stage, and only in certain conditions, in order to avoid performing

too many reading operations in the knowledge base.

In this case, instead of having the key-values stores shared between all the variables

of the network, each variable will have its own key-values tables. The values in this tables

will be affected at runtime, and, this, a term in the knowledge base may have two different

integer identifiers in two different variables. It will be the task of the propagation function

inside the constraints to maintain the coherence between terms and the integer identifiers

of such terms in all the variables connected to a constraint. The procedure of transforming

a conjunctive query over a large knowledge base in a CSP problem is the following:

– To begin with, the terms of the knowledge base will not be read prior to the solver
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execution, excepted the constant terms in the query. This is due to the fact that a

constant term in the query can only be matched to the same constant in the facts.

Looking for the constants in the knowledge base may save time in the case one

of them does not exist in the knowledge base. For each constant in the query, its

matching in the knowledge base will be given the first integer value in the domain of

the variable. A constraint of equality is linked to the variable, to indicate that this is

the unique possible value for the variable.

– Once this is done, all the variables of the network corresponding to the non-constant

terms of the query are initialized, with a domain going from 1 to 35000. This is

performed without reading the knowledge base. The constraints are then created

and attached to the variables. As for the variables, they will also be created but no

knowledge base information will be read at this time. The only information they will

carry upon initialization are the predicate of the corresponding atom and an integer

value that will serve as a threshold for triggering a propagation sequence.

– The solver is ready to be run once all the variables and constraints of the network

are properly created and "instantiated". In this version, as no information from the

knowledge base was read into the network, the solver will not find any answer to the

query when launched.

– Finding an answer to the query will only be possible through a propagation mech-

anism, that will enable the solver to filter the domains of the variables. The propa-

gation is a function located in the constraint class that indicates to the solver how

to proceed for finding answers. The behaviour of the propagation method we have

implemented is to consult the knowledge base for retrieving information once the

size of the domain of a variable attached to the constraint is lower than the threshold

value set for this constraint. The bigger this value, the bigger are the chances for

triggering the propagation. As the domains of all the variables of the network are not
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filtered at launch (and consequently higher than any threshold), this solution only

covers conjunctive queries with at least one constant for now. The presence of the

constant in the query ensures that at least one propagation call is performed, as the

size of the domain of the variable is reduced to 1 at launch. This is a temporary solu-

tion that will be upgraded later with the use of more efficient indexation techniques.

– The knowledge base is read once the propagation function of a constraint of the

network is triggered. The authorized tuples for this constraint will be computed

then added to constraint information. This will filter the domains of the variables

connected to the constraint. The efficiency of this solution comes from the fact

that the propagation function does not read the whole knowledge base, but only

looks for the neighbourhood of certain terms. This is due to the enumerate func-

tion, already used in the generic backtracking algorithm and described in Section 5.3.

– Filtering the domain of the variables connected to a constraint should trigger the

propagation function in another constraint, until all the lists of authorized tuples

needed are computed. Once this happens, the solver can find the answers of the

query in the knowledge base. If the propagation sequence stops before all the con-

straints have their list of tuples computed, this means that all the previous propaga-

tions have not filtered the remaining domains enough to reach the threshold value.

This case is discussed in Section 5.6.3.

Discussion

Despite the fact that the propagation mechanism for answering conjunctive queries

using a constraint satisfaction solver when the knowledge base is very large has been suc-

cessfully implemented, we have not succeeded in adding it to the list of querying methods

in our testing protocols. The reason for this comes to the fact of the CSP solver not know-

ing how to proceed once the propagation sequence stops. The larger the knowledge base,

more are the number of terms in the domain of each variable, making the threshold value
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more difficult to reach. Of course, it is always possible to increase such value manually

prior to the solver execution, however not only it is impossible to know in advance which

value to choose, but it also increases the amount of information read from the knowledge

base and loaded in memory by the network. Another strategy for this cases is to pause the

solver and to filter manually the domains of the variables of a given constraint, according

to information of the knowledge base. If one has information about the frequency of pred-

icates or some index on the knowledge base, he could use it in order to help the solver once

his propagation sequence does not help it anymore to filter the domain of the variables in

the network. Such ideas will be discussed in Section 6.3.3.





CHAPTER

6
Conclusion

One of the most important things

one can do in life is to brutally

question every single thing you

are taught.

B. MCGILL

6.1 Conclusion

This thesis presented our contribution to provide a unified platform for addressing the

RBDA problem. In Chapter 2, we presented the problem addressed in the thesis, intro-

ducing the formalism used and explaining the challenges of the problem. In Chapter 3,

we have listed different existing approaches according to their native ability of querying

knowledge bases with the presence of an ontology and also their support to external data.

In Chapter 4, we introduced the ALASKA platform, a software architecture designed and

implemented during this thesis, enabling users to perform higher-level reasoning oper-

ations over heterogeneously stored knowledge bases. Finally, in Chapter 5, after having

101
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explained how we aimed to use ALASKA to address the RBDA problem, we showed internal

details of the implementation of ALASKA, along with the testing protocols of storage and

querying efficiency of the storage systems integrated within ALASKA.

This section concludes this thesis by stating the research achievements of my work

(Section 6.2), then discussing my contribution in the context of the open questions this

work has posed (Section 6.3).

6.2 Research Achievements

In Chapter 1, we stated the following research question: “How to provide a platform

providing under a unified logical framework different implementation approaches for

addressing the rule based data access problem?”

This work has answered the above research question and the research achievements of

this thesis are:

– A framework unifying different implementation approaches by the means of a com-

mon logical vision.

– A generic and logic-based software architecture allowing the communication to dif-

ferent storage systems through an unified language.

– The ability of using such architecture to write higher-level reasoning programs inde-

pendently of how the data to be manipulated is stored.

– An algorithm that enables the storage of a very large knowledge base on disk in a

single machine and avoids full memory consumption.

– The transformation of the problem of querying a knowledge base into a constraint

solving problem and its adaptation to large knowledge bases.
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6.3 Discussion

This section presents interesting open research problems triggered by this work that

remain to be studied and developed in the future.

6.3.1 ALASKA

In this thesis, we have presented ALASKA, the software architecture we have designed

and we have used to study the efficiency of existing storage systems for the elementary

operations of conjunctive query answering. As previously stated, the ALASKA framework

allows to build the first layer of an ambitious research aim, a generic platform for RULE-

BASED DATA ACCESS. This first layer concerned the storage and querying operations that

such generic platform must use during the reasoning process.

The future work paved by this thesis can be roughly divided in three parts:

– Expressivity

– Efficiency

– Decentralization

6.3.2 Expressivity

In this thesis, we considered the backwards and forward chaining algorithms as intu-

itions for our storage and querying requirements. However, we did not consider the case

in which the expressivity of the rules asks for the removal of atoms from the knowledge

base. As a simple example, if we consider non-monotonic reasoning with rules such as

default rules or answer set programming, such functionality is required.

Investigating considered storage structures from this perspective is an important as-

pect to be considered in the future.
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6.3.3 Efficiency

As previously stated in Section 5.6.3, the propagation strategy of the CSP when dealing

with large knowledge bases is the following: reading the knowledge base in order to look

for a specific information only happens once a variable in the network has its domain

size under a certain threshold. This value is set initially and can easily be modified. Once

the size of the domain of a variable gets under the threshold, then the code contained

inside the constraint classes calls the enumeratemethod, which filters the domain of the

neighbouring variables.

Such strategy has a major known drawbacks, which is the fact that the solver does not

have an idea on how to proceed when there is no propagation to execute. This happens

for example when launching the solver, as all the domains of the variables are full at that

moment. For this reason we have been restricted to performing queries containing at least

one constant term. This reduces the domain of the variable of the constant term to a single

value, which is lower than any threshold value set, and launches the propagation.

However, if one wants to avoid the solver to be stuck during its execution or to handle

queries with no bootstrap (no constant terms in the query), a better solution would need to

be designed. The major idea in order to have this solved would be to add indexing features

to the CSP solver, enabling it to read an index or some knowledge base statistics about

terms or predicates once the propagation sequence is not enough for finding an answer.

6.3.4 Decentralization

One of the main advantage of having a generic platform for RULE-BASED DATA ACCESS

is the possibility of having several decentralized knowledge bases that we can jointly query

in a transparent manner. In order to fully exploit this advantage, automatic translation

procedures from different languages used in KR (Datalog, FOL, Prolog, Conceptual Graphs,
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Semantic Web languages, Description Logics, etc.) have to be integrated into ALASKA.

Such procedures will not only require a tight adherence to the standard considered but

also technical issues (as seen in Chapter 5) that could be addressed using buffering or other

techniques.
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Abstract

Ontology-Based Data Access is a problem aiming at answering conjunctive queries over

facts enriched by ontological information. There are today two manners of encoding such

ontological content: Description Logics and rule-bases languages. The emergence of very

large knowledge bases, often with unstructured information has provided an additional

challenge to the problem. In this work, we will study the elementary operations needed

in order to set up the storage and querying foundations of a rule-based reasoning sys-

tem. The study of different storage solutions have led us to develop ALASKA, a generic and

logic-based architecture regrouping different storage methods and enabling one to write

reasoning programs generically. This thesis features the design and construction of such

architecture, and the use of it in order to verify the efficiency of storage methods for the

key operations for RBDA, storage on disk and entailment computing.

Keywords: Ontology-Based Data Access, Knowledge Representation

Résumé

Accès aux données en présence d’ontologies est un problème qui vise à répondre à

des requêtes conjonctives en utilisant des inférences rendues possibles par une ontologie.

Les deux grandes familles de langages utilisées pour coder une telle ontologie sont les lo-

giques de description et les langages à base de règles. L’émergence de très grandes bases

de connaissances, souvent peu structurées, complexifie aujourd’hui ce problème, d’autant

plus que les données peuvent être stockées sous de nombreux formats. Nous avons ainsi

développé ALASKA, une architecture logicielle générique dédiée à ce problème. ALASKA

permet la manipulation (insertion, interrogation) des données indépendamment du sys-

tème de stockage utilisé, et peut donc être vu comme la couche abstraite requise pour notre

problème. Nous avons utilisé ALASKA pour tester l’efficacité de différents systèmes de sto-

ckages (bases de données relationnelles, bases de graphes, triple stores), que ce soit quant

à la rapidité de l’insertion de nouvelles connaissances dans une base ou quant à l’efficacité

des opérations élémentaires requises par les sytèmes de requêtage.

Mots clefs : Accès aux données en présence d’ontologies, Représentation de connaissances
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