
HAL Id: tel-01110342
https://hal-lirmm.ccsd.cnrs.fr/tel-01110342v1

Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Based Knowledge Representation and Reasoning:
Practical AI Applications

Madalina Croitoru

To cite this version:
Madalina Croitoru. Graph Based Knowledge Representation and Reasoning: Practical AI Applica-
tions. Artificial Intelligence [cs.AI]. Université Montpellier 2, 2014. �tel-01110342�

https://hal-lirmm.ccsd.cnrs.fr/tel-01110342v1
https://hal.archives-ouvertes.fr

❍❛❜✐❧✐t❛t✐♦♥ ❛ ❉✐r✐❣❡r ❞❡s ❘❡❝❤❡r❝❤❡s
❯♥✐✈✳ ▼♦♥t♣❡❧❧✐❡r ■■✱ ❊❝♦❧❡ ❞♦❝t♦r❛❧❡ ■✷❙✱ ■♥❢♦r♠❛t✐q✉❡

❘❡❛s♦♥✐♥❣ ❆❜♦✉t ❑♥♦✇❧❡❞❣❡ ❛s ●r❛♣❤s✿

Pr❛❝t✐❝❛❧ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡ ❆♣♣❧✐❝❛t✐♦♥s

▼❛❞❛❧✐♥❛ ❈❘❖■❚❖❘❯

❯♥✐✈✳ ▼♦♥t♣❡❧❧✐❡r ✷
❊q✉✐♣❡✲♣r♦❥❡t ■◆❘■❆ ●r❛♣❤■❑

▼♦♥t♣❡❧❧✐❡r✱ ❋r❛♥❝❡

❉❛t❡ ◆♦✈❡♠❜r❡ ✷✵✶✹

❏❯❘❨

▲❡✐❧❛ ❆▼●❖❯❉ ❉✐r❡❝t❡✉r ❞❡ ❘❡❝❤❡r❝❤❡ ❈◆❘❙✱ ■❘■❚✱ ❚♦✉❧♦✉s❡ ❘❛♣♣♦rt❡✉r

❖❧❧✐✈✐❡r ❍❆❊▼▼❊❘▲❊ Pr♦❢❡ss❡✉r✱ ■❘■❚✱ ❚♦✉❧♦✉s❡ ❘❛♣♣♦rt❡✉r

❏❛♥ ❚❖P Pr♦❢❡ss❡✉r✱ ❱r✐❥❡ ❯♥✐✈❡rs✐t❡✐t✱ ◆❡t❤❡r❧❛♥❞s ❘❛♣♣♦rt❡✉r

▼❛r✐❡✲▲❛✉r❡ ▼❯●◆■❊❘ Pr♦❢❡ss❡✉r✱ ❯♥✐✈❡rs✐té ▼♦♥t♣❡❧❧✐❡r ■■ ❊①❛♠✐♥❛t❡✉r

✶

✷

❚❤❛♥❦s
■ t❤❛♥❦ t❤❡ ♠❡♠❜❡rs ♦❢ t❤❡ ❥✉r② ❢♦r t❤❡ ❡♥t❤✉s✐❛s♠ t❤❡② ❤❛✈❡ ❛❝❝❡♣t❡❞ t♦ r❡✈✐❡✇
♠② t❤❡s✐s ✇✐t❤✳ ■ t❤❛♥❦ ♠② ❝♦❧❧❡❛❣✉❡s ❛t ▲■❘▼▼ ❛♥❞ ■❯❚ ❢♦r t❤❡✐r ❢r✉✐t❢✉❧
❞✐s❝✉ss✐♦♥s ❛♥❞ ❡①❝❤❛♥❣❡s✳ ■ t❤❛♥❦ ♠② ♠❛♥② ❝♦❧❧❛❜♦r❛t♦rs ❛♥❞ ❝♦✲❛✉t❤♦rs t❤❛t
❡❛❝❤ t❛✉❣❤t ♠❡ s♦♠❡t❤✐♥❣ ♥❡✇ ❛♥❞ ✈❛❧✉❛❜❧❡✳ ■ t❤❛♥❦ t❤❡ ●r❛♣❤■❑ ❣r♦✉♣ ❢♦r
t❤❡✐r ❧♦♥❣ st❛♥❞✐♥❣ ✐♥✢✉❡♥❝❡ ✐♥ ♠② r❡s❡❛r❝❤✱ ❞❛t✐♥❣ ❜❛❝❦ t♦ ♠② ✜rst ②❡❛r ♦❢
P❤❉✳ ■ t❤❛♥❦ ♠② ❢❛♠✐❧② ❢♦r t❤❡✐r ❡❞✉❝❛t✐♦♥✱ s✉♣♣♦rt ❛♥❞ ❧♦✈❡✳ ■ t❤❛♥❦ ❈♦s♠✐♥❛
❢♦r ❛❧✇❛②s ❜❡✐♥❣ s♦ ❤❛♣♣② ❛♥❞ s✇❡❡t✳ ❚❤❛♥❦s t♦ ❏✉❧✐❡♥ ❢♦r ❤✐s ✐♥s✐❣❤ts ❛♥❞
❤✉♠♦✉r ❛♥❞ ❤✐s ❢❛♠✐❧② ❢♦r t❤❡✐r ❦✐♥❞♥❡ss✳

✸

✹

❈♦♥t❡♥ts

✶ ■♥tr♦❞✉❝t✐♦♥ ✼

✶✳✶ ❖✈❡r✈✐❡✇ ✳ ✼

✶✳✷ ❈♦♥t❡①t ✳ ✼

✶✳✸ ❚❤❡s✐s ❖r❣❛♥✐s❛t✐♦♥ ✳ ✶✵

✷ ❘❡❛s♦♥✐♥❣ ❯s✐♥❣ ●r❛♣❤s ✶✸

✷✳✶ ■♥tr♦❞✉❝t✐♦♥ ✳ ✶✸

✷✳✷ ◗✉❡r② ❆♥s✇❡r✐♥❣ ❛♥❞ ●r❛♣❤s ✳ ✶✹

✷✳✷✳✶ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ◗✉❡r② ❆♥s✇❡r✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺

✷✳✷✳✷ ❚❤❡ ❆▲❆❙❑❆ P❧❛t❢♦r♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻

✷✳✸ ❘❡s♦✉r❝❡ ❆❧❧♦❝❛t✐♦♥ ❛♥❞ ●r❛♣❤s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼

✷✳✹ ❆r❣✉♠❡♥t❛t✐♦♥✱ ◆♦r♠s ❛♥❞ ●r❛♣❤s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾

✷✳✺ ❘❡s♦✉r❝❡ ❆❧❧♦❝❛t✐♦♥ ❢♦r ◗✉❡r② ❆♥s✇❡r✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵

✷✳✻ ❆r❣✉♠❡♥t❛t✐♦♥ ❢♦r ◗✉❡r② ❆♥s✇❡r✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶

✸ ■♥t❡r✲❉✐s❝✐♣❧✐♥❛r② Pr♦❥❡❝ts ✷✸

✸✳✶ ■♥tr♦❞✉❝t✐♦♥ ✳ ✷✸

✸✳✷ ❊❯ ❋P✼ ❊❝♦❇✐♦❈❛♣ ✳ ✷✸

✸✳✸ ■◆❘❆ ❈❊P■❆ ❆■❈ ❚✽✵ ✲ ❚✻✺ ✳ ✷✻

✸✳✹ ❋r❡♥❝❤ ❆◆❘ ❉❯❘✲❉❯❘ ✳ ✷✽

✸✳✺ ❋r❡♥❝❤ ❆◆❘ ◗✉❛❧✐♥❝❛ ✳ ✷✾

✹ P❡rs♣❡❝t✐✈❡s ✸✶

✹✳✶ ■♥tr♦❞✉❝t✐♦♥ ✳ ✸✶

✹✳✷ ❆♣♣❧✐❝❛t✐♦♥ ❙❡tt✐♥❣ ✳ ✸✶

✹✳✸ ❯♥✐✜❡❞ ■♥❝♦♥s✐st❡♥❝② ❘❡❛s♦♥✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✸

✹✳✹ ❋✉t✉r❡ ❉✐r❡❝t✐♦♥s ✳ ✸✻

✺

✺ P❛♣❡rs ♦♥ ●r❛♣❤ ❘❡❛s♦♥✐♥❣ ✸✾

✻ ❆♣♣❧✐❝❛t✐♦♥ P❛♣❡rs ✶✺✶

❇✐❜❧✐♦❣r❛♣❤② ✷✶✸

✻

❈❤❛♣t❡r ✶

■♥tr♦❞✉❝t✐♦♥

✶✳✶ ❖✈❡r✈✐❡✇

▼② r❡s❡❛r❝❤ ✐♥t❡r❡sts ❛r❡ ✐♥ t❤❡ ✜❡❧❞ ♦❢ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣
✭❑❘❘✮✳ ❉✉r✐♥❣ ❛♥❞ s✐♥❝❡ ♠② P❤❉ ✭t❤r♦✉❣❤♦✉t ♠② ♣♦st✲❞♦❝ ❛♥❞ ❧❡❝t✉r❡s❤✐♣✮
■ ❤❛✈❡ ✐♥✈❡st✐❣❛t❡❞ ❣r❛♣❤✲❜❛s❡❞ ❑❘❘ ❧❛♥❣✉❛❣❡s ❛♣♣❧✐❡❞ ✐♥ ❞✐✛❡r❡♥t ❆rt✐✜❝✐❛❧
■♥t❡❧❧✐❣❡♥❝❡ ✭❆■✮ ✜❡❧❞s✳ ❙②♥t❛❝t✐❝❛❧❧②✱ t❤❡ ♦❜❥❡❝ts ■ ❛♠ ✐♥t❡r❡st❡❞ ✐♥ ❛r❡ ❣r❛♣❤s✳
❙❡♠❛♥t✐❝❛❧❧② t❤❡s❡ ❣r❛♣❤s r❡♣r❡s❡♥t ❞✐✛❡r❡♥t s✉❜s❡ts ♦❢ ❧♦❣✐❝s s✉❝❤ t❤❛t t❤❡
❧♦❣✐❝ ♦♣❡r❛t✐♦♥s ❛r❡ s♦✉♥❞ ❛♥❞ ❝♦♠♣❧❡t❡ ✇✐t❤ ❣r❛♣❤ ♦♣❡r❛t✐♦♥s✳ ❚❤✐s ❛❞❞s
❧♦❣✐❝❛❧ ❜❛❝❦❣r♦✉♥❞ t♦ t❤❡ ✇❡❧❧✲❦♥♦✇♥ ♠♦❞❡❧❧✐♥❣ ❝❛♣❛❝✐t② ♦❢ ❣r❛♣❤s✳ ■♥ t❤❡ ♥❡①t
s❡❝t✐♦♥✱ ■ ♣✉t ✐♥ ❝♦♥t❡①t t❤✐s r❡s❡❛r❝❤ ✈✐s✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ♠② ✇♦r❦✳

✶✳✷ ❈♦♥t❡①t

❉✉r✐♥❣ ♠② P❤❉ t❤❡ ❧♦❣✐❝s s✉❜s❡t ■ ❢♦❝✉s❡❞ ♦♥ ✐s t❤❡ ❡①✐st❡♥t✐❛❧✱ ♣♦s✐t✐✈❡ ❢r❛❣♠❡♥t
♦❢ ❋✐rst ❖r❞❡r ▲♦❣✐❝ ✭❋❖▲✮✳ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❬✺✼❪ ❛r❡ ♦♥❡ ❧❛❜❡❧❧❡❞ ❜✐♣❛rt✐t❡
❣r❛♣❤ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ s✉❝❤ ❧♦❣✐❝✳ ▲♦❣✐❝❛❧ s✉❜s✉♠♣t✐♦♥ ❝❛♥ ❜❡ tr❛♥s❧❛t❡❞ ✭✐♥ ❛
s♦✉♥❞ ❛♥❞ ❝♦♠♣❧❡t❡ ♠❛♥♥❡r✮ ✐♥t♦ ❧❛❜❡❧❧❡❞ ❣r❛♣❤ ❤♦♠♦♠♦r♣❤✐s♠✱ ❝❛❧❧❡❞ ♣r♦❥❡❝✲
t✐♦♥✳ ▼② ❝♦♥tr✐❜✉t✐♦♥ ❧♦♦❦❡❞ ❛t ✐♠♣r♦✈✐♥❣ ❜♦t❤ t❤❡ ✭✶✮ r❡❛s♦♥✐♥❣ ❡✣❝✐❡♥❝② ♦❢
s✉❝❤ ❣r❛♣❤s ❛♥❞ ✭✷✮ t❤❡✐r ❡①♣r❡ss✐✈✐t②✳ ❘❡❣❛r❞✐♥❣ r❡❛s♦♥✐♥❣ ■ ❤❛✈❡ ♣r♦♣♦s❡❞ ❛
♣r♦❥❡❝t✐♦♥ ♦♣t✐♠✐s❛t✐♦♥ ❜❛s❡❞ ♦♥ t❤❡ r❡❞✉❝t✐♦♥ ♦❢ t❤❡ ❧❛❜❡❧❧❡❞ ❤♦♠♦♠♦r♣❤✐s♠
✐♥t♦ ❛ ♠❛① ❝❧✐q✉❡ ♣r♦❜❧❡♠✳ ❘❡❣❛r❞✐♥❣ t❤❡ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❡①♣r❡ss✐✈✐t② ■
❧♦♦❦❡❞ ✐♥t♦ t❤❡✐r ❡♠♣❧♦②❛❜✐❧✐t② ✐♥ ◆❛t✉r❛❧ ▲❛♥❣✉❛❣❡ Pr♦❝❡ss✐♥❣✱ ▼✉❧t✐✲❆❣❡♥ts
❙②st❡♠s ❛♥❞ t❤❡ ❙❡♠❛♥t✐❝ ❲❡❜✳

■♥ ◆❛t✉r❛❧ ▲❛♥❣✉❛❣❡ Pr♦❝❡ss✐♥❣ ■ ❤❛✈❡ ✐♥✈❡st✐❣❛t❡❞ t❤❡ ●❡♥❡r❛t✐♦♥ ♦❢ ❘❡❢❡r✲
r✐♥❣ ❊①♣r❡ss✐♦♥s✱ ✇❤❡r❡ ♦♥❡ ✐s ✐♥t❡r❡st❡❞ ✐♥ ♦❜t❛✐♥✐♥❣ ❛ ✉♥✐q✉❡ ❞❡s❝r✐♣t✐♦♥ ♦❢ ❛♥
♦❜❥❡❝t ✐♥ ❛ s❝❡♥❡✳ ❘❡♣r❡s❡♥t✐♥❣ t❤✐s ♣r♦❜❧❡♠ ✉s✐♥❣ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❛❧❧♦✇❡❞
❛ ❝❧❡❛r ❝♦♥tr✐❜✉t✐♦♥ ✐♥ t❡r♠s ♦❢ ❧♦❣✐❝❛❧ ❡①♣r❡ss✐✈✐t② ♦❢ t❤❡ ♣r♦❜❧❡♠ ❬✷✼❪✳ ■ ❤❛✈❡
t❤❡♥ ❡①t❡♥❞❡❞ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s t♦ r❡♣r❡s❡♥t ♠✉❧t✐♣❧❡ ✈✐❡✇s ♦♥ t❤❡ s❛♠❡ ♣✐❡❝❡

✼

♦❢ ❦♥♦✇❧❡❞❣❡ ❛❝❝♦r❞✐♥❣ t♦ ❞✐✛❡r❡♥t ❛❣❡♥ts ✐♥t❡r❡st❡❞ ✐♥ t❤❛t ❦♥♦✇❧❡❞❣❡✳ ❋♦r t❤❡
♥❡✇ s②♥t❛❝t✐❝ ♦❜❥❡❝t ✭❛ ❧❛❜❡❧❧❡❞ tr✐✲♣❛rt✐t❡ ❣r❛♣❤✮ ■ ❤❛✈❡ ♣r♦♣♦s❡❞ ❛♣♣r♦♣r✐✲
❛t❡ s❡♠❛♥t✐❝s t❤❛t ❛❧❧♦✇ ♦❜t❛✐♥✐♥❣ ❡✐t❤❡r ❛ ❝♦♥s❡♥s✉❛❧ s✉❜s❡t ♦❢ ❦♥♦✇❧❡❞❣❡ ♦r
❞✐✛❡r❡♥t ❞❡❣r❡❡s ♦❢ s❤❛r❡❞ ❦♥♦✇❧❡❞❣❡ ❜❡t✇❡❡♥ ❛❣❡♥ts ❬✷✻❪✳ ❋✐♥❛❧❧②✱ ❈♦♥❝❡♣t✉❛❧
●r❛♣❤s ✇❡r❡ ✉s❡❞ ✐♥ ♦r❞❡r t♦ ❡①♣r❡ss ❛ s✉♠♠❛r✐s❡❞ ✈✐❡✇ ♦❢ ❞✐✛❡r❡♥t ❦♥♦✇❧✲
❡❞❣❡ ❜❛s❡s ✐♥ ♦r❞❡r t♦ ♦♣t✐♠✐s❡ ❞✐str✐❜✉t❡❞ q✉❡r② ❛♥s✇❡r✐♥❣✳ ❚❤✐s s✉♠♠❛r②
✭❝❛❧❧❡❞ ❛ ❑♥♦✇❧❡❞❣❡ ❖r✐❡♥t❡❞ ❙♣❡❝✐✜❝❛t✐♦♥✮ ❝♦✉❧❞ ❜❡ ❞♦♥❡ ❛t ❞✐✛❡r❡♥t ❧❡✈❡❧s ♦❢
❞❡t❛✐❧ ❛♥❞ ✇❛s ❡①♣r❡ss❡❞ ✉s✐♥❣ ❛♥♦t❤❡r ❡①t❡♥s✐♦♥ ♦❢ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❢♦r r❡♣✲
r❡s❡♥t✐♥❣ ❤✐❡r❛r❝❤✐❝❛❧ ❦♥♦✇❧❡❞❣❡✿ ▲❛②❡r❡❞ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✳ ❖♥❝❡ ❛❣❛✐♥✱ t❤❡
❝♦rr❡s♣♦♥❞✐♥❣ s❡♠❛♥t✐❝s ❛♥❞ r❡❛s♦♥✐♥❣ ♠❡❝❤❛♥✐s♠s ✭❜❛s❡❞ ♦♥ ❣r❛♣❤ ♦♣❡r❛t✐♦♥s✮
✇❡r❡ ♣r♦✈✐❞❡❞ ❬✶✾❪✳

❉✉r✐♥❣ ♠② P♦st❉♦❝ ■ ❝♦♥t✐♥✉❡❞ t❤✐s r❡s❡❛r❝❤ ✐♥ ❣r❛♣❤✲❜❛s❡❞ ❑❘❘ ❛♥❞ ■ ❢✉r✲
t❤❡r ❢♦❝✉s❡❞ ♦♥ ▼✉❧t✐✲❆❣❡♥ts ❙②st❡♠s ❛♥❞ ❙❡♠❛♥t✐❝ ❲❡❜✳ ❚❤❡ t✇♦ ❛♣♣❧✐❝❛t✐♦♥
❞♦♠❛✐♥s ✇❡r❡ ❣✐✈❡♥ ❜② t❤❡ t✇♦ ❊✉r♦♣❡❛♥ Pr♦❥❡❝ts ■ ✇❛s ✇♦r❦✐♥❣ ♦♥✳

❚❤❡ ✜rst ♣r♦❥❡❝t✱ ❍❡❛❧t❤❆❣❡♥ts✿ ❆❣❡♥t✲❜❛s❡❞ ❉✐str✐❜✉t❡❞ ❉❡❝✐s✐♦♥ ❙✉♣♣♦rt
❙②st❡♠ ❢♦r ❜r❛✐♥ t✉♠♦✉r ❞✐❛❣♥♦s✐s ❛♥❞ ♣r♦❣♥♦s✐s✭❤tt♣✿✴✴✇✇✇✳❤❡❛❧t❤❛❣❡♥ts✳
♥❡t✮✱ ✇❛s ❧♦♦❦✐♥❣ ❛t ❝r❡❛t✐♥❣ ❛ ✉♥✐✜❡❞ r❡♣♦s✐t♦r② ♦❢ ❜r❛✐♥ t✉♠♦✉r ❞❛t❛ s❤❛r❡❛❜❧❡
❛♠♦♥❣st t❤❡ ❞✐✛❡r❡♥t ♠❡❞✐❝❛❧ ♣❛rt♥❡rs ✐♥ t❤❡ ♣r♦❥❡❝t✳ ❚❤❡ ❞❛t❛ ❝♦♠♣❛t✐❜✐❧✐t②
✇❛s ❡♥s✉r❡❞ ❜② t❤❡ ✉s❡ ♦❢ ❛ ❞♦♠❛✐♥ ♦♥t♦❧♦❣② ❬✸✾❪✳ ❚❤❡ ❞❛t❛ ✐♥t❡r♦♣❡r❛❜✐❧✐t②
✇❛s t❤❡♥ ❡♥s✉r❡❞ ❜② t❤❡ ✉s❡ ♦❢ t❤❡ ▼✉❧t✐✲❆❣❡♥ts ❙②st❡♠ ❢r❛♠❡✇♦r❦ ❞❡s✐❣♥❡❞
❛s ❛♥ ❛❜str❛❝t✐♦♥ ♦❢ t❤❡ s❡✈❡r❛❧ ❡①❝❤❛♥❣❡s ✐♥ t❤❡ s②st❡♠ ❬✸✷❪✳ ▼② ✇♦r❦ ✐♥✈♦❧✈❡❞
t❤❡ ❙❡♠❛♥t✐❝ ❲❡❜ ❛s♣❡❝ts ♦❢ t❤❡ ♣r♦❥❡❝t✱ ♥♦t❛❜❧② ❜✉✐❧❞✐♥❣ t❤❡ ❞♦♠❛✐♥ ♦♥t♦❧♦❣②
❛♥❞ ❧✐♥❦✐♥❣ t❤❡ ❝♦♠♠♦♥ ❞♦♠❛✐♥ ♦♥t♦❧♦❣② t♦ t❤❡ ❞✐✛❡r❡♥t ♠❡❞✐❝❛❧ ❞❛t❛❜❛s❡s
❛✈❛✐❧❛❜❧❡ ✐♥ t❤❡ s②st❡♠✳ ❚❤❡ ♣r♦♣♦s❡❞ ♦♥t♦❧♦❣② ✇❛s ❡①♣r❡ss❡❞ ✐♥ ❖❲▲ ❛♥❞
❜✉✐❧t ✉s✐♥❣ t❤❡ Pr♦t❡❣❡ ♦♥t♦❧♦❣② ❜✉✐❧❞✐♥❣ t♦♦❧ ❢♦r ❲✸❈ st❛♥❞❛r❞✐s❛t✐♦♥ ✐ss✉❡s✳
❚❤❡ s❡❝♦♥❞ ❝♦♥tr✐❜✉t✐♦♥ ✇❛s ❛ t♦♦❧ t❤❛t ❛❧❧♦✇❡❞ ❛ s❡♠✐✲❛✉t♦♠❛t✐❝ ♠❛♣ ❢r♦♠
t❤❡ ❞❛t❛❜❛s❡s t♦ t❤❡ ♣r♦♣♦s❡❞ ♦♥t♦❧♦❣② ❬✷✶❪✳ ❚❤✐s ❣r❛♣❤✲❜❛s❡❞ t♦♦❧ ✇❛s ♦❢ ❣r❡❛t
❤❡❧♣ t♦ t❤❡ ❞♦♠❛✐♥ ❡①♣❡rts✳ ❋✐♥❛❧❧②✱ t❤❡ s❡❝✉r✐t② r✐❣❤ts ❢♦r t❤❡ s②st❡♠s ✇❡r❡
❢♦r♠❛❧✐s❡❞ ✐♥t♦ ❛ s❡♣❛r❛t❡ ♦♥t♦❧♦❣② ✉s✐♥❣ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s t♦ ❛❧❧♦✇ ❢♦r ❜♦t❤
r❡❛s♦♥✐♥❣ ❛♥❞ ❞♦♠❛✐♥ ❡①♣❡rt ❢❡❡❞❜❛❝❦ ❬✻✺❪✳

❚❤❡ s❡❝♦♥❞ ♣r♦❥❡❝t ■ ✇❛s ✐♥✈♦❧✈❡❞ ✐♥ ✇❛s ❖♣❡♥ ❑♥♦✇❧❡❞❣❡ ✭❤tt♣✿✴✴✇✇✇✳
♦♣❡♥❦✳♦r❣✮✳ ❚❤❡ ♣✉r♣♦s❡ ♦❢ t❤❡ ♣r♦❥❡❝t ✇❛s t♦ ✐♥✈❡st✐❣❛t❡ ❛ s✐♠♣❧❡ ▼✉❧t✐✲
❆❣❡♥ts ❝♦♦r❞✐♥❛t✐♦♥ ❧❛♥❣✉❛❣❡ ❢♦r t❤❡ s❤❛r✐♥❣ ♦❢ ♠✉❧t✐✲♠❡❞✐❛ r❡s♦✉r❝❡s✳ ▼②
✐♥✈♦❧✈❡♠❡♥t ✐♥ t❤❡ ♣r♦❥❡❝t ❧♦♦❦❡❞ ❛t ❙❡♠❛♥t✐❝ ❲❡❜ ❛s♣❡❝ts ❛♥❞ ▼✉❧t✐✲❆❣❡♥ts
❙②st❡♠s ❛s♣❡❝ts✳ ▼♦r❡ ♣r❡❝✐s❡❧②✱ ■ ✇❛s ✐♥✈♦❧✈❡❞ ✐♥t♦ ❛❞❛♣t✐♥❣ ❞✐✛❡r❡♥t st❛♥✲
❞❛r❞ ♠✉❧t✐✲♠❡❞✐❛ ♦♥t♦❧♦❣✐❡s ❢♦r ♦✉r ♣r♦❥❡❝t✳ ■ ✇❛s ❛❧s♦ ✇♦r❦✐♥❣ ♦♥ ✐♥❞❡①✐♥❣
❛s♣❡❝ts ❢♦r ♦♥t♦❧♦❣② s❤❛r✐♥❣ ❬✸✽❪✳ ❋r♦♠ ❛ ▼✉❧t✐✲❆❣❡♥ts ✈✐❡✇♣♦✐♥t ♦♥❡ ♦❢ t❤❡
❝❤❛❧❧❡♥❣❡s ✐♥✈♦❧✈❡❞ ✐♥ t❤❡ ♣r♦❥❡❝t ✇❛s t❤❡ ❡❧✐❝✐t❛t✐♦♥ ♦❢ ❛❣❡♥t ♣r❡❢❡r❡♥❝❡s ♦✈❡r
r❡s♦✉r❝❡s✳ ❚❤❡ ❛❣❡♥ts ❤❛❞ t♦ ❜❡ ❛❜❧❡ t♦ ❞❡✜♥❡ ♣r❡❢❡r❡♥❝❡s ♦✈❡r ❛ s❡t ♦❢ ✇❡❧❧
❞❡✜♥❡❞ r❡s♦✉r❝❡s✳ ❲❤❡♥ t❤❡s❡ ♣r❡❢❡r❡♥❝❡s ❛r❡ ❡①♣r❡ss❡❞ ✉s✐♥❣ ♥✉♠❡r✐❝❛❧ ✈❛❧✲
✉❡s t❤✐s ♣r♦❜❧❡♠ ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ♣r♦❜❧❡♠ ♦❢ ❞❡s✐❣♥✐♥❣ ❜✐❞❞✐♥❣ ❧❛♥❣✉❛❣❡s ❢♦r
❈♦♠❜✐♥❛t♦r✐❛❧ ❆✉❝t✐♦♥s✳ ■♥ ❈♦♠❜✐♥❛t♦r✐❛❧ ❆✉❝t✐♦♥s ❛♥ ❛✉❝t✐♦♥❡❡r ❤❛s ❛ ♥✉♠✲
❜❡r ♦❢ r❡s♦✉r❝❡s ✭♦❜❥❡❝ts✮ ❢♦r s❡❧❧✱ ❛♥❞ t❤❡ ❜✐❞❞❡rs ✇✐❧❧ ❣✐✈❡ ♥✉♠❡r✐❝❛❧ ✈❛❧✉❡s ♦♥
s✉❜s❡ts ♦❢ t❤♦s❡ ♦❜❥❡❝ts✳ ❚❤❡ ❲✐♥♥❡r ❉❡t❡r♠✐♥❛t✐♦♥ ✐s ❜❛s❡❞ ♦♥ ✜♥❞✐♥❣ t❤❡
❛❧❧♦❝❛t✐♦♥ ♦❢ ♦❜❥❡❝ts t♦ ❜✐❞❞❡rs t❤❛t ♠❛①✐♠✐s❡s t❤❡ ❛✉❝t✐♦♥❡❡r✬s r❡✈❡♥✉❡✳ ■t ✐s

✽

❛ ◆P✲❤❛r❞ ♣r♦❜❧❡♠ ❜❡✐♥❣ ❡q✉✐✈❛❧❡♥t t♦ ✇❡✐❣❤t❡❞ s❡t ♣❛❝❦✐♥❣✳ ■♥ t❤✐s ❝♦♥t❡①t ■
❤❛✈❡ ♣r♦♣♦s❡❞ ❛ ❣r❛♣❤✲❜❛s❡❞ ❜✐❞❞✐♥❣ ❧❛♥❣✉❛❣❡ ❜❛s❡❞ ✭◆❊❚✲❜✐❞✮ ♦♥ ❛♥ ❡①t❡♥s✐♦♥
♦❢ ♥❡t✇♦r❦ ✢♦✇s✳ ❚❤✐s r❡♣r❡s❡♥t❛t✐♦♥ ✇❛s ❛❧s♦ ♣r♦✈✐❞❡❞ ✇✐t❤ ❛❝❝♦r❞✐♥❣ s❡♠❛♥✲
t✐❝s ✇❤❡r❡ t❤❡ ♠❛①✲✢♦✇ ♦♥ t❤❡ ❛❣❣r❡❣❛t❡❞ ◆❊❚✲❜✐❞s ❢r♦♠ ❛❧❧ ✉s❡rs ❝♦rr❡s♣♦♥❞❡❞
t♦ ❲✐♥♥❡r ❉❡t❡r♠✐♥❛t✐♦♥ ❬✷✵❪✳

▼② P♦st❉♦❝ ❛❧❧♦✇❡❞ ♠❡ t♦ ❝♦♥t✐♥✉❡ ♠② r❡s❡❛r❝❤ ✐♥t❡r❡sts ✐♥ ✐♥✈❡st✐❣❛t✐♥❣
❣r❛♣❤✲❜❛s❡❞ ❑❘❘✱ ❡✐t❤❡r ❢♦r ❋❖▲ r❡❛s♦♥✐♥❣ ❢♦r t❤❡ ❙❡♠❛♥t✐❝ ❲❡❜✱ ♦r ❢♦r r❡❛✲
s♦♥✐♥❣ ✐♥ ▼✉❧t✐✲❆❣❡♥ts ❙②st❡♠s✳

❚❤✐s ❧✐♥❡ ♦❢ ✇♦r❦ ✭❣r❛♣❤✲❜❛s❡❞ ❑❘❘✮ ✇❛s ♣✉rs✉❡❞ ❢✉rt❤❡r ✇❤❡♥ ❛rr✐✈✐♥❣ ❛t
▲■❘▼▼ ✇❤❡r❡ t❤❡ ❣r❛♣❤✲❜❛s❡❞ ❢♦r♠❛❧✐s♠s ■ ❤❛✈❡ ✐♥✈❡st✐❣❛t❡❞ ❝❛♥ ❜❡ ✈✐❡✇❡❞
❢r♦♠ t✇♦ ♣❡rs♣❡❝t✐✈❡s✿ ❛ ♣❛r❛❞✐❣♠ ♣❡rs♣❡❝t✐✈❡ ❛♥❞ ❛♥ ❛♣♣❧✐❝❛t✐♦♥ ♣❡rs♣❡❝t✐✈❡✳
❚❤❡ t✇♦ ♠❛✐♥ ♣❛r❛❞✐❣♠s ✭✐♥ t❤❡ ❝♦♥t✐♥✉✐t② ♦❢ ♠② P❤❉ ❛♥❞ P♦st❉♦❝ ✇♦r❦✮ ■ ❤❛✈❡
✐♥✈❡st✐❣❛t❡❞ ❛r❡ ▼✉❧t✐✲❆❣❡♥ts ❙②st❡♠s ❛♥❞ ♦♥t♦❧♦❣✐❝❛❧ q✉❡r② ❛♥s✇❡r✐♥❣✳ ❚❤❡
❛♣♣❧✐❝❛t✐♦♥ ♣❡rs♣❡❝t✐✈❡ ✇❛s ❣✐✈❡♥ ❜② ❛❣r♦♥♦♠② ❛♣♣❧✐❝❛t✐♦♥s ❛♥❞ ❜✐❜❧✐♦❣r❛♣❤✐❝
❛♣♣❧✐❝❛t✐♦♥s✳ ❚❤❡ ❛♣♣❧✐❝❛t✐♦♥ ❞♦♠❛✐♥s ❛❧❧♦✇❡❞ t♦ ♠❡r❣❡ t❤❡ t✇♦ ♣❛r❛❞✐❣♠s ♦❢
♠② r❡s❡❛r❝❤✳ ■ ✐♥✈❡st✐❣❛t❡❞ t❤❡ ❧✐♥❦ ❜❡t✇❡❡♥ q✉❡r② ❛♥s✇❡r✐♥❣ ✉♥❞❡r ✐♥❝♦♥s✐s✲
t❡♥❝② ❛♥❞ ❛r❣✉♠❡♥t❛t✐♦♥ ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ❛❣r♦♥♦♠② ❛♣♣❧✐❝❛t✐♦♥s✳ ■ ❛❧s♦ ❧♦♦❦❡❞
❛t t❤❡ ♣r♦❜❧❡♠ ♦❢ ▼✉❧t✐✲❆❣❡♥ts ❦♥♦✇❧❡❞❣❡ ❛❧❧♦❝❛t✐♦♥ ❛♥❞ ✐♥❢♦r♠❛t✐♦♥ s❡❧❧✐♥❣
♠❡❝❤❛♥✐s♠ ❞❡s✐❣♥✳ ❈✉rr❡♥t❧② ■ ❛♠ ✐♥✈❡st✐❣❛t✐♥❣ t❤❡ ❧✐♥❦ ❜❡t✇❡❡♥ ✐♥❝♦♥s✐st❡♥❝②
❜❛s❡❞ r❡❛s♦♥✐♥❣ ❛♥❞ ❝❧✉st❡r✐♥❣ s❡♠❛♥t✐❝s ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ❜✐❜❧✐♦❣r❛♣❤✐❝ ❦♥♦✇❧✲
❡❞❣❡ ❜❛s❡s✳

■♥ t❤❡ r❡♠❛✐♥❞❡r ♦❢ t❤❡ ❞♦❝✉♠❡♥t ■ ✇✐❧❧ ❞❡t❛✐❧ t❤❡ r❡s✉❧ts ♦❜t❛✐♥❡❞ ❢♦r ❡❛❝❤
♣❛r❛❞✐❣♠✿ ❝♦♥❥✉♥❝t✐✈❡ q✉❡r② ❛♥s✇❡r✐♥❣ ❛♥❞ ▼✉❧t✐✲❆❣❡♥ts s②st❡♠s✱ ❛s ✇❡❧❧ ❛s
r❡s✉❧ts ♦❜t❛✐♥❡❞ ❛t t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡s❡ t✇♦ ❆■ ❞♦♠❛✐♥s✳ ❚❤❡ ❝♦♥❥✉♥❝✲
t✐✈❡ q✉❡r② ❛♥s✇❡r✐♥❣ ✇♦r❦ ✇❛s ✐♥ t❤❡ ❝♦♥t✐♥✉✐t② ♦❢ ♠② P❤❉ ✇♦r❦ ✐♥ ❝♦♥❝❡♣t✉❛❧
❣r❛♣❤s ❛♥❞ ❡①t❡♥❞❡❞ t♦✇❛r❞s t❤r❡❡ ♠❛✐♥ ❞✐r❡❝t✐♦♥s t♦ ❛❞❞r❡ss ❝✉rr❡♥t ❝❤❛❧❧❡♥❣❡s
✐♥ ❛♣♣❧✐❝❛t✐♦♥s✿ ❧❛r❣❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✱ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ❛♥❞ q✉❡r②
❛♥s✇❡r ❛❧❧♦❝❛t✐♦♥✳ ❚❤❡ ▼✉❧t✐✲❆❣❡♥ts s②st❡♠s ❣r❛♣❤ ❜❛s❡❞ ❦♥♦✇❧❡❞❣❡ r❡♣r❡✲
s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ❢♦r♠❛❧✐s♠s ■ ✐♥✈❡st✐❣❛t❡❞ ❛r❡ ❝❡♥t❡r❡❞ ❛r♦✉♥❞ r❡s♦✉r❝❡
❛❧❧♦❝❛t✐♦♥ ✭❝♦♠❜✐♥❛t♦r✐❛❧ ❛✉❝t✐♦♥s✱ ❝♦❛❧✐t✐♦♥ ❢♦r♠❛t✐♦♥✮✱ ♥♦r♠ r❡♣r❡s❡♥t❛t✐♦♥
❛♥❞ ❛r❣✉♠❡♥t❛t✐♦♥✳ ❚❤❡ ❛♣♣❧✐❝❛t✐♦♥s ■ ❤❛✈❡ ✐♥✈❡st✐❣❛t❡❞ ❛r❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞
r❡❛s♦♥✐♥❣ ✐♥ t❤❡ ❜✐❜❧✐♦❣r❛♣❤✐❝❛❧ ❞♦♠❛✐♥ ❛♥❞ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ❢♦r
❛❣r✐✲❢♦♦❞ ❝❤❛✐♥s✳

■t ✐s ❛❧s♦ ✇♦rt❤② t♦ ♥♦t❡ t❤❛t ✇❤✐❧❡ ❛t ▲■❘▼▼ ■ ❤❛✈❡ ❝♦✲✐♥✐t✐❛t❡❞ t❤❡
●❑❘❅■❏❈❆■ ■♥t❡r♥❛t✐♦♥❛❧ ❲♦r❦s❤♦♣ ❙❡r✐❡s ✭✷✵✵✾✱ ✷✵✶✶✱ ✷✵✶✸✮ r❡♣♦rt✐♥❣ ♦♥
❣r❛♣❤✲❜❛s❡❞ ❑❘❘ ❢♦r♠❛❧✐s♠s ✭t❤❛t ✐s✱ ❡♥❞♦✇❡❞ ✇✐t❤ ❣r❛♣❤✲❜❛s❡❞ s②♥t❛① ❛♥❞
❧♦❣✐❝❛❧ s❡♠❛♥t✐❝s✮✳ ■♥ ✷✵✶✵ ■ ✇❛s ❛❧s♦ t❤❡ ♣r♦❣r❛♠ ❝❤❛✐r ♦❢ t❤❡ ■❈❈❙ ✭■♥t❡r♥❛✲
t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❈♦♥❝❡♣t✉❛❧ ❙tr✉❝t✉r❡s✮ ❝♦♥❢❡r❡♥❝❡✱ t❤❡ ♠❛✐♥ ✐♥t❡r♥❛t✐♦♥❛❧
❝♦♥❢❡r❡♥❝❡ ❢♦❝✉s❡❞ ♦♥ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❛♥❞ ✐♥ ✷✵✶✹ ■ ✇❛s t❤❡ ❣❡♥❡r❛❧ ❝❤❛✐r
♦❢ ■❈❈❙✳

▲❡t ♠❡ ❝♦♥❝❧✉❞❡ t❤✐s s❡❝t✐♦♥ ❜② ♥♦t✐♥❣ t❤❛t s✐♥❝❡ ✷✵✶✵ ■ ❛♠ ♣❛rt ♦❢ t❤❡
●r❛♣❤■❑ ■◆❘■❆ ❣r♦✉♣✱ ❛ ♣r♦❥❡❝t t❡❛♠ ✇❤✐❝❤ ❣❛t❤❡rs ▲■❘▼▼ ♠❡♠❜❡rs ❛s ✇❡❧❧
❛s ■◆❘❆ ♠❡♠❜❡rs✳ ❙✐♥❝❡ ✐ts ❝r❡❛t✐♦♥ ■ ❣♦t ✐♥✈♦❧✈❡❞ ✇✐t❤ ❛❣r♦♥♦♠② ❛♣♣❧✐❝❛t✐♦♥s
✇♦r❦✐♥❣ ❝❧♦s❡❧② ✇✐t❤ ■◆❘❆ ❝♦❧❧❡❛❣✉❡s ♦♥ t❤r❡❡ ♣r♦❥❡❝ts✿ ❊❝♦❇✐♦❈❛♣✱ ❉❯❘ ❉❯❘

✾

❛♥❞ ❈❊P■❆ ❆■❈✳ ❚❤❡ ❧❡ss♦♥s ❧❡❛r♥t ❛♥❞ t❤❡ r❡s✉❧ts ♦❜t❛✐♥❡❞❙ ❞✉r✐♥❣ t❤✐s ❝♦❧✲
❧❛❜♦r❛t✐♦♥ s❤❛♣❡❞ ♠② ✈✐s✐♦♥ ❢♦r ♠② ❢✉t✉r❡ r❡s❡❛r❝❤ ❛s ❡①♣❧❛✐♥❡❞ ✐♥ ♠② r❡s❡❛r❝❤
♣❧❛♥✳ ▲❡t ✉s ✜rst ❡♥✉♠❡r❛t❡ t❤❡ ♦❜t❛✐♥❡❞ r❡s✉❧ts s✐♥❝❡ ✷✵✵✽ ♦♥✇❛r❞s✳

✶✳✸ ❚❤❡s✐s ❖r❣❛♥✐s❛t✐♦♥

■ ❝❤♦s❡ t♦ ♣r❡s❡♥t t❤❡ r❡s❡❛r❝❤ ✇♦r❦ ■ ❞✐❞ ✐♥ t❤❡ ♣❛st s✐① ②❡❛rs ✇❤✐❧❡ ❛t ▲■❘▼▼✱
❜② t❤❡ ♠❡❛♥s ♦❢ ❛ ❝♦❧❧❡❝t✐♦♥ ♦❢ ♣✉❜❧✐❝❛t✐♦♥s✱ ❡❛❝❤ ❡①♣❧❛✐♥❡❞ ❛♥❞ ♣✉t ✐♥ ❝♦♥t❡①t
✐♥ t❤❡ ❝❤❛♣t❡rs ❛t t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ t❤❡ t❤❡s✐s✳

❊❛❝❤ ❝❤❛♣t❡r ❣✐✈❡s ❛ q✉✐❝❦ ❛♥❞ ✐♥t✉✐t✐✈❡ ✏st♦r②✑ ♦❢ t❤❡ r❡s❡❛r❝❤ t♦♣✐❝s ■ ❛♠
✐♥t❡r❡st❡❞ ✐♥✳ ❚❤❡♥ ❛t t❤❡ ❡♥❞ ♦❢ ❡❛❝❤ ❝❤❛♣t❡r ♦♥❡ ♦r t✇♦ s✐❣♥✐✜❝❛♥t ♣❛♣❡rs
❛r❡ ❝✐t❡❞ ✭❛♥❞ t❤❡ r❡❛❞❡r ❞✐r❡❝t❡❞ t♦✇❛r❞s t❤❡ ❝❤❛♣t❡r t❤❛t s❤♦✇s t❤❡ ♣❛♣❡rs ✐♥
q✉❡st✐♦♥✮✳ ❚❤❡ ♣❛♣❡rs ❛r❡ ❝❤♦s❡♥ ❣✐✈❡♥ t❤❡✐r ♣♦t❡♥t✐❛❧ t♦ ✐❧❧✉str❛t❡ t❤❡ ♣♦✐♥t ■
✇❛s tr②✐♥❣ t♦ ❜r✐♥❣ ❛❝r♦ss ✐♥ t❤❡ r❡s♣❡❝t✐✈❡ ❙❡❝t✐♦♥✳

❚❤❡ ❝❤❛♣t❡rs ❛r❡ ❣r♦✉♣❡❞ ❜②✿ t❤❡♦r②✱ ❛♣♣❧✐❝❛t✐♦♥ ❛♥❞ ❢✉t✉r❡ ✇♦r❦✳ ■♥ ❈❤❛♣✲
t❡r ✷✱ ■ ♣r❡s❡♥t t❤❡ ♠❛✐♥ t❤❡♦r❡t✐❝❛❧ ❞♦♠❛✐♥ ♦❢ r❡s❡❛r❝❤ ■ ❤❛✈❡ ❜❡❡♥ ✐♥t❡r❡st❡❞ ✐♥
❛♥❞ ♥❛♠❡❧② ❣r❛♣❤ ❜❛s❡❞ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣✳ ❚❤✐s ❈❤❛♣✲
t❡r ✐s s♣❧✐t ✐♥ s❡✈❡r❛❧ ❙❡❝t✐♦♥s✳ ■♥ ❙❡❝t✐♦♥ ✷✳✷ ■ ❞❡♠♦♥str❛t❡ ❧❛❜❡❧❧❡❞ ❜✐♣❛rt✐t❡
❣r❛♣❤s✱ ❤♦♠♦♠♦r♣❤✐s♠ ❛♥❞ t❤❡✐r ❛♣♣❧✐❝❛t✐♦♥ t♦ q✉❡r② ❛♥s✇❡r✐♥❣✳ ■♥ ❙❡❝t✐♦♥ ✷✳✸
■ s❤♦✇ ♥❡t✇♦r❦ ✢♦✇s ❛♥❞ t❤❡✐r ❛♣♣❧✐❝❛t✐♦♥ t♦ ▼✉❧t✐✲❆❣❡♥ts r❡s♦✉r❝❡ ❛❧❧♦❝❛t✐♦♥✳
■♥ ❙❡❝t✐♦♥ ✷✳✹ ■ t❛❧❦ ❛❜♦✉t ❛r❣✉♠❡♥t❛t✐♦♥ ❣r❛♣❤s✳ ▼✐①❡❞ ❞♦♠❛✐♥ r❡s✉❧ts ❛r❡
t❤❡♥ ♣r❡s❡♥t❡❞ ✐♥ ❙❡❝t✐♦♥ ✷✳✺ ✇❤❡r❡ t❤❡ s❡tt✐♥❣ ♦❢ ▼✉❧t✐✲❆❣❡♥ts ❦♥♦✇❧❡❞❣❡ ❛❧❧♦✲
❝❛t✐♦♥ ✐s ♣r❡s❡♥t❡❞ ❛s ✇❡❧❧ ❛s ✐♥ ❙❡❝t✐♦♥ ✷✳✻ ✇❤❡r❡ ✐♥❝♦♥s✐st❡♥t q✉❡r② ❛♥s✇❡r✐♥❣
❛♥❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❡q✉✐✈❛❧❡♥t s❡♠❛♥t✐❝s ❛r❡ r❡✈❡❛❧❡❞✳ ❆❧❧ ♣❛♣❡rs ❞❡t❛✐❧✐♥❣ t❤❡
r❡s✉❧ts ♦❢ t❤✐s ❈❤❛♣t❡r ❛r❡ ❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✳

❈❤❛♣t❡r ✸ ♣r❡s❡♥ts t❤❡ r❡s❡❛r❝❤ ♣r♦❥❡❝ts ■ ❤❛✈❡ ♣❛rt✐❝✐♣❛t❡❞ ✐♥ t❤❛t ✐♥✈♦❧✈❡
♥♦♥ ❝♦♠♣✉t✐♥❣ ❡①♣❡rts✳ ❚❤✐s ❝❤♦✐❝❡ ♦❢ ♣r❡s❡♥t❛t✐♦♥ ✐s ❞✉❡ t♦ t❤❡ ❢❛❝t t❤❛t s✉❝❤
♣r♦❥❡❝ts ❜r✐♥❣ ♥♦♥ ♥❡❣❧✐❣✐❜❧❡ ❝❤❛❧❧❡♥❣❡s ✐♥ ♠✐①✐♥❣ ❛♣♣❧✐❡❞ ❛♥❞ ❢✉♥❞❛♠❡♥t❛❧ r❡✲
s❡❛r❝❤ t❤❛t ❛r❡ ♥♦t ❡❛s② t♦ ♦✈❡r❝♦♠❡✳ ■♥ ❙❡❝t✐♦♥ ✸✳✷ ■ ♣r❡s❡♥t ❛♥ ❛❣r♦♥♦♠②
♣r♦❥❡❝t ❛✐♠✐♥❣ ❛t ✐♠♣r♦✈✐♥❣ ♣❛❝❦❛❣✐♥❣ ❝♦♥❝❡♣t✐♦♥✳ ■♥ ❙❡❝t✐♦♥ ✸✳✸ ❛♥❞ ❙❡❝✲
t✐♦♥ ✸✳✹ ■ ♣r❡s❡♥t t✇♦ ♦t❤❡r ❛❣r♦♥♦♠② ♣r♦❥❡❝ts✱ t❤✐s t✐♠❡s ❛✐♠❡❞ ❛t ❢♦♦❞ ❝❤❛❧✲
❧❡♥❣❡s✳ ❋✐♥❛❧❧② ✐♥ ❙❡❝t✐♦♥✸✳✺ ■ ♣r❡s❡♥t ❛ ❜✐❜❧✐♦❣r❛♣❤✐❝ ❞❛t❛ ♠❛♥❛❣❡♠❡♥t ♣r♦❥❡❝t✳
❆❧❧ ♣❛♣❡rs ❞❡t❛✐❧✐♥❣ t❤❡ ✇♦r❦ ♣r❡s❡♥t❡❞ ✐♥ t❤✐s ❈❤❛♣t❡r ❛r❡ ❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r
✻✳

❈❤❛♣t❡r ✹ ❝♦♥❝❧✉❞❡s t❤❡ t❤❡s✐s ❜② ♣r❡s❡♥t✐♥❣ ❛ r❡s❡❛r❝❤ ♣r♦❥❡❝t ❛✐♠✐♥❣ ❛t
❞❡✈❡❧♦♣✐♥❣ ❛ ❤②❜r✐❞ ❛r❝❤✐t❡❝t✉r❡ ❢♦r ✐♥❝♦♥s✐st❡♥❝② ❤❛♥❞❧✐♥❣ ✐♥ t❤❡ ❛❣r♦♥♦♠②
❞♦♠❛✐♥✳

▲❡t ♠❡ ♠❛❦❡ ❛ ♥♦t❡ ❜② s❛②✐♥❣ t❤❛t t❤✐s ✐s ❛ ♣♦st❡r✐♦r✐ ❝❤♦✐❝❡ ✐♥ ♣r❡s❡♥t❛t✐♦♥✳
❘❡s❡❛r❝❤ ✐s ❛♥ ♦♥❧✐♥❡ ♣r♦❝❡ss ❛♥❞ ❞✐✛❡r❡♥t ✐♥t❡r❡st✐♥❣ t♦♣✐❝s ♦❢ r❡s❡❛r❝❤ ❛s ✇❡❧❧
❛s ❛♣♣❧✐❝❛t✐♦♥ ♣r♦❥❡❝ts ❝❛♥♥♦t ❜❡ ❢✉❧❧② ❞❡t❡r♠✐♥❡❞ ✐♥ ❛❞✈❛♥❝❡✳ ❚❤❡ ♣r❡s❡♥t❛t✐♦♥
♦❢ ✇♦r❦ ✐♥ t❤✐s t❤❡s✐s ❛♥❞ ✏❤♦✇ t❤✐♥❣s ❤❛♣♣❡♥❡❞✑ ❛r❡ ♥♦t ❛❧✇❛②s ✐❞❡♥t✐❝❛❧✳ ●♦✐♥❣
✐♥ ♠♦r❡ ❞❡t❛✐❧s ♦❢ ❝❡rt❛✐♥ t♦♣✐❝s✱ ✇❤✐❧❡ ❛❜❛♥❞♦♥✐♥❣ ♦t❤❡rs t❤❛t ❧♦♦❦❡❞ ♣r♦♠✐s✐♥❣
✇❡r❡ ♥♦t ❛❧✇❛②s r❡s❡❛r❝❤ ❥✉st✐✜❡❞ ❛♥❞ ❞❡♣❡♥❞ ❣r❡❛t❧② ♦♥ t❤❡ t✐♠❡✱ ❝♦❧❧❛❜♦r❛t♦rs✱

✶✵

❝❤❛♥❝❡ ❛♥❞ ❢✉♥❞✐♥❣ ♦♣♣♦rt✉♥✐t✐❡s✳ ❍♦✇❡✈❡r✱ ❢r♦♠ ♠② ✜rst ②❡❛r ♦❢ P❤❉ t❤❡
♠❛✐♥ ✉♥❞❡r❧②✐♥❣ t♦♣✐❝ ♦❢ ♠② ✇♦r❦ ✐s t❤❡ ✉s❡ ♦❢ ❣r❛♣❤ str✉❝t✉r❡s ❢♦r ❦♥♦✇❧❡❞❣❡
r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣✳

✶✶

✶✷

❈❤❛♣t❡r ✷

❘❡❛s♦♥✐♥❣ ❯s✐♥❣ ●r❛♣❤s

✷✳✶ ■♥tr♦❞✉❝t✐♦♥

❚❤✐s ❝❤❛♣t❡r ❢♦❝✉s❡s ♦♥ t❤❡ ❝♦r❡ ♦❢ ♠② r❡s❡❛r❝❤ s♦ ❢❛r ❛♥❞ ♥❛♠❡❧② ♠② ✐♥t❡r❡st
✐♥ ✉s✐♥❣ ❣r❛♣❤✲❜❛s❡❞ ❢♦r♠❛❧✐s♠s ❢♦r ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣✳
❑♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ✭❑❘❘✮ ❤❛s ❧♦♥❣ ❜❡❡♥ r❡❝♦❣♥✐③❡❞ ❛s ❛
❝❡♥tr❛❧ ✐ss✉❡ ✐♥ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡ ✭❆■✮✳ ❚❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ❡✛❡❝t✐✈❡ t❡❝❤✲
♥✐q✉❡s ❢♦r ❑❘❘ ✐s ❛ ❝r✉❝✐❛❧ ❛s♣❡❝t ♦❢ s✉❝❝❡ss❢✉❧ ✐♥t❡❧❧✐❣❡♥t s②st❡♠s✳ ❉✐✛❡r❡♥t
r❡♣r❡s❡♥t❛t✐♦♥ ♣❛r❛❞✐❣♠s✱ ❛s ✇❡❧❧ ❛s t❤❡✐r ✉s❡ ✐♥ ❞❡❞✐❝❛t❡❞ r❡❛s♦♥✐♥❣ s②st❡♠s✱
❤❛✈❡ ❜❡❡♥ ❡①t❡♥s✐✈❡❧② st✉❞✐❡❞ ✐♥ t❤❡ ♣❛st✳ ❚❤❡ ♣r♦❜❧❡♠ ❝♦♥s✐sts ♦❢ ❤♦✇ t♦ ❡♥✲
❝♦❞❡ ❤✉♠❛♥ ❦♥♦✇❧❡❞❣❡ ❛♥❞ r❡❛s♦♥✐♥❣ ❜② s②♠❜♦❧s t❤❛t ❝❛♥ ❜❡ ♣r♦❝❡ss❡❞ ❜② ❛
❝♦♠♣✉t❡r t♦ ♦❜t❛✐♥ ✐♥t❡❧❧✐❣❡♥t ❜❡❤❛✈✐♦r✳

◆❡✇ ❝❤❛❧❧❡♥❣❡s✱ ♣r♦❜❧❡♠s✱ ❛♥❞ ✐ss✉❡s ❤❛✈❡ ❡♠❡r❣❡❞ ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ❦♥♦✇❧✲
❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ✐♥ ❆■✱ ✐♥✈♦❧✈✐♥❣ t❤❡ ❧♦❣✐❝❛❧ ♠❛♥✐♣✉❧❛t✐♦♥ ♦❢ ✐♥❝r❡❛s✐♥❣❧②
❧❛r❣❡ ✐♥❢♦r♠❛t✐♦♥ s❡ts ✭s❡❡ ❢♦r ❡①❛♠♣❧❡ ❙❡♠❛♥t✐❝ ❲❡❜✱ ❇✐♦■♥❢♦r♠❛t✐❝s ❛♥❞ s♦
♦♥✮✳ ■♠♣r♦✈❡♠❡♥ts ✐♥ st♦r❛❣❡ ❝❛♣❛❝✐t② ❛♥❞ ♣❡r❢♦r♠❛♥❝❡ ♦❢ ❝♦♠♣✉t✐♥❣ ✐♥❢r❛s✲
tr✉❝t✉r❡ ❤❛✈❡ ❛❧s♦ ❛✛❡❝t❡❞ t❤❡ ♥❛t✉r❡ ♦❢ ❑❘❘ s②st❡♠s✱ s❤✐❢t✐♥❣ t❤❡✐r ❢♦❝✉s
t♦✇❛r❞s r❡♣r❡s❡♥t❛t✐♦♥❛❧ ♣♦✇❡r ❛♥❞ ❡①❡❝✉t✐♦♥ ♣❡r❢♦r♠❛♥❝❡✳ ❚❤❡r❡❢♦r❡✱ ❑❘❘
r❡s❡❛r❝❤ ✐s ❢❛❝❡❞ ✇✐t❤ ❛ ❝❤❛❧❧❡♥❣❡ ♦❢ ❞❡✈❡❧♦♣✐♥❣ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ str✉❝✲
t✉r❡s ♦♣t✐♠✐③❡❞ ❢♦r ❧❛r❣❡ s❝❛❧❡ r❡❛s♦♥✐♥❣✳

❚❤✐s ♥❡✇ ❣❡♥❡r❛t✐♦♥ ♦❢ ❑❘❘ s②st❡♠s ✐♥❝❧✉❞❡s ❣r❛♣❤✲❜❛s❡❞ ❦♥♦✇❧❡❞❣❡ r❡♣✲
r❡s❡♥t❛t✐♦♥ ❢♦r♠❛❧✐s♠s ❛❧s♦ ❛♣♣❡❛❧✐♥❣ ❢♦r t❤❡✐r ✈✐s✉❛❧ q✉❛❧✐t✐❡s✳ ❚❤✐s ✐s ❞✉❡ t♦
s❡✈❡r❛❧ ❢❛❝t♦rs✿

• ❋✐rst❧②✱ ❣r❛♣❤s ❛r❡ s✐♠♣❧❡ ♠❛t❤❡♠❛t✐❝❛❧ ♦❜❥❡❝ts ✭t❤❡② ♦♥❧② ✉s❡ ❡❧❡♠❡♥t❛r②
♥❛✐✈❡ s❡t t❤❡♦r② ♥♦t✐♦♥s s✉❝❤ ❛s ❡❧❡♠❡♥ts✱ s❡ts ❛♥❞ r❡❧❛t✐♦♥s✮ ✇❤✐❝❤ ❤❛✈❡
❣r❛♣❤✐❝❛❧ r❡♣r❡s❡♥t❛t✐♦♥s ✭❛ s❡t ♦❢ ♣♦✐♥ts ❛♥❞ ❧✐♥❡s ❝♦♥♥❡❝t✐♥❣ s♦♠❡ ♣❛✐rs
♦❢ ♣♦✐♥ts✮ ❛♥❞ t❤✉s ❝❛♥ ❜❡ ✈✐s✉❛❧✐s❡❞✳

• ❙❡❝♦♥❞❧②✱ t❤❡r❡ ✐s ❛ r✐❝❤ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❡✣❝✐❡♥t ❛❧❣♦r✐t❤♠s ❢♦r ♣r♦❝❡ss✐♥❣
❣r❛♣❤s✱ t❤✉s ❣r❛♣❤s ❝❛♥ ❜❡ ✉s❡❞ ❛s ❡✛❡❝t✐✈❡ ❝♦♠♣✉t❛t✐♦♥❛❧ ♦❜❥❡❝ts ✭t❤❡②

✶✸

❛r❡ ✇✐❞❡❧② ✉s❡❞✱ ❢♦r ✐♥st❛♥❝❡✱ ✐♥ ❖♣❡r❛t✐♦♥❛❧ ❘❡s❡❛r❝❤✮✳

• ❚❤✐r❞❧②✱ ❣r❛♣❤s ❝❛♥ ❜❡ ❡q✉✐♣♣❡❞ ✇✐t❤ ❛ ❧♦❣✐❝❛❧ s❡♠❛♥t✐❝s✿ t❤❡ ❣r❛♣❤✲❜❛s❡❞
♠❡❝❤❛♥✐s♠s t❤❡② ❛r❡ ♣r♦✈✐❞❡❞ ✇✐t❤ ❛r❡ s♦✉♥❞ ❛♥❞ ❝♦♠♣❧❡t❡ ✇✐t❤ r❡s♣❡❝t
t♦ ❞❡❞✉❝t✐♦♥ ✐♥ t❤❡ ❛ss✐❣♥❡❞ ❧♦❣✐❝✳

❋✉rt❤❡r♠♦r❡✱ ❣r❛♣❤✲❜❛s❡❞ ♠❡❝❤❛♥✐s♠s ❝❛♥ ❜❡ ❡①♣❧❛✐♥❡❞ t♦ t❤❡ ✉s❡r ❜❡❝❛✉s❡
t❤❡② ❝❛♥ ❜❡ ❡❛s✐❧② ✈✐s✉❛❧✐③❡❞ ♦♥ t❤❡ ❣r❛♣❤s t❤❡♠s❡❧✈❡s✳ ❚❤❡ r❡s✉❧ts ♣r❡s❡♥t❡❞ ✐♥
t❤✐s ❝❤❛♣t❡r ✇✐❧❧ ❜❡ ♣✉t ✐♥ ❝♦♥t❡①t ❜② t❤❡ ❛♣♣❧✐❝❛t✐♦♥s ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✸✳
❚❤❡ r❡s✉❧ts ✐♥❝❧✉❞❡ t❤❡ ✉s❡ ♦❢ ❜✐♣❛rt✐t❡ ❣r❛♣❤s ❛♥❞ ❧❛❜❡❧❧❡❞ ❣r❛♣❤ ❤♦♠♦♠♦r✲
♣❤✐s♠s ❢♦r q✉❡r② ❛♥s✇❡r✐♥❣ ✭❙❡❝t✐♦♥ ✷✳✷✮✱ ♥❡t✇♦r❦ ✢♦✇ ❛❧❣♦r✐t❤♠s ❢♦r ♠✉❧t✐
❛❣❡♥t r❡s♦✉r❝❡ ❛❧❧♦❝❛t✐♦♥ ✭❙❡❝t✐♦♥ ✷✳✸✮ ❛♥❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❣r❛♣❤s ✭❙❡❝t✐♦♥ ✷✳✹✮✳
❘❡s✉❧ts ♦❜t❛✐♥❡❞ ❛t t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡ ❛❜♦✈❡ ✜❡❧❞s ❛r❡ ♥❡①t ♣r❡s❡♥t❡❞✳ ❙❡❝✲
t✐♦♥ ✷✳✺ s❤♦✇s ❤♦✇ t♦ ✉s❡ ❛❧❧♦❝❛t✐♦♥ t❡❝❤♥✐q✉❡s ❢♦r q✉❡r② ❛♥s✇❡r✐♥❣✳ ❙❡❝t✐♦♥ ✷✳✻
s❤♦✇s t❤❡ ❧✐♥❦ ❜❡t✇❡❡♥ ✐♥❝♦♥s✐st❡♥t q✉❡r② ❛♥s✇❡r✐♥❣ t❡❝❤♥✐q✉❡s ❛♥❞ ❛r❣✉♠❡♥✲
t❛t✐♦♥✳

❊✈❡r② s❡❝t✐♦♥ ♣r❡s❡♥ts t❤❡ ❣❡♥❡r❛❧ s❡tt✐♥❣ ♦❢ t❤❡ r❡s❡❛r❝❤ q✉❡st✐♦♥ ✐♥✈❡st✐✲
❣❛t❡❞✳ ❋♦r ♠♦r❡ ❞❡t❛✐❧s✱ ❡❛❝❤ s❡❝t✐♦♥ ✐s ✐❧❧✉str❛t❡❞ ❜② ❛ r❡♣r❡s❡♥t❛t✐✈❡ ♣❛♣❡r ✐♥
❈❤❛♣t❡r ✺✳

✷✳✷ ◗✉❡r② ❆♥s✇❡r✐♥❣ ❛♥❞ ●r❛♣❤s

❖♥❡ ♦❢ t❤❡ ❢✉♥❞❛♠❡♥t❛❧ ♣r♦❜❧❡♠s ✐♥ ❑❘❘ ❧❛♥❣✉❛❣❡s ✐s ❡♥t❛✐❧♠❡♥t ❝❤❡❝❦✐♥❣✿ ✐s ❛
❣✐✈❡♥ ♣✐❡❝❡ ♦❢ ❦♥♦✇❧❡❞❣❡ ❡♥t❛✐❧❡❞ ❜② ♦t❤❡r ♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡✱ ❢♦r ✐♥st❛♥❝❡ ❢r♦♠
❛ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ✭❑❇✮❄ ❆♥♦t❤❡r ✐♠♣♦rt❛♥t ♣r♦❜❧❡♠ ✐s ❝♦♥s✐st❡♥❝② ❝❤❡❝❦✐♥❣✿ ✐s
❛ s❡t ♦❢ ❦♥♦✇❧❡❞❣❡ ♣✐❡❝❡s ✭❢♦r ✐♥st❛♥❝❡ t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ✐ts❡❧❢✮ ❝♦♥s✐st❡♥t✱
✐✳❡✳✱ ✐s ✐t s✉r❡ t❤❛t ♥♦t❤✐♥❣ ❛❜s✉r❞ ❝❛♥ ❜❡ ❡♥t❛✐❧❡❞ ❢r♦♠ ✐t❄ ❚❤❡ q✉❡r② ❛♥s✇❡r✲
✐♥❣ ♣r♦❜❧❡♠ ❛s❦s ❢♦r t❤❡ s❡t ♦❢ ❛♥s✇❡rs t♦ ❛ q✉❡r② ✐♥ t❤❡ ❑❇✳ ■♥ t❤❡ s♣❡❝✐❛❧
❝❛s❡ ♦❢ ❜♦♦❧❡❛♥ q✉❡r✐❡s ✭✐✳❡✳✱ q✉❡r✐❡s ✇✐t❤ ❛ ②❡s✴♥♦ ❛♥s✇❡r✮✱ ✐t ❝❛♥ ❜❡ r❡❝❛st ❛s
❡♥t❛✐❧♠❡♥t ❝❤❡❝❦✐♥❣✳

❚❤❡ ♦♥t♦❧♦❣②✲❜❛s❡❞ ❞❛t❛ ❛❝❝❡ss ✭❖❉❇❆✮ ♣r♦❜❧❡♠ ❬✹✸❪ t❛❦❡s ❛ s❡t ♦❢
❢❛❝ts✱ ❛♥ ♦♥t♦❧♦❣② ❛♥❞ ❛ ❝♦♥❥✉♥❝t✐✈❡ q✉❡r② ❛♥❞ ❛✐♠s t♦ ✜♥❞ ✐❢ t❤❡r❡ ✐s ❛♥ ❛♥s✇❡r
✴ ❛❧❧ t❤❡ ❛♥s✇❡rs t♦ t❤❡ q✉❡r② ✐♥ t❤❡ ❢❛❝ts ✭❡✈❡♥t✉❛❧❧② ❡♥r✐❝❤❡❞ ❜② t❤❡ ♦♥t♦❧♦❣②✮✳
❚❤❡ ❧❛r❣❡ ♥✉♠❜❡r ♦❢ ♦♥t♦❧♦❣✐❡s ❛♥❞ ❞❛t❛ s♦✉r❝❡s ❞❡✜♥❡❞ ♦♥ t♦♣ ♦❢ ♦♥t♦❧♦❣✐❡s ♦♥
t❤❡ ❲❡❜ ❜r♦✉❣❤t✲♦♥ ❢✉rt❤❡r ❝❤❛❧❧❡♥❣❡s ❞✉❡ t♦ t❤❡ ❞❛t❛ ✐♥t❡❣r❛t✐♦♥ ✐♥❤❡r❡♥t t♦
t❤✐s s❡tt✐♥❣✿ ✐❞❡♥t✐t② ♣r♦❜❧❡♠s ❛♥❞ ❧❛r❣❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳

❲❡ ❝♦♥s✐❞❡r t❤❡s❡ ♣r♦❜❧❡♠s ♦♥❡ ❜② ♦♥❡ ✐♥ t❤❡ r❡♠❛✐♥❞❡r ♦❢ t❤❡ s❡❝t✐♦♥✳
❙❡❝t✐♦♥ ✷✳✷✳✶ ❞✐s❝✉ss❡s t❤❡ ❛❞✈❛♥t❛❣❡s ♦❢ ✉s✐♥❣ ❣r❛♣❤✲❜❛s❡❞ ❢♦r♠❛❧✐s♠s ✐♥ t❤❡
q✉❡r② ❛♥s✇❡r✐♥❣ ❝♦♥t❡①t✳ ❙❡❝t✐♦♥ ✷✳✷✳✷ ♣r❡s❡♥ts ❛ ❣❡♥❡r✐❝ ♣❧❛t❢♦r♠ ❢♦r r❡❛s♦♥✐♥❣
✐♥ t❤❡ ❤❡t❡r♦❣❡♥❡♦✉s ❞❛t❛ s❡tt✐♥❣ ♦❢ ❖❇❉❆✳

✶✹

✷✳✷✳✶ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ◗✉❡r② ❆♥s✇❡r✐♥❣

❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ✇❡r❡ ✐♥tr♦❞✉❝❡❞ ❜② ❏♦❤♥ ❙♦✇❛ ✭❝❢✳ ❬✺✻✱ ✺✼❪✮ ❛s ❛ ❞✐❛❣r❛♠✲
♠❛t✐❝ s②st❡♠ ♦❢ ❧♦❣✐❝ ✇✐t❤ t❤❡ ♣✉r♣♦s❡ ✏t♦ ❡①♣r❡ss ♠❡❛♥✐♥❣ ✐♥ ❛ ❢♦r♠ t❤❛t ✐s
❧♦❣✐❝❛❧❧② ♣r❡❝✐s❡✱ ❤✉♠❛♥❧② r❡❛❞❛❜❧❡✱ ❛♥❞ ❝♦♠♣✉t❛t✐♦♥❛❧❧② tr❛❝t❛❜❧❡✑ ✭❝❢✳ ❬✺✼❪✮✳
❚❤r♦✉❣❤♦✉t t❤❡ r❡♠❛✐♥❞❡r ♦❢ t❤✐s t❤❡s✐s ✇❡ ✉s❡ t❤❡ t❡r♠ ✏❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✑
t♦ ❞❡♥♦t❡ t❤❡ ❢❛♠✐❧② ♦❢ ❢♦r♠❛❧✐s♠s r♦♦t❡❞ ✐♥ ❙♦✇❛✬s ✇♦r❦ ❛♥❞ t❤❡♥ ❡♥r✐❝❤❡❞ ❛♥❞
❢✉rt❤❡r ❞❡✈❡❧♦♣❡❞ ✇✐t❤ ❛ ❣r❛♣❤✲❜❛s❡❞ ❛♣♣r♦❛❝❤ ✭❝❢✳ ❬✶✻❪✮✳

■♥ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❛❧❧ ❦✐♥❞s ♦❢ ❦♥♦✇❧❡❞❣❡ ❛r❡ ❡♥❝♦❞❡❞ ❛s ❣r❛♣❤s ❛♥❞ t❤✉s
❝❛♥ ❜❡ ✈✐s✉❛❧✐s❡❞ ✐♥ ❛ ♥❛t✉r❛❧ ✇❛②✿

• ❚❤❡ ✈♦❝❛❜✉❧❛r②✱ ✇❤✐❝❤ ❝❛♥ ❜❡ s❡❡♥ ❛s ❛ ❜❛s✐❝ ♦♥t♦❧♦❣② ✭❜❛❝❦❣r♦✉♥❞ ❦♥♦✇❧✲
❡❞❣❡✮ ✐s ❝♦♠♣♦s❡❞ ♦❢ ❤✐❡r❛r❝❤✐❡s ♦❢ ❝♦♥❝❡♣ts ❛♥❞ r❡❧❛t✐♦♥s✳ ❚❤❡s❡ ❤✐❡r❛r✲
❝❤✐❡s ❝❛♥ ❜❡ ✈✐s✉❛❧✐③❡❞ ❜② t❤❡✐r ❍❛ss❡ ❞✐❛❣r❛♠✱ t❤❡ ✉s✉❛❧ ✇❛② ♦❢ ❞r❛✇✐♥❣
❛ ♣❛rt✐❛❧ ♦r❞❡r✳

• ❆❧❧ ♦t❤❡r ❦✐♥❞s ♦❢ ❦♥♦✇❧❡❞❣❡ ❛r❡ ❜❛s❡❞ ♦♥ t❤❡ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❡♥t✐t✐❡s
❛♥❞ t❤❡✐r r❡❧❛t✐♦♥s❤✐♣s✳ ❚❤✐s r❡♣r❡s❡♥t❛t✐♦♥ ✐s ❡♥❝♦❞❡❞ ❜② ❛ ❧❛❜❡❧❧❡❞ ❣r❛♣❤✱
✇✐t❤ t✇♦ ❦✐♥❞s ♦❢ ♥♦❞❡s✱ r❡s♣❡❝t✐✈❡❧② ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❡♥t✐t✐❡s ❛♥❞ r❡❧❛✲
t✐♦♥s✳ ❊❞❣❡s ❧✐♥❦ ❡♥t✐t② ♥♦❞❡s t♦ r❡❧❛t✐♦♥ ♥♦❞❡s✳ ❚❤❡s❡ ♥♦❞❡s ❛r❡ ❧❛❜❡❧❧❡❞
❜② ❡❧❡♠❡♥ts ✐♥ t❤❡ ✈♦❝❛❜✉❧❛r②✳

❚❤❡s❡ ❣r❛♣❤s ❤❛✈❡ ❛ s❡♠❛♥t✐❝s ✐♥ ✜rst✲♦r❞❡r ❧♦❣✐❝ ✭❋❖▲✮✱ ✐✳❡✳✱ ❛ ❦♥♦✇❧❡❞❣❡
❜❛s❡ ❝❛♥ ❜❡ tr❛♥s❧❛t❡❞ ✐♥t♦ ❛ s❡t ♦❢ ✜rst✲♦r❞❡r ❧♦❣✐❝❛❧ ❢♦r♠✉❧❛s✳ ❘❡❛s♦♥✐♥❣ t❛s❦s
♦♣❡r❛t❡ ❞✐r❡❝t❧② ♦♥ t❤❡ ❦♥♦✇❧❡❞❣❡ ❞❡✜♥❡❞ ❜② t❤❡ ✉s❡r ❛♥❞ ♥♦t ♦♥ t❤❡✐r tr❛♥s❧❛✲
t✐♦♥ ✐♥t♦ ❧♦❣✐❝❛❧ ❢♦r♠✉❧❛s✳ ❚❤✐s ✐s ❞♦♥❡ ❜② t❤❡ ♠❡❛♥s ♦❢ ❧❛❜❡❧❧❡❞ ❤♦♠♦♠♦r♣❤✐s♠
❜❡t✇❡❡♥ t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ❣r❛♣❤ ❛♥❞ t❤❡ q✉❡r② ❣r❛♣❤✳ ❙t❛t❡❞ ✐♥ ❛♥ ♦t❤❡r
✇❛②✱ t❤❡ ❧♦❣✐❝❛❧ s❡♠❛♥t✐❝s ✐s ♦♥❧② ✉s❡❞ t♦ ❢♦r♠❛❧❧② ❣r♦✉♥❞ t❤❡ ❣r❛♣❤ ♠♦❞❡❧✱ ✐✳❡✳✱
r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ♠❡❝❤❛♥✐s♠s✳ ❚❤✐s ♠❛❦❡s ✐t ♣♦ss✐❜❧❡ t♦ ❡①♣❧❛✐♥
r❡❛s♦♥✐♥❣ t♦ t❤❡ ❡♥❞✲✉s❡r ❜❡❝❛✉s❡ ✐t ❝❛♥ ❜❡ ✈✐s✉❛❧✐③❡❞ ✐♥ ❛ ♥❛t✉r❛❧ ✇❛② ♦♥ t❤❡
♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡ ❤❡✴s❤❡ ✐s ❢❛♠✐❧✐❛r ✇✐t❤✳ ❲♦✉❧❞ ❛ ❧♦❣✐❝❛❧ ♣r♦✈❡r ❜❡ ✉s❡❞
♦♥ t❤❡ ❧♦❣✐❝❛❧ tr❛♥s❧❛t✐♦♥ ♦❢ t❤❡s❡ ♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡ t♦ ❝♦♠♣✉t❡ r❡❛s♦♥✐♥❣✱
r❡❛s♦♥✐♥❣ ✇♦✉❧❞ ❜❡❝♦♠❡ ❛ ❜❧❛❝❦ ❜♦① ❢♦r t❤❡ ✉s❡r ❛♥❞ ❝♦✉❧❞ ♥♦t ❜❡ ❡①♣❧❛✐♥❡❞✳ ■♥
t❤❡ ●r❛♣❤■❑ ❣r♦✉♣ t❤❡ ❈♦❣✉✐ t♦♦❧ ❤❛s ❜❡❡♥ ❞❡✈❡❧♦♣❡❞✿ ❛ ❣r❛♣❤ ❜❛s❡❞ ❦♥♦✇❧✲
❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ❡❞✐t♦r ✐♠♣❧❡♠❡♥t✐♥❣ t❤❡ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s
♠♦❞❡❧✳

■♥ t❤❡ ♣❛♣❡r ✏❱✐s✉❛❧ ❘❡❛s♦♥✐♥❣ ✇✐t❤ ●r❛♣❤✲❜❛s❡❞ ▼❡❝❤❛♥✐s♠s✿ t❤❡
●♦♦❞✱ t❤❡ ❇❡tt❡r ❛♥❞ t❤❡ ❇❡st✑ ❜② ▼✐❝❤❡❧ ❈❤❡✐♥✱ ▼❛r✐❡✲▲❛✉r❡ ▼✉❣✲
♥✐❡r ❛♥❞ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❬✶✼❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✮ ✇❡ s❤♦✇
t❤❡ ♠❛✐♥ ❝♦♥str✉❝ts ♦❢ t❤✐s ❧❛♥❣✉❛❣❡ ❛♥❞ t❤❡ ❧❛❜❡❧❧❡❞ ❣r❛♣❤ ❤♦♠♦✲
♠♦r♣❤✐s♠ ♦♣❡r❛t✐♦♥ t❤❛t ❛❧❧♦✇s t♦ r❡❛s♦♥ ✇✐t❤ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✳
❲❡ ✐❧❧✉str❛t❡ t❤❡s❡ ♦♣❡r❛t✐♦♥s ♦♥ ❛♥ ❛♥♥♦t❛t✐♦♥ ❛♣♣❧✐❝❛t✐♦♥ ❛♥❞ ✉s❡
❈♦❣✉✐ ✐♥ ♦r❞❡r t♦ ❞❡♣✐❝t t❤❡ ❣r❛♣❤s ❛♥❞ ✐❧❧✉str❛t❡ t❤❡ ♣r❛❝t✐❝❛❧ ❛❞❞❡❞
✈❛❧✉❡ ♦❢ ✉s✐♥❣ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✳

■♥ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ✭❑❇✮✱ t❤❡ ♦♣❡♥ ✇♦r❧❞ ❛ss✉♠♣t✐♦♥ ❛♥❞ t❤❡ ❛❜✐❧✐t② t♦
❡①♣r❡ss ✈❛r✐❛❜❧❡s ♠❛② ❧❡❛❞ t♦ ❛♥ ❛♥s✇❡r r❡❞✉♥❞❛♥❝② ♣r♦❜❧❡♠✳ ❚❤✐s ♣r♦❜❧❡♠ ♦❝✲

✶✺

❝✉rs ✇❤❡♥ t❤❡ r❡t✉r♥❡❞ ❛♥s✇❡rs ❛r❡ ❝♦♠♣❛r❛❜❧❡✳ ■♥ ❝♦❧❧❛❜♦r❛t✐♦♥ ✇✐t❤ ▼✐❝❤❡❧
▲❡❝❧❡r❡ ❛♥❞ ◆✐❝♦❧❛s ▼♦r❡❛✉ ✇❡ ❞❡✜♥❡❞ ❛ ❢r❛♠❡✇♦r❦ t♦ ❞✐st✐♥❣✉✐s❤ ❛♠♦♥❣st ❛♥✲
s✇❡rs✳ ❖✉r ♠❡t❤♦❞ ✐s ❜❛s❡❞ ♦♥ ❛❞❞✐♥❣ ❝♦♥t❡①t✉❛❧ ❦♥♦✇❧❡❞❣❡ ❡①tr❛❝t❡❞ ❢r♦♠ t❤❡
❑❇ t❤❛t ❛❧❧♦✇s ❝❧❛r✐✜❝❛t✐♦♥ ♦❢ t❤❡ ♥♦t✐♦♥ ♦❢ r❡❞✉♥❞❛♥❝② ❜❡t✇❡❡♥ ❛♥s✇❡rs✳ ❖✉r
✇♦r❦ ✇❛s ❞♦♥❡ ✐♥ ❛ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s s❡tt✐♥❣ ❛♥❞ ✇❡ ♣r♦✈✐❞❡❞ ❛ ❞❡✜♥✐t✐♦♥ ❢♦r
t❤❡ s❡t ♦❢ ❛♥s✇❡rs t♦ ❜❡ ❝♦♠♣✉t❡❞ ❢r♦♠ ❛ q✉❡r②✱ ✇❤✐❝❤ ❡♥s✉r❡s ❜♦t❤ ♣r♦♣❡rt✐❡s
♦❢ ♥♦♥✲r❡❞✉♥❞❛♥❝② ❛♥❞ ❝♦♠♣❧❡t❡♥❡ss✳ ❆ s♣❡❝✐❛❧ ❝❛s❡ ♦❢ t❤✐s ♣r♦❜❧❡♠ ✭✇❤❡♥ t❤❡
❛♥s✇❡r ✐s ❛ ❝♦♥❝❡♣t ♥♦❞❡✮ ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ♣r♦❜❧❡♠ ♦❢ ●❡♥❡r❛t✐♦♥ ♦❢ ❘❡❢❡rr✐♥❣
❊①♣r❡ss✐♦♥s ✭●❘❊✮ st✉❞✐❡❞ ✐♥ t❤❡ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❝♦♥t❡①t ✐♥ ❬✷✼❪✱ ❡①t❡♥❞❡❞
✐♥ t❤✐s q✉❡r② ❛♥s✇❡r✐♥❣ s❡tt✐♥❣✳

■♥ t❤❡ ♣❛♣❡r ✏❉✐st✐♥❣✉✐s❤✐♥❣ ❆♥s✇❡rs ✐♥ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤ ❑♥♦✇❧✲
❡❞❣❡ ❇❛s❡s✑ ❜② ◆✐❝♦❧❛s ▼♦r❡❛✉✱ ▼✐❝❤❡❧ ▲❡❝❧❡r❡✱ ❛♥❞ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉
❬✹✻❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r✺✮ ✇❡ ❛❞❞r❡ss t❤❡ ♣r♦❜❧❡♠ ♦❢ q✉❡r② ❛♥s✇❡rs
✐❞❡♥t✐✜❝❛t✐♦♥✳

▲❡t ✉s ♠❡♥t✐♦♥ t❤❛t t❤❡ ❘❉❋ ✭❘❡s♦✉r❝❡ ❉❡s❝r✐♣t✐♦♥ ❋r❛♠❡✇♦r❦✮ ✶ q✉❡r②
❧❛♥❣✉❛❣❡ ❙P❆❘◗▲ ♦✛❡rs ❛ ✇❛② t♦ ❞❡s❝r✐❜❡ ❛♥s✇❡rs ✭❜② t❤❡ ❉❊❙❈❘■❇❊ ♣r✐♠✲
✐t✐✈❡✮ ❜✉t t❤✐s ✐s ♥♦t ❞♦♥❡ ❛❝❝♦r❞✐♥❣ t♦ s❡♠❛♥t✐❝❛❧❧② s♦✉♥❞ s②♥t❛❝t✐❝ ❝r✐t❡r✐❛✳
▼♦r❡ ❣❡♥❡r❛❧❧② ❘❉❋ ✐s ❝❧♦s❡ t♦ ♦✉r ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❢r❛♠❡✇♦r❦✳ ❘❉❋ ❤❛s
❛ ❣r❛♣❤✲❜❛s❡❞ r❡♣r❡s❡♥t❛t✐♦♥✱ ✐t ✐s ♣r♦✈✐❞❡❞ ✇✐t❤ ❛ ❢♦r♠❛❧ s❡♠❛♥t✐❝s ❛♥❞ ❛♥
❛ss♦❝✐❛t❡❞ ❡♥t❛✐❧♠❡♥t ♥♦t✐♦♥ ✭❬✸✻❪✱ ❬✸✼❪✮✱ ❜✉t ✐t ❞♦❡s ♥♦t ❝♦♠❡ ✇✐t❤ ❛♥ ❡✛❡❝t✐✈❡
r❡❛s♦♥✐♥❣ ♠❡❝❤❛♥✐s♠✱ ❡✈❡♥ ❧❡ss ✇✐t❤ ❛ ❣r❛♣❤✲❜❛s❡❞ ♠❡❝❤❛♥✐s♠ t❤❛t ✇♦✉❧❞ ♦♣✲
❡r❛t❡ ♦♥ t❤❡ ❣r❛♣❤ r❡♣r❡s❡♥t❛t✐♦♥✳ ■t ✐s ✇♦rt❤ ♠❡♥t✐♦♥✐♥❣ ❛t t❤✐s ♣♦✐♥t t❤❛t ❛
tr❛♥s❧❛t✐♦♥ ❢r♦♠ ❘❉❋ t♦ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❤❛s ❜❡❡♥ ✐♥✈❡st✐❣❛t❡❞ ✐♥ ❬✼❪ ❛♥❞
✐♠♣❧❡♠❡♥t❡❞ ✐♥ ❈♦❣✉✐✳ ❚❤✐s ✇♦r❦ ❤❛s ❜❡❡♥ t❛❦❡♥ ❢✉rt❤❡r ❛♥❞✱ s✐♥❝❡ t❤❡ ❧♦❣✐✲
❝❛❧ s✉❜s❡t r❡♣r❡s❡♥t❡❞ ❜② ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❛♥❞ ❘❉❋✭❙✮ ♦✈❡r❧❛♣s✱ ❛ ❣❡♥❡r✐❝
❛♣♣r♦❛❝❤ t♦ ❑❘❘ ✇❛s ✐♥✈❡st✐❣❛t❡❞✳ ❚❤✐s ✐s ♣r❡s❡♥t❡❞ ✐♥ t❤❡ ♥❡①t ❙❡❝t✐♦♥ ✷✳✷✳✷✳

✷✳✷✳✷ ❚❤❡ ❆▲❆❙❑❆ P❧❛t❢♦r♠

❆ ♣r♦❜❧❡♠ ♣❛rt✐❝✉❧❛r❧② r❡❧❡✈❛♥t ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ♠✉❧t✐♣❧❡ ❞❛t❛✴♠❡t❛❞❛t❛ s♦✉r❝❡s
✐s q✉❡r②✐♥❣ ❤②❜r✐❞ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳ ■♥ ❛ ❤②❜r✐❞ ❦♥♦✇❧❡❞❣❡ ❜❛s❡✱ ❡❛❝❤ ❝♦♠♣♦✲
♥❡♥t ♠❛② ❤❛✈❡ ✐ts ♦✇♥ ❢♦r♠❛❧✐s♠ ❛♥❞ ✐ts ♦✇♥ r❡❛s♦♥✐♥❣ ♠❡❝❤❛♥✐s♠s✳ ❙❡✈❡r❛❧
❧❛♥❣✉❛❣❡s ❤❛✈❡ ❜❡❡♥ ♣r♦♣♦s❡❞ ✐♥ t❤❡ ❧✐t❡r❛t✉r❡ ✇❤❡r❡ t❤❡ ❧❛♥❣✉❛❣❡ ❡①♣r❡ss✐✈❡✲
♥❡ss ✴ tr❛❝t❛❜✐❧✐t② tr❛❞❡✲♦✛ ✐s ❥✉st✐✜❡❞ ❜② t❤❡ ♥❡❡❞s ♦❢ ❣✐✈❡♥ ❛♣♣❧✐❝❛t✐♦♥s✳ ■♥
❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝s✱ t❤❡ ♥❡❡❞ t♦ ❛♥s✇❡r ❝♦♥❥✉♥❝t✐✈❡ q✉❡r✐❡s ❤❛s ❧❡❞ t♦ t❤❡ ❞❡✜✲
♥✐t✐♦♥ ❛♥❞ st✉❞② ♦❢ ❧❡ss ❡①♣r❡ss✐✈❡ ❧❛♥❣✉❛❣❡s✱ s✉❝❤ ❛s t❤❡ EL ❬✻❪ ❛♥❞ ❉▲✲▲✐t❡
❢❛♠✐❧✐❡s ❬✶✸❪✳ Pr♦♣❡rt✐❡s ♦❢ t❤❡s❡ ❧❛♥❣✉❛❣❡s ✇❡r❡ ✉s❡❞ t♦ ❞❡✜♥❡ ♣r♦✜❧❡s ♦❢ t❤❡
❙❡♠❛♥t✐❝ ❲❡❜ ❖❲▲ ✷ ❧❛♥❣✉❛❣❡ ✭✇✇✇✳✇✸✳♦r❣✴❚❘✴♦✇❧✲♦✈❡r✈✐❡✇✮✳

❲❤❡♥ t❤❡ ❛❜♦✈❡ ❧❛♥❣✉❛❣❡s ❛r❡ ✉s❡❞ ❜② r❡❛❧ ✇♦r❧❞ ❛♣♣❧✐❝❛t✐♦♥s✱ t❤❡② ❛r❡
❡♥❝♦❞❡❞ ✐♥ ❞✐✛❡r❡♥t ❞❛t❛ str✉❝t✉r❡s ✭❡✳❣✳ r❡❧❛t✐♦♥❛❧ ❞❛t❛❜❛s❡s✱ ❚r✐♣❧❡ ❙t♦r❡s✱
❣r❛♣❤ str✉❝t✉r❡s✮✳ ❏✉st✐✜❝❛t✐♦♥ ❢♦r ❞❛t❛ str✉❝t✉r❡ ❝❤♦✐❝❡s ✐♥❝❧✉❞❡ ✭✶✮ st♦r❛❣❡
s♣❡❡❞ ✭✐♠♣♦rt❛♥t ❢♦r ❡♥r✐❝❤✐♥❣ t❤❡ ❢❛❝ts ✇✐t❤ t❤❡ ♦♥t♦❧♦❣②✮ ❛♥❞ ✭✷✮ q✉❡r② ❡✣✲
❝✐❡♥❝②✳ ❚❤❡r❡❢♦r❡✱ ❞❡❝✐❞✐♥❣ ♦♥ ✇❤❛t ❞❛t❛ str✉❝t✉r❡ ✐s ❜❡st ❢♦r ♦♥❡✬s ❛♣♣❧✐❝❛t✐♦♥

✶❤tt♣✿✴✴✇✇✇✳✇✸✳♦r❣✴❚❘✴❘❊❈✲r❞❢✲s②♥t❛①✴

✶✻

✐s ❛ t❡❞✐♦✉s t❛s❦✳ ❲❤✐❧❡ st♦r✐♥❣ ❘❉❋✭❙✮ ❤❛s ❜❡❡♥ ✐♥✈❡st✐❣❛t❡❞ ❢r♦♠ ❛ ❞❛t❛❜❛s❡
✐♥s♣✐r❡❞ str✉❝t✉r❡ ❬✸✺❪✱ ♦t❤❡r ❧♦❣✐❝❛❧ ❧❛♥❣✉❛❣❡s ❞✐❞ ♥♦t ❤❛✈❡ t❤❡ s❛♠❡ ♣r✐✈✐❧❡❣❡✳
❊✈❡♥ ❘❉❋✭❙✮✱ ♦❢t❡♥ s❡❡♥ ❛s ❛ ❣r❛♣❤✱ ❤❛s ♥♦t ❜❡❡♥ t❤♦r♦✉❣❤❧② ✐♥✈❡st✐❣❛t❡❞ ❢r♦♠
❛ ❖❉❇❆ ♣❡rs♣❡❝t✐✈❡ ✇✳r✳t✳ ❣r❛♣❤ str✉❝t✉r❡s ❛♥❞ ❡♠❡r❣❡♥❝❡ ♦❢ ❣r❛♣❤ ❞❛t❛❜❛s❡s
✐♥ t❤❡ ◆♦❙◗▲ ✇♦r❧❞✳

❆▲❆❙❑❆ ✭❛❝r♦♥②♠ st❛♥❞s ❢♦r ❆❜str❛❝t ❛♥❞ ▲♦❣✐❝✲❜❛s❡❞ ❆r❝❤✐t❡❝t✉r❡ ❢♦r
❙t♦r❛❣❡ s②st❡♠s ❛♥❞ ❑♥♦✇❧❡❞❣❡ ❜❛s❡s ❆♥❛❧②s✐s✮ ✐s ❛ ❏❛✈❛ ❧✐❜r❛r② ❞❡❞✐❝❛t❡❞ t♦
t❤❡ st♦r❛❣❡ ❛♥❞ q✉❡r②✐♥❣ ♦❢ ❧❛r❣❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳ ■t ✐♥t❡♥❞s t♦ ❜❡ t❤❡ ❢♦✉♥❞❛✲
t✐♦♥ ❧❛②❡r ♦❢ ♦✉r ❖❇❉❆ ✭❖♥t♦❧♦❣② ❇❛s❡❞ ❉❛t❛ ❆❝❝❡ss✮ s♦❢t✇❛r❡ ❞❡✈❡❧♦♣♠❡♥ts✳
❆▲❆❙❑❆ ❤❛s ❜❡❡♥ ❜✉✐❧t✱ ✜rst ❛s ♣❛rt ♦❢ ❛ ▼❛st❡rs t❤❡s✐s✱ ❛♥❞ t❤❡♥
♣❛rt ♦❢ t❤❡ P❤❉ ♦❢ ❇r✉♥♦ P❛✐✈❛ ▲✐♠❛ ❞❛ ❙✐❧✈❛ ✭❝♦✲s✉♣❡r✈✐s❡❞ ✇✐t❤
❏✳✲❋✳ ❇❛❣❡t✮✳

❚❤❡ ❆▲❆❙❑❆ ❝♦r❡ ✭❞❛t❛ str✉❝t✉r❡s ❛♥❞ ❢✉♥❝t✐♦♥s✮ ✐s ✇r✐tt❡♥ ✐♥❞❡♣❡♥❞❡♥t❧②
♦❢ ❛♥② ❧❛♥❣✉❛❣❡ ✉s❡❞ ❜② st♦r❛❣❡ s②st❡♠s ✐t ✇✐❧❧ ❛❝❝❡ss✳ ❚❤❡ ❛❞✈❛♥t❛❣❡ ♦❢ ✉s✐♥❣
❛ s✉❜s❡t ♦❢ ❋✐rst ❖r❞❡r ▲♦❣✐❝ t♦ ♠❛✐♥t❛✐♥ t❤✐s ❣❡♥❡r✐❝✐t② ✐s t♦ ❜❡ ❛❜❧❡ t♦ ❛❝❝❡ss
❛♥❞ r❡tr✐❡✈❡ ❞❛t❛ st♦r❡❞ ✐♥ ❛♥② s②st❡♠ ❜② t❤❡ ♠❡❛♥s ♦❢ ❛ ❧♦❣✐❝❛❧❧② s♦✉♥❞ ❝♦♠✲
♠♦♥ ❞❛t❛ str✉❝t✉r❡✳ ▲♦❝❛❧ ❡♥❝♦❞✐♥❣s ✇✐❧❧ ❜❡ tr❛♥s❢♦r♠❡❞ ❛♥❞ tr❛♥s❧❛t❡❞ ✐♥t♦
❛♥② ♦t❤❡r r❡♣r❡s❡♥t❛t✐♦♥ ❧❛♥❣✉❛❣❡ ❛t ❛♥② t✐♠❡✳ ❇❛s✐❝❛❧❧②✱ t❤❡ ❛❜str❛❝t ❧❛②❡r ♦❢
❆▲❆❙❑❆ ✐s ❛ ❧♦❣✐❝❛❧ ❧❛②❡r✳ ❙t♦r❛❣❡ s②st❡♠s ❛r❡ ✉s❡❞ t♦ st♦r❡ ❞❛t❛ t❤❛t ❝❛♥ ❜❡
s❡❡♥ ❛s s❡ts ♦❢ ❧♦❣✐❝❛❧ ❛t♦♠s✳ ❲r❛♣♣❡rs ❛r❡ ✉s❡❞ t♦ ❡♥❝♦❞❡ t❤✐s ❛t♦♠ ❛❝❝♦r❞✐♥❣
t♦ t❤❡ st♦r❛❣❡ s②st❡♠ ♣❛r❛❞✐❣♠✳ ❲❤❛t❡✈❡r t❤✐s st♦r❛❣❡ s②st❡♠✱ ❆▲❆❙❑❆ ♦♥❧②
r❡❛❞s ❛♥❞ ✇r✐t❡s ❛t♦♠s ♦r s❡ts ♦❢ ❛t♦♠s✳

❚❤✐s ❛❜str❛❝t ❧❛②❡r ✐s ♥♦t ♦♥❧② ✉s❡❞ t♦ r❡❛❞ ❛♥❞ ✇r✐t❡ ✐♥ ❛♥ ✉♥✐❢♦r♠ ♠❛♥♥❡r
✐♥t♦ ✈❛r✐♦✉s st♦r❛❣❡ s②st❡♠s✱ ❜✉t ❛❧s♦ t♦ ♣r♦❝❡ss q✉❡r✐❡s✳ ❆ ❝♦♥❥✉♥❝t✐✈❡ q✉❡r②
❝❛♥ ❛❧s♦ ❜❡ s❡❡♥ ❛s ❛ s❡t ♦❢ ❛t♦♠s✳ ❆▲❆❙❑❆ ✐s ❛❜❧❡ t♦ tr❛♥s❢♦r♠ t❤❡♠ ✐♥t♦✱ ❢♦r
❡①❛♠♣❧❡✱ ❙◗▲ ♦r ❙P❆❘◗▲ q✉❡r✐❡s✱ t♦ ❜❡♥❡✜t ❢r♦♠ t❤❡ ♥❛t✐✈❡ q✉❡r②✐♥❣ ♠❡❝❤✲
❛♥✐s♠ ♦❢ s♣❡❝✐✜❝ st♦r❛❣❡ s②st❡♠s✳ ▼♦r❡♦✈❡r✱ ❛ ❣❡♥❡r✐❝ ❜❛❝❦tr❛❝❦✐♥❣ ❛❧❣♦r✐t❤♠
❤❛s ❜❡❡♥ ❞❡s✐❣♥❡❞✱ t❤❛t ❛❧❧♦✇s t♦ ♣r♦❝❡ss t❤❡s❡ q✉❡r✐❡s ♦♥ ❛♥② ♦❢ t❤❡s❡ st♦r❛❣❡
s②st❡♠s✳ ❚❤✐s ❜❛❝❦tr❛❝❦ r❡❧✐❡s ✉♣♦♥ ❡❧❡♠❡♥t❛r② q✉❡r✐❡s✱ t❤❛t ❝❤❡❝❦ ✇❤❡t❤❡r ♦r
♥♦t ❛ ❣r♦✉♥❞❡❞ ❛t♦♠ ✐s st♦r❡❞ ✐♥ t❤❡ s②st❡♠✱ ♦r ❡♥✉♠❡r❛t❡ ❛❧❧ ❛t♦♠s t❤❛t s♣❡✲
❝✐❛❧✐③❡ ❛ ❣✐✈❡♥ ♦♥❡✳ ❚❤✐s ❜❛❝❦tr❛❝❦ ❞♦❡s ♥♦t ✐♥❝♦r♣♦r❛t❡ ♣♦✇❡r❢✉❧ ♦♣t✐♠✐③❛t✐♦♥s
❛♥❞ ♣r✉♥✐♥❣ ❢❡❛t✉r❡s✱ s✐♥❝❡ ✐t ✐s ❞❡s✐❣♥❡❞ t♦ ♣r♦❝❡ss s✐♠♣❧❡ q✉❡r✐❡s✳

■♥ t❤❡ ♣❛♣❡r ✏❆▲❆❙❑❆ ❢♦r ❖♥t♦❧♦❣② ❇❛s❡❞ ❉❛t❛ ❆❝❝❡ss✑ ❜② ❏❡❛♥✲
❋r❛♥❝♦✐s ❇❛❣❡t✱ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❛♥❞ ❇r✉♥♦ P❛✐✈❛ ▲✐♠❛ ❞❛ ❙✐❧✈❛
❬✽❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✮ ✇❡ ❣✐✈❡ ❛ ❞❡♠♦♥str❛t✐♦♥ ♦❢ t❤❡ ❆▲❆❙❑❆
❛r❝❤✐t❡❝t✉r❡✳

✷✳✸ ❘❡s♦✉r❝❡ ❆❧❧♦❝❛t✐♦♥ ❛♥❞ ●r❛♣❤s

❘❡♣r❡s❡♥t✐♥❣ ❛❣❡♥t ♣r❡❢❡r❡♥❝❡s ✐s ❛♥♦t❤❡r ✇❛② ❢♦r ❡❧✐❝✐t✐♥❣ ❛♥ ❛❣❡♥t✬s ❦♥♦✇❧✲
❡❞❣❡✳ ❚❤✐s ❝❛♥ ❜❡ ❢✉rt❤❡r ✉s❡❞ ✐♥ ❛r❣✉♠❡♥t❛t✐♦♥ ♦r ♥♦r♠❛t✐✈❡ s②st❡♠s ✭s❡❡
❙❡❝t✐♦♥ ✷✳✹✮✳ ❆ ♣r❡❢❡r❡♥❝❡ ✐s ❞❡✜♥❡❞ ❛s ❛ ❢✉♥❝t✐♦♥ ❢r♦♠ ❛❧❧ t❤❡ s✉❜s❡ts ♦❢ t❤❡ s❡t
♦❢ r❡s♦✉r❝❡s ✴ ❣♦❛❧s ✴ ♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡ ♦✈❡r ✇❤✐❝❤ t❤❡ ❛❣❡♥t ✐s ❡①♣r❡ss✐♥❣ ✐ts
♣r❡❢❡r❡♥❝❡s ✐♥t♦ ❛ s❡t ♦❢ ✈❛❧✉❡s✳ ■❢ t❤❡ ✈❛❧✉❡s ❛r❡ ❣✐✈❡♥ ♥✉♠❡r✐❝❛❧❧②✱ t❤❡ ♦r❞❡r r❡✲

✶✼

❧❛t✐♦♥ ♦✈❡r ♣r❡❢❡r❡♥❝❡s ✐s t♦t❛❧✳ ■❢ t❤❡ ✈❛❧✉❡s ❛r❡ ♥♦t ♥✉♠❡r✐❝✱ t❤❡ ✭♣❛rt✐❛❧✮ ♦r❞❡r
r❡❧❛t✐♦♥ ♦✈❡r ♣r❡❢❡r❡♥❝❡s ❛❧s♦ ❤❛s t♦ ❜❡ ♣r♦✈✐❞❡❞✳ ❚❤❡ ❛❧❧♦❝❛t✐♦♥ ♦❢ r❡s♦✉r❝❡s ✇✐❧❧
t❤❡♥ ♠❛①✐♠✐s❡ t❤❡ ❛❣❣r❡❣❛t❡❞ ♣r❡❢❡r❡♥❝❡s ♦❢ t❤❡ ❛❣❡♥ts✳ ❚❤❡ ▼✉❧t✐ ❆❣❡♥t ❘❡✲
s♦✉r❝❡ ❆❧❧♦❝❛t✐♦♥ ✭▼❆❘❆✮ s❡tt✐♥❣ ❤❛s ♥✉♠❡r♦✉s ❛♣♣❧✐❝❛t✐♦♥s ✐♥ ▼✉❧t✐✲❆❣❡♥ts
❙②st❡♠s✱ ♥♦t❛❜❧② ❢♦r ❈♦♠❜✐♥❛t♦r✐❛❧ ❆✉❝t✐♦♥s ❛♥❞ ❈♦❛❧✐t✐♦♥ ❋♦r♠❛t✐♦♥✳

❈♦♠❜✐♥❛t♦r✐❛❧ ❛✉❝t✐♦♥s ✭❈❆s✮ ❝❛♥ ❜❡ ✈✐❡✇❡❞ ❛s ❛ ♠❡t❤♦❞ ♦❢ ❛❧❧♦❝❛t✐♥❣ ♠✉❧✲
t✐♣❧❡ ❤❡t❡r♦❣❡♥❡♦✉s ❣♦♦❞s ❛♠♦♥❣ ❛ ♥✉♠❜❡r ♦❢ ✐♥❞✐✈✐❞✉❛❧s✱ ❡❛❝❤ ♦❢ ✇❤♦♠ ❝❛♥
♦❜t❛✐♥ ♥♦t ♦♥❡ ❜✉t ❛ ❜✉♥❞❧❡ ♦❢ ❣♦♦❞s✳ ❇✐❞❞✐♥❣ ✐s t❤❡ ♣r♦❝❡ss ♦❢ tr❛♥s♠✐t✲
t✐♥❣ ♦♥❡✬s ✈❛❧✉❛t✐♦♥ ❢✉♥❝t✐♦♥ ♦✈❡r t❤❡ s❡t ♦❢ ❣♦♦❞s ♦♥ ♦✛❡r t♦ t❤❡ ❛✉❝t✐♦♥❡❡r✳
❚❤❡ ❝♦♠♠✉♥✐❝❛t✐♦♥ ❧❛♥❣✉❛❣❡ ✐s ❝❛❧❧❡❞ ❛ ❜✐❞❞✐♥❣ ❧❛♥❣✉❛❣❡ ❛♥❞ ✐t ♣❧❛②s ❛ ❦❡②
r♦❧❡ ✐♥ ❜♦t❤ ❝❡♥tr❛❧ ❛s♣❡❝ts ♦❢ t❤❡ ❛❧❧♦❝❛t✐♦♥ ♣r♦❜❧❡♠✿ ♣r❡❢❡r❡♥❝❡ ❡❧✐❝✐t❛t✐♦♥ ❛♥❞
✇✐♥♥❡r✲❞❡t❡r♠✐♥❛t✐♦♥ ✭❲❉✮✳ ❙❡✈❡r❛❧ ❜✐❞❞✐♥❣ ❧❛♥❣✉❛❣❡s ❢♦r ❈❆s ❤❛✈❡ ♣r❡✈✐♦✉s❧②
❜❡❡♥ ♣r♦♣♦s❡❞✱ ❛r❣✉❛❜❧② t❤❡ ♠♦st ❝♦♠♣❡❧❧✐♥❣ ♦❢ ✇❤✐❝❤ ❛❧❧♦✇ ❜✐❞❞❡rs t♦ ❡①♣❧✐❝✲
✐t❧② r❡♣r❡s❡♥t t❤❡ ❧♦❣✐❝❛❧ str✉❝t✉r❡ ♦❢ t❤❡✐r ✈❛❧✉❛t✐♦♥ ♦✈❡r ❣♦♦❞s ✈✐❛ st❛♥❞❛r❞
❧♦❣✐❝❛❧ ♦♣❡r❛t♦rs ✭❡✳❣✳✱ ❬✹✼❪✮✳

❲❡ ♣r♦♣♦s❡❞ ✐♥ ❬✷✵❪ ❛ ✈✐s✉❛❧ ♣❛r❛❞✐❣♠ ❢♦r r❡♣r❡s❡♥t✐♥❣ ❜✐❞❞✐♥❣ ❧❛♥❣✉❛❣❡s
❢♦r ❝♦♠❜✐♥❛t♦r✐❛❧ ❛✉❝t✐♦♥s ❜❛s❡❞ ♦♥ ❣❡♥❡r❛❧✐s❡❞ ♥❡t✇♦r❦ ✢♦✇s ✭✉s❡❞ t♦ r❡♣r❡s❡♥t
t❤❡ ❜✐❞s✮ ❛♥❞✱ t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ t❤❡ ❲❉ ❛s ❛ ❢❛✐r ❛❣❣r❡❣❛t✐♦♥ ♦❢ ✐♥❞✐✈✐❞✉❛❧
♣r❡❢❡r❡♥❝❡s ♠❛❦✐♥❣ ✉s❡ ♦❢ ♠❛① ✢♦✇ ❛❧❣♦r✐t❤♠s✳ ❖✉r ✇♦r❦ ♦♥ ❝♦♠❜✐♥❛t♦r✐❛❧
❛✉❝t✐♦♥s ❧❡❞ ♠❡ t♦ t❛❦❡ ❛♥ ✐♥t❡r❡st ✐♥ ❛ ✈❡r② ❝❧♦s❡❧② r❡❧❛t❡❞ ✜❡❧❞✿ ❝♦❛❧✐t✐♦♥❛❧
❣❛♠❡s✳

❈♦❛❧✐t✐♦♥❛❧ ❣❛♠❡s ❛r❡ t❤❡♦r❡t✐❝❛❧ ❝♦♥str✉❝ts t❤❛t ❝❛♣t✉r❡ ♦♣♣♦rt✉♥✐t✐❡s ❢♦r
❝♦♦♣❡r❛t✐♦♥ ❜② ❡①♣❧✐❝✐t❧② ❛❧❧♦✇✐♥❣ ❛❣❡♥ts t♦ t❛❦❡ ❥♦✐♥t ❛❝t✐♦♥s ❛s ♣r✐♠✐t✐✈❡s ❬✹✵❪✳
❖♥❡ ♦❢ t❤❡ ❦❡② ✐ss✉❡s ✐♥ ♠✉❧t✐✲❛❣❡♥t ❝♦❛❧✐t✐♦♥ ❢♦r♠❛t✐♦♥ ✐s t❤❡ ❈♦❛❧✐t✐♦♥ ❙tr✉❝✲
t✉r❡ ●❡♥❡r❛t✐♦♥ ✭❈❙●✮ ♣r♦❜❧❡♠✱ ✇❤✐❝❤ ✐♥✈♦❧✈❡s ❞✐✈✐❞✐♥❣ t❤❡ s❡t ♦❢ ❛❣❡♥ts ✐♥t♦
s✉❜s❡ts ✭✐✳❡✳✱ ❝♦❛❧✐t✐♦♥s✮ s♦ t❤❛t t❤❡ ♦✈❡r❛❧❧ ❡✣❝✐❡♥❝② ♦❢ t❤❡ s②st❡♠ ✐s ♠❛①✐♠✐s❡❞✳
❙✉❝❤ ❛ ❞✐✈✐s✐♦♥ ✐s r❡❢❡rr❡❞ t♦ ❛s ❛ ❝♦❛❧✐t✐♦♥ str✉❝t✉r❡✳ ❚❤✐s ♣r♦❜❧❡♠✱ ✇❤✐❝❤ ✐s
❡①tr❡♠❡❧② ❝❤❛❧❧❡♥❣✐♥❣ ❞✉❡ t♦ t❤❡ ❡①♣♦♥❡♥t✐❛❧ s✐③❡ ♦❢ t❤❡ s❡❛r❝❤ s♣❛❝❡✱ ❤❛s r❡✲
❝❡♥t❧② ❛ttr❛❝t❡❞ ❝♦♥s✐❞❡r❛❜❧❡ ❛tt❡♥t✐♦♥ ✐♥ t❤❡ ▼✉❧t✐✲❆❣❡♥ts ❙②st❡♠ ❧✐t❡r❛t✉r❡
❬✺✹✱ ✺✷✱ ✺✶❪✳ ■t ✐s t②♣✐❝❛❧❧② ❛ss✉♠❡❞ t❤❛t t❤❡ ❝♦❛❧✐t✐♦♥s ✇✐t❤✐♥ ❡✈❡r② ❝♦❛❧✐t✐♦♥
str✉❝t✉r❡ ❛r❡ ❞✐s❥♦✐♥t✱ ❛♥❞ t❤❛t t❤❡② ❝♦✈❡r t❤❡ ❡♥t✐r❡ s❡t ♦❢ ❛❣❡♥ts✳ ▼♦r❡♦✈❡r✱
t❤❡ ✐♥♣✉t t♦ t❤❡ ♣r♦❜❧❡♠ ✐s t②♣✐❝❛❧❧② r❡♣r❡s❡♥t❡❞ ✉s✐♥❣ ❛ ❝❤❛r❛❝t❡r✐st✐❝ ❢✉♥❝t✐♦♥✱
✇❤✐❝❤ ❛ss✐❣♥s ❛ ✈❛❧✉❡ ❢♦r ❡✈❡r② ♣♦ss✐❜❧❡ ❝♦❛❧✐t✐♦♥✱ r❡♣r❡s❡♥t✐♥❣ ✐ts ♣❡r❢♦r♠❛♥❝❡✳

❚❤❡ s❛♠❡ ♥❡t✇♦r❦ ✢♦✇ ❜❛s❡❞ r❡♣r❡s❡♥t❛t✐♦♥ ✇❛s ✉s❡❞ ❛s t❤❡ ❜❛❝❦❜♦♥❡ t♦
❛ ●❡♥❡r❛❧✐s❡❞ ◆❡t✇♦r❦ ❋❧♦✇ r❡♣r❡s❡♥t❛t✐♦♥ ❢♦r ❈♦❛❧✐t✐♦♥ ●❛♠❡s ❛♥❞ ❣❛✈❡ t❤❡
❈❋✲◆❊❚s✳ ❙♣❡❝✐✜❝❛❧❧②✱ t❤✐s r❡♣r❡s❡♥t❛t✐♦♥ ✐s ❜❛s❡❞ ♦♥ t❤❡ ♦❜s❡r✈❛t✐♦♥ t❤❛t t❤❡
❝♦❛❧✐t✐♦♥ ❢♦r♠❛t✐♦♥ ♣r♦❝❡ss ❝❛♥ ❜❡ ✈✐❡✇❡❞ ❛s t❤❡ ♣r♦❜❧❡♠ ♦❢ ❞✐r❡❝t✐♥❣ t❤❡ ✢♦✇
t❤r♦✉❣❤ ❛ ♥❡t✇♦r❦ ✇❤❡r❡ ❡✈❡r② ❡❞❣❡ ❤❛s ❝❡rt❛✐♥ ❝❛♣❛❝✐t② ❝♦♥str❛✐♥ts✳ ❲❡ s❤♦✇
t❤❛t ♦✉r ♥❡✇ ✇❛② ♦❢ r❡♣r❡s❡♥t✐♥❣ t❤✐s ♣r♦❝❡ss ✐s ✐♥t✉✐t✐✈❡✱ ❢✉❧❧② ❡①♣r❡ss✐✈❡✱ ❛♥❞
❛❧❧♦✇s ❢♦r r❡♣r❡s❡♥t✐♥❣ ❝❡rt❛✐♥ ♣❛tt❡r♥s ✐♥ ❛ s✐❣♥✐✜❝❛♥t❧② ♠♦r❡ ❝♦♥❝✐s❡ ♠❛♥♥❡r
❝♦♠♣❛r❡❞ t♦ t❤❡ ❝♦♥✈❡♥t✐♦♥❛❧ ❛♣♣r♦❛❝❤✳

■♥ t❤❡ ♣❛♣❡r ✏❈♦❛❧✐t✐♦♥❛❧ ●❛♠❡s ✈✐❛ ◆❡t✇♦r❦ ❋❧♦✇s✑ ❜② ❚❛❧❛❧
❘❛❤✇❛♥✱ ❚r✐✲❉✉♥❣ ◆❣✉②❡♥✱ ❚♦♠❛s③ P✳ ▼✐❝❤❛❧❛❦✱ ▼❛r✐❛ P♦❧✉❦❛r♦✈✱
▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❛♥❞ ◆✐❝❤♦❧❛s ❘✳ ❏❡♥♥✐♥❣s ❬✺✸❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣✲

✶✽

t❡r ✺✮ ✇❡ s❤♦✇ t❤❛t ❈❋✲◆❊❚s ❤❛✈❡ t❤❡ ✢❡①✐❜✐❧✐t② t♦ r❡♣r❡s❡♥t ❝❤❛r❛❝✲
t❡r✐st✐❝ ❢✉♥❝t✐♦♥ ❣❛♠❡s✱ ❝♦❛❧✐t✐♦♥❛❧ ❣❛♠❡s ✇✐t❤ ♦✈❡r❧❛♣♣✐♥❣ ❝♦❛❧✐t✐♦♥s✱
❛♥❞ ❝♦❛❧✐t✐♦♥❛❧ ❣❛♠❡s ✇✐t❤ ✐❞❡♥t✐❝❛❧ ❛❣❡♥ts✳

✷✳✹ ❆r❣✉♠❡♥t❛t✐♦♥✱ ◆♦r♠s ❛♥❞ ●r❛♣❤s

❆s ❡①♣❧❛✐♥❡❞ ✐♥ ❙❡❝t✐♦♥✷✳✶✱ t❤❡ ❖♥t♦❧♦❣② ❇❛s❡❞ ❉❛t❛ ❆❝❝❡ss ✭❖❇❉❆✮ s❡tt✐♥❣
❝❛♥ ②✐❡❧❞ t♦ ❞❛t❛ ✐♥❝♦♥s✐st❡♥❝②✳ ❆r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② ✐s ❛ ✇❡❧❧✲❦♥♦✇♥ ♠❡t❤♦❞
❢♦r ❞❡❛❧✐♥❣ ✇✐t❤ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡✳ ▲♦❣✐❝✲❜❛s❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❝♦♥s✐❞❡rs
❝♦♥str✉❝t✐♥❣ ❛r❣✉♠❡♥ts ❢r♦♠ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✱ ✐❞❡♥t✐❢②✐♥❣ ❛tt❛❝❦s
❜❡t✇❡❡♥ t❤❡♠ ❛♥❞ s❡❧❡❝t✐♥❣ ❛❝❝❡♣t❛❜❧❡ ❛r❣✉♠❡♥ts ❛♥❞ t❤❡✐r ❝♦♥❝❧✉s✐♦♥s✳ ■♥ ♦r✲
❞❡r t♦ ❦♥♦✇ ✇❤✐❝❤ ❛r❣✉♠❡♥ts t♦ ❛❝❝❡♣t✱ ♦♥❡ ❛♣♣❧✐❡s ❛ ♣❛rt✐❝✉❧❛r ❛r❣✉♠❡♥t❛t✐♦♥
s❡♠❛♥t✐❝s✳

❲❤❡♥ ❛r❣✉✐♥❣ ❛❜♦✉t ❛ ❝♦✉rs❡ ♦❢ ❛❝t✐♦♥s t♦ ♣✉rs✉❡✱ ❛❣❡♥ts ❝❛♥ ✐♥tr♦❞✉❝❡ ❛
♠✉❧t✐t✉❞❡ ♦❢ ❛r❣✉♠❡♥ts ❛✐♠❡❞ ❛t s✉♣♣♦rt✐♥❣ t❤❡✐r ♣♦s✐t✐♦♥ ❛♥❞ ✉♥❞❡r♠✐♥✐♥❣
♦t❤❡r ♣♦ss✐❜❧❡ ✈✐❡✇s✳ ❲❤❡♥ r❡♣r❡s❡♥t❡❞ ✐♥ s♦♠❡ ✉♥❞❡r❧②✐♥❣ ❧♦❣✐❝✱ ❢♦r♠❛❧ ❛r❣✉✲
♠❡♥t❛t✐♦♥ t❤❡♦r② ♣r♦✈✐❞❡s t❤❡ t♦♦❧s t♦ r❡❛s♦♥ ❛❜♦✉t t❤❡s❡ ❛r❣✉♠❡♥ts✱ ❛❧❧♦✇✐♥❣
♦♥❡ t♦✱ ❢♦r ❡①❛♠♣❧❡✱ ✐❞❡♥t✐❢② ❛ ❝♦♥s✐st❡♥t s❡t ♦❢ ❛r❣✉♠❡♥ts ❛♥❞ t❤❡ ❝♦✉rs❡ ♦❢
❛❝t✐♦♥s t❤❡② ❛❞✈♦❝❛t❡✳ ❆ ❝♦r❡ q✉❡st✐♦♥ t❤❛t ❛r✐s❡s ✐s ✇❤❛t ❛r❣✉♠❡♥ts ❛♥ ❛❣❡♥t
s❤♦✉❧❞ ✉tt❡r ✐♥ ♦r❞❡r t♦ ❛❝❤✐❡✈❡ t❤❡s❡ ❣♦❛❧s✳ ❚❤✐s ❞✐❛❧♦❣✉❡ ♣❧❛♥♥✐♥❣ ♣r♦❜❧❡♠
✐s✱ ✐♥ ♠♦st ❝❛s❡s✱ ❝♦♠♣✉t❛t✐♦♥❛❧❧② ❝❤❛❧❧❡♥❣✐♥❣✱ ❛♥❞ ✇♦r❦ ♦♥ ❛r❣✉♠❡♥t str❛t✲
❡❣② ❬✸✱ ✹✶✱ ✹✽✱ ✺✺❪ ❤❛s ✐❞❡♥t✐✜❡❞ ❤❡✉r✐st✐❝s ✇❤✐❝❤ ❛r❡ ✉s❡❞ t♦ ❣✉✐❞❡ ❛♥ ❛❣❡♥t✬s
✉tt❡r❛♥❝❡s✳

■♥ ❬✷✷❪ ✇❡ s♦✉❣❤t t♦ ✉s❡ ❛ ❣r❛♣❤✲❜❛s❡❞ ♠❡t❤♦❞ t♦ ✐❞❡♥t✐❢② ❛❧❧ ❛r❣✉♠❡♥ts
t❤❛t ❛♥ ❛❣❡♥t ♠✉st ❛❞✈❛♥❝❡ ❛t ❛ s♣❡❝✐✜❝ ♣♦✐♥t ✐♥ t✐♠❡✳ ❚❤❡ s❛❧✐❡♥t ♣♦✐♥t
♦❢ ♦✉r ✇♦r❦ ✇❛s t❤❛t t❤❡ ❛r❣✉♠❡♥t str✉❝t✉r❡ ✇❛s tr❛♥s❧❛t❡❞ ✐♥t♦ ❛
♥❡t✇♦r❦ ✢♦✇ str✉❝t✉r❡✱ ❛♥❞ t❤❡♥ ✇❡ ❝♦✉❧❞ ✉t✐❧✐s❡ ❣r❛♣❤ ♦♣❡r❛t✐♦♥s
✭♠❛① ✢♦✇✮ ✐♥ ♦r❞❡r t♦ ❝❛❧❝✉❧❛t❡ t❤❡ ❛♣♣r♦♣r✐❛t❡ s❡t ♦❢ ❛r❣✉♠❡♥ts t♦
❛❞✈❛♥❝❡✳ ❚❤✐s ♣❛♣❡r✱ ✏■♥❢♦r♠❛t✐♦♥ ❘❡✈❡❧❛t✐♦♥ ❙tr❛t❡❣✐❡s ✐♥ ❆❜str❛❝t
❆r❣✉♠❡♥t ❋r❛♠❡✇♦r❦s ❯s✐♥❣ ●r❛♣❤ ❇❛s❡❞ ❘❡❛s♦♥✐♥❣✳✑ ❜② ▼❛❞❛❧✐♥❛
❈r♦✐t♦r✉ ❛♥❞ ◆✐r ❖r❡♥ ✐s ❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✳

❚❤❡ ❛r❣✉♠❡♥t❛t✐♦♥ ✇♦r❦ ❛❧s♦ ❧❡❞ ♠❡ t♦ ✐♥✈❡st✐❣❛t❡ ♥♦r♠❛t✐✈❡ s②st❡♠s✳ ❚❤❡
r❡❛s♦♥ ❢♦r ✐♥✈❡st✐❣❛t✐♥❣ ♥♦r♠s st❡♠♠❡❞ ❢r♦♠ t❤❡ ❢❛❝t t❤❛t s♦♠❡ ♦❢ t❤❡ ❛❣❡♥ts✬
❛r❣✉♠❡♥ts ❝♦✉❧❞ ❤❛✈❡ ❛ ❞✐✛❡r❡♥t ✐♠♣❛❝t r❛t❤❡r t❤❛♥ ♦t❤❡r ❛❣❡♥ts✳ ❚❤❡s❡ ❛❣❡♥ts
❝♦✉❧❞ ✐♠♣♦s❡ ♥♦r♠s ♦❢ ❜❡❤❛✈✐♦✉r ♦♥ ❛❧❧ ❛❣❡♥ts t❤❛t s❤♦✉❧❞ ❜❡ r❡s♣❡❝t❡❞✳ ■♥
♥♦r♠❛t✐✈❡ s②st❡♠s✱ t❤❡ ♥♦r♠s t♦ ❜❡ ❛❞❤❡r❡❞ ❜② ❛❧❧ ❛❣❡♥ts ❛r❡ r❡♣r❡s❡♥t❡❞ ✉s✲
✐♥❣ t✉♣❧❡s ♦❢ ❋✐rst ❖r❞❡r ▲♦❣✐❝ ❢♦r♠✉❧❛❡✳ ❚❤❡s❡ ♥♦r♠s ❛♣♣❧② ♦♥ ❛❧❧ ❛❣❡♥ts ❛♥❞
t❤❡ q✉❡st✐♦♥ ✐s✿ ❛t ❛ ❣✐✈❡♥ t✐♠❡ ❛♥❞ ❢♦r ❛ ❣✐✈❡♥ st❛t❡ ♦❢ t❤❡ ✇♦r❧❞ ✇❤❛t ♥♦r♠s
❛r❡ ✈✐♦❧❛t❡❞✳ ■♥ t❤❡ ♣❛♣❡r ✏●r❛♣❤✐❝❛❧ ♥♦r♠s ✈✐❛ ❝♦♥❝❡♣t✉❛❧ ❣r❛♣❤s✑
❜② ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉✱ ◆✐r ❖r❡♥✱ ❙✐♠♦♥ ▼✐❧❡s ❛♥❞ ▼✐❦❡ ▲✉❝❤ ❬✷✸❪
✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r✺✮ ✇❡ ❧♦♦❦❡❞ ✐♥t♦ r❡♣r❡s❡♥t✐♥❣ t❤❡ ♥♦r♠ str✉❝✲
t✉r❡ ✉s✐♥❣ ❛ ❣r❛♣❤✲❜❛s❡❞ ❑❘❘ ✇❤❡r❡ ♥♦r♠❛t✐✈❡ r❡❛s♦♥✐♥❣ ❝♦rr❡s♣♦♥❞s
t♦ ❣r❛♣❤✲❜❛s❡❞ ♦♣❡r❛t✐♦♥s ♦♥ t❤❡s❡ ❣r❛♣❤s✳ ❚❤✐s ✇♦r❦ ❤❛s ❜❡❡♥ ❡①✲
t❡♥❞❡❞ ❢♦r r❡❛s♦♥✐♥❣ ✇✐t❤ ❞✐✛❡r❡♥t ❦✐♥❞ ♦❢ ♥♦r♠s ✭♣❡r♠✐ss✐♦♥s✱ ♦❜❧✐✲

✶✾

❣❛t✐♦♥s✮✳

✷✳✺ ❘❡s♦✉r❝❡ ❆❧❧♦❝❛t✐♦♥ ❢♦r ◗✉❡r② ❆♥s✇❡r✐♥❣

❚❤❡ ❛ss✉♠♣t✐♦♥ ❜❡❤✐♥❞ s❡♠❛♥t✐❝ ❞❛t❛ ✐♥t❡❣r❛t✐♦♥ ❛♥❞ q✉❡r②✐♥❣ ✐s t❤❛t ❞✐✛❡r❡♥t
❛❣❡♥ts ❛❝❝❡ss✐♥❣ t❤❡ ✐♥t❡❣r❛t❡❞ ❞❛t❛ r❡♣♦s✐t♦r② ✇✐❧❧ ❤❛✈❡ ❡q✉❛❧ ✐♥t❡r❡st ✐♥ t❤❡
q✉❡r②✐♥❣ r❡s✉❧ts✳ ■♥ t❤❡ s❡tt✐♥❣ ♦❢ t❤❡ q✉❡r② ❛♥s✇❡r✐♥❣ ♣r♦❜❧❡♠ t❤❡ ♠✉❧t✐♣❧✐❝✲
✐t② ♦❢ ❦♥♦✇❧❡❞❣❡ r❡q✉❡st❡rs ✇❛s s✐♠♣❧② r❡❣❛r❞❡❞ ❛s ❛ s✐♠♣❧❡ ❡①t❡♥s✐♦♥ ♦❢ t❤❡
✐♥❞✐✈✐❞✉❛❧ ❝❛s❡✳ ❚❤✐s ❛ss✉♠♣t✐♦♥ ❞♦❡s ♥♦t ❛❧✇❛②s ❤♦❧❞ ✐♥ ♣r❛❝t✐❝❛❧ ❛♣♣❧✐❝❛t✐♦♥s
✇❤❡r❡ t❤❡ r❡q✉❡st❡rs ❛r❡ ✐♥ ❞✐r❡❝t ❝♦♠♣❡t✐t✐♦♥ ❢♦r ❦♥♦✇❧❡❞❣❡ ✭♥❡✇s❛❣❡♥ts✱ ♠✐❧✲
✐t❛r② ❛♣♣❧✐❝❛t✐♦♥s✮✳ ❚❤✐s ✐s ♥♦t ❛❧✇❛②s tr✉❡ ✐♥ ❛ ❞❛t❛ s❡♥s✐t✐✈❡ s❝❡♥❛r✐♦ ✇❤❡r❡
t❤❡ ❦♥♦✇❧❡❞❣❡ ♣r♦✈✐❞❡r ♠✐❣❤t ✇❛♥t t♦ ❛❧❧♦❝❛t❡ t❤❡ q✉❡r② ❛♥s✇❡rs t♦ t❤❡ ❛❣❡♥ts
❜❛s❡❞ ♦♥ t❤❡✐r ✈❛❧✉❛t✐♦♥s✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ ❛❣❡♥ts ♠✐❣❤t ✇❛♥t s♦♠❡ ✐♥❢♦r♠❛✲
t✐♦♥ ❡①❝❧✉s✐✈❡❧② ✭❛♥❞ t❤✉s ♦✛❡r ❛ ✈❛❧✉❛t✐♦♥ t❤❛t ❛❧❧♦✇s ✐t✮ ✇❤✐❧❡ ♦t❤❡rs ♠✐❣❤t
✇❛♥t ✐t s❤❛r❡❞✳ ❚♦ t❤✐s ❡♥❞✱ ♥❡✇ ♠❡❝❤❛♥✐s♠s ♦❢ ❛❧❧♦❝❛t✐♦♥ ♦❢ q✉❡r② ❛♥s✇❡rs ❛r❡
♥❡❡❞❡❞✳

❲❡ ❞r❛✇ ❢r♦♠ t❤❡ ✜❡❧❞s ♦❢ q✉❡r② ❛♥s✇❡r✐♥❣ ✐♥ ✐♥❢♦r♠❛t✐♦♥ s②st❡♠s ❛♥❞
♠✉❧t✐ ❛❣❡♥t r❡s♦✉r❝❡ ❛❧❧♦❝❛t✐♦♥ ❛♥❞ ♣r♦♣♦s❡ t❤❡ ♠✉❧t✐ ❛❣❡♥t ❦♥♦✇❧❡❞❣❡ ❛❧❧♦❝❛✲
t✐♦♥ s❡tt✐♥❣ ✭▼❆❑❆✮✳ ❲❡ ❤❛✈❡ ♣r♦♣♦s❡❞ ❛ ❣r❛♣❤ ❜❛s❡❞ ♠❡t❤♦❞✱ ✐♥s♣✐r❡❞ ❜②
♥❡t✇♦r❦ ✢♦✇s✱ ❢♦r s♦❧✈✐♥❣ ✐t✳ ❚❤❡s❡ r❡s✉❧ts ✇❡r❡ ✐♥✈❡st✐❣❛t❡❞ ❥♦✐♥t❧② ✇✐t❤ ❉r✳
❙❡❜❛st✐❛♥ ❘✉❞♦❧♣❤ ❢r♦♠ ❯♥✐✈❡rs✐t② ♦❢ ❉r❡s❞❡♥✳ ■♥ t❤❡ ♣❛♣❡r ✏❊①❝❧✉s✐✈✐t②✲
❜❛s❡❞ ❛❧❧♦❝❛t✐♦♥ ♦❢ ❦♥♦✇❧❡❞❣❡✑ ❜② ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❛♥❞ ❙❡❜❛st✐❛♥
❘✉❞♦❧♣❤ ❬✷✺❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✮ ✇❡ ❞❡✜♥❡ ❛ ❜✐❞❞✐♥❣ ❧❛♥❣✉❛❣❡
❜❛s❡❞ ♦♥ ❡①❝❧✉s✐✈✐t②✲❛♥♥♦t❛t❡❞ ❝♦♥❥✉♥❝t✐✈❡ q✉❡r✐❡s ❛♥❞ s❤♦✇ ❛ ✇❛②
t♦ s✉❝❝✐♥❝t❧② tr❛♥s❧❛t❡ t❤❡ ❛❧❧♦❝❛t✐♦♥ ♣r♦❜❧❡♠ ✐♥t♦ ❛ ❣r❛♣❤ str✉❝t✉r❡
❛❧❧♦✇✐♥❣ t♦ ❡♠♣❧♦② ❛ ✇✐❞❡ r❛♥❣❡ ♦❢ ❝♦♥str❛✐♥t s♦❧✈✐♥❣ t❡❝❤♥✐q✉❡s t♦
✜♥❞ t❤❡ ♦♣t✐♠❛❧ ❛❧❧♦❝❛t✐♦♥✳

■ ❛❧s♦ ✐♥✈❡st✐❣❛t❡❞ t❤❡ ♠❡❝❤❛♥✐s♠ ❞❡s✐❣♥ ❛s♣❡❝ts ♦❢ s✉❝❤ ✈❛❧✉❛t✐♦♥s ✐♥ ❝♦❧✲
❧❛❜♦r❛t✐♦♥ ✇✐t❤ ❉r✳ ■❛♥♥✐s ❱❡ts✐❦❛s ❢r♦♠ t❤❡ ❯♥✐✈❡rs✐t② ♦❢ ❆t❤❡♥s✳ ■❢ ✇❡ ✇❡r❡
t♦ ❛♣♣❧② ✇❡❧❧ ❦♥♦✇♥ ❛✉❝t✐♦♥ ♠❡❝❤❛♥✐s♠s t♦ s❡❧❧✐♥❣ ♣✐❡❝❡s ♦❢ ✐♥❢♦r♠❛t✐♦♥ t❤❛t
❝❛♥ ❜❡ s❤❛r❡❞✱ ❤❡♥❝❡ ❛r❡ ✐♥✜♥✐t❡❧② ❝♦♣✐❡❞✱ ♥♦ ♣r♦✜t ✇♦✉❧❞ ❜❡ ♠❛❞❡❀ t❤✐s ✇♦✉❧❞
❤❛♣♣❡♥ ❜❡❝❛✉s❡ ❝♦♠♣❡t✐t✐♦♥ ✐s ✇❤❛t ❞r✐✈❡s t❤❡ ♣r✐❝❡s ✉♣ ❛♥❞ ♦✛❡r✐♥❣ ♠♦r❡
✐t❡♠s ✲ ❤❡r❡ ✐♥✜♥✐t❡ ✲ t❤❛♥ ❜✉②❡rs ❡ss❡♥t✐❛❧❧② r❡♠♦✈❡s ❛♥② ❝♦♠♣❡t✐t✐♦♥ ✐♥ t❤✐s
s❡tt✐♥❣✳ ❆♥❞ ②❡t ❣❡tt✐♥❣ ♣r♦✜t ✐s ✉s✉❛❧❧② t❤❡ ✜rst ❣♦❛❧ ♦❢ ❛ s❡❧❧❡r✳ ▼♦r❡♦✈❡r✱ t❤❡
♠❡❝❤❛♥✐s♠s ❢♦r ❛✉❝t✐♦♥✐♥❣ t❤✐s ❦✐♥❞ ♦❢ ❣♦♦❞s ♥❡❡❞ t♦ ❜❡ ✐♥❝❡♥t✐✈❡ ❝♦♠♣❛t✐❜❧❡✱
♠❡❛♥✐♥❣ t❤❛t ❜✐❞❞❡rs ✇♦✉❧❞ ❤❛✈❡ ❛♥ ✐♥❝❡♥t✐✈❡ t♦ ❧✐❡ ✇❤✐❝❤ ✇♦✉❧❞ ❜r❡❛❦ ❞♦✇♥
t❤❡ ♠❡❝❤❛♥✐s♠✳

■♥ t❤❡ ♣❛♣❡r ✏❍♦✇ ♠✉❝❤ s❤♦✉❧❞ ②♦✉ ♣❛② ❢♦r ✐♥❢♦r♠❛t✐♦♥❄✑ ❜②
■♦❛♥♥✐s ❱❡ts✐❦❛s ❛♥❞ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❬✻✹❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r
✺✮ ✇❡ ♣r❡s❡♥t ❛♥❞ ❛♥❛❧②s❡ s❡✈❡r❛❧ ✐♥❝❡♥t✐✈❡ ❝♦♠♣❛t✐❜❧❡ ♠❡❝❤❛♥✐s♠s
❢♦r s❡❧❧✐♥❣ ❛ s✐♥❣❧❡ s❤❛r❛❜❧❡ ❣♦♦❞ t♦ ❜✐❞❞❡rs ✇❤♦ ❛r❡ ❤❛♣♣② t♦ s❤❛r❡ ✐t✱
❛✐♠✐♥❣ ❛t ❝r❡❛t✐♥❣ ❝♦♠♣❡t✐t✐♦♥ ❜② r❡str✐❝t✐♥❣ t❤❡ ♥✉♠❜❡r ♦❢ ✇✐♥♥❡rs✳

✷✵

✷✳✻ ❆r❣✉♠❡♥t❛t✐♦♥ ❢♦r ◗✉❡r② ❆♥s✇❡r✐♥❣

❆s ♣r❡✈✐♦✉s❧② ♠❡♥t✐♦♥❡❞✱ ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② ✐s ❛ ✇❡❧❧✲❦♥♦✇♥ ♠❡t❤♦❞ ❢♦r
❞❡❛❧✐♥❣ ✇✐t❤ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❬✾✱ ✷❪✳ ▲♦❣✐❝✲❜❛s❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❬✶✵❪ ❝♦♥✲
s✐❞❡rs ❝♦♥str✉❝t✐♥❣ ❛r❣✉♠❡♥ts ❢r♦♠ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✱ ✐❞❡♥t✐❢②✐♥❣
❛tt❛❝❦s ❜❡t✇❡❡♥ t❤❡♠ ❛♥❞ s❡❧❡❝t✐♥❣ ❛❝❝❡♣t❛❜❧❡ ❛r❣✉♠❡♥ts ❛♥❞ t❤❡✐r ❝♦♥❝❧✉✲
s✐♦♥s✳ ❘❡❝❡♥t❧②✱ t❤✐s q✉❡st✐♦♥ ✇❛s ❛❧s♦ ❝♦♥s✐❞❡r❡❞ ✐♥ t❤❡ ❖❇❉❆ ❝❛s❡ ❬✹✷✱ ✶✶❪
✇❤❡r❡ ♠❛①✐♠❛❧ ❝♦♥s✐st❡♥t s✉❜s❡ts ♦❢ t❤❡ ❑❇✱ ❝❛❧❧❡❞ r❡♣❛✐rs✱ ❛r❡ t❤❡♥ ❝♦♥s✐❞❡r❡❞
❛♥❞ ❞✐✛❡r❡♥t s❡♠❛♥t✐❝s ✭❜❛s❡❞ ♦♥ ❝❧❛ss✐❝❛❧ ❡♥t❛✐❧♠❡♥t ♦♥ r❡♣❛✐rs✮ ❛r❡ ♣r♦♣♦s❡❞
✐♥ ♦r❞❡r t♦ ❝♦♠♣✉t❡ t❤❡ s❡t ♦❢ ❛❝❝❡♣t❡❞ ❢♦r♠✉❧❛❡✳ ❖♥❝❡ t❤❡ r❡♣❛✐rs ❝❛❧❝✉❧❛t❡❞✱
t❤❡r❡ ❛r❡ ❞✐✛❡r❡♥t ✇❛②s t♦ ❝❛❧❝✉❧❛t❡ t❤❡ s❡t ♦❢ ❢❛❝ts t❤❛t ❢♦❧❧♦✇ ❢r♦♠ ❛♥ ✐♥❝♦♥✲
s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❜❛s❡✳ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ♠❛② ✇❛♥t t♦ ❛❝❝❡♣t ❛ q✉❡r② ✐❢ ✐t ✐s
❡♥t❛✐❧❡❞ ✐♥ ❛❧❧ r❡♣❛✐rs ✭❆❘ s❡♠❛♥t✐❝s✮✳ ❆♥♦t❤❡r ♣♦ss✐❜✐❧✐t② ✐s t♦ ❝❤❡❝❦ ✇❤❡t❤❡r
t❤❡ q✉❡r② ✐s ❡♥t❛✐❧❡❞ ❢r♦♠ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ ❝❧♦s❡❞ r❡♣❛✐rs ✭■❈❘ s❡♠❛♥t✐❝s✮✳
❋✐♥❛❧❧②✱ ❛♥♦t❤❡r ♣♦ss✐❜✐❧✐t② ✐s t♦ ❝♦♥s✐❞❡r t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ ❛❧❧ r❡♣❛✐rs ✭■❆❘
s❡♠❛♥t✐❝s✮✳

❖✉r ✇♦r❦ st❛rts ❢r♦♠ t❤❡ ♦❜s❡r✈❛t✐♦♥ t❤❛t ❜♦t❤ ✐♥❝♦♥s✐st❡♥t ♦♥t♦❧♦❣✐❝❛❧ ❑❇
q✉❡r② ❛♥s✇❡r✐♥❣ ❛♥❞ ✐♥st❛♥t✐❛t❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② ❞❡❛❧ ✇✐t❤ t❤❡ s❛♠❡
✐ss✉❡✱ ✇❤✐❝❤ ✐s r❡❛s♦♥✐♥❣ ✉♥❞❡r ✐♥❝♦♥s✐st❡♥t ✐♥❢♦r♠❛t✐♦♥✳ ❋✉rt❤❡r♠♦r❡✱ ❜♦t❤
❝♦♠♠✉♥✐t✐❡s ❤❛✈❡ s❡✈❡r❛❧ ♠❡❝❤❛♥✐s♠s t♦ s❡❧❡❝t ❛❝❝❡♣t❛❜❧❡ ❝♦♥❝❧✉s✐♦♥s✳ ◆❛t✉r❛❧
q✉❡st✐♦♥s ♦♥❡ ❝♦✉❧❞ ✐♠♠❡❞✐❛t❡❧② ❛s❦ ❛r❡✿ ■s t❤❡r❡ ❛ ❧✐♥❦ ❜❡t✇❡❡♥ t❤❡ s❡♠❛♥t✐❝s
✉s❡❞ ✐♥ ✐♥❝♦♥s✐st❡♥t ♦♥t♦❧♦❣✐❝❛❧ ❑❇ q✉❡r② ❛♥s✇❡r✐♥❣ ❛♥❞ t❤♦s❡ ❢r♦♠ ❛r❣✉♠❡♥✲
t❛t✐♦♥ t❤❡♦r②❄ ■s ✐t ♣♦ss✐❜❧❡ t♦ ✐♥st❛♥t✐❛t❡ ❉✉♥❣✬s ❬✸✶❪ ❛❜str❛❝t ❛r❣✉♠❡♥t❛t✐♦♥
t❤❡♦r② ✐♥ ❛ ✇❛② t♦ ✐♠♣❧❡♠❡♥t t❤❡ ❡①✐st✐♥❣ s❡♠❛♥t✐❝s ❢r♦♠ ♦♥t♦❧♦❣✐❝❛❧ ❑❇ q✉❡r②
❛♥s✇❡r✐♥❣❄ ■❢ s♦✱ ✇❤✐❝❤ s❡♠❛♥t✐❝s ❢r♦♠ ♦♥t♦❧♦❣✐❝❛❧ ❑❇ q✉❡r② ❛♥s✇❡r✐♥❣ ❝♦r✲
r❡s♣♦♥❞ t♦ ✇❤✐❝❤ s❡♠❛♥t✐❝s ❢r♦♠ ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r②❄ ❉♦❡s t❤❡ ♣r♦♣♦s❡❞
✐♥st❛♥t✐❛t✐♦♥ ♦❢ ❉✉♥❣✬s ❛❜str❛❝t ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② s❛t✐s❢② t❤❡ r❛t✐♦♥❛❧✐t②
♣♦st✉❧❛t❡s ❬✶✺❪❄

❚❤❡r❡ ❛r❡ s❡✈❡r❛❧ ❜❡♥❡✜ts ❢r♦♠ ❛♥s✇❡r✐♥❣ t❤♦s❡ q✉❡st✐♦♥s✳ ❋✐rst✱ ✐t ✇♦✉❧❞
❛❧❧♦✇ t♦ ✐♠♣♦rt s♦♠❡ r❡s✉❧ts ❢r♦♠ ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② t♦ ♦♥t♦❧♦❣✐❝❛❧ q✉❡r② ❛♥✲
s✇❡r✐♥❣ ❛♥❞ ✈✐❝❡ ✈❡rs❛✱ ❛♥❞ ♠♦r❡ ❣❡♥❡r❛❧❧② ♦♣❡♥ t❤❡ ✇❛② t♦ t❤❡ ❆r❣✉♠❡♥t❛t✐♦♥
❲❡❜ ❬✺✵❪✳ ❙❡❝♦♥❞✱ ✐t ♠✐❣❤t ❜❡ ♣♦ss✐❜❧❡ t♦ ✉s❡ t❤❡s❡ r❡s✉❧ts ✐♥ ♦r❞❡r t♦ ❡①♣❧❛✐♥
t♦ ✉s❡rs ❤♦✇ r❡♣❛✐rs ❛r❡ ❝♦♥str✉❝t❡❞ ❛♥❞ ✇❤② ❛ ♣❛rt✐❝✉❧❛r ❝♦♥❝❧✉s✐♦♥ ❤♦❧❞s ✐♥ ❛
❣✐✈❡♥ s❡♠❛♥t✐❝s ❜② ❝♦♥str✉❝t✐♥❣ ❛♥❞ ❡✈❛❧✉❛t✐♥❣ ❛r❣✉♠❡♥ts ✐♥ ❢❛✈♦✉r ♦❢ ❞✐✛❡r❡♥t
❝♦♥❝❧✉s✐♦♥s ❬✸✵❪✳ ❆❧s♦✱ ♦♥ ❛ ♠♦r❡ t❤❡♦r❡t✐❝❛❧ s✐❞❡✱ ♣r♦✈✐♥❣ ❛ ❧✐♥❦ ❜❡t✇❡❡♥ ❛r❣✉✲
♠❡♥t❛t✐♦♥ t❤❡♦r② ❛♥❞ t❤❡ r❡s✉❧ts ✐♥ t❤❡ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❝♦♠♠✉♥✐t②
✇♦✉❧❞ ❜❡ ❛ st❡♣ ❢♦r✇❛r❞ ✐♥ ✉♥❞❡rst❛♥❞✐♥❣ t❤❡ ❡①♣r❡ss✐❜✐❧✐t② ♦❢ ❉✉♥❣✬s ❛❜str❛❝t
t❤❡♦r② ❢♦r ❧♦❣✐❝✲❜❛s❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❬✻✸❪✳

❚❤✐s ✇♦r❦ ❤❛s ❜❡❡♥ ❞♦♥❡ ❥♦✐♥t❧② ✇✐t❤ ❉r✳ ❙r❞❥❛♥ ❱❡s✐❝ ❢r♦♠ ❈❘■▲✱ ❯♥✐✈✳
❆rt♦✐s✳ ■♥ t❤❡ ♣❛♣❡r ✏❲❤❛t ❈❛♥ ❆r❣✉♠❡♥t❛t✐♦♥ ❉♦ ❢♦r ■♥❝♦♥s✐st❡♥t
❖♥t♦❧♦❣② ◗✉❡r② ❆♥s✇❡r✐♥❣❄✑ ❜② ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❛♥❞ ❙r❞❥❛♥ ❱❡s✐❝
❬✷✽❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✮ ✇❡ s❤♦✇ t❤❛t ✐t ✐s ♣♦ss✐❜❧❡ t♦ ✐♥st❛♥t✐❛t❡
❉✉♥❣✬s ❛❜str❛❝t ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② ✐♥ ❛ ✇❛② t♦ ❞❡❛❧ ✇✐t❤ ✐♥❝♦♥✲
s✐st❡♥❝② ✐♥ ❛♥ ♦♥t♦❧♦❣✐❝❛❧ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ✭❑❇✮✳ ❙❡❝♦♥❞✱ ✇❡ ❢♦r♠❛❧❧②
♣r♦✈❡ t❤❡ ❧✐♥❦s ❜❡t✇❡❡♥ t❤❡ s❡♠❛♥t✐❝s ❢r♦♠ ♦♥t♦❧♦❣✐❝❛❧ ❑❇ q✉❡r② ❛♥✲

✷✶

s✇❡r✐♥❣ ❛♥❞ t❤♦s❡ ❢r♦♠ ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r②✿ ■❈❘ s❡♠❛♥t✐❝s ❝♦r✲
r❡s♣♦♥❞s t♦ s❝❡♣t✐❝❛❧ ❛❝❝❡♣t❛♥❝❡ ✉♥❞❡r st❛❜❧❡ ♦r ♣r❡❢❡rr❡❞ ❛r❣✉♠❡♥✲
t❛t✐♦♥ s❡♠❛♥t✐❝s✱ ❆❘ s❡♠❛♥t✐❝s ❝♦rr❡s♣♦♥❞s t♦ ✉♥✐✈❡rs❛❧ ❛❝❝❡♣t❛♥❝❡
✉♥❞❡r st❛❜❧❡ ✴ ♣r❡❢❡rr❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ s❡♠❛♥t✐❝s ❛♥❞ ■❆❘ s❡♠❛♥t✐❝s
❝♦rr❡s♣♦♥❞s t♦ ❛❝❝❡♣t❛♥❝❡ ✉♥❞❡r ❣r♦✉♥❞❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ s❡♠❛♥t✐❝s✳
❚❤✐r❞✱ ✇❡ s❤♦✇ t❤❛t t❤❡ ✐♥st❛♥t✐❛t✐♦♥ ✇❡ ❞❡✜♥❡ s❛t✐s✜❡s t❤❡ r❛t✐♦♥❛❧✲
✐t② ♣♦st✉❧❛t❡s✳

❚❤❡ r❡s✉❧ts ❛❧❧♦✇❡❞ t♦ ✉s❡ r❡s✉❧ts ❢r♦♠ ❛r❣✉♠❡♥t❛t✐♦♥ t❤❡♦r② ✐♥ ♦r❞❡r t♦ ❡①✲
♣❧❛✐♥ r❡❛s♦♥✐♥❣ ✉♥❞❡r ✐♥❝♦♥s✐st❡♥❝② ✐♥ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳ ❚❤✐s t♦♣✐❝ ✐s ❛t t❤❡ ❝❡♥✲
t❡r ♦❢ t❤❡ t❤❡s✐s ♦❢ ❆❜❞❛❧❧❛❤ ❆r✐♦✉❛ ✭❝♦✲s✉♣❡r✈✐s❡❞ ✇✐t❤ P✳ ❇✉❝❤❡ ❛♥❞ ❏✳ ❋♦rt✐♥✮
❛♥❞ ✜rst r❡s✉❧ts ❤❛✈❡ ❛❧r❡❛❞② ❜❡❡♥ s❤♦✇❡❞✳ ■♥ t❤❡ ♣❛♣❡r ✏❖♥ ❈♦♥❝❡♣t✉❛❧
●r❛♣❤s ❛♥❞ ❊①♣❧❛♥❛t✐♦♥ ♦❢ ◗✉❡r② ❆♥s✇❡r✐♥❣ ❯♥❞❡r ■♥❝♦♥s✐st❡♥❝②✑
❜② ❆❜❞❛❧❧❛❤ ❆r✐♦✉❛✱ ◆♦✉r❡❞✐♥❡ ❚❛♠❛♥✐ ❛♥❞ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❬✹❪
✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✺✮ ✇❡ ♣r❡s❡♥t q✉❡r② ❛♥s✇❡r✐♥❣ ❡①♣❧❛♥❛t✐♦♥
str❛t❡❣✐❡s ✐♥s♣✐r❡❞ ❢r♦♠ t❤❡ ❧✐♥❦ ❜❡t✇❡❡♥ t❤❡ ❖❇❉❆ ✐♥❝♦♥s✐st❡♥t✲
t♦❧❡r❛♥t s❡♠❛♥t✐❝s ❛♥❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❛❝❝❡♣t❛♥❝❡ s❡♠❛♥t✐❝s✳

✷✷

❈❤❛♣t❡r ✸

■♥t❡r✲❉✐s❝✐♣❧✐♥❛r② Pr♦❥❡❝ts

✸✳✶ ■♥tr♦❞✉❝t✐♦♥

■♥ t❤✐s ❝❤❛♣t❡r ■ ❞❡t❛✐❧ t❤❡ r❡s❡❛r❝❤ ♣r♦❥❡❝ts ■ ❤❛✈❡ ❜❡❡♥ ✐♥✈♦❧✈❡❞ ✐♥ s✐♥❝❡ ♠②
❛rr✐✈❛❧ ❛t ▲■❘▼▼ ✐♥ ✷✵✵✽✳ ■ ✇✐❧❧ ♣❛② s♣❡❝✐❛❧ ❛tt❡♥t✐♦♥ t♦ t❤❡ ✐♥t❡r❞✐s❝✐♣❧✐♥❛r②
♣r♦❥❡❝ts✱ ✇❤❡r❡ ❛t ❧❡❛st ♦♥❡ ♦❢ t❤❡ ♠❛✐♥ ♣❛rt✐❝✐♣❛♥ts ✐s ♥♦t ❛ ❝♦♠♣✉t✐♥❣ s❝✐❡♥❝❡
❝❡♥t❡r✳ ■ ❜❡❧✐❡✈❡ t❤❛t ❛♣♣❧②✐♥❣ r❡s❡❛r❝❤ ✐♥ ♣r❛❝t✐❝❡ ✐s ❛ ♠❛❥♦r ❝❤❛❧❧❡♥❣❡ ♦❢
❝✉rr❡♥t ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡ ✭■ ♦♥❧② ❢♦❝✉s ♦♥ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡ s✐♥❝❡ ✐t ✐s
♠② ♣r✐♠❛r② ✜❡❧❞ ♦❢ ❡①♣❡rt✐s❡✮✳ ❚❤❡ t✐♠❡ ❛♥❞ ❡①♣❡rt✐s❡ ♥❡❡❞❡❞ t♦ ❞❡✈❡❧♦♣ ❜♦t❤
❛s♣❡❝ts ❛♥❞ t❤❡ ✐♥❝❡rt✐t✉❞❡ ✐♥❤❡r❡♥t t♦ r❡s❡❛r❝❤ ❛♥❞ ❞❡✈❡❧♦♣♠❡♥t ♠❛❦❡ t❤✐s ❛
❞✐✣❝✉❧t t❛s❦ t♦ ❢✉❧✜❧❧✳

■♥ t❤✐s ❝❤❛♣t❡r ■ ✇✐❧❧ ❞❡t❛✐❧ t❤r❡❡ ♣r♦❥❡❝ts ✇✐t❤✐♥ ❛♥ ❛❣r♦♥♦♠② s❝❡♥❛r✐♦✳ ❖♥❡
♣r♦❥❡❝t ❧♦♦❦s ❛t ♣❛❝❦❛❣✐♥❣ ❛s♣❡❝ts ✭❙❡❝t✐♦♥ ✸✳✷✮ ✇❤✐❧❡ t❤❡ ♦t❤❡r t✇♦ ❢♦❝✉s ♦♥
❢♦♦❞ ❛s♣❡❝ts ✭❙❡❝t✐♦♥ ✸✳✹ ❛♥❞ ❙❡❝t✐♦♥ ✸✳✸✮✳ ❲❤✐❧❡ t❤❡ ♣r♦❥❡❝t ♣r❡s❡♥t❡❞ ✐♥
❙❡❝t✐♦♥ ✸✳✹ ❤❛s ♦♥❧② st❛rt❡❞ ✐♥ ✷✵✶✹✱ ■ t❤✐♥❦ ✐t ✐s ✐♠♣♦rt❛♥t t♦ s❤♦✇ t❤❡ ✜rst
r❡s✉❧ts t❤❛t ✇❡r❡ ♦❜t❛✐♥❡❞✳ ❚❤❡ ❢♦✉rt❤ ♣r♦❥❡❝t ■ ✇✐❧❧ ❞❡t❛✐❧ ✐s ❛ ♣r♦❥❡❝t ♠❛❞❡ ✐♥
❝♦❧❧❛❜♦r❛t✐♦♥ ✇✐t❤ ❜✐❜❧✐♦❣r❛♣❤✐❝ ❞❛t❛ ❡①♣❡rts ♣r❡s❡♥t❡❞ ✐♥ ❙❡❝t✐♦♥ ✸✳✺✳

✸✳✷ ❊❯ ❋P✼ ❊❝♦❇✐♦❈❛♣

❈♦♥❝❡✐✈✐♥❣ ❢♦♦❞ ♣❛❝❦❛❣✐♥❣s t❤❛t ❛r❡ t❛❦✐♥❣ ✐♥t♦ ❛❝❝♦✉♥t ❛❧❧ ❢❛❝t♦rs ❢r♦♠ ❞✐✛❡r✲
❡♥t st❛❦❡❤♦❧❞❡rs ✐♥ t❤❡ ♣r♦❞✉❝t✐♦♥ ❝❤❛✐♥ ✐s ❛♥ ❡①❝✐t✐♥❣✱ t✐♠❡❧② ❛♥❞ ✐♠♣♦rt❛♥t
❝❤❛❧❧❡♥❣❡ t♦ ❢❛❝❡✳ ❈❤❛♥❣❡s s✉❝❤ ❛s ✭✶✮ ❣r♦✇✐♥❣ ❞❡♠❛♥❞s ❢♦r r❡❛❞② t♦ ❡❛t ❢♦♦❞s✱
✭✷✮ ❣❧♦❜❛❧✐s❛t✐♦♥ ♦❢ t❤❡ ❢♦♦❞ ❜✉s✐♥❡ss✱ ✭✸✮ ❧✐♠✐t✐♥❣ t❤❡ ❛♠♦✉♥t ♦❢ ✇❛st❡ ❣❡♥❡r✲
❛t❡❞ ❜② ♣❛❝❦❛❣✐♥❣s ❛r❡ ❞r✐✈✐♥❣ ❛ s❡❛r❝❤ ❢♦r ✐♥♥♦✈❛t✐✈❡ ✇❛②s t♦ ♣❛❝❦❛❣❡ ❢♦♦❞s
✇❤✐❧❡ ♠❛✐♥t❛✐♥✐♥❣ q✉❛❧✐t②✱ ❢r❡s❤♥❡ss✱ ❛♥❞ s❛❢❡t②✳ P❛❝❦❛❣✐♥❣ ❝♦♥❝❡♣t✐♦♥ s❤♦✉❧❞
t❛❦❡ ✐♥t♦ ❛❝❝♦✉♥t ♠❛♥② ❛s♣❡❝ts✳ ❈r✐t❡r✐❛ s✉❝❤ ❛s ✈✐s✉❛❧ ❛♣♣❡❛❧✱ ❧❛❜❡❧❧✐♥❣ ♥♦r♠
❝♦♠♣❧✐❛♥❝❡✱ st❛❜✐❧✐t②✱ s❛❢❡t②✱ ❡♥✈✐r♦♥♠❡♥t❛❧ ✐♠♣❛❝t ❛♥❞ ❝♦st✲❡✛❡❝t✐✈❡♥❡ss ❤❛✈❡
t♦ ❜❡ ❝♦♥s✐❞❡r❡❞ ❜❡❢♦r❡ ❢✉❧❧ ❡①♣❧♦✐t❛t✐♦♥✳ ❍♦✇❡✈❡r✱ t❛❦✐♥❣ ✐♥t♦ ❛❝❝♦✉♥t ❛❧❧ ❝r✐✲

✷✸

t❡r✐❛ ❝❛♥ ②✐❡❧❞ ❝♦♥tr❛❞✐❝t♦r② ❛❝t✐♦♥s✳ ❉♦♠❛✐♥ ❡①♣❡rts ❝❛♥♥♦t ❡①♣r❡ss ❝♦♠♣❧❡t❡
r✉❧❡s ✭❛❧♦♥❣ ✇✐t❤ t❤❡ ♠❛♥② ❡①❝❡♣t✐♦♥s ♦❢ s✉❝❤ r✉❧❡s✮ ❞✉❡ t♦ t❤❡ ❝♦♠♣❧❡①✐t② ♦❢
t❤❡ ❦♥♦✇❧❡❞❣❡✳ ❚❤❡r❡❢♦r❡✱ ✇❤❡♥ tr②✐♥❣ t♦ r❡❛s♦♥ ✇✐t❤ t❤❡ ✐♥❝♦♠♣❧❡t❡❧② ❡❧✐❝✐t❡❞
❦♥♦✇❧❡❞❣❡ ❛✈❛✐❧❛❜❧❡ ♥✉♠❡r♦✉s ✐♥❝♦♥s✐st❡♥❝✐❡s ♦❝❝✉r ❛♥❞ t❤❡ ✐♠♣♦rt❛♥t ♣r♦❜✲
❧❡♠ ✉♥❞❡r❧②✐♥❣ t❤❡ ❢♦♦❞ ♣❛❝❦❛❣✐♥❣ ❝♦♥❝❡♣t✐♦♥ ❝♦♠❡s ❞♦✇♥ ♦♥ t♦ ❤♦✇ t♦ r❡❛s♦♥
✉♥❞❡r ✐♥❝♦♥s✐st❡♥❝② ❛♥❞ ✐♥❝♦♠♣❧❡t❡♥❡ss ✇✐t❤ ♥♦♥ ♠♦♥♦t♦♥✐❝ ❦♥♦✇❧❡❞❣❡✳

❲✐t❤✐♥ t❤❡ ❢r❛♠❡✇♦r❦ ♦❢ t❤❡ ❊✉r♦♣❡❛♥ ♣r♦❥❡❝t ❊❝♦❇✐♦❈❛♣ ✭✇✇✇✳❡❝♦❜✐♦❝❛♣✳
❡✉✮ ❛❜♦✉t t❤❡ ❞❡s✐❣♥ ♦❢ ♥❡①t ❣❡♥❡r❛t✐♦♥ ♣❛❝❦❛❣✐♥❣s ✉s✐♥❣ ❛❞✈❛♥❝❡❞ ❝♦♠♣♦s✐t❡
str✉❝t✉r❡s ❜❛s❡❞ ♦♥ ❝♦♥st✐t✉❡♥ts ❞❡r✐✈❡❞ ❢r♦♠ t❤❡ ❢♦♦❞ ✐♥❞✉str②✱ ✇❡ ❞❡✈❡❧♦♣❡❞
❛ ❉❡❝✐s✐♦♥ ❙✉♣♣♦rt ❙②st❡♠ ✭❉❙❙✮ ❢♦r ♣❛❝❦❛❣✐♥❣ ♠❛t❡r✐❛❧ s❡❧❡❝t✐♦♥✳ ❚❤❡ ❉❙❙
✐s ♠❛❞❡ ♦❢ t✇♦ ♣❛rts✿ ✭✐✮ ❛ ✢❡①✐❜❧❡ q✉❡r②✐♥❣ ♣r♦❝❡ss ✇❤✐❝❤ ✐s ❜❛s❡❞ ♦♥ ❛ ❜✐♣♦✲
❧❛r q✉❡r②✐♥❣ ❛♣♣r♦❛❝❤ ❬✷✾❪ ❞❡❛❧✐♥❣ ✇✐t❤ ✐♠♣r❡❝✐s❡ ❞❛t❛ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡
❝❤❛r❛❝t❡r✐st✐❝s r❡❧❛t❡❞ t♦ t❤❡ ❢♦♦❞ ♣r♦❞✉❝t t♦ ♣❛❝❦ ❧✐❦❡ t❤❡ ♦♣t✐♠❛❧ ♣❡r♠❡❛♥❝❡✱
t❤❡ ❞✐♠❡♥s✐♦♥ ♦❢ t❤❡ ♣❛❝❦❛❣✐♥❣✱ ✐ts s❤❛♣❡✱ ❡t❝✳✱ ❛♥❞ ✭✐✐✮ ❛♥ ❛r❣✉♠❡♥t❛t✐♦♥ ♣r♦✲
❝❡ss ✇❤✐❝❤ ❛✐♠s ❛t ❛❣❣r❡❣❛t✐♥❣ s❡✈❡r❛❧ st❛❦❡❤♦❧❞❡rs r❡q✉✐r❡♠❡♥ts ❡①♣r❡ss❡❞ ❛s
s✐♠♣❧❡ t❡①t ❛r❣✉♠❡♥ts✱ t♦ ❡♥r✐❝❤ t❤❡ q✉❡r②✐♥❣ ♣r♦❝❡ss ❜② st❛❦❡❤♦❧❞❡rs✬ ❥✉st✐✜❡❞
♣r❡❢❡r❡♥❝❡s✳ ❚❤❡ ❢♦r♠❡r ✐♠♣❧❡♠❡♥ts ❛ ❞❛t❛❜❛s❡ ❝♦♥t❛✐♥✐♥❣ t❤❡ r❡s♣✐r❛t✐♦♥ ♣❛✲
r❛♠❡t❡rs ♦❢ t❤❡ ♣❛❝❦❡❞ ❢♦♦❞✱ ❛♥❞ ❛ s❡❝♦♥❞ ❞❛t❛❜❛s❡ st♦r✐♥❣ t❤❡ ❝❤❛r❛❝t❡r✐st✐❝s
♦❢ ♣❛❝❦❛❣✐♥❣ ♠❛t❡r✐❛❧s ✭O2 ❛♥❞ CO2 ♣❡r♠❡❛♥❝❡✱ ❜✐♦❞❡❣r❛❞❛❜✐❧✐t②✱ tr❛♥s♣❛r❡♥❝②✱
❡t❝✳✮✳ ❚❤❡ ✉s❡r ❝❛♥ ❛❧s♦ s♣❡❝✐❢② s♦♠❡ ♣r❡❢❡r❡♥❝❡s s✉❝❤ ❛s t❤❡ ♣r❡❢❡rr❡❞ st♦r❛❣❡
t❡♠♣❡r❛t✉r❡✱ ❞✐♠❡♥s✐♦♥s ♦❢ t❤❡ ♣❛❝❦❛❣✐♥❣✱ ❡t❝✱ ✇❤✐❝❤ ❝♦✉❧❞ ❜❡ ♠❛♥❞❛t♦r② ♦r
♦♣t✐♦♥❛❧✳ ❚❤✐s ♣❛rt ♦❢ t❤❡ s♦❢t✇❛r❡ ❝♦♠❜✐♥❡s t❤❡s❡ ✐♥♣✉ts t♦ ❝♦♠♣✉t❡ t❤❡ ♦♣t✐✲
♠❛❧ ♣❡r♠❡❛♥❝❡ ✇❤✐❝❤ ❣✉❛r❛♥t✐❡s t❤❡ ❜❡st s❤❡❧❢ ❧✐❢❡ ❢♦r t❤❡ ♣❛❝❦❡❞ ❢♦♦❞✳ ❚❤❡♥✱
t❤✐s ♦♣t✐♠❛❧ ♣❡r♠❡❛♥❝❡ ❛r❡ ♠✐①❡❞ ✇✐t❤ ♦t❤❡r ✉s❡r ♣r❡❢❡r❡♥❝❡ t♦ ❢♦r♠ ❛ ❜✐♣♦❧❛r
q✉❡r② ❛❞❞r❡ss❡❞ t♦ t❤❡ ♣❛❝❦❛❣✐♥❣ ❞❛t❛❜❛s❡✳ ❚❤❡ r❡t✉r♥❡❞ ❧✐st ♦❢ ♣❛❝❦❛❣✐♥❣ ✐s
r❛♥❦❡❞ ❢r♦♠ t❤❡ ♠♦st t♦ t❤❡ ❧❡❛st r❡❧❡✈❛♥t ♦♥❡ ✇✐t❤ r❡❣❛r❞ t♦ t❤❡ ❡①♣r❡ss❡❞
♣r❡❢❡r❡♥❝❡s✳

❋♦r ❡①❛♠♣❧❡✱ ✐♥ ♦r❞❡r t♦ ♣❛❝❦ ❝❤❡❡s❡✱ r❡s❡❛r❝❤❡rs ❢♦❝✉s ♦♥ t❤❡ ♣❡r♠❡❛♥❝❡
♣r♦♣❡rt✐❡s ✐♥ t❤❡✐r ❢♦❧❧♦✇✐♥❣ ❛r❣✉♠❡♥t✿ ✏❛ ✇❤❡❛t ❣❧✉t❡♥ ❜❛s❡❞ ♠❛t❡r✐❛❧ ♣❛❝❦❛❣✐♥❣
✐s s✉✐t❛❜❧❡ ❢♦r ❝❤❡❡s❡ ❜❡❝❛✉s❡ ✐t ♦✛❡rs ❛ ❣♦♦❞ ❛t♠♦s♣❤❡r❡ ❝♦♥tr♦❧✧✱ ❛♥❞ ❝❤❡❡s❡
♣r♦❞✉❝❡rs ❝❛♥ r❡t♦rt ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦✉♥t❡r✲❛r❣✉♠❡♥t ✏❛ ❣❧✉t❡♥ ❧❛②❡r ❝❛♥✲
♥♦t ♣✉t ✐♥ ❝♦♥t❛❝t ✇✐t❤ ❝❤❡❡s❡ s✐♥❝❡ t❤❡ ❜❛❝t❡r✐❛ ✐♥ t❤❡ ❝r✉st ✇♦✉❧❞ ❞❡❣r❛❞❡ t❤❡
♣❛❝❦❛❣✐♥❣✧✱ ❝♦♥s✐❞❡r✐♥❣ ❤❡r❡ t❤❡ ✐♥t❡r❛❝t✐♦♥ ✇✐t❤ t❤❡ ♣❛❝❦❡❞ ❢♦♦❞ ❛s♣❡❝t✳ ❆s
✇❡ s❡❡ ♣❛❝❦❛❣✐♥❣s ❤❛✈❡ t♦ ❜❡ s❡❧❡❝t❡❞ ❛❝❝♦r❞✐♥❣ t♦ s❡✈❡r❛❧ ❛s♣❡❝ts ♦r ❝r✐t❡r✐❛
✭♣❡r♠❡❛♥❝❡✱ ✐♥t❡r❛❝t✐♦♥ ✇✐t❤ t❤❡ ♣❛❝❦❡❞ ❢♦♦❞✱ ❡♥❞ ♦❢ ❧✐❢❡✱ ❡t❝✳✮✱ ❤✐❣❤❧✐❣❤t❡❞ ❜②
t❤❡ ❡①♣r❡ss❡❞ st❛❦❡❤♦❧❞❡rs✬ ❛r❣✉♠❡♥ts✳ ❚♦ ❝♦❧❧❡❝t t❤❡ ✉s❡r ♣r❡❢❡r❡♥❝❡s✱ ❞✐✛❡r❡♥t
s✉r✈❡②s ❤❛✈❡ ❜❡❡♥ ❝❛rr✐❡❞ ♦✉t ❛♠♦♥❣ t❤❡ st❛❦❡❤♦❧❞❡rs ✐♥✈♦❧✈❡❞ ✐♥ t❤❡ ❞❡s✐❣♥
♦❢ ♣❛❝❦❛❣✐♥❣✿ r❡s❡❛r❝❤❡rs✱ ♣❛❝❦❛❣✐♥❣ ✐♥❞✉str✐❡s✱ ❢♦♦❞ ♣r♦❞✉❝❡rs✱ ❝♦♥s✉♠❡rs✱ ❡t❝✳
❚❤❡ ❛s❦❡❞ q✉❡st✐♦♥s ❛r❡ ❛❜♦✉t ❝♦st✱ ❡♥❞ ♦❢ ❧✐❢❡✱ ❜✐♦❞❡❣r❛❞❛❜✐❧✐t②✱ t❤❡ ✉s❡ ♦❢ ♥❛♥♦✲
♣❛rt✐❝❧❡s ✐♥ t❤❡ ♣❛❝❦❛❣✐♥❣✱ ❡t❝✳ ❋♦r ❡❛❝❤ ❝r✐t❡r✐♦♥ ❡①♣r❡ss❡❞ t❤r♦✉❣❤ s✉r✈❡②s✱
t❤❡ st❛❦❡❤♦❧❞❡rs ✐❞❡♥t✐✜❡❞ ✐ts ✐♠♣♦rt❛♥❝❡✱ ✐♥❞✐❝❛t❡❞ t❤❡ ♣r❡❢❡rr❡❞ ✈❛❧✉❡s✱ ❛♥❞
t❤❡ r❡❛s♦♥s t❤❛t ❥✉st✐❢② t❤❡✐r ❝❤♦✐❝❡✳ ❚❤❡ ✐♠♣♦rt❛♥❝❡ ♣❡r♠✐ts t♦ ❣✐✈❡ ❛ ♣r✐♦r✲
✐t② t♦ ❝r✐t❡r✐❛ ♦✈❡r ♦t❤❡rs✱ ✉s❡❞ ✐♥ t❤❡ ❜✐♣♦❧❛r ❛♣♣r♦❛❝❤ ❝♦♥s✐❞❡r✐♥❣ ♠❛♥❞❛t♦r②
❛♥❞ ♦♣t✐♦♥❛❧ ♣r❡❢❡r❡♥❝❡s✳ ❋♦r ✐♥st❛♥❝❡✱ s❛♥✐t❛r② ❝r✐t❡r✐❛ ❡♥s✉r✐♥❣ ❛ ❣♦♦❞ ♣r❡s❡r✲
✈❛t✐♦♥ ♦❢ t❤❡ ♣❛❝❦❡❞ ❢♦♦❞ ❛r❡ ♥❛t✉r❛❧❧② ♠♦r❡ ✐♠♣♦rt❛♥t t❤❛♥ t❤❡ ❝♦❧♦r ♦r t❤❡

✷✹

tr❛♥s♣❛r❡♥❝② ♦❢ t❤❡ ♣❛❝❦❛❣✐♥❣✳ ❚❤❡ ✈❛❧✉❡s✱ ✐♥ t❤❡ ♦t❤❡r ❤❛♥❞✱ ❝❛♥ ❜❡ ❡❛s✐❧②
✉s❡❞ ❛s ♣r❡❞✐❝❛t❡s ✐♥ t❤❡ ❜✐♣♦❧❛r q✉❡r②✳

P❧❡❛s❡ ♥♦t❡ t❤❛t t❤❡ ♣r♦❜❧❡♠ ❛t ❤❛♥❞ ❞♦❡s ♥♦t s✐♠♣❧② ❝♦♥s✐st ✐♥ ❛❞❞r❡ss✐♥❣
❛ ♠✉❧t✐✲❝r✐t❡r✐❛ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ ❬✶✷❪✿ t❤❡ ❞♦♠❛✐♥ ❡①♣❡rts ✇♦✉❧❞ ♥❡❡❞ t♦
❜❡ ❛❜❧❡ t♦ ❥✉st✐❢② ✇❤② ❛ ❝❡rt❛✐♥ ♣❛❝❦❛❣✐♥❣ ✭♦r s❡t ♦❢ ♣♦ss✐❜❧❡ ♣❛❝❦❛❣✐♥❣s✮ ❛r❡
❝❤♦s❡♥✳

❲♦r❦ ✐♥ t❤✐s ♣r♦❥❡❝t ❤❛s ❜❡❡♥ ❝❛rr✐❡❞ ♦✉t ❥♦✐♥t❧② ✇✐t❤ ♠❡♠❜❡rs ♦❢
■❆❚❊ ✇♦r❦✐♥❣ ♦♥ ♣❛❝❦❛❣✐♥❣ ❝♦♥❝❡♣t✐♦♥✳ ❆ ❥♦✐♥t ♣✉❜❧✐❝❛t✐♦♥ ✭❛s s❡❡♥
❜❡❧♦✇✮ ✇✐t❤ t❤❡ ❡①♣❡rts ✇❛s ♣r♦❞✉❝❡❞ ✐♥ ✇❤✐❝❤ ✇❡ ❞❡t❛✐❧ t❤❡ ❛r❝❤✐t❡❝✲
t✉r❡ ❛♥❞ ✉s❡ ♦❢ t❤❡ ♠♦❞✉❧❡ ✐♠♣❧❡♠❡♥t❡❞✳ P❛rt ♦❢ t❤❡ ♣r♦❥❡❝t✱ ❥♦✐♥t❧②
✇✐t❤ P❛tr✐❝❡ ❇✉❝❤❡✱ ■ ❤❛✈❡ ❝♦✲s✉♣❡r✈✐s❡❞ ◆♦✉r❡❞✐♥❡ ❚❛♠❛♥✐ ✭❛ ♣♦st✲
❞♦❝t♦r❛❧ r❡s❡❛r❝❤❡r✮ ❛♥❞ P❛tr✐❝✐♦ ▼♦ss❡ ✭❛ ▼❛st❡r st✉❞❡♥t ❛♥❞ t❤❡♥
❛ ♣r♦❣r❛♠♠✐♥❣ ❛ss✐st❛♥t✮✳

❚♦ ❜❡ ❛❜❧❡ t♦ ♠♦❞❡❧ t❤✐s ❦✐♥❞ ♦❢ r❡❛s♦♥✐♥❣✱ ✇❡ ♥❡❡❞ ❛ str✉❝t✉r❡❞ ❢♦r♠❛t
❢♦r ❛r❣✉♠❡♥ts ✐♥ ✇❤✐❝❤ ✐t ✐s ♣♦ss✐❜❧❡ t♦ ❡①♣r❡ss t❤❡ ✐♥✈♦❧✈❡❞ ❝♦♥❝❡♣ts ❛♥❞ r✉❧❡s
♠♦❞❡❧✐♥❣ t❤❡ s❡♠❛♥t✐❝s ❜❡❤✐♥❞ t❤❡ t❡①t✳ ❲❡ r❡❧② ✐♥ t❤✐s ✇♦r❦ ♦♥ ❛ s✉❜s❡t
♦❢ ❛ ❧♦❣✐❝❛❧ str✉❝t✉r❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ s②st❡♠ ✇❤✐❝❤ ❝♦rr❡s♣♦♥❞s t♦ t❤❡ s♠❛❧❧❡st
❝♦♠♠♦♥ s✉❜s❡t ♦❢ ❛♣♣r♦❛❝❤❡s ♣r❡s❡♥t❡❞ ✐♥ ❬✶✱ ✹✾✱ ✹✺❪✳ ❙✉❝❤ str✉❝t✉r❡❞ ❛r❣✉♠❡♥✲
t❛t✐♦♥ s②st❡♠ ✭✐✮ ❛❧❧♦✇s t❤❡ ❡①♣r❡ss✐♦♥ ♦❢ ❧♦❣✐❝❛❧ ❛r❣✉♠❡♥ts ❛s ❛ ❝♦♠❜✐♥❛t✐♦♥
♦❢ ❢❛❝ts ❛♥❞ ✐♥❢❡r❡♥❝❡ r✉❧❡s✱ ✭✐✐✮ ❞❡✜♥❡s ❛tt❛❝❦s ❛♥❞ ❞❡❢❡❛t r❡❧❛t✐♦♥s ❜❡t✇❡❡♥
❛r❣✉♠❡♥ts ❜❛s❡❞ ♦♥ ❛ ❧♦❣✐❝❛❧ ❝♦♥✢✐❝t ♥♦t✐♦♥✳

❚❤❡ r❡❛s♦♥✐♥❣ ♣r♦❝❡ss ✉♥❞❡r❧②✐♥❣ ❛r❣✉♠❡♥ts ✐s r❡❧❛t❡❞ t♦ ❛ ❞♦♠❛✐♥ ✇❤✐❝❤
❝❛♥ ❜❡ ❡❛s✐❧② s❡t✲❜❛s❡❞ ✐♥t❡r♣r❡t❡❞✳ ■t ✐s t❤❡♥ ♣♦ss✐❜❧❡ t♦ ❝♦♥s✐❞❡r ❝❡rt❛✐♥ s✉❜s❡ts
♦❢ ❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝s t♦ ❞❡✜♥❡ ❝♦♥❝❡♣ts ❛♥❞ r✉❧❡s ❢♦r♠✐♥❣ ❛r❣✉♠❡♥ts✱ ❢♦r t❤❡✐r
✇❡❧❧ ❦♥♦✇♥ tr❛❞❡ ♦✛ ❜❡t✇❡❡♥ ❛ ❣♦♦❞ ❧❡✈❡❧ ♦❢ ❡①♣r❡ss✐✈✐t② ❛♥❞ ❝♦♠♣✉t❛t✐♦♥❛❧
❞❡❝✐❞❛❜✐❧✐t②✳ ❍❡r❡ ✇❡ ♠❛❦❡ ❛ ❝❤♦✐❝❡ t♦ ✉s❡ t❤❡ ❉▲❘✲▲✐t❡ ❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝ ❬✶✽✱ ✶✹❪
s✐♥❝❡ ✐t ❛❧s♦ ❛❧❧♦✇s ❛ ❞✐r❡❝t ❝♦♥♥❡❝t✐♦♥ t♦ ❛ ❞❛t❛❜❛s❡ s❝❤❡♠❛ ❛♥❞ r❡❧❛t✐♦♥❛❧
t❛❜❧❡s ♥❡❡❞❡❞ ✐♥ t❤❡ s❡❝♦♥❞ st❡♣ ♦❢ q✉❡r②✐♥❣✳ ❈♦♥❝❡♣ts ❛r❡ ❞❡✜♥❡❞ ❜② m✲❛r②
r❡❧❛t✐♦♥s ❝♦♥♥❡❝t❡❞ t♦ s❡ts ♦❢ t✉♣❧❡s ❢r♦♠ ❛ ❞❛t❛❜❛s❡ ❛♥❞ r✉❧❡s ❝❛♥ ❜❡ ❡①♣r❡ss❡❞
❜② ♥❛t✉r❛❧ s✉❜s✉♠♣t✐♦♥ ❜❡t✇❡❡♥ ❝♦♥❝❡♣ts✳ ■♥ t❤✐s ✇❛②✱ t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ t❤❡
❛r❣✉♠❡♥ts ✐s ❝❧♦s❡❧② r❡❧❛t❡❞ t♦ t❤❡ ❞♦♠❛✐♥ ♦❢ ❞❡✜♥✐t✐♦♥ ♦❢ ❛ ❞❛t❛❜❛s❡✱ ❛♥❞ t❤❡
r❡s✉❧t ♦❢ t❤❡ ❛r❣✉♠❡♥t❛t✐♦♥ ♣r♦❝❡ss ❝❛♥ ❜❡ ❞✐r❡❝t❧② ❤❛r♥❡ss❡❞ ✐♥ t❤❡ q✉❡r②✐♥❣
♣❤❛s❡✳ ❋♦r ❡❛❝❤ ❝r✐t❡r✐♦♥ ❡①♣r❡ss❡❞ t❤r♦✉❣❤ s✉r✈❡②s✱ t❤❡ st❛❦❡❤♦❧❞❡rs ✐❞❡♥t✐✜❡❞
t❤❡ r❡❛s♦♥s t❤❛t ❥✉st✐❢② t❤❡✐r ❝❤♦✐❝❡ ✇❤✐❝❤ ✇❡r❡ ♠♦❞❡❧❧❡❞ ❛s ❛r❣✉♠❡♥ts ♣r♦s
♦r ❝♦♥s s♦♠❡ ❝❤♦✐❝❡s ♦r ✈❛❧✉❡s✳ ❚❤❡② ❝❛♥ ❥✉st✐❢② ✇❤② ❛ ♣❛❝❦❛❣✐♥❣ ✐s ❜❡tt❡r
t❤❛♥ ❛♥♦t❤❡r ❛♥❞ ❝❛♥ ❜❡ t❤❡♥ ✉s❡❞ t♦ ❡♥r✐❝❤ t❤❡ ❜✐♣♦❧❛r q✉❡r②✐♥❣ s②st❡♠✳ ❙♦✱
✇❡ ❞❡t❛✐❧ ✐♥ t❤❡ ♥❡①t s❡❝t✐♦♥s ❤♦✇ ❛r❣✉♠❡♥ts ❛r❡ ❧♦❣✐❝❛❧❧② ♠♦❞❡❧❧❡❞ ✇✐t❤✐♥ ❛
str✉❝t✉r❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ s②st❡♠ ❛♥❞ ❤♦✇ t❤❡ ❞❡❧✐✈❡r❡❞ ❥✉st✐✜❡❞ ❝♦♥❝❧✉s✐♦♥s
❝❛♥ ❜❡ ✉s❡❞ ✐♥ t❤❡ q✉❡r②✐♥❣ ♣r♦❝❡ss✳ ■♥ ❈❤❛♣t❡r ✻ ✇❡ s❤♦✇ t✇♦ ♣❛♣❡rs✿

• ❚❤❡ ♣❛♣❡r ✏❈♦♥✢✐❝t✐♥❣ ❱✐❡✇♣♦✐♥t ❘❡❧❛t✐♦♥❛❧ ❉❛t❛❜❛s❡ ◗✉❡r②✲
✐♥❣✿ ❆♥ ❆r❣✉♠❡♥t❛t✐♦♥ ❆♣♣r♦❛❝❤✑ ❜② ◆♦✉r❡❞✐♥❡ ❚❛♠❛♥✐✱ ▼❛❞❛❧✐♥❛
❈r♦✐t♦r✉ ❛♥❞ P❛tr✐❝❡ ❇✉❝❤❡ ❬✻✵❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✻✮ s✉♠✲
♠❛r✐s❡s t❤❡ ✉s❡ ♦❢ ❛r❣✉♠❡♥t❛t✐♦♥ ✐♥ ❊❝♦❇✐♦❈❛♣ ❛♥❞ ♣r♦✈✐❞❡s
r❡❧❛t❡❞ t❤❡♦r❡t✐❝❛❧ ✇♦r❦ ♣♦✐♥t❡rs✳

✷✺

• ■♥ t❤❡ ♣❛♣❡r ✏❊❝♦✲❊✣❝✐❡♥t P❛❝❦❛❣✐♥❣ ▼❛t❡r✐❛❧ ❙❡❧❡❝t✐♦♥ ❢♦r
❋r❡s❤ Pr♦❞✉❝❡✿ ■♥❞✉str✐❛❧ ❙❡ss✐♦♥✑ ❜② ◆♦✉r❡❞✐♥❡ ❚❛♠❛♥✐✱ P❛tr✐✲
❝✐♦ ▼♦ss❡✱ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉✱ P❛tr✐❝❡ ❇✉❝❤❡✱ ❱❛❧❡r✐❡ ●✉✐❧❧❛r❞✱
❈❛r♦❧❡ ●✉✐❧❧❛✉♠❡ ❛♥❞ ◆❛t❤❛❧✐❡ ●♦♥t❛r❞ ❬✻✶❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣✲
t❡r ✻✮ ✇❡ s❤♦✇ t❤❡ ❛r❝❤✐t❡❝t✉r❡ ♦❢ ♦✉r ❉❙❙ ❜❛s❡❞ ♦♥ ❛r❣✉♠❡♥✲
t❛t✐♦♥✳

✸✳✸ ■◆❘❆ ❈❊P■❆ ❆■❈ ❚✽✵ ✲ ❚✻✺

❚❤❡ ❝❛s❡ ♦❢ st✉❞② ❝♦♥s✐❞❡r❡❞ ✐♥ t❤✐s ♣r♦❥❡❝t r❡❧❛t❡s t♦ t❤❡ ❞❡❜❛t❡ ❛r♦✉♥❞ t❤❡
❝❤❛♥❣❡ ♦❢ ❛s❤ ❝♦♥t❡♥t ✐♥ ✢♦✉r ✉s❡❞ ❢♦r ❝♦♠♠♦♥ ❋r❡♥❝❤ ❜r❡❛❞✳ ❱❛r✐♦✉s ❛❝t♦rs
♦❢ t❤❡ ❛❣r♦♥♦♠② s❡❝t♦r ❛r❡ ❝♦♥❝❡r♥❡❞✱ ✐♥ ♣❛rt✐❝✉❧❛r t❤❡ ▼✐♥✐str② ❢♦r ❍❡❛❧t❤
t❤r♦✉❣❤ ✐ts r❡❝♦♠♠❡♥❞❛t✐♦♥s ✇✐t❤✐♥ t❤❡ ❢r❛♠❡✇♦r❦ ♦❢ t❤❡ P◆◆❙ ✭✏◆❛t✐♦♥❛❧
Pr♦❣r❛♠ ❢♦r ◆✉tr✐t✐♦♥ ❛♥❞ ❍❡❛❧t❤✑✮✱ t❤❡ ♠✐❧❧❡rs✱ t❤❡ ❜❛❦❡rs✱ t❤❡ ♥✉tr✐t✐♦♥✐sts
❛♥❞ t❤❡ ❝♦♥s✉♠❡rs✳

❚❤❡ P◆◆❙ r❡❝♦♠♠❡♥❞s t♦ ♣r✐✈✐❧❡❣❡ t❤❡ ✇❤♦❧❡✲❣r❛✐♥ ❝❡r❡❛❧ ♣r♦❞✉❝ts ❛♥❞
✐♥ ♣❛rt✐❝✉❧❛r t♦ ♣❛ss t♦ ❛ ❝♦♠♠♦♥ ❜r❡❛❞ ♦❢ ❚✽✵ t②♣❡✱ ✐✳❡✳✱ ♠❛❞❡ ✇✐t❤ ✢♦✉r
❝♦♥t❛✐♥✐♥❣ ❛♥ ❛s❤ ❝♦♥t❡♥t ✭♠✐♥❡r❛❧ ♠❛tt❡r r❛t❡✮ ♦❢ ✵✳✽✪✱ ✐♥st❡❛❞ ♦❢ t❤❡ t②♣❡
❚✻✺ ✭✵✳✻✺✪ ♦❢ ♠✐♥❡r❛❧ ♠❛tt❡r✮ ❝✉rr❡♥t❧② ✉s❡❞✳ ■♥❝r❡❛s✐♥❣ t❤❡ ❛s❤ ❝♦♥t❡♥t ❝♦♠❡s
❞♦✇♥ t♦ ✉s✐♥❣ ❛ ♠♦r❡ ❝♦♠♣❧❡t❡ ✢♦✉r✱ s✐♥❝❡ ♠✐♥❡r❛❧ ♠❛tt❡r ✐s ❝♦♥❝❡♥tr❛t❡❞ ✐♥ t❤❡
♣❡r✐♣❤❡r❛❧ ❧❛②❡rs ♦❢ t❤❡ ✇❤❡❛t ❣r❛✐♥✱ ❛s ✇❡❧❧ ❛s ❛ ❣♦♦❞ ❛♠♦✉♥t ♦❢ ❝♦♠♣♦♥❡♥ts
♦❢ ♥✉tr✐t✐♦♥❛❧ ✐♥t❡r❡st ✭✈✐t❛♠✐♥s✱ ✜❜r❡s✮✳ ❍♦✇❡✈❡r✱ t❤❡ ♣❡r✐♣❤❡r❛❧ ❧❛②❡rs ♦❢ t❤❡
❣r❛✐♥ ❛r❡ ❛❧s♦ ❡①♣♦s❡❞ t♦ t❤❡ ♣❤②t♦s❛♥✐t❛r② ♣r♦❞✉❝ts✱ ✇❤✐❝❤ ❞♦❡s ♥♦t ♠❛❦❡ t❤❡♠
❛❞✈✐s❛❜❧❡ ❢r♦♠ ❛ ❤❡❛❧t❤ ♣♦✐♥t ♦❢ ✈✐❡✇✱ ✉♥❧❡ss ♦♥❡ ✉s❡s ♦r❣❛♥✐❝ ✢♦✉r✳

❖t❤❡r ❛r❣✉♠❡♥ts ✭❛♥❞ ♦❢ ✈❛r✐♦✉s ♥❛t✉r❡✮ ❛r❡ ✐♥ ❢❛✈♦✉r ♦r ❞✐s❝r❡❞✐t ✇❤♦❧❡✲
❣r❛✐♥ ❜r❡❛❞✳ ❋r♦♠ ❛♥ ♦r❣❛♥♦❧❡♣t✐❝ ♣♦✐♥t ♦❢ ✈✐❡✇ ❢♦r ❡①❛♠♣❧❡✱ t❤❡ ❜r❡❛❞ ❧♦s❡s ♦✉t
✐♥ ✐ts ✏❜❡✐♥❣ ❝r✉st②✑✳ ❋r♦♠ ❛ ♥✉tr✐t✐♦♥❛❧ ♣♦✐♥t ♦❢ ✈✐❡✇✱ t❤❡ ❛r❣✉♠❡♥t ❛❝❝♦r❞✐♥❣
t♦ ✇❤✐❝❤ t❤❡ ✜❜r❡s ❛r❡ ❜❡♥❡✜❝✐❛❧ ❢♦r ❤❡❛❧t❤ ✐s ❞✐s❝✉ss❡❞✱ s♦♠❡ ✜❜r❡s ❝♦✉❧❞ ✐rr✐t❛t❡
t❤❡ ❞✐❣❡st✐✈❡ s②st❡♠✳ ❋r♦♠ ❛♥ ❡❝♦♥♦♠✐❝ ♣♦✐♥t ♦❢ ✈✐❡✇✱ t❤❡ ❜❛❦❡rs ❢❡❛r s❡❧❧✐♥❣ ❧❡ss
❜r❡❛❞✱ ❜❡❝❛✉s❡ ✇❤♦❧❡✲❣r❛✐♥ ❜r❡❛❞ ✐♥❝r❡❛s❡s s❛t✐❡t② ✕ ✇❤✐❝❤ ✐s ❜❡♥❡✜❝✐❛❧ ❢r♦♠ ❛
♥✉tr✐t✐♦♥❛❧ ♣♦✐♥t ♦❢ ✈✐❡✇✱ ❢♦r t❤❡ r❡❣✉❧❛t✐♦♥ ♦❢ t❤❡ ❛♣♣❡t✐t❡ ❛♥❞ t❤❡ ✜❣❤t ❛❣❛✐♥st
❢♦♦❞ ✐♠❜❛❧❛♥❝❡s ❛♥❞ ♣❛t❤♦❧♦❣✐❡s✳ ❍♦✇❡✈❡r ✇❤♦❧❡✲❣r❛✐♥ ❜r❡❛❞ r❡q✉✐r❡s ❛❧s♦ ❧❡ss
✢♦✉r ❛♥❞ ♠♦r❡ ✇❛t❡r ❢♦r ✐ts ♣r♦❞✉❝t✐♦♥✱ t❤✉s r❡❞✉❝✐♥❣ t❤❡ ❝♦st✳ ❚❤❡ ♠✐❧❧❡rs
❛❧s♦ ❢❡❛r ❛ ❞❡❝r❡❛s❡ ✐♥ t❤❡ q✉❛❧✐t② ♦❢ t❤❡ t❡❝❤♥✐❝❛❧ ♠❡t❤♦❞s ✉s❡❞ ✐♥ t❤❡ ✢♦✉r
♣r♦❞✉❝t✐♦♥✳

❇❡②♦♥❞ t❤❡ ♣♦❧❡♠✐❝ ♦♥ t❤❡ ❝❤♦✐❝❡ ❜❡t✇❡❡♥ t✇♦ ❛❧t❡r♥❛t✐✈❡s ✭❚✻✺ ♦r ❚✽✵✮✱
♦♥❡ ❝❛♥ t❛❦❡ t❤❡ ❞❡❜❛t❡ ❢✉rt❤❡r ❜② ❞✐st✐♥❣✉✐s❤✐♥❣ t❤❡ ✈❛r✐♦✉s ♣♦✐♥ts ♦❢ ✈✐❡✇
❝♦♥❝❡r♥❡❞✱ ✐❞❡♥t✐❢②✐♥❣ t❤❡ ❞❡s✐r❛❜❧❡ t❛r❣❡t ❝❤❛r❛❝t❡r✐st✐❝s✱ ❡st✐♠❛t✐♥❣ t❤❡ ♠❡❛♥s
♦❢ r❡❛❝❤✐♥❣ t❤❛t ♣♦✐♥t✳ ❚❤❡ ❝♦♥tr✐❜✉t✐♦♥ ♦❢ ♦✉r ✇♦r❦ ✐s s❤♦✇✐♥❣ ❤♦✇ ✉s✐♥❣
❛r❣✉♠❡♥t❛t✐♦♥ ❝❛♥ ❤❡❧♣ t♦✇❛r❞s s✉❝❤ ♣r❛❝t✐❝❛❧ ❣♦❛❧s✳

❘❡✈❡rs❡ ❡♥❣✐♥❡❡r✐♥❣ ✐s ❦♥♦✇♥ t♦ ❜❡ ❝❤❛❧❧❡♥❣✐♥❣ ❢r♦♠ ❛ ♠❡t❤♦❞♦❧♦❣✐❝❛❧ ✈✐❡✇✲
♣♦✐♥t ❞✉❡ t♦ t❤❡ ❞✐✣❝✉❧t② ♦❢ ❞❡✜♥✐♥❣ t❤❡ s♣❡❝✐✜❝❛t✐♦♥s ❢♦r t❤❡ ❡①♣❡❝t❡❞ ✜♥✐s❤❡❞
♣r♦❞✉❝t✳ ❚❤❡ ❞❡s✐r❡❞ q✉❛❧✐t② ❝r✐t❡r✐❛ ❛r❡ ♠✉❧t✐♣❧❡✱ q✉❡st✐♦♥❛❜❧❡✱ ❛♥❞ ♥♦t ♥❡❝❡s✲
s❛r✐❧② ❝♦♠♣❛t✐❜❧❡✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ ✐♠♣❛❝t ♦❢ ❞✐✛❡r❡♥t st❡♣s ♦❢ ❢♦♦❞ ♣r♦❝❡ss✐♥❣

✷✻

❛♥❞ t❤❡✐r ♦r❞❡r ✐s ♥♦t ❝♦♠♣❧❡t❡❧② ❦♥♦✇♥✳ ❙♦♠❡ st❡♣s ❛r❡ ♠♦r❡ st✉❞✐❡❞ t❤❛♥
♦t❤❡rs✱ s❡✈❡r❛❧ s✉❝❝❡ss✐✈❡ st❡♣s ❝❛♥ ❤❛✈❡ ♦♣♣♦s✐t❡ ❡✛❡❝ts ✭♦r ✉♥❦♥♦✇♥ ❡✛❡❝ts✮✱
t❤❡ t❛r❣❡t ❝r✐t❡r✐❛ ♠❛② ❜❡ ♦✉ts✐❞❡ ♦❢ t❤❡ ❝❤❛r❛❝t❡r✐st✐❝s ♦❢ ♣r♦❞✉❝ts✳

❲❡ ♣r♦♣♦s❡❞ ❛ ♠❡t❤♦❞♦❧♦❣② ❝♦♠❜✐♥✐♥❣ t❤❡ r❡✈❡rs❡ ❡♥❣✐♥❡❡r✐♥❣ ❛♥❞ ❧♦❣✐❝❛❧
❜❛s❡❞ ❛r❣✉♠❡♥t❛t✐♦♥ ❢♦r s❡❧❡❝t✐♥❣ t❤❡ ❛❝t✐♦♥s t♦ t❛❦❡ t♦✇❛r❞s t❤❡ ❛❣r♦♥♦♠②
❛♣♣❧✐❝❛t✐♦♥ ❛t ❤❛♥❞✳ ❲❡ ✉s❡❞ t❤❡ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥
❛♥❞ r❡❛s♦♥✐♥❣ ❢♦r♠❛❧✐s♠ ✭s❡❡ ❈❤❛♣t❡r ✷ ❛♥❞ t❤❡ ❧♦❣✐❝❛❧ ❛r❣✉♠❡♥t❛t✐♦♥ ✐♥st❛♥✲
t✐❛t✐♦♥ ♦❢ ❬✷✽❪✳

❚❤❡ s❡t ♦❢ ❣♦❛❧s✱ ✈✐❡✇♣♦✐♥ts✱ ❛s ✇❡❧❧ ❛s t❤❡ ❦♥♦✇❧❡❞❣❡ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡
❣♦❛❧s ✴✈✐❡✇♣♦✐♥ts ✐s ❡❧✐❝✐t❡❞ ❡✐t❤❡r ❜② t❤❡ ♠❡❛♥s ♦❢ ✐♥t❡r✈✐❡✇s ✇✐t❤ t❤❡ ❞♦♠❛✐♥
❡①♣❡rts ♦r ♠❛♥✉❛❧❧② ❢r♦♠ ❞✐✛❡r❡♥t s❝✐❡♥t✐✜❝ ♣❛♣❡rs✳ ❚❤✐s st❡♣ ♦❢ t❤❡ ❛♣♣❧✐❝❛t✐♦♥
❤❛s ❜❡❡♥ t❤❡ ♠♦st t✐♠❡ ❝♦♥s✉♠✐♥❣ ❜✉t t❤❡ ♠♦st ✐♠♣♦rt❛♥t✳ ■❢ t❤❡ ❦♥♦✇❧❡❞❣❡
❡❧✐❝✐t❡❞ ✐s ♥♦t ❝♦♠♣❧❡t❡✱ s♦✉♥❞ ♦r ♣r❡❝✐s❡ t❤❡ ♦✉t❝♦♠❡ ♦❢ t❤❡ s②st❡♠ ✐s ❝♦♠✲
♣r♦♠✐s❡❞✳ ❚❤❡♥✱ ❜❛s❡❞ ♦♥ t❤❡ ❦♥♦✇❧❡❞❣❡ ❡❧✐❝✐t❡❞ ❢r♦♠ t❤❡ ❦♥♦✇❧❡❞❣❡ ❡①♣❡rts
❛♥❞ t❤❡✐r ❣♦❛❧s✱ ✇❡ ❡♥r✐❝❤ t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ✉s✐♥❣ r❡✈❡rs❡ ❡♥❣✐♥❡❡r✐♥❣ ✭✐♠✲
♣❧❡♠❡♥t❡❞ ✉s✐♥❣ ❜❛❝❦✇❛r❞s ❝❤❛✐♥✐♥❣ ❛❧❣♦r✐t❤♠s ✐✳❡✳✱ ❛❧❣♦r✐t❤♠s t❤❛t ✇♦r❦ ✉♣
❢r♦♠ t❤❡ q✉❡r②✱ ✉s✐♥❣ t❤❡ r✉❧❡s✱ t♦ ❡♥r✐❝❤ t❤❡ s❡t ♦❢ ❢❛❝ts ✐♥ t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡✮✳
P✉tt✐♥❣ t♦❣❡t❤❡r t❤❡ ❡♥r✐❝❤❡❞ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ♦❜t❛✐♥❡❞ ❜② ❜❛❝❦✇❛r❞s ❝❤❛✐♥✐♥❣
❢r♦♠ t❤❡ ❞✐✛❡r❡♥t ❣♦❛❧s ✇✐❧❧ ❧❡❛❞ t♦ ✐♥❝♦♥s✐st❡♥❝✐❡s✳ ❚❤❡ ❛r❣✉♠❡♥t❛t✐♦♥ ♣r♦❝❡ss
✐s ✉s❡❞ ❛t t❤✐s st❡♣ ❛♥❞ t❤❡ ❡①t❡♥s✐♦♥s ②✐❡❧❞ ❜② t❤❡ ❛♣♣❧✐❝❛t✐♦♥s ❝♦♠♣✉t❡❞✳ ❇❛s❡❞
♦♥ t❤❡ ❡①t❡♥s✐♦♥s ❛♥❞ t❤❡ ❛ss♦❝✐❛t❡❞ ✈✐❡✇♣♦✐♥ts ✇❡ ❝❛♥ ✉s❡ ✈♦t✐♥❣ ❢✉♥❝t✐♦♥s t♦
❞❡t❡r♠✐♥❡ t❤❡ ❛♣♣❧✐❝❛t✐♦♥ ❝❤♦✐❝❡ ♦❢ ✈✐❡✇♣♦✐♥ts✳

❚❤❡ ❡✈❛❧✉❛t✐♦♥ ♦❢ t❤❡ s②st❡♠ ✐♠♣❧❡♠❡♥t❡❞ ✇❛s ❞♦♥❡ ✈✐❛ ❛ s❡r✐❡s ♦❢ ✐♥t❡r✲
✈✐❡✇s ✇✐t❤ ❞♦♠❛✐♥ ❡①♣❡rts✳ ❚❤❡ ❛❜♦✈❡ ❦♥♦✇❧❡❞❣❡ ❛♥❞ r❡❛s♦♥✐♥❣ ♣r♦❝❡❞✉r❡s
✇❡r❡ ✐♠♣❧❡♠❡♥t❡❞ ✉s✐♥❣ t❤❡ ❈♦❣✉✐ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ t♦♦❧ ✇✐t❤ ❛♥ ❡①✲
t❡♥s✐♦♥ ♦❢ ✷✵✵✵ ❧✐♥❡s ♦❢ s✉♣♣❧❡♠❡♥t❛❧ ❝♦❞❡✳ ❚❤r❡❡ ❡①♣❡rts ❤❛✈❡ ✈❛❧✐❞❛t❡❞ ♦✉r
❛♣♣r♦❛❝❤✿ t✇♦ r❡s❡❛r❝❤❡rs ✐♥ ❢♦♦❞ s❝✐❡♥❝❡ ❛♥❞ ❝❡r❡❛❧ t❡❝❤♥♦❧♦❣✐❡s ♦❢ t❤❡ ❋r❡♥❝❤
♥❛t✐♦♥❛❧ ✐♥st✐t✉t❡ ♦❢ ❛❣r♦♥♦♠✐❝ r❡s❡❛r❝❤✱ s♣❡❝✐❛❧✐sts r❡s♣❡❝t✐✈❡❧② ♦❢ t❤❡ ❣r❛✐♥✲t♦✲
✢♦✉r tr❛♥s❢♦r♠❛t✐♦♥ ♣r♦❝❡ss ❛♥❞ ♦❢ t❤❡ ❜r❡❛❞♠❛❦✐♥❣ ♣r♦❝❡ss✱ ❛♥❞ ♦♥❡ ✐♥❞✉str✐❛❧
❡①♣❡rt ✲ t❤❡ ♣r❡s✐❞❡♥t ♦❢ t❤❡ ❋r❡♥❝❤ ◆❛t✐♦♥❛❧ ■♥st✐t✉t❡ ♦❢ ❇r❡❛❞ ❛♥❞ P❛str②✳

❚✇♦ ✐♥t❡r❡sts ♦❢ t❤❡ ❛♣♣r♦❛❝❤ ✇❡r❡ ♠♦r❡ ♣❛rt✐❝✉❧❛r❧② ❤✐❣❤❧✐❣❤t❡❞✳ ❚❤❡② ❝♦♥✲
❝❡r♥ ❝♦❣♥✐t✐✈❡ ❝♦♥s✐❞❡r❛t✐♦♥s✳ ❋✐rst✱ ❡①♣❡rts ✇❡r❡ ❝♦♥s❝✐♦✉s t❤❛t t❤❡ ❡❧✐❝✐t❛t✐♦♥
♣r♦❝❡❞✉r❡ ✇❛s ❞♦♥❡ ❛❝❝♦r❞✐♥❣ t♦ t❤❡✐r t❤♦✉❣❤t ♣r♦❝❡ss❡s✳ ❚❤❡ s②st❡♠ ✇❛s t❤✉s
❛❜❧❡ t♦ r❡st✐t✉t❡ t❤❡ ❦♥♦✇❧❡❞❣❡ ✐♥ ❛ ❞✐✛❡r❡♥t ♠❛♥♥❡r t❤❛♥ t❤❡ ❡①♣❡rts ✉s✉❛❧❧②
❞♦✳ ❙❡❝♦♥❞❧②✱ ❢r♦♠ ❛ ♣r♦❜❧❡♠ t❤❛t ❝♦✉❧❞ ✐♥✐t✐❛❧❧② s❡❡♠ s✐♠♣❧❡✱ t❤❡ ❡①♣❡rts r❡✲
❛❧✐s❡❞ t❤❛t ✐t ❝♦✈❡r❡❞ ❛ ❤✉❣❡ ❝♦♠♣❧❡①✐t② t❤❛t ❛ ❤✉♠❛♥ ♠✐♥❞ ❝♦✉❧❞ ❤❛r❞❧② ❛❞❞r❡ss
❛❧♦♥❡✳ ❚❤❡ t♦♦❧ ✐s ❝✉rr❡♥t❧② ❛✈❛✐❧❛❜❧❡ t♦ t❤❡♠ ✉♥❞❡r r❡str✐❝t❡❞ ❛❝❝❡ss✳

■♥ t❤❡ ♣❛♣❡r ✏❉❡❝✐s✐♦♥ s✉♣♣♦rt ❢♦r ❛❣r✐✲❢♦♦❞ ❝❤❛✐♥s✿ ❆ r❡✈❡rs❡
❡♥❣✐♥❡❡r✐♥❣ ❛r❣✉♠❡♥t❛t✐♦♥✲❜❛s❡❞ ❛♣♣r♦❛❝❤✑ ❜② ❘❛❧❧♦✉ ❚❤♦♠♦♣♦✉❧♦s✱
▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❛♥❞ ◆♦✉r❡❞✐♥❡ ❚❛♠❛♥✐ ❬✻✷❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣t❡r
✻✮ ✇❡ ❢✉❧❧② ❞❡s❝r✐❜❡ t❤❡ t❡❝❤♥✐❝❛❧ ❞❡t❛✐❧s ❛♥❞ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❡❞
✇✐t❤✐♥ t❤✐s ❛♣♣❧✐❝❛t✐♦♥✳

✷✼

✸✳✹ ❋r❡♥❝❤ ❆◆❘ ❉❯❘✲❉❯❘

❚❤❡ ❆◆❘ ❉❯❘❉❯❘ ♣r♦❥❡❝t ❛✐♠s ❛t r❡✲♦r❣❛♥✐s✐♥❣ t❤❡ ❞✉r✉♠ ✇❤❛t ❛❣r✐❢♦♦❞
❝❤❛✐♥ ✐♥ t❤❡ ❛✐♠ ♦❢ ❧♦✇❡r✐♥❣ ♣❡st✐❝✐❞❡ ✉s❡ ❛♥❞ ✐♥❝r❡❛s✐♥❣ ♣r♦❞✉❝t✐✈✐t② ❛♥❞ ✇❤❡❛t
❞✐s❡❛s❡ r❡s✐st❛♥❝❡✳ ❚❤❡ ♣r♦❥❡❝t ♦♥❧② st❛rt❡❞ ❛t t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ ✷✵✶✹ t❤✉s t❤❡ ❞♦✲
♠❛✐♥ ✐♥❢♦r♠❛t✐♦♥ ✐s st✐❧❧ s❝❛r❝❡✳ ❚❤✐s ✐s t❤❡ r❡❛s♦♥ ✇❤② t❤❡ ❛♣♣r♦❛❝❤ ♣r❡s❡♥t❡❞
s♦ ❢❛r ✭❛♥❞ ✉♥❞❡r ✐♠♣❧❡♠❡♥t❛t✐♦♥✮ ✐s ♣✉r❡❧② t❤❡♦r❡t✐❝❛❧✳ ❇✉t t❤❡ ❛♣♣r♦❛❝❤ ❛❞✲
❞r❡ss❡s ❛ ❦❡② ❛s♣❡❝t ♦❢ ❦♥♦✇❧❡❞❣❡ ❝❛♣✐t❛❧✐s❛t✐♦♥ ✐♥ t❤✐s s❡tt✐♥❣✿ ❤♦✇ t♦ ❡①♣❧❛✐♥
❦♥♦✇❧❡❞❣❡ r❡❛s♦♥✐♥❣ r❡s✉❧ts t♦ ❞♦♠❛✐♥ ❡①♣❡rts✱ ♥♦t ♥❡❝❡ss❛r✐❧② ❧♦❣✐❝✐❛♥s✳ ❚❤❡
t❛s❦ ✐s ❡✈❡♥ ♠♦r❡ ❞❛✉♥t✐♥❣ ❜❡❝❛✉s❡ t❤❡ ❦♥♦✇❧❡❞❣❡ ✉s❡❞ ❛s ❛ ❜❛❝❦❜♦♥❡ ❢♦r r❡❛✲
s♦♥✐♥❣ ✐s ✐♥❝♦♥s✐st❡♥t ❛♥❞ t❤✉s ❞✐✛❡r❡♥t ✐♥❝♦♥s✐st❡♥❝② t♦❧❡r❛♥t ♠❡❝❤❛♥✐s♠s ♥❡❡❞
t♦ ❜❡ ❡♠♣❧♦②❡❞ ✐♥ ♦r❞❡r t♦ ♣❡r❢♦r♠ ❞❡❞✉❝t✐♦♥✳

❲❡ ❛❞❞r❡ss t❤❡ ♣r♦❜❧❡♠ ♦❢ ♣r♦✈✐❞✐♥❣ ❡①♣❧❛♥❛t✐♦♥ ❢❛❝✐❧✐t✐❡s ❢♦r q✉❡r② ❛♥✲
s✇❡r✐♥❣ ✭q✉❡r② ❛❝❝❡♣t❛♥❝❡ ❛♥❞ q✉❡r② ❢❛✐❧✉r❡✮ ✐♥ t❤❡ ♦♥t♦❧♦❣②✲❜❛s❡❞ ❞❛t❛

❛❝❝❡ss ✭❖❇❉❆✮ s❡tt✐♥❣ ✉♥❞❡r ✐♥❝♦♥s✐st❡♥❝②✲t♦❧❡r❛♥t s❡♠❛♥t✐❝s ✭❡①♣❧❛✐♥❡❞ ✐♥
❈❤❛♣t❡r ✷✮✳ ◗✉❡r② ❛♥s✇❡r✐♥❣ ✉♥❞❡r t❤❡s❡ s❡♠❛♥t✐❝s ♠❛② ♥♦t ❜❡ ✐♥t✉✐t✐✈❡❧②
str❛✐❣❤t❢♦r✇❛r❞ ❛♥❞ ❝❛♥ ❧❡❛❞ t♦ ❧♦ss ♦❢ ✉s❡r✬s tr✉st ❛♥❞ s❛t✐s❢❛❝t✐♦♥✱ ❛✛❡❝t✐♥❣ t❤❡
s②st❡♠✬s ✉s❛❜✐❧✐t② ❬✹✹❪✳ ▼♦r❡♦✈❡r✱ ❡①♣❧❛♥❛t✐♦♥ ❢❛❝✐❧✐t✐❡s s❤♦✉❧❞ ♥♦t ❥✉st ❛❝❝♦✉♥t
❢♦r ✉s❡r✬s ✏❲❤② ◗ ❄✑ q✉❡st✐♦♥ ✭✇❤② ❛ q✉❡r② ❤♦❧❞s ✉♥❞❡r ❛ ❣✐✈❡♥ ✐♥❝♦♥s✐st❡♥❝②✲
t♦❧❡r❛♥t s❡♠❛♥t✐❝s✮ ❜✉t ❛❧s♦ ❢♦r q✉❡st✐♦♥ ❧✐❦❡ ✏❲❤② ♥♦t ◗❄✑ ✭✇❤② ❛ q✉❡r② ❞♦❡s
♥♦t ❤♦❧❞ ✉♥❞❡r ❛ ❣✐✈❡♥ s❡♠❛♥t✐❝s✮✳

●✐✈❡♥ ❛♥ ✐♥❝♦♥s✐st❡♥t ❖❇❉❆ s❡tt✐♥❣ ❡q✉✐♣♣❡❞ ✇✐t❤ ❛♥ ✐♥❝♦♥s✐st❡♥❝②✲t♦❧❡r❛♥t
s❡♠❛♥t✐❝s ❛♥❞ ❣✐✈❡♥ ❛ ❜♦♦❧❡❛♥ ❝♦♥❥✉♥❝t✐✈❡ q✉❡r② Q ✇❡ ❝♦♥s✐❞❡r t✇♦ q✉❡r② ❛♥✲
s✇❡r✐♥❣ ♣r♦❜❧❡♠s ❛♥❞ ♥❛♠❡❧②✿ ✭RQ1✮ ✏❲❤② ❞♦❡s Q ❤♦❧❞ ✉♥❞❡r s✉❝❤ s❡♠❛♥t✐❝s❄✑
❛♥❞ ✭RQ2✮ ✏❲❤② Q ❞♦❡s ♥♦t ❤♦❧❞ ✉♥❞❡r s✉❝❤ s❡♠❛♥t✐❝s❄✑✳ ❑♥♦✇❧❡❞❣❡ ❜❛s❡ ❡①✲
♣❧❛♥❛t✐♦♥ t❤❛t t❛❦❡s t❤❡ ❢♦r♠ ♦❢ ❵❏✉st✐✜❝❛t✐♦♥✬ ✐s ♠♦r❡ ❡✛❡❝t✐✈❡ t❤❡♥ ♦t❤❡r t②♣❡
♦❢ ❡①♣❧❛♥❛t✐♦♥ ✭✐✳❡✳ ▲✐♥❡ ♦❢ ❘❡❛s♦♥✐♥❣ ❛♥❞ ❙tr❛t❡❣②✮✳ ❏✉st✐✜❝❛t✐♦♥ ❛❝❝♦r❞✐♥❣ t♦
t❤❡ s✉r✈❡② ✐s ❝♦♥s✐❞❡r❡❞ ❛s ✏t❤❡ ♠♦st ❡✛❡❝t✐✈❡ t②♣❡ ♦❢ ❡①♣❧❛♥❛t✐♦♥✑✳ ❚❤✐s t②♣❡
♦❢ ❡①♣❧❛♥❛t✐♦♥ ❛✐♠s ❛t s❤♦✇✐♥❣ t❤❡ r❡❛s♦♥ ✇❤② ❝❡rt❛✐♥ ❝♦♥❝❧✉s✐♦♥ ❤❛s ❞r❛✇♥ ✐♥
♣❛rt✐❝✉❧❛r ❝✐r❝✉♠st❛♥❝❡✳ ❋♦❧❧♦✇✐♥❣ t❤✐s r❡s✉❧t✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❧♦❣✐❝❛❧ ✐♥st❛♥✲
t✐❛t✐♦♥ ♦❢ ❛♥ ❛r❣✉♠❡♥t❛t✐♦♥ ❢r❛♠❡✇♦r❦ ❢♦r ❖❇❉❆ ❛♥❞ ❡①♣❧♦✐t t❤❡ ❡q✉✐✈❛❧❡♥❝❡
❜❡t✇❡❡♥ ✐♥❝♦♥s✐st❡♥❝② t♦❧❡r❛♥t s❡♠❛♥t✐❝s ❛♥❞ ❛r❣✉♠❡♥t❛t✐♦♥ s❡♠❛♥t✐❝s✳ ❚❤❡
❡①♣❧❛♥❛t✐♦♥ t❛❦❡s t❤❡ ❢♦r♠ ♦❢ ❛ ❞✐❛❧♦❣✉❡ ❜❡t✇❡❡♥ t❤❡ ❯s❡r ❛♥❞ t❤❡ ❘❡❛s♦♥❡r
✇✐t❤ t❤❡ ♣✉r♣♦s❡ ♦❢ ❡①♣❧❛✐♥✐♥❣ t❤❡ q✉❡r② ❢❛✐❧✉r❡✳ ❆t ❡❛❝❤ ❧❡✈❡❧ ♦❢ t❤❡ ❞✐❛❧♦❣✉❡✱
✇❡ ✉s❡ ❧❛♥❣✉❛❣❡✲❜❛s❡❞ ✐♥tr♦❞✉❝❡❞ ♣r✐♠✐t✐✈❡s s✉❝❤ ❛s ❝❧❛r✐✜❝❛t✐♦♥ ❛♥❞ ❞❡❡♣❡♥✐♥❣
t♦ ❢✉rt❤❡r r❡✜♥❡ t❤❡ ❛♥s✇❡r✳

■♥ t❤❡ ♣❛♣❡r ✏◗✉❡r② ❋❛✐❧✉r❡ ❊①♣❧❛♥❛t✐♦♥ ✐♥ ■♥❝♦♥s✐st❡♥t ❑♥♦✇❧✲
❡❞❣❡ ❇❛s❡s ❯s✐♥❣ ❆r❣✉♠❡♥t❛t✐♦♥✑ ❜② ❆❜❞❛❧❧❛❤ ❆r✐♦✉❛✱ ◆♦✉r❡❞✐♥❡
❚❛♠❛♥✐✱ ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉ ❛♥❞ P❛tr✐❝❡ ❇✉❝❤❡ ❬✺❪ ✭❛✈❛✐❧❛❜❧❡ ✐♥ ❈❤❛♣✲
t❡r ✻✮ ✇❡ ♣r♦✈✐❞❡ t❤❡ t❡❝❤♥✐❝❛❧ ❞❡t❛✐❧s ♦❢ t❤✐s ♣r♦♠✐s✐♥❣ ❛♣♣r♦❛❝❤✳

✷✽

✸✳✺ ❋r❡♥❝❤ ❆◆❘ ◗✉❛❧✐♥❝❛

❚❤❡ ❙❯❉❖❈ ✭❝❛t❛❧♦❣✉❡ ❞✉ ❙②st❡♠❡ ❯♥✐✈❡rs✐t❛✐r❡ ❞❡ ❉♦❝✉♠❡♥t❛t✐♦♥✮ ✐s ❛ ❧❛r❣❡
❜✐❜❧✐♦❣r❛♣❤✐❝❛❧ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ♠❛♥❛❣❡❞ ❜② ❆❇❊❙ ✭❆❣❡♥❝❡ ❇✐❜❧✐♦❣r❛♣❤✐q✉❡ ❞❡
❧✬❊♥s❡✐❣♥❡♠❡♥t ❙✉♣❡r✐❡✉r✮✳ ❚❤❡ ❙❯❉❖❈ ❝♦♥t❛✐♥s ≈ 10.000.000 ❞♦❝✉♠❡♥t ❞❡✲
s❝r✐♣t✐♦♥s✱ ❛♥❞ ≈ 2.000.000 ♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥s✳ ❆ ♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥ ♣♦ss❡ss❡s
s♦♠❡ ❛ttr✐❜✉t❡s ✭♣♣♥✶✱ ❛♣♣❡❧❧❛t✐♦♥ s❡t✱ ❞❛t❡ ♦❢ ❜✐rt❤✳✳✳✮✳ ❆ ❞♦❝✉♠❡♥t ❞❡s❝r✐♣✲
t✐♦♥ ❛❧s♦ ♣♦ss❡ss❡s s♦♠❡ ❛ttr✐❜✉t❡s ✭t✐t❧❡✱ ♣♣♥✱ ❧❛♥❣✉❛❣❡✱ ♣✉❜❧✐❝❛t✐♦♥ ❞❛t❡✳✳✳✮
❛♥❞ ❛ ❧✐♥❦ t♦ ❛ ♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥✳ ❆ ❧✐♥❦ ✐s ❧❛❜❡❧❡❞ ❜② ❛ r♦❧❡ ✭s✉❝❤ ❛s ❛✉t❤♦r✱
✐❧❧✉str❛t♦r ♦r t❤❡s✐s ❛❞✈✐s♦r✮ ❛♥❞ ♠❡❛♥s t❤❛t t❤❡ ♣❡rs♦♥ ❤❛s ♣❛rt✐❝✐♣❛t❡❞ ❛s t❤❡
❧❛❜❡❧❧❡❞ r♦❧❡ t♦ t❤❡ ❞♦❝✉♠❡♥t✳

❖♥❡ ♦❢ t❤❡ ♠♦st ✐♠♣♦rt❛♥t t❛s❦s ❢♦r ❆❇❊❙ ❡①♣❡rts ✐s t♦ r❡❢❡r❡♥❝❡ ❛ ♥❡✇ ❜♦♦❦
✐♥ ❙❯❉❖❈✳ ❚♦ t❤✐s ❡♥❞✱ t❤❡ ❡①♣❡rt ❤❛s t♦ r❡❣✐st❡r t❤❡ t✐t❧❡✱ ♥✉♠❜❡r ♦❢ ♣❛❣❡s✱
t②♣❡s ♦❢ ♣✉❜❧✐❝❛t✐♦♥ ❞♦♠❛✐♥s✱ ❧❛♥❣✉❛❣❡✱ ♣✉❜❧✐❝❛t✐♦♥ ❞❛t❡✱ ❛♥❞ s♦ ♦♥✳ ❚❤✐s ♥❡✇
❞❡s❝r✐♣t✐♦♥ r❡♣r❡s❡♥ts t❤❡ ♣❤②s✐❝❛❧ ❜♦♦❦s ✐♥ t❤❡ ❧✐❜r❛r✐❛♥ ❤❛♥❞s ✇❤✐❝❤ ❤❡✴s❤❡
✐s r❡❣✐st❡r✐♥❣✳ ❍❡✴s❤❡ ❛❧s♦ ❤❛s t♦ r❡❣✐st❡r ♣❡♦♣❧❡ ✇❤✐❝❤ ♣❛rt✐❝✐♣❛t❡❞ t♦ t❤❡
❜♦♦❦✬s ❝r❡❛t✐♦♥✳ ■♥ ♦r❞❡r t♦ ❞♦ t❤❛t✱ ❢♦r ❡❛❝❤ ❝♦♥tr✐❜✉t♦r✱ ❤❡✴s❤❡ s❡❧❡❝ts ❡✈❡r②
♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥ ✇❤✐❝❤ ❤❛s ❛♥ ❛♣♣❡❧❧❛t✐♦♥ s✐♠✐❧❛r t♦ t❤❡ ❜♦♦❦ ❝♦♥tr✐❜✉t♦r✳
❯♥❢♦rt✉♥❛t❡❧②✱ t❤❡r❡ ✐s ♥♦t t❤❛t ♠✉❝❤ ✐♥❢♦r♠❛t✐♦♥ ✐♥ ♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥s ❜❡❝❛✉s❡
t❤❡ ❧✐❜r❛r✐❛♥ ♣♦❧✐t✐❝s ✐s t♦ ❣✐✈❡ ♠✐♥✐♠❛❧ ✐♥❢♦r♠❛t✐♦♥✱ s♦❧❡❧② ✐♥ ♦r❞❡r t♦ ❞✐st✐♥❣✉✐s❤
t✇♦ ♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥s ✇❤✐❝❤ ❤❛✈❡ t❤❡ s❛♠❡ ❛♣♣❡❧❧❛t✐♦♥✱ ❛♥❞ ♥♦t❤✐♥❣ ♠♦r❡
✭t❤❡② r❡❢❡r❡♥❝❡ ❜♦♦❦s✱ ♥♦t ♣❡♦♣❧❡✮✳ ❙♦ t❤❡ ❧✐❜r❛r✐❛♥ ❤❛s t♦ ❧♦♦❦ ❛t ❞♦❝✉♠❡♥t
❞❡s❝r✐♣t✐♦♥ ✇❤✐❝❤ ❛r❡ ❧✐♥❦❡❞ ✐♥ ♦r❞❡r t♦ s❡❡ ✇❤❡t❤❡r t❤❡ ❜♦♦❦ ✐♥ ❤✐s✴❤❡r ❤❛♥❞s
s❡❡♠s t♦ ❜❡ ❛ ♣❛rt ♦❢ t❤❡ ❜✐❜❧✐♦❣r❛♣❤② ♦❢ ❛ ♣❛rt✐❝✉❧❛r ❝❛♥❞✐❞❛t❡✳ ■❢ ✐t ✐s t❤❡ ❝❛s❡✱
❤❡✴s❤❡ ❧✐♥❦s t❤❡ ♥❡✇ ❞♦❝✉♠❡♥t ❞❡s❝r✐♣t✐♦♥ t♦ t❤✐s ❝❛♥❞✐❞❛t❡ ❛♥❞ ❧♦♦❦s ❛t t❤❡
♥❡①t ✉♥❧✐♥❦❡❞ ❝♦♥tr✐❜✉t♦r✳ ■❢ t❤❡r❡ ✐s ♥♦ ❣♦♦❞ ❝❛♥❞✐❞❛t❡✱ ❤❡✴s❤❡ ❝r❡❛t❡s ❛ ♥❡✇
♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥ t♦ r❡♣r❡s❡♥t t❤❡ ❝♦♥tr✐❜✉t♦r✳

❚❤✐s t❛s❦ ✐s ❢❛st✐❞✐♦✉s ❜❡❝❛✉s❡ ✐t ✐s ♣♦ss✐❜❧❡ t♦ ❤❛✈❡ ❛ ❧♦t ♦❢ ❝❛♥❞✐❞❛t❡s ❢♦r ❛
s✐♥❣❧❡ ❝♦♥tr✐❜✉t♦r ✭❛s ♠✉❝❤ ❛s ✷✼ ❢♦r ❛ ❝♦♥tr✐❜✉t♦r ♥❛♠❡❞ ❇❡r♥❛r❞ ❆❧❛✐♥✮✳ ❚❤✐s
❝r❡❛t❡s ❡rr♦rs✱ ✇❤✐❝❤ ✐♥ t✉r♥ ❝❛♥ ❝r❡❛t❡ ♥❡✇ ❡rr♦rs s✐♥❝❡ ❧✐♥❦✐♥❣ ✐s ❛♥ ✐♥❝r❡♠❡♥✲
t❛❧ ♣r♦❝❡ss✳ ■♥ ♦r❞❡r t♦ ❤❡❧♣ ❡①♣❡rts t♦ r❡♣❛✐r ❡rr♦♥❡♦✉s ❧✐♥❦s✱ ✇❡ ♣r♦♣♦s❡❞ t✇♦
♣❛rt✐t✐♦♥✐♥❣ s❡♠❛♥t✐❝s ✐♥ ❬✸✸❪ ✇❤✐❝❤ ❡♥❛❜❧❡ ✉s t♦ ❞❡t❡❝t ❡rr♦♥❡♦✉s ❧✐♥❦s ✐♥ ❜✐❜✲
❧✐♦❣r❛♣❤✐❝ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳ ❆ ♣❛rt✐t✐♦♥✐♥❣ s❡♠❛♥t✐❝s ❡✈❛❧✉❛t❡s ❛♥❞ ❝♦♠♣❛r❡s
♣❛rt✐t✐♦♥s ♦❢ ❡❧❡♠❡♥ts ❝♦✉♣❧❡s ✭♣❡rs♦♥ ❞❡s❝r✐♣t✐♦♥✱ ❞♦❝✉♠❡♥t ❞❡s❝r✐♣t✐♦♥✮✳

■♥ t❤❡ ♣❛♣❡r ✏❆♥ ❛♥❛❧②s✐s ♦❢ t❤❡ ❙❯❉❖❈ ❜✐❜❧✐♦❣r❛♣❤✐❝ ❦♥♦✇❧❡❞❣❡
❜❛s❡ ❢r♦♠ ❛ ❧✐♥❦ ✈❛❧✐❞✐t② ✈✐❡✇♣♦✐♥t✑ ❜② ▲❡❛ ●✉✐③♦❧✱ ❖❧✐✈✐❡r ❘♦✉ss❡❛✉①✱
▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉✱ ❨❛♥♥ ◆✐❝♦❧❛s ❛♥❞ ❆❧✐♥❡ ▲❡ Pr♦✈♦st ❬✸✹❪ ✭❛✈❛✐❧✲
❛❜❧❡ ✐♥ ❈❤❛♣t❡r ✻✮ ✇❡ ♣r❛❝t✐❝❛❧❧② ❡✈❛❧✉❛t❡ t❤❡ q✉❛❧✐t❛t✐✈❡ r❡s✉❧ts ♦❢
♣❛rt✐t✐♦♥✐♥❣ s❡♠❛♥t✐❝s ♦♥ ❛ r❡❛❧ ❙❯❉❖❈ s❛♠♣❧❡✳ ▲❡t ✉s ♠❡♥t✐♦♥
t❤❛t t❤✐s ✇♦r❦ ❤❛s ❜❡❡♥ ❞♦♥❡ ✇✐t❤✐♥ t❤❡ P❤❉ t❤❡s✐s ♦❢ ▲❡❛ ●✉✐③♦❧
s✉♣❡r✈✐s❡❞ ❜② ▼❛❞❛❧✐♥❛ ❈r♦✐t♦r✉✳

✶❆ ♣♣♥ ✐❞❡♥t✐✜❡s ❛ ❞❡s❝r✐♣t✐♦♥✳

✷✾

✸✵

❈❤❛♣t❡r ✹

P❡rs♣❡❝t✐✈❡s

✹✳✶ ■♥tr♦❞✉❝t✐♦♥

❚❤✐s ❝❤❛♣t❡r ❞❡t❛✐❧s t❤❡ ❝✉rr❡♥t ❛♥❞ ❢✉t✉r❡ r❡s❡❛r❝❤ ❛❝t✐✈✐t✐❡s ■ ❝✉rr❡♥t❧② ✇♦r❦
♦♥ ❛♥❞ ♣❧❛♥ t♦ ✉♥❞❡rt❛❦❡ ♥❡①t✳ ▼② ❧♦♥❣ t❡r♠ r❡s❡❛r❝❤ ♣❧❛♥ ✐s t♦ ❜✉✐❧❞ ❛♥
✉♥✐✜❡❞ ♣❧❛t❢♦r♠ ❢♦r ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥✲
❝♦♥s✐st❡♥❝②✳ ■ ♣❧❛♥ t♦ t❡st ❛♥❞ ❡✈❛❧✉❛t❡ t❤❡ ♣r❛❝t✐❝❛❧ ♥❡❡❞ ♦❢ t❤✐s ♣❧❛t❢♦r♠ ✐♥
t❤❡ ❛❣r♦♥♦♠② ❞♦♠❛✐♥✳

❚❤✐s ❝❤❛♣t❡r ✐s str✉❝t✉r❡❞ ❛s ❢♦❧❧♦✇s✳ ■ st❛rt ❜② ♣r❡s❡♥t✐♥❣ t❤❡ s♣❡❝✐✜❝✐t✐❡s
♦❢ t❤❡ ❛❣r♦♥♦♠② ❞♦♠❛✐♥ ❛♥❞ ✇❤② r❡❛s♦♥✐♥❣ ✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝② ✐s ❛
❦❡② ❛s♣❡❝t ♦❢ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ✐♥ t❤✐s ✜❡❧❞ ✭❙❡❝t✐♦♥ ✹✳✷✮✳
❆ ♣r♦❥❡❝t ❢♦r s✉❝❤ ❛ ♣❧❛t❢♦r♠ ✐s t❤❡♥ ♣r❡s❡♥t❡❞ ✐♥ ❙❡❝t✐♦♥ ✹✳✸✳ ❖❢ ❝♦✉rs❡ t❤✐s
♣❧❛t❢♦r♠ ✇✐❧❧ ❡✈♦❧✈❡ ✐♥ t❤❡ ❝♦✉rs❡ ♦❢ t❤❡ ♥❡①t ②❡❛rs ❛s ❞✐s❝✉ss❡❞ ✐♥ t❤❡ ✜♥❛❧
s❡❝t✐♦♥ ♦❢ t❤❡ ❝❤❛♣t❡r✱ ❙❡❝t✐♦♥ ✹✳✹✳

✹✳✷ ❆♣♣❧✐❝❛t✐♦♥ ❙❡tt✐♥❣

❆ ♣r✐✈✐❧❡❣❡❞ ❞♦♠❛✐♥ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ♠② ✇♦r❦ ✐♥ t❤❡ ♣❛st t✇♦ ②❡❛rs ❤❛s ❜❡❡♥
❛❣r♦♥♦♠②✳ ❚❤❡ ❝❤♦✐❝❡ ♦❢ t❤❡ ❛❣r♦♥♦♠② ❞♦♠❛✐♥ ❛s ❛ ❢♦❝✉s ✐s ♠♦t✐✈❛t❡❞ ❜♦t❤ ❜②
t❤❡ ❧♦❝❛❧ ❝♦♥t❡①t ♦❢ ■◆❘■❆ ●r❛♣❤■❑ ♣r♦❥❡❝t ❣r♦✉♣ ✭s♦♠❡ ♠❡♠❜❡rs ♦❢ ●r❛♣❤■❑
❛r❡ ❛❧s♦ ♠❡♠❜❡rs ♦❢ t❤❡ ❯▼❘ ■❆❚❊✮ ❛♥❞ ❜② ✐ts ❛❞❡q✉❛t✐♦♥ ✐♥ t❡r♠s ♦❢ r❡s❡❛r❝❤
❝❤❛❧❧❡♥❣❡s✳ ❚❤❡ ❝❤❛❧❧❡♥❣❡s ✐♥ t❤❡ ❛❣r♦♥♦♠② ✜❡❧❞ s❡❡♠ t♦ ❜❡ ♣❛rt✐❝✉❧❛r❧② ✇❡❧❧✲
❛❞❛♣t❡❞ t♦ ❛rt✐✜❝✐❛❧ ✐♥t❡❧❧✐❣❡♥❝❡ t❡❝❤♥✐q✉❡s✳ ❙♦ ❢❛r t❤❡r❡ ❛r❡ ♥♦ ♠❛t❤❡♠❛t✐❝❛❧
♠♦❞❡❧s ❛✈❛✐❧❛❜❧❡ t♦ s♦❧✈❡ t❤❡ ♣r♦❜❧❡♠s r❡❧❛t❡❞ t♦ t❤❡ q✉❛❧✐t② ♦❢ ❛❣r✐❢♦♦❞ ❝❤❛✐♥s✳
❚❤❡✐r s♣❡❝✐✜❝✐t② ✐s t❤❛t s✉❝❤ ♣r♦❜❧❡♠s ♥❡❡❞ t♦ ❜❡ st❛t❡❞ ❛t ❛ ❝♦♥❝❡♣t✉❛❧ ❧❡✈❡❧✳
❋✉rt❤❡r♠♦r❡✱ s♦❧✈✐♥❣ t❤❡s❡ ♣r♦❜❧❡♠s r❡q✉✐r❡s ❛♥ ✐♥t❡❣r❛t❡❞ ❛♣♣r♦❛❝❤ t❤❛t t❛❦❡s
✐♥t♦ ❛❝❝♦✉♥t ❡①♣❡rt ❦♥♦✇❧❡❞❣❡✱ ✇❤✐❝❤ ✐s t②♣✐❝❛❧❧② s②♠❜♦❧✐❝✱ ❛s ✇❡❧❧ ❛s ♥✉♠❡r✐❝
❞❛t❛✱ ✈❛❣✉❡ ♦r ✉♥❝❡rt❛✐♥ ✐♥❢♦r♠❛t✐♦♥ ❛♥❞ ♠✉❧t✐✲❣r❛♥✉❧❛r✐t② ❦♥♦✇❧❡❞❣❡✳

■♥ ❛❣r✐❢♦♦❞ ❝❤❛✐♥s✱ t❤❡ ♣r♦❞✉❝ts tr❛❞✐t✐♦♥❛❧❧② ❣♦ t❤r♦✉❣❤ t❤❡ ✐♥t❡r♠❡❞✐❛t❡

✸✶

st❛❣❡s ♦❢ ♣r♦❝❡ss✐♥❣✱ st♦r❛❣❡✱ tr❛♥s♣♦rt✱ ♣❛❝❦❛❣✐♥❣ ❛♥❞ r❡❛❝❤ t❤❡ ❝♦♥s✉♠❡r ✭t❤❡
❞❡♠❛♥❞✮ ❢r♦♠ t❤❡ ♣r♦❞✉❝❡r ✭t❤❡ s✉♣♣❧②✮✳ ❉✉❡ t♦ ❛♥ ✐♥❝r❡❛s❡ ✐♥ q✉❛❧✐t② ❝♦♥✲
str❛✐♥ts✱ s❡✈❡r❛❧ ♣❛rt✐❡s ❛r❡ ✐♥✈♦❧✈❡❞ ✐♥ ♣r♦❞✉❝t✐♦♥ ♣r♦❝❡ss✱ s✉❝❤ ❛s ❝♦♥s✉♠❡rs✱
✐♥❞✉str✐❛❧s✱ ❤❡❛❧t❤ ❛♥❞ s❛♥✐t❛r② ❛✉t❤♦r✐t✐❡s✱ ❡t❝✳ ❡①♣r❡ss✐♥❣ t❤❡✐r r❡q✉✐r❡♠❡♥ts
♦♥ t❤❡ ✜♥❛❧ ♣r♦❞✉❝t ❛s ❞✐✛❡r❡♥t ♣♦✐♥t ♦❢ ✈✐❡✇s ✇❤✐❝❤ ❝♦✉❧❞ ❜❡ ❝♦♥✢✐❝t✐♥❣✳ ❲❡
❛❝❝❡♣t t❤❛t s❡✈❡r❛❧ ❝♦♠♣❧❡♠❡♥t❛r② ♣♦✐♥ts ♦❢ ✈✐❡✇ ✲ ♣♦ss✐❜❧② ❝♦♥tr❛❞✐❝t♦r② ✲ ❝❛♥
❜❡ ❡①♣r❡ss❡❞ ✭♥✉tr✐t✐♦♥❛❧✱ ❡♥✈✐r♦♥♠❡♥t❛❧✱ t❛st❡✱ ❡t❝✳✮✳ ❲❡ t❤❡♥ ♥❡❡❞ t♦ ❛ss❡ss
t❤❡✐r ❝♦♠♣❛t✐❜✐❧✐t② ✭♦r ✐♥❝♦♠♣❛t✐❜✐❧✐t②✮ ❛♥❞ ✐❞❡♥t✐❢② s♦❧✉t✐♦♥s s❛t✐s❢②✐♥❣ ❛ ♠❛①✲
✐♠✉♠ s❡t ♦❢ ✈✐❡✇♣♦✐♥ts✳

❊❧✐❝✐t✐♥❣ ✭❣❛t❤❡r✐♥❣ ❦♥♦✇❧❡❞❣❡ ❢r♦♠ ✉s❡rs✮ ❦♥♦✇❧❡❞❣❡ ✐♥ s✉❝❤ s❡tt✐♥❣ ✐s ❛
❧♦♥❣ ♣r♦❝❡ss ✐♥✈♦❧✈✐♥❣ ♠✉❧t✐♣❧❡ ❛♥❞ ♣♦t❡♥t✐❛❧❧② ❝♦♥✢✐❝t✐♥❣ ✈✐❡✇♣♦✐♥ts ❛♥❞ ❛❝✲
t♦rs✳ ❑♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ♥❡❡❞s t♦ ❢♦❧❧♦✇ ❛ ❧❛♥❣✉❛❣❡ ✇❤✐❝❤ ✐s ❡❛s✐❧② ✐♥✲
t❡r♦♣❡r❛❜❧❡ ✇✐t❤ ♦t❤❡r ♣♦t❡♥t✐❛❧❧② ✉s❡❢✉❧ ❦♥♦✇❧❡❞❣❡ r❡♣♦s✐t♦r✐❡s ♦❢ t❤❡ st✉❞✐❡❞
✜❡❧❞✳ ❖♥❡ ♦❢ t❤❡ ♠❛✐♥ ❛s♣❡❝ts ♦❢ s✉❝❤ r❡♣r❡s❡♥t❛t✐♦♥ ❡✛♦rt ✐s t❤❡ ❝❛♣✐t❛❧✐s❛t✐♦♥
♥❡❡❞✳ ❈❤♦♦s✐♥❣ t❤❡ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❧❛♥❣✉❛❣❡ ❛❞❛♣t❡❞ ❢♦r t❤❡ ❛♣♣❧✐✲
❝❛t✐♦♥ ❛t ❤❛♥❞ ✐♥ s✉❝❤ ✇❛② t❤❛t t❤❡ r❡♣r❡s❡♥t❡❞ ❦♥♦✇❧❡❞❣❡ ❝❛♥ ❜❡♥❡✜t ❢r♦♠
s✐♠✐❧❛r ❡✛♦rts✱ ❛♥❞ t❤❛t ✐t ❝❛♥ ❜❡ ❢✉rt❤❡r r❡✲✉s❡❞ ❜② ♦t❤❡r ❛♣♣❧✐❝❛t✐♦♥s ✐s ❛♥
✐♠♣♦rt❛♥t ♣♦✐♥t t♦ ❝♦♥s✐❞❡r ✐♥ t❤✐s s❡tt✐♥❣✳

❖♥❝❡ t❤❡ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ st❡♣ ♦✈❡r✱ r❡❛s♦♥✐♥❣ ❝❛♣❛❜✐❧✐t✐❡s s❤♦✉❧❞
❜❡ ♠❛❞❡ ❛✈❛✐❧❛❜❧❡✳ ❘❡❛s♦♥✐♥❣ ✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝② ❝❛♥ ❜❡ ❞❡❛❧t ✇✐t❤ ✐♥
t✇♦ ✇❛②s✿ ✜①✐♥❣ t❤❡ ✐♥❝♦♥s✐st❡♥❝② ♦r ❧✐✈✐♥❣ ✇✐t❤ t❤❡ ✐♥❝♦♥s✐st❡♥❝②✳

❚❤❡ ✜rst ❛❧t❡r♥❛t✐✈❡ ✐♥❝❧✉❞❡s s❡✈❡r❛❧ ♠❡t❤♦❞s ❢r♦♠ ❧✐❢t✐♥❣ t♦ ❛ ♠♦r❡ ❣❡♥❡r❛❧
❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❧❛♥❣✉❛❣❡ t♦ ❞❡❧❡t✐♥❣ ♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡ ♦r ❛❞❞✐♥❣
♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡✳ P❧❡❛s❡ ♥♦t❡ t❤❛t ❞❡❧❡t✐♥❣ ♣✐❡❝❡s ♦❢ ❦♥♦✇❧❡❞❣❡✱ ✐♥ ❝❡rt❛✐♥
❝❛s❡s ✐s ♥♦t ✐❞❡❛❧ ❢♦r ♦✉r ❛♣♣❧✐❝❛t✐♦♥ s✐♥❝❡ ✐t ♠❡❛♥s ❞❡❧❡t✐♥❣ s♦♠❡ ❦♥♦✇❧❡❞❣❡
t❤❛t t❤❡ ❡①♣❡rts ♣✉r♣♦s❡❧② r❡♣r❡s❡♥t❡❞ ✐♥ t❤❡ s②st❡♠✳

❚❤❡ s❡❝♦♥❞ ❝❛s❡ ♣r❡s❡♥ts ♠❛♥② ♣♦ss✐❜✐❧✐t✐❡s✳ ❙♦ ❢❛r✱ ❛s ♠❡t❤♦❞s ♦❢ r❡❛s♦♥✐♥❣
✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝②✱ ■ ❤❛✈❡ ❝♦♥s✐❞❡r❡❞ ❛r❣✉♠❡♥t❛t✐♦♥✱ ❜❡❧✐❡❢ r❡✈✐s✐♦♥
❛♥❞ ❞❡❢❛✉❧t ❧♦❣✐❝s✳ ❊❛❝❤ ❝♦♠❡ ✇✐t❤ t❤❡✐r ♦✇♥ s♣❡❝✐✜❝ ✐♥❝♦♥s✐st❡♥❝② ❤❛♥❞❧✐♥❣
✉s❡ ❝❛s❡✿ ❛r❣✉♠❡♥t❛t✐♦♥ ❤❛s ❜❡❡♥ ❡①t❡♥s✐✈❡❧② ✐♥✈❡st✐❣❛t❡❞ ❛s ❛♥ ✐♥❝♦♥s✐st❡♥❝②
❤❛♥❞❧✐♥❣ ❢r❛♠❡✇♦r❦ ❞✉❡ t♦ ✐ts ❡①♣❧❛♥❛t♦r② ♣♦✇❡r✱ ❜❡❧✐❡❢ r❡✈✐s✐♦♥ ❝♦♥s✐❞❡rs t❤❡
s❝❡♥❛r✐♦ ♦❢ ❛❞❞✐♥❣ ✴ ❞❡❧❡t✐♥❣ ✐♥❢♦r♠❛t✐♦♥ ✇❤✐❧❡ ❞❡❢❛✉❧t ❧♦❣✐❝s ❝♦♥❝❡r♥ ✐♥❝♦♠♣❧❡t❡
✐♥❢♦r♠❛t✐♦♥ ✭❛♥❞ t❤✉s t❤✐s ❦✐♥❞ ♦❢ ♠❡t❤♦❞ ❝♦✉❧❞ ❜❡ ✉s❡❞ ✐♥ t✐❣❤t ❝♦✉♣❧✐♥❣ ✇✐t❤
t❤❡ ✜rst ♠❡t❤♦❞✮✳

❲❡ ✇✐❧❧ s❤♦✇ ✐♥ t❤❡ ♥❡①t s❡❝t✐♦♥ ❤♦✇ ✇❡ ❡♥✈✐s❛❣❡ t♦ ❜✉✐❧❞ ❛ ❦♥♦✇❧❡❞❣❡ r❡♣✲
r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ♣❧❛t❢♦r♠ t❤❛t ✇✐❧❧ ♠❛❦❡ ✉s❡ ♦❢ ❛❧❧ t❤❡s❡ ♠❡t❤♦❞s ✐♥ ❛
♣❛rt✐❝✉❧❛r ❧♦❣✐❝❛❧❧② ✐♥st❛♥t✐❛t❡❞ ❝❛s❡ ❡q✉✐✈❛❧❡♥t t♦ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✳ ❋✉rt❤❡r✲
♠♦r❡✱ r❡❛s♦♥✐♥❣ ✇✐❧❧ ❜❡ ✉s❡❞ ✐♥ ♦r❞❡r t♦ ❞✐r❡❝t t❤❡ ❦♥♦✇❧❡❞❣❡ ❡❧✐❝✐t❛t✐♦♥ ♣r♦❝❡ss
❛♥❞✱ ✇❤❡♥ ♣♦ss✐❜❧❡✱ ❧✐❢t s♦♠❡ ✐♥❝♦♥s✐st❡♥❝✐❡s✳

✸✷

✹✳✸ ❯♥✐✜❡❞ ■♥❝♦♥s✐st❡♥❝② ❘❡❛s♦♥✐♥❣

❚❤❡ ♣r✐♠❛r② ❛♥❞ ✐♥♥♦✈❛t✐♦♥❛❧ ❛✐♠ ♦❢ ♠② ♣r♦❥❡❝t ✐s t♦ ♣r♦✈✐❞❡ ❛♥ ✉♥✐✜❡❞ ♠❡t❤♦❞✲
♦❧♦❣② ♦❢ ❡❧✐❝✐t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ✐♥ ♣r❡s❡♥❝❡ ♦❢ ❞❛t❛ ✐♥❝♦♥s✐st❡♥❝②✳

❚❤✐s ✇✐❧❧ ❜❡ ❞♦♥❡ ❜② t✇♦ ♠❡❛♥s✿

• ❊❧✐❝✐t✐♥❣ ♥❡✇ ❦♥♦✇❧❡❞❣❡ t♦ ❧✐❢t✱ ✐❢ ♣♦ss✐❜❧❡✱ t❤❡ ✐♥❝♦♥s✐st❡♥❝②✳ ❇② t❤❡
♠❡❛♥s ♦❢ ❛✉t♦♠❛t✐❝❛❧❧② ❣❡♥❡r❛t❡❞ ❡①♣❧❛♥❛t✐♦♥s ❢♦r s✉❝❤ ✐♥❝♦♥s✐st❡♥❝✐❡s ✕
t❛r❣❡t✐♥❣ t❤❡ ✐♥❝♦♥s✐st❡♥t s✉❜s❡ts ♦❢ ❦♥♦✇❧❡❞❣❡ ✭❝♦♥✢✐❝t s❡ts✮✕ ♥❡✇ ❦♥♦✇❧✲
❡❞❣❡ ❝❛♥ ❜❡ ❡❧✐❝✐t❡❞ ❢r♦♠ t❤❡ ❡♥❞ ✉s❡r✳ ❚❤❡ ♥❡✇ ❦♥♦✇❧❡❞❣❡ ♥❡❡❞s t♦ ❜❡
✐♥❝♦r♣♦r❛t❡❞ ✐♥ t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ✐♥ ❛ s❡♠❛♥t✐❝ ❛♥❞ ♣r✐♥❝✐♣❧❡❞ ♠❛♥♥❡r✳

• ❆♥s✇❡r q✉❡r✐❡s ✐♥ ♣r❡s❡♥❝❡ ♦❢ s✉❝❤ ✐♥❝♦♥s✐st❡♥❝✐❡s ❛♥❞ ❡①♣❧❛✐♥ t❤❡ q✉❡r②
❛♥s✇❡rs✳

❙✉❝❤ ❛♣♣r♦❛❝❤ ✐s ❜❛s❡❞ ♦♥ ❛ ❣✐✈❡♥ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣
❧♦❣✐❝❛❧ ❧❛♥❣✉❛❣❡✳ ■ ♣❧❛♥ t♦ ✉s❡ t❤❡ ❧♦❣✐❝❛❧ s✉❜s❡t ❡q✉✐✈❛❧❡♥t t♦ ❈♦♥❝❡♣t✉❛❧
●r❛♣❤s ❣✐✈❡♥ t❤❡✐r ❣r❛♣❤✲❜❛s❡❞ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ♠❡❝❤❛♥✐s♠s ✭❛♥❞
t❤❡ ✐♥t❡r❛❝t✐♦♥ ✇✐t❤ ♦t❤❡r ❙❡♠❛♥t✐❝ ❲❡❜ ❧❛♥❣✉❛❣❡s ✈✐❛ t❤❡ ❈♦❣✉✐ ♣❧❛t❢♦r♠✮✳
❚❤❡ r❡❛s♦♥✐♥❣ ✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝② ❝❛♥ ✉s❡ s❡✈❡r❛❧ ♠❡t❤♦❞s s✉❝❤ ❛s
❛r❣✉♠❡♥t❛t✐♦♥✱ ❜❡❧✐❡❢ r❡✈✐s✐♦♥ ❛♥❞ ♥♦♥✲♠♦♥♦t♦♥✐❝ ❧♦❣✐❝s s✉❝❤ ❛s ❞❡❢❛✉❧t ❧♦❣✐❝s✳
▲❡t ✉s ❤✐❣❤❧✐❣❤t ❛t t❤✐s ♣♦✐♥t t❤❛t t❤❡ ❡❧✐❝✐t❛t✐♦♥ ❜❛s❡❞ ♦♥ t❤❡ ✐♥❝♦♥s✐st❡♥❝② ❝❛♥
♦♥❧② ❤❛♣♣❡♥ ✐❢ t❤❡ ♣r♦❝❡ss ✐s ❣✉✐❞❡❞ ❜② ❛ ❤✐❣❤ ❧❡✈❡❧ ✈✐❡✇ ♣♦✐♥t r❡❛s♦♥✐♥❣ ✭✇❤✐❝❤
✐♥ t✉r♥ ❝❛♥ ♠❛❦❡ ✉s❡ ♦❢ ❛r❣✉♠❡♥t❛t✐♦♥ t❡❝❤♥✐q✉❡s✮ ❛♥❞ t❤❛t ✇✐❧❧ ❣✉✐❞❡ t❤❡ ❜❡❧✐❡❢
r❡✈✐s✐♦♥ ♣r♦❝❡ss✳ ❆ ❤✐❣❤ ❧❡✈❡❧ ♦✈❡r✈✐❡✇ ♦❢ t❤❡ ♣r♦♣♦s❡❞ ♣r♦❥❡❝t ✐s ❣✐✈❡♥ ✐♥ ❋✐❣✉r❡
✹✳✶✳

❇❡❢♦r❡ s✉❝❤ t♦♦❧ ❝❛♥ ❜❡ ❜✉✐❧t ♦♥❡ ♠✉st ✜rst ❢❛❝❡ ✐♠♣♦rt❛♥t ❢♦✉♥❞❛t✐♦♥❛❧
❝❤❛❧❧❡♥❣❡s✿

• ❑♥♦✇❧❡❞❣❡ ❆❝q✉✐s✐t✐♦♥ ❛♥❞ ❊❧✐❝✐t❛t✐♦♥✿ ❋✐♥❞ ❛ s❡♠✐ ❛✉t♦♠❛t✐❝ ♠❡t❤♦❞ ❢♦r
❡①tr❛❝t✐♥❣ ❞✐✛❡r❡♥t ❦♥♦✇❧❡❞❣❡ ✭r✉❧❡s✱ ❢❛❝ts✱ ❝♦♥str❛✐♥ts✮ ❢r♦♠ ❝♦♥tr♦❧❧❡❞
♥❛t✉r❛❧ ❧❛♥❣✉❛❣❡ t❡①t ❡♥t❡r❡❞ ❜② ❞♦♠❛✐♥ ❡①♣❡rts✳

• ●✐✈❡♥ ❛ ❦♥♦✇❧❡❞❣❡ ❜❛s❡✱ ❞❡✈✐s❡ ❛❧❣♦r✐t❤♠s t♦ ❡✣❝✐❡♥t❧② ✐❞❡♥t✐❢② ✐ts ♠✐♥✐✲
♠❛❧ ✐♥❝♦♥s✐st❡♥t s✉❜s❡ts✳

• Pr♦♣♦s❡ ❡①♣❧❛♥❛t✐♦♥ str❛t❡❣✐❡s ✐♥ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ❛♥❞ ❡✈❛❧✉❛t❡ t❤❡✐r ♣r❛❝✲
t✐❝❛❧ ❛♣♣❡❛❧ t♦ ❞♦♠❛✐♥ ❡①♣❡rts✳

• ❯s❡ t❤❡ ❡①♣❧❛♥❛t✐♦♥ ❢♦r t❤❡ ✐♥❝♦♥s✐st❡♥❝② ❛s t❤❡ ❜❛s✐s t♦ ❡❧✐❝✐t❛t❡ ♥❡✇
❦♥♦✇❧❡❞❣❡✳

• ■♥❝♦r♣♦r❛t❡ ♥❡✇ ❦♥♦✇❧❡❞❣❡ ✐♥t♦ t❤❡ s②st❡♠ ❛♥❞ ❛ss❡ss ❝♦♥s✐st❡♥❝②✳

• ❘❡❛s♦♥ ✭❡✈❡♥t✉❛❧❧② ✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝②✮ ❛♥❞ ❡①♣❧❛✐♥ q✉❡r② ❛♥✲
s✇❡r✐♥❣ r❡s✉❧ts✳

✸✸

❋✐❣✉r❡ ✹✳✶✿ ❍②❡♥❛ Pr♦❥❡❝t ❍✐❣❤ ▲❡✈❡❧ ❖✈❡r✈✐❡✇

❲❡ st❛rt❡❞ t❤✐s ②❡❛r t♦ ❞❡✈❡❧♦♣ ❍②❡♥❛ ✭❍❨❜r✐❞ ❦♥♦✇❧❊❞❣❡ r❡❛s♦◆✐♥❣ ❛♥❞
r❡♣r❡s❡♥t❆t✐♦♥✮✱ ❛ ❤②❜r✐❞ ♣❧❛t❢♦r♠ ✇❤✐❝❤ ❛❧❧♦✇s t♦ ❡❧✐❝✐t✱ r❡♣r❡s❡♥t✱ r❡❛s♦♥ ✇✐t❤
❛♥❞ ❡①♣❧❛✐♥ ✐♥❝♦♥s✐st❡♥❝② ✐♥ ❙❡♠❛♥t✐❝ ❲❡❜ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳

❲❡ ❢♦❧❧♦✇ ❛ r✉❧❡✲❜❛s❡❞ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ♦♥t♦❧♦❣✐❡s ❛♥❞ ❜❛s❡ ♦✉r ✇♦r❦ ♦♥
t❤❡ ❆❧❛s❦❛ ♣❧❛t❢♦r♠ ✭s❡❡ ❙❡❝t✐♦♥ ✷✳✷✳✷✮✳ ❍②❡♥❛ r❡❧✐❡s ♦♥ ✜✈❡ ♠♦❞✉❧❡s ✭❞❡♣✐❝t❡❞
✐♥ ❋✐❣✉r❡✹✳✷✮✿

✶✳ ❚❤❡ ❑♥♦✇❧❡❞❣❡ ❇❛s❡ ▼♦❞✉❧❡✳ ❚❤❡ ✉s❡r ✐♠♣♦rts ❛ ❑♥♦✇❧❡❞❣❡ ❇❛s❡ ✉s✐♥❣
t❤❡ ❆▲❆❙❑❆ ▼❛♥❛❣❡r✱ ✇❤✐❝❤ st♦r❡s ✐t ✐♥ ❛♥ ❆▲❆❙❑❆ ♣r♦❥❡❝t✳ ❯s❡rs
✐♠♣♦rt ❑♥♦✇❧❡❞❣❡ ❇❛s❡s ❢r♦♠ ❞✐✛❡r❡♥t ✜❧❡s✿ ❋❛❝ts ❛r❡ ✐♠♣♦rt❡❞ ❢r♦♠
❘❉❋ ❛♥❞ ◆✸ ✜❧❡s✱ ✇❤✐❧❡ ❘✉❧❡s ❛♥❞ ◆❡❣❛t✐✈❡ ❈♦♥str❛✐♥ts ❛r❡ ✐♠♣♦rt❡❞
❢r♦♠ ❉❛t❛❧♦❣ ✜❧❡s✳

✷✳ ❚❤❡ ❱✐s✉❛❧✐s❛t✐♦♥ ▼♦❞✉❧❡✳ ❚❤❡ ❱✐s✉❛❧✐s❛t✐♦♥ ▼♦❞✉❧❡✱ ✇❤✐❝❤ ✉s❡s t❤❡ ♣♦♣✲
✉❧❛r ●r❛♣❤✈✐③ ❧✐❜r❛r②✱ ❞✐s♣❧❛②s t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ✐♥ ❛ ❣r❛♣❤✐❝❛❧ ♠❛♥♥❡r
♦♥ t❤❡ s❝r❡❡♥✳

✸✳ ❚❤❡ ❇❡❧✐❡❢ ❘❡✈✐s✐♦♥ ▼♦❞✉❧❡✳ ❚❤❡ ❇❡❧✐❡❢ ❘❡✈✐s✐♦♥ ▼♦❞✉❧❡ ❛❧❧♦✇s ✉♣❞❛t✐♥❣
t❤❡ ✭♣♦ss✐❜❧② ✐♥❝♦♥s✐st❡♥t✮ ❦♥♦✇❧❡❞❣❡ ❜❛s❡✳

✹✳ ❚❤❡ ❘❡❛s♦♥✐♥❣ ▼♦❞✉❧❡✳ ❚❤❡ ❘❡❛s♦♥✐♥❣ ▼♦❞✉❧❡ ❛❧❧♦✇s ❢♦r r❡❛s♦♥✐♥❣ ✐♥
♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝②✳

✺✳ ❚❤❡ ❊①♣❧❛♥❛t✐♦♥ ▼♦❞✉❧❡✳ ❚❤❡ ❊①♣❧❛♥❛t✐♦♥ ▼♦❞✉❧❡ r❡❝❡✐✈❡s t❤❡ q✉❡r② ❛♥❞
♦♥❡ r❡s✉❧t✱ ❛♥❞ ❛♥❛❧②s❡s t❤❡ ✭♣♦ss✐❜❧② ✐♥❝♦♥s✐st❡♥t✮ ❑♥♦✇❧❡❞❣❡ ❇❛s❡ t♦
✉♥❞❡rst❛♥❞ ❤♦✇ t❤❛t r❡s✉❧t ✇❛s r❡❛❝❤❡❞✳

✸✹

❋✐❣✉r❡ ✹✳✷✿ ❍②❡♥❛ ❈❧❛ss ❉✐❛❣r❛♠

■♥ ❋✐❣✉r❡ ✹✳✸ ✇❡ ❞❡♣✐❝t t❤❡ ✇♦r❦✢♦✇ ♦❢ t❤❡ ❍②❡♥❛ ❛r❝❤✐t❡❝t✉r❡✳

❚❤❡ ✉s❡r ✐♥t❡r❛❝ts ✇✐t❤ ❍②❡♥❛✳ ■♥ ♦r❞❡r t♦ r❡❛s♦♥ ✇✐t❤ ❦♥♦✇❧❡❞❣❡ ❛ ❤✐❣❤
❧❡✈❡❧ ✈✐❡✇ ♣♦✐♥t✱ ✜❧t❡r✐♥❣ ✐s ♥❡❡❞❡❞ ✭t❤✐s ✐s ♥❡❡❞❡❞ ✐♥ ❝♦♠♣❧❡① ❞♦♠❛✐♥s ✇❤❡r❡
t❤❡ ♠✉❧t✐t✉❞❡ ♦❢ ✈✐❡✇♣♦✐♥ts ❛♥❞ t❤❡ ✐♥❤❡r❡♥t ❝♦♥✢✐❝t✐♥❣ ✐♥❢♦r♠❛t✐♦♥ t❤❡② ❜r✐♥❣
♠❛❦❡s t❤❡ ✉s❡r q✉❡r②✐♥❣ t❛s❦ ❝♦♥❢✉s✐♥❣✮✳ ❆❢t❡r t❤✐s st❛❣❡✱ r❡❛s♦♥✐♥❣ ✐♥ ♣r❡s✲
❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝② ✐s ♣❡r❢♦r♠❡❞ ❛♥❞ ❡①♣❧❛✐♥❡❞✳ ❚❤✐s r❡❛s♦♥✐♥❣ ✐s ❜❛s❡❞ ♦♥
❛❧t❡r♥❛t✐✈❡ ♠❡t❤♦❞s s✉❝❤ ❛s ♥♦♥✲♠♦♥♦t♦♥✐❝ s♣❡❝✐❛❧❧② ❞❡❞✐❝❛t❡❞ ❦♥♦✇❧❡❞❣❡✱ ❛r✲
❣✉♠❡♥t❛t✐♦♥ ❛♥❞ ❜❡❧✐❡❢ r❡✈✐s✐♦♥✳ ❚❤❡ ❧❛tt❡r ✇✐❧❧ ❤❡❧♣ ✉♣❞❛t❡ t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡
✇✐t❤ ✐♥❢♦r♠❛t✐♦♥ t❤❡ ✉s❡r ♠✐❣❤t ✇❛♥t t♦ ❜r✐♥❣ ❜❛s❡❞ ♦♥ t❤❡ ♣r♦✈✐❞❡❞ ❡①♣❧❛♥❛✲
t✐♦♥s✳

❚✇♦ r❡❝❡♥t t❤❡♦r❡t✐❝❛❧ r❡s✉❧ts s❤♦✉❧❞ ❜❡ r❡♠✐♥❞❡❞✳ ❋✐rst✱ t♦❣❡t❤❡r ✇✐t❤
❏❡r♦♠❡ ❋♦rt✐♥ ❛♥❞ ❆❜❞❛❧❧❛❤ ❆r✐♦✉❛ ❢r♦♠ t❤❡ ●r❛♣❤■❑ ❣r♦✉♣ ✇❡ ✐♥✈❡st✐❣❛t❡❞
❛♥ ❡✣❝✐❡♥t ✭✇✐t❤ r❡s♣❡❝t t♦ t✐♠❡ ❛♥❞ s♣❛❝❡ ❝♦♠♣❧❡①✐t②✮ ♠❛♣♣✐♥❣ ❜❡t✇❡❡♥ ✐♥✲
❝♦♥s✐st❡♥t ♦♥t♦❧♦❣✐❝❛❧ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ✭❡①♣r❡ss❡❞ ✐♥ ❛ ❣❡♥❡r❛❧ r✉❧❡✲❜❛s❡❞ ❧❛♥✲
❣✉❛❣❡✮ ❛♥❞ ❛ ❝❧❛ss ♦❢ ❞❡❢❛✉❧t t❤❡♦r✐❡s ✭s❡♠✐✲♠♦♥♦t♦♥✐❝✱ ♣r❡❝✐s❡❧② ♣r❡r❡q✉✐s✐t❡✲❢r❡❡
❝❧♦s❡❞ ♥♦r♠❛❧ ❞❡❢❛✉❧t t❤❡♦r✐❡s✮✳ ❲❡ ❢♦r♠❛❧❧② ♣r♦✈❡❞ t❤❡ ❡q✉✐✈❛❧❡♥❝❡ ❜❡t✇❡❡♥
t❤❡ ✐♥❝♦♥s✐st❡♥❝②✲t♦❧❡r❛♥t s❡♠❛♥t✐❝s ✐♥ ❖❇❉❆ ❛♥❞ ✐♥❢❡r❡♥❝❡ ✐♥ ❉❡❢❛✉❧t ▲♦❣✐❝ ❛s
✇❡❧❧ t❤❡ ♣r♦♣❡rt② ♦❢ s❡♠✐✲♠♦♥♦t♦♥✐❝✐t② ❢♦r ✐♥❝♦♥s✐st❡♥❝②✲t♦❧❡r❛♥t s❡♠❛♥t✐❝s t❤❛t
❝❛♥ s❡r✈❡ ❛s ❛ ❜❛s✐s ❢♦r ❛♥ ❛♥②t✐♠❡ ❛❧❣♦r✐t❤♠ ❢♦r q✉❡r② ❛♥s✇❡r✐♥❣✳ ❚❤✐s ♠❡❛♥s
t❤❛t ❞❡❢❛✉❧t ❧♦❣✐❝ ✐♥s♣✐r❡❞ ❛❧❣♦r✐t❤♠s ❢♦r r❡♣❛✐r ❛♥❞ ✐♥❝♦♥s✐st❡♥❝② t♦❧❡r❛♥t s❡✲

✸✺

❋✐❣✉r❡ ✹✳✸✿ ❍②❡♥❛ ❲♦r❦✢♦✇

♠❛♥t✐❝s ❛r❡ ♣♦ss✐❜❧❡✳ ❙❡❝♦♥❞✱ t♦❣❡t❤❡r ✇✐t❤ ❘✐❝❛r❞♦ ❘♦❞r✐❣✉❡③ ❢r♦♠ ❯♥✐✈❡rs✐t②
♦❢ ❇✉❡♥♦s ❆✐r❡s ✇❡ ❤❛✈❡ ❜❡❡♥ st✉❞②✐♥❣ t❤❡ ❧✐♥❦ ❜❡t✇❡❡♥ ❜❡❧✐❡❢ r❡✈✐s✐♦♥ ❛♥❞
✐♥❝♦♥s✐st❡♥❝② t♦❧❡r❛♥t s❡♠❛♥t✐❝s ✐♥ ❬✷✹❪✳ ❲❡ s❤♦✇❡❞ ❤♦✇ t♦ ❣❡t ✜rst r❡s✉❧ts
t♦✇❛r❞s ❛♥ ❛①✐♦♠❛t✐❝ ❝❤❛r❛❝t❡r✐s❛t✐♦♥ ♦❢ ❝❡rt❛✐♥ s❡♠❛♥t✐❝s ✭s❡❡ ❈❤❛♣t❡r ✷ ❢♦r
t❤❡✐r ❞❡✜♥✐t✐♦♥s✮✳ ❚❤❡ ❛①✐♦♠❛t✐s❛t✐♦♥ ✇❛s ❞♦♥❡ ❜② ❝♦✈❡r✐♥❣ t❤❡ s❡♠❛♥t✐❝s ✉s✐♥❣
❦♥♦✇♥ ❝♦♥s♦❧✐❞❛t✐♦♥ ♦♣❡r❛t♦rs ❢r♦♠ ❜❡❧✐❡❢ r❡✈✐s✐♦♥✳

✹✳✹ ❋✉t✉r❡ ❉✐r❡❝t✐♦♥s

❚❤❡ ✐♠♠❡❞✐❛t❡ ❧✐♥❡ ♦❢ ✇♦r❦ ❡♥✈✐s❛❣❡❞ ❢♦r ❍②❡♥❛ ✐s ❞❡✈❡❧♦♣✐♥❣ ❛♥❞ ❛♥❛❧②s✐♥❣
♣r♦♣❡rt✐❡s ♦❢ q✉❡r② ❛♥s✇❡r✐♥❣ ❡①♣❧❛♥❛t✐♦♥ ❛❧❣♦r✐t❤♠s✳ ❊✈❡♥t✉❛❧ ♦♣t✐♠✐s❛t✐♦♥s
♦❢ t❤❡s❡ ❛❧❣♦r✐t❤♠s ❝♦✉❧❞ ❜❡ ❡♥✈✐s❛❣❡❞✱ ❢♦r ❡①❛♠♣❧❡ ✇❤❡♥ ❝♦♥s✐❞❡r✐♥❣ ♣r❡❢❡r❡♥❝❡s
❜❡t✇❡❡♥ s❡ts ♦❢ ❛t♦♠s✳ ❙✉❝❤ ♣r❡❢❡r❡♥❝❡s ❝♦✉❧❞ ❜❡ ✐♥t❡r♣r❡t❡❞ ❛s ♣r✐♦r✐t✐❡s ♦✈❡r
t❤❡ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ s❡ts ✐♠♣♦rt❡❞ ✐♥ ❍②❡♥❛✱ ♦r ❜② ❝♦♥s✐❞❡r✐♥❣ ❛♥ ♦r❞❡r✐♥❣ ♦✈❡r
✈✐❡✇♣♦✐♥ts ♦❢ ❡①♣❡rts✳ ❚❤❡♥✱ ✐❢ t❤❡ ♣r❡❢❡r❡♥❝❡ r❡❧❛t✐♦♥ s❛t✐s✜❡s ❝❡rt❛✐♥ ♣r♦♣❡rt✐❡s
♦♥❡ ❝❛♥ s❤♦✇ ✐♥t❡r❡st✐♥❣ ♣r♦♣❡rt✐❡s ♦❢ ✐♥❝♦♥s✐st❡♥❝② t♦❧❡r❛♥t s❡♠❛♥t✐❝s✳ ❚❤✐s
❧❛st ❧✐♥❡ ♦❢ r❡s❡❛r❝❤ ✐s ✐♥✈❡st✐❣❛t❡❞ ✇✐t❤ ❙❧❛✇❡❦ ❙t❛✇♦r❦♦ ❢r♦♠ ❯♥✐✈❡rs✐t② ♦❢
▲✐❧❧❡✳

Pr❡❢❡r❡♥❝❡s ❝♦✉❧❞ ❛❧s♦ ❜❡ ♥✉♠❡r✐❝❛❧ ❛♥❞ t❤❡ ✉s❡ ♦❢ ❢✉③③② ❧♦❣✐❝s ✐♥ t❤✐s s❡tt✐♥❣
❝♦✉❧❞ ❜r✐♥❣ ✐♥t❡r❡st✐♥❣ r❡s✉❧ts✳ ❲❤✐❧❡ t❤❡ ✉s❡ ♦❢ ❛ ❢✉③③② ❧♦❣✐❝ ❢♦r ❧♦✇ ❡①♣r❡s✲
s✐✈❡♥❡ss ❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝s ❤❛s ❛❧r❡❛❞② ❜❡❡♥ ✐♥✈❡st✐❣❛t❡❞ ✐♥ ❊❝♦❇✐♦❈❛♣ ❬✺✽✱ ✺✾❪
❡①t❡♥❞✐♥❣ t❤❡s❡ r❡s✉❧ts t♦ t❤❡ ♠♦r❡ ❡①♣r❡ss✐✈❡ ❢r❛❣♠❡♥t ♦❢ ❧♦❣✐❝s ❝♦✉❧❞ ❜r✐♥❣
♣r♦♠✐s✐♥❣ r❡s❡❛r❝❤ ❛✈❡♥✉❡s✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ t♦♦❧ ❞❡✈❡❧♦♣❡❞ ✐♥ ❊❝♦❇✐♦❈❛♣
❝♦✉❧❞ ❜❡ ❡①t❡♥❞❡❞ t♦ r❡❛s♦♥ ✇✐t❤ ❡①♣r❡ss✐✈❡ r✉❧❡s ❛♥❞ t❤✉s ❜❡ ✐♥❝♦r♣♦r❛t❡❞ ✐♥
t❤❡ ❍②❡♥❛ ✇♦r❦✢♦✇✳

✸✻

❋✐❣✉r❡ ✹✳✹ s❤♦✇s ❛♥ ❡①❛♠♣❧❡ ♦❢ ❤♦✇ ❈♦❣✉✐✱ t❤❡ ❡①♣❧❛♥❛t✐♦♥ ❛❧❣♦r✐t❤♠s ❛♥❞
t❤❡ ❡①t❡♥s✐♦♥ ♦❢ ❊❝♦❇✐♦❈❛♣ t♦♦❧ ❝♦✉❧❞ ❢✉♥❝t✐♦♥ t♦❣❡t❤❡r ❢♦r r❡♣r❡s❡♥t❛t✐♦♥✱
r❡❛s♦♥✐♥❣ ❛♥❞ ❡❧✐❝✐t❛t✐♦♥ ♦❢ ❦♥♦✇❧❡❞❣❡✳

❋✐❣✉r❡ ✹✳✹✿ ❍②❡♥❛ ❲♦r❦✢♦✇ ❊♥r✐❝❤❡❞ ✇✐t❤ ❚♦♦❧s

❆s ♣r❡✈✐♦✉s❧② ♠❡♥t✐♦♥❡❞ ❍②❡♥❛ ✐s ❛ ❧♦♥❣ t❡r♠ ♣r♦❥❡❝t ✇❤✐❝❤ ✐♥t❡r❛❝ts ✇✐t❤
♦t❤❡r ♣r♦❥❡❝ts ❞❡✈❡❧♦♣❡❞ ✐♥ t❤❡ ●r❛♣❤■❑ ❛♥❞ ❆①❡ ✺ ❛t ■❆❚❊ ❣r♦✉♣s✳ ❍②❡♥❛ ❛❧s♦
❜❡❤❛✈❡s ❛s ❝♦♠♣❧❡♠❡♥t t♦ t❤❡ ❝❛♣✐t❛❧✐s❛t✐♦♥ t♦♦❧s ❞❡✈❡❧♦♣❡❞ ✐♥ ❆①❡ ✺✳ ❚❤❡r❡❢♦r❡
✐♥ t❤❡ ❢✉t✉r❡✱ s♣❡❝✐❛❧ ❛tt❡♥t✐♦♥ s❤♦✉❧❞ ❜❡ ❣✐✈❡♥ t♦ t❤❡ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥
❛♥❞ r❡❛s♦♥✐♥❣ ❢♦r♠❛❧✐s♠ ❛♥❞ t❤❡✐r ✐♥t❡r♦♣❡r❛❜✐❧✐t② ♣r♦♣❡rt✐❡s✳ ❚❤✐s s❤♦✉❧❞ ❛❧❧♦✇
❢♦r ✐♥t❡r♦♣❡r❛❜✐❧✐t② ✇✐t❤ ♦t❤❡r ❙❡♠❛♥t✐❝ ❲❡❜ t♦♦❧s ❛s ✇❡❧❧ ❛s t♦♦❧s ❞❡✈❡❧♦♣❡❞ ✐♥
t❤❡ ❣r♦✉♣✳

▲❡t ♠❡ ❝♦♥❝❧✉❞❡ ❜② r❡✲st❛t✐♥❣ t❤❡ ♦❜s❡r✈❛t✐♦♥ ♠❛❞❡ ✐♥ t❤❡ ✐♥tr♦❞✉❝t✐♦♥ ♦❢
t❤✐s t❤❡s✐s✿ r❡s❡❛r❝❤ ✐s ❛♥ ♦♥❧✐♥❡ ♣r♦❝❡ss t❤❛t✱ ✐♥❡✈✐t❛❜❧②✱ ❝♦♥t❛✐♥s ❛ ♣❛rt ♦❢
✉♥❦♥♦✇♥ ❛♥❞ s✉r♣r✐s❡✳ ❲❤✐❧❡ t❤❡ r❡s❡❛r❝❤ ♣r♦❥❡❝t ■ ♣r❡s❡♥t❡❞ ✐s s♦♠❡t❤✐♥❣
t❤❛t ■ ❛♠ ❢✉❧❧② ❞❡❞✐❝❛t❡❞ ❛♥❞ ❝♦♠♠✐tt❡❞ t♦✱ ✐♥ t❡♥ ②❡❛rs ❝❤❛♥❣❡s ✐♥ ❆rt✐✜❝✐❛❧
■♥t❡❧❧✐❣❡♥❝❡ t♦♦❧s ❛♥❞ ♣❛r❛❞✐❣♠s ♠✐❣❤t ❝❤❛♥❣❡ ✐ts ♠❡t❤♦❞♦❧♦❣②✳ ❍♦✇❡✈❡r✱ ■ ❛♠
❝♦♥✜❞❡♥t ✐♥ s❛②✐♥❣ t❤❛t r❡❛s♦♥✐♥❣ ✐♥ ♣r❡s❡♥❝❡ ♦❢ ✐♥❝♦♥s✐st❡♥❝② ❛♥❞ ❡❧✐❝✐t❛t✐♦♥
❛r❡ ❛♥❞ ✇✐❧❧ ❜❡ ❛t t❤❡ ❝♦r❡ ♦❢ ❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ r❡❛s♦♥✐♥❣ ❝❤❛❧❧❡♥❣❡s
✐♥ t❤❡ ②❡❛rs t♦ ❝♦♠❡✳

✸✼

✸✽

❈❤❛♣t❡r ✺

P❛♣❡rs ♦♥ ●r❛♣❤ ❘❡❛s♦♥✐♥❣

✸✾

Visual Reasoning with Graph-based Mechanisms:

the Good, the Better and the Best

Michel Chein, Marie-Laure Mugnier, Madalina Croitoru
LIRMM, 161 rue ADA, F34392 Montpellier Cedex 5, Montpellier, France
E-mail: {chein,mugnier,croitoru}@lirmm.fr

Abstract

This paper presents a graph-based knowledge representation and reasoning language. This

language benefits from an important syntactic operation, which is called a graph homomorphism.

This operation is sound and complete with respect to logical deduction. Hence, it is possible

to do logical reasoning without using the language of logic but only graphical, thus visual,

notions. This paper presents the main knowledge constructs of this language, elementary graph-

based reasoning mechanisms, as well as the graph homomorphism, which encompasses all these

elementary transformations in one global step. We put our work in context by presenting a

concrete semantic annotation application example.

1 Introduction

Knowledge Representation and Reasoning. Knowledge representation and reasoning

(KR) has long been recognized as a central issue in Artificial Intelligence (AI). Very generally

speaking, the problem is how to encode human knowledge and reasoning by symbols that can

be processed by a computer to obtain intelligent behavior. In general, Artificial Intelligence

is concerned with qualitative, rather than quantitative, problem solving. As a basic building

block of AI applications, a knowledge representation formalism should reflect this idea by

supporting reasoning instead of calculation. This is done by organizing the knowledge into an

easily processable form, classifying information by its properties, preprocessing the information,

etc. The subfield of AI precisely called KR especially studies computational models, languages

and systems able to represent knowledge in an explicit way and to do inferences, or reasoning,

on this knowledge.

Even if there have been heated debates about KR in the past, in particular with respect to

the role of logic in KR, there is nowadays an agreement on some important properties of a KR

language, namely: to be logically founded, to allow for a structured representation of knowledge,

to have good computational properties, and to allow users to have a maximal understanding and

control over each step of the knowledge base cycle.

The first point concerns the fact that the language is translatable into a logic: the expressions

should be translatable into sentences of a given logic, and inferences in that language should

correspond to deduction in this logic. In other words, the inference mechanisms should be logically

sound (i.e., every piece of knowledge inferred is deducible in the target logical fragment) and

complete (any piece of knowledge that cannot be inferred cannot be deduced either in the target

logical fragment). This allows to give a precise semantics to expressions and inferences, and to

compare different languages from an expressiveness viewpoint.

Knowledge structuring means that semantically related pieces of knowledge should be grouped

together, and that different kinds of knowledge (such as facts, rules, constraints, goals etc.) should

✹✵

1

be represented by different knowledge constructs. This can be motivated by model adequacy

(i.e., its conformity to the modeling of the application domain) and by computational efficiency

concerns. A large part of KR research can be seen as the search of good tradeoffs between the

expressivity of a representation formalism and the computational complexity of the associated

reasoning.

Knowledge-based Systems. Knowledge-based systems (KBS) are systems, built upon mod-

els, able to represent knowledge in an explicit way and do reasoning with. These systems include

a knowledge base (KB), composed of different kinds of knowledge, and a reasoning engine. The

reasoning engine processes knowledge in the KB to answer a question or to reach a certain goal (for

instance to check the consistency of the KB or to build a sequence of actions in order to achieve a

goal). The cornerstone of the knowledge base is the ontology. From an epistemological viewpoint,

an ontology answers the question “what kinds of things exist in the application domain?” We

consider here computational ontologies, which provide a symbolic representation of classes of

objects, called concepts, as well as the possible relationships between objects, called relations or

roles. All other pieces of knowledge in the KB are expressed by structures built with the ontology

terms (concepts and relations).

Classically, in the building of a knowledge-based system, the first phase consists of knowledge

elicitation: obtaining a system specification expressed in a language understandable by human

beings, so that it can be checked by domain experts. This mediating representation does not need

to be precise, consistent, or complete. Its role is to allow the experts to freely explicit knowledge

and to communicate with others. The second phase consists of translating (the largest possible

part of) this informal representation into a formal representation, expressed in a formal language

provided with reasoning mechanisms, so that it can be checked whether this representation is

consistent and complete with respect to the task to be solved. A major difficulty of this way

of doing is ensuring the faithfulness of the formal representation with respect to the mediating

representation. Checking faithfulness needs a validation and a revision cycle which is usually

long: while the expert understands the mediating representation, this representation cannot be

checked, and he/she does not understand the formal representation provided with the reasoning

tools. One of the solutions proposed in (Shaw and Gaines (1995); Bos et al. (1997)) is to create

mediating representations that are formal: expressing the representation in a language which is

both understandable by human beings and formal and in this way ensuring expert simulation

at an early modeling stage. This is precisely the qualities claimed by our graph-based language

detailed in Section 2.

However, for a KBS to be really used in practice, an essential point is that the user understands

and controls the whole process whose main steps are not only building a knowledge base

and running the KBS (as previously discussed) but also obtaining results. By user, we either

mean an end-user, who may be a knowledge engineer, who builds the KB, or an expert of the

application domain, who uses the implemented representation to check its conformity with her

own representation of the domain, or a user for whom the system has been built and who wants to

solve real problems. It should be easy for this user not only to enter different pieces of knowledge

and to understand their meaning but also to understand the results of the system and how the

system computed these results. The last point, namely the ability of understanding why the

system gives a certain answer, is especially important since the user computing expertise may

vary. Furthermore, for any domain and level of expertise, explaining to the user each step that

makes up the logical inference, generally remains a difficult process.

✹✶

2

A Graph-based Language. In this paper, by “graph” we understand the classical mathemat-

ical notion in graph theory, i.e., a structure that consists of a set of nodes (also called vertices)

and a set of edges that establish relationships (connections) between nodes. Please note that,

regrettably, “graph” in elementary mathematics also refers to a function graph, i.e., a plot.

In the proposed graph-based approach, where all pieces of knowledge are represented by labeled

graphs, the same language is used at all levels and for all KBS functionalities. The benefits of

using graphs for representing knowledge at all levels of the KBS stem from the following:

• Firstly, graphs are simple mathematical objects (they only use elementary naive set theory

notions such as elements, sets and relations) which have graphical representations (a set of

points and lines connecting some pairs of points) and thus can be visualized.

• Secondly, there is a rich collection of efficient algorithms for processing graphs, thus graphs

can be used as effective computational objects (they are widely used, for instance, in

Operational Research).

• Thirdly, graphs can be equipped with a logical semantics: the graph-based mechanisms they

are provided with are sound and complete with respect to deduction in the assigned logic.

Furthermore, graph-based mechanisms can be explained to the user because they can be easily

visualized on the graphs themselves, either as a sequence of very simple operations or as a “global”

operation. This point will be further detailed in Section 3.

Semantic Networks. In general, KR languages rely on a purely textual representation with

strict syntactic and semantic rules. Domain concepts, their properties, relations and restrictions,

are all represented by words and sentences of the representation language. Textual communication

is often supplemented with visual properties (such as character types, styles, structure, or layout),

but a knowledge representation language can be regarded as visual only if it is based on a

pictorial expression. The human short term memory is limited, but visual organizations enable

brain sensory information storage and ability to break down complex structures into more easily

manageable chunks. Due to their visual qualities, semantic networks, which were originally

developed as cognitive models, have been used for knowledge representation since the early days

of Artificial Intelligence, especially in natural language processing.

The term semantic network encompasses an entire family of graph-based visual representa-

tions. Since Nude (Richens (1956)) and the semantic network T (Masterman (1962)), which

concern natural language processing, many semantic networks systems have been introduced

(cf. Lehman (1992) for a collection of papers concerning various families of network-based

structures). They all share the basic idea of representing domain knowledge using a graph, but

there are differences concerning notation, as well as rules or inferences supported by the language.

In semantic networks, the diagrammatical reasoning is mainly based on path construction in the

network. We can distinguish two major families of languages born in the eighties. Let us start with

the KL-ONE family. In addition to the large number of systems implementing KL-ONE variants

(Woods and Schmolze (1992)), KL-ONE is considered as the ancestor of Description Logics

(DLs) (Baader et al. (2003)), which are nowadays the most prominent KR languages dedicated

to reasoning on ontologies. However, Description Logics have lost their graphical origins. Secondly,

Conceptual Graphs. They were introduced by Sowa (cf. Sowa (1976, 1984)) as a diagrammatic

system of logic with the purpose “to express meaning in a form that is logically precise, humanly

readable, and computationally tractable” (cf. Sowa (1984)). Throughout the remainder of this

paper we use the term “Conceptual Graphs” to denote the family of formalisms rooted in Sowa’s

work and then enriched and further developed with a graph-based approach (cf. Chein and

Mugnier (2009)).

✹✷

3

Paper Organization. The sequel of this paper is structured as follows. Section 2 presents

the main syntactic constructs of the language. Section 3 presents the elementary graph-

based reasoning mechanisms and explains how labeled graph homomorphism encompasses all

elementary operations in one global operation. Please note that, in this paper, we do not enter

into precise definitions and notations but rather rely on visual intuition (see Chein and Mugnier

(2009) for more details and technical developments). An application scenario is presented in

Section 4. We conclude the paper with Section 5 that presents related work in the domain and

lays down future work directions. All figures depict graphs drawn using the conceptual graph

editor Cogui 1. Please note that Cogui is also fully integrated with the conceptual graph engine

Cogitant 2 to perform reasoning on the above mentioned graphs.

2 Using graphs for representation: the good

In our approach, all kinds of knowledge are encoded as graphs and thus can be visualized in a

natural way:

• The vocabulary, which can be seen as a basic ontology, is composed of hierarchies of concepts

and relations. These hierarchies can be visualized by their Hasse diagram, the usual way of

drawing a partial order (see Figures 1 and 2).

• All other kinds of knowledge are based on the representation of entities and their relationships.

This representation is encoded by a labeled graph, with two kinds of nodes, respectively

corresponding to entities and relations. Edges link entity nodes to relation nodes. These

nodes are labeled by elements in the vocabulary (see Figure 3).

These graphs have a semantics in first-order logic (FOL), i.e., a knowledge base can be

translated into a set of first-order logical formulas. Reasoning tasks operate directly on the

knowledge defined by the user and not on their translation into logical formulas. Stated in an other

way, the logical semantics is only used to formally ground the graph model, i.e., representation

and reasoning mechanisms. This makes it possible to explain reasoning to the end-user because

it can be visualized in a natural way on the pieces of knowledge he/she is familiar with. Would a

logical prover be used on the logical translation of these pieces of knowledge to compute reasoning,

reasoning would become a black box for the user and could not be explained.

2.1 Conceptual vocabulary

The vocabulary is composed of two partially ordered sets: a set of concepts and a set of relations

of any arity (the arity is the number of arguments of the relation). The partial order represents

a specialization relation: t′ ≤ t is read as “t′ is a specialization of t”. If t and t′ are concepts,

t′ ≤ t means that “every instance of the concept t′ is also an instance of the concept t”. If t and

t′ are relations, then these relations have the same arity, say k, and t′ ≤ t means that “if t′ holds

between k entities, then t also holds between these k entities”). Figures 1 and 2 shows parts of

these hierarchies visualized by their Hasse diagram (t′ ≤ t if there is a path from t′ up to t). For

instance, the concept TeddyBear is a specialization of the concept Object, because of the path

(TeddyBear, Toy, Object); the relation siblingOf is a specialization of the relation link2 (which

stands for any binary relation) because of the path (siblingOf, relativeOf, link2). Note that a

hierarchy is not necessarily a tree: for instance, there are two paths from Woman to Person,

namely (Woman, Female, Person) and (Woman, Adult, Person).

Names of specific individuals can also be included in the vocabulary. The vocabulary can be

further enriched by signatures for relations indicating the maximal concept that can be assigned

to each of the relation arguments (e.g. the first argument of the relation motherOf is of maximal

type Woman and its second argument is of maximal type Person). It can also contain statements

of disjointness between concepts (e.g. the two types Object and Person are disjoint).

1http://www.lirmm.fr/cogui/
2http://cogitant.sourceforge.net/

✹✸

4

Figure 1 Basic Ontology

Concepts for the childhood domain

Figure 2 Basic Ontology

Relations for the childhood domain

2.2 Basic graphs

A basic conceptual graph (BG) is a bipartite graph: one class of nodes, called concept nodes,

represents entities and the other, called relation nodes, represents relationships between these

entities or properties of them. E.g., the BG in Figure 3 graphically represents the following

situation: “The boy John is a sibling of the girl Eva. John is giving a sweet to Eva, who is holding

a red teddy bear belonging to John.”

A concept node is labeled by a couple t :m where t is a concept (and more generally, a list

of concepts) called the type of the node, and m is called the marker of this node: this marker is

either the generic marker, denoted by ∗, if the node refers to an unspecified entity, otherwise this

marker is a specific individual name. E.g., in Figure 3 the node [Sweet:*] refers to “a” sweet,

while the node [Boy:John] refers to “the” boy John. A relation node is labeled by a relation

r called its type, and, if k is the arity of r, this node is incidental to k totally ordered edges.

E.g., in Figure 3 the relation node of ternary type give has three incidental edges and the order

on these edges allows to distinguish between the agent of the gift act [Boy:John], its recipient

[Girl:Eva] and its object [Sweet:*]. Classically, concept nodes are drawn as rectangles and

relation nodes as ovals and the order on edges incidental to a k-ary relation node are numbered

from 1 to k.

BGs are used to represent assertions called facts. They are also building blocks for more

complex kinds of knowledge, as outlined in the next section.

✹✹

5

Figure 3 A situation described by a basic graph (H)

2.3 More complex graphs

In the following we present two examples of basic conceptual graph extensions: nested graphs,

which allow to structure facts by level of detail; and inference rules, which enrich the basic

ontology with general knowledge about a domain.

Nested graphs. In a nested graph, a concept node may itself contain a (nested) graph, whose

role is to further describe the entity represented by the node. This allows to distinguish between

internal and external information about an object, to represent zooming into an object or to

contextualize the description of an object. For instance, let us consider the nested graph in

Figure 4. At the outermost level, this graph says that “Eva is giving a picture that she did to

John” (note however that time is not represented here) and the graph nested in the node referring

to the picture further describes this picture: “this picture shows a boy holding a teddy bear”. The

dotted line is a coreference link : it links two nodes that refer to the same entity (in this example

the boy called John). The information that the picture has been done by Eva can be seen as an

external information about the picture, while the detail of what is in the picture can be seen as

an internal information, that can be obtained by zooming into the picture. It can also be said

that the piece of information nested in a node is relevant within the context represented by this

node (here, John is holding a teddy bear in the context of the picture, but it may not be true in

the outermost context).

Figure 4 A nested graph

✹✺

6

Rules. A rule expresses implicit knowledge of the form “if hypothesis then conclusion”, where

hypothesis and conclusion are both basic graphs. This knowledge can be made explicit by applying

the rule to a specific fact: intuitively, when the hypothesis graph is found in a fact, then the

conclusion graph can be added to this fact (see Sect. 3.4 for more details). There is a one to

one correspondence between some concept nodes in the hypothesis with concept nodes in the

conclusion. Two nodes in correspondence refer to the same entity. These nodes are said to be

connection nodes. For instance, Figures 5 and 6 present two rules, with the hypothesis on the left

hand side and the conclusion on the right, separated by a vertical line. In Figure 5, rule R1 says

that “if a person is a sibling of a person, then the inverse relation holds between these persons”.

More formally: “for all persons x and y, if x is a sibling of y then y is a sibling of x”(all concept

nodes are connection nodes). In Figure 6, rule R2 says that “for all persons x and y, if x is a

sibling of y, then they have a common parent, i.e., there is a person who is a parent of x and of

y” (the node representing this person is not a connection node, since it is not in correspondence

with a node in the hypothesis). Let us add that rules can also be defined as pairs of nested graphs

instead of basic graphs.

Figure 5 A rule (R1)

Figure 6 Another rule (R2)

All these graphical objects, i.e., the vocabulary as well as basic graphs, nested graphs and

rules, are provided with a semantics in first-order logic. This semantics specifies the meaning of

knowledge constructs and allows to show the correctness of the associated graph mechanisms

with respect to logical deduction (see Sect. 3.3).

✹✻

7

3 Using graphs for reasoning: the better

Different kinds of reasoning concerning BGs can be graphically defined, e.g., applying inference

rules or contextual reasoning. These reasonings are based on a subsumption relation between

conceptual graphs. This section is devoted to the presentation of this fundamental reasoning

notion in the simplest case, i.e., BGs.

Let G and H be two BGs over the same vocabulary. Intuitively, G subsumes H if the fact—or

the information—represented by H entails the fact represented by G, or in other words, if all

information contained in G is also contained in H.

A query-answering mechanism using BGs and subsumption can be defined as follows. Let us

consider a knowledge base B composed of a set of BGs, representing some assertions about a

modeled world, e.g., the fact in Figure 3. Elements in B answering a query Q are intuitively

defined as the elements that entail Q, or equivalently, elements that are specializations of Q,

or also, elements that are subsumed by Q. Let us consider for instance the query in Figure 7.

This query is easily visualized as a graph, but is more complex to express textually: it asks for a

situation where a boy and a girl, who is one of the boy’s relatives, are each in relation with a red

toy. We will see hereafter why and how the fact in Figure 3 answers this query.

Figure 7 A query described by a basic graph (G)

Relationships with logics is mentioned at the end of this section and we will see that the

subsumption relation exactly corresponds to deduction in a fragment of first-order logic. The

subsumption relation can be defined either by a sequence of elementary operations or by the

classical homomorphism notion applied to BGs. Both are very easily visualizable and they are

defined below by means of drawings.

3.1 Generalization and Specialization Operations

There are five elementary generalization operations and five inverse operations, called elementary

specialization operations. The terms generalization and specialization are used here with the

following intuitive meaning: let I be a piece of information; whenever a piece of information is

added to I the obtained information is a specialization of I (it contains more specific knowledge)

and, conversely, deleting a piece of information from I yields a final piece of information that is

more general than I (it contains less precise knowledge).

3.1.1 Elementary Generalization Operations for BGs
Any generalization operation is a “unary” operation, i.e., it transforms a BG into another BG. It

can be pictured by a drawing representing the transition from the input BG to the output BG.

Generalization has to be taken in a broad sense, i.e., the BG obtained may contain a strictly

more general information than the initial BG or the same information.

✹✼

8

The elementary generalization operations can be graphically defined as follows.

• Substract (Figure 8). The Substract operation consists of deleting some connected compo-

nents of a BG. The BG obtained is clearly more general than (or equivalent to) the original

BG, since a piece of information is deleted.

• Detach (Figure 9). The Detach operation consists of splitting a concept node c into two

concept nodes c1 and c2, the edges incident to c being shared between c1 and c2. For instance,

let us consider the detachment of the generic concept node c in Figure 9. In the initial BG it

is said that “there is a boy who possesses something and is giving something to a person”,

and in the resulting BG it is said that “there is a boy who possesses something and there

is a boy giving something to a person”. In the resulting BG, the two boys may be different,

while in the initial BG it is necessarily the same boy. Therefore, the final situation is more

general than the initial situation.

• Increase (Figure 10). The Increase operation consists of increasing the label of a concept

or relation node. In the case of a concept node, it means that one can increase its type,

e.g., replacing “the girl Eva” by “the person Eva” and/or replace an individual marker

by the generic marker, e.g., transforming “the person Eva” into “a person”. Formally, the

generic marker is considered as greater than all individual markers, which are pairwise non

comparable. Thus, increasing a concept node label consists of increasing its type and/or its

marker. Clearly, “a person” is more general (in an intuitive sense) than “the girl Eva”. In

the same way, replacing a relation type by a greater type is also clearly a generalization

operation, e.g., “John is a relative of Eva” is more general than “John is a sibling of Eva.”

Let us remark that checking if a type t is greater than another type t′ is the most frequent

operation in hierarchies. It is a basic operation (t is greater than t′ if and only if there is a

path from t′ to t) for which efficient algorithms have been developed (cf. Chein and Mugnier

(2009)). In Figure 11, the bold paths contain all types greater than the type Boy.

• Relation duplicate (Figure 12). The Relation duplicate operation consists of duplicating

a relation node, i.e., adding a new relation node r′ having the same type and the same list

of arguments as a relation node r. r and r′ are said to be twin relation nodes.

• Copy (Figure 13). The Copy operation consists of duplicating a whole BG, i.e., adding to it

an isomorphic and disjoint copy of it.

Figure 8 Substract

✹✽

9

Figure 9 Detach

Figure 10 Increase

Figure 11 Types greater than or equal to the type Boy

In the last two operations the structure of the obtained BG contains the structure of the

initial BG (one adds something), thus, at first glance, one can think that they are specialization

operations. Nevertheless, as these operations duplicate already existing information, the BG

obtained is semantically equivalent to the initial one, thus they are also generalization operations

(in a broad sense).

We can now precisely define what “G is a generalization of H” means: G is a generalization of

H if there is a sequence of elementary generalization operations leading from H to G, i.e., there

is a sequence of BGs H0 = (H), H1, ..., Hn = (G), such that for all i= 1, . . . , n, Hi is obtained

from Hi−1 by an elementary generalization operation.

Figures 14, 15, 16, 17, 18, present some of the graphs occurring in a generalization sequence

from H, the BG in Figure 3 to G, the BG in Figure 7. H1 is obtained from H by splitting

both nodes [Girl:Eva] and [Boy: John] (two Detach operations). H2 is obtained from H1 by

deleting the connected component containing the give relation node (Substract operation). H3

is obtained from H2 by duplicating the relation node color (Relation duplicate operation). H4 is

obtained from H3 by a Detach operation on the node [TeddyBear:*]. G is obtained from H4 by

a sequence of seven Increase operations: the relation siblingOf is replaced by relativeOf , the

✹✾

10

Figure 12 Duplicate

Figure 13 Copy

relations possess and hold are replaced by link2; the individual concept nodes [Boy:John] and

[Girl:Eva] are made generic, and the teddy bears become toys.

Figure 14 Generalization from H to G - step I (H1)

✺✵

11

Figure 15 Generalization from H to G - step II (H2)

Figure 16 Generalization from H to G - step III (H3)

Figure 17 Generalization from H to G - step IV (H4)

✺✶

12

Figure 18 Generalization from H to G - step V (G)

3.1.2 Elementary Specialization Operations
We have seen in the previous section that the elementary generalization operations are indeed

generalization operations in an intuitive manner, they are easy to draw and to understand, and

they allow for a precise definition of the subsumption relation between BGs. Nevertheless, let us

consider again the query-answering problem previously stated using generalization. Let Q be a

BG query and B a set of BG facts. Answering Q consists of looking for subgraphs of BGs in

B that are subsumed by Q, i.e., such that Q generalizes them. It seems more intuitive and it

is more efficient to start from the query Q and to look for specializations of Q in B. This can

be done by defining elementary specialization operations which are the inverse of the elementary

generalization operations defined previously.

• Disjoint sum (Figure 19). Given two disjoint BGs, theirDisjoint sum is the BG obtained by

juxtaposing two copies of these BGs. This operation is the inverse of the Substract operation.

• Join (Figure 20). Given a BG, joining two concept nodes with the same label in this BG

consists of merging them. This operation is the inverse of the Detach operation.

• Restrict (Figure 21). Restrict consists of decreasing the label of a concept or relation node.

This operation is the inverse of the Increase operation.

• Relation simplify(Figure 22). This operation consists of deleting a twin relation node. This

operation is the inverse of the Relation duplicate operation.

• Copy. This operation has already been defined as a generalization operation.

Figure 19 Disjoint sum

✺✷

13

Figure 20 Join

Figure 21 Restrict

Figure 22 Simplify

H is a specialization of G if H can be obtained from G by a sequence of elementary

specialization operations. In reading Figures 14, 15, 16, 17, 18 backwards, one obtains a

specialization sequence from G to H. This sequence begins with a set of Restrict operations

(leading from G to H4). Then, H3 is obtained from H4 by a Join operation. H2 is obtained

from H3 by Relation Simplify. H1 is obtained from H2 by a Disjoint sum operation, and H is

obtained from H1 by two Join operations.

The following property is straightforward to check:

G is a generalization of H if and only if H is a specialization of G.

✺✸

14

3.2 Homomorphism

We have seen specialization operations, which are more convenient than generalization operations

when considering the query-answering problem. Now, the problem is how to find a sequence of

specialization operations from a BG to another BG.

In this section, we introduce the homomorphism notion between BGs. A homomorphism from

G to H is a mapping from the node set of G to the node set of H, which preserves the adjacency

between nodes of G and can decrease the node labels. If there is a homomorphism (say π) from

G to H, we say that G maps to H (by π).

Let us consider again the query G in Figure 7 and the fact H in Figure 3. There is a

homomorphism from G to H which is pictured by the dashed lines in Figure 23. The concept

node a = [Boy:*] in G is mapped to [Boy : John] in H, the concept node b = [Girl:*] in

G is mapped to [Girl : Eva] in H, both concept nodes c = [Toy:*] and d = [Toy:*] in G

are mapped to the same node [TeddyBear:*] in H, the concept node e = [Color:Red] in G is

mapped to [Color:Red] in H, the relation node (relativeOf) is mapped to the relation node

(siblingOf), the relation node (link2) from a to c is mapped to the relation node (possess) and

the other relation node (link2) from b to d is mapped to the relation node (hold); finally, both

relation nodes (color) are mapped to the same node (color).

Figure 23 A homomorphism from G to H

A BG homomorphism can be more precisely defined as follows. A homomorphism π from G

to H is a mapping from the concept node set of G to the concept node set of H and from the

relation node set of G to the relation node set of H, which preserves edges and may decrease

concept and relation labels, that is:

• for any edge labeled i between nodes c and r in G, there is an edge labeled i between nodes

π(c) and π(r) in H; in other words, if a relation r has neighbors c1 . . . ck (in this order) then

its image π(r) has neighbors π(c1) . . . π(ck) (in this order).

• for any (concept or relation) node x in G, the label of its image π(x) in H is less than or

equal to the label of x.

Let us consider again the homomorphism in Figure 23. Figure 24 highlights the subgraph of H

induced by the nodes which are images of nodes in G. This subgraph is called the “image graph”

of G by this homomorphism.

✺✹

15

Figure 24 Image of G by the homomorphism in Figure 23

The following theorem holds. Given two BGs G and H, the three following propositions are

equivalent:

1. G is a generalization of H

2. H is a specialization of G

3. There is a homomorphism from G to H

Even though it is easy to visualize a homomorphism and to check if a mapping between two

BGs is a homomorphism (cf. Figure 23), this global graph matching can be replaced, if needed,

for more detailed explanation purposes, by a sequence of elementary operations (cf. Figures 14 to

18). Assume for instance that the answer to the query G is visualized as in Figure 24 and the user

wants to understand why the image graph ofG is indeed a specialization ofG. The homomorphism

can be decomposed into a sequence of elementary specialization operations, starting from G, as

follows:

• Firstly, a sequence of Restrict showing how the label of each node of G is specialized (cf. the

transformation from G to H4);

• Secondly, a sequence of Join showing which concept nodes are merged into the same node

(these are the nodes in G with the same image by the homomorphism, cf. the transformation

from H4 to H3);

• Thirdly, a sequence of Relation simplify removing relation nodes that have become redundant

(cf. the transformation from H3 to H2).

After these three steps, the image graph of G is obtained, which is sufficient to show that the

fact contains a specialization of G. To build the fact graph itself from the image graph of G,

one would need a disjoint sum (cf. the transformation from H2 to H1) and some joins (cf. the

transformation from H1 to H).

3.3 Logical correctness

Until now, we have introduced the reasoning operations (generalization, specialization and

subsumption) using simple graphical operations. It remains to relate these notions to usual

reasoning notions, i.e., essentially, to relate BG subsumption to logical deduction. This can be

done using the logical semantics of the knowledge constructs. This semantics is defined by a

mapping from graphical objects to logical formulas. It is classically denoted by Φ in conceptual

graphs (Sowa (1984)). The fundamental theorem states that given two BGs G and H built on a

vocabulary V, there is a homomorphism from G toH if and only if Φ(G) is a semantic consequence

of Φ(H) and Φ(V) (this is a soundness and completeness theorem of BG homomorphism w.r.t.

FOL entailment, cf. Chein and Mugnier (1992)). Let us point out that BGs are in fact equivalent

to the positive, conjunctive and existential fragment of FOL.

Once again, logic is used to give a semantics to BGs, but not to reason with them. As detailed

before, one motivation for preferring graph-based reasoning is its visual aspects permitting to

understand (logically based) reasoning without doing logic. Another motivation is that BGs have

✺✺

16

good computational properties. Efficient graph-based deduction algorithms have been built, which

are not the translations of logical procedures (see f.i. Chein and Mugnier (2009)).

3.4 Overview of reasoning on more complex pieces of knowledge

Previous generalization and specialization elementary operations, as well as the corresponding

homomorphism notion, can be extended to nested graphs, while preserving soundness and

completeness with respect to deduction in the associated fragment of FOL.

Let us now consider the graph rules presented in Section 2. A rule R can be applied to a

BG H if there is a homomorphism from its hypothesis to H. Applying R to H according to

such a homomorphism π consists of “attaching” to H the conclusion of R by merging each

connection node in the conclusion with the image by π of the corresponding connection node in

the hypothesis. See for instance the graph H in Figure 3 and the rules R1 and R2 in Figures 5

and 6. There is a homomorphism from the hypothesis of R1 to H, thus R1 can be applied to H,

which yields the graph K (Figure 25). Similarly, R2 can be applied to H, or to K. Let us apply

R2 to K: we obtain L (Figure 25). R2 can be applied another time with a new homomorphism

to L: however, this application would be redundant, since the part to be added is already present

in L.

Figure 25 Applying rules

When a knowledge base contains a set of facts and a set of rules, the query mechanism has

to take implicit knowledge coded in rules into account. The knowledge base answers a query

Q if a BG F ′ can be derived from the facts using the rules, such that Q maps to F ′. Let us

consider again the fact H in Figure 3 and the rules R1 and R2 in Figures 5, and 6 and let Q

be the query in Figure 26 asking if there is someone who is parent of a boy and a girl: there is

no homomorphism from Q to H; however, the knowledge base containing H and the rules R1

and R2 answers Q: indeed Q maps to L (Figure 25), which is derived from H by applying the

rules. This reasoning can be explained by visualizing a homomorphism from Q to L, as well as a

sequence of rule applications allowing to add the knowledge involved in this homomorphism (for

instance, the application of R1 is not needed in our example).

Finally, let us point out that this rule application mechanism is sound and complete, i.e., given

a KB K and a BG Q, Q maps to a graph derived from K if and only if Φ(K) |=Φ(Q), where Φ(K)

is the set of formulas assigned to the vocabulary, the set of facts and the set of rules composing

K.

✺✻

17

Figure 26 Another query example

4 Using graphs for applications: the best

In this section we present a concrete Artificial Intelligence application using the above described

language for image annotation. The choice of the application is motivated twofold. Firstly, this

application clearly demonstrate the visual appeal of Conceptual Graphs from a representation

depiction faithfulness viewpoint. Secondly, the visual reasoning capabilities allow for all levels of

expertise when building, querying the knowledge base and understanding why certain results will

be returned.

Within the image annotation process we will distinguish between resources (in this case

electronic image files) and metadata. A metadata is a computational object always associated

with a resource. Each resource is identified by an identifier, which is used in the metadata base

for referencing the resource.

Metadata can be roughly categorized into two classes: objective metadata and subjective

metadata. Examples of objective metadata include: resource address, authors name and the

document size. Subjective metadata aims at representing information generally depending on

the author of the metadata. Examples of subjective metadata include: the representation of the

content of a resource (indexation of the resource), the representation of a comment, note, or

remark etc. In this case an annotation is simply a piece of knowledge associated with a resource.

In the following, we will present a Conceptual Graph approach for building and querying a

knowledge base aimed at annotating family photos. The knowledge base used to illustrate notions

throughout this section has been edited with the tool Cogui.

Such annotation is built from an ontology fundamentally composed of a hierarchy of concepts

(or terms) and a hierarchy of relations between concepts. The ontology can also contain

representations of other knowledge. Relation signatures indicate the types of relation arguments.

Rules represent knowledge of the form “if a piece of information is present (within an annotation)

then further information can be added (to this annotation)”. Thus, rules can be used to

automatically complete an annotation by implicit and general knowledge. Another kind of

knowledge with the same syntactic form as rules but a different semantics are constraints.

Constraints represent knowledge of the form “if a piece of information is present (within an

annotation) then other information cannot be present (in the annotation)”. Signatures and

constraints are used to avoid the construction of absurd annotations. All these kinds of knowledge

are represented by labeled graphs.

For clarity purposes the example given in this paper is very simple. This framework have

been successfully employed for annotation in the large scale context of the LOGOS Framework

6 European Project (cf. for instance, Lalande et al. (2009)). as well as in other French projects

(Moreau et al. (2007), Genest and Chein (2005)).

Let us consider the photograph in Figure 27. A semantic annotation of this image is depicted

in Figure 28 where a fact represents a girl, the relative of a child, playing with the same red train

that the child is playing with. As explained above, all of the concepts and the relations used in

✺✼

18

the facts need to be described and organized in the vocabulary. Figure 29 shows the concept and

relation hierarchies purposely built for annotating family images.

Figure 27 Example of photo that needs to be semantically annotated

Figure 28 Example of a semantic annotation

✺✽

19

Figure 29 Concept / Relation hierarchy for photo annotation

Please note that the constructs introduced before (such as rules and nested graphs) are also

used for annotation. Since certain chunks of knowledge appear often, other kinds of constructs

have been introduced specifically for speeding up the annotation process, such as prototype graphs.

For example, for a child we could always like to have annotated the fact that it is playing with a

certain object. Notice this is not a rule, e.g., it may apply in certain situation and not in others.

Figure 30 represents how to insert the prototypical graph for a given concept.

As shown before, the user can then look for certain photos that contain a child and its

relative, a girl, both acting with a toy. Such query is visually represented in Figure 31. Based on

homomorphism (as previously explained) the query can be “mapped” into the fact represented

in Figure 28 and this will return the photo attached to it.

Note that we have only presented here the kernel of an information retrieval system, in which

the search process is based on graph homomorphism. In order to take the intrinsic vagueness

of information retrieval into account, i.e., to search documents imprecisely and incompletely

represented in order to answer a vague query, the exact search realized by graph homomorphism

is not sufficient. Additional techniques based on graph transformations for doing approximate

search and for ranking the answers to a query have been developed (cf. for instance Genest and

Chein (2005)).

✺✾

20

Figure 30 Prototypical graph insert for photo annotation

Figure 31 Query graph for photo annotation

✻✵

21

5 Related work and conclusion

In this section, we place our language in the landscape of graphical knowledge representation

languages in order to enhance its original features. We will only detail each language in the

light of its respective distinction with Conceptual Graphs. This choice is motivated by our aim

of demonstrating the originality of our proposal in the context of graph-based languages for

both knowledge representation and reasoning as opposed of doing a general synthesis of existing

languages for KR.

An important criterium distinguishing Conceptual Graphs from other graph-based languages

for knowledge modeling is the reasoning aspect. Indeed, numerous graphical languages have been

proposed for data and knowledge modeling. Prominently amongst them, UML (Unified Modeling

Language) unifies several previous languages and allows to model a system or a program by

diagrams. However, this language does not have a denotational semantics and is not provided

with inference mechanisms.

Furthermore, let us focus solely on graphical languages fundamentally dedicated to represent-

ing knowledge in the form of relationships between concepts and/or concept instances. The name

“map” is often used to describe mediating, thus informal, representations. A concept map is a

diagram representing relationships between concepts, or more vaguely, ideas, images, words, etc.

the aim being to organize informal knowledge (Novak and Canas (2006)). A cognitive map is

a graphical representation of an influence network between notions. A topic map is a diagram

representing associations between topics, and is more specifically dedicated to the description of

resources for the Semantic Web. If all these languages provide graphical views of knowledge, none

of them possesses a formally based reasoning mechanism.

Closer to our proposal, let us cite RDF (Resource Description Framework) 3, which is the

basic Semantic Web language. RDF has a graph-based representation, it is provided with a

formal semantics and an associated entailment notion (Hayes (2004), Horst (2004)), but it does

not come with an effective reasoning mechanism, even less with a graph-based mechanism that

would operate on the graph representation.

Let us point out that for several of these languages, some form of formally founded visual

reasoning based on graph homomorphism has been proposed: Raimbault et al. (2005); Chauvin

et al. (2008); Aissaoui et al. (2003); Carloni et al. (2006); Baget (2005).

We have already mentioned in Section 1 the semantic network family, and its successors,

description logics, which are logically founded knowledge representation and reasoning languages,

which have lost their diagrammatical aspects. In contrast, the Semantic Network Processing

System (SNePS) (see Shapiro (1979, 2000)), specially dedicated to the implementation of cognitive

agents, remains graph-based. It is provided with three kinds of inference mechanisms: a sound

(but not complete) logic-based inference, as well as a path-based inference and a frame-based

inference. All three kinds of inferences can be integrated, but there is no formal semantics for

this combination.

Conceptual Graphs finally appears to be the only knowledge representation language both

logic-based and graph-based, with logically sound and complete graph inference mechanisms (at

least for the fragment developed here), thus allowing for visual reasoning. Another important

feature of conceptual graphs is that relations can be of any arity (i.e., they can have any number

of arguments), which allows for a more natural representation in many cases (for instance, when

relations are extracted from data tables, their arity is the number of columns in the table). This

latter feature is shared with topic maps, but none of the other languages mentioned above.

The sound and complete graph-based mechanisms for reasoning presented in this paper have

been fully implemented and are available as part of the Cogui Editor and the CG reasoning engine

Cogitant. While homomorphism proves to be an intuitive mechanism for query answering, more

advanced graph-based tools could be envisaged to make this notion even more intuitive (see for

3http://www.w3.org/TR/REC-rdf-syntax/

✻✶

22

example the 3D manipulation of the images in Figure 23). This is not the only possible envisaged

manipulation: different layouts, smooth zooming capabilities or colors could also be employed to

increase the presentive qualities of our language.

References

G. Aissaoui, D. Genest, and S. Loiseau. Cognitive map of conceptual graphs: A graphical model

to help for decision. In A. de Moor, W. Lex, and B. Ganter, editors, ICCS, volume 2746 of

Lecture Notes in Computer Science, pages 337–350. Springer, 2003. ISBN 3-540-40576-3.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The

Description Logic Handbook. Cambridge University Press, 2003.

J. F. Baget. RDF Entailment as a Graph Homomorphism. In Proc. of ISWC’05, 2005.

C. Bos, B. Botella, and P. Vanheeghe. Modeling and Simulating Human Behaviors with

Conceptual Graphs. In Proc. of ICCS’97, volume 1257 of LNAI, pages 275–289. Springer,

1997.

O. Carloni, M. Leclère, and M.-L. Mugnier. Introducing graph-based reasoning into a knowledge

management tool: An industrial case study. In IEA/AIE, pages 590–599, 2006.

L. Chauvin, D. Genest, and S. Loiseau. Contextual cognitive map. In P. W. Eklund and

O. Haemmerlé, editors, ICCS, volume 5113 of Lecture Notes in Computer Science, pages 231–

241. Springer, 2008. ISBN 978-3-540-70595-6.

M. Chein and M. Mugnier. Graph-based Knowledge Representation: Computational Foundations

of Conceptual Graphs. Springer, 2009.

M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue d’Intelligence

Artificielle, 6(4):365–406, 1992.

D. Genest and M. Chein. A content-search information retrieval process based on conceptual

graphs. Knowledge and Information Systems (KAIS), 8:292–309, 2005.

P. Hayes. RDF Semantics. W3C Recommendation. http://www.w3.org/TR/2004/REC-rdf-mt-

20040210/, 2004.

H. Horst. Extending the RDFS Entailment Lemma. In Proc. of the Third International Semantic

Web ConferenceISWC’04, volume 3298 of LNCS, page 7791. Springer, 2004.

S. Lalande, K. Staykova, M. Chein, A. Gutierrez, V. Saraydarova, and D. Dochev. Using

Domain Knowledge to Speed up the Annotation of Digital Content with Conceptual Graphs.

Cybernetics and Information Technology, 9(3):22–38, 2009.

F. Lehman. Semantics Networks in Artificial Intelligence. Pergamon Press, 1992.

M. Masterman. Semantic message detection for machine translation, using an interlingua. In

International Conference on Machine Translation of Languages and Applied Language Analysis,

1962.

N. Moreau, M. Leclère, M. Chein, and A. Gutierrez. Formal and Graphical Annotations for Digital

Objects. In Proc. of International Workshop on Semantically Aware Document Processing and

Indexing (SADPI’07), volume 259 of ACM Digital Library, ACM International Conference

Proceeding Series, pages 69–78. ACM, 2007.

J. Novak and A. Canas. The origins of the concept mapping tool and the continuing evolution

of the tool. Information Visualization Journal, 5:175–184, 2006.

✻✷

23

T. Raimbault, D. Genest, and S. Loiseau. A new method to interrogate and check uml class

diagrams. In F. Dau, M.-L. Mugnier, and G. Stumme, editors, ICCS, volume 3596 of Lecture

Notes in Computer Science, pages 353–366. Springer, 2005. ISBN 3-540-27783-8.

R. Richens. Programming for mechanical translation. Mechanical Translation, 3:Discontinued

Journal, 1956.

S. Shapiro. Sneps: A logic for natural language understanding and commonsense reasoning.

In Natural Language Processing and Knowledge Representation: Language for Knowledge and

Knowledge for Language, 2000.

S. Shapiro. The sneps semantic network processing system. In The representation and use of

knowledge by computers, 1979.

M. Shaw and B. Gaines. Knowledge and requirements engineering. In Proceedings of the 9th

Banff Knowledge Accquisition For Knowledge-Based Systems Workshop, 1995.

J. F. Sowa. Conceptual Graphs. IBM Journal of Research and Development, 20(4):336–375,

1976.

J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-

Wesley, 1984.

W. Woods and J. Schmolze. The kl-one family. Computers Math. Applic., 23:133–177, 1992.

✻✸

Distinguishing Answers in Conceptual Graph

Knowledge Bases

Nicolas Moreau, Michel Leclère, and Madalina Croitoru

LIRMM, Univ. Montpellier 2, CNRS
161, rue Ada

34392 Montpellier, France
{moreau,leclere,croitoru}@lirmm.fr

Abstract. In knowledge bases (KB), the open world assumption and
the ability to express variables may lead to an answer redundancy prob-
lem. This problem occurs when the returned answers are comparable.
In this paper, we define a framework to distinguish amongst answers.
Our method is based on adding contextual knowledge extracted from
the KB. The construction of such descriptions allows clarification of the
notion of redundancy between answers, based not only on the images of
the requested pattern but also on the whole KB. We propose a defini-
tion for the set of answers to be computed from a query, which ensures
both properties of non-redundancy and completeness. While all answers
of this set can be distinguished from others with a description, an open
question remains concerning what is a good description to return to an
end-user. We introduce the notion of smart answer and give an algorithm
that computes a set of smart answers based on a vertex neighborhood
distance.

1 Motivation

In the semantic web age, a large number of applications strongly rely on the
building and processing of knowledge bases (KB) for different domains (multi-
media, information management, semantic portals, e-learning, etc.). The formal
languages used for representation will encounter obvious scaling problems and
therefore rely on implicit or explicit graph based representations (see for ex-
ample Topic Maps, RDF, Conceptual Graphs, etc.) As a direct consequence,
querying such systems will have to be done through graph based mechanisms
and, accordingly, optimization techniques implemented [1].

In ICCS’08 [2], we identified the semantic database context in which a set of
answers has to be computed. For this case, there are two kinds of answer graphs:
answers as subgraphs of the knowledge base graph that are used for browsing
the KB or for applying rules; and answers as graphs, independent of the KB,
corresponding to the classical use of a querying system1. With this latter kind

1 For example, in SPARQL, as blank node labels can be renamed in results, see [1] ¶
2.4.

✻✹

of answer, an important problem concerns detecting redundant answers. Unlike
classical databases, redundancies are not limited to duplicate tuples. Indeed, the
presence of unspecified entities (generic markers in CG or blank nodes in RDF)
and also a type hierarchy leads us to consider that an answer which is more
general than another as redundant. In [2], we studied this problem and proposed
to return irredundant forms of the most specific answers to a query.

An important problem arising in this context is ultimately related to the
nature of a KB vs. a database. With a classical database, one can assume that
a query designer knows the database schema and is thus able to build a query
corresponding to its needs. With a KB, the schema is extended to an ontology
and the different assertions are not supposed to instantiate a specific frame (the
knowledge is semi-structured). Consequently, it is difficult for a query designer
to specify the content of the searched knowledge: he/she wants to obtain some
information about a specific pattern of knowledge. The suppression of redundant
answers only by comparing answer graphs independently of the KB results in the
problem not being considered. A better way to address the redundancy problem
consists of completing the answer graphs with their neighborhood to obtain more
detailed answers in order to return some relevant knowledge to the end-user in
order to get insight (restitution, reflet) into the diversity of the knowledge in the
KB. Moreover, users seem to prefer answers in their context (e.g. paragraph)
rather than the exact answer[3].

In this paper we focus on answers given in a graph based form. Our motivation
stems from the homogeneity of preserving the same format between the KB,
query and answer. Moreover, this will allow the reuse of answers as a KB for
different future answers (see for example nested queries). Note that while this
paper focuses solely on the problem of distinguishing graph based answers, the
same research problem will arise and results will be obtained when of answers
are represented as a tuple.

2 Contribution and related work

Figure 1 shows a query, a conceptual graph formalized KB (see section 3.1) and
all five answers to the query in the KB (from A1 to A5, in gray in the picture).

The problem that arises in this scenario is how to define relevant answers
when they are independent of the KB (i.e. a set of answer graphs and not a set
of answer subgraphs of the KB). For instance, answers A1 and A5 are equivalent
(“there is a human who owns an animal”), and knowledge expressed by these
answers is expressed by all of the others. The open world assumption makes it
impossible to state that all humans or animals represent distinct elements of the
described world. Therefore it seems preferable to only return answers that bring
more knowledge, i.e. in our example that “Mary owns a cat” and “a human owns
a dog”. But another relevant answer could be that “there is a human knowing
Mary who owns a cat”.

The contribution of the paper is to refine our preceding notion of redundancy
between answers, to take the knowledge of the KB into account, through the

✻✺

Q

KB

A1
A2 A3 A4 A5

21
Animal: *ownHuman: *

2 2

11

12

222

Animal: *Animal: * Dog: *Cat: *Cat: *

know

ownown

1

own

1

own

1

own

21
know Human: *Human: *Human: MaryHuman: *

Fig. 1. Query, KB and highlighted answers.

notion of a fair extension of an answer, a graph that specifically describes an
answer. Thus, an answer is irredundant if there is such a “fair” extension. A
special case of this problem (when the answer is a concept node) corresponds
to the problem of Generation of Referring Expressions (GRE) studied in the
conceptual graph context in [4], that we extend for our purposes. Based on
the extended notion of redundancy, we define two answer subset properties of
non-redundancy (there is no redundant answer in the subset) and completeness
(each answer is redundant to an answer of the subset). We then explain how
to compute all the non-redundant and complete subsets of answers, based on a
redundancy graph. We then discuss what is a good set of referring graphs to be
returned to the user, and give an algorithm that fulfills these good properties.

As previously mentioned, a special case of answer identification was studied
in [4]. The RDF query language SPARQL offers a way to describe answers (by
the DESCRIBE primitive) but it does not address the specific problem of dis-
tinguishing one answer from another according to semantically sound syntactic
criteria. The problem of answer redundancy in the Semantic Web context has
been studied in [5], but the redundancy stated in this paper concerns the union
of all answers, and corresponds, in the CG field, to the classical notion of ir-
redundancy (see section 3.1), as opposed to our redundancy between answers.
In an article about OWL-QL [6] the notion of server terseness is defined, which
is the ability of a server to always produce a response collection that contains
no redundant answers (i.e. there is no answer that subsumes another one). This
corresponds to our previous notion of redundancy defined in [2].

In the next section, preliminary notions about conceptual graphs and our
query framework are given. Section 4 deals with the extended notion of redun-
dancy between answers and its application to a subset of answers. In section 5
we discuss the relevancy of the set of referring graphs returned to the user. We
conclude our work in the last section.

3 Preliminary notions

3.1 Simple Graphs

The conceptual graph formalism we use in this paper has been developed at
LIRMM over the last 15 years [7]. The main difference with respect to the initial

✻✻

general model of Sowa [8] is that only representation primitives allowing graph-
based reasoning are accepted.

Simple graphs (SGs) are built upon a support, which is a structure S =
(TC , TR, I, σ), where TC is the set of concept types, TR is the set of relations
with any arity (arity is the number of arguments of the relation). TC and TR

are partially ordered sets. The partial order represents a specialization relation
(t′ ≤ t is read as “t′ is a specialization of t”). I is a set of individual markers.
The mapping σ assigns a signature to each relation specifying its arity and the
maximal type for each of its arguments.

SGs are labeled bipartite graphs denoted G = (CG, RG, EG, lG) where CG

and RG are the concept and relation node sets respectively, EG is the set of
edges and lG is the mapping that labels nodes and edges. Concept nodes are
labeled by a couple (t : m), where t is a concept type and m is a marker. If the
node represents an unspecified entity, its marker is the generic marker, denoted
∗, and the node is called a generic node, otherwise its marker is an element of
I, and the node is called an individual node. Relation nodes are labeled by a
relation r and, if n is the arity of r, it is incidental to n totally ordered edges.

A specialization/generalization relation corresponding to a deduction notion
is defined over SGs and can be easily characterized by a graph homomorphism
called projection. When there is a projection π from G to H, H is considered to
be more specialized than G, denoted H ≤ G. More specifically, a projection π

from G to H is a mapping from CG to CH and from RG to RH , which preserves
edges (if there is an edge numbered i between r and c in G then there is an edge
numbered i between π(r) and π(c) in H) and may specialize labels (by observing
type orders and allowing substitution of a generic marker by an individual one).

In the following, we use the notion of bicolored SG that was first introduced
in [9]. A bicolored SG is an SG H = 〈H0, H1〉 in which a color on {0, 1} is
assigned to each node of H, in such a way that the subgraph generated by 0-
colored nodes, denoted H0 and called the core of H, is a subSG. H1, which is the
sub-SG defined by 1-colored vertices and 0-colored concepts that are in relation
with at least one 1-colored concept, is called the description.

3.2 Query framework

The chosen context is a base composed of assertions of entity existences and rela-
tions over these entities, called facts, and stored in a single graph (not necessarily
connected) named the knowledge base. This graph is assumed to be normalized
if it does not contain two individual nodes with the same marker i. A normal
form is easily computed by merging duplicate individual nodes of the graph. On
the other hand, we do not require the KB graph to be in irredundant form: a
graph G is in irredundant form iff there is no a projection from G in one of these
strict subgraphs; otherwise this graph is said to be in redundant form. Indeed,
computation of the irredundant form of a graph is expensive as the base can be
large [10] and, moreover, there is not any local criterion for computation of the
irredundant form and thus no incremental method (started at each updating of
the base) can be expected. Such a KB graph B is simply queried by specifying a

✻✼

SG Q called the query. There is no constraint on the query (normalization or ir-
redundancy). The answers to the query are found by computing the set Π(Q,B)
of projections from Q to B. The primary notion of answer consists of returning
the set of subgraphs of B image of Q by a projection in Π(Q,B).

Definition 1 (Answer set). The set of answers of a query Q in a base B,
denoted Q(B), is {π(Q) | π ∈ Π(Q,B)}2.

The first research question we address in this paper is whether this set of
answers contains redundant answers? In fact, three kinds of redundancies can
arise:

1. Duplication: two answers are identical. There is a duplication when two
projections define the same subgraph. This problem can be solved easily by
only keeping one of the duplicate subgraphs (this is done in the answer set
Q(B)). An example of duplication is given in fig. 3(b) taken as the KB and
fig. 3(c) taken as the query: there are two projections from the query whose
images are the whole KB.

2. Inclusion: An answer is contained in another one. There is an inclusion
when an answer is in a redundant form. Then its subgraph, in irredundant
form, is also an answer. In the previous example (fig. 3(b) and 3(c)), there
are two projections that define included answers.

3. Redundancy: An answer is more general or equivalent than another one.
There is a redundancy when two answers are comparable (thus the knowledge
expressed by one is also expressed by another); as an example answers A1

and A2 of figure 1.

Inclusion will be studied in section 4.4. The true redundancy problem be-
comes crucial since the answers are no longer KB subgraphs. Indeed, two an-
swers can appear redundant when they are not really redundant. In [2], we define
the notion of redundancy based only on the comparability of the answer graphs.
This approach was motivated by the following argument: as the returned set of
answers is independent of the KB, the subset of the more specific irredundant
answers, denoted Rmin, is sufficient to bring the entire range of answers. More-
over, Rmin is minimal in terms of vertex number. In the following section, we
characterize the true redundancy.

4 Dealing with true redundancy

In [2], the completeness criterion (the knowledge expressed by each initial answer
is expressed by one of the answers contained in the returned subset of answers)
ensures that no knowledge is lost when a redundant answer is deleted. But this
redundancy is based only on the comparability of answer subgraphs (that are
semantically close as they are specializations of the query).
2 “Answer set”, denoted Q(B), and “answer” notions correspond respectively in our
previous work [2] to notions of “answers by image subgraphs”, denoted RIP (Q,B),
and “images of proof”. Names have been changed for simplification.

✻✽

4.1 The true redundancy

The true redundancy has to take the knowledge brought by the neighbor vertices
of the answer into account. With this aim, we introduced the notion of extended
answer, which is an answer supplemented with some knowledge extracted from
its neighborhood.

Definition 2 (Extension of an answer). Let B be a KB graph and Q a
query graph. An extension of an answer A from Q(B) is a bicolored graph E =
〈E0, E1〉, where E0 is isomorphic to A and such that there is a projection π from
E to B with π(E0) = A.

2

2
Animal: *

Cat: *

1

own

1
ownHuman: *

(a)

1 2
Cat: *own

2
Cat: *

1
own

2

1

know

Human: *

Human:Mary

(b)

Fig. 2. Several extensions of answer A2 of fig. 1.

Fig. 2 represents several extensions of answer A2 of fig. 1. Note that the
extensions are not necessarily isomorphic copies of subgraphs of the KB.

With the previous definition of redundancy (section 3.2), if two answers have
two incomparable extensions, they are two distinct answers and thus have to
be considered as non-redundant answers, the one w.r.t. the other one. However,
these two answers must not be distinguished in an “artificial” way: i.e. if the
answers are distinguished by selectively adding knowledge to the extension of
only certain answers but not to all of those which possess this knowledge in
their neighborhood.

Definition 3 (Fairness property). An extension E of an answer A from a
set Q(B) is fair iff there is no extension E′ of another answer A′ from Q(B)
such that there is a projection π from E to E′ with π(E0) = E′

0 and π(E1) = E′
1.

The extension of figure 2(b) is a fair extension of the answer A2 of figure 1,
contrary to the extension of figure 2(a). One can now give a definition of the
true redundancy:

Definition 4 (True redundancy). An answer A from a set of answers Q(B)
is truly redundant if there is no fair extension of this answer.

In the example of fig. 1, answer A1 is redundant. The search for a fair exten-
sion may seem to be a difficult task, considering that the number of extensions
that can be generated for an answer is infinite. However, these extensions are
semantically bounded by a more specific one that corresponds to an isomorphic
copy of the base, 〈A,B \ A〉3. Naturally, the more one adds knowledge to the

3 For clarity, we sometimes denote subgraphs of KB as cores or descriptions of bicol-
ored graph instead of their isomorphic copies.

✻✾

extension (the more it is specific), the more one potentially distinguishes this
answer. So A is irredundant only if 〈A,B \A〉 is a fair extension.

Theorem 1. There is a fair extension E of an answer A iff 〈A,B \A〉 is a fair
extension.

Proof. By contraposition. Suppose that there is a fair extension E = 〈E0, E1〉 of
A and that 〈A,B \A〉 is not a fair extension of A. 〈A,B \A〉 is an extension of
A and is isomorphic (without considering the colors) to B. As E is an extension
of A, there is a projection π from E to B such that π(E0) = A. As 〈A,B \ A〉
is not a fair extension of A, there is a projection π′ from 〈A,B \ A〉 to B such
that π(R0) 6= A. So there is a projection π′′ = π ◦ π′ from E to B such that
π′′(E0) 6= A. Thus E is not a fair extension of A. ⊓⊔

Corollary 1. An answer A of Q(B) is truly irredundant iff 〈A,B \A〉 is a fair
extension.

4.2 The GRE problem

The problem of finding a fair extension of an answer is strongly related to the
problem of generation of referring expressions (GRE) known in the natural lan-
guage processing field, which aims to describe an object in a scene such that the
description only refers to this object. The GRE problem was formalized in the
CG framework in [4], where the scene is an SG and the object to identify is a
concept of the SG. A referring graph of a concept v is a subgraph of the KB
containing this concept, and a distinguishing graph is a referring graph whose v

is a fixed point for all projections of the graph in the KB. Our problem of answer
redundancy can be seen as an extension of this formalization.

Definition 5 (Referring graph). A referring graph of a subgraph G′ of a
graph G is a subgraph R of G that contains G′ as a subgraph. To distinguish
G′ from the rest of the referring graph, we denote it as a bicolored graph R =
〈R0, R1〉 where R0 = G′ and R1 = R \G′.

Definition 6 (Distinguishing graph). A referring graph R of a subgraph G′

of a graph G is distinguishing if, for each projection π from R to G, π(R0) = G′.

The referring graph of figure 2(b) is a distinguishing graph of the answer
A2 of figure 1, contrary of the referring graph of figure 2(a). We can now link
the true redundancy notion with the existence of a distinguishing graph for a
given answer. The next properties strengthen the notion of true redundancy by
showing its independence in the query and thus in the other answers.

Property 1. Let A be an answer of Q(B). There is a fair extension of A iff there
is a distinguishing graph of A w.r.t. B.

Proof. Let E = 〈E0, E1〉 be a fair extension of A. Then π(E) is a distinguishing
graph of A w.r.t. B. On the other hand, a distinguishing graph of A is also a
fair extension of A. ⊓⊔

✼✵

Corollary 2. An answer A of Q(B) is irredundant iff R = 〈A,B \ A〉 is a
distinguishing graph of A w.r.t. to B.

Thus, determining whether an answer is irredundant can be done by testing
the distinguishness of the referring graph built from KB. However, the cost of
such a test is exponential in the size of the KB.

4.3 Redundancy and subset of answers

Since the redundancy of an answer has been defined, it could be considered that
for building a set of answers without redundancies one could simply remove
redundant answers. However, the redundancy defined in the preceding section
hides the fact that they are two types of redundancy. This is shown in fig. 3 (a
query and three different KBs) :

The first case will arise when an answer is completely redundant with respect
to another answer (fig. 3(b)). This means that A2 is redundant w.r.t. A1 but the
reverse does not hold. In this case, we say that A2 is strongly redundant w.r.t.
A1. Thus, we only return the answer A1.

The second case arises when there are a set of answers which are redundant
amongst themselves (fig. 3(c) and 3(d)). In these two examples, an answer is
redundant with respect to the others and vice-versa. In this case, we say that
the answers are mutually redundant and we have to choose an answer in this
set.

Note that the answer redundancy problem still holds in KBs in irredundant
forms, as in the example of fig. 3(d).

21
likeHuman : * Human : *

(a) Query

A1

A2

1
2

Human: *like

2
Human: Mary1 like

Human: *

(b) Strong redundancy

A4

A3

1
2

Human: *like

2
Human: *1 like

Human: *

(c) Mutual redundancy

A5

A6

12

like

2

Human: *

1 like

Human: *

(d) Mutual redundancy

Fig. 3. Different cases of redundant answers

Strong and mutual redundancies are based on the redundancy of an answer
w.r.t. another one:

Definition 7 (Redundancy relation). An answer A is redundant to an an-
swer A′ iff for each referring graph RA of A, there is a projection π from RA to
a referring graph RA′

of A′ with π(RA
0) = π(RA′

0) = A′.

✼✶

One can test the redundancy relation with the KB referring graph:

Property 2. An answer A is redundant to an answer A′ iff there is a projection
π from 〈A,B \A〉 to a referring graph RA′

of A′ with π(A) = A′.

Therefore an answer A is redundant to an answer A′, the redundancy relation
between A′ and A defines the two previously seen redundancy cases:

Definition 8 (Redundancies between answers). Given A and A′ ∈ Q(B),
such that A is redundant to A′:

– A is strongly redundant to A′ if A′ is not redundant to A ;
– A and A′ are mutually redundant if A′ is redundant to A ;

Based on the notion of true redundancy, we can refine our notions of non-
redundancy and completeness of subsets of answers that we defined in [2] :

Definition 9 (Non-redundant subset of answers). A subset of answers A
of Q(B) is non-redundant if there are no two answers A and A′ ∈ A such that
A 6= A′ and A is redundant to A′.

Definition 10 (Completeness). A subset of answers A of Q(B) is complete if
for each answer A of Q(B) there is an answer A′ of A such that A is redundant
to A′.

We define a graph of redundancies based on the notions of strong and mutual
redundancies. All types of redundancies of definition 8 can be viewed as relations
on Q(B)2, for example (A,A′) belongs to the strong redundancy relation if
A is strongly redundant to A′. Thus we can characterize properties of these
relations. Particularly, mutual redundancy defines equivalent classes over the set
of answers, and strong redundancy links all answers of an equivalent class to all
answers of another equivalent class. We construct the redundancy graph such
that each vertex is an equivalent class, and is linked by the strong redundancy:

Definition 11 (Graph of redundancy). The graph of redundancy G = (V,E)
of Q(B) is a directed graph, where vertices represent equivalent classes of the
mutual redundancy relation and where there is an edge between v1 and v2 if all
answers of the class represented by v1 are strongly redundant to all answers of
the class represented by v2.

Fig. 4(a) represents the redundancy graph of query and KB of fig. 1, whereas
fig. 4(b) represents the redundancy graph of query of fig. 3(a) and KB defined
by the union of KBs of fig. 3(b), 3(c) and 3(d).

A2 A3 A4 A5A1

(a)

A4A3
A2A1 A5 A6

(b)
Fig. 4. Redundancy graph of the previous examples.

✼✷

To construct a complete and non-redundant set of answers, one has to only
choose a single answer per equivalent class (to avoid mutual redundancy), only
from equivalent classes that are sinks (to avoid strong redundancy), and for all
of them (to be complete). This is why there is more than one non-redundant
complete subset in the second example (fig. 4(b)): there is an equivalent class
that is a sink and contains more than one element ({A5, A6}).

Theorem 2. A subset of answers A of Q(B) is complete and non-redundant
iff for each sink in the redundancy graph there is a single answer of A that is
represented by this sink.

Proof. Given a non-redundant and complete subset of answersA. Non-redundancy
means that there is a single answer for each equivalent class represented in A
and that there are no two answers Ai and Aj such that there is a path from
Ai to Aj . Completeness ensures that for all answers Ai of Q(B) (particularly
answers belonging to a sink) there is an answer Aj such that Ai is redundant to
Aj . So A has to contain an answer of each sink. When combining completeness
and non-redundancy, only one answer of each sink is taken.
• Given a subset of answers A that is composed of an element of each sink of
the redundancy graph. Given two answers of A. These answers are not mutu-
ally redundant because there are no two answers of the same equivalent class.
These answers are not strongly redundant because each answer comes from a
sink. Thus A is non-redundant. For each answer Ai of Q(B), either there is an
answer Aj of the same equivalent class in A (thus Aj is redundant to Ai), or
there is an answer Ak in A that comes from a sink such that there is a path
from the equivalent class of Ai to the sink, and thus Ai is redundant to Ak. A
is complete.

The construction of a redundancy graph combines the problem of finding all
projections of a graph into another graph (to compute the set of answers) and the
problem of computation of the irredundant form of a graph. Indeed, as stated by
property 2, computation of all redundancy links of all answers used to construct
the graph is based on all projections of the most specific referring graph of each
answer (i.e. a bicolored isomorphic copy of the whole KB). Therefore, a way to
compute all redundancy links is to compute all projections from the KB into
itself, and check images of a each answer by all projections.

4.4 Inclusion of answers

As mentioned in section 3.2, the inclusion of answers is one of the problems that
can occur. If treated as a kind of duplication, included answers are just deleted
from the answer set before computation of a non-redundant complete subset.
But this approach is not the best one. We think that the inclusion problem
should be treated after the redundancy problem.

In the example of fig. 5, there are seven answers: three that contain only one
relation (A1, A2, A3), three that contain two relations (A12

4, A13, A23), and

4 Answer Aij represents the answer that is the union of answers Ai and Aj .

✼✸

one with three relations (A123). Considering all answers, only answers A2, A3

and A23 are irredundant (see fig. 5(c)), but it is not suitable to keep A2 and A3.
Otherwise, if only non-included answers are kept, this leads to keeping answers
that were redundant to deleted answers (here A123, redundant to A23), which is
not good.

2

1

2
1

2

1

own

own

own

Cat : *

Cat: *

Cat : *

Human : *

(a) Query

A1

A2

A3

212

1

2
1

2

1

own

own

own

color Color: *Cat : *

Cat: Felix

Cat : *

Human : *

(b) KB

A3 A13 A123A23A1A2A12

(c) Redundancy graph

Fig. 5. A query and a KB that produce included answers, and their redundancy graph.

So the best way is to deal with redundancy first (by computing a subset that
is non-redundant and complete) and to delete included answers after that. In
the previous example, this strategy led to the subset {A23}.

4.5 Redundancy at a considered distance

In the query framework section, it was stated that computation of the irredun-
dant form of the KB is a difficult problem. But we also see that computation of
the redundancy graph also requires finding all projections of the KB into itself.
Thus, we propose to restrict referring graphs of an answer to a portion of the
base that is “near” this answer. This is also due to the fact that a referring graph
that contains too much knowledge, even if it distinguishes an answer, does not
help the user much. So we propose to bound referring graphs by a distance k,
and to only consider vertices that are in the distance field of one of the vertex
of an answer, which forms the k-neighborhood graph of the answer:

Definition 12 (k-neighborhood graph). Given a KB B, a subgraph S of
B, and a step k (k ≥ 0), the k-neighborhood graph, denoted Nk(S), is defined
recursively by:

– N0(S) = S

– Nn+1(S) is composed of Nn(S) expanded by every relation r not in Nn(S)
and which is linked to a concept of Nn(S), and by all concepts linked to r.

Recursion stops when n = k or Nn(S) = Nn+1(S) and returns Nn(S).

It seems obvious that all definitions put forward previously should now take
this constraint into account. Bounding referring graphs can be seen as a restric-
tion of the KB, which is now considered as the union of the k-neighborhood
graph of each answer, for a given distance.

✼✹

Definition 13 (Truncated KB). Given a KB B, a query Q, and a distance
k ≥ 0, the truncated KB at distance k is Bk =

⋃

A∈Q(B) N
k(A)

Now we can apply all previous definitions to the truncated KB. For example,
an answer A of Q(B) is irredundant considering the distance k iff R = 〈A,Bk\A〉
is a distinguishing graph of A w.r.t. Bk (see corollary 2).

5 Building smart answers

In the previous section, redundancy and completeness were only studied from a
theoretical standpoint. A more user-aspect oriented standpoint was introduced
in the section 4.5. Even if the user gets a subset of answers that is non-redundant
and complete, he/she has no way to distinguish answers, i.e. the only assumption
that can be made is that there is, for each answer, a way to distinguish them
from the others. Otherwise, property 1 states that the most specific referring
graph is one of them, but it usually contains too much knowledge.

So what are the properties of a really good set of referring graphs returned
to the user? To keep the notions of non-redundancy and completeness, only
answers of such a subset of answers should have a referring graph. As all of these
answers can be distinguished, all referring graphs should be a distinguishing
graph. Finally, to not introduce unnecessary redundancies in the set of referring
graphs, there should be only one distinguishing graph by referred answer. A set
of referring graphs that fulfills these properties is called a set of smart answers:

Definition 14 (Set of smart answers). A set of smart answers S of a query
Q on a KB B is a set of distinguishing graphs of all answers of a non-redundant
complete set A of Q(B) such as |S| = |A|.

We propose the Bounded Smart Answers (BSA) algorithm (see algo. 1) that
takes the answers and a distance as parameters, and returns a set of smart
answers of truncated KB at distance k such that each extension is the minimal
k-neighborhood graph that distinguishes the answer5.

Theorem 3. Algorithm BSA(Q(B), k) produces a set of smart answers of Q
on the truncated KB Bk.

Proof. In DAK, all referring graphs are constructed with the same distance.
Therefore, thanks to the distance conservation property of the projection, that
if there is a bicolored projection from Nk(Ai) to Nk(Aj), there is a projection
from Nk(Ai) to Bk such that image of the core of Nk(Ai) is equal to Aj (i.e.
Nk(Ai) is a referring graph of Aj in Bk). For each answer A that belongs to
an equivalent class that is not a sink, A will not be returned by DAK because
of the second “foreach” of DAK. The third foreach of DAK ensures that for
each equivalent class that is a sink, the algorithm will only add one (the first
taken) answer that belongs to this class once the good distance is reached. Thus

5 Note that comparisons in DAK (algo. 2) are between bicolored graphs, that is
B ≤ B′ iff there is a π from B′ to B such that π(B′

0) = B0.

✼✺

Data: Answers Q(B), a distance k

Result: A set of smart answers of truncated KB Bk

begin
i← 0
D ← ∅ // distinguished answers

S ← ∅ // smart answers

while i ≤ k or D 6= Q(B) do
D′ ← DISTING AT K(Q(B), D, i)
D ← D ∪D′

foreach A ∈ D′ do

S ← S ∪ {〈A,N i(A) \A〉}

return S
end

Algorithm 1: BOUNDED SMART ANSWERS (BSA)

the union of all answers returned by DAK is a non-redundant complete subset
of answers of Bk. As BSA returns only one graph per answer of the computed
non-redundant complete subset, BSA returns a set of smart answers of Bk. ⊓⊔

6 Conclusion

We extended our previously defined notion of answer redundancy. Our new
framework now considers answers but also descriptions (called referring graphs)
that can distinguish an answer amongst others. These descriptions could be
adapted to query languages of the semantic web, e.g. by giving a formal def-
inition of the SPARQL DESCRIBE query form. Therefore this new redundancy
is now linked to the whole KB. Based on this new redundancy, we refined two
other previous definitions concerning subsets of answers: non-redundancy prop-
erty (there is no redundant answer in the subset) and completeness (each answer
is redundant to an answer of the subset). We proposed a way to construct all
non-redundant and complete subsets of answers using a redundancy graph. We
introduced the notion of smart answer and gave an algorithm that computes a
set of smart answers based on a vertex neighborhood distance.

Answer redundancy arises because of open world assumption and undefined
objects (generic concepts). A deeper redundancy still exists, that is not related
to the formalized world (the KB), but rather to the “real world” (described by
the KB). For example, it is possible that non-redundant answers “a big cat” and
“a white cat” refer to a single cat of the “real world”, which is big and white.
The study of this new kind of redundancy can provide a foundation for using
aggregation operators (e.g. number of results to a query) in graph based KB
query languages.

References

1. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical
report, W3C (2008)

✼✻

Data: Answers Q(B), distinguished answers D, a distance k

Result: A set D′ of distinguished answers at distance k

begin

D′ ← ∅
foreach A ∈ Q(B) \D do

disting ← true

foreach A2 ∈ Q(B) \ {A} do
if Nk(A) ≥ Nk(A2) and Nk(A2) � Nk(A) then

disting ← false

foreach A3 ∈ D′ do

if Nk(A) ≥ Nk(A3) then
disting ← false

if disting = true then

D′ ← D′ ∪ {A}

return D′

end

Algorithm 2: DISTING AT K (DAK)

2. Leclère, M., Moreau, N.: Query-answering cg knowledge bases. In: ICCS ’08:
Proceedings of the 16th international conference on Conceptual Structures, Berlin,
Heidelberg, Springer-Verlag (2008) 147–160

3. Lin, J.J., Quan, D., Sinha, V., Bakshi, K., Huynh, D., Katz, B., Karger, D.R.: What
makes a good answer? the role of context in question answering. In: INTERACT.
(2003)

4. Croitoru, M., van Deemter, K.: A Conceptual Graph approach to the Generation of
Referring Expressions. In: Proceedings of the 20 th International Joint Conference
on Artificial Intelligenc (IJCAI-2007). (2007)

5. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web
databases. In: PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, New York, NY,
USA, ACM Press (2004) 95–106

6. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL, a language for deductive query an-
swering on the Semantic Web. Web Semantics: Science, Services and Agents on
the World Wide Web 2(1) (2004) 19–29

7. Chein, M., Mugnier, M.L.: Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle 6(4) (1992) 365–406

8. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

9. Baget, J.F., Mugnier, M.L.: The SG family: Extensions of simple conceptual
graphs. In: IJCAI. (2001) 205–212

10. Mugnier, M.: On generalization/specialization for conceptual graphs. Journal of
Experimental & Theoretical Artificial Intelligence 7(3) (1995) 325–344

✼✼

ALASKA for Ontology Based Data Access

Jean-François Baget, Madalina Croitoru, Bruno Paiva Limada Silva

LIRMM (University of Montpellier II & CNRS), INRIA Sophia-Antipolis, France

Abstract. Choosing the tools for the management of large and semi-structured
knowledge bases has always been considered as a quite craftytask. This is due to
the emergence of different solutions in a short period of time, and also to the lack
of benchmarking available solutions. In this paper, we use ALASKA, a logical
framework, that enables the comparison of different storage solutions at the same
logical level. ALASKA translates different data representation languages such
as relational databases, graph structures or RDF triples into logics. We use the
platform to load semi-structured knowledge bases, store, and perform conjunctive
queries over relational and non-relational storage systems.

1 Motivation and Impact

The ONTOLOGY-BASED DATA ACCESS (ODBA) problem [4] takes a set of facts, an
ontology and a conjunctive query and aims to find if there is ananswer / all the an-
swers to the query in the facts (eventually enriched by the ontology). Several languages
have been proposed in the literature where the language expressiveness / tractability
trade-off is justified by the needs of given applications. Indescription logics, the need
to answer conjunctive queries has led to the definition and study of less expressive lan-
guages, such as theEL ([1]) and DL-Lite families [2]. Properties of these languages
were used to define profiles of the Semantic Web OWL 2 language (www.w3.org/
TR/owl-overview).

When the above languages are used by real world application,they are encoded
in different data structures (e.g. relational databases, Triple Stores, graph structures).
Justification for data structure choice include (1) storagespeed (important for enrich-
ing the facts with the ontology) and (2) query efficiency. Therefore, deciding on what
data structure is best for one’s application is a tedious task. While storing RDF(S) has
been investigated from a database inspired structure [3], other logical languages did not
have the same privilege. Even RDF(S), often seen as agraph, has not been thoroughly
investigated from aODBA perspective wrt graph structures and emergence ofgraph
databases in the NoSQL world.

This demo will allow to answer the following research question: “How to design an
unifying logic-based architecture for ontology-based data access?”.

2 ALASKA

We thus demonstrate the ALASKA (acronym stands forAbstract andLogic-based
Architecture forStorage systems andKnowledge basesAnalysis) platform. ALASKA’s
goal is to enable and perform ODBA in a logical, generic manner, over existing, het-
erogenous storage systems. The platform architecture is multi-layered.

✼✽

KRR
operations

IFact

< interface >

IAtom

< interface >

ITerm

< interface >

GDB
Connectors

RDB
Connectors

TS
Connectors

Predicate TermAtom

GDB RDB TS

Application
layer(1)

Abstract
layer(2)

Translation
layer(3)

Data
layer(4)

RDF File Input Manager RDF Parser

IFact Manager

IFact to GDB
Translation

IFact to RDB
Translation

Graph DBRelational DBTriple Store

Layer (1)

Layer (2)

Layer (3)

Layer (4)

Fig. 1. ALASKA class diagram, and workflow of storage protocol.

The first layer is (1) theapplication layer. Programs in this layer use data structures
and call methods defined in the (2)abstract layer. Under the abstract layer, the (3)
translation layer contains functions by which logical expressions are translated into the
languages of several storage systems. Those systems, when connected to the rest of the
architecture, compose the (4)data layer. Performing higher level reasoning operations
within this architecture consists of writing programs and functions that use exclusively
the formalism defined in the abstract layer. Once this is done, every program becomes
compatible to any storage system connected to architecture.

To have a functional architecture, representative storagesystems were selected. The
systems already connected to ALASKA are listed below (please note that this list is not
final and subject to constant updates):
→ Relational databases: Sqlite 3.3.61, MySQL 5.0.772

→ Graph databases: Neo4J 1.8.13, DEX 4.74, OrientDB 1.0rc65, HyperGraphDB
1.16

→ Triples Stores: Jena TDB 0.9.47

Figure 1 displays, on the left-hand side, the class diagram of the architecture. On the
right-hand side the workflow of knowledge base storing is illustrated. Let us analyse
the workflow. We consider a RDF file as input. The RDF file is passed to the Input
Manager (layer 1). According to the storage system needs theInput Manager directs
it accordingly. If the RDF file will be stored in a Triple Storethan the file is directly
passed to the Triple Store of choice (layer 4). If the RDF file needs to be stored in
a graph database the file is first transformed in an IFact object (layer 2). It is then
translated (layer 3) to the language of the system of choice (graph database in this case)
before being stored onto disk (layer 4).

Querying in ALASKA follows a similar workflow as the storage.In Figure 2, on the
left hand side we show the storing workflow for storing a factF in either a relational
database or a graph database (for simplification reasons). On the right hand side of

1 http://www.sqlite.org/
2 http://www.mysql.com/
3 http://www.neo4j.org/
4 http://www.sparsity-technologies.com/dex
5 http://www.orientechnologies.com/orient-db.htm
6 http://www.hypergraphdb.org/
7 http://jena.sourceforge.net/

✼✾

the figure the querying workflow is depicted for graph and relational databases. Let
us consider a factF both stored in a relational database and in a graph database.Let
us also consider a queryQ. This query can either be expressed in SQL (or in a graph
language of choice) and be sent directly to the respective storage system (e.g. the SQL
Q query to theF in the relational database). Alternatively, the query can be translated
in the abstract logic language and a generic backtrack algorithm used for answeringQ
in F . This generic backtrack algorithm will solely use the native language “elementary”
operations for accessing data.

F

Abstract Architecture

Relational DB Graph DB

Q

Abstract
Architecture

Q → SQL
Q →
Graph
Query

F stored in
Graph DB

F stored in
Relational DB

Fig. 2. ALASKA storage and querying workflow.

3 ALASKA Demo Procedure

In a nutshell, the demo procedure of ALASKA goes as follows. Given a knowledge base
(user provided or selected amongst benchmarks provided by ALASKA) a set of storage
systems of interest are selected by the user. The knowledge base is then transformed in
the Abstract Architecture and consequently stored in the selected systems. The storage
time per system is then showed to the user (excluding the timeneeded for translation
into Abstract Layer). Once the storage step is finished, users are able to perform con-
junctive queries over the knowledge bases and, once again, compare the time of each
system for query answering.

Let us consider an example. The knowledge base used here has been introduced by
the SP2B project [5]. The SP2B project supplies a generator that creates knowledge
bases with a certain parametrised quantity of triples maintaining a similar structure to
the original DBLP knowledge base. The generator was used to create 5 knowledge
bases of increasing sizes (5 million triples, 20, 40, 75 and respectively 100). Each of
the knowledge bases has been stored in Jena, DEX, SQLite and Neo4J. In Figure 3 we
show the time for storing the knowledge bases and their respective sizes on disk.

The user can see that the behavior of Jena is worse than the other storage systems.
This is due to the Jena RDF parser uses central memory for buffering purposes when
loading a file. For comparison, the other systems use the custom made RDF parser of
ALASKA. Let us also note that DEX behaves much better than Neo4J and this is due
to the fact that ACID transactions are not required for DEX (while being respected
by Neo4J). Second, the size of storage is also available to the user. One can see, for
instance, that the size of the knowledge base stored in DEX and Neo4J is well under

✽✵

the size of initial RDF file. However, the size of the file stored in Jena is bigger than the
one stored in SQLite and bigger than the initial size of the RDF file.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

·104

Size (Millions of triples)

T
im

e
(s

)

Stores

Jena TDB DEX Sqlite Neo4J

Size of the stored knowledge bases
System 5M 20M 40M 75M 100M
DEX 55 Mb 214.2 Mb 421.7 Mb 785.1 Mb 1.0 Gb
Neo4J 157.4 Mb 629.5 Mb 1.2 Gb 2.3 Gb 3.1 Gb
Sqlite 767.4 Mb 2.9 Gb 6.0 Gb 11.6 Gb 15.5 Gb

Jena TDB 1.1 Gb 3.9 Gb 7.5 Gb - -
RDF File 533.2 Mb 2.1 Gb 4.2 Gb 7.8 Gb 10.4 Gb

Fig. 3. Storage time and KB sizes in different systems

Once the storage step is finished, users are able to perform conjunctive queries. As
already explained, querying the newly-stored knowledge base using the native interro-
gation engine (SQL for relational databases, SPARQL for 3Stores, etc.) is still possible
with ALASKA. However, ALASKA also allows the possibility toperform conjunctive
queries that access any storage system included in the platform using the same back-
track algorithm. The queries we have used here are:

1. type(X,Article)
Returns all the elements which are of type article.

2. creator(X,PaulErdoes) . creator(X,Y)
Returns the persons and the papers that were written with Paul Erdoes.

3. type(X,Article) . journal(X,Journal1-1940) . creator(X,Y)
Returns the creators of all the elements that are articles and were published in Jour-
nal 1 (1940).

4. type(X,Article) . creator(X,PaulErdoes)
Returns all the articles created by Paul Erdoes.

In the graphs in Figure 4 and 5 we show the combination storageand querying
algorithm. For instance Jena(BT) stands for using Jena for elemntary access operations
and the generic backtrack for querying. SQLite(SQL) uses directly the SQL querying
engine over the data stored in SQLite. In the graph corresponding to Q1 we also study
the behavior of SQLite using the genric backtrack. For otherqueries we did not show it
because the behavior is much worse that the other systems. Wecan also observe that for
Q1, Q3 and Q4 queries SQLite and Jena behave faster than the graph bases. However,
for Q2 this is no longer the case. In this case the fastest system for the generic backtrack
is Jena followed by Neo4J and DEX, while SQLite explodes. Theintuition behind this
behavior is due to the phase transition phenomenon in relational databases but these
aspects are out of the scope of this demonstration.

4 Discussion
An abstract platform (ALASKA) was created in order to perform storage operations
independently of the data location. In order to enable the comparison between different

✽✶

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Size (Thousand of triples)

T
im

e
(m

s)

Q1

Jena(BT) DEX(BT) Sqlite(BT)
Neo4J(BT) Sqlite(SQL)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Size (Thousand of triples)

T
im

e
(m

s)

Q2

Jena(BT) DEX(BT)
Neo4J(BT) Sqlite(SQL)

Fig. 4. Querying performance using ALASKA for large knowledge bases: Q1 and Q2

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

Size (Thousand of triples)

T
im

e
(m

s)

Q3

Jena(BT) DEX(BT)
Neo4J(BT) Sqlite(SQL)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

Size (Thousand of triples)

T
im

e
(m

s)

Q4

Jena(BT) DEX(BT)
Neo4J(BT) Sqlite(SQL)

Fig. 5. Querying performance using ALASKA for large knowledge bases: Q3 and Q4

storage paradigms, ALASKA has to translate a knowledge basefrom a common lan-
guage (i.e. First Order Logic) into different other representation language. Comparing
different storage and querying paradigms becomes then possible. A knowledge base
stored in a relational database can be also stored in a graph based database as well as a
Triple Store and queried with an in built SPARQL engine etc.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope.In Proc. of IJCAI 2005, 2005.
2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R.Rosati. Tractable reasoning

and efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

3. B. Haslhofer, E. M. Roochi, B. Schandl, and S. Zander. Europeana RDF store report. Techni-
cal report, University of Vienna, Vienna, Mar. 2011.

4. M. Lenzerini. Data integration: A theoretical perspective. InProc. of PODS 2002, 2002.
5. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench: A sparql performance bench-

mark. CoRR, abs/0806.4627, 2008.

✽✷

Coalitional Games via Network Flows

Talal Rahwan1, Tri–Dung Nguyen1, Tomasz P. Michalak2,3,

Maria Polukarov1, Madalina Croitoru4 and Nicholas R. Jennings1

1 University of Southampton, UK 2 University of Oxford, UK
3 University of Warsaw, Poland 4 University of Montpelier, France

Abstract

We introduce a new representation scheme for
coalitional games, called coalition-flow networks
(CF-NETs), where the formation of effective coali-
tions in a task-based setting is reduced to the
problem of directing flow through a network. We
show that our representation is intuitive, fully ex-
pressive, and captures certain patterns in a signifi-
cantly more concise manner compared to the con-
ventional approach. Furthermore, our representa-
tion has the flexibility to express various classes
of games, such as characteristic function games,
coalitional games with overlapping coalitions, and
coalitional games with agent types. As such, to
the best of our knowledge, CF-NETs is the first
representation that allows for switching conve-
niently and efficiently between overlapping/non-
overlapping coalitions, with/without agent types.
We demonstrate the efficiency of our scheme on
the coalition structure generation problem, where
near-optimal solutions for large instances can be
found in a matter of seconds.

1 Introduction

Cooperation is a central concept in artificial intelligence
and at the heart of multi-agent systems design. Coalitional
game theory is the standard framework to model coopera-
tion; it provides theoretical constructs that allow agents to
take joint actions as primitives [Ieong and Shoham, 2006].
One of the most important research questions in this domain
is the coalition structure generation problem (CSG), i.e.,
how can the set of agents be partitioned into groups (coali-
tions) such that social welfare is maximized? This problem
has attracted considerable attention in the recent AI literature
[Bachrach and Rosenschein, 2008; Michalak et al., 2010;
Rahwan et al., 2011], as it has important applications and in-
spires new theoretical and computational challenges. Existing
work on coalition structure generation focuses on character-
istic function games (CFGs), i.e., games in which the outcome
obtained by a coalition is not influenced by agents outside the
coalition.1

1Recently, a coalition structure generation algorithm has been
proposed in games with “externalities” (i.e., possible influences be-

The prevailing assumption in CSG algorithms is that coali-
tion structures are disjoint. However, there exist many realis-
tic scenarios in which this assumption does not hold [Chalki-
adakis et al., 2010]. For example, in multi-sensor systems,
where sensors coordinate their movements to monitor partic-
ular targets of interest, the performance can be improved by
allowing the sensors to form overlapping coalitions [Dang et
al., 2006].

A second prevailing assumption in existing CSG algo-
rithms is that every agent is unique, i.e., such works do not
consider situations where some agents are identical. Again,
the ability to differentiate between identical and non-identical
agents can often improve performance. For example, in disas-
ter response scenarios, one should distinguish between a fire
brigade and an ambulance (as they are aimed for different ac-
tivities), but may be indifferent between two ambulances with
equal capabilities. The theory of coalition structure genera-
tion has been extended only recently to such domains [Aziz
and de Keijzer, 2011; Ueda et al., 2011].

The standard CFG representation explicitly lists the values
of all the possible coalitions and requires space that is expo-
nential in the number of agents. However, in many classes
of games, there exists additional structure (such as identical
agents) that can be exploited, and well-crafted representation
schemes can significantly improve performance [Deng and
Papadimitriou, 1994; Ieong and Shoham, 2006; Elkind et al.,
2009; Aadithya et al., 2011]. However, the majority of works
in this line of research focused on computing solution con-
cepts, rather than solving the coalition structure generation
problem.

To date, with very few exceptions (e.g., [Shehory and
Kraus, 1998; Dang and Jennings, 2006]) the incorporation of
tasks is absent from the research on coalition structure gen-
eration. The advantage of incorporating tasks is that it allows
for capturing a much wider range of applications. In partic-
ular, many real-world applications involve a set of tasks to
be achieved, where the agents need to form coalitions since
(some of) those tasks cannot be performed by an individ-
ual agent, or can be achieved more efficiently by a group of
agents (compared to an individual). However, the disadvan-
tage of incorporating tasks is that it makes the optimization
problems (such as coalition structure generation) significantly
harder to solve. This is because the value of a coalition does

tween co-existing coalitions) [Rahwan et al., 2012].

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

324

✽✸

not depend solely on the identities of its members; it depends
on the tasks being achieved by the coalition. As such, a coali-
tion does not necessarily have a single value. Instead, it can
have a different value for every task.

Our Contribution

We formulate a unified approach for modelling different types
of coalitional games in task-based settings. In particular, we
formulate the coalition structure generation problem as a net-
work flow problem—a problem widely studied in the combi-
natorial optimization literature, with many important applica-
tions in the real world [Schrijver, 2003]. More specifically:

• We propose a new representation of coalitional games,
namely coalition-flow networks (CF-NETs), where the
coalition formation process is represented as the pro-
cess of directing the flow through a network with
edge-capacity constraints. We show that CF-NETs are
an appropriate representation for several important
classes of coalitional games, such as conventional (non-
overlapping) coalitional games, overlapping coalitional
games, and coalitional games with agent types. Impor-
tantly, to the best of our knowledge, this is the first rep-
resentation with which one can easily and efficiently
switch between cases with overlapping/non-overlapping
coalitions, with/without agent types. In addition, we
show how CF-NETs allow for the succinct storage of
certain, potentially useful patterns.

• We show that under the CF-NET representation, the
coalition structure generation problem in a task-based
setting can be reformulated as a mathematical program
related to the well-known production-transportation
problem [Tuy et al., 1996; Holmberg and Tuy, 1999;
Hochbaum and Hong, 1996].

• We provide an anytime approximation technique for the
CSG problem, which provides worst-case guarantees on
the quality of the solutions produced. Using numerical
simulations, we show that our algorithm scales to thou-
sands of agents. For example, for n = 5000 agents, it
finds solutions within 75-85% of the optimum in a mat-
ter of seconds.

Related Work

Researchers have attempted to circumvent the intractability
of the characteristic function form by developing alternative
representations, which are more compact and allow efficient
computations. These representations can be divided into two
main categories:

1. The representation is guaranteed to be succinct, but is
not fully expressive (i.e., it cannot represent any arbi-
trary characteristic function game) [Deng and Papadim-
itriou, 1994; Wooldridge and Dunne, 2006].

2. The representation is fully expressive, but is only suc-
cinct for some problem instances [Ieong and Shoham,
2006; Elkind et al., 2009; Conitzer and Sandholm,
2004b]). Our CF-NET representation scheme falls in
this category.

Most previous work focuses on the computation of solu-
tion concepts, such as the Shapley value [Deng and Papadim-
itriou, 1994; Ieong and Shoham, 2006; Elkind et al., 2009;
Conitzer and Sandholm, 2004b], the core [Conitzer and
Sandholm, 2004a; 2004b], the bargaining set, and the ker-
nel [Greco et al., 2009]. On the other hand, the coalition struc-
ture generation problem has recently attracted attention, with
most of the studies focusing on characteristic function games
[Rahwan et al., 2009].

Among the very few works that consider overlapping coali-
tions, we mention the works by Shehory and Kraus [1996]
and Dang et al. [2006]. The former only proposes a greedy
algorithm for a subclass of these games, whereas the latter
makes heavy use of several strong assumptions placed on the
characteristic function. Recently, Chalkiadakis et al. [2010]
introduced a formal model of overlapping coalition forma-
tion, in which an agent can participate in multiple coalitions
simultaneously, by contributing a portion of its resources to
each coalition containing it.
Our CF-NET representation is designed for the purpose of
solving the coalition structure generation problem efficiently.
The only other representation designed with this problem in
mind is due to Ohta et al. [2009]. However, unlike our rep-
resentation, theirs does not incorporate tasks, and does not
consider games with agent types or overlapping coalitions.

The basic idea of applying network flows to model coali-
tional games has been examined before, for example by Kalai
and Zemel [1982] and by Bachrach and Rosenschein [2009].
However, the fundamental difference is that, in those papers,
the units of flow can be thought of as utility units (so the so-
lution to a network flow problem influences the value of a
coalition). In our representation, what flows in the network is
“agents”, so solving a flow problem returns a coalition struc-
ture. This is precisely what gives flexibility to our framework,
allowing for overlapping coalitions, or identical agents, to be
considered whenever needed.

2 Preliminaries

In this section, we provide the standard definitions for the
classes of coalitional games studied in this work.

We define a task-based characteristic function game,
TCFG, as a coalitional game given by a tuple 〈A,K, v〉,
where

• A = {a1, . . . , an} is a set of agents;

• K = {k1, . . . , kq} is a set of tasks;

• v : 2A × K → R is a function that assigns a value to
every pair (C, ki), where C is a coalition and ki is a task.

In this paper, we assume that every performed task is per-
formed by exactly one coalition. The possibility of having a
group of agents that does not perform any tasks can easily
be incorporated by adding a single dummy task. On the other
hand, the possibility of having a single coalition perform mul-
tiple tasks can be incorporated by allowing overlapping coali-
tions (in which case every performed task is performed by a
single, not necessarily unique, coalition).

An implicit assumption is that every agent can participate
in exactly one coalition. When an agent is allowed to be-
long to multiple coalitions simultaneously, the tuple 〈A, v〉

325

✽✹

defines a task-based coalitional game with overlapping coali-
tions, denoted by TCFGo. In such a game, each agent can be
a member of up to 2n−1 coalitions. In reality, this number is
reasonable only if coordination costs are low and the number
of available resources is sufficiently large.

Thus, the definition can naturally be extended to a task-
based resource-constrained coalitional game with overlap-
ping coalitions (TCFGrco). In such a game, each agent ai ∈ A
has an upper bound on the number of coalitions it can join,
which can be interpreted as a a limit on the resources that can
be employed by an agent to perform tasks. In this setting, a
game is formally defined by a tuple 〈A, r, v〉, where A and v
are defined as above, and the function r : A → {1, . . . , 2n−1}
assigns to every agent its resource constraints.2 Note that
the TCFGo and TCFG representations are special cases of
TCFGrco, where the number of coalitions that an agent can
join is maximal (2n−1) and minimal (1), respectively.

Next, we formalize task-based coalitional games with
agent types. Let A and v be defined as above and T =
{t1, . . . , tm : m ≤ n} a set of types, such that each agent
in A is associated with one type in T . Let t : A → T
be a function that returns the type of any given agent. An
important situation to model in such games is that of two
agents with the same type bringing the same marginal con-
tribution to any coalition they belong to. That is, given a type
tk ∈ T , for any two agents ai, aj of type tk and any coalition
C ⊆ A\{ai, aj}, the following holds: v (C ∪ {ai})−v(C) =
v (C ∪ {aj})− v(C).

Recall that the conventional TCFG representation can be
used to represent (albeit not concisely) the agent-type set-
ting. Clearly, however, the game can be represented more con-
cisely by considering the values of coalitions as a function of
the types (rather than the identities of the agents). To this end,
we define coalitional games with agent types.

Definition 1 A task-based coalitional game with agent types
(TCFGat) is a tuple 〈A, T, t, T , vat〉, where:

• A = {a1, . . . , an} is a set of agents;

• T = {t1, . . . , tm≤n} is a set of agent types;

• t : A → T is a function that returns the type of any
agent, ai ∈ A;

• T = T1 ∪ · · · ∪ Tm is a multi-set of agent
types, such that Tk = {tk, · · · , tk}, where |Tk| =
|{ai ∈ A : t(ai) = tk}|, ∀k ∈ {1, · · · ,m};

• K = {k1, . . . , kq} is a set of tasks;

• vat : 2T × 2K → R is a characteristic function of agent
types.

3 The CF-NET Representation

Next, we introduce the framework of coalition-flow networks
(CF-NETs) to represent the classes of coalitional games dis-
cussed above.

2The above definitions of overlapping coalitional games can be
viewed as a special case of a highly theoretical construct of Chalki-
adakis et al. [2010], where each agent can devote a unit of resource
to an infinite number of (possibly identical) coalitions.

Definition 2 A coalition-flow network (CF-NET) is a tuple
〈N,E,X ,Y,Z〉, where (1) (N,E) is an acyclic digraph with
a set of nodes N and a set of directed edges E, and (2) X , Y
and Z are sets of constraints. In particular:

1. The set of nodes, N , is the union of the following dis-
joint sets:

• {S,G} contains the source node S from which the
“flow” is pushed into the network and the sink node
G towards which the flow needs to be directed.

• Na is the set of agent nodes: each agent (or type)
is represented by exactly one such node. As such,
|Na| = n.

• Nk is the set of task nodes: each task is represented
by exactly one such node. Thus, |Nk| = q.

2. The set of edges is E = ({S}×Na)∪E′∪(Nk×{G}),
where E′ ⊆ {(ni, nj) : ni ∈ Na, nj ∈ Nk}.

3. The set of constraints is X ∪ Y ∪ Z , where X = {Xi :
i = 1 . . . n}, Y = {Yij : i = 1 . . . n, j = 1 . . . q},
and Z = {Zj : j = 1 . . . q}, which restrict the possible
values of the flow through the edges in {S} × Na, E′

and Nk × {G}, respectively. In particular:

• Xi represents the permitted multiplicities of agent
ai (or the permitted numbers of agents whose type
is ti) in the game.

• Yij represents the permitted multiplicities of agent
ai (or permitted numbers of agents of type ti) that
will perform task kj .

• Zj represents the sizes of the coalition that will per-
form task kj .

An illustration of the CF-NET representation can be found
Figure 1). Now, based on the network structure (N,E) de-
fined above, and the constraints X ∪ Y ∪ Z imposed on the
flow through the edges, we introduce next the notion of CF-
flow. Intuitively, the CF-flow depicts the coalition formation
process. Analogously to the flow in the network, the pro-
cess of directing the flow from the source node to the sink
node (through the agent/type nodes and the task nodes) can
be interpreted as the process of determining which coalition
should perform each task.
Definition 3 A coalition formation flow (CF-flow) in a CF-
NET 〈N,E,X ,Y,Z〉 is a function f : E → R with the fol-
lowing properties:

1. f(S, ni) ∈ X , ∀ni ∈ Na.

2. f(ni, nj) ∈ Y , ∀(ni, nj) ∈ E′.

3. f(nj , G) ∈ Z , ∀nj ∈ Nk.

4.
∑

(ni,nj)∈E

f(ni, nj) =
∑

(nj ,nk)∈E

f(nj , nk),

∀nj ∈ Na ∪Nk.

Let (x, y, z) be an instantiation of a CF-flow f in a CF-NET
〈N,E,X ,Y,Z〉, such that xi = f(S, ni) for ni ∈ Na, yij =
f(ni, nj) for (ni, nj) ∈ E′, and zj = f(nj , G) for nj ∈ Nk.
Then, from Definition 3, we have:

xi =
m
∑

j=1

yij , ∀ i = 1, . . . , n; zj =
n
∑

i=1

yij , ∀ j = 1, . . . ,m; (1)

xi ∈ Xi, yij ∈ Yij , zj ∈ Zj , ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m.

326

✽✺

Figure 1: Sample CF-NET representation

Given a CF-flow, we define next the values of the coalitions
constructed by it. To this end, we equip a CF-NET with three
valuation functions as follows:

Definition 4 Given a CF-NET 〈N,E,X ,Y,Z〉, let c, d, g be
the valuation functions defined, respectively, on {S} × Na,

E′ and Nk × {G}, such that:

• For all (S, ni) ∈ {S}×Na, ci = c(S, ni) represents the
value of a singleton coalition of agent ai (or an agent of
type ti).

• For all (ni, nj) ∈ E′, dij = d(ni, nj) is the contribution
of agent ai (or an agent of type ti) to task kj .

• For all (nj , G) ∈ Nk × {G}, gj(zj) = g(nj , G) is a
synergy function, where zj ∈ Zj is the size of the coali-

tion performing task kj .3

That is, the value of a coalition C performing task kj is given
as:

v(C, kj) =
∑

ai∈C

dijyij + gj(|C|). (2)

The first advantage of CF-NETs is their ability to represent
any of the four classes of games discussed above, (i.e. TCFG,
TCFGo, TCFGrco, and TCFGat). This can be done simply by
setting the appropriate X , Y , and Z . In more detail,

• In TCFG, ∀ai ∈ A,Xi = {1}, ∀ai ∈ A, ∀kj ∈
K,Yij = {0, 1}, and ∀kj ∈ K,Zj = {0, . . . , n};

• In TCFGo, ∀ai ∈ A,Xi = {1, . . . , 2n−1}, ∀ai ∈
A, ∀kj ∈ K,Yij = {0, 1}, and ∀kj ∈ K,Zj =
{0, . . . , n};

• In TCFGrco, ∀ai ∈ A,Xi = {1, . . . , r(ai)}, ∀ai ∈
A, ∀kj ∈ K,Yij = {0, 1}, and ∀kj ∈ K,Zj =
{{0, . . . , n}};

• In TCFGat, ∀ai ∈ A,Xi = {|Ti|}, ∀ai ∈ A, ∀kj ∈
K,Yij = {0, . . . , |Ti|}, and ∀kj ∈ K,Zj =
{0, . . . ,m}.

Next, we discuss expressiveness.

Proposition 1 Every coalitional game that can be modelled
as a TCFG, TCFGo, TCFGrco and/or TCFGat, can also be
represented as a CF-NET.

3Throughout the paper this is assumed that gj(0) = 0.

Proof : We demonstrate that, for any arbitrary coalitional
game under consideration, there exists a CF-NET representa-
tion that uniquely defines this game. Specifically:

1. TCFG: Our aim is to construct CF-NET representing an
arbitrary game 〈A,K, v〉. First, we create a one-to-one
function I : 2A × K → {1, . . . , 2n × q}. Now, for ev-
ery coalition C ∈ 2A and task kj ∈ K, we create a
hypothetical task wI(C,kj) which is connected to all the
agents in C and none of the agents in A\C. Furthermore,
for every ai ∈ C, we set Xi = {1}, Yi,I(C,kj) = {0, 1},
and di,I(C,kj) = 0. We also set ZI(C,kj) = {0, |C|}, and
set gI(C,kj) (|C|) = v(C, kj) and gI(C,kj) (0) = 0.

2. TCFGo/TCFGrco: This case is similar to the previous
one. The difference is only in the definition of Xi, which
is now given by Xi = {1, . . . , 2n−1} in the case of
TCFGo, or by Xi = {1, . . . , r(ai)} in the case of
TCFGrco.

3. TCFGat: Here, agent nodes depict available types of
agents. That is, every node ni ∈ Na represents a type
ti. This case is similar to TCFG case, except that we
now set Xi = {|Ti|} and Yi,I(C,kj) = {0, |C ∩ Ti|}.

✷

The constructs in the proof of Proposition 1 imply that
CF-NETs are no less concise than the corresponding TCFG,
TCFGo/TCFGrco and TCFGat representations. Indeed, the
edges do not need to be explicitly represented; for every hy-
pothetical task wx it is possible to identify to it simply by us-
ing the inverse of function I (which in turn can be concisely
represented).

Observe that, for certain patterns often encountered in
coalitional games, CF-NETs provide much more concise rep-
resentations. For instance, suppose there exist additional re-
quirements for coalitions to be formed, such as certain agents
being incompatible with each other, or constraints on the
coalition sizes. In these cases, one can simply exclude “infea-
sible” coalitions from the set of coalition nodes. This only de-
creases the size of the representation, which for certain game
classes makes CF-NETs exponentially more concise than the
corresponding characteristic function representations.

Next we prove our main technical result, demonstrating
the computational power of the CF-NET representation in the
coalition structure generation problem.

4 Coalition Structure Generation in CF-NETs

In this section, we formally define the coalition structure
generation (CSG) problem and propose an approximation
method for solving it on CF-NETs. Our technique utilizes the
advantages of the CF-NET representation to produce anytime
solutions and estimate their quality.

The CSG Problem

First, we make explicit the notion of a coalition structure for
each of the classes TCFG, TCFGo, TCFGrco and TCFGat.

1. TCFG: A coalition structure, π, is a partition of the
agents:

π =

{

C : C ⊆ A,
⋃

C∈π

C = A, ∀C,C′ ∈ π : C ∩ C
′ = ∅

}

327

✽✻

2. TCFGo: Similar to TCFG, except that coalitions can now
overlap. A coalition structure, πo, is defined as:

π
o =

{

C : C ⊆ A,
⋃

C∈π

C = A

}

3. TCFGrco: In this case, each agent ai ∈ A can be-
long to at most r(ai) coalitions simultaneously:

πrco =

{

C :C ⊆ A,
⋃

C∈π

C = A, ∀ai ∈ A : |{C ∈π :ai ∈C}| ≤ r(ai)

}

4. TCFGat: Coalitions are multi-sets of types, rather
than sets of agents as in previous cases. Let my(x)
denote the multiplicity of element x in multi-set y; then:

πat =

{

C : C ⊆ T ,
⋃

C∈π

C = T , ∀ti ∈ T :
∑

C∈π

mC(ti) = mT (ti)

}

Let Πx denote the sets of all possible coalition structures
in TCFGx, where index x is either empty or stands for “o”,
“rco” or “at”. The CSG problem in TCFGx is to find an op-
timal coalition structure, πx

OPT , that maximizes the sum of
coalition values:

π
x
OPT ∈ arg max

π={C1,...,C|π|}∈Πx,Kπ={k1,...,k|π|}⊆K

∑

Ci∈π

v
x(Ci, ki),

where vx = vat if TCFGat, and vi = v, otherwise.

Solving the CSG Problem in CF-NETs

We now formalize the CSG problem in terms of CF-NETs.
Here, since the value of a coalition performing a task is de-
fined by (2), the value of a coalition structure is:

n∑

i=1

q
∑

j=1

dijyij

︸ ︷︷ ︸

individual marginal contributions

+

q
∑

j=1

gj(zj)

︸ ︷︷ ︸

synergy values

.

For ease of exposition, we focus next on the non-
overlapping model. However, we emphasize the fact that our
method can be easily extended to games with overlapping
coalitions or with agent types (by defining Xi, Yij and Zj

accordingly).
For all i, j, we have Xi = {1}, Yij = {0, 1} and Zj =

{0, . . . , n}. The coalition structure generation problem can
then be formulated as a mathematical program:

CSG := max
x,y,z

n
∑

i=1

q
∑

j=1

dijyij +

q
∑

j=1

gj(zj)

s.t. zj =

n
∑

i=1

yij , ∀ j = 1, . . . , q, (3)

xi =

q
∑

j=1

yij , ∀ i = 1, . . . , n, (4)

x = {1}n,y ∈ {0, 1}n×q
, z ∈ {0, . . . , n}q. (5)

Note that if the synergy functions gj are linear, the problem
is equivalent to the classical maximum network flow problem
and can be solved efficiently [Cormen et al., 2001]. However,
for non-linear synergies, CSG becomes a non-linear integer

programming problem, which is generally NP-hard [Sand-
holm et al., 1999]. In this paper, we solve/approximate CSG
for general synergy functions.

First, observe that our problem is related to the production-
transportation problem from Operations Research [Tuy et
al., 1996; Holmberg and Tuy, 1999], which also has a net-
work flow interpretation. Here, the non-linear terms gj(zj)
can be viewed as the production part that the decision mak-
ers have to decide upon. Once the production z has been
fixed, the problem becomes a standard transportation prob-
lem – of finding (x,y) – and can be solved efficiently. How-
ever, solving for optimal (x,y) and z simultaneously is non-
trivial [Hochbaum and Hong, 1996].

Therefore, in this work we develop an approximation tech-
nique for CSG. Our method has two advantages: it gives an
anytime algorithm and it provides upper and lower bounds on
the optimal value; as a result, one can quantify how far the
solution provided is from the optimal solution. Specifically,
we use constraint relaxation and duality to modify the math-
ematical program as follows.

Relax the constraint (3) zi =
∑n

i=1 yij in CSG and con-
sider the corresponding dual problem:

minλ max
x,y,z

n∑

i=1

q
∑

j=1

dijyij +

q
∑

j=1

gj(zj)

−

q
∑

j=1

λj(zj −
n∑

i=1

yij)

s.t. (4), (5)

Now, for each fixed λ, consider the inner problem:

h(λ) = max
x,y,z

n∑

i=1

q
∑

j=1

(dij + λj)yij

+

q
∑

j=1

(gj(zj)− λjzj)

s.t. (4), (5)

By replacing every xi with
∑q

j=1 yij and noticing that h(λ))
is now separable in y and z, we can show that h(λ) =∑n

i=1 h1i(λ) +
∑q

j=1 h2j(λj), where:

h1i(λ) = max
yi.

n∑

i=1

q
∑

j=1

(dij + λj)yij

s.t.

q
∑

j=1

yij ≤ 1,

yi. ∈ {0, 1}q, and

h2j(λj) = max
zj∈{0,...,n}

gj(zj)− λjzj .

Finally, by simplifying h1i(λ) to h1i(λ) =
max{0,maxj(dij + λj)}, we get a one variable inte-
ger programming problem, which can be easily solved.

Thus, for each fixed λ, we can compute h(λ) very ef-
ficiently. Notice that minλ h(λ) provides an upper bound
on CSG (duality theory) and hence any choice of λ gives

328

✽✼

an upper bound (but we are interested in the smallest one,
minλ h(λ)). Notice also that h(λ) is a piece-wise linear func-
tion on λ with possible jumps. We then can solve the problem
minλ h(λ) using a sub-gradient based method for updating
λ, i.e., we reduce λj if (zj −

∑n

i=1 yij) < 0 and increase λj

otherwise. Although we might not be able to solve minλ h(λ)
to optimality, a sub-optimal solution still provides us with an
upper bound on CSG.

Finally, lower bounds are obtained. First, for each λ, the
inner problem can be solved to find its optimal solution on
(x,y, z). This solution is a feasible solution to CSG and
hence its objective value provides a lower bound. Another
method for producing a lower bound is to fix the optimal z
found in the inner problem and then solve the transportation
problem to find the corresponding optimal (x,y). This will
give another feasible solution and hence, a new lower bound.4

5 Performance Evaluation

We perform numerical tests on the algorithm for various set-
tings with the number of agents n varying between 100 and
5000 and the number of tasks q varying between 50 and 200.
For each combination of (n, q), we generate 100 random sam-
ples using random seeds between 1 and 100. In total, we have
tested the algorithm with 2000 random instances. On each in-
stance, the parameters c and d are generated uniformly, i.e.,
dij ∼ U [0, 1]. The synergy function gj(zj) is also a random
discrete function of the following form:

gj(k) = ǫj1 + ǫj2 + . . .+ ǫjk, ∀k = 1 . . . n, ∀j = 1 . . . q,

where ǫji ∼ U [0, 1] are uniform random variables. This
means the synergy function gj is the sum of uniform ran-
dom variables and the coalition value increase by ǫjs when
the coalition size increases from s − 1 to s. By creating 100
random instances, we can test the robustness of the algorithm
when input data varies5.

Figure 2 shows the performance of the algorithm when the
number of agents varies between 100 and 5000, while the
number of tasks is fixed at 100. Sub-figure (A) shows the to-
tal computational time, sub-figure (B) shows the number of
iteration, while sub-figure (C) shows the optimality bound be-
tween the feasible coalition structure found and the worst up-
per bound. We can see a linear trend in the computational time
from sub-figure (A) with less than three minutes6 to solve the
largest and the worst instance (among 600 random instances
for this case). The linear trend in the computational time can
be explained by the fact that the number of arithmetic oper-
ations in each iteration grows linearly, while the number of
iterations (shown in sub-figure (B)) does not change much.

4With the obtained bounds, it is possible to extend the algorithm
in the future by incorporating branch-and-bound techniques to im-
prove solution quality.

5For each pair of (n, q), we will present box plots that show the
statistics among 100 random instances generated with the middle
red horizontal lines showing the medians, the boxes showing the 25
and 75 percentiles, and the red crosses showing the outliers.

6All the numerical tests appear in this manuscript are performed
on a personal computer, Intelr Xeonr CPU W3520 @2.67GHz
with 12GB RAM and under Windows 7 operation system. The code
was written and tested on Matlab R2012a.

Sub-figure (C) shows the guaranteed bound between the fea-
sible coalition structure found and the optimality. Notice that
these bounds are guaranteed despite the fact that we don’t
know the optimal coalition structures thanks to the availabil-
ity of the upper bounds derived by the algorithm. This also
means that the actual optimality bounds could be higher than
the average optimality bounds between 75-81% that appear
in sub-figure (C).

Figure 3 shows the performance of the algorithm when the
number of agents varies is fixed at n = 2000, while the num-
ber of tasks varies between 50 and 200. We can see a very
similar linear trend in the computational time in sub-figure
(A) and the optimality bounds between 75-81% in sub-figure
(C). The total computational time for the largest instance is
less than 35 seconds.

Figures 4, 5 show the same set of statistics as in Figures 2, 3
except that the CFGrco games now allow each players to join
up to 5 coalitions. The guaranteed optimality bounds vary be-
tween 76-85% on these instances. We can also see a linear
trend in the computational time as the number of players and
the number of tasks increase and the algorithm takes less than
90 seconds for the worst instance.

6 Conclusions

We introduced CF-NETs, a representation scheme for coali-
tional games in task-based settings, which is inspired by
network flows. We examined its qualities with respect to
conventional coalitional games with non-overlapping coali-
tions, (resource-constrained) overlapping coalitional games,
and coalitional games with agent types. We utilized the ad-
vantages of this representation to develop an approximation
technique for coalition structure generation, which applies to
all these game classes and allows to effectively solve large
instances of the problem.

Our work can be extended in several ways. It would be in-
teresting to extend the CF-NET framework with components
that would allow to capture game patterns other than those
considered in this paper. Furthermore, we are keen on test-
ing the properties of the CF-NET representation with respect
to computing different solution concepts such as the Shapley
value and the core.

Acknowledgements

We would like to thank the anonymous IJCAI reviewers for
valuable feedback. Tomasz Michalak was supported by the
European Research Council under Advanced Grant 291528
("RACE"). Talal Rahwan and Nicholas R. Jennings were
supported by the ORCHID Project, funded by EPSRC (En-
gineering and Physical Research Council) under the grant
EP/I011587/1.

329

✽✽

Figure 2: Finding near-optimal coalition structures in CFG games, given different numbers of agents.

Figure 3: Finding near-optimal coalition structures in CFG games, given different numbers of tasks.

Figure 4: Finding near-optimal coalition structures in CFGrco games, given different numbers of agents.

Figure 5: Finding near-optimal coalition structures in CFGrco games, given different numbers of tasks.

330

✽✾

References

[Aadithya et al., 2011] K. V. Aadithya, T. P. Michalak, and
N. R. Jennings. Representation of coalitional games with
algebraic decision diagrams. In Proceedings of AAMAS,
pages 1121–1122, 2011.

[Aziz and de Keijzer, 2011] Haris Aziz and Bart de Keijzer.
Complexity of coalition structure generation. In Proceed-
ings of AAMAS, pages 191–198, 2011.

[Bachrach and Rosenschein, 2008] Y. Bachrach and J. S.
Rosenschein. Coalitional skill games. In Proceedings of
AAMAS, pages 1023–1030, 2008.

[Bachrach and Rosenschein, 2009] Y. Bachrach and J.S.
Rosenschein. Power in threshold network flow games. AA-
MAS, 18(1):106–132, 2009.

[Chalkiadakis et al., 2010] G. Chalkiadakis, E. Elkind,
E. Markakis, M. Polukarov, and N. R. Jennings. Cooper-
ative games with overlapping coalitions. J. of Artif. Int.
Res. (JAIR), 39(1):179–216, 2010.

[Conitzer and Sandholm, 2004a] V. Conitzer and T. Sand-
holm. Complexity of Determining Nonemptiness in The
Core. In Proceedings of IJCAI, pages 219–225, 2004.

[Conitzer and Sandholm, 2004b] V. Conitzer and T. Sand-
holm. Computing shapley values, manipulating value di-
vision schemes and checking core membership in multi-
issue domains. In AAAI, pages 42–47, 2004.

[Cormen et al., 2001] Thomas H. Cormen, Clifford Stein,
Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms: 26. Maximum Flows. McGraw-Hill Higher
Education, 2nd edition, 2001.

[Dang and Jennings, 2006] Viet Dung Dang and Nicholas R.
Jennings. Coalition structure generation in task-based set-
tings. In ECAI, pages 210–214, 2006.

[Dang et al., 2006] V. D. Dang, R. K. Dash, A. Rogers, and
N. R. Jennings. Overlapping coalition formation for effi-
cient data fusion in multi-sensor networks. In Proceedings
of AAAI, pages 635–640, 2006.

[Deng and Papadimitriou, 1994] X. Deng and C. Papadim-
itriou. On the complexity of cooperative solution concepts.
Mathematical OR, (19):257–266, 1994.

[Elkind et al., 2009] E. Elkind, L. A. Goldberg, P. W. Gold-
berg, and M. Wooldridge. A tractable and expressive class
of marginal contribution nets and its applications. Mathe-
matical Logic Quarterly, 55(4):362 – 376, 2009.

[Greco et al., 2009] G. Greco, E. Malizia, L. Palopoli, and
F. Scarcello. On the complexity of compact coalitional
games. In Proceedings of IJCAI, pages 147–152, 2009.

[Hochbaum and Hong, 1996] D.S. Hochbaum and S.P.
Hong. On the complexity of the production-transportation
problem. SIAM J. on Optimization, 6(1):250–264, 1996.

[Holmberg and Tuy, 1999] K. Holmberg and H. Tuy. A
production-transportation problem with stochastic demand
and concave production costs. Mathematical program-
ming, 85(1):157–179, 1999.

[Ieong and Shoham, 2006] S. Ieong and Y. Shoham.
Marginal contribution nets: A complact representation
scheme for coalitional games. In Proceedings of ACM
EC, pages 170–179, 2006.

[Kalai and ZemelL, 1982] E. Kalai and E. ZemelL. On To-
tally Balanced Games and Games of Flow. In Mathematics
of Operations Research, 7(3):476–478, 1982.

[Michalak et al., 2010] Tomasz Michalak, Jacek Sroka, Ta-
lal Rahwan, Michael Wooldridge, Peter McBurney, and
Nicholas R. Jennings. A Distributed Algorithm for Any-
time Coalition Structure Generation. In Proceedings of
AAMAS, pages 1007–1014, 2010.

[Ohta et al., 2009] N. Ohta, V. Conitzer, R. Ichimura,
Y. Sakurai, A. Iwasaki, and M. Yokoo. Coalition structure
generation utilizing compact characteristic function repre-
sentations. In Proceedings of CP (to appear), 2009.

[Rahwan et al., 2009] T. Rahwan, S. D. Ramchurn, A. Gio-
vannucci, and N. R. Jennings. An anytime algorithm for
optimal coalition structure generation. Journal of Artificial
Intelligence Research (JAIR), 34:521–567, 2009.

[Rahwan et al., 2011] Talal Rahwan, Tomasz P. Michalak,
and Nicholas R. Jennings. Minimum search to establish
worst-case guarantees in coalition structure generation. In
Proceedings of IJCAI, pages 338–343, 2011.

[Rahwan et al., 2012] Talal Rahwan, Tomasz P. Michalak,
Michael Wooldridge, and Nicholas R. Jennings. Anytime
coalition structure generation in multi-agent systems with
positive or negative externalities. Artificial Intelligence
(AIJ), 186:95–122, 2012.

[Sandholm et al., 1999] Tuomas Sandholm, Kate Larson,
Martin Andersson, Onn Shehory, and Fernando Tohmé.
Coalition structure generation with worst case guarantees.
Artif. Intell., 111(1-2):209–238, July 1999.

[Schrijver, 2003] A. Schrijver. Combinatorial Optimization:
Polyhedra and Efficiency. Springer, 2003.

[Shehory and Kraus, 1996] O. Shehory and S. Kraus. For-
mation of overlapping coalitions for precedence-ordered
task-execution among autonomous agents. In Proceedings
of ICMAS, pages 330–337, 1996.

[Shehory and Kraus, 1998] O. Shehory and S. Kraus. Meth-
ods for task allocation via agent coalition formation. Arti-
ficial Intelligence (AIJ), 1(101):165–200, 1998.

[Tuy et al., 1996] H. Tuy, S. Ghannadan, A. Migdalas, and
P. Värbrand. A strongly polynomial algorithm for a con-
cave production-transportation problem with a fixed num-
ber of nonlinear variables. Mathematical Programming,
72(3):229–258, 1996.

[Ueda et al., 2011] Suguru Ueda, Makoto Kitaki, Atsushi
Iwasaki, and Makoto Yokoo. Concise characteristic func-
tion representations in coalitional games based on agent
types. In Proceedings of IJCAI, pages 393–399, 2011.

[Wooldridge and Dunne, 2006] M. Wooldridge and
P. Dunne. On the computational complexity of coali-
tional resource games. Artificial Intelligence (AIJ),
(170):835–871, 2006.

331

✾✵

Information Revelation Strategies in Abstract

Argument Frameworks using Graph based

Reasoning

Madalina Croitoru1, Nir Oren2

1 University of Montpellier 2, France, croitoru@lirmm.fr
2 University of Aberdeen, UK, n.oren@abdn.ac.uk

Abstract. The exchange of arguments between agents can enable the
achievement of otherwise impossible goals, for example through persuad-
ing others to act in a certain way. In such a situation, the persuading
argument can be seen to have a positive utility. However, arguments
can also have a negative utility — uttering the argument could reveal
sensitive information, or prevent the information from being used as a
bargaining chip in the future. Previous work on arguing with confidential
information suggested that a simple tree based search be used to identify
which arguments an agent should utter in order to maximise their util-
ity. In this paper, we analyse the problem of which arguments an agent
should reveal in more detail. Our framework is constructed on top of a
bipolar argument structure, from which we instantiate bonds — subsets
of arguments that lead to some specific conclusions. While the general
problem of identifying the maximal utility arguments is NP-complete,
we give a polynomial time algorithm for identifying the maximum utility
bond in situations where bond utilities are additive.

1 Introduction

When participating in dialogue, agents exchange arguments in order to achieve
some goals (such as convincing others of some fact, obtaining a good price in
negotiation, or the like). A core question that arises is what arguments an agent
should utter in order to achieve these goals. This dialogue planning problem is,
in most cases, computationally challenging, and work on argument strategy [2,
6, 7, 9] has identified heuristics which are used to guide an agent’s utterances.

In this paper we consider a scenario where an agent must select some set of
arguments to advance while taking into account the cost, or benefit, associated
with revealing the arguments. [7] deals with a similar situation, and give the
example of a government attempting to convince the public that weapons of
mass distraction exist in some country. They assume that doing so will result in
a positive utility gain. In order to back up their claims, the government must give
some further evidence, and have a choice of arguments they can advance in doing
so, ranging from citing claims made by intelligence resources on the ground, to
showing spy satellite photographs, to withdrawing the claims. Each of these
arguments has an associated utility cost, and the government must therefore

✾✶

identify the set of arguments which will maximise its utility. In such a situation,
it is clear that advancing all arguments is not always utility maximising for an
agent, and [7] utilise a one-step lookahead heuristic to maximise utility while
limiting computational overhead.

Unlike [7], in this paper we assume that an agent can advance several argu-
ments simultaneously within a dialogue, and must justify these arguments when
advancing them. We therefore seek to identify all arguments that an agent must
advance at a specific point in time. To do so, we utilise a bipolar argument frame-
work [3] to allow us to deal with both attacks between arguments and argument
support.

We solve our problem through a translation of the argument structure into
a graph structure, and then utilise graph operations in order to calculate the
appropriate set of arguments to advance. Such a translation also allows us to
derive an interesting result with regards to the complexity of bonds calculation.

In the next section we introduce the concept of a bond — a set of arguments
that should be introduced together by an agent. We then examine the problem
of computing a maximum utility bond. The paper concludes with a discussion
of possible extensions.

2 Bonds

An argument can have several possible justifications. In the context of a dialogue,
it is clearly desirable to advance the maximal utility justification. Importantly,
this justification often does not coincide with the maximal justification in the
set theoretic sense, as the utility of the entire set of arguments might be smaller
than the utility of a subset of these arguments. A bond is then precisely the
maximal utility justification for an argument. This is illustrated by the following
informal example.

Example 1. A student is asked to justify why they did not hand in their home-
work on time, and can respond in several ways. First, they could claim they had
done the homework, but that their new puppy ate it. Second, they could explain
that they were ill. Furthermore, they could blame this illness on either a nasty
virus they had picked up, or due to a hangover caused by over exuberance during
the weekend. Clearly, providing all these reasons will not engender as much sym-
pathy as simply blaming the virus. The latter therefore forms a maximal utility
justification aimed at obtaining the teacher’s sympathy, and forms a bond.

Bonds originate through the possibility that multiple lines of argument yield
the same result, and that some of these have different utility costs and bene-
fits when compared to others. A bond is made up of the subset of paths that
maximise the agent’s utility.

We situate bonds within Bipolar argumentation frameworks [1]. Unlike stan-
dard Dung argumentation frameworks, bipolar frameworks explicitly consider
both support and attack between arguments. We begin by formalising Bipo-
lar frameworks, following which we introduce the notion of a coalition [3]. Such

✾✷

X

X

A

B

D

C

I want to take it easy
Office is close

Go to the beach Go to the office

E

It is sunny

F

Deadline soon

Fig. 1. Bipolar Argumentation System with argument valuations

coalitions can be thought of as the set of all justifications for an argument. Bonds
are then a subset of justifications from within a coalition, representing a single
line of justifications to the conclusion.

Definition 1. (Bipolar Argument Framework) An abstract bipolar argu-
ment framework is a tuple BAF = (A,Rdef ,Rsup) where A is a set of argu-
ments; Rdef is a binary relation ⊆ A × A called the defeat relation; Rsup is a
binary relation ⊆ A×A called the support relation. A bipolar argument frame-
work obeys the constraint that Rdef ∩Rsup = ∅.

Definition 2. (Coalitions) Given a bipolar argument framework
BAF = (A,Rdef ,Rsup), a coalition is a set of arguments C ⊆ A such that all of
the following conditions hold.

1. The subgraph (C,Rsup ∩ C × C) is connected.
2. C is conflict free.
3. C is maximal with respect to set inclusion.

Definition 3. (Bonds) Given a bipolar argument framework
BAF = (A,Rdef ,Rsup), and C ⊆ A, a coalition within BAF , a subset B ⊆ C is
a bond if and only if there is no a ∈ C such that for some b ∈ B, (b, a) ∈ Rsup.

Example 2. To illustrate these concepts, consider the bipolar argument frame-
work illustrated in Figure 1. Here, arrows with crosses indicate attacks between
arguments, while undecorated arrows represent support. Let us also associate
utilities with each argument in the system as follows: u(A) = 11, u(B) = 5,
u(C) = −2, u(D) = −8, u(E) = 4 and u(F) = −10.

Figure 2 depicts the two coalitions found in this framework, namely C1 =
{D,A,B,E} and C2 = {A,D,C, F}. The utility associated with the latter is 9,
and with the former, 12. Now consider the following bond (which is a subset of
C1): {A,E,B}. Its utility is 20, and in a dialogue, these are the arguments that
an agent should advance.

With the definition of bonds in hand, we now turn our attention to how the
maximum utility bond — {A,E,B} in the previous example — can be computed.

✾✸

A

B

D

E

11 -8

5

4

A D

C

11 -8

-2
F

-10

v(C1)=12 v(C2)=-9

Fig. 2. Coalitions in Argumentation System in Figure 1

3 Identifying Bonds

A naïve approach to computing maximal utility begins with a coalition C and
enumerating its bonds, beginning with arguments which do not support other
arguments (these are bonds of cardinality 1), then considering bonds with a single
support (i.e. bonds of cardinality 2), and so on. Once all bonds are computed,
the maximal utility ones are identified and returned. Clearly, this approach is,
in the worst case, exponential in the number of arguments in the domain.

We can construct a polynomial time solution by treating the problem as a
maximum flow problem on an appropriate network. The complexity of this type
of algorithm is O(|C|3), where |C| is the number of nodes in C if we apply a
push-relabel algorithm [5]. We begin by considering a induced support graph by
the coalition over the original graph, defined next. The graphs of Figure 2 are
examples of such induced support graphs.

Definition 4. (Induced Support Graph) Let BAF = (A,Rdef ,Rsup) be an
abstract bipolar argumentation framework and C ⊆ A a coalition in BAF . We
define the graph GBAF

C (the induced support graph by C) as the graph GBAF
C =

(NC , Esup|C) where:

– Each node in NC corresponds to an argument in the coalition C and
– The edges are only the support edges restricted to the nodes in C (denoted by

Esup|C).

Within such an induced support graph, a bond is a set NB ⊆ NC , where
for each n ∈ NB, and for each edge (n,m) ∈ Esup|C , it is also the case that
m ∈ NB. Since we always compute the induced support graph with respect to
some underlying bipolar argument framework, we will denote GC

BAF as GC .
Additionally, we denote the utility of an argument corresponding to a node

n in the graph as u(n). The utility of a set B of arguments is defined as u(NB) =∑

n∈NB
u(n). For convenience, we denote those nodes associated with a positive

utility by N+
C , and those with a negative utility by N−

C .

✾✹

X

X

X

X

a

d

h

b

f

e

c

i

k

6

5

-3

-2

1

-5

4

-3

1

Fig. 3. Bipolar Argumentation System and its valuation

We now show how the problem of finding the maximum utility bond of a
coalition can be solved by reducing it to a minimum-cut computation on an
extended network GC

extended. The idea is to construct this new network such that
a minimum cut will correspond to a maximum utility bond. This idea follows an
approach used, for example, in the Project Selection Problem [10].

In order to construct GC
extended we add a new source s and a new sink t to the

graph GC . For each node n ∈ N+
C we add an edge (s, n) with capacity u(n). For

each node m ∈ N−
C we add an edge (m, t) with capacity −u(m) (thus a positive

utility). The rest of capacities (the capacities of edges corresponding to those in
GC are set to ∞.

Example 3. Consider the bipolar argument framework whose graph is shown in
Figure 3. The corresponding GC

extended for the coalition {a, b, c, d, e, f} is shown
in Figure 4. For readability, we have omitted the “∞” label on edges
{(a, d), (a, e), (b, e), (b, f), (c, f)}.

Theorem 1. If (A′, B′) is a minimum cut in GC
extended then the set A = A′−{s}

is a maximum utility bond.

Proof. The capacity of the cut ({s}, C ∪ {t}) is C =
∑

n∈N
+
C
u(n). So, the maxi-

mum flow value in this network is at most C.
We want to ensure that if (A′, B′) is a minimum cut in the graph GC

extended,
then A = A′ − {s} satisfies the bond property (that is, it contains all of the
supported elements). Therefore, if the node i ∈ A has an edge (i, j) in the graph
then we must have j ∈ A. Since the capacities of all the edges coming from the
graph GC have capacity ∞ this means that we cannot cut along such edge (the
flow would be ∞).

✾✺

a

d

b

f

e

c

6

5

3

2

3
1

S T

Fig. 4. Extended network of a coalition in a Bipolar Argumentation Framework

Therefore, if we compute a minimum cut (A′, B′) in
GC

extended we have that A′ −{s} is a bond. We now prove that it is of maximum
utility.

Let us consider any bond B. Let A′ = B ∪ {s} and B′ = (C − B) ∪ {t} and
consider the cut (A′, B′).

Since B is a bond, no edge (i, j) crosses this cut (if not there will be a
supported argument not in B). The capacity of the cut (A′, B′) satisfying the
bond support constraints as defined from C is c(A′, B′) = C−

∑

a∈C u(a), where
C =

∑

a∈C+ u(a). We can now prove that the minimum cut in G′ determines
the bond of maximum utility. The cuts (A′, B′) of capacity at most C are in a
one-to-one correspondence with bonds A = A′ −{s}. The capacity of such a cut
is:

c(A′, B′) = C − u(A)

The capacity value is a constant, independent of the cut, so the cut with the
minimum capacity corresponds to maximum utility bonds.

We have thus proved a polynomial time algorithm for the maximum utility
bond decision. While this seems like a strong result, it should be noted that we
made use of the fact that our input was a coalition rather than the full argument
system. Typically, agents must consider the entire set of arguments and must
therefore identify the coalitions themselves. Doing so is an NP-complete problem
[3].

To conclude, we discuss the complexity of the two decision problems (bond
finding and coalition finding) in an abstract setting, where the input is a bipolar
argument framework (as opposed to a compiled knowledge base such as ASPIC+
permits, though this results in an exponential blow-up of the size of the domain).

✾✻

P1

Input: A bipolar argumentation framework, an utility function and k ∈ Z.
Question: Is there a coalition with the utility ≥ k.

P2

Input: A bipolar argumentation framework, an utility function and k ∈ Z.
Question: Is there a bond with the utility ≥ k.

Both problems are NP-complete.

Proof. (Sketch) Clearly, the two problems belongs to NP. To prove the NP-
completeness, let us consider an undirected graph G and a utility function defined
on its nodes. If the edges of this graph are considered directed (thus obtaining
a digraph that will correspond to the attack digraph), and each non-edge in G

is replaced by a pair of opposed directed support edges, the coalitions in the
Bipolar Argumentation Framework obtained are exactly the maximal stables in
the initial graph. Indeed, these sets are conflict-free in the Bipolar Argumentation
Framework and clearly connected in the support digraph. Thus, deciding if a
given undirected graph with weights on its vertices has a maximal stable set of
total weight greater or equal than some threshold can be reduced to P1 (or P2).
Since this problem is NP-complete [4] we have that P1 and P2 are NP-complete.

4 Discussion and Conclusions

In this paper we have introduced the notion of a maximum utility bond. These
bonds are related to the justification of arguments when considered in the context
of a bipolar argument framework. Since there can be many argument justifica-
tions, one needs to identify a heuristic for computing the “best” justification when
arguing. We considered a utility based heuristic in which we have assumed that
each argument has associated either a positive or a negative numerical utility.
Such utility could correspond to the information revealing cost of the argument,
or the degree of confidence the agent has in the argument, etc. Furthermore
we have assumed that the utility function is additive. We have then described
a polynomial time algorithm for computing maximum utility bonds, assuming
that coalitions have already been identified.

In the future, we intend to investigate two significant extensions to the current
work. First, we have assumed that utilities are additive. However, this simplifica-
tion is not — in practice — realistic. The presence, or absence, of combinations
of arguments could result in very different utilities, such as in the case where
revealing some secret information makes other secret information unimportant
to keep hidden. To address this case, we can transform our problem into a multi-
agent resource allocation (MARA) problem, where arguments are transformed
into resources. We must potentially consider an exponentially large input domain
(i.e. all possible combinations of arguments), and in [8] such an exponential in-
put was dealt with in the context of coalition formation. We therefore intend to

✾✼

apply their techniques, noting that additional constraints must be introduced on
the technique’s outputs to capture the nature of our domain.

Another potential avenue of future work arises by noting that we have implic-
itly combined the cost of revealing an argument, and attacks due to the argument
on a bond into a single number (the negative utility). In reality, these two val-
ues are different; by separating them out, we could perform a minimisation that
reflects the different potential preferences of a reasoner.

References

1. L. Amgoud, C. Cayrol, M. C. Lagasquie-Schiex, and P. Livet. On bipolarity in argu-
mentation frameworks. International Journal of Intelligent Systems, 23(10):1062–
1093, 2008.

2. L. Amgoud and H. Prade. Reaching agreement through argumentation: a possiblis-
tic approach. In Proceedings of the 9th International Conference on the Principles
of Knowledge Representation and Reasoning, pages 175–182, 2004.

3. C. Cayrol and M.-C. Lagasquie-Schiex. Coalitions of arguments: A tool for handling
bipolar argumentation frameworks. International Journal of Intelligent Systems,
25(1):83–109, 2010.

4. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman and Co, 1979.

5. V. Goldberg and R. Tarjan. A new approach to the maximum flow problem. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing,
pages 136–146, 1986.

6. A. C. Kakas, N. Maudet, and P. Moraitis. Layered strategies and protocols for
argumentation-based agent interaction. In I. Rahwan, P. Moraitis, and C. Reed, ed-
itors, Proceedings of the First International Workshop on Argumentation in Multi-
agent Systems, volume 3366 of Lecture Notes in Artificial Intelligence (LNAI),
pages 66–79, New York, 2004. Springer-Verlag.

7. N. Oren, T. J. Norman, and A. D. Preece. Arguing with confidential information.
In Proc of ECAI 2006, pages 280–284, 2006.

8. T. Rahwan, T. P. Michalak, M. Croitoru, J. Sroka, and N. R. Jennings. A network
flow approach to coalitional games. In ECAI, volume 215 of Frontiers in Artificial
Intelligence and Applications, pages 1017–1018. IOS Press, 2010.

9. T. Rienstra, M. Thimm, and N. Oren. Opponent models with uncertainty for
strategic argumentation. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, page to appear, 2013.

10. E. Tardos and J. Kleinberg. Algorithm Design. Addison-Wesley, 2005.

✾✽

Graphical norms via conceptual graphs

Madalina Croitoru a, Nir Oren b,⇑, Simon Miles c, Michael Luck c

a LIRMM, University Montpellier II, France
bDepartment of Computing Science, University of Aberdeen, UK
cDepartment of Informatics, King’s College London, UK

a r t i c l e i n f o

Article history:

Available online 14 July 2011

Keywords:

Norms

Conceptual graphs

Reasoning

Graph-based reasoning

Normative violations

a b s t r a c t

The specification of acceptable behaviour can be achieved via the use of obligations, permissions and pro-

hibitions, collectively known as norms, which identify the states of affairs that should, may, or should not

hold. Norms provide the ability to constrain behaviour while preserving individual agent autonomy.

While much work has focused on the semantics of norms, the design of normative systems, and in par-

ticular understanding the impact of norms on a system, has received little attention. Since norms often

interact with each other (for example, a permission may temporarily derogate an obligation, or a prohi-

bition and obligation may conflict), understanding the effects of norms and their interactions becomes

increasingly difficult as the number of norms increases. Yet this understanding can be critical in facilitat-

ing the design and development of effective or efficient systems. In response, this paper addresses the

problem of norm explanation for Naïve users by providing of a graphical norm representation that can

explicate why a norm is applicable, violated or complied with, and identify the interactions between per-

missions and other types of norms. We adopt a conceptual graph based semantics to provide this graphical

representation while maintaining a formal semantics.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Solutions to problems arising in the domain of multi-agent

systems have often been inspired by approaches from human soci-

eties. Nowhere is this more evident than in addressing the problem

of controlling the behaviour of agents within open systems. Here,

interactions between agents can cause unexpected system behav-

iour, and traditional procedural approaches fail due to the unpre-

dictability and complexity of these interactions, as well as the

inherent autonomy of the agents involved. In human societies,

behavioural control is achieved in a declarative manner, by speci-

fying expectations regarding the behaviour of others, such as with

laws or rules. These specifications, or norms, identify obligations,

permissions and prohibitions that individuals are expected to com-

ply with in particular situations. Drawing on this, there has been

much work concerning the application of norms to artificial sys-

tems, in which agents are able to make use of concepts such as

obligations, permissions, and prohibitions, to represent and reason

about socially imposed goals and their execution. Such norm aware

agents are able to decide whether to act in a manner consistent

with norms, or whether to ignore them. In this context, norms

are generally imposed on a set of agents in order to increase the

overall utility of a system (often at the cost of individual utility)

[18], or to reduce computational or communication overhead [4].

While the design and architecture of norm aware agents is crit-

ically important, this is not the only problem that must be ad-

dressed when utilising norms. Perhaps more interesting (and

more challenging) is the problem of design time identification of

which norms are needed in order to achieve some desired behav-

iour. Norms can interact with each other in unpredictable ways,

and determining the effects of a norm on a system can thus be dif-

ficult. To identify these problematic norm interactions requires us

to be able to explain the effects of a norm, and why, in some specific

situation, it is applicable, violated, complied with, or in some other

state, yet this has not been investigated to any real depth. More-

over, the ability to provide such explanations can enable designers

to better understand the interactions between different norms,

thereby allowing them to avoid introducing redundant norms [3],

and to specify norms more precisely. Norm explanations can thus

provide vital support for the design a normative system. In addi-

tion, from the perspective of users, norm explanation can facilitate

a more intuitive appreciation of a system by providing a stronger

understanding of the reasons why particular norms may have been

brought to certain states in response to system events. Such a facil-

ity can increase and enhance the trust of a user in relation to oper-

ation of the system, providing confidence that it is in fact operating

correctly.

Since much of the research into the formal properties of norms

has taken place within the area of philosophy and deontic logic

0950-7051/$ - see front matter � 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2011.06.025

⇑ Corresponding author.

E-mail addresses: croitoru@lirmm.fr (M. Croitoru), n.oren@abdn.ac.uk (N. Oren),

simon.miles@kcl.ac.uk (S. Miles), michael.luck@kcl.ac.uk (M. Luck).

Knowledge-Based Systems 29 (2012) 31–43

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

✾✾

[13,23], norms are typically specified within a knowledge-based

system (KBS) using a logic which, for non-technical users, is often

difficult to understand. However, in order for a KBS to be usable by

such users, it is essential that they can understand and control not

only the knowledge base construction process, but also how results

are obtained from the running system. It should be easy for users

not only to enter different pieces of knowledge and to understand

their meaning but also to understand the results of the system, and

how the system computed these results. This latter aspect, namely

the ability to understand why the system gives a certain answer, is

especially important since the expertise of different users may

vary, and explaining each step of the logical inference process

poses a difficult problem.

However, due to the core properties of norms, providing such

explanations is not trivial. First, norms can be applicable only in spe-

cific circumstances, rather than over a system’s entire lifetime. Thus,

examining norms in isolation from a running system may not

provide any useful explanation regarding an individual agent’s

behaviour. Second, multiple norms can interact with each other,

collectively placing complex expectations on the various agents in-

volved. Thus, while it may appear that an agent is violating some

obligation, it may actually be the case that the agent is either cur-

rently exempt from this obligation due to it not being applicable in

the current situation, or due to there being some permission that ap-

plies in the current circumstances, overriding the obligation. Given

this, it should be clear that it is extremely difficult for non-technical

users (indeed, also for technical experts) to interpret a large set of

textually (logically) specified norms and identify their effects, and

that an alternative solution to norm understanding is required.

In response, our aim in this paper is to provide a sound graph-

ical representation of norms, by adopting a graph-based semantics

and applying the semantics to normative systems. To do so, we

adopt the normative framework of Oren et al. [17], a generic frame-

work that enables updating and monitoring of the changing status

of norms, and supports the normative reasoning process. Now, in

order to provide such a graphical representation, we must be able

to provide a sound and complete translation between the opera-

tions of the normative framework and the operations on the

graph-based representation. Not only can this help in understand-

ing the results of an update to the status of a norm, but it also al-

lows for structural optimisations of norms that might not be

obvious from the textual (logical) representation of the norm. Each

of these is a significant challenge; in this paper, we focus on the

former aspect of the graphical representation, leaving the latter

for future work.

Oren et al.’s framework represents norms by means of sets of

first order logic tuples, which are manipulated using a set of rules

that can be reduced to first order logic subsumption on the individ-

ual tuple elements. The contribution of this paper is to map norms

onto conceptual graphs [19,20], the only graph based formalism to

have a sound and complete semantics corresponding to deduction

(via subsumption) in first order logic. This formal semantics en-

ables us to easily link Oren et al.’s norms, with their textual repre-

sentation, to the conceptual graph’s graphical representation,

thereby providing a graphical explanation regarding the system’s

normative state to non-technical users. This aspect of our work

was first discussed in [6], in which it was shown how individual

obligations can be represented graphically. Representing permis-

sions, and their interaction with obligations, introduces further

complications, but we can extend the basic model to address this,

as originally outlined in [16].

The remainder of this paper is structured as follows. In the next

section, we provide the necessary formal background to the paper

by briefly reviewing the normative framework and introducing the

conceptual graph formalism. In Section 3, we show how the status

of norms can be computed graphically. Section 4 then considers

the graphical representation of interactions between permissions

and other norm types. In Section 5, the paper provides a discussion

in two parts: first it offers an evaluation of the effectiveness of our

approach, together with an assessment of what is needed for more

substantial user studies; second, it reviews some important related

work. Finally, Section 6 concludes the paper by considering possi-

ble extensions to our work.

2. Background

In order to provide the requisite context for the contributions of

the paper, and the basis on which we are able to develop norm

explanations, we begin in this section by reviewing the formal

model of norms. The model focuses on the problem of monitoring

in that it facilitates identification of the status of norms as the envi-

ronment changes over time. We then introduce the graphical for-

malism used in the remainder of this paper, conceptual graphs

(CGs), which we map to the normative model in Section 3. This

mapping allows us to address the problem of explanation, identify-

ing why a norm has a particular status at some point in time.

2.1. The normative model

We introduce the normative model in a somewhat informal

manner, motivating it in the context of a small example and exam-

ining how the model can be applied. Consider a situation in which

an agent takes their car to a repair shop in order to be repaired. This

repair shop provides a guarantee to its customers that their carswill

be repaired within seven days, and thus has an obligation upon it,

whenever a car arrives, to repair it within seven days. Clearly, once

this obligation is fulfilled, it is lifted, and the repair shop no longer

needs to repair the car. However, the obligation remains on the re-

pair shop as long as the car is not repaired (even after seven days

have passed). Finally, circumstances beyond the repair shop’s con-

trol (for example, a power failure), will give the repair shop permis-

sion to repair the car seven days later than otherwise required.

The requirement on the repair shop to mend a car within seven

days only obliges the repair shop to take action once a car actually

arrives. Until then, the norm is an abstract norm. When a customer

brings in a car, the norm is instantiated, thereby obtaining norma-

tive force over the repair shop and obliging it to repair the car

within seven days. A single abstract norm can result in multiple

instantiated norms; if two cars arrive at the repair shop, two instan-

tiations of the abstract norm will occur.

Given this example, we observe that a norm may be defined in

terms of five components. First, a norm has a type, such as an obli-

gation, or a permission. Second, a norm has an activation condition,

identifying the situations in which the norm affects some agents.

Third, a norm imposes some normative condition on the affected

agents; if this normative condition does not hold, then the norm

is not being complied with (or made use of in the case of a permis-

sion). Fourth, norms have an expiration condition, identifying the

situations after which the norm no longer affects the agent. Finally,

the norm must identify the agents to which it is directed (i.e. those

it affects), referred to as the norm targets.

More formally, we assume that the permissions and obligations

represented by the norm refer to states and events in some envi-

ronment, represented by some logical predicate language L, such

as first order logic. A norm is then a tuple of the form:

hNormType;

NormActivation;

NormCondition;

NormExpiration;

NormTargeti;

32 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43

✶✵✵

where

1. NormType 2 {obligation,permission}; and

2. NormActivation,NormCondition,NormExpiration,NormTarget are

all well formed formulae (wff) in L.

Thus, for example, the following abstract norm represents the

idea that a repair shop must repair a car within seven days of its

arrival at the shop1:

hobligation;

arrivesAtRepairShopðX;Car; T1Þ;

repairedðCarÞ _ ðcurrentTimeðCurrentTimeÞ^

beforeðCurrentTime; T1 þ 7daysÞÞ;

repairedðCarÞ;

repairShopðXÞi:

For ease of presentation, we have taken a relaxed approach to the

notation, and mixed events and states within this norm; a more

complex underlying language, such as the Event Calculus [11],

would allow disambiguation of these concepts (as well as providing

a richer typology of temporal notions).

If, at any point, an abstract norm’s NormActivation condition

holds, an instantiated version of the norm is created (subject to

the additional constraint that the norm is not already instantiated

for the same reason, as discussed in detail in [17]). The instantia-

tion of a norm involves creating a copy of the abstract norm in

which the norm’s variables are bound to the values that caused

the NormActivation condition to evaluate to true. When instanti-

ated, the individuals included in NormTarget are identified. These

individuals are then either obliged or permitted to bring about

the normative goal specifed by NormCondition, until such a time

as the conditions specified by NormExpiration hold. In this way,

instantiated norms persist until they expire. (Note that a more

complete logical semantics for the instantiation and processing of

norms in this way is provided in [17].)

Now, if a car, car1, arrives at Bob’s repair shop at time 12, we can

instantiate the abstract norm above and obtain the following

instantiated norm:

hobligation;

arrivesAtRepairShopðbob; car1;12Þ;

repairedðcar1Þ _ ðcurrentTimeðCurrentTimeÞ^

beforeðCurrentTime;19ÞÞ;

repairedðcar1Þ;

repairShopðbobÞi:

It should be noted that there can be variables within an instantiated

norm (as is the case for CurrentTime in the above norm), and that

the norm target refers to both the agent (bob), and the role (repair-

Shop) undertaken by the agent in the context of the norm. Given a

NormTarget, one simple way of computing the set of agents affected

by the norm, is as follows: {XjNormTarget‘ role(X)} for any predicate

role.

A key aspect of the normative framework is that it enables the

identification of the changing status of norms over time. This status

can include the fact that it is instantiated or abstract, whether it is

being complied with or violated, and whether it has expired. This is

critical in understanding the impact of norms on behaviour and

determining what actions to take as a result; the work in [17]

introduces several distinct predicates that capture these different

possibilities for status. For example, violation of a norm may re-

quire some remedial action, and is thus a relevant status value,

with an associated predicate. Importantly, the status can also be

referred to by other norms. For example, a norm stating that ‘‘if a

car has not been repaired after seven days, the repair must be free’’,

can be represented as follows (assuming that the norm above is la-

belled n1):

hobligation;

v iolatedðn1Þ;

repairCostðCar;0Þ;

false;

repairShopðXÞi:

Here, the violated(n1) predicate refers to the norm’s status, and

evaluates to true if and only if n1 is an instantiated obligation

whose normative condition evaluates to false, and for which there

is no permission that allows the negation of the normative condi-

tion. This, and other such predicates are formally defined in [17].

As seen in this example, norms can explicitly refer to other

norms and the variables found within them (such as Car in the

example above). In addition, as we will see later there may also

be implicit references to other norms (most notably in the case of

permissions). Determining the status of any particular norm thus

requires an examination of the interactions between multiple

norms; when a system contains many norms connected to each

other by such implicit and explicit references, it can be extremely

difficult to identify precisely why some norm has a particular asso-

ciated status. In order to address this difficulty of understanding

and identification, we seek an alternative means of examining

the status of norms in such systems. In particular, since humans

find it much easier to assimilate large amounts of graphical infor-

mation, as opposed to information in other forms, it is appropriate

to make use of a graphical model to represent and visualise norms.

In doing so, we are able to make explicit the links between the

norms described above in a way that is amenable to human inspec-

tion and understanding. Of course, since such a representation

must also to be able to be processed by machine, the best choice

of representation to use for this purpose is one that is well under-

stood and has a formal semantics. In consequence, therefore, we

adopt conceptual graphs as the foundation for our graphical repre-

sentation mechanism. In the next subsection, we introduce and de-

scribe this conceptual graph formalism.

2.2. Conceptual graphs

Due to their visual qualities, semantic networks, which were

originally developed as cognitive models, have been used for

knowledge representation since the early days of artificial intelli-

gence, especially in natural language processing. Different kinds

of semantic networks all share the basic idea of representing do-

main knowledge using a graph, but there are differences concern-

ing notation, as well as rules or inferences supported by the

language. In semantic networks, diagrammatical reasoning is

mainly based on path construction in the network.

In this context, we can distinguish two major families of

languages resulting from work on semantic networks: KL-ONE and

conceptual graphs. KL-ONE [22] is considered to be the ancestor

of description logics (DLs) ([1]), which form the most prominent

family of knowledge representation languages dedicated to

reasoning about ontologies. However, description logics have

now lost their graphical origins. In contrast, conceptual graphswere

introduced by Sowa (cf. [19,20]) as a diagrammatic system of logic

intended ‘‘to express meaning in a form that is logically precise,

humanly readable, and computationally tractable’’ (cf. [20]).

Throughout the remainder of this paper we use the term

1 Unless otherwise stated, we make use of Prolog notation within our logical

formulae. More specifically, variables are written with an initial capital letter, while

constants begin with a lowercase letter.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 33

✶✵✶

‘‘conceptual graphs’’ to denote the family of formalisms rooted in

Sowa’s work and then enriched and further developed with a

graph-based approach (cf. [5]).

In the conceptual graph (CG) approach, all kinds of knowledge

can be encoded as graphs and can thus be naturally visualised.

More specifically, a CG partitions knowledge into two types, the

first of which identifies the CG’s vocabulary, and can be seen as a

basic ontology, and the second of which, (referred to as the basic

graph) stores facts encoded using the CG’s vocabulary. The vocab-

ulary, referred to as the CG’s support, is composed of two distinct

parts, namely a partial order of concepts, and a partial order of

relations (of any arity). Since both parts of the support are partial

orders, they can be visualised by their Hasse diagram, where the

partial order represents a specialisation relation, t0 6 t, indicates

that t0 is a specialisation of t. More specifically, if t and t0 are con-

cepts, t0 6 t indicates that every instance of the concept t0 is also

an instance of the concept t. Fig. 1 provides an example of a con-

cept hierarchy constructed in this way, and which is used in the

illustrative example throughout this paper. Similarly, if t and t0

are relations, and these relations have the same arity, say k, then

t0 6 t means that if t0 holds between k entities, then t also holds be-

tween these k entities. Fig. 2 shows the relation hierarchy that is

used in the example throughout this paper. These relations are

organised by arity — unary, binary and ternary and so on — with

a separate graph for each.

Now, a CG’s basic graph encodes knowledge based on the repre-

sentation of entities and their relationships. This encoding takes

the form of a bipartate graph, consisting of concept nodes that rep-

resent entities, and relation nodes that represent relationships be-

tween these entities or their properties. A concept node is

labelled by a pair, t:m, where t is a concept drawn from the concept

hierarchy, and m is called the marker of the node. Markers consist

of either a specific individual name, or a marker, denoted ⁄, which

acts as a generic marker, and is used if the concept node refers to

an unspecified entity. A relation node is labelled by a relation r ta-

ken from the relation hierarchy and, if r has an arity of k, the rela-

tion node must be incidental to k totally ordered edges. Classically,

concept nodes are drawn as rectangles and relation nodes as ovals.

The order on edges incidental to a k-ary relation node is then rep-

resented by labelling the edges with numbers from 1 to k. Fig. 3

provides an example of a basic graph that expresses the fact that

a vehicle arrived at the RepairShop at a certain Time. Finally, since

the notion of instantiated norm is central to our framework, we

occasionally refer to an instantiated basic graph, which is simply a

basic graph with no generic markers, as shown in Fig. 4.

Given these basic notions of conceptual graphs, a mapping be-

tween a CG and first order logic can be used to provide the CG with

a semantics. This mapping, denoted by U in the conceptual graphs

literature, utilises a first order language corresponding to the ele-

ments of the conceptual graph’s vocabulary (i.e. its relation and

concept hierarchies). Elements from the concept hierarchy are

translated into unary predicates, and elements from the relation

hierarchy with an arity of k are mapped into k-ary predicates. Indi-

vidual names are then constants in the logic. Formulae are added

to the logic based on the partial orders of concepts and relations:

if t and t0 are concepts, and t0 < t, then the formula " x((t0(x)? t(x))

is obtained. Similarly, if r and r0 are k-ary relations, with r0 < r, then

the formula "x1. . .xk(r
0(x1, . . . ,xk)? r(x1, . . . ,xk)) is obtained. A fact G

obtained from the basic graph can then be translated into a posi-

tive, conjunctive and existentially closed formula (via the mapping

U(G)), with each concept node being translated into a variable or a

constant. If the concept node is a generic node (as in the concept

nodes on the left hand side of Fig. 3), then U(G) results in a vari-

able, otherwiseU(G) returns the concept node’s individual marker.

While we have shown how CGs can be mapped to a first order

logic formula, mapping between CGs and first order logic in order

to perform reasoning is cumbersome, and a large part of the power

of the CG approach is obtained from the ability to perform reason-

ing over the graphs themselves. The fundamental operation used to

perform such reasoning is projection. In order to describe this con-

cept, we must first define the notion of a homomorphism.

Let G and H be two basic graphs (BGs). A homomorphism p, from

G to H, is a mapping, from the concept node set of G to the concept

node set of H, and from the relation node set of G to the relation

node set of H, that preserves edges and may decrease concept

and relation labels. That is:

� for any edge labelled i between the concept node c and relation

node r in G, there is an edge labelled i between the nodes p(c)

and p(r) in H; and

� for any (concept or relation) node x in G, the label of its image

p(x) in H is a specialisation of the label of x; that is, p(x) 6 x.

Homomorphisms are used to form projections between two BGs,

as illustrated in Fig. 5. Here, the BG on the left hand side of the fig-

ure models the situations when some Car arrives at bob’s repair

shop at Time 12, while the right hand side of the figure models

the case when some Vehicle arrives at some RepairShop at some

Time. The homomorphism (indicated using dashed lines) indicates

that node RepairShop on the right can be mapped onto the

T

RepairShop

Owner Shop Car CurrentTime

Agent Vehicle Time Permission Obligation

Domain
Concept

Norm

Fig. 1. Conceptual graph support: the concept hierarchy.

34 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43

✶✵✷

RepairShop node on the left with marker bob, that the Vehicle node

on the right can be mapped to Car on the left, and that the generic

Time node on the right can be mapped to a specific Time node. Fi-

nally, the arrivesAtRepairShop relation maps between the two BGs.

Now, an important theorem in the CG literature (referred to as

the fundamental theorem) also allows us to map back from first

order logic to conceptual graphs. This theorem states that, given

two BGs, G and H, there is a homomorphism from G to H if and only

if U(G) is a semantic consequence of U(H) and the logical transla-

tion of the vocabulary: UðVÞ;UðHÞ � UðGÞ. This is a soundness and

completeness theorem of BG homomorphism with respect to first

order logic entailment, the consequence of which is that a

homomorphism between two graphs is, in effect, an explanation

as to why logical subsumption takes place. Since such homomor-

phisms can be represented graphically, this allows for visual repre-

sentations of logical subsumption, the explanation of which is a

unique feature of CGs. Any alternative logic-based graphical repre-

sentation language would have to include an additional separate

explanation layer as well as the representation layer itself.

Given the fundamental building blocks we have now intro-

duced, of the normative model and conceptual graphs, we can pro-

ceed to detail how a norm can be represented within a CG-based

framework.

3. Graphically computing the status of norms

3.1. Modelling norms with CGs

Byencoding structuredknowledge graphically, CGs canprovide a

way to represent, illustrate and interpret the states through which

norms proceed; that is, whether they have been activated, violated,

fulfilled, or expired. Then, by connecting such representations (or

depictions) of permissions and obligations, it is possible to interpret

whether an obligation has truly been violated, or whether a permis-

sion derogates this obligation under particular circumstances.

One commonly encountered problem is that norms can some-

times be fulfilled by multiple different actions, events or states.

Intuitively, if these conditions are separated by disjunctions, they

can be evaluated in a tree-like structure by the norm reasoner.

We make this explicit by representing norms in such a structure,

with every level of the tree corresponding to one type of condition

in the norm. Moreover, at every level, we break the condition into a

disjunction of positive first order logic conjunctions. This represen-

tation ensures that normative reasoning is sound and complete

with respect to a particular kind of path-finding in the norm tree

(finding at least one satisfied level node). Now, when instantiated,

a norm’s activation condition becomes fixed, and its normative and

expiration conditions are used to determine its status. This

suggests that the tree structure is indeed suitable for use in repre-

senting a norm. In what follows, we proceed to define this tree

structure, which we refer to as a norm tree.

statusChange
(Norm)

violated
(Norm)

expired
(Norm)

normConditions
(Norm)

repaired
(Vehicle)

domainRelations
(DomainConcept)

T(T)

arrivesAtRepairShop
(RepairShop,Vehicle,Time)

T
(T,T,T)

domainRelations
(DomainConcept,DomainConcept,DomainConcept)

before
(Time,Time)

domainRelations
(DomainConcept,DomainConcept)

T(T,T)

powerFailure
(RepairShop,Time)

Fig. 2. Conceptual graph support: the relation hierarchy.

RepairShop:*

Vehicle:*

Time:*

arrivesAtRepairShop

1

2

3

Fig. 3. A generic basic conceptual graph fact.

RepairShop:bob

Car:car1

Time:12

arrivesAtRepairShop

1

2

3

Fig. 4. A ground, or instantiated, basic conceptual graph fact.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 35

✶✵✸

A norm tree represents both abstract and instantiated norms. Its

root is associated with the entire norm (more specifically, its type

and target), while the remaining levels represent different parts

of the norm. (For this purpose, we also assume that a norm’s target

is a conjunctive formula, and can thus be represented as a concep-

tual graph). Nodes in the second level are associated with the acti-

vation condition, nodes in the third level are associated with the

normative condition, and nodes in the fourth level with the expira-

tion condition. Each of the nodes within the tree has an associated

CG representation of its content, as illustrated in Fig. 6.

Given this basic structure, different branches of the norm tree

can be used to represent disjunctive conditions within a specific

norm attribute. Thus, for example, a norm with a normative condi-

tion of the form a _ b would have two branches at the norm tree’s

third level. As indicated above, we assume that the norm target

parameter consists of a conjunctive combination of predicates (in

other words, a norm is associated with a specific group of individ-

uals rather than applying to some subgroup or another), and that

all other parameters (except for norm type), may contain disjunc-

tions. In this way, in order to represent the norm as a norm tree, we

transform all of its attributes into disjunctive normal form, to get a

norm represented as follows:

Type;
_

i¼1;a

ACi;

_

j¼1;c

NCj;

_

k¼1;e

ECk;NT

* +

; ð1Þ

where ACi, NCj, ECk and NT are all conjunctive first order formulae so

that, for example, AC =
W

i=1,aACi. Furthermore, by assuming nega-

tion as failure, we can ensure that all of these formulae are positive

(by introducing an explicit predicate for negation), and can there-

fore represent each as a conceptual graph, defined on some given

support (i.e. the domain ontology).

Given a norm N in disjunctive normal form as in Eq. (1) above,

we define its norm tree as a tree for which each node contains a

norm and is labelled by a CG as follows.

1. The root node of the tree contains norm N and is labelled by

a CG identifying the norm’s type and targets (i.e. Type and

NT).

2. The root node has a child nodes (i.e. nodes at level one) where,

for i = 1 . . .,a, child node i is labelled with the CG representing

ACi and contains a norm Ni of the form:

Type;ACi;

_

j¼1;c

NCj;

_

k¼1;e

ECk;NT

* +

:

3. Each node at level two, which is a child of Ni, and is labelled

with a CG representing NCj, contains a norm Nij for j = 1, . . . ,c

of the form:

Type;ACi;NCj;

_

k¼1;e

ECk;NT

* +

:

4. Each node at level three, which is a child of Nij, and is labelled

with a CG representing ECk, contains a norm Nijk for k = 1, . . .,e

of the form:

Type;ACi;NCj; ECk;NT
� �

:

RepairShop:bob

Car:*

Time:12

arrivesAtRepairShop

1

2

3

RepairShop:*

Vehicle:*

Time:*

arrivesAtRepairShop

1

2

3

Fig. 5. A projection between two basic conceptual graph fact.

Fig. 6. A conceptual representation of a norm tree.

36 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43

✶✵✹

3.2. Modelling norms in the repair domain

Consider the norm of our car repair example, which obliges a re-

pair shop to repair a car within seven days of its arrival. The left

hand side of Fig. 7 illustrates the norm tree associated with this

norm. For simplicity, we have ignored the norm target parameter,

assuming that it is present in the root node. The dotted line be-

tween the nodes and CGs identifies which nodes are labelled with

which CGs. It should be noted that the function relation, found in

the right hand normative condition node, is used to compute

whether the current time is greater than seven days from the time

the car arrived for repair. This is used to simplify the CG shown in

the figure; within a complete system, this CG would make use of an

arithmetic function to add seven days to the car’s arrival time, and

then make use of an additional function or predicate to compare

the current time to the deadline to determine whether the car

has been repaired in time. Now again consider the nodes at the

third level of the norm tree. These correspond to the norm condi-

tion and, when translated to first order logic, yield a formula of

the form repaired(Car) _ function(CurrentTime,Time + 7 days).

Note that there is a separation between the semantics of the

normative model and its norms, and the semantics of the knowl-

edge-based system. For a parameter (such as the normative condi-

tion) in the norm to evaluate to true, any of the disjunctions from

which it is composed must evaluate to true (e.g. repaired(Car) in

the above example). This aspect of a norm is captured by the nor-

mative model’s semantics, and is thus represented by the norm

tree structure. However, reasoning within the knowledge-based

system is kept separate from the norm model semantics by means

of conceptual graph annotations of the nodes in the normative tree.

Thus, the knowledge-based system identifies which of the norma-

tive condition’s disjunctions actually evaluated to true in the case

where the normative condition is true. A user of the system could

then be presented with the explanation of why the norm condition

is valid: in the context of the repair shop norm, at least one node is

satisfied (or both). While the figures in this paper are monochrome,

colour can be added to a running system in order to identify the

validity of a node (for example, red could mean invalid, while

green could mean valid).

Finally, the right hand side of Fig. 7 illustrates the norm tree for

the permission (to repair a car later than 7 days if there is a power

failure) found in our example. Since no disjunctions exist within

the activation, expiration and normative conditions, the norm tree

has no branches.

This conceptual graph representation provides us with two

advantages over a textual representation of the norm. First, the

conceptual graph representation makes the types of concepts

linked by predicates visually explicit (for example, RepairShop:⁄

as opposed to X). While this problem is easily addressed by manu-

ally changing the variable names of the textual logic representation

(usingmeaningful literals), the heuristic employed could be confus-

ing. Second, and more importantly, for elaborated pieces of knowl-

edge (namely conjunctions with common variables) the translation

between natural language and logical formulae becomes very diffi-

cult. For example, suppose that we are trying to represent the fact

that a car arrives at a Volvo repair shop, that the repair shop accepts

only cars of the same make, that the time at which the car arrives

at the repair shop must be later than 9, and that this is the opening

time of the repair shop. While the conceptual graph depiction is

intuitive given its visual nature, the logic-based (textual) approach

can be difficult to follow.

3.3. Instantiating norms

Now, consider the abstract norm illustrated on the left hand

side of Fig. 7, and suppose that a new fact—that some car, c1 arrived

at the repair shop belonging to bob at time 12—is added to the

knowledge base. In predicate form, we write arrivesAtRepair-

Shop(bob,c1,12). This piece of knowledge is projected to all the

norm conditions in the system in the following way. Using projec-

tion, the fact is mapped onto the abstract norm of Fig. 7, and a new

norm tree, with the appropriate CG nodes now labelled by con-

stants, is created. This CG is shown in Fig. 8 in which, for clarity,

nodes in the norm tree belonging to an abstract norm are depicted

in white (c.f. Fig. 7).

It should be noted that there can be multiple instantiated ver-

sions of the same abstract norm simultaneously. However, each

of these will have a different set of variable bindings, and thus a

different CG associated with the norm tree.

3.4. Computing the status of norms

So far, we have shown how abstract and instantiated norms

may be represented as norm trees, but we have not yet considered

how to determine the status of a norm using our norm tree struc-

ture. Consider the left hand side of Fig. 8, which represents the

instantiated norm from the repair shop example. The right hand

side of the figure shows the CG representation of the environment,

Obligation:*

RepairShop:*

Car:*

Time:*

arrivesAtRepairShop

Car:* repaired

Time:*

CurrentTime:*

DataType:7

function

Car:* repaired Car:* repaired

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:* powerFailure

Time:*

Fig. 7. The norm tree for the abstract obligation norm (left) and abstract permission norm (right) found in the repair shop example.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 37

✶✵✺

as stored within the knowledge base. This CG represents the fact

that a car c1 arrived at the repair shop at time 12. To distinguish

between abstract and instantiated norms, we colour the nodes of

an instantiated norm using different colours (which are always

non-white), as opposed to white abstract norms.

Now, as new facts appear and disappear within the knowledge

base, the status of norms also changes. Determining this status

may be achieved by checking for the existence of projections be-

tween the facts in the environment and the conceptual graph

annotations of the norm tree. Fig. 9 illustrates the situation when

an additional fact—namely that the current time is before time

19—is added to the environment (represented by the two CGs on

the right of the figure). The norm tree on the left of Fig. 9 now con-

tains a mixture of black and grey nodes. A grey node corresponds

to the fact that the node is satisfied; that is, there is a projection

between the environment and the corresponding CG annotation.

The remaining nodes are black: they are not satisfied. Thus, in

Fig. 9, illustrating the car repair example, there is no projection be-

tween the CG node representing the expiration condition, which

states that the car is repaired, and the CG on the right of Fig. 9. Sim-

ilarly, there is a projection (and thus the node is grey) between the

CG on the right, and the CG linked to the node at the normative

condition level stating that the current time is before 19 (the con-

dition in this latter node is represented by the function taking in

the datatype, time and current time). If, at some later point, the

car is repaired, the black nodes within the norm tree will turn grey.

During its lifecycle, an abstract norm becomes instantiated.

While instantiated, its normative condition may evaluate to true

or false at different times. Eventually, the norm’s expiration condi-

tion evaluates to true, after which the instantiated norm is deleted.

We have already seen how one may determine whether a norm

may be instantiated using a norm tree. A norm’s normative condi-

tion is satisfied (that is, it evaluates to true), if any of the nodes at

the norm condition level are grey. Similarly, a norm expires if any

of the nodes at the expiration condition level are grey.

A norm’s status includes whether it is activated or expiring, and

whether it is being satisfied, and it is trivial to determine this from

the norm tree. It is also possible to determine more sophisticated

aspects providing a richer notion of the status of a norm from a

norm tree. As an example, in the next section, we discuss how to

determine whether an obligation has been violated. All aspects of

the status of a norm can be computed by posing queries to the

knowledge base, and thus, it is possible to visually determine the

status of a norm.

4. Computing violation with permissions

One critical aspect of normative state that cannot be computed

directly form a norm tree is whether the norm is violated. This is

because of the way in which we treat permissions. In [2], Boella

and van der Torre point out that permissions can be viewed as

exceptions to obligations and prohibitions, and this is how

Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Car:c1 repaired Car:c1 repaired

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Fig. 8. An instantiated norm for the repair shop example.

Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Car:c1 repaired Car:c1 repaired

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Fig. 9. A norm tree evaluated according to the knowledge base shown on the right.

38 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43

✶✵✻

permissions are handled by our model. Thus, for example, given an

obligation on the repair shop to repair a car within 7 days, a per-

mission to instead repair the car within 14 days derogates the obli-

gation. While the obligation may not be complied with (because

the car may not be repaired within 7 days), the repair shop will

not be in violation of the obligation unless 14 days have expired.

Permissions thus do not exist in isolation, but instead act as

exceptions to other types of norms. This means that in evaluating

whether an obligation or prohibition is violated, one must consider

not only the possibly violated norm itself, but also the permissions

present. However, given a large normative system, identifying the

appropriate permission that may prevent a violation from occur-

ring can be challenging. Our visual approach can help overcome

the cognitive load imposed by this problem by highlighting any

relevant permissions that prevent a norm from being violated.

To illustrate, we return to our car repair example. If a power

failure occurred at time 14, then the (instantiated) permission

allowing Bob to repair car c1 within 14 days (i.e. by day 28) is as

follows:

hpermission;

powerFailureðbob;14Þ;

:repairedðc1Þ;

currentTimeðCurrentTimeÞ ^ beforeðCurrentTime;28daysÞ;

repairShopðbobÞi:

Conceptually, in order to determine whether an instantiated and

un-expired permission derogates an obligation or prohibition, we

must check whether the permission’s norm condition is consistent

with the obligation. If it is not consistent, in the sense that the per-

mission allows the negation of the obligation, then derogation takes

place, otherwise the permission does not affect the obligation. In

our example, :repaired(c1) is inconsistent when evaluated against

repaired(c1), and the permission thus derogates the obligation. This

check for consistency thus lies at the heart of our work.

Clearly, consistency checking requires the ability to represent

and reason about the negation of a relation. However, the standard

CG formalism is unable to represent such negated relations, and we

make use of an extension to CGs first proposed by Mugnier and

Leclère [15] to show how the consistency check can be performed

from within the CG formalism. Mugnier and Leclère introduce the

idea of a negative relation node which, when present as a node in a

CG, identifies the fact that the named relation does not exist

between the concepts incident on the node. Now, the approach

we adopt here makes use of the closed world assumption, and ex-

tends a CG to include its negative relation nodes. More specifically,

we add all possible negative relation nodes that do not make the

graph contradictory to the CG’s basic graph. Thus, for example, if

we do not know that a car has been repaired, we now explicitly

state that it has not been repaired; if a node repaired(car1) is not

present in some CG, the completed form of the CG must include

the node : repaired(car1).

Given this completed CG, if the permission’s normative condi-

tion cannot be projected into the CG (because the car has in fact

been repaired, for example), the permission derogates the obliga-

tion (or rather, that node in the norm tree for which the CG pro-

jection is unsuccessful, which will not be coloured black). The

permission, and the relevant concepts and relations that dero-

gate the permission, can then be displayed to the user to explain

why the norm is not in violation. If, on the other hand, the per-

mission is not relevant to the obligation, then a violation occurs,

and the violated norm can again be highlighted in order to show

the user its status. Thus, given a norm tree for an (instantiated,

unexpired) obligation N, the norm it represents is violated if and

only if all of its nodes at the normative condition level are col-

oured black.

Fig. 10 illustrates the derogation of an obligation by a permis-

sion. Dashed lines indicate links between the concepts and rela-

tions found in the two nodes, and the normative condition node

marked with a grey node with a black centre in the obligation indi-

cates that the node, while evaluating to false, is derogated by a per-

mission. From the figure, it is clear that the obligation is not

violated. Note that the permission’s activation condition node is

black. We assume that while a power failure occurred in the past

(instantiating the permission), there is currently no power failure.

4.1. Case study

To illustrate the overall framework, we consider an additional

scenario in which rapid response medical units must perform some

duties when an emergency situation occurs. These units have the

following obligation:

‘‘If a state of emergency has been declared, a rescue unit is

obliged to travel to a casualty, and then collect them, or provide

them with medicine until they have no more space and are out

of medicines’’.

Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Car:c1 repaired Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:bob powerFailure

Time:*

Fig. 10. A norm tree for a permission (left), and obligation (right) evaluated according to some knowledge, showing how the permission derogates the obligation.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 39

✶✵✼

Formally, this obligation is represented as follows:

hobligation;

stateOfEmergencyðÞ ^ casualtyðCÞ;

travelðU;CÞ ^ ðcollectðU;CÞ _medicateðU;CÞÞ;

noSpaceðUÞ ^ noMedicineðUÞ;

rescueUnitðUÞi:

The disjunctive normal form of the obligation’s normative condition

is:

ðtravelðU;CÞ ^ collectðU;CÞÞ _ ðtravelðU;CÞ ^medicateðU;CÞÞ:

Given this, we assume a very simple permission representing casu-

alty triage: ‘‘If the casualty is dead, there is no need to medicate

them’’. Formally, this is as follows:

hpermission;deadðCÞ;:medicateðU;CÞ; false; rescueUnitðUÞi:

In order to construct the norm tree, we begin by identifying the con-

cepts and relations found in this scenario, where the concepts in-

clude StateOfEmergency,Casualty,RescueUnit and Dead, and the

relations include travel,collect,medicate,noSpace and noMedicine.

These concepts and relations yield the support displayed in

Fig. 11, and the abstract norms illustrated in Fig. 12.

Now, suppose that a state of emergency exists, and that a dead

casualty c1 has been detected by a rescue unit r1. Furthermore, r1

has space and medicine available. Given that the rescue unit has

not travelled to the casualty, collected it, or provided medicine, is

it in violation of its obligation? In order to determine this, we must

compute the completed CG of the instantiated obligation’s norma-

tive condition. Fig. 13 shows the completed form of the graph for

both the left and right hand branches of the instantiated obligation

norm tree’s normative condition nodes. The dotted lines within

Fig. 13 illustrate that the permission’s normative condition projects

into the obligation’s right hand branch normative condition.

T

Dead

RescueUnit Casualty

Entity StateOfEmergency Permission Obligation

Domain
Concept

Norm statusChange
(Norm)

violated
(Norm)

expired
(Norm)

normConditions
(Norm)

noSpace
(RescueUnit)

domainRelations
(DomainConcept)

T(T)

travelTo
(RescueUnit,

Casualty)

domainRelations
(DomainConcept,DomainConcept)

T(T,T)

collect
(RescueUnit,

Casualty)

noMedicine
(RescueUnit)

medicate
(RescueUnit,

Casualty)

Fig. 11. The CG support composed of the concept hierarchy (left) and relation hierarchies (right).

Obligation:*

StateOfEmergency:*

Casualty:*

RescueUnit:* ¬medicate

Permission:*

Dead:*

Casualty:*

RescueUnit:*

travel

collect

Casualty:*

RescueUnit:*

travel

medicate

RescueUnit:*

noSpace

noMedicine

RescueUnit:*

noSpace

noMedicine

Casualty:*

Fig. 12. The abstract norm trees.

40 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43

✶✵✽

However, no such projection is possible into the left hand branch.

Therefore, the permission derogates the left hand branch of the

obligation’s norm condition, and the norm is not violated. This is

shown in Fig. 14. In summary, our CG approach to norm explana-

tion makes clear exactly how the permission enables a user to

understand how the permission interacts with the obligation.

5. Discussion

5.1. Evaluation

Norms provide a means of regulating system behaviour, yet

their structure and operation can often obscure the understanding

that is possible, especially by end-users. In particular, it is impor-

tant to understand not just the structure of norms, but also their

status at different points in time, and the ways in which they inter-

act. This latter aspects is critical, for the interaction between norms

can affect their status. In order to provide an effective means for

supporting user understanding, we have developed a visual model

to explain the structure and status of a norm. This ability to pro-

vide explanations of a norm’s status is especially useful; for exam-

ple, complex contract disputes may require that some rewards or

penalties be assigned by a human mediator, but in order to per-

form this assignment, the mediator must first understand which

norms were violated, and which were complied with. Norm expla-

nation is also important at the system design stage, where an

understanding of norm status in different situations is needed to

ensure correct system behaviour.

Previous work such as [5] has demonstrated that graphical sys-

tems excel in cases where non-technical users must be catered for,

and this is exactly the approach we adopt. More specifically, we

can identify the following benefits of our graphical normative rep-

resentation. First, the graphical system can be used to identify

which elements of the environment impact on a norm, even when

making use of specialisation or generalisation of concepts or rela-

tions (as illustrated in Fig. 5), when it is not clear to a user how dif-

ferent concepts may relate to each other. In this way, users can

directly track the effects of changes in the environment on a norm.

Similarly, through the association of CGs with norms, it is possible

to support navigation between norms sharing identical, specialised

or generalised relations or nodes, or sharing markers. The set of

norms affected by changes to the environment can thus be easily

tracked.

Importantly, a graphical system is able to provide the user with

an easily understandable snapshot regarding the status of the sys-

tem. More specifically, by adopting an approach in which the col-

ours associated with the nodes of an instantiated norm’s tree

indicate their status, we provide a means for users to quickly iden-

tify which norms have what status, and why (as illustrated in

Fig. 9).

Finally, and as indicated above, the interactions between differ-

ent parts of a system can be made explicit. Since individual norms

can combine in complex ways to give sophisticated structures by

virtue of the links between permissions and obligations, for exam-

ple, providing a visual representation can be argued to be vital to

ensure clarity of presentation and understanding. Indeed, identify-

ing obligations that are derogated due to permissions, and in turn

identifying these permissions is not trivial, yet as we have shown

in Section 4 (and Fig. 10), this becomes relatively straightforward

with an appropriate representation.

Casualty:c1

RescueUnit:r1

travel

medicate

Casualty:c1

RescueUnit:r1

travel

collect

¬collect
¬medicate

RescueUnit:r1 ¬medicate

Casualty:c1

Completed form of left hand Norm
Condition from Obligation

Completed form of right hand Norm
Condition from Obligation

Norm Condition from Permission

Fig. 13. The completed form of the obligation’s normative condition (top left and top right), with the projection of the permission’s normative condition.

Fig. 14. Norm instantiation according to the domain facts.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 41

✶✵✾

All these aspects can be seen directly from the work presented

in this paper. Clearly however, while this evaluation of our contri-

bution is justified in its own terms, and demonstrates the validity

of our approach in providing explanation, the claim of aiding users

requires a more substantial (and more challenging) evaluation. In

particular, since one of the core advantages of the graphical

approach lies in enhancing user understanding, the next step in

evaluating our framework must be to undertake user studies, com-

paring the graphical approach and standard, text-based techniques

for representing norms, and their impact on and value to users.

Current work is concerned with implementation of a software tool

for exactly this purpose, providing clear visualisations of the status

of norms as described earlier by displaying the norm trees found in

a running system, colouring tree nodes as appropriate, displaying

the node CG graphs (and enabling further analysis to identify and

display projections, graph support and the like). More interesting

and valuable functionalities are also anticipated, for example, if

an obligation is derogated, selecting an appropriate node will allow

a user to visualise the associated derogating permission, and vice

versa.

Although anecdotal evidence from early trials with users al-

ready suggests that our approach has significant merit, this more

substantial user evaluation will require a methodical effort with

multiple users across different user categories (for example, ex-

pert users with an understanding of logic, non-expert users with

less formal modelling experience, and the like). Clearly, this is a

major undertaking that is beyond the scope of the current work,

yet this will be important before an enhanced appreciation of the

value of the graphical norm explanation approach can be

established.

5.2. Related work

Much of the existing work on norms and normative reasoning

originated from the philosophical domain. While recognising the

conditional nature of norms, such work emphasised problems such

as identifying what state of affairs should hold, or how to resolve

normative conflict. However, apart from the work of Governatori

et al. [9], few have considered how a normative system evolves

when norms are fulfilled. Governatori et al. adopt a defeasible logic

based approach to norm representation, with norms expiring when

a defeater to them is introduced. Within a long lived system, this

approach is cumbersome; reinstantiating a norm requires the

introduction of a defeater to the defeater. In contrast, the frame-

work presented in this paper is intended to capture the evolution

of a norm over time, allowing for its instantiation and expiration,

as well as recording the time periods during which a norm was

complied with or violated. Since the internal structure of such a

norm is somewhat complex, some technique for explaining why

a norm is in a certain state is required, and we proposed a visual

model for explaining this status of a norm. This ability to provide

explanations of a norm’s status in such domains is particularly use-

ful; for example, complex contract disputes may require that some

rewards or penalties be assigned by a human mediator, but in or-

der to perform this assignment, the mediator must first understand

which norms were violated, and which were complied with. Norm

explanation is also important at the system design stage, where an

understanding of norm status in different situations is needed to

ensure correct system behaviour.

As described in Section 3, instantiated norms are created by

copying abstract norms and modifying the labels within the norm’s

basic graph. Recent work on CGs [21] has examined the possibility

of adding a special evolves into relation to capture the notion of

transformation over time, and it is tempting to utilise this relation

to formally represent the instantiation of a norm. However, this

relation is currently only useful when the objects being

represented will transform into the evolved object in a predictable

manner, and can therefore not be directly applied to our work.

Nevertheless, identifying a more formal approach to creating

instantiated norms from abstract norms is worth pursuing, as this

would allow us to answer questions about possible norm

instantiations.

Our graphical representation highlights the link between per-

missions and obligations, and borrows some ideas from [7], where-

in CGs were used to express and manage the interdependencies

between security policy rules. Since norms can be used to express

such rules [12], many issues identified there (such as the detection

of redundant policies) map directly to the domain of norms.

More generally, however, we are aware of very little work deal-

ing with the explanation of norms to users. This may be due to an

implicit assumption that normative systems are fully automated,

and that explanation is thus not necessary, or perhaps due to an

assumption regarding the technical expertise of a system’s users.

However, even if a user is able to understand a norm representa-

tion, graphical explanations may still be advantageous when rea-

soning about complex interactions between large groups of

norms. One exception to this is the recent work of Miles et al.

[14], which touches on the concept of norm explanation. Here, a

causal graph is used to analyse and explain norm violation, and

then to identify whether there were mitigating circumstances for

the violation.

6. Conclusions and future work

Norms have a complex lifecycle, becoming instantiated, and

thus placing an expectation on an agent’s behaviour at certain

points in time, following which they may expire and cease to influ-

ence an agent. Within a long lived system, norms may be instanti-

ated and expire multiple times; at any point in time, only a certain

subset of norms may be relevant to identifying what behaviour

should take place. Furthermore, examining a single norm in isola-

tion does not provide enough information to determine whether an

agent is acting in compliance with the norm. For example, as

shown in Section 4, permissions may derogate norms, and multiple

norms must be considered when reasoning about their effects.

Critically, while existing norm representations are sufficient for

automated reasoning, their form is not ideal for explaining the

behaviour of the system to end-users. In order to provide a user

with an effective understanding of a normative system, all of these

issues must be taken into consideration.

The goal of our approach is to provide an effective tool for sys-

tem understanding to end-users. Our underlying norm formalism

is able to model the norm’s lifecycle, while our conceptual graph

based representation enables a user to consider the interactions

between obligations and permissions, and understand them in an

intuitive manner. Many avenues remain open for future investiga-

tion. Other studies have shown that graphical representations are

more easily understood than logic-based ones [5] by non-experts,

and though we have proceed on this legitimate assumption, we

have yet to undertake the user studies that will confirm this empir-

ically, but aim to do so in the short term. We also intend to lever-

age the formal power of our model, by investigating the use of

graph theoretical operations to identify redundant norms [2].

Similarly, we believe that graph-based operations can be used to

detect, and help resolve, normative conflict. Both of these applica-

tions effectively validate the structure of the norms, and we thus

aim to apply existing work on CG validation [8] to aid us in this

task. Furthermore, projection can also act as a similarity measure,

and can thus be applied to determining the trustworthiness of con-

tracts (as encoded by groups of norms) along the lines suggested

by Groth et al. [10]. Finally, we have focused on the status of norms

42 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43

✶✶✵

at a single point in time; we plan to investigate how our approach

can aid in explaining interactions not only between simultaneously

active norms, but also how they can be used to identify and explain

temporally distributed normative interactions.

References

[1] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.),
The Description Logic Handbook, Cambridge University Press, 2003.

[2] G. Boella, L. van der Torre, Permissions and obligations in hierarchical
normative systems, in: Proceedings of the Nineth International Conference
on Artificial Intelligence and Law (ICAIL-03), ACM, New York, NY, USA, 2003,
pp. 109–118.

[3] G. Boella, L. van der Torre, Institutions with a hierarchy of authorities in
distributed dynamic environments, Artificial Intelligence and Law 16 (2008)
53–71.

[4] W. Briggs, D. Cook, Flexible social laws, in: C. Mellish (Ed.), Proceedings of the
14th International Joint Conference on Artificial Intelligence, Morgan Kaufman,
San Francisco, 1995, pp. 688–693.

[5] M. Chein, M. Mugnier, Graph-based Knowledge Representation:
Computational Foundations of Conceptual Graphs, Springer, 2009.

[6] M. Croitoru, N. Oren, S. Miles, M. Luck, Graph-based norm explanation, in: M.
Bramer, M. Petridis, A. Hopgood (Eds.), Research and Development in
Intelligent Systems XXVII, Proceedings of AI-2010: The Thirtieth SGAI
International Conference on Innovative Techniques and Applications of
Artificial Intelligence, pp. 35–48.

[7] M. Croitoru, L. Xiao, D. Dupplaw, P. Lewis, Expressive security policy rules using
layered conceptual graphs, Knowledge Based Systems 21 (2008) 209–216.

[8] J. Dibie-Barthélemy, O. Haemmerlé, E. Salvat, A semantic validation of
conceptual graphs, Knowledge-Based Systems 19 (2006) 498–510.

[9] G. Governatori, J. Hulstijn, R. Riveret, A. Rotolo, Characterising deadlines in
temporal modal defeasible logic, in: Proceedings of the 28th International
Conference on Artificial Intelligence (AI-2007), Lecture Notes in Artificial
Intelligence, vol. 4830, pp. 486–496.

[10] P. Groth, S. Miles, S. Modgil, N. Oren, M. Luck, Y. Gil, Determining the
trustworthiness of new electronic contracts, in: Proceedings of the 10th
Annual International Workshop on Engineering Societies in the Agents’ World
(ESAW 2009), Springer, 2009, pp. 132–147.

[11] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events, New Generation
Computing 4 (1986) 67–95.

[12] C. Krogh, The rights of agents, in: M. Wooldridge, J.P. Müller, M. Tambe (Eds.),
Proceedings of the IJCAI Workshop on Intelligent Agents II: Agent Theories,
Architectures, and Languages, Lecture Notes in Computer Science, vol. 1037,
Springer-Verlag: Heidelberg, Germany, 1996, pp. 1–16.

[13] P. McNamara, Deontic logic, in: E.N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy, 2010, Fall 2010 edition.

[14] S. Miles, P. Groth, M. Luck, Handling mitigating circumstances for electronic
contracts, in: Proceedings of the AISB 2008 Symposium on Behaviour
Regulation in Multi-agent Systems, pp. 37–42.

[15] M.L. Mugnier, M. Leclère, On querying simple conceptual graphs with
negation, Data Knowledge Engineering 60 (2007) 468–493.

[16] N. Oren, M. Croitoru, S. Miles, M. Luck, Understanding permissions through
graphical norms, in: J. Leite, P. Torroni, T. Agotnes, G. Boella, L. van der Torre
(Eds.), Declarative Agent Languages and Technologies VIII, 8th International
Workshop, DALT 2010, Toronto, Canada, May 10, 2010, Revised, Selected and
Invited Papers, Lecture Notes in Computer Science, vol. 6814, Springer, 2011,
pp. 167–184.

[17] N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil, M. Luck, S. Miles,
Towards a formalisation of electronic contracting environments, in: J.F.
Hubner, E.T. Matson, O. Boissier, V. Dignum (Eds.), Coordination,
Organizations, Institutions and Norms in Agent Systems IV, COIN@AAMAS
2008/COIN@AAAI 2008, Lecture Notes in Artificial Intelligence, 5428, Springer,
2008, pp. 156–171.

[18] Y. Shoham, M. Tennenholtz, On social laws for artificial agent societies: Off-
line design, Artificial Intelligence 73 (1995) 231–252.

[19] J.F. Sowa, Conceptual graphs, IBM Journal of Research and Development 20
(1976) 336–375.

[20] J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984.

[21] R. Thomopoulos, J.R. Bourguet, B. Cuq, A. Ndiaye, Short communication:
answering queries that may have results in the future: a case study in food
science, Knowledge-Based Systems 23 (2010) 491–495.

[22] W. Woods, J. Schmolze, The KL-ONE family, Computers and Mathematics with
Applications 23 (1992) 133–177.

[23] G.H. von Wright, Deontic logic, Mind 60 (1951) 1–15.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 43

✶✶✶

Exclusivity-based Allocation of Knowledge

(Extended Abstract)

Madalina Croitoru
University of Montpellier 2

France
croitoru@lirmm.fr

Sebastian Rudolph
Karlsruhe Institute of Technology

Germany
rudolph@kit.edu

ABSTRACT

The classical setting of query answering either assumes the exis-

tence of just one knowledge requester, or the knowledge requests

from different parties are treated independently from each other.

This assumption does not always hold in practical applications where

requesters often are in direct competition for knowledge. We pro-

pose a formal model for this type of scenario by introducing the

Multi-Agent Knowledge Allocation (MAKA) setting which com-

bines the fields of query answering in information systems and

multi-agent resource allocation.

Categories and Subject Descriptors

K.6.0 [Management of Computing and Information Systems]:

General—Economics

General Terms

Economics, Theory

Keywords

Auction and mechanism design

1. INTRODUCTION
Conjunctive query answering (between a knowledge requester and

a knowledge provider) constitutes the de-facto standard of interact-

ing with resources of structured information: databases or ontologi-

cal information systems. The classical setting in query answering is

focused on the case where just one knowledge requester is present.

In case multiple requesters are present, the queries posed by differ-

ent parties are processed and answered as independent from each

other, thus making the multi-requester scenario a straightforward

extension of the individual case.

While the above practice is natural in some cases, the assump-

tion that queries can be processed independently clearly does not

always hold in practical applications where the requesters are in

direct competition for information. Let us consider for instance a

multi-agent setting, with requester agents concurrently demanding

information from a provider agent (example scenarios include mil-

itary applications, news agencies, intelligence services, etc.). Of

course, in this context, requester agents will not be willing to share

“sensitive” information with other agents.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

A structurally related problem is the multi-agent resource alloca-

tion (MARA) setting [2]. However, in such a setting (i) the agents

ask for resources (not knowledge) and (ii) agents a priori know

the pool of available resources. Work in this field either aims at

bidding language expressiveness or algorithmic aspects of the allo-

cation problem (see for instance [5, 1, 4] and others). The notion

of multiplicity of resources, or resources used exclusively or shared

has also been recently investigated in a logic-based language [6].

In the proposed multi-agent knowledge allocation (MAKA) set-

ting, the n requester agents, at some given time (in a single-step),

ask for knowledge (and not resources). They express their requests

in the form of conjunctive queries that are endowed with exclusiv-

ity constraints and valuations, which indicate the subjective value

of potentially allocated answers. Knowledge allocation poses in-

teresting inherent problems not only from a bidding and query an-

swering viewpoint, but also in terms of mechanism design.

The aim of this paper is to motivate and introduce the novel

problem of Multi-Agent Knowledge Allocation and lay down fu-

ture work directions opened by this setting: increased expressivity,

dynamic allocations, fairness, multiple providers etc.

2. QUERYING WITH EXCLUSIVITY

CONSTRAINTS
In [3] we fully introduce our framework of exclusivity-aware query-

ing as a basis for the MAKA bidding formalism. In the follow-

ing, we will just provide an intuitive overview of this work by the

means of an example. Consider the following predicates: actor,

director, singer (all unary), marriage and act (binary) and

five constants AJ (Angelina Jolie), BP (Brad Pitt), MMS (Mr. and

Ms. Smith), JB (Jessica Biel), JT (Justin Timberlake). A knowl-

edge base consists of ground facts such as:

actor(AJ)
actor(BP)
actor(JB)

director(AJ)
singer(JT)

marriage(AJ, BP)
act(AJ, MMS)
act(BP, MMS)

If we consider a set of variables V = {x, y} and the set of con-

stants C = {AJ, BP, MMS, JB, JT}, then actor(x), act(y, MMS),
marriage(AJ, BP) are all atoms over the sets P and C.

Since in the MAKA scenario, requesters might be competing

for certain pieces of knowledge, we have to provide them with

the possibility of asking for an atom exclusively (exclusive) or not

(shared). This additional information is captured by the notion of

exclusivity-annotated atoms, ground facts and queries.

Some exclusivity-annotated atoms would for instance be:

〈actor(x), sh〉, 〈marriage(AJ, BP), exc〉 etc.

Note that the idea of exclusivity annotation is a novel concept go-

ing beyond the classical query answering framework. We assume

an order exclusive � shared being used for query answering. It

allows to specify concisely that an answer delivered exclusively is

1249

✶✶✷

suitable for a knowledge requester who demanded that information

shared (but not vice versa).

For example, a query asking exclusively for marriages between

actors and directors (where only the “marriage” itself is required as

exclusive information, but the “actor” and “director” knowledge is

sharable with other knowledge requester agents) is:

〈marriage(x, y), exclusive〉∧
(

(〈actor(x), shared〉∧〈director(y), shared〉)∨
(〈actor(y), shared〉∧〈director(x), shared〉)

)

.

There is only one answer to this query w.r.t. our previously

introduced knowledge base: µ = {x 7→ AJ, y 7→ BP}. This

means that marriage(AJ, BP) can only be exclusively allocated (as

〈marriage(AJ, BP), exclusive〉) but the director(AJ) and actor(BP)
atoms can be either “shareably” allocated with other requesters

(〈actor(BP), shared〉) or exclusively allocated only to one requester

agent (〈director(AJ), exclusive〉).

3. THE KNOWLEDGE ALLOCATION

PROBLEM DEFINED
Multi Agent Knowledge Allocation (MAKA) can be interpreted

as an abstraction of a market-based centralized distributed knowl-

edge-based system for query answering. In such a MAKA system,

there is central node a, the auctioneer (or the knowledge provider),

and a set of n nodes, I = {1, . . . , n}, the bidders (or the knowledge

requesters), which express their information need (including exclu-

sivity requirements) via queries, which are to be evaluated against

a knowledge base K, held by the auctioneer.

The auctioneer asks bidders to submit in a specified common

language, the bidding language, their knowledge request: 〈q, ϕ〉
where q is an exclusivity-annotated query and ϕ : N → R+ is a

valuation function.

Following the ongoing example in the paper, a knowledge re-

quest for an exclusively known marriage between a known actor

and a known director, where each such marriage information is paid

30 units for would be the singleton set {〈q, ϕ〉} with

q = 〈〈marriage(x, y), exclusive〉∧
(

(〈actor(x), shared〉∧〈director(y), shared〉)∨
(〈actor(y), shared〉∧〈director(x), shared〉)

)

,

ϕ = k 7→ 30 · k.

The valuation function ϕ : N → R+ can be defined in several

ways. Assuming that valiq ∈ R+ denotes a bidder i’s interest to

obtain a single answer to a query q, standard valuation options are:

• naive valuation: ϕn(|S|) = |S| · valiq ,

• threshold valuation: ϕt(|S|) = |S| · valiq if | S |≤ threshold i
qi

and |S| · (valiq − discount iq) otherwise,

• budget valuation: ϕb(|S|) = min{ϕi(|S|), budget i} where ϕi

can either be ϕn
i or ϕt

i .

Based on bidders’ valuations, the auctioneer will determine a

knowledge allocation, specifying for each bidder her obtained knowl-

edge bundle and satisfying the exclusivity constraints (expressing

that exclusivity annotations associated to atoms in the respective

bundle are indeed complied with).

Given a knowledge base and a set of n bidders, a knowledge al-

location is an n-tuple of subsets of the exclusivity-enriched knowl-

edge base (i.e., the knowledge base atoms annotated with both ex-

clusive and shared). An allocation needs to satisfy two conditions:

First, we cannot allocate the same atom as both shared and exclu-

sive. Second, an exclusive atom can only be allocated to one agent.

Given a knowledge allocation, one can compute its global value

by summing up the individual prizes paid by the bidders for the

share they receive. Obviously, the knowledge allocation problem

aims at an optimal allocation, which maximizes this value.

Please see [3] providing more details and a full formalisation

of the above intuitions, as well as a network representation of the

problem, such that the winner determination can be cast into a max

flow problem on the proposed graph structure.

4. CONCLUSION AND FUTURE WORK
We have introduced the problem of Multi-Agent Knowledge Al-

location by drawing from the fields of query answering in infor-

mation systems and combinatory auctions. To this end, we have

sketched a bidding language based on exclusivity-annotated con-

junctive queries. This approach opens up interesting work direc-

tions such as:

• Extending the bidding language: One straightforward exten-

sion would be to allow not just for ground facts (like

marriage(AJ, BP)) to be delivered to the requester but also for

“anonymized” facts (like marriage(AJ, ∗) or, more formally

∃x.marriage(AJ, x)), which require handling adaption.

• Extending knowledge base expressivity: On one hand, the knowl-

edge base formalism could be extended to cover not just ground

facts but more advanced logical statements such as Datalog rules

(used in deductive databases) or ontology languages. In that case,

a distinction has to be made between propositions which are ex-

plicitly present in the knowledge base and those entailed by it.

• Covering Dynamic Aspects of Knowledge Allocation: In par-

ticular in the area of news, dynamic aspects are of paramount

importance: news items are annotated by time stamps and their

value usually greatly depends on their timeliness. Moreover we

can assume the information provider’s knowledge pool to be con-

tinuously updated by incoming streams of new information.

• Multiple Providers: Finally, it might be useful to extend the set-

ting to the case where multiple agents offer knowledge; in that

case different auctioning and allocation mechanisms would have

to be considered. This would also widen the focus towards dis-

tributed querying as well as knowledge-providing web-services.

Acknowledgments. We thank Angelina Jolie and Brad Pitt for

serving as a source of our inspiration.

5. REFERENCES
[1] C. Boutilier and H. Holger. Bidding languages for

combinatorial auctions. In Proc. IJCAI’01, pages 1211–1217,

2001.

[2] P. Cramton, Y. Shoham, and R. Steinberg. Combinatorial

Auctions. MIT Press, 2006.

[3] M. Croitoru and S. Rudolph. Towards multi-agent knowledge

allocation. Technical Report RR-12003(18), LIRMM,

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00657422/en/, 2012.

[4] A. Giovannucci, J. Rodriguez-Aguilar, J. Cerquides, and

U. Endriss. Winner determination for mixed multi-unit

combinatorial auctions via petri nets. In Proc. AAMAS’07,

2007.

[5] N. Nisan. Bidding and allocations in combinatorial auctions.

In Proc. EC-2000, 2000.

[6] D. Porello and U. Endriss. Modelling combinatorial auctions

in linear logic. In Proc. KR’10, 2010.

1250

✶✶✸

How Much Should You Pay for Information?

Ioannis A. Vetsikas
National Center for Scientific Research “Demokritos”,

Greece
ivetsikas@iit.demokritos.gr

Madalina Croitoru
University Montpellier 2,

France
croitoru@lirmm.fr

Abstract—The amount of data available greatly increases
every year and information can be quite valuable in the right
hands. The existing mechanisms for selling goods, such as VCG,
cannot handle sharable goods, such as information. To alleviate
this limitation we present our preliminary work on mechanisms
for selling goods that can be shared or copied. We present and
analyze efficient incentive compatible mechanisms for selling a
single sharable good to bidders who are happy to share it.

I. INTRODUCTION

The evolution of the Web, and thus the facility of sharing
data and putting data online has greatly improved, at least
in the last decade. The data deluge can be noted in many
day to day use cases: electronic journals access, music shar-
ing, videos, social networks, open data initiatives etc. In the
knowledge representation community (in a broad sense, and
mainly in the database community) it is implicitly assumed
that every answer to a query will be simply allocated to the
user (unless constrained due to privacy restrictions); not to
mention that the multiplicity of knowledge requesters was
simply regarded as a simple extension of the individual case.
However, in today’s Web (Web of Data, Web of Science,
Web of Knowledge, Semantic Web, Web 2.0 etc) information
being given freely clearly does not always hold in practical
applications where the requesters are in direct competition for
information. The bottom line is that data, seen as an allocatable
good, has the property of high cost production but negligible
cost to copy. Studying implications of pricing information and
allocating it thus becomes highly timely [1], [2]. The pricing
information question on the web has also been investigated
from a Linked Data perspective where information markets
are being created [3], [4], [5].

A very important issue is that data can easily be shared
(for example, music or software). If we were to apply well
known auction mechanisms (e.g. VCG) to selling pieces of
information that can be shared, hence are infinitely copied, no
profit would be made; this would happen because competition
is what drives the prices up [6] and offering more items - here
infinite - than buyers essentially removes any competition in
this setting. And yet getting profit is usually the first goal
of a seller. Now, [7] examines expanding auctions where
more copies of the same good are offered as the competition
increases. However, their mechanism does not handle infinite
copies and it is likely not incentive compatible (IC), meaning
that bidder would have an incentive to lie which would break
down the mechanism. For this reason, it is important to propose
IC mechanisms for this problem. Some mechanisms have been
proposed in [8], [9] but they analyze the mechanisms from a
worse case view point. As shown by [3] this is not always

relevant in practice where the distributions are not always a-
priori known. Taking inspirations from these algorithm in this
paper we present and analyze several incentive compatible
mechanisms for selling a single sharable good to bidders
who are happy to share it, aiming at creating competition by
restricting the number of winners.

The only related work the examines this problem is [9].
However, this work is only concerned with examining the
performance of the proposed mechanisms in the worst case,
meaning how poor the performance becomes for any input
even if this poor performance only occurs for extremely
unlikely input. For a practical application, what would interest
a company or an individual selling the information is the
expected revenue that can be obtained from each mechanism.
In view of this, in this paper, we thoroughly study mechanisms
for selling goods that can be shared or copied as many times
as necessary. We further the analysis of incentive compatible
mechanisms, characterize a whole family of such mechanisms
that can be used and evaluate the revenue obtained and the
efficiency of these mechanisms, comparing also against the
mechanisms of [9], showing that our mechanisms are better in
average performance in most cases.

II. INCENTIVE COMPATIBLE MECHANISMS

In this section, we present formally the setting that we will
address in this paper. We then present several incentive com-
patible mechanisms, starting from two baseline ones (mecha-
nism Mk+1 and Mr) and then characterizing a family of such
mechanisms, which generalizes the basic mechanism MA.1

We subsequently evaluate these mechanisms in Section III.

We consider a set of n bidders want shared access to a
piece of information. The valuations of the bidders who want
shared access are −→v = {v1, . . . , vn}.

Now, the good could be also allocated to all the buyers but
in this case we would not be able to extract any profit. For
example, if we apply the well known VCG mechanism to this
setting, the goods will be sold to all the buyers at a price equal
to 0, thus making no money at all! This essentially happens
because offering more items than buyers essentially removes
any competition which would drive the prices up. There is a
couple of straight forward ways to deal with this issue:

• One is restricting the number of winners. If the number
of winners is fixed to a number k which is less than the
actual number n of interested buyers, then this immediately

1This is a very basic and straight forward mechanism and a variation of
this has been presented in [9].

✶✶✹

will create competition between the bidders. By running an
(m + 1)th price auction (with m = k), henceforth denoted
as mechanism Mk+1, we can guarantee that this is IC and
provides some profit while ensuring that the bidders will all
pay the same price.

• Another is setting a reserve price. Instead of fixing the
number of winners, a reserve price r is set; any bidder with
valuation higher than r will buy the good. Now, the only IC
mechanism in this instance is to make every winner pay r,
henceforth denoted as mechanism Mr; otherwise if the price
paid depends on their bids, these bidders (who have valuations
higher than r) will bid r+ ϵ, ϵ > 0 instead, as they know that
any bid above r will guarantee that they win.

A serious shortcoming of both these mechanisms (Mk+1

and Mr) is that the number of winners and the reserve price,
respectively, should be selected optimally beforehand in order
to maximize the revenue of the seller. This would need to rely
on information such as prior knowledge of the distribution
of the valuations. It cannot depend on the actual bidders
valuations as then the mechanism would not be IC.

To alleviate this shortcoming, we need to design a mech-
anism that chooses the number of winners and subsequently
the price that they pay so as to maximize the total revenue of
the seller. Essentially, we should maximize maxj∈{1,...,n} jv

(j)

where v(j) are the valuations of −→v ordered from highest to
lowest. A first attempt would be to select j as to maximize
maxj∈{1,...,n} jv

(j+1) instead and the price paid by the win-
ners would be equal to v(j+1), the top bid that did not win. This
is essentially the main idea from both the Vickrey (i.e. second
price) auction [10] and the VCG mechanism. However, in this
case this mechanism is not IC. The bidders can manipulate the
price that they pay, and whether they win or not, by submitting
a bid which is not their true value thus changing the number of
winners j. It is relatively easy to check that neither a winner
nor a loser can gain by increasing her bid. However, as shown
next, both a winner and the (j+1)− th bidder whose bid sets
the price can gain by lowering their bids:

Example 1: Assume valuations −→v = {11, 9, 8, 5, 3}.
When all bidders declare their true values, then the mechanism
selects j = 2 winners and they both pay v(3) = 8.

• Any of the two top bidders would be able to profit by
lowering her bid to v′1 = 3.5. So if the first one lies, then the
ordered set of valuations would be {9,8,5,3.5,3} and then the
mechanism would select j = 4 winners all paying v(5) = 3.
• The third highest bidder can also profit by lowering her bid
to v′ = 3.5, because then the ordered set of valuations would
be {11,9,5,3.5,3} and then the mechanism would again select
j = 4 winners all paying a price of v(5) = 3.

Why does this happen? While the price paid by a winner
does not depend on her bid, the number of winners does,
and therefore it is possible to indirectly manipulate the price
paid. In fact, this is the reason why an IC mechanism must
essentially ignore the bid of a bidder i when deciding whether
bidder i is a winner and the price that she pays. The following
mechanism MA satisfies this requirement:

Definition 1 (IC Revenue Maximizing Mechanism MA):

For each bidder i ∈ {1, . . . , n} do:
If i > 1 and v(i) = v(i−1) then

decision is same as bidder with valuation v(i−1),
Else

Compute j∗ such that j∗ = argmaxj jv
(j)
−i ,2

where −→v−i is −→v without the valuation v(i)

If v(i) < v
(j∗)
−i , bidder with value v(i) does not win

otherwise, she is a winner and pays v(j
∗)

−i

Theorem 1: Mechanism MA is IC.

As a variation of this mechanism has been presented in [9]
and it is easy to prove that it is IC we will not do so here.
What we will focus on are the properties of this mechanism as
they have not been analyzed in previous work and they will
be useful both in the experimental analysis we will conduct,
as well as in generalizing it to the family of mechanisms we
will later present.

We give two examples of how this mechanism works, the
second of which contains tied valuations:

Example 2: Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1: −−→v−1 = {9, 7, 5, 3}, therefore j∗ = 3 and since
v1 = 11 ≥ 5 = v

(3)
−1 she wins with payment 5.

• For bidder 2: −−→v−2 = {11, 7, 5, 3}, therefore j∗ = 3 and since
v2 = 9 ≥ 5 = v

(3)
−2 she wins with payment 5.

• For bidder 3: −−→v−3 = {11, 9, 5, 3}, thus j∗ = 2 and since
v3 = 7 < 9 = v

(2)
−3 she does not win.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}, thus j∗ = 3 and since
v1 = 5 < 7 = v

(3)
−4 she does not win.

• Bidder 5 (the bidder with the lowest valuation) can never
win in this mechanism.

Therefore the two bidders with the highest valuations will
win at a payment equal to the fourth highest bid of 5.

Example 3: Assume valuations −→v = {10, 10, 7, 7, 7, 5}.

• For bidders 1 (and 2): −−→v−1 = {10, 7, 7, 7, 5}, therefore j∗ =

4 and since v1 = 10 ≥ 7 = v
(4)
−1 they win with payment 7.

• For bidder 3 (as well as 4 and 5): −−→v−3 = {10, 10, 7, 7, 5},
therefore j∗ = 4 and since v3 = 7 ≥ 7 = v

(4)
−3 they win

(payment 7).

• Bidder 6 does not win.

Therefore the five bidders with the highest valuations will
win at a payment equal to the fifth highest bid of 7.

Now, notice that had we been able to use all the information
available the optimal allocation in Example 2 would have been
to sell the good to the top three bidders at a price equal to 5.
However, the third bidder is not a winner meaning that some
efficiency has been lost. On the other hand, in Example 3,
bidders 3, 4 and 5 pay their valuation. It makes sense to
examine the properties of this mechanism, regarding which
of the bidders win and the price that they pay. We will use the
following lemma:

2In case that argmax is a set, we define it to return the maximum element,
meaning that if ∃j1 < j2 where j1v

(j1)
−i = j2v

(j2)
−i are the maximizing terms,

then argmax will return j2 and similarly if there are more maximizing terms.

✶✶✺

Lemma 1: If the ith term is the maximizing one for the
optimization problem solved by mechanism MA, when it
disregards bidder i’s bid, then it is also the maximizing term
when the bid of bidder i′ = i+1 is disregarded. Furthermore,
if the maximizing term is instead the j-th one (where j 6= i),
when disregarding bidder i’s bid, then either it remains the
maximizing term, when disregarding bidder i′’s bid (i′ = i+1),
or the new ith term is the maximizing one.

Proof: Due to space this proof as well as the proofs of the
following theorem are omitted. They can be found in our tech-
nical report available at http://hal.inria.fr/lirmm-00830805/.

We obtain the following theorem:

Theorem 2: When using mechanism MA some number
j′ of the top bidders will win, where j′ ≤ j∗ + 1 and
j∗ = argmaxj jv

(j+1). The price that they all pay is equal
to v(j

∗+1). Furthermore j′ ≤ j∗, when there are no ties in the
bidders’ valuations.

We can observe that this mechanism has some very desir-
able properties beyond being simply IC: firstly, all the winners
pay the same price, so there can be no envy really among
them, and, secondly, they pay the price v(j

∗+1) that is the one
that maximizes the profit of the seller. However, in order for
the profit of the seller and the efficiency of the system to be
maximized it should be that j∗ (or j∗+1) bidders should win
at this price. To alleviate this weakness of mechanism MA, we
will examine some variations of it, eventually generalizing it to
a whole family of mechanisms. Essentially, the maximization
step j∗ = argmaxj jv

(j)
−i is replaced by a voting protocol.

First, notice that the desired optimization
maxj∈{1,...,n} jv

(j) and the maximization step

j∗ = argmaxj jv
(j)
−i of mechanism MA are the same

optimization problem when bidder i is the one with the
highest valuation (her valuation is ranked first). In other
cases though, they can lead to different results and this is
the reason for the inefficiency. We cannot use any knowledge
of the bidder’s value when deciding when she’s a winner
or not, not even the rank (i.e. how many other bidders have
a higher valuation). Therefore, we propose to examine all
possible cases for the rank of the valuation of bidder i and
then aggregate the “optimal” number of winners in each case
via a voting protocol.

To illustrate what we mean we re-examine the setting of
Example 2.

Example 4: Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1, it is −−→v−1 = {9, 7, 5, 3}. For her valuation we
can assume the following cases:

1) v1 ≥ 9. Then the set of valuations is {v1, 9, 7, 5, 3},
and it would be optimal to have 3 winners.

2) 9 > v1 ≥ 7. Similarly 3 winners is the optimal.
3) 7 > v1 ≥ 5. Similarly 3 winners is the optimal.
4) 5 > v1 ≥ 3. Then the set of valuations is

{9, 7, 5, v1, 3}, and it would be optimal to either have
3 (when v1 ≥ 4) or 4 (when v1 < 4) winners. Only
in the second subcase would bidder 1 win.

5) v1 < 3. Then the whole set of valuations would be
{9, 7, 5, 3, v1}, and it would be optimal to either have

4 (when v1 ≥ 2.5) or 2 (when v1 < 2.5) winners. In
either case bidder 1 would not be selected as a winner.

• For bidder 2, we obtain similar results as for bidder 1.

• For bidder 3: −−→v−3 = {11, 9, 5, 3}. For her valuation we can
assume the following cases:

1) v3 ≥ 11. Then the set of valuations is {v3, 11, 9, 5, 3},
and it would be optimal to have 2 winners.

2) 11 > v3 ≥ 9. Similarly 2 winners is the optimal.
3) 9 > v3 ≥ 5. Then the whole set of valuations would

be {11, 9, v3, 5, 3}, and it would be optimal to have
2 (when v3 ≥ 7.5) or 3 (when v3 < 7.5) winners.
Only in the second subcase would bidder 3 win.

4) 5 > v3 ≥ 3. Then the whole set of valuations would
be {11, 9, 5, v3, 3}, and it would be optimal to either
have 3 (when v3 ≥ 4) or 4 (when v3 < 4) winners.
Only in the second subcase would bidder 3 win.

5) v3 < 3. Then the whole set of valuations would be
{11, 9, 5, 3, v3}, and it would be optimal to either
have 4 (when v1 ≥ 2.5) or 2 (when v1 < 2.5)
winners. In either case bidder 3 would not be selected
as a winner.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}. For her valuation we can
assume the following cases:

1) v4 ≥ 11. Then the set of valuations is {v4, 11, 9, 7, 3},
and it would be optimal to have 3 winners.

2) 11 > v4 ≥ 9. Similarly 3 winners is the optimal.
3) 9 > v4 ≥ 7. Similarly 3 winners is the optimal.
4) 7 > v4 ≥ 3. Then the whole set of valuations would

be {11, 9, 7, v4, 3}, and it would be optimal to either
have 3 (when v4 ≥ 14/3) or 2 (when v3 < 14/3)
winners.

5) v4 < 3. Then the whole set of valuations would be
{11, 9, 7, 3, v4}, and it would be optimal to either
have 4 (when v1 ≥ 2.5) or 2 (when v1 < 2.5)
winners.

• Bidder 5 (the bidder with the lowest valuation) can never
win (unless there is a tie which we choose not to consider
when designing our mechanisms, as it happens with very low
probability), therefore we do not analyze her case.

What can we observe from this example? Examining what
happens each time we tried to solve the optimization problem
for each bidder, the optimal number of winners changes as the
valuation of that bidder is assumed to various ranges of values;
of course the knowledge of this value is ignored in order to
keep the mechanism IC, this is the reason why we need to
examine all these possible cases. Now, note that considering
only the case when this value is assumed to be higher than
the highest among the remaining valuations and basing the
decision on only that case, gives mechanism MA. However,
this does not use the information from all the other cases where
the bidder examined might still be a winner. Thus, we propose
to use a voting protocol where, for each case where the bidder
examined is selected to be a winner, votes would be cast for
the number of winners that maximize the total profit.

We see that the decision regarding each bidders depends
on the cases examined. Thus, we generalize the previous
mechanism to consider all cases examined. To this end, we

✶✶✻

propose the following family of mechanisms M∗ where each
case (i.e. when the rank of the missing valuation is k) casts
votes with weight wk:

Definition 2 (Family of IC Mechanisms M∗(−→w , δ)):
Select the function δ(< profit >,< max_profit >)
For each bidder i ∈ {1, . . . , n} do:

If i > 1 and v(i) = v(i−1) then
decision is same as bidder with valuation v(i−1),

Else
Set −→v−i as −→v without the valuation v(i)

Set ψk = 0, ∀k = 1, . . . , n
For k = 1, . . . , n− 1 do

Assume that the missing valuation (denoted v) is
v
(k−1)
−i > v ≥ v(k)−i , where v(0)−i =∞ & v

(n)
−i = 0

Set the weight wk

Define the terms tl =

{

(l − 1)v
(l)
−i; l < k,

lv
(l)
−i; l ≥ k.

Among these terms, find the highest: l1
and the second highest: l2

The min and max values of term (k − 1)v are resp.:
tmin = (k − 1)v

(k)
−i and tmax = (k − 1)v

(k−1)
−i

If tl1 ≥ tmax and l1 ≥ k then
ψl1 = ψl1 + wk (full vote for best - weighted)

If tl2 ≥ tmax and l1 ≥ k then
ψl1 = ψl1 + wkδ(tl2 , tl1) (partial vote for 2nd best)

If tmax > tl1 ≥ tmin and l1 ≥ k then

ψl1 = ψl1 + wk

(tl1
−tmin

tmax−tmin
+

∫ tmax

tl1

δ(tl1 ,x)

tmax−tmin
dx

)

If tmax > tl2 ≥ tmin and l2 ≥ k then
ψl2 = ψl2 + wk

tl2
−tmin

tmax−tmin
δ(tl2 , tl1)

Select j∗ = argmaxψj

If v(i) < v
(j∗)
−i , bidder with value v(i) does not win

otherwise, she is a winner and pays v(j
∗)

−i

The two lines that are presented in bold define the pa-
rameters that characterize the whole range of mechanisms
that belong to this family of mechanisms M∗. For example,
mechanism MA, which we presented earlier, is derived from
M∗, by setting δ() = 0, w1 = 1 and wk = 0, ∀k > 1. In this
paper we will also use in our experiments, the following two
mechanisms which are derived from M∗:

• mechanism MV , in which δ(x, y) = x
y

and wk =
1, ∀k

• mechanism MW , in which δ(x, y) = x
y

and w1 = 1,

while wk = (n− 2)
v
(k)
−i

−v
(k−1)
−i

v
(1)
−i

−v
(n−1)
−i

, ∀k > 1

In both these mechanisms, the best option gets 1 vote while
the second best option (regarding the number of winners)
gets votes equal to the ratio of the second highest and the
highest profits. However, in the first mechanism, the weights
for all cases are 1, while in the second the votes are weighted
depending on how likely each case v

(k−1)
−i > v ≥ v

(k)
−i is,

which depends on the distance between the values v(k−1)
−i and

≥ v
(k)
−i .3

3Given that we do not use any prior information regarding the distribution
of valuations, this is the most logical way to assign probabilities to each
case. Essentially, as we do not assume any knowledge of the distribution of
valuations, we will approximate it as a uniform distribution with bounds the
lowest and highest values that are known at each step of the algorithm.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

R
ev

en
ue

/E
ffi

ci
en

cy

Number of Winners: k

Mk+1 revenue

Mk+1 efficiency

MW revenue

MW efficiency

0 20 40 60 80 100
0

100

200

300

400

500

600

R
ev

en
ue

/E
ffi

ci
en

cy

Reserve: R

MR revenue

MR efficiency

MW revenue

MW efficiency

Fig. 4. Revenue and efficiency of mechanisms Mk+1 and MR as the
number of winners k and the reserve price R varies (versus those of MW).
The number of bidder n = 10.

Example 5: Assume valuations −→v = {11, 9, 7, 5, 3}.

• For bidder 1, examining all cases (k = 1 . . . 4) we get that
having three winners gets the most votes (ψ3 = 3). So the
bidder wins and pays v(3)−i = 5.

• For bidder 2, we obtain the same results and price.

• For bidder 3: −−→v−3 = {11, 9, 5, 3} and we examine cases:

1) k = 1 : v3 ≥ 11. The valuations are {v3, 11, 9, 5, 3}.
The best choices are l1 = 2 and l2 = 3, thus ψ2 =
ψ2 + 1 and ψ3 = ψ3 +

5
6 .

2) k = 2 : 11 > v3 ≥ 9. Similarly, the mechanism
updates ψ2 = ψ2 + 1 and ψ3 = ψ3 +

5
6 .

3) k = 3 : 9 > v3 ≥ 5. The valuations are
{11, 9, v3, 5, 3}, thus l1 = 3, l2 = 4, tmax = 18
and tmin = 10. Therefore ψ3 = ψ3 + 0.967 and
ψ4 = ψ4 +

1
5 .

4) k = 4 : 5 > v3 ≥ 3. The valuations are
{11, 9, 5, v3, 3}, thus l1 = 4, l2 = 3 (but l2 < k = 4
so votes are cast), while tmax = 15 and tmin = 9.
Therefore ψ4 = ψ4 + 0.9463.

The tally of votes is: ψ2 = 2, ψ3 = 2.63 and ψ4 = 1.15, hence
j∗ = 3. Hence bidder 3 wins and pays v(j

∗)
−i = 5.

• For bidder 4: −−→v−4 = {11, 9, 7, 3}. Following the same
reasoning, j∗ = 3 (ψ3 = 3) and therefore she does not win.

To summarize, we find that under mechanism MV , the
three bidders with the highest valuations (11, 9 and 7) would
win and each pays a price equal to 5. However, this does not
mean that mechanism MV work always best; as we will see in
the experimental evaluation, when the valuations can take only
a couple of possible values then mechanism MA is better!

III. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the perfor-
mance of the mechanisms we presented in the previous section.
Our goal is to compare the seller revenue and the efficiency
(i.e. the sum of the valuations of all winners) of the different
mechanisms MA, MV and MW as opposed to using the
baseline mechanisms Mk+1 and MR. We will also compare
them with the Parameterized Random Sampling Optimal Price
auction (RSOPr) presented in Section 6.1 of [9]; we have
implemented an improvement of this mechanism which does
not allow one of the two randomized sets to be empty4 and

4The original algorithm which did not impose this restriction had much
worse performance, and it would always perform worse than the other
algorithms, therefore it does not provide a good enough benchmark without
this (minor) modification, as this significantly improves the mechanism’s
performance.

✶✶✼

Fig. 1. Table of experimental results for 3 up to 20 bidders. The valuation distribution used is Uniform{1, . . . , 100}. (PR stands for profit; EF for efficiency)
The error of the simulation is no larger than the first decimal point of each of the results presented in all the tables.

Fig. 2. Table of experimental results for 3 up to 20 bidders. The values have a 50% chance of being 1 or 10.

Fig. 3. Table of experimental results for 3 up to 20 bidders. The values have a 10% chance of being 55, 60, 65, . . . , 95, 100.

we assume knowledge of the distribution in order to select the
optimal value of the parameter r for this mechanism. In the
experiments we call this mechanism MP (i.e. probabilistic).
Note that in [9], another algorithm is proposed for this prob-
lem: the Random Sampling Profit Extraction auction (RSPE);
however the performance of this mechanism is very poor as
it sacrifices half the profit (in most cases), therefore we chose
not to include it in our experiments.

Now, there is very little research and knowledge on what
real distributions of the valuations for data are like. Some
information on current data markets is given in [3], however
very little is known about the real values for such data.
Obviously, different distributions would affect to some degree
the performance of the different mechanisms. In view of this,
we present here three sets of experiments each performed with
a different valuation distribution. We explain why we select
each, in turn, before presenting the results of the simulation.

Experiment Set 1: We simulate n bidders whose val-
uations are i.i.d. random variables drawn from the uniform
distribution on {1, . . . , 100}. The number of bidders n varies
from 3 to 20. For the baseline mechanisms Mk+1 and MR, we
calculate beforehand the best values for k and R respectively
that maximize the expected revenue using the knowledge of
the distribution from which the bids are drawn; for the other

mechanisms no such knowledge is necessary.

The results of these experiments are presented in the table
of Figure 1. The best revenue among the mechanisms MA,
MV and MW (of family M∗) is consistently obtained by
mechanism MW . Its revenue is actually better than that of
mechanism Mk+1 (with k set optimally to maximize revenue),
because mechanism MW adjusts the number of winners based
on the actual bids submitted rather than choosing the same
number regardless of the input. On the other hand, mechanism
MR (with R set optimally) clearly outperforms the other
mechanisms, because it uses its knowledge of the expected
valuations to set a threshold (a reserve price) R which must be
paid by all winning bidders. In this way it balances the revenue
from each winner against the number of bidders. However,
this mechanism is very dependent on knowing the distribution
of valuations, as setting the reserve R to the wrong value
will reduce very significantly the revenue obtained. In fact,
to examine this effect we present in Figure 4, the revenue and
efficiency of mechanisms Mk+1 and MR for different values
of k and R respectively. We observe that the revenue obtained
from MR degrades significantly if R deviates by more than
15 from its optimal value. What is worse, if mistakenly the
valuations were assumed to be between 1 and 50 (or, even
worse, between 1 and 200), which would have approximately

✶✶✽

halved (or doubled resp.) the value for R, then very little
revenue would be obtained!

Regarding the efficiency of the mechanisms, we observe
that all of them perform similarly. The only exception is
mechanism MA, because, as we’ve seen in Example 2, some-
times the mechanism reduces the number of winners which
significantly impacts its efficiency.

Finally, we notice that mechanism MP performs worst
than any other mechanism (even Mk+1 in many cases). This
happens because the mechanism splits the problem into two
separate problems and uses the solution (i.e. the best price)
of one to impose the cutoff price for the other; however, the
solutions for these two problems are not always very close (or
identical which would be the optimal case) and this leads to a
loss of revenue and some efficiency.

Experiment Set 2: In the previous experiment set, we
assumed that the valuations could take a continuum of values.
The extreme opposite of this is that only two values are
possible, thus we assume here that the values have a 50%
chance of being either 1 or 10. While we do not believe that
this could be realistic (to have so small a number of possible
values), this case is suggested in [9] as the case when the
deterministic algorithms would fail to produce good results.

The results of these experiments are presented in the table
of Figure 2. We observe that the performance of the baseline
mechanisms is similar in broad terms to the previous exper-
iment set. Regarding the other mechanisms, now mechanism
MA performs best, better than mechanisms MV and MW .
This is not entirely surprising as the possible values are only
two, which means that in almost all cases the optimal decision
would be to select the bidder with value 10 and make them
pay 10, which matches the maximum profit that can ever be
extracted from any (not necessarily IC) mechanism; the other
more complex mechanisms MV and MW try to be cleverer,
but that is unnecessary and they suffer a bit because of this.

Furthermore, mechanism MP actually shines in this case,
even if it is outperformed by mechanism MA: because of
having only two possible values, and the solutions for the two
problems solved by the mechanism are almost always identical,
therefore this leads to almost maximal revenue and efficiency.

Experiment Set 3: We mentioned that the second distri-
bution is probably not realistic for real data markets. However,
this does pose the question what happens in an intermediate
case, where there are relatively few possible values (but still
not as few as only two). To this end, we assumed for the
third experiment set we conducted, that the values have a 10%
chance of being 55, 60, 65, . . . , 95, 100 (10 possible values in
total).

The results of these experiments are presented in the table
of Figure 3. In this case, we notice that the observations
of the different mechanisms performance are close to those
made for the first experiment set. In particular, disregarding
the baseline mechanisms, mechanism MW performs best in
this set closely followed by mechanism MV . Mechanism MP

lacks in performance to a substantial degree (the exception
being when the number of bidders n approaches 20) and so
does mechanism MA.

To summarize our observations from all the experiment
sets, we notice that the baseline mechanism MR is overall
consistently the best, but it relies significantly on selecting the
best reserve R. Our proposed mechanisms (and in particular
MW and MV) are typically the best among the other mech-
anisms. The exception to this is when there are very few (two
or close) possible valuations when it is more advantageous to
use mechanisms MA primarily and MP secondary. However,
we remind the reader that mechanism MP also relies on using
knowledge of the valuation distribution in order to select the
optimal parameter r, albeit to a lesser extend than mechanism
MR.

IV. CONCLUSIONS

In this paper, we studied mechanisms for selling sharable
information goods. We presented and analyzed several IC
mechanisms, including a family of such mechanisms, for
selling a single sharable good to bidders who are happy to
share it; furthermore, we analyzed the properties of these
mechanisms via simulations (for the most part).

There are still a number of avenues for future work.
The most important extension is to examine whether we can
generalize our mechanisms to the case where several goods are
sold to bidder who want to buy bundles of these and are willing
to share or would want each good exclusively. Furthermore, for
the single unit case examined in this paper, the mechanisms of
family M∗ restrict the number of winners, in a similar manner
to mechanism Mk+1, the difference being not using prior
knowledge; in this spirit, our second extension will examine
new mechanisms that estimate a reserve price (like MR, the
highest revenue mechanism we considered) without using prior
knowledge about the valuation distribution.

REFERENCES

[1] H. R. Varian, “Buying, sharing and renting information goods,” The

Journal of Industrial Economics, vol. 48, no. 4, pp. 473–488, 2000.

[2] F. Linde and W. Stock, Information Markets: A Strategic Guideline for

the I-Commerce. Walter de Gruyter, 2011.

[3] S. F. Stahl, F. and G. Vossen, “Marketplaces for data: An initial survey,”
no. 14, 2012.

[4] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu,
“Query-based data pricing,” in PODS, M. Benedikt, M. Krötzsch, and
M. Lenzerini, Eds. ACM, 2012, pp. 167–178.

[5] C. Li, D. Y. Li, G. Miklau, and D. Suciu, “A theory of pricing private
data,” in ICDT, W.-C. Tan, G. Guerrini, B. Catania, and A. Gounaris,
Eds. ACM, 2013, pp. 33–44.

[6] V. Krishna, Auction theory. Academic Press, 2002.

[7] O. Shehory and E. Dror, “Computationally efficient and revenue opti-
mized auctioneer’s strategy for expanding auctions,” in Proceedings of

AAMAS’06, ser. AAMAS ’06, 2006, pp. 1175–1182.

[8] M. Babaioff, R. Kleinberg, and R. Paes Leme, “Optimal mechanisms
for selling information,” in Proceedings of the 13th ACM Conference

on Electronic Commerce, ser. EC ’12. New York, NY, USA: ACM,
2012, pp. 92–109.

[9] A. V. Goldberg, J. D. Hartline, A. Karlin, M. Saks, and A. Wright,
“Competitive auctions,” Games and Economic Behavior, vol. 55, no. 2,
pp. 242–269, 2006. A previous version appeared as: A. V. Goldberg,
J. D. Hartline, and A. Wright, “Competitive auctions and digital goods,”
in Proceedings of the twelfth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2001, pp.
735–744.

[10] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

✶✶✾

What Can Argumentation Do for Inconsistent Ontology

Query Answering?

–Technical Report–

Madalina Croitoru1, Srdjan Vesic2⋆

1INRIA, LIRMM, Univ. Montpellier 2, France; 2CRIL - CNRS, France

Abstract. The area of inconsistent ontological knowledge base query answer-

ing studies the problem of inferring from an inconsistent ontology. To deal with

such a situation, different semantics have been defined in the literature (e.g. AR,

IAR, ICR). Argumentation theory can also be used to draw conclusions under

inconsistency. Given a set of arguments and attacks between them, one applies a

particular semantics (e.g. stable, preferred, grounded) to calculate the sets of ac-

cepted arguments and conclusions. However, it is not clear what are the similari-

ties and differences of semantics from ontological knowledge base query answer-

ing and semantics from argumentation theory. This paper provides the answer to

that question. Namely, we prove that: (1) sceptical acceptance under stable and

preferred semantics corresponds to ICR semantics; (2) universal acceptance un-

der stable and preferred semantics corresponds to AR semantics; (3) acceptance

under grounded semantics corresponds to IAR semantics. We also prove that the

argumentation framework we define satisfies the rationality postulates (e.g. con-

sistency, closure).

1 Introduction

Ontological knowledge base query answering problem has received renewed interest in

the knowledge representation community (and especially in the Semantic Web domain

where it is known as the ontology based data access problem [17]). It considers a con-

sistent ontological knowledge base (made from facts and rules) and aims to answer if

a query is entailed by the knowledge base (KB). Recently, this question was also con-

sidered in the case where the KB is inconsistent [16, 8]. Maximal consistent subsets of

the KB, called repairs, are then considered and different semantics (based on classical

entailment on repairs) are proposed in order to compute the set of accepted formulae.

Argumentation theory is also a well-known method for dealing with inconsistent

knowledge [5, 2]. Logic-based argumentation [6] considers constructing arguments from

⋆ The major part of the work on this paper was carried out while Srdjan Vesic was affiliated with

the Computer Science and Communication Research Unit at the University of Luxembourg.

During this period, Srdjan Vesic’s project was supported by the National Research Fund, Lux-

embourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-

COFUND). At the time when the authors were finishing the work on this paper, Srdjan Vesic

was a CRNS researcher affiliated with CRIL.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✵

inconsistent knowledge bases, identifying attacks between them and selecting accept-

able arguments and their conclusions. In order to know which arguments to accept, one

applies a particular argumentation semantics.

This paper starts from the observation that both inconsistent ontological KB query

answering and instantiated argumentation theory deal with the same issue, which is

reasoning under inconsistent information. Furthermore, both communities have several

mechanisms to select acceptable conclusions and they both call them semantics. The

research questions one could immediately ask are: Is there a link between the seman-

tics used in inconsistent ontological KB query answering and those from argumentation

theory? Is it possible to instantiate Dung’s ([15]) abstract argumentation theory in a way

to implement the existing semantics from ontological KB query answering? If so, which

semantics from ontological KB query answering correspond to which semantics from

argumentation theory? Does the proposed instantiation of Dung’s abstract argumenta-

tion theory satisfy the rationality postulates [10]?

There are several benefits from answering those questions. First, it would allow

to import some results from argumentation theory to ontological query answering and

vice versa, and more generally open the way to the Argumentation Web [19]. Second,

it might be possible to use these results in order to explain to users how repairs are con-

structed and why a particular conclusion holds in a given semantics by constructing and

evaluating arguments in favour of different conclusions [14]. Also, on a more theoreti-

cal side, proving a link between argumentation theory and the results in the knowledge

representation community would be a step forward in understanding the expressibility

of Dung’s abstract theory for logic based argumentation [21].

The paper is organised as follows. In Section 2 the ontological query answering

problem is explained and the logical language used throughout the paper is introduced.

The end of this section introduces the existing semantics proposed in the literature to

deal with inconsistent knowledge bases. Then, in Section 3, we define the basics of

argumentation theory. Section 4 proves the links between the extensions obtained un-

der different argumentation semantics in this instantiated logical argumentation setting

and the repairs of the ontological knowledge base. We show the equivalence between

the semantics from inconsistent ontological KB query answering area and those de-

fined in argumentation theory in Section 5. Furthermore, the argumentation framework

thus defined respects the rationality postulates (Section 6). The paper concludes with

Section 7.

2 Ontological Conjunctive Query Answering

The main goal of section is to introduce the syntax and semantics of the SRClanguage

[3, 4], which is used in this paper due to its relevance in the context of the ontological

KB query answering.

Note that the goal of the present paper is not to change or criticise the definitions

from this area; we simply present the existing work. Our goal is to study the link be-

tween the existing work in this area and the existing work in argumentation theory. In

the following, we give a general setting knowledge representation language which can

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✶

then be instantiated according to properties on rules or constraints and yield equivalent

languages to those used by [16] and [8].

A knowledge base is a 3-tuple K = (F ,R,N) composed of three finite sets of

formulae: a set F of facts, a set R of rules and a set N of constraints. Let us formally

define what we accept as F , R and N .

Facts Syntax. Let C be a set of constants and P = P1 ∪ P2 . . . ∪ Pn a set of

predicates of the corresponding arity i = 1, . . . , n. Let V be a countably infinite set of

variables. We define the set of terms by T = V ∪ C. As usual, given i ∈ {1 . . . n},

p ∈ Pi and t1, . . . , ti ∈ T we call p(t1, . . . , ti) an atom. If γ is an atom or a conjunction

of atoms, we denote by var(γ) the set of variables in γ and by term(γ) the set of

terms in γ. A fact is the existential closure of an atom or an existential closure of a

conjunction of atoms. (Note that there is no negation or disjunction in the facts.) As an

example, consider C = {Tom}, P = P1∪P2, with P1 = {cat,mouse}, P2 = {eats}
and V = {x1, x2, x3, . . .}. Then, cat(Tom), eats(Tom, x1) are examples of atoms

and γ = cat(Tom) ∧mouse(x1) ∧ eats(Tom, x1) is an example of a conjunction of

atoms. It holds that var(γ) = {x1} and term(γ) = {Tom, x1}. As an example of a

fact, consider ∃x1(cat(Tom) ∧mouse(x1) ∧ eats(Tom, x1)).
An interpretation is a pair I = (△, .I) where △ is the interpretation domain (pos-

sibly infinite) and .I , the interpretation function, satisfies:

1. For all c ∈ C, we have cI ∈ △,

2. For all i and for all p ∈ Pi, we have pI ⊆ △i,

3. If c, c′ ∈ C and c ̸= c′ then cI ̸= c′I .

Note that the third constraint specifies that constants with different names map to

different elements of ∆.

Let γ be an atom or a conjunction of atoms or a fact. We say that γ is true under

interpretation I iff there is a function ι which maps the terms (variables and constants)

of γ into △ such that for all constants c, it holds that ι(c) = cI and for all atoms

p(t1, ...ti) appearing in γ, it holds that (ι(t1), ..., ι(ti)) ∈ pI . For a set F containing

any combination of atoms, conjunctions of atoms and facts, we say that F is true under

interpretation I iff there is a function ι which maps the terms (variables and constants)

of all formulae in F into △ such that for all constants c, it holds that ι(c) = cI and

for all atoms p(t1, ...ti) appearing in formulae of F , it holds that (ι(t1), ..., ι(ti)) ∈
pI . Note that this means that for example sets F1 = {∃x(cat(x) ∧ dog(x))} and

F2 = {∃x(cat(x)), ∃x(dog(x))} are true under exactly the same set of interpretations.

Namely, in both cases, variable x is mapped to an object of ∆. On the other hand, there

are some interpretations under which set F3 = {∃x1(cat(x1)), ∃x2(dog(x2))} is true

whereas F1 and F2 are not.

If γ is true in I we say that I is a model of γ. Let γ′ be an atom, a conjunction

of atoms or a fact. We say that γ is a logical consequence of γ′ (γ′ entails γ, denoted

γ′ |= γ) iff all models of γ are models of γ′. If a set F is true in I we say that I
is a model of F . We say that a formula γ is a logical consequence of a set F (denoted

F |= γ) iff all models of F are models of γ. We say that a setG is a logical consequence

of set F (denoted F |= G) if and only if all models of F are models of G. We say that

two sets F and G are logically equivalent (denoted F ≡ G) if and only if F |= G and

G |= F .

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✷

Given a set of variables X and a set of terms T, a substitution σ of X by T is

a mapping from X to T (denoted σ : X → T). Given an atom or a conjunction of

atoms γ, σ(γ) denotes the expression obtained from γ by replacing each occurrence of

x ∈ X ∩ var(γ) by σ(x). If a fact F is the existential closure of a conjunction γ then

we define σ(F) as the existential closure of σ(γ). Finally, let us define homomorphism.

Let F and F ′ be atoms, conjunctions of atoms or facts (it is not necessarily the case

that F and F ′ are of the same type, e.g. F can be an atom and F ′ a conjunction of

atoms). Let σ be a substitution such that σ : var(F) → term(F ′). We say that σ is

a homomorphism from F to F ′ if and only if the set of atoms appearing in σ(F) is

a subset of the set of atoms appearing in σ(F ′). For example, let F = cat(x1) and

F ′ = cat(Tom)∧mouse(Jerry). Let σ : var(F) → term(F ′) be a substitution such

that σ(x1) = Tom. Then, σ is a homomorphism from F to F ′ since the atoms in σ(F)
are {cat(Tom)} and the atoms in σ(F ′) are {cat(Tom),mouse(Jerry)}.

Note that it well is known that F ′ |= F if and only if there is a homomorphism from

F to F ′ [12].

Rules. A rule R is a formula ∀x1, . . . , ∀xn ∀y1, . . . , ∀ym (H(x1, . . . , xn, y1, . . . ,
ym) → ∃z1, ...∃zk C(y1, . . . , ym, z1, ...zk)) where H , the hypothesis, and C, the con-

clusion, are atoms or conjunctions of atoms, n,m, k ∈ {0, 1, . . .}, x1, . . . , xn are the

variables appearing in H , y1, . . . , ym are the variables appearing in both H and C
and z1, . . . , zk the new variables introduced in the conclusion. As two examples of

rules, consider ∀x1(cat(x1) → miaw(x1)) or ∀x1((mouse(x1) → ∃z1(cat(z1) ∧
eats(z1, x1))).

Reasoning consists of applying rules on the set and thus inferring new knowledge. A

ruleR = (H,C) is applicable to set F if and only if there exists F ′ ⊆ F such that there

is a homomorphism σ from the hypothesis of R to the conjunction of elements of F ′.

For example, rule ∀x1(cat(x1) → miaw(x1)) is applicable to set {cat(Tom)}, since

there is a homomorphism from cat(x1) to cat(Tom). If rule R is applicable to set F ,

the application of R to F according to π produces a set F ∪ {π(C)}. In our example,

the produced set is {cat(Tom),miaw(Tom)}. We then say that the new set (which

includes the old one and adds the new information to it) is an immediate derivation of

F byR. This new set is often denoted byR(F). Thus, applying a rule on a set produces

a new set.

Let F be a subset of F and let R be a set of rules. A set Fn is called an R-derivation

of F if there is a sequence of sets (called a derivation sequence) (F0, F1, . . . , Fn) such

that:

– F0 ⊆ F
– F0 is R-consistent

– for every i ∈ {1, . . . , n− 1}, it holds that Fi is an immediate derivation of Fi−1

– (no formula in Fn contains a conjunction and Fn is an immediate derivation of Fn−1)

or Fn is obtained from Fn−1 by conjunction elimination.

Conjunction elimination is the following procedure: while there exists at least one

conjunction in at least one formula, take an arbitrary formula ϕ containing a conjunc-

tion. If ϕ is of the form ϕ = ψ ∧ ψ′ then exchange it with two formulae ψ and ψ′. If

ϕ is of the form ∃x(ψ ∧ ψ′) then exchange it with two formulae ∃x(ψ) and ∃x(ψ′).
The idea is just to start with an R-consistent set and apply (some of the) rules. The only

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✸

technical detail is that the conjunctions are eliminated from the final result. So if the

last set in a sequence does not contain conjunctions, nothing is done. Else, we eliminate

those conjunctions. This technicality is needed in order to stay as close as possible to

the procedures used in the literature in the case when the knowledge base is consistent.

Given a set {F0, . . . , Fk} ⊆ F and a set of rules R, the closure of {F0, . . . , Fk}
with respect to R, denoted ClR({F0, . . . , Fk}), is defined as the smallest set (with

respect to ⊆) which contains {F0, . . . , Fk}, and is closed for R-derivation (that is, for

every R-derivation Fn of {F0, . . . , Fk}, we have Fn ⊆ ClR({F0, . . . , Fk})). Finally,

we say that a set F and a set of rules R entail a fact G (and we write F ,R |= G) iff the

closure of the facts by all the rules entails F (i.e. if ClR(F) |= G).

As an example, consider a set of facts F = {cat(Tom), small(Tom)} and the rule

set R = {R1 = ∀x1(cat(x1) → miaw(x1) ∧ animal(x1)), R2 = ∀x1(miaw(x1) ∧
small(x1) → cute(x1))}. Then, F0, F1, F2 is a derivation sequence, where F0 =
{cat(Tom), small(Tom)}, F1 = R1(F0) = {cat(Tom), small(Tom), miaw(Tom)
∧animal(Tom)}, F2 = {cat(Tom), small(Tom), miaw(Tom) ∧ animal(Tom),
cute(Tom)} and F3 = {cat(Tom), small(Tom), miaw(Tom), animal(Tom),
cute(Tom)}.

We conclude the presentation on rules in SRC by a remark on performing union on

facts when they are viewed as sets of atoms. In order to preserve semantics the union is

done by renaming variables. For example, let us consider a fact F1 = {∃xcat(x)} and

a fact F2 = {∃xanimal(x)}. Then the fact F = F1 ∪ F2 is the union of the two fact

after variable naming has been performed: F = {∃x1cat(x1), ∃x2animal(x2)}.

Constraints. A constraint is a formula ∀x1 . . . ∀ xn (H(x1, . . . , xn)→ ⊥), where

H is an atom or a conjunction of atoms and n ∈ {0, 1, 2, . . .}. Equivalently, a constraint

can be written as ¬(∃x1, ..., ∃xnH(x1, ...xn)). As an example of a constraint, consider

∀x1(cat(x1)∧dog(x1) → ⊥).H(x1, . . . , xn) is called the hypothesis of the constraint.

Given a knowledge base K = (F ,R,N), a set {F1, . . . , Fk} ⊆ F is said to be in-

consistent if and only if there exists a constraintN ∈ N such that {F1, . . . , Fk} |= HN ,

where HN denotes the existential closure of the hypothesis of N . A set is consistent if

and only if it is not inconsistent. A set {F1, . . . , Fk} ⊆ F is R-inconsistent if and only

if there exists a constraint N ∈ N such that ClR({F1, . . . , Fk}) |= HN , where HN

denotes the existential closure of the hypothesis of N .

A set of facts is said to be R-consistent if and only if it is not R-inconsistent. A

knowledge base (F ,R,N) is said to be consistent if and only if F is R-consistent. A

knowledge base is inconsistent if and only if it is not consistent.

Example 1. Let us consider the following knowledge base K = (F ,R,N), with: F =
{cat(Tom), bark(Tom)}, R = {∀x1(cat(x1) → miaw(x1))}, N = {∀x1(bark(x1)
∧miaw(x1) → ⊥)}. The only rule in the knowledge base is applicable to the set

{cat(Tom), bark(Tom)} and its immediate derivation produces the set {cat(Tom),
bark(Tom),miaw(Tom)}. We see that ClR(F) |= ∃x1(bark(x1)∧miaw(x1)), thus

the KB is inconsistent.

Given a knowledge base, one can ask a conjunctive query in order to know whether

something holds or not. Without loss of generality we consider in this paper boolean

conjunctive queries (which are facts). As an example of a query, take ∃x1cat(x1). The

answer to query α is positive if and only if F ,R |= α.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✹

2.1 Query Answering over Inconsistent Ontological Knowledge Bases

Notice that (like in classical logic), if a knowledge base K = (F ,R,N) is inconsis-

tent, then everything is entailed from it. In other words, every query is true. Thus, the

approach we described until now is not robust enough to deal with inconsistent infor-

mation. However, there are cases when the knowledge base is inconsistent; this phe-

nomenon has attracted particular attention during the recent years [8, 16]. For example,

the set F may be obtained by combining several sets of facts, coming from different

agents. In this paper, we study a general case when K is inconsistent without making

any hypotheses about the origin of this inconsistency. Thus, our results can be applied

to an inconsistent base independently of how it is obtained.

A common solution [8, 16] is to construct maximal (with respect to set inclusion)

consistent subsets of K. Such subsets are called repairs. Formally, given a knowledge

base K = (F ,R,N), define:

Repair(K) = {F ′ ⊆ F | F ′ is maximal for ⊆ R-consistent set}

We now mention a very important technical detail. In some papers, a set of formulae

is identified with the conjunction of those formulae. This is not of particular significance

when the knowledge base is consistent. However, in case of an inconsistent knowl-

edge base, this makes a big difference. Consider for example K1 = (F1,R1,N1) with

F1 = {dog(Tom), cat(Tom)}, R1 = ∅ and N1 = {∀x1(dog(x1) ∧ cat(x1) → ⊥)},

compared with K2 = (F2,R2,N2) with F2 = {dog(Tom) ∧ cat(Tom)}, R2 = ∅
and N2 = {∀x1(dog(x1) ∧ cat(x1) → ⊥)}. In this case, according to the definition

of a repair, K1 would have two repairs and K2 would have no repairs at all. We could

proceed like this, but we find it confusing given the existing literature in this area. This

is why, in order to be completely precise, from now on we suppose that F does not

contain conjunctions. Namely, F is supposed to be a set composed of of atoms and of

existential closures of atoms. One could believe that this reduces the expressibility of

the language, consider for example F1 = {∃x(dog(x)), ∃x(black(x))} as opposed to

F2 = {∃x(dog(x) ∧ black(x))}. Namely, in classical first order logic, F1 and F2 do

not have the same models. However, in SRC, F1 and F2 have the same models (see the

definition of an interpretation).

Once the repairs calculated, there are different ways to calculate the set of facts that

follow from an inconsistent knowledge base. For example, we may want to accept a

query if it is entailed in all repairs (AR semantics).

Definition 1. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is

AR-entailed from K, written K |=AR α iff for every repair A′ ∈ Repair(K), it holds

that ClR(A′) |= α.

Another possibility is to check whether the query is entailed from the intersection

of closed repairs (ICR semantics).

Definition 2. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is

ICR-entailed from K, written K |=ICR α iff
∩

A′∈Repair(K) ClR(A′) |= α.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✺

Example 2 (Example 1 Cont.). Repair(K) = {R1, R2} with R1 = {cat(Tom)}
and R2 = {bark(Tom)}}. ClR(R1) = {cat(Tom),miaw(Tom)}, ClR(R2) =
{bark(Tom)}. It is not the case that K |=ICR cat(Tom).

Finally, another possibility is to consider the intersection of all repairs and then

close this intersection under the rules (IAR semantics).

Definition 3. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is

IAR-entailed from K, written K |=IAR α iff ClR(
∩

A′∈Repair(K)) |= α.

The three semantics can yield different results [16, 8], as illustrated by the next two

examples.

Example 3. (ICR and IAR different from AR) Consider K = (F ,R,N), with: F =
{havecat(Tom), haveMouse(Jerry)}, intuitively, we have a cat (called Tom) and a

mouse (called Jerry); R = {∀x1 (haveCat(x1) → haveAnimal(x1)),
∀x2 (haveMouse(x2) → haveAnimal(x2))}; N = {∀x1∀x2(haveCat(x1)
∧haveMouse(x2) → ⊥)}, meaning that we cannot have both a cat and a mouse (since

the cat would eat the mouse). There are two repairs: R1 = {haveCat(Tom)} and

R2 = {haveMouse(Jerry)}. ClR(R1) = {haveCat(Tom), haveAnimal(Tom)}
and ClR(R2) = {haveMouse(Jerry), haveAnimal(Jerry)}. Consider a query α =
∃x1 haveAnimal(x1) asking whether we have an animal. It holds that K |=AR α since

ClR(R1) |= α and ClR |= α, but neither K |=ICR α (since ClR(R1)∩ClR(R2) = ∅)

nor K |=IAR α (since R1 ∩R2 = ∅).

Example 4. (AR and ICR different from IAR) Consider K = (F ,R,N), with: F =
{cat(Tom), dog(Tom)}, R = {∀x1(cat(x1) → animal(x1)),
∀x2(dog(x2) → animal(x2))}, N = {∀x(cat(x) ∧ dog(x) → ⊥)}.

We have Repair(K) = {R1, R2} withR1 = {cat(Tom)} andR2 = {dog(Tom)}.
ClR(R1) = {cat(Tom), animal(Tom)}, ClR(R2) = {dog(Tom), animal(Tom)}.

It is not the case that K |=IAR ∃x(animal(x)) (since R1

∩
R2 = ∅). However,

K |=AR ∃x(animal(x)). This is due to the fact that ClR(R1) |= ∃x(animal(x))
and ClR(R2) |= ∃x(animal(x)). Also, we have K |=ICR ∃x(animal(x)) since

ClR(R1) ∩ ClR(R2) = {animal(Tom)}.

3 Argumentation over Inconsistent Ontological Knowledge Bases

This section shows that it is possible to define an instantiation of Dung’s abstract ar-

gumentation theory [15] that can be used to reason with an inconsistent ontological

KB.

We first define the notion of an argument. For a set of formulae G = {G1, . . . , Gn},

notation
∧
G is used as an abbreviation for G1 ∧ . . . ∧Gn.

Definition 4. Given a knowledge base K = (F ,R,N), an argument a is a tuple a =
(F0, F1, . . . , Fn) where:

– (F0, . . . , Fn−1) is a derivation sequence with respect to K

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✻

– Fn is an atom, a conjunction of atoms, the existential closure of an atom or the exis-

tential closure of a conjunction of atoms such that Fn−1 |= Fn.

Example 5 (Example 2 Cont.). Consider a = ({cat(Tom)}, {cat(Tom),miaw(Tom)},
miaw(Tom)) and b = ({bark(Tom)}, bark(Tom)) as two examples of arguments.

This is a straightforward way to define an argument when dealing with SRClanguage,

since this way, an argument corresponds to a derivation.

To simplify the notation, from now on, we suppose that we are given a fixed knowl-

edge base K = (F ,R,N) and do not explicitly mention F , R nor N if not neces-

sary. Let a = (F0, ..., Fn) be an argument. Then, we denote Supp(a) = F0 and

Conc(a) = Fn. Let S ⊆ F a set of facts, Arg(S) is defined as the set of all ar-

guments a such that Supp(a) ⊆ S. Note that the set Arg(S) is also dependent on

the set of rules and the set of constraints, but for simplicity reasons, we do not write

Arg(S,R,N) when it is clear to which K = (F ,R,N) we refer to. Finally, let E be

a set of arguments. The base of E is defined as the union of the argument supports:

Base(E) =
∪

a∈E
Supp(a).

Arguments may attack each other, which is captured by a binary attack relation

Att ⊆ Arg(F)×Arg(F). Recall that the repairs are the subsets of F while the set R is

always taken as a whole. This means that the authors of the semantics used to deal with

an inconsistent ontological KB envisage the set of facts as inconsistent and the set of

rules as consistent. When it comes to the attack relation, this means that we only need

the so called “assumption attack” since, roughly speaking, all the inconsistency “comes

from the facts”.

Definition 5. Let K = (F ,R,N) be a knowledge base and let a and b be two argu-

ments. The argument a attacks argument b, denoted (a, b) ∈ Att, if and only if there

exists ϕ ∈ Supp(b) such that the set {Conc(a), ϕ} is R-inconsistent.

This attack relation is not symmetric. To see why, consider the following example.

Let F = {p(m), q(m), r(m)}, R = ∅, N = {∀x1(p(x1) ∧ q(x1) ∧ r(x1) → ⊥)}. Let

a = ({p(m), q(m)}, p(m) ∧ q(m)), b = ({r(m)}, r(m)). We have (a, b) ∈ Att and

(b, a) /∈ Att. Note that using attack relations which are not symmetric is very common

in argumentation literature. Moreover, symmetric attack relation have been criticised

for violating some desirable properties [1].

Definition 6. Given a knowledge base K = (F ,R,N), the corresponding argumenta-

tion framework AFK is a pair (A = Arg(F), Att) where A is the set of arguments that

can be constructed from F and Att is the corresponding attack relation as specified in

Definition 5.

Let E ⊆ A and a ∈ A. We say that E is conflict free iff there exists no arguments

a, b ∈ E such that (a, b) ∈ Att. E defends a iff for every argument b ∈ A, if we have

(b, a) ∈ Att then there exists c ∈ E such that (c, b) ∈ Att.
E is admissible iff it is conflict free and defends all its arguments. E is a complete

extension iff E is an admissible set which contains all the arguments it defends. E is a

preferred extension iff it is maximal (with respect to set inclusion) admissible set. E is

a stable extension iff it is conflict-free and for all a ∈ A \ E , there exists an argument

b ∈ E such that (b, a) ∈ Att.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✼

E is a grounded extension iff E is a minimal (for set inclusion) complete extension.

If a semantics returns exactly one extension for every argumentation framework,

then it is called a single-extension semantics.

For an argumentation framework AS = (A, Att) we denote by Extx(AS) (or by

Extx(A, Att)) the set of its extensions with respect to semantics x. We use the abbrevia-

tions c, p, s, and g for respectively complete, preferred, stable and grounded semantics.

An argument is sceptically accepted if it is in all extensions, credulously accepted if

it is in at least one extension and rejected if it is not in any extension.

Finally, we introduce two definitions allowing us to reason over such an argumen-

tation framework. The output of an argumentation framework is usually defined [10,

Definition 12] as the set of conclusions that appear in all the extensions (under a given

semantics).

Definition 7 (Output of an argumentation framework). Let K = (F ,R,N) be a

knowledge base and AFK the corresponding argumentation framework. The output of

AFK under semantics x is defined as:

Outputx(AFK) =
∩

E∈Extx(AFK)

Concs(E).

In the degenerate case when Extx(AFK) = ∅, we define Output(AFK) = ∅ by

convention.

Note that the previous definition asks for existence of a conclusion in every exten-

sion. This kind of acceptance is usually referred to as sceptical acceptance. We say that

a query α is sceptically accepted if it is a logical consequence of the output of AFK :

Definition 8 (Sceptical acceptance of a query). Let K = (F ,R,N) be a knowledge

base and AFK the corresponding argumentation framework. A query α is sceptically

accepted under semantics x if and only if Outputx(AFK) |= α.

It is possible to make an alternative definition, which uses the notion of universal ac-

ceptance instead of sceptical one. According to universal criteria, a query α is accepted

if it is a logical consequence of conclusions of every extension:

Definition 9 (Universal acceptance of a query). Let K = (F ,R,N) be a knowledge

base and AFK the corresponding argumentation framework. A query α is universally

accepted under semantics x if and only if for every extension Ei ∈ Extx(AFK), it

holds that Concs(Ei) |= α.

In general, universal and sceptical acceptance of a query do not coincide. Take for

instance the KB from Example 3, construct the corresponding argumentation frame-

work, and compare the sets of universally and sceptically accepted queries under pre-

ferred semantics.

Note that for single-extension semantics (e.g. grounded), the notions of sceptical

and universal acceptance coincide. So we simply use word “accepted” in this context.

Definition 10 (Acceptance of a query). Let K = (F ,R,N) be a knowledge base,

AFK the corresponding argumentation framework, x a single-extension semantics and

let E be the unique extension of AFK . A query α is accepted under semantics x if and

only if Concs(E) |= α.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✽

4 Equivalence between Repairs and Extensions

In this section, we prove two links between the repairs of an ontological KB and the

corresponding argumentation framework: Theorem 1 shows that the repairs of the KB

correspond exactly to the stable (and preferred, since in this instantiation the stable and

the preferred semantics coincide) extensions of the argumentation framework; Theorem

2 proves that the intersection of all the repairs of the KB corresponds to the grounded

extension of the argumentation framework.

Theorem 1. Let K = (F ,R,N) be a knowledge base, AFK the corresponding argu-

mentation framework and x ∈ {s, p}1. Then:

Extx(AFK) = {Arg(A′) | A′ ∈ Repair(K)}

Proof. The plan of the proof is as follows:

1. We prove that {Arg(A′) | A′ ∈ Repair(K)} ⊆ Exts(AFK).
2. We prove that Extp(AFK) ⊆ {Arg(A′) | A′ ∈ Repair(K)}.

3. Since every stable extension is a preferred one [15], we can proceed as follows.

From the first item, we have that {Arg(A′) | A′ ∈ Repair(K)} ⊆ Extp(AFK),
thus the theorem holds for preferred semantics. From the second item we have that

Exts(AFK) ⊆ {Arg(A′) | A′ ∈ Repair(K)}, thus the theorem holds for stable

semantics.

1. We first show {Arg(A′) | A′ ∈ Repair(K)} ⊆ Exts(AFK). Let A′ ∈ Repair(K)
and let E = Arg(A′). Let us prove that E is a stable extension of (Arg(F), Att).
We first prove that E is conflict-free. By means of contradiction we suppose the

contrary, i.e. let a, b ∈ E such that (a, b) ∈ Att. From the definition of attack, there

exists ϕ ∈ Supp(b) such that {Conc(a), ϕ} is R-inconsistent. Thus Supp(a) ∪ {ϕ}
is R-inconsistent; consequently A′ is R-inconsistent, contradiction. Therefore E is

conflict-free.

Let us now prove that E attacks all arguments outside the set. Let b ∈ Arg(F) \
Arg(A′) and let ϕ ∈ Supp(b), such that ϕ /∈ A′. Let A′

c be the set obtained from A′

by conjunction elimination and let a = (A′, A′
c,
∧
A′

c). We have ϕ /∈ A′, so, due to

the set inclusion maximality for the repairs, {
∧
A′

c, ϕ} is R-inconsistent. Therefore,

(a, b) ∈ Att. Consequently, E is a stable extension.

2. We now need to prove that Extp(AFK) ⊆ {Arg(A′) | A′ ∈ Repair(K)}. Let

E ∈ Extp(AFK) and let us prove that there exists a repairA′ such that E = Arg(A′).
Let S = Base(E). Let us prove that S is R-consistent. Aiming to a contradiction,

suppose that S is R-inconsistent. Let S′ ⊆ S be such that (1) S′ is R-inconsistent

and (2) every proper set of S′ is R-consistent. Let us denote S′ = {ϕ1, ϕ2, ..., ϕn}.

Let a ∈ E be an argument such that ϕn ∈ Supp(a). Let S′
c be the set obtained from

S′ \ {ϕ} by conjunction elimination and let a′ = (S′ \ {ϕn}, S
′
c,
∧
S′
c). We have

that (a′, a) ∈ Att. Since E is conflict free, then a′ /∈ E . Since E is an admissible

set, there exists b ∈ E such that (b, a′) ∈ Att. Since b attacks a′ then there exists

1 Recall that s stands for stable and p for preferred semantics.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✷✾

i ∈ {1, 2, ..., n− 1} such that {Conc(b), ϕi} is R-inconsistent. Since ϕi ∈ Base(E),
then there exists c ∈ E such that ϕi ∈ Supp(c). Thus (b, c) ∈ Att, contradiction. So

it must be that S is R-consistent.

Let us now prove that there exists no S′ ⊆ F such that S (S′ and S′ is R-

consistent. We use the proof by contradiction. Thus, suppose that S is not a maximal

R-consistent subset of F . Then, there exists S′ ∈ Repair(K), such that S (S′. We

have that E ⊆ Arg(S), since S = Base(E). Denote E ′ = Arg(S′). Since S (S′

then Arg(S) (E ′. Thus, E (E ′. From the first part of the proof, E ′ ∈ Exts(AFK).
Consequently, E ′ ∈ Extp(AFK). We also know that E ∈ Extp(AFK). Contradic-

tion, since no preferred set can be a proper subset of another preferred set. Thus, we

conclude that Base(E) ∈ Repair(K).
Let us show that E = Arg(Base(E)). It must be that E ⊆ Arg(S). Also, we know

(from the first part) that Arg(S) is a stable and a preferred extension, thus the case

E (Arg(s) is not possible.

3. Now we know that {Arg(A′) |A′ ∈ Repair(K)} ⊆ Exts(AFK) and Extp(AFK) ⊆
{Arg(A′) | A′ ∈ Repair(K)}. The theorem follows from those two facts, as ex-

plained at the beginning of the proof.

To prove Theorem 2, we first prove the following lemma which says that if there

are no rejected arguments under preferred semantics, then the grounded extension is

equal to the intersection of all preferred extensions. Note that this result holds for every

argumentation framework (not only for the one studied in this paper, where arguments

are constructed from an ontological knowledge base). Thus, we only suppose that we

are given a set and a binary relation on it (called attack relation).

Lemma 1. Let AS = (A, Att) be an argumentation framework and GE its grounded

extension.

If A ⊆
∪

Ei∈Extp(AS)

Ei then GE =
∩

Ei∈Extp(AS)

Ei.

Proof. Let Iope = ∩Ei∈Extp(AS)Ei denote the intersection of all preferred extensions.

It is known [15] the GE ⊆ Iope. Let us prove that in the case when there are no rejected

arguments, it also holds the Iope ⊆ GE. Let a ∈ Iope. Let us show that no argument b
attacks a. This holds since every argument b is in at least one preferred extension, say

Ei, and a is also in Ei (since a is in all preferred extensions) thus b does not attack a since

both a and b are in Ei and Ei is a conflict-free set (since it is a preferred extension). All

this means that arguments in Iope are not attacked. Consequently, they must all belong

to the grounded extension. In other words, Iope ⊆ GE.

We can now, using the previous result, prove the link between the intersection of

repairs and the grounded extension.

Theorem 2. Let K = (F ,R,N) be a knowledge base and AFK the corresponding

argumentation framework. Denote the grounded extension of AFK by GE. Then:

GE = Arg(
∩

A′∈Repair(K)

A′).

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✵

Proof. Denote the intersection of all repairs by Ioar =
∩

A′∈Repair(K)A
′ and the

intersection of all preferred extensions by Iope =
∩

Ei∈Extp(AFK) Ei. From Theorem

1, we know that Extx(AFK) = {Arg(A′) | A′ ∈ Repair(K)}. Consequently,

Iope =
∩

A′∈Repair(K)

Arg(A′) (1)

Since every argument has an R-consistent support, then its support is in at least one

repair. From Theorem 1, that argument is in at least one preferred extension, (i.e. it is

not rejected). From Lemma 1,

Iope = GE (2)

From (1) and (2), we obtain that

GE =
∩

A′∈Repair(K)

Arg(A′) (3)

Note that for every collection S1, . . . , Sn of of sets of formulae, we have Arg(S1) ∩
. . .∩ Arg(Sn) = Arg(S1 ∩ . . .∩Sn). By applying this rule on the set of all repairs, we

obtain: ∩

A′∈Repair(K)

Arg(A′) = Arg(Ioar) (4)

From (3) and (4), we obtain GE = Arg(Ioar) which ends the proof.

5 Semantics Equivalence

This section presents the main result of the paper. It proves the links between semantics

from argumentation theory (stable, preferred, grounded) and semantics from inconsis-

tent ontology KB query answering (ICR, AR, IAR). More precisely, we show that: (1)

sceptical acceptance under stable and preferred semantics corresponds to ICR seman-

tics; (2) universal acceptance under stable and preferred semantics corresponds to AR

semantics; (3) acceptance under grounded semantics corresponds to IAR semantics.

The proof of Theorem 3 is based on Theorem 1 and the proof of Theorem 4 is derived

from Theorem 2.

Theorem 3. Let K = (F ,R,N) be a knowledge base, let AFK be the corresponding

argumentation framework and let α be a query. Let x ∈ {s, p} be stable or preferred

semantics. Then:

– K |=ICR α iff α is sceptically accepted under semantics x.

– K |=AR α iff α is universally accepted under semantics x.

Proof. Theorem 1 implies Extx(Arg(F), Att) = {Arg(A′) | A′ ∈ Repair(K)}. In

fact, the restriction of function Arg on Repair(K) is a bijection between Repair(K)
and Extx(AFK). Note also that for every query α, for every repair A′, we have that

ClR(A′) |= α if and only if Concs(Arg(A′)) |= α. By using those two facts, the result

of the theorem can be obtained as follows:

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✶

– For every query α, we have: K |=ICR α if and only if
∩

A′∈Repair(K) ClR(A′) |= α

if and only if
∩

Ei∈Extx(AFK) Concs(Ei) |= α if and only if Outputx(AFK) |= α if

and only if α is sceptically accepted.

– For every query α, we have: K |=AR α if and only if for every A′ ∈ Repair(K),
ClR(A′) |= α if and only if for every Ei ∈ Extx(AFK), Concs(Ei) |= α if and only

if α is universally accepted.

Theorem 4. Let K = (F ,R,N) be a knowledge base, let AFK be the corresponding

argumentation framework and let α be a query. Then:

K |=IAR α iff α is accepted under grounded semantics.

Proof. Let us denote the grounded extension of AFK by GE and the intersection of all

repairs by Ioar =
∩

A′∈Repair(K)A
′. From Definition 10, we have:

α is accepted under grounded semantics iff Concs(GE) |= α. (5)

From Theorem 2, we have:

GE = Arg(Ioar). (6)

Note also that for every set of facts {F1, . . . , Fn} and for every query α, we have that

ClR({F1, . . . , Fn}) |= α if and only if Concs(Arg({F1, . . . , Fn})) |= α. Thus,

ClR(Ioar) |= α if and only if Concs(Arg(Ioar)) |= α. (7)

From (6) and (7) we have that:

ClR(Ioar) |= α if and only if Concs(GE) |= α. (8)

From Definition 3, one obtains:

ClR(Ioar) |= α if and only if K |=IAR α. (9)

The theorem now follows from (5), (8) and (9).

6 Postulates

In this section, we prove that the framework we propose in this paper satisfies the ra-

tionality postulates for instantiated argumentation frameworks [10]. We first prove the

indirect consistency postulate.

Proposition 1 (Indirect consistency). Let K = (F ,R,N) be a knowledge base, AFK

the corresponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(AFK), ClR(Concs(Ei)) is a consistent set

– ClR(Outputx(AFK)) is a consistent set.

Proof.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✷

– Let Ei be a stable or a preferred extension of AFK . From Theorem 1, there exists a

repair A′ ∈ Repair(K) such that Ei = Arg(A′). Note that Concs(Ei) = ClR(A′) ∪
{α | ClR(A) |= α} (this follows directly from Definition 4). Consequently, the set of

R-derivations of Concs(Ei) and the set of R-derivations of ClR(A′) coincide. For-

mally, ClR(ClR(A′)) = ClR(Concs(Ei)). Since ClR is idempotent, this means that

ClR(A′) = ClR(Concs(Ei)). Since ClR(A′) is consistent, then ClR(Concs(Ei)) is

consistent.

Let us now consider the case of grounded semantics. Denote GE the grounded ex-

tension of AFK . We have just seen that for every Ei ∈ Extp(AFK), it holds that

ClR(Concs(Ei)) is a consistent set. Since the grounded extension is a subset of the

intersection of all the preferred extensions [15], and since there is at least one pre-

ferred extension, say E1, then GE ⊆ E1. Since ClR(Concs(Ei)) is consistent then

ClR(Concs(GE)) is also consistent.

– Consider the case of stable or preferred semantics. Let us prove ClR(Outputx(AFK))
is a consistent set. Recall that Outputx(AFK) =

∩
Ei∈Extx(AFK) Concs(Ei). Since

every knowledge base has at least one repair then, according to Theorem 1, there

is at least one stable or preferred extension Ei. From Definition 7, we have that

Outputx(AFK) ⊆ Concs(Ei). Concs(Ei) is R-consistent thus Outputx(AFK) is

R-consistent. In other words, ClR(Outputx(AFK)) is consistent.

Note that in the case of grounded semantics the second part of the proposition follows

directly from the first one, since ClR(Outputg(AFK)) = ClR(Concs(GE)).

Since our instantiation satisfies indirect consistency then it also satisfies direct con-

sistency. This comes from R-consistency definition; namely, if a set is R-consistent,

then it is necessarily consistent. Thus, we obtain the following corollary.

Corollary 1 (Direct consistency). Let K = (F ,R,N) be a knowledge base, AFK

the corresponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(AFK), Concs(Ei) is a consistent set

– Outputx(AFK) is a consistent set.

We now also prove that the present argumentation formalism also satisfies the clo-

sure postulate.

Proposition 2 (Closure). Let K = (F ,R,N) be a knowledge base, AFK the corre-

sponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(AFK), Concs(Ei) = ClR(Concs(Ei)).
– Outputx(AFK) = ClR(Outputx(AFK)).

Proof.

– From the definition of ClR, we see that Concs(Ei) ⊆ ClR(Concs(Ei)). Let us prove

that ClR(Concs(Ei)) ⊆ Concs(Ei). Suppose that α ∈ ClR(Concs(Ei)). This means

that there exists α1, . . . , αk ∈ Concs(Ei) and that there exists a derivation sequence

F0, . . . , Fn such that F0 = {α1, . . . , αk} and α ∈ Fn. Note that from Proposition

1, we know that {α1, . . . , αk} is R-consistent. Since α1, . . . , αk ∈ Concs(Ei) then

there exist a1, . . . , ak ∈ Ei such that Conc(a1) = α1, . . . , Conc(ak) = αk. Thus,

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✸

there exists an argument a such that Supp(a) = Supp(a1) ∪ . . . ∪ Supp(ak) and

Conc(a) = α. Since Ei is a preferred, a stable or the grounded extension, Theorems 1

and 2 imply that there exists a set of formulae S such that Ei = Arg(S). Consequently,

Ei = Arg(Base(Ei)). From this observation and since Supp(a) ⊆ Base(Ei), we

conclude that a ∈ Ei. Thus, α ∈ Concs(Ei), which ends the proof.
– In the case of grounded semantics, the result holds directly from the first part of the

proposition. The reminder of the proof considers stable or preferred semantics. From

the definition of ClR, Outputx(AFK) ⊆ ClR(Outputx(AFK)). So we only need

to prove that ClR(Outputx(AFK)) ⊆ Outputx(AFK).
Let α ∈ ClR(Outputx(AFK)). Then there exist α1, . . . , αk ∈ Outputx(AFK)
such that there is a derivation sequence F0, . . . , Fn such that F0 = {α1, . . . , αk} and

α ∈ Fn. Since α1, . . . , αk ∈ Outputx(AFK) then for every Ei ∈ Extx(AFK), we

have α1, . . . , αk ∈ Ei. Therefore for every Ei ∈ Extx(AFK), α ∈ ClR(Concs(Ei)).
From the first part of the proof, ClR(Concs(Ei)) = Concs(Ei). Thus, for every Ei ∈
Extx(AFK), α ∈ Concs(Ei). This means that α ∈ Outputx(AFK).

7 Summary and Conclusion

This paper investigates the links between the semantics used in argumentation theory

and those from the inconsistent ontological KB query answering.

Contribution of the paper. First, we show that it is possible to instantiate Dung’s

abstract argumentation theory in a way to deal with inconsistency in an ontological

KB. Second, we formally prove the links between the semantics from ontological KB

query answering and those from argumentation theory: ICR semantics corresponds to

sceptical acceptance under stable or preferred argumentation semantics, AR semantics

corresponds to universal acceptance under stable / preferred argumentation semantics

and IAR semantics corresponds to acceptance under grounded argumentation seman-

tics. Third, we show that the instantiation we define satisfies the rationality postulates.

The fourth contribution of the paper is to make a bridge between the argumentation

community and the knowledge representation community in this context, allowing for

future exchanges.

Applications of our work. The first possible application of our work is to import

some results about semantics and acceptance from argumentation to ontological KB

query answering and vice versa. Second, arguments can be used for explanatory pur-

poses. In other words, we can use arguments and counter arguments to graphically rep-

resent and explain why different points of view are conflicting or not and why certain ar-

gument is (not) in all extensions. However, we suppose that the user understands the no-

tion of logical consequence under first order logic when it comes to consistent data. For

example, we suppose that the user is able to understand that if cat(Tom)∧miaw(Tom)
is present in the set, then queries cat(Tom) and ∃xcat(x) are both true. To sum up, we

suppose that the other methods are used to explain reasoning under consistent knowl-

edge and we use argumentation to explain reasoning under inconsistent knowledge.

Related work. Note that this is the first work studying the link between semantics

used in argumentation (stable, preferred, grounded) and semantics used in inconsis-

tent ontological knowledge base query answering (AR, IAR, ICR). There is not much

related work. However, we review some papers that study similar issues.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✹

For instance, the link between maximal consistent subsets of a knowledge base

and stable extensions of the corresponding argumentation system was shown by Cayrol

[11]. That was the first work showing this type of connection between argument-based

and non argument-based reasoning. This result was generalised [20] by studying the

whole class of argumentation systems corresponding to maximal consistent subsets of

the propositional knowledge base. The link between the ASPIC system [18] and the

Argument Interchange Format (AIF) ontology [13] has recently been studied [7]. An-

other related paper comprises constructing an argumentation framework with ontolog-

ical knowledge allowing two agents to discuss the answer to queries concerning their

knowledge (even if it is inconsistent) without one agent having to copy all of their on-

tology to the other [9]. While those papers are in the area of our paper, none of them is

related to the study of the links between different semantics for inconsistent ontological

KB query answering and different argumentation semantics.s

Future work. We plan to answer different questions, like: Can other semantics

from argumentation theory yield different results? Are those results useful for inconsis-

tent ontological KB query answering? What happens in the case when preferences are

present? What is the link between having preferences on databases and having prefer-

ences on arguments? More generally speaking, we want to examine how the knowledge

representation community could benefit from other results from argumentation theory

and whether the argumentation community could use some open problems in the knowl-

edge representation as inspiration for future work.

References

1. L. Amgoud and P. Besnard. Bridging the gap between abstract argumentation systems and

logic. In International Conference on Scalable Uncertainty Management (SUM’09), pages

12–27, 2009.

2. L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based argumentation

frameworks. Journal of Automated Reasoning, 29 (2):125–169, 2002.

3. J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. JAIR, 16:425–465,

2002.

4. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity lines

for generalized guarded existential rules. In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence, (IJCAI’11), pages 712–717, 2011.

5. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and incon-

sistent knowledge bases. In Proceedings of the 9th Conference on Uncertainty in Artificial

intelligence (UAI’93), pages 411–419, 1993.

6. P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.

7. F. J. Bex, S. J. Modgil, H. Prakken, and C. Reed. On logical specifications of the argument

interchange format. Journal of Logic and Computation, page In Press, 2013.

8. M. Bienvenu. On the complexity of consistent query answering in the presence of simple

ontologies. In Proc of AAAI, 2012.

9. E. Black, A. Hunter, and J. Z. Pan. An argument-based approach to using multiple ontologies.

In Proceedings of the 3rd International Conference on Scalable Uncertainty Management

(SUM’09), pages 68–79. Springer-Verlag, 2009.

10. M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial

Intelligence Journal, 171 (5-6):286–310, 2007.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✺

11. C. Cayrol. On the relation between argumentation and non-monotonic coherence-based en-

tailment. In Proceedings of the 14th International Joint Conference on Artificial Intelligence

(IJCAI’95), pages 1443–1448, 1995.

12. M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and Reasoning—

Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge

Processing. Springer, 2009.

13. C. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South,

G. Vreeswijk, and S. Willmott. Towards an argument interchange format. Knowledge Engi-

neering Review, 21(4):293–316, 2006.

14. J. Dix, S. Parsons, H. Prakken, and G. R. Simari. Research challenges for argumentation.

Computer Science - R&D, 23(1):27–34, 2009.

15. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence Journal, 77:321–

357, 1995.

16. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-

tics for description logics. In Proc. of RR, pages 103–117, 2010.

17. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, 2002.

18. S. J. Modgil and H. Prakken. A general account of argumentation with preferences. Artificial

Intelligence Journal, page In Press, 2013.

19. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web.

Artificial Intelligence, 171(10-15):897–921, 2007.

20. S. Vesic. Maxi-consistent operators in argumentation. In 20th European Conference on

Artificial Intelligence (ECAI’12), pages 810–815, 2012.

21. S. Vesic and L. van der Torre. Beyond maxi-consistent argumentation operators. In 13th

European Conference on Logics in Artificial Intelligence (JELIA’12), pages 424–436, 2012.

lir
m

m
-0

08
12

63
0,

 v
er

si
on

 1
 -

 1
2

A
pr

 2
01

3

✶✸✻

On Conceptual Graphs and Explanation of Query

Answering Under Inconsistency

Abdallah Arioua, Nouredine Tamani, Madalina Croitoru

University of Montpellier II, France
{arioua,tamani,croitoru}@lirmm.fr

Abstract. Conceptual Graphs are a powerful visual knowledge representation
language. In this paper we are interested in the use of Conceptual Graphs in the
setting of Ontology Based Data Access, and, more specifically, in reasoning in the
presence of inconsistency. We present different explanation heuristics of query
answering under inconsistency and show how they can be implemented under the
Conceptual Graphs editor COGUI.

1 Introduction

We place ourselves in a Rule-based Data Access (RBDA) setting that investigates how
to query multiple data sources defined over the same ontology represented using a
rule based language. The RBDA is a specific case of the Ontology Based Data Ac-
cess (OBDA) setting. In RBDA we assume that the ontology is encoded using rules.
The growing number of distinct data sources defined under the same ontology makes
OBDA an important and timely problem to address. The input to the problem is a set of
facts, an ontology and a conjunctive query. We aim to find if there is an answer to the
query in the facts (eventually enriched by the ontology).

More precisely, the RBDA problem stated in reference to the classical forward

chaining scheme is the following: “Can we find an answer to the query Q in a database
F ′ that is built from F by adding atoms that can be logically deduced from F and the
rule based ontology R?”

In certain cases, the integration of factual information from various data sources
may lead to inconsistency. A solution is then to construct maximal (with respect to set
inclusion) consistent subsets of F called repairs [6, 20]. Once the repairs are computed,
there are different ways to combine them in order to obtain an answer for the query.

In this paper we address the RBDA problem from a Conceptual Graphs perspective.
Conceptual Graphs are powerful visual formalism for representing a subset of First
Order Logic covered by the RBDA setting.

We make explicit these links and focus on the case where we want to perform query
answering in presence of inconsistency. We present query answering explanation strate-
gies inspired from the link between the ODBA inconsistent-tolerant semantics and ar-
gumentation acceptance semantics[11]. Our work is inspired by the argumentation ex-
planation power [14, 25, 28].

✶✸✼

2 Related work

There are two major approaches in order to represent an ontology for the OBDA prob-
lem and namely Description Logics (such as EL([2]) and DL-Lite [9] families) and rule
based languages (such as the Datalog+ [8] language, a generalization of Datalog that
allows for existentially quantified variables in the head of the rules). When using rules
for representing the ontology we would denote the OBDA problem under the name
of RBDA. Despite Datalog+ undecidability when answering conjunctive queries, there
exist decidable fragments of Datalog+ which are studied in the literature [5]. These
fragments generalize the above mentioned Description Logics families.

Here we follow the second method: representing the ontology via rules. We give a
general rule based setting knowledge representation language equivalent to the Datalog+

language and show how this language is equivalent to Conceptual Graphs with rules and
negative constraints.

Within this language we are mainly interested in studying the question of "why an
inconsistent KB entails a certain query α under an inconsistency-tolerant semantics".
Indeed, many works focused on the following questions: "Why a concept C is subsumed
(non-subsumed) by D" or "Why the KB is unsatisfiable and incoherent"? The need for
explanation-aware methods stems from the desire to seek a comprehensive means that
facilitates maintenance and repairing of inconsistent knowledge bases as well as un-
derstanding the underlying mechanism for reasoning services. In the field of databases
there has been work on explaining answer and non-answer returned by database systems
[1, 24, 23, 16, 15] using causality and responsibility or using a cooperative architecture
to provide a cooperative answer for query failing.

In the area of DLs, the question was mainly about explaining either reasoning (sub-
sumption and non-subsumption) or unsatisfiability and incoherence. In a seminal paper
McGuinness et al. [22, 7] addressed the problem of explaining subsumption and non-
subsumption in a coherent and satisfiable DL knowledge base using formal proofs as

explanation based on a complete and sound deduction system for a fragment of De-
scription Logics, while other proposals [27, 26, 3, 4] have used Axiom pinpointing and
Concept pinpointing as explanation to highlight contradictions within an unsatisfiable
and incoherent DL KB.

Another proposal [19, 18] is the so-called justification-oriented proofs in which the
authors proposed a proof-like explanation without the need for deduction rules. The
explanation then is presented as an acyclic proof graph that relates axioms and lemmas.
Another work [12] in the same context proposes a resolution-based framework in which
the explanation is constructed from a refutation graph.

3 Logical Language

We consider a (potentially inconsistent) knowledge base composed of the following:

– A set F of facts that correspond to existentially closed conjunctions of atoms. The
atoms can contain n-ary predicates. The following facts are borrowed from [21]:
F1 : directs(John, d1), F2 : directs(Tom, d1), F3 : directs(Tom, d2), F4 :
supervises(Tom, John), F5 : works_in(John, d1), F6 : works_in(Tom, d1).

✶✸✽

– A set of negative constraints which represent the negation of a fact. Alternatively
negative constraints can be seen as rules with the absurd conclusion. Negative
constraints can also be n-ary. For example, N1 = ∀x, y, z (supervises(x, y) ∧
work_in(x, z) ∧ directs(y, z)) → ⊥ and
N2 = ∀x, y supervises(x, y) ∧manager(y) → ⊥ are negative constraints.

– An ontology composed of a set of rules that represent general implicit knowledge
and that can introduce new variables in their head (conclusion). Please note that
these variables, in turn, can trigger new rule application and cause the undecidabil-
ity of the language in the general case. Different rule application strategies (chase),
including the skolemized chase, are studied in the literature. For example
R1 = ∀x∀dworks_in(x, d) → emp(x)
R2 = ∀x∀d directs(x, d) → emp(x)
R3 = ∀x∀d directs(x, d) ∧ works_in(x, d) → manager(x)
R4 = ∀x emp(x) → ∃y(office(y) ∧ uses(x, y))

A rule is applicable to set of facts F if and only if the set entails the hypothesis
of the rule. If rule R is applicable to the set F , the application of R on F produces a
new set of facts obtained from the initial set with additional information from the rule
conclusion. We then say that the new set is an immediate derivation of F by R denoted
by R(F). For example R1(F5) = works_in(John, d1) ∧ emp(John).

Let F be a set of facts and let R be a set of rules. A set Fn is called an R-derivation

of F if there is a sequence of sets (derivation sequence) (F0, F1, . . . , Fn) such that: (i)
F0 ⊆ F , (ii) F0 is R-consistent, (iii) for every i ∈ {1, . . . , n− 1}, it holds that Fi is an
immediate derivation of Fi−1.

Given a set {F0, . . . , Fk} and a set of rules R, the closure of {F0, . . . , Fk} with
respect to R, denoted ClR({F0, . . . , Fk}), is defined as the smallest set (with respect
to ⊆) which contains {F0, . . . , Fk}, and is closed for R-derivation (that is, for every
R-derivation Fn of {F0, . . . , Fk}, we have Fn ⊆ ClR({F0, . . . , Fk})). Finally, we say
that a set F and a set of rules R entail a fact G (and we write F ,R |= G) iff the closure
of the facts by all the rules entails F (i.e. if ClR(F) |= G).

Given a set of facts {F1, . . . , Fk}, and a set of rules R, the set of facts is called R-

inconsistent if and only if there exists a constraint N = ¬F such that ClR({F1, . . . , Fk})
|= F . A set of facts is said to be R-consistent if and only if it is not R-inconsistent.

A knowledge base K = (F ,R,N), composed of a set of facts (denoted by F), a
set of rules (denoted by R) and a set of negative constraints (denoted by N), is said to
be consistent if and only if F is R-consistent. A knowledge base is inconsistent if and
only if it is not consistent.

The above facts {F1, ..., F6} are R-inconsistent with R = {R1, ..., R4} since
{F1, F4, F6} activate together N1. Moreover, R3 can be applied on F1 and F5 deliver-
ing the new fact manager(John) which put together with F4 activate N2.

3.1 Conceptual Graphs Representation

Conceptual Graphs are a visual, logic-based knowledge representation knowledge rep-
resentation formalism. They encode a part of the ontological knowledge in a structure
called support. The support consists of a number of taxonomies of the main concepts

✶✸✾

(unary predicates) and relations (binary or more predicates) used to describe the world.
Note that these taxonomies correspond to certain rules in Datalog. More complex rules
(for instance representing transitivity or symmetry of relations) or rules that introduce
existential variables in the conclusion are represented using Conceptual Graphs rules.
Finally, negative constraints represent rules with the conclusion the absurd operator (or,
logically equivalent, negation of facts).

The factual information is described using a bipartite graph in which the two classes
of the partition are the concepts, and the relations respectively.

We recall the definition of support and fact following [10]. We consider here a sim-
plified version of a support S = (TC , TR, I), where: (TC ,≤) is a finite partially ordered
set of concept types; (TR,≤) is a partially ordered set of relation types, with a specified
arity; I is a set of individual markers. A (simple) CG is a triple CG= [S,G, λ], where:

– S is a support;
– G = (VC , VR, E) is an ordered bipartite graph ; V = VC ∪ VR is the node set of
G, VC is a finite nonempty set of concept nodes, VR is a finite set of relation nodes;
E is the set of edges {vr, vc} where the edges incident to each relation node are
ordered and this ordering is represented by a positive integer label attached to the
edge; if the edge {vr, vc} is labeled i in this ordering then vc is the i-neighbor of
vr and is denoted by N i

G(vr);
– λ : V → S is a labeling function; if v ∈ VC then λ(v) = (typev, refv) where
typev ∈ TC and refv ∈ I ∪ {∗}; if r ∈ VR then λ(r) ∈ TR.

We denote a conceptual graph CG= [S,G, λ] by G, keeping support and labeling
implicit. The order on λ(v) preserves the (pair-wise extended) order on TC (TR), con-
siders I elements mutually incomparable, and ∗ ≥ i for each i ∈ I. Usually, CGs are
provided with a logical semantics via the function Φ, which associates to each CG a
FOL formula (Sowa (1984)). If S is a support, a constant is associated to each individ-
ual marker, a unary predicate to each concept type and a n-ary predicate to each n-ary
relation type. We assume that the name for each constant or predicate is the same as the
corresponding element of the support. The partial orders specified in S are translated
in a set of formulae Φ(S) by the following rules: if t1, t2 ∈ TC such that t1 ≤ t2, then
∀x(t2(x) → t1(x)) is added to Φ(S); if t1, t2 ∈ TR, have arity k and t1 ≤ t2, then
∀x1∀x2 . . . ∀xk(t2(x1, x2, . . . , xk) → t1(x1, x2, . . . , xk)) is added to Φ(S).

If CG= [S,G, λ] is a conceptual graph then a formula Φ(CG) is constructed as fol-
lows. To each concept vertex v ∈ VC a term av and a formula φ(v) are associated:
if λ(v) = (typev, ∗) then av = xv (a logical variable) and if λ(v) = (typev, iv),
then av = iv (a logical constant); in both cases, φ(v) = typev(av). To each rela-
tion vertex r ∈ VR, with λ(r) = typer and degG(r) = k, the formula associated is
φ(r) = typer(aN1

G
(r), . . . , aNk

G
(r)).

Φ(CG) is the existential closure of the conjunction of all formulas associated with
the vertices of the graph. That is, if VC(∗) = {vi1 , . . . , vip} is the set of all concept
vertices having generic markers, then Φ(CG)= ∃v1 . . . ∃vp(∧v∈VC∪VR

φ(v)).
If (G, λG) and (H,λH) are two CGs (defined on the same support S) then G ≥ H

(G subsumes H) if there is a projection from G to H . A projection is a mapping π

✶✹✵

from the vertices set of G to the vertices set of H , which maps concept vertices of G
into concept vertices of H , relation vertices of G into relation vertices of H , preserves
adjacency (if the concept vertex v in V G

C is the ith neighbour of relation vertex r ∈ V G
R

then π(v) is the ith neighbour of π(r)) and furthermore λG(x) ≥ λH(π(x)) for each
vertex x of G. If G ≥ H then Φ(S), Φ(H) |= Φ(G) (soundness). Completeness (if
Φ(S), Φ(H) |= Φ(G) then G ≥ H) only holds if the graph H is in normal form, i.e. if
each individual marker appears at most once in concept node labels.

A CG rule (Hyp,Conc) expresses implicit knowledge of the form “if hypothesis

then conclusion”, where hypothesis and conclusion are both basic graphs. This knowl-
edge can be made explicit by applying the rule to a specific fact: intuitively, when the
hypothesis graph is found in a fact, then the conclusion graph can be added to this fact.
There is a one to one correspondence between some concept nodes in the hypothesis
with concept nodes in the conclusion. Two nodes in correspondence refer to the same
entity. These nodes are said to be connection nodes. A rule can be represented by a
bicolored graph or by a pair of two CGs (represented, for instance, on the right and
respectively left hand side of the screen).

A rule R can be applied to a CG H if there is a homomorphism from its hypothesis
to H . Applying R to H according to such a homomorphism π consists of “attaching”
to H the conclusion of R by merging each connection node in the conclusion with the
image by π of the corresponding connection node in the hypothesis. When a knowledge
base contains a set of facts (say F) and a set of rules (say R), the query mechanism has
to take implicit knowledge coded in rules into account. The knowledge base answers a
query Q if a CG F ′ can be derived from F using the rules of R such that Q maps to F ′.

We note that using the (F ,R,N) Datalog+ notation or the rule based Conceptual
Graphs with negative constraints has the same logical expressivity. However, the added
value of using Conceptual Graphs comes from the visual depiction of the knowledge.
This aspect is shown next, where the previous example knowledge base is depicted
using COGUI, a Conceptual Graphs editor developed by the LIRMM, University of
Montpellier 2.

3.2 COGUI CG Editor

All figures depict graphs drawn using the conceptual graph editor Cogui 1. CoGui is a
Conceptual Graphs editor. Please note that Cogui is also fully integrated with the con-
ceptual graph engine Cogitant 2 to perform reasoning on the above mentioned graphs.

Let us consider again the knowledge base previously considered:

– F : F1 : directs(John, d1), F2 : directs(Tom, d1), F3 : directs(Tom, d2), F4 :
supervises(Tom, John), F5 : works_in(John, d1), F6 : works_in(Tom, d1).

– N1 = ∀x, y, z (supervises(x, y) ∧ work_in(x, z) ∧ directs(y, z)) → ⊥ and
N2 = ∀x, y supervises(x, y) ∧manager(y) → ⊥.

– The set of rules: R1 = ∀x∀dworks_in(x, d) → emp(x)
R2 = ∀x∀d directs(x, d) → emp(x)

1 http://www.lirmm.fr/cogui/
2 http://cogitant.sourceforge.net/

✶✹✶

Fig. 1: Visualisation of a support (vocabulary) using CoGui

Fig. 2: Visualisation of two rules using CoGui

R3 = ∀x∀d directs(x, d) ∧ works_in(x, d) → manager(x)

R4 = ∀x emp(x) → ∃y(office(y) ∧ uses(x, y))

Figure 1 presents the concept type hierarchy, the relation type hierarchy and the list
of individuals. Please note that the rule hierarchy encodes the rules R1 and R2.

Rules R3 and R4 respectively are depicted in Figure 2. The negative constraints N1

and N2 are depicted in Figure 3.
Finally, the set of facts is represented in Figure 4.

✶✹✷

Fig. 3: Visualisation of negative constraints using CoGui

Fig. 4: Visualisation of factual knowledge using CoGui

4 Dealing with inconsistency

We recall the definition of inconsistency. Given a set of facts {F1, . . . , Fk}, and a set of
rules R, the set of facts is called R-inconsistent if and only if there exists a constraint
N = ¬F such that ClR({F1, . . . , Fk}) |= F .

In Figure 5 we can see that there is a negative constraint entailed by the facts en-
riched by the rules. The image of the negative constraint by homomorphism is repre-
sented in red (if color is available) or darker shade of grey (greyscale).

Like in classical logic everything can be entailed from an inconsistent knowledge
base. Different semantics have been introduced in order to allow query answering in
the presence of inconsistency. Here we only focus on the ICR (Intersection of Closed
Repair) semantics defined as follows:

✶✹✸

Fig. 5: Visualisation of factual knowledge using CoGui

Definition 1. Let K = (F ,R,N) be a knowledge base and let α be a query. Then α is

ICR-entailed from K, written K |=ICR α if and only if
⋂

A′∈Repair(K) ClR(A′) |= α.

In the above example, we obtain 6 repairs. The following are one of them (closed
under set of rules):

A1 = {directs(John, d1), directs(Tom, d1), directs(Tom, d2),
supervises(Tom, John), emp(John), emp(Tom), ∃y1(office(y1)∧uses(Tom, y1)),
∃y2(office(y2) ∧ uses(John, y2))}
The intersection of the closed repairs is:

⋂

ClR(A) = {directs(Tom, d1), directs(Tom, d2), emp(Tom),

∃y uses(Tom, y), ∃yoffice(y)}.
Another possibility to deal with an inconsistent knowledge base in the OBDA set-

ting is to define an instantiation [11] of Dung’s abstract argumentation theory [13].
An argumentation framework is composed of a set of arguments and a binary relation
defined over arguments, the attack.

Definition 2 (Argument). [11] An argument A in a knowledge base K = (F ,R,N)
is a tuple A = (F0, . . . , Fn) where:

• (F0, . . . , Fn−1) is a derivation sequence w.r.t K.

• Fn is an atom, a conjunction of atoms, the existential closure of an atom or the

existential closure of a conjunction of atoms such that Fn−1 |= Fn.

We can extract from each argument its sub-arguments.

Definition 3 (Sub-argument). Let K = (F ,R,N) be a knowledge base and A =
(F0, F1, . . . , Fn) be an argument. A′ = (F0, . . . , Fk) with k ∈ {0, ..., n − 1} is a

sub-argument of A iff (i) A′ = (F0, . . . , Fk) is an argument and (ii) Fk ∈ Fk+1.

Let A = (F0, ..., Fn) be an argument, then Supp(A) = F0 and Conc(A) = Fn.
Let S ⊆ F a set of facts, Arg(S) is defined as the set of all arguments A such that
Supp(A) ⊆ S.

✶✹✹

An argument corresponds to a rule derivation. Therefore we can use the Cogui ed-
itor in order to depict arguments (via the depiction of rule derivations). In Figure 6 an
example of a derivation is depicted. The added information by the rule is visible due to
the changed color (pink in color, darker shade of grey on grey scale).

Fig. 6: Visualisation of a rule derivation using CoGui

Definition 4 (Attack). [11] Let K = (F ,R,N) be a knowledge base and let a, b ∈ A.

The argument a attacks b, denoted by (a, b) ∈ Att, iff there exists ϕ ∈ Supp(b) such

that the set {Conc(a), ϕ} is R-inconsistent.

Definition 5 (Argumentation framework). [11] Let K = (F ,R,N) be a knowledge

base, the corresponding argumentation framework AFK is a pair (A = Arg(F), Att)
where A is the set of arguments that can be built from F and Att is the attack relation.

Let E ⊆ A and a ∈ A.

• We say that E is conflict free iff there exists no arguments a, b ∈ E such that

(a, b) ∈ Att.

• E defends a iff for every argument b ∈ A, if we have (b, a) ∈ Att then there exists

c ∈ E such that (c, b) ∈ Att.

• E is admissible iff it is conflict free and defends all its arguments.

• E is a preferred extension iff it is maximal (with respect to set inclusion) admissible

set.

• E is a stable extension iff it is conflict-free and ∀a ∈ A\E , there exists an argument

b ∈ E such that (b, a) ∈ Att.

• E is a grounded extension iff E is a minimal (for set inclusion) complete extension.

We denote by Ext(AFK) the set of extensions of AFK . We use the abbreviations

p, s, and g for respectively preferred, stable and grounded semantics. An argument is

skeptically accepted if it is in all extensions, credulously accepted if it is in at least one

extension and rejected if it is not in any extension.

The following results are then showed by [11]:

✶✹✺

Theorem 1. [11] Let K = (F ,R,N) be a knowledge base, let AFK be the corre-

sponding argumentation framework, α be a query, and x ∈ {s, p} be stable or preferred

semantics. Then K |=ICR α iff α sceptically accepted under semantics x.

5 Argumentative Explanation

In this section we define two different heuristics for explanation of inconsistency tol-
erant semantics. Since these heuristics work under inconsistent knowledge bases the
Cogui editor is not yet adapted to implement them. We note that explanations corre-
spond to the notion of argument, thus, the Cogui visual power could be easily adapted
for our case. Moreover, in section 5.1 we show the equivalence between one type of
explanation and a visual rule depiction in Cogui. This could be a starting point for the
explanation of queries under inconsistency using Cogui.

When handling inconsistent ontological knowledge bases we are interested in the
explanation of query answers conforming to a given semantics. More precisely we are
interested in explaining why a query α is ICR-entailed by an inconsistent knowledge
base K. By explanation we mean a structure that has to incorporate minimal set of
facts (w.r.t ⊆) and general rules that, if put together, will lead to the entailment of the
query α. According to this intuition (which coincides with the definition of [17]) and
the link between inconsistent ontological knowledge bases and logic-based argumenta-
tion framework, a first candidate of explanation is an argument. However, an argument
as defined in definition 2 can be cumbersome and difficult to understand, because the
information of how these derivations have been achieved and how they lead to the con-
clusion are missing. Therefore we propose a refined explanation that incorporates rules
as a crucial component.

Definition 6 (Explanation). Let K = (F ,R,N) be an inconsistent knowledge base,

let α be query and let K �ICR α. An explanation for α in K is a 3-tuple E = (A,G,C)
composed of three finite sets of formulae such that: (1) A ⊆ F , G ⊆ R, (2) C � α, (3)

ClG(A) 2⊥ (consistency), (4) For every formula β in A, ClG(A−β) 2 C (minimality).

Such that ClG represents the closure w.r.t to the set of rules G.

We denote by EXP the universe of explanations and by EXPα the set of all ex-
planations for α. We denote the sets A, G and C as antecedents, general laws and
conclusions respectively. Here the definition specifies three important components for
explaining query α. First, the set A of antecedent conditions which is a minimal sub-
set of facts that entails the query α. Second, the set of general laws G (from now on,
rules) that produce the query α, the reason for integrating rules is that the user is of-
ten interested in knowing how we achieved the query. Finally, the third component is
the conclusion C (the answer for the query α). The definition also imposes a central
concept, namely explanation consistency.

An explanation can be computed directly from K or from an argumentation frame-
work using the following mapping A.

Definition 7 (Mapping A). Given an inconsistent knowledge base K = (F ,R,N) and

AFK = (A, Att) the corresponding argumentative framework. The mapping A is a

total function defined on A −→ EXP as E = A((F0, ..., Fn)) with:

✶✹✻

– The set of antecedent conditions A = F0,

– The set of rules G ⊆ R, such that ∀r ∈ R, r ∈ G iff for all Fi in x the rule r is

applicable to Fi.

– The conclusion C = Fn iff ClG(A) � Fn.

Proposition 1 (Bijection of A). For any argument a ∈ A, the mapping A is a bijection.

The proposition follows from the definition of the mapping because for every argu-
ment we can construct one explanation. Since the mapping is a bijection, we call the
argument xe = A−1(e) the corresponding argument of an explanation e. We say the
argument xe supports the explanation e. The following proposition states that there is
always an explanation for an ICR-entailed query.

Proposition 2 (Existence of explanation). For every query α such that K �ICR α, the

set EXPα is not empty.

Proof 1 On the one hand, if K �ICR α then the query α is sceptically accepted.

That means ∀E ∈ Ext(AFK), E � α. Hence there is an argument a ∈ E such that

Cons(a) � α. On the other hand, using the mapping A we have e = A(a) is an expla-

nation for α, namely e ∈ EXPα. Consequently EXPα 6= ∅

Example 1 (Corresponding Argument). Let us explain α = ∃x emp(x). We can build
the following argument for α:

a+α = ({works_in(Tom, d1)}, {works_in(Tom, d1), emp(Tom)}, emp(Tom)),
and the delivered explanation is:

Eα = ({directs(Tom, d1)}, {∀x∀dworks_in(x, d) → emp(x)}, emp(Tom)).

There could be cases where the user wants to know how the set of rules and facts

interact in order to explain a query α. Put differently, a user-invoked explanation that
makes explicit any relation between the facts and the rules which lead to α. Notice that,
this type of user-invoked explanation is called deepened explanation and it should not
confounded with a proof-like explanation, because we are considering an inconsistent
and incomplete settings. For this reason the explanation below has not yet been imple-
mented as a stand alone plugin for Cogui (Cogui only deals with querying consistent
knowledge).

5.1 Deepened Explanation (d-explanation)

Definition 8 (d-explanation). Let K = (F ,R,N) be an inconsistent knowledge base,

let α be a query and let K �ICR α. Then, the finite sequence of tuples d = 〈t1, t2, ..., tn〉
is a d-explanation for α iff:

1. For every tuple ti = (ai, ri) ∈ d such that i ∈ {1, ..., n}, it holds that ai ⊆ ClR(F)
and ri ∈ R.

2. For every tuple ti = (ai, ri) ∈ d such that i ∈ {2, ..., n} we have ai = a′i ∪ a′′i
where (i) ri−1(ai−1) � a′i, (ii) a′′i ⊆ ClR(F) and (iii) ri is applicable to ai. Note

that if i = 1 then a′i = ∅.

3. The tuple (an, rn) entails α (i.e rn(an) � α).

✶✹✼

4. ClR(∪n
i=0ai) 2⊥ (consistency).

We denote by D the universe of d-explanations and by Dα the set of all d-explanations
for a query α.

The intuition about the d-explanation d is as follows: tuples in d represent
〈fact, applicable rule〉, and the sequence of tuples represents the order by which we
achieve the answer of the query. Think of it as a chain where each ai has a link with the
previous ai−1 through the rule ri−1. This is similar to the notion of derivation depicted
in Figure 6.

Example 2 (Deepened explanation). The deepened explanation associated to α is the
same as E and doesn’t provide more information. Let us consider the explanation of
α2 = ∃x office(x). A possible argument for α2 is:

a+α2
= ({works_in(Tom, d1)}, {works_in(Tom, d1), emp(Tom)},

{works_in(Tom, d1), emp(Tom), ∃y(office(y) ∧ uses(Tom, y))},
∃y(office(y) ∧ uses(Tom, y))).

So Eα2 = ({works_in(Tom, d1)}, {∀x∀d directs(x, d) → emp(x), ∀x emp(x) →
∃y(office(y) ∧ uses(x, y))}, ∃yoffice(y)).

DE = (〈works_in(Tom, d1), ∀x∀d directs(x, d) → emp(x)〉,
〈emp(Tom), ∀x emp(x) → ∃y(office(y) ∧ uses(x, y))〉).

There is a bijection between an explanation e and a d-explanation d represented
here by the following mapping.

Definition 9 (Mapping D). Let K = (F ,R,N) be an inconsistent knowledge base, α

be a query, e = (A,G,C) ∈ EXP be an explanation for α and d = 〈t1, t2, ..., tn〉 ∈ D
be a d-explanation for α. The mapping D is total function D : EXP −→ D, e −→ d

defined as follows:
1. For every tuple ti = (ai, ri) such that i ∈ {1, ..., n}, it holds that ri ∈ G.

2. For every tuple ti = (ai, ri) in D such that i ∈ {2, ..., n} we have ai = a′i ∪ a′′i
where ri−1(ai−1) � a′i, a

′′
i ⊆ A and ri is applicable to ai. Note that if i = 1 then

ai = A and ei is applicable to ai.
3. The tuple (an, rn) entails α (i.e rn(an) � α) and C � α.

Since the mapping is a bijection the existence of the inverse function is guaran-
teed. Thereby we consider the mapping D(e) as deepening the explanation e and the
inverse mapping D−1(d) as simplifying the d-explanation d. The advantage of such a
mapping is that it gives the users the freedom to shift from an explanation to another
which complies better with their level of understanding and their experiences. Also it
guarantees that every explanation can be deepened. As done before, we also define the
corresponding argument xd for a d-explanation d, as the corresponding argument xe

for an explanation e = D−1(d). This can be achieved by the following composition of
function: xd = (D ◦ A)−1(d).

6 Conclusion

In this paper we have presented an argumentative approach for explaining user query
answers in a particular setting, Namely, an inconsistent ontological knowledge base

✶✹✽

where inconsistency is handled by inconsistency-tolerant semantics (ICR) and it is is-
sued from the set of facts. In this paper we have exploited the relation between on-
tological knowledge base and logical argumentation framework to establish different
levels of explanation ranging from an explanation based on the notion of argument to
a user-invoked explanation called deepened explanation. We have also shown the rela-
tion between every type of explanation using a one-to-one correspondence which gives
the user the possibility to deepen (or simplify) the explanation in hand. Future works
aims at studying the proposed explanation in the context of other inconsistency-tolerant
semantics. We are currently working on a Cogui based plug-in that only deals with
reasoning under inconsistency and the above mentioned semantics.

7 Acknowledgments

A. Arioua and M. Croitoru have been supported by the French National Agency of
Research within Dur-Dur project.

References

1. T. Arora, R. Ramakrishnan, W. Roth, P. Seshadri, and D. Srivastava. Explaining program
execution in deductive systems. In S. Ceri, K. Tanaka, and S. Tsur, editors, Deductive and

Object-Oriented Databases, volume 760 of Lecture Notes in Computer Science, pages 101–
119. Springer Berlin Heidelberg, 1993.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope. In Proc. of IJCAI 2005, 2005.
3. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic el. In

J. Hertzberg, M. Beetz, and R. Englert, editors, KI 2007: Advances in Artificial Intelligence,
volume 4667 of Lecture Notes in Computer Science, pages 52–67. Springer Berlin Heidel-
berg, 2007.

4. F. Baader and B. Suntisrivaraporn. Debugging snomed ct using axiom pinpointing in the
description logic el+. In KR-MED, volume 410, 2008.

5. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity lines
for generalized guarded existential rules. In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence, (IJCAI’11), pages 712–717, 2011.
6. M. Bienvenu. On the complexity of consistent query answering in the presence of simple

ontologies. In Proc of AAAI, 2012.
7. A. Borgida, E. Franconi, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider. Ex-

plaining ALC subsumption. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. F.
Patel-Schneider, editors, Proceedings of the 1999 International Workshop on Description

Logics 1999, volume 22, Linköping, Sweden, July 1999.
8. A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable

query answering over ontologies. In Proceedings of the Twenty-Eigth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, pages 77–86. ACM, 2009.
9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

10. M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and Reasoning—

Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge
Processing. Springer, 2009.

✶✹✾

11. M. Croitoru and S. Vesic. What can argumentation do for inconsistent ontology query an-
swering? In W. Liu, V. Subrahmanian, and J. Wijsen, editors, Scalable Uncertainty Man-

agement, volume 8078 of Lecture Notes in Computer Science, pages 15–29. Springer Berlin
Heidelberg, 2013.

12. X. Deng, V. Haarslev, and N. Shiri. A framework for explaining reasoning in description
logics. In IN: PROCEEDINGS OF THE AAAI FALL SYMPOSIUM ON EXPLANATION-

AWARE COMPUTING, pages 189–204. AAAI Press, 2005.
13. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-persons games. Artificial Intelligence, 77(2):321–357,
1995.

14. A. Garcıa, C. I. Chesnevar, N. D. Rotstein, and G. R. Simari. An abstract presentation of
dialectical explanations in defeasible argumentation. ArgNMR07, pages 17–32, 2007.

15. P. Godfrey. Minimization in cooperative response to failing database queries. International

Journal of Cooperative Information Systems, 06(02):95–149, 1997.
16. P. Godfrey, J. Minker, and L. Novik. An architecture for a cooperative database system. In

W. Litwin and T. Risch, editors, Applications of Databases, volume 819 of Lecture Notes in

Computer Science, pages 3–24. Springer Berlin Heidelberg, 1994.
17. C. G. Hempel and P. Oppenheim. Studies in the logic of explanation. Philosophy of Science,

15(2):pp. 135–175, 1948.
18. M. Horridge, B. Parsia, and U. Sattler. Explaining inconsistencies in owl ontologies. In

L. Godo and A. Pugliese, editors, Scalable Uncertainty Management, volume 5785 of Lec-

ture Notes in Computer Science, pages 124–137. Springer Berlin Heidelberg, 2009.
19. M. Horridge, B. Parsia, and U. Sattler. Justification oriented proofs in owl. In Proceedings

of the 9th International Semantic Web Conference on The Semantic Web - Volume Part I,
ISWC’10, pages 354–369, Berlin, Heidelberg, 2010. Springer-Verlag.

20. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-
tics for description logics. In Proc. of RR, pages 103–117, 2010.

21. T. Lukasiewicz, M. V. Martinez, G. I. Simari, et al. Inconsistency handling in datalog+/-
ontologies. In ECAI, pages 558–563, 2012.

22. D. L. McGuinness and A. T. Borgida. Explaining subsumption in description logics. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume

1, IJCAI’95, pages 816–821, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc.

23. A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore, and D. Suciu. Causality in
databases. IEEE Data Eng. Bull., 33(3):59–67, 2010.

24. A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. Why so ? or why no ? functional
causality for explaining query answers. In Proceedings of the Fourth International VLDB

workshop on Management of Uncertain Data (MUD 2010) in conjunction with VLDB 2010,

Singapore, September 13, 2010, 2010.
25. S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumentation

frameworks. In Argumentation in artificial intelligence, pages 105–129. Springer, 2009.
26. S. Schlobach. Debugging and semantic clarification by pinpointing. In Proceedings of the

Second European Conference on The Semantic Web: Research and Applications, ESWC’05,
pages 226–240, Berlin, Heidelberg, 2005. Springer-Verlag.

27. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of de-
scription logic terminologies. In Proceedings of the 18th International Joint Conference on

Artificial Intelligence, IJCAI’03, pages 355–360, San Francisco, CA, USA, 2003. Morgan
Kaufmann Publishers Inc.

28. D. Seselja and C. Strasser. Abstract argumentation and explanation applied to scientific
debates. Synthese, 190(12):2195–2217, 2013.

✶✺✵

❈❤❛♣t❡r ✻

❆♣♣❧✐❝❛t✐♦♥ P❛♣❡rs

✶✺✶

Conflicting Viewpoint Relational Database Querying: an
Argumentation Approach

(Extended Abstract)

Nouredine Tamani
INRIA/LIRMM GraphiK

161 rue Ada
Montpellier, France
tamani@lirmm.fr

Madalina Croitoru
LIRMM Graphik UM2

161 rue Ada
Montpellier, France

croitoru@lirmm.fr

Patrice Buche
UMR IATE INRA

2 place Pierre Viala
Montpellier, France

buche@supagro.inra.fr

ABSTRACT

Within the framework of the European project EcoBioCap,
we model a real world use case aiming at conceiving the
next generation of food packagings. The objective is to se-
lect packaging materials according to possibly conflicting
requirements expressed by the involved parties (food and
packaging industries, health authorities, consumers, waste
management authority, etc.). The requirements and user
preferences are modeled by several ontological rules provided
by the stakeholders expressing their viewpoints and exper-
tise. Since several aspects need to be considered (CO2 and
O2 permeance, interaction with the product, sanitary, cost,
end of life, etc.) in order to select objects, an argumenta-
tion process can be used to express/reason about different
aspects or criteria describing the packagings. We define then
in this paper an argumentation approach which combines a
description logic (DLR-Lite) within ASPIC framework for
relational database querying. The argumentation step is fi-
nally used to express and/or enrich a bipolar query employed
for packaging selection.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architecture

Keywords

Argumentation; decision support system; description logics
and DLR-Lite; application within the EcoBioCap project.

1. INTRODUCTION
Within the framework of the European project EcoBio-

Cap (www.ecobiocap.eu) about the design of next genera-
tion packagings using advanced composite structures based
on constituents derived from the food industry, we aim at
developing a Decision Support System (DSS) for packaging
material selection. The DSS will consist of two steps: (1)
aggregating possibly conflicting needs expressed by several
parties involved in the considered field and (2) querying a
database of packagings with the resulting aggregation ob-
tained at point (1). The problem at hand does not simply

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

consist in addressing a multi-criteria optimization problem
[4]: the domain experts would need to be able to justify why
a certain packaging (or set of possible packagings) are cho-
sen. Argumentation theory in general [8, 3, 11] is actively
pursued in the literature, some approaches even combining
argumentation and multi criteria decision making [2].

We rely in this work on a logical structured argumenta-
tion system [1, 10, 9] since it (i) allows the expression of
logical arguments as a combination of facts and inference
rules, (ii) defines attacks and defeat relations between ar-
guments based on a logical conflict notion. Stakeholder’s
set of arguments i is then modeled as concepts, facts and
rules to build a partial knowledge bases KIi . The union
of every stakeholder knowledge base K =

⋃

i=1,...,nKIi will

be used to instantiate the ASPIC [1] argumentation system.
The solution developed in this paper is to instantiate for
each criterion, called viewpoint or aspect, an argumentation
system to reason about arguments solely expressed on it.
This will then be used to generate the query on the pack-
aging database. The main contribution of this paper is to
demonstrate the use of argumentation in a real world indus-
trial scenario within the EcoBioCap project. To this aim
we show how to instantiate ASPIC with the DLR-Lite logic
modeling expert ontologies in this real world scenario.

2. CONTRIBUTIONS
The main contributions of the paper are the following:

1. A DLR-Lite [7, 5] ontology extended to a negation to
express stakeholders’ arguments about packaging char-
acteristics as combination of concepts (defined as m-
ary relations connected to a database) and inference
rules (specified as subsumptions). The language is de-
tailed in the technical report [12],

2. An instantiation of ASPIC argumentation system AS

with the proposed DLR-Lite logical language. The in-
stantiated ASPIC AS satisfies the rationality postu-
lates [6], please see details in [12],

3. The study of the influence of the modeling rules on
the argumentation results. We showed the limitation
of the crisp split of the inference rules into defeasible
and strict, and we propose to overcome this limitation
a viewpoint approach in which arguments are gathered
according to packaging aspects. Each viewpoint deliv-
ers subsets of non-conflicting arguments supporting or

1553

✶✺✷

Figure 1: The user interface of the system.

opposing a kind of packaging according to a single as-
pect (respiration parameters, cost, materials, sanitary,
end elf life, etc.),

4. The use of the argumentation results for a bipolar
querying of the packaging database. Indeed, we can
gather the results onto positive and negative collec-
tions. We can then deduce automatically such queries
from the collections the users formed during the argu-
mentation process. We can also carry out an analogical
reasoning by generalizing results obtained from an ar-
gumentation process applied upon instances, where an
instance of the sought objects can help to better un-
derstand the involved stakeholders’ needs and then to
be able to express, based on arguments pros and cons,
a query reflecting the way objects should be selected
from a database,

5. Implementation of the approach within the EcoBio-
Cap project (www.ecobiocap.eu). A java GXT/GWT
web interface was developed and a open version is ac-
cessible on pfl.grignon.inra.fr/EcoBioCapProduction/.
The main difficulties encountered were the translation
of text arguments into DLR-Lite formal representa-
tion. In the freely available version, stakeholders’ argu-
ments are provided as a manually built XML file speci-
fying viewpoints and rules. The system generates then
arguments and attacks and computes the extensions
(stable, preferred, admissible, grounded, naive, etc.
semantics) inside each view. Figure 1 shows the main
interface of the application and a fragment of rules for-
malizing an argumentation scenario about the aspect
end of life of packagings. Stakeholders argued about
biodegradability, recyclability and compostability (the
test XML file is accessible on https://docs.google.com/
file/d/0B0DPgJDRNwbLR2RjWWhwMjgwVEU/edit?
usp=sharing).

3. CONCLUSION
We applied in this paper an argumentation approach on

a real use case from the industry, based on a combination
of ASPIC AS with a DLR-Lite specifications allowing stake-
holders to express their preferences and providing the system
with concepts and subsumptions in the packaging domain.

We have proposed an argumentation system in which each
criterion is considered as a viewpoint in which stakeholders
express their arguments in homogenous way. The set of non
conflicting viewpoints are then gathered according goals, to
form consistent collections which support/oppose them.
We plan to extend the proposed approach to fuzzy argu-

mentation to make it possible to deal with vague and uncer-
tain concepts and rules by exploiting the fuzzy interpretation
of the fuzzy DLR-Lite. Another line to develop consists of
studying the bipolarity in our context of argumentation.

4. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Community’s seventh Framework Pro-
gram (FP7/ 2007-2013) under the grant agreement noFP7-
265669-EcoBioCAP project. The authors would like to thank
Pr. Leila Amgoud (IRIT Toulouse, CNRS) for her valuable
comments and feedback.

5. REFERENCES
[1] L. Amgoud, L. Bodenstaff, M. Caminada,

P. McBurney, S. Parsons, H. Prakken, J. Veenen, and
G. Vreeswijk. Final review and report on formal
argumentation system.deliverable d2.6 aspic.
Technical report, 2006.

[2] L. Amgoud and H. Prade. Using arguments for
making and explaining decisions. Artificial
Intelligence, 173(3-4):413–436, 2009.

[3] P. Besnard and A. Hunter. Elements of
Argumentation. The MIT Press, 2008.

[4] D. Bouyssou, D. Dubois, M. Pirlot, and H. Prade.
Decision-making process – Concepts and Methods.
Wiley, 2009.

[5] D. Calvanese, G. D. Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Data complexity of query
answering in description logics. In KR, pages 260–270,
2006.

[6] M. Caminada and L. Amgoud. On the evaluation of
argumentation formalisms. Artificial Intelligence,
171:286–310, 2007.

[7] S. Colucci, T. D. Noia, A. Ragone, M. Ruta,
U. Straccia, and E. Tinelli. Semantic Web Information
Management, chapter 19 : Informative Top-k retrieval
for advanced skill management, pages 449–476.
Springer-Verlag Belin Heidelberg, 2010.

[8] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-persons games. Artificial
Intelligence, 77(2):321–357, 1995.

[9] S. Modgil and H. Prakken. A general account of
argumentation with preferences. Artificial Intelligence,
195:361–397, 2013.

[10] H. Prakken. An abstract framework for argumentation
with structured arguments. Argument and
Computation, 1(2):93–124, 2011.

[11] I. Rahwan and G. Simari. Argumentation in Artificial
Intelligence. Springer, 2009.

[12] N. Tamani, M. Croitoru, and P. Buche. A viewpoint
approach to structured argumentation.
https://docs.google.com/file/d/0B0DPgJDRNwbLRml
qUVh4cGFrSVk/edit?usp=sharing. Technical report,
INRA-SupAgro, 2013.

1554

✶✺✸

Eco-Efficient Packaging Material Selection for

Fresh Produce: Industrial Session

Nouredine Tamani1, Patricio Mosse2, Madalina Croitoru1, Patrice Buche2,
Valérie Guillard2, Carole Guillaume2, Nathalie Gontard2

1LIRMM, University Montpellier 2, France
2UMR IATE INRA 2 place Pierre Viala Montpellier, France

Abstract. Within the framework of the European project EcoBioCap
(ECOefficient BIOdegradable Composite Advanced Packaging), we model
a real world use case aiming at conceiving the next generation of food
packagings. The objective is to select packaging materials according to
possibly conflicting requirements expressed by the involved parties (food
and packaging industries, health authorities, consumers, waste manage-
ment authority, etc.). The requirements and user preferences are modeled
by several ontological rules provided by the stakeholders expressing their
viewpoints and expertise. To deal with these several aspects (CO2 and O2

permeance, interaction with the product, sanitary, cost, end of life, etc.)
for packaging selection, an argumentation process has been introduced.

1 Introduction

Within the framework of the European project EcoBioCap (www.ecobiocap.eu)
about the design of next generation packagings using advanced composite struc-
tures based on constituents derived from the food industry, we aim at developing
a Decision Support System (DSS) to help parties involved in the packaging de-
sign to make rational decisions based on knowledge expressed by the experts of
the domain.

The DSS is made of two parts, as depicted in Figure 1:

1. a flexible querying process which is based on a bipolar approach dealing with
imprecise data [8] corresponding to the characteristics related to the food
product to pack like the optimal permeance, the dimension of the packaging,
its shape, etc.,

2. an argumentation process which aims at aggregating several stakeholders
(researchers, consumers, food industry, packaging industry, waste manage-
ment policy, etc.) requirements expressed as simple textual arguments, to
enrich the querying process by stakeholders’ justified preferences. Each ar-
gument supports/opposes a choice justified by the fact that it either meets
or not a requirement according to a particular aspect of the packagings.

We implementated of the second part of the DSS, called argumentation sys-
tem, which aims at aggregating preferences associated with justifications ex-
pressed by stakeholders about the characteristics of a packaging. This module

✶✺✹

Fig. 1. Global insight of the EcoBioCap DSS.

has as inputs stakeholders’ arguments supporting or opposing a packaging choice
which could be seen as preferences combined with their justifications, and returns
consensual preferences which may be candidates to enrich the bipolar querying
system.

The DSS consists of two steps: (i) aggregating possibly conflicting needs
expressed by the involved several parties (ii) querying a database of packagings
with the resulting aggregation obtained at point (i).

In this real case, packagings have to be selected according to several aspects
or criteria (permeance, interaction with the packed food, end of life, etc.), high-
lighted by the expressed stakeholders’ arguments. The problem at hand does not
simply consist in addressing a multi-criteria optimization problem [4]: the do-
main experts would need to be able to justify why a certain packaging (or set of
possible packagings) are chosen. Argumentation theory in general [9, 3, 11] is ac-
tively pursued in the literature, some approaches even combining argumentation
and multi criteria decision making [2].

2 Approach

Stakeholder’s set of arguments i is then modeled as concepts, facts and rules to
build a partial knowledge bases KIi

. The union of every stakeholder knowledge
base K =

⋃

i=1,...,n KIi
will be used to instantiate the ASPIC [1] argumentation

system, as shown on Figure 2.
The main salient points of our work in the EcoBioCap project are the fol-

lowing:

1. A DLR-Lite [7, 5] ontology extended to a negation to express stakehold-
ers’ arguments about packaging characteristics as combination of concepts

✶✺✺

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Stakeholder1!

Text!

Arguments!

Concepts,!facts,!

rules!

Concepts,!facts,!

rules!
Concepts,!

facts,!rules!

…!

n!knowledge!bases!which!can!lead!to!conflics!

…!

…!

Stakeholder2! Stakeholdern!

Text!

Arguments!

Text!

Arguments!

Arg3!

Arg2!
Arg1!

Argument!modeling!

Fig. 2. The global knowledge base of the system.

(defined as m-ary relations connected to a database) and inference rules
(specified as subsumptions). The language is detailed in the technical report
[12],

2. An instantiation of ASPIC argumentation system (AS) with the proposed
DLR-Lite logical language. The instantiated ASPIC AS satisfies the ratio-
nality postulates [6], please see details in [12],

3. The study of the influence of the modeling rules on the argumentation re-
sults. We showed the limitation of the crisp split of the inference rules into
defeasible and strict, and we propose to overcome this limitation a viewpoint
approach in which arguments are gathered according to packaging aspects.
Each viewpoint delivers subsets of non-conflicting arguments supporting or
opposing a kind of packaging according to a single aspect (shelf life param-
eters, cost, materials, sanitary, end elf life, etc.),

4. The use of the argumentation results for a bipolar querying of the packaging
database. Indeed, we can gather the results onto positive and negative col-
lections. We can then deduce automatically such queries from the collections
the users formed during the argumentation process.

5. Implementation of the approach. A java GXT/GWT web interface was de-
veloped and a open version is accessible on
http://pfl.grignon.inra.fr/EcoBioCapProduction/.

✶✺✻

3 Architecture of the argumentation system

As illustrated in Figure 3, the proposed argumentation system relies on 5 main
modules, described below.!

Argument)

Formalization))

Logical)

arguments)

Conflicts)and)

attacks)

Extensions))

(Non;conflicting)

arguments))

Ju
stifie

d
)P
re
fe
re
n
ce
)e
x
tra

ctio
n
))

Rules)

DB)

Text)

arguments)

Justified)

preferences)

XML)file)

Fig. 3. The architecture of the argumentation system.

– Argument formalization module: this module implements a user-friendly in-
terface for a semi-automatic translation of text arguments into a formal rep-
resentation made of concepts and rules (claims and hypothesis). A graphical
representation of the expressed rules is also built as the users formalize their
text arguments. The formal representation obtained is finally saved in a
database for a persistent storage allowing to reload argumentation projects
without rebuilding all the arguments and to reuse also the already formatted
rules in other projects.

– Logical arguments: this module receives as inputs the list of concepts and
rules corresponding to text arguments. This list can be the result of the for-
malization module or given by the user as an XML file. Then, by a derivation
process, this module builds all possible arguments according to the logical
process defined in ASPIC/ASPIC+ logic-based argumentation frameworks
[1, 10] and reused in [13, 14]. This modules implements also a function to
export the argument list into an XML document.

– Conflicts and attacks : this module relies on the logical arguments built by
the previous module. According to the negation operator, it detects all the
conflicts among arguments and models them as attacks with respect to the
definition of attacks introduced in [13, 14]. The output of this module is an
argumentation graph made of arguments (nodes) and attacks (edges).

– Extensions : an extension is a subset of non-conflicting (consistent) argu-
ments which defend themselves from attacking arguments. The computation
of extensions is made under one semantics (preferred, stable, grounded, etc.)
as defined in [9]. This module allows the computation of one or all semantics
considered (preferred, stable, grounded, eager, semi-stable). We notice that

✶✺✼

theoretically we can get empty extensions under any semantics. This situa-
tion occurs when a user expresses at least one self-defeated argument, which
is not attacked by any other argument, but attacks all the others. This kind
of arguments are called contaminating arguments [15]. The current version
of the system detects the rules leading to such arguments and discards them
before performing the process of extension computations.

– Extraction of the justified preferences: the computation of extensions deliv-
ers one or several extensions. In the case of several extensions, the system
lets the users selecting the more suitable one according to their objectives.
The selected extension is then used to extract corresponding preferences un-
derlying the contained concepts. These preferences are expressed as a list of
couples (attribut, value), where attribute stands for a packaging attribute
as defined in the packaging database schema of the flexible querying system
part of the DSS, and value is the preferred value expressed for the considered
attribute.

4 Conclusion

We applied an argumentation approach on a real use case from the industry
allowing stakeholders to express their preferences and providing the system with
stable concepts and subsumptions of a domain. We have proposed an argumen-
tation system in which each criterion (attribute or aspect) is considered as a
viewpoint in which stakeholders express their arguments in homogenous way.
Each viewpoint delivers extensions supporting or opposing certain choices ac-
cording one packaging aspect, which are then used in the querying process. The
approach is implemented as freely accessible web application.

References

1. L. Amgoud, L. Bodenstaff, M. Caminada, P. McBurney, S. Parsons, H. Prakken,
J. Veenen, and G. Vreeswijk. Final review and report on formal argumentation
system.deliverable d2.6 aspic. Technical report, 2006.

2. L. Amgoud and H. Prade. Using arguments for making and explaining decisions.
Artificial Intelligence, 173(3-4):413–436, 2009.

3. P. Besnard and A. Hunter. Elements of Argumentation. The MIT Press, 2008.

4. D. Bouyssou, D. Dubois, M. Pirlot, and H. Prade. Decision-making process –
Concepts and Methods. Wiley, 2009.

5. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In KR, pages 260–270, 2006.

6. M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms.
Artificial Intelligence, 171:286–310, 2007.

7. S. Colucci, T. D. Noia, A. Ragone, M. Ruta, U. Straccia, and E. Tinelli. Semantic
Web Information Management, chapter 19 : Informative Top-k retrieval for ad-
vanced skill management, pages 449–476. R. De Virgilio et al., springer-verlag
belin heidelberg edition, 2010.

✶✺✽

8. S. Destercke, P. Buche, and V. Guillard. A flexible bipolar querying approach with
imprecise data and guaranteed results. Fuzzy sets and Systems, 169:51–64, 2011.

9. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-persons games. Artificial Intelli-
gence, 77(2):321–357, 1995.

10. H. Prakken. An abstract framework for argumentation with structured arguments.
Technical report, Department of Information and Computing Sciences. Utrecht
University., 2009.

11. I. Rahwan and G. Simari. Argumentation in Artificial Intelligence. Springer, 2009.
12. N. Tamani and M. Croitoru. Fuzzy argumentation system for decision making.

https://drive.google.com/file/d/0B0DPgJDRNwbLdE5wdzFQekJocXM/edit?usp=sharing.
Technical report, INRIA LIRMM, 2013.

13. N. Tamani, M. Croitoru, and P. Buche. A viewpoint approach to structured
argumentation. In M. Bramer and M. Petridis, editors, The Thirty-third SGAI
International Conference on Innovative Techniques and Applications of Artificial
Intelligence, pages 265–271, 2013.

14. N. Tamani, M. Croitoru, and P. Buche. Conflicting viewpoint relational database
querying: an argumentation approach. In L. Scerri and B. Huhns, editors, Proceed-
ings of the 13th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014),, 2014. to appear.

15. Y. Wu. Between argument and conclusion. Argument-based approaches to discus-
sion. Inference and Uncertainty. PhD thesis, Université du Luxembourg, 2012.

✶✺✾

Decision Support for Agri-Food Chains: A Reverse

Engineering Argumentation-Based Approach

Rallou Thomopoulosa,b,∗, Madalina Croitorub, Nouredine Tamanib

aIATE Joint Research Unit, UMR1208, CIRAD-INRA-Supagro-Univ. Montpellier II, 2

place P. Viala, F-34060 Montpellier cedex 1, France
bINRIA GraphIK, LIRMM, 161 rue Ada, F-34392 Montpellier cedex 5, France

Abstract

Evaluating food quality is a complex process since it relies on numerous crite-

ria historically grouped into four main types: nutritional, sensorial, practical

and hygienic qualities. They may be completed by other emerging preoccupa-

tions such as the environmental impact, economic phenomena, etc. However,

all these aspects of quality and their various components are not always com-

patible and their simultaneous improvement is a problem that sometimes has

no obvious solution, which corresponds to a real issue for decision making.

This paper proposes a decision support method guided by the objectives

de�ned for the end products of an agrifood chain. It is materialized by a

backward chaining approach based on argumentation.

Keywords: decision support, knowledge representation, argumentation,

reverse engineering, backward chaining, agrifood chain control, goal,

viewpoint

∗Corresponding author
Email addresses: rallou.thomopoulos@supagro.inra.fr (Rallou Thomopoulos),

madalina.croitoru@lirmm.fr (Madalina Croitoru), nouredine.tamani@lirmm.fr
(Nouredine Tamani)

Preprint submitted to Ecological Informatics May 25, 2014

✶✻✵

1. Introduction

In agrifood chains, the products traditionally go through the intermediate

stages of processing, storage, transport, packaging and reach the consumer

(the demand) from the producer (the supply). More recently, due to an

increase in quality constraints, several parties are involved in production

process, such as consumers, industrials, health and sanitary authorities, etc.

expressing their requirements on the �nal product as di�erent point of views

which could be con�icting. The notion of reverse engineering control, in

which the demand (and not the supply) sets the speci�cations of desired

products and it is up to the supply to adapt and �nd its ways to respond,

can be considered in this case.

In this article, we discuss two aspects of this problem. First, we accept

the idea that speci�cations cannot be established and several complemen-

tary points of view - possibly contradictory - can be expressed (nutritional,

environmental, taste, etc.). We then need to assess their compatibility (or

incompatibility) and identify solutions satisfying a maximum set of view-

points. To this end we propose a logical framework based on argumentation

and introduce a method of decision making based on backward chaining for

the bread industry.

Since a joint argumentation - decision support approach is highly relevant

to the food sector (Thomopoulos et al., 2009), the contribution of the paper

is twofold. First we present a real use case of an argumentation process in

the agrifood domain. Second we introduce the notion of viewpoint / goal in

this setting based on the notion of backwards chaining reasoning and show

how to use those techniques in a concrete application.

2

✶✻✶

The main alternative method to deal with the problem is the multicri-

teria decision approach. However multicriteria decision aims at evaluating

several alternative options, whereas argumentation-based decision focuses on

whether several options make sense together, which is a di�erent perspective,

addressed in this paper. Moreover, multicriteria decision is not connected to

the backward chaining procedure as the argumentative approach is, by con-

struction of the arguments, as will be explained in Section 5.2.

In Section 2, we introduce the real scenario considered in the application.

In Section 3, we motivate our technical and modeling choices. In Section 4,

the developed approach is introduced. It relies on an instantiation of a logic

based argumentation framework based on a speci�c fragment of �rst order

logic. In Section 5, we explain the technical results that ensure the soundness

and completeness of our agronomy application method. In Section 6, some

evaluation results are presented. Finally, Section 7 concludes the paper.

2. Scenario

The case of study considered in this paper relates to the debate around the

change of ash content in �our used for common French bread. Various actors

of the agronomy sector are concerned, in particular the Ministry for Health

through its recommendations within the framework of the PNNS (�National

Program for Nutrition and Health�), the millers, the bakers, the nutritionists

and the consumers.

The PNNS recommends to privilege the whole-grain cereal products and

in particular to pass to a common bread of T80 type, i.e made with �our

containing an ash content (mineral matter rate) of 0.8%, instead of the type

3

✶✻✷

T65 (0.65% of mineral matter) currently used. Increasing the ash content

comes down to using a more complete �our, since mineral matter is concen-

trated in the peripheral layers of the wheat grain, as well as a good amount

of components of nutritional interest (vitamins, �bers). However, the pe-

ripheral layers of the grain are also exposed to the phytosanitary products,

which does not make them advisable from a health point of view, unless one

uses organic �our.

Other arguments (and of various nature) are in favour or discredit whole-

grain bread. From an organoleptic point of view for example, the bread loses

out in its �being crusty�. From a nutritional point of view, the argument

according to which the �bers are bene�cial for health is discussed, some

�bers could irritate the digestive system. From an economic point of view,

the bakers fear selling less bread, because whole-grain bread increases satiety

� which is bene�cial from a nutritional point of view, for the regulation of

the appetite and the �ght against food imbalances and pathologies. However

whole-grain bread requires also less �our and more water for its production,

thus reducing the cost. The millers also fear a decrease in the quality of the

technical methods used in the �our production.

Beyond the polemic on the choice between two alternatives (T65 or T80),

one can take the debate further by distinguishing the various points of view

concerned, identifying the desirable target characteristics, estimating the

means of reaching that point. The contribution of this paper is showing

how using argumentation can help towards such practical goals.

4

✶✻✸

3. Motivation

In this paper we will elicit the points of view and the desirable target

characteristics by the means of interviews with agronomy experts. Once the

target characteristics identi�ed, �nding the means of reaching them will be

done automatically by a combination of reverse engineering and argumen-

tation. The reverse engineering will be used in order to �nd the complete

set of actions to take towards a given characteristic, for all characteristics.

In certain cases the actions to take will be inconsistent. Argumentation will

then be employed in order to identify actions that can be accepted together.

3.1. Reverse Engineering

While reverse engineering has been widely employed in other Computer

Science domains such as multi agent systems or requirements engineering

(e.g. Brunelière et al. (2014)), it is quite a novel methodology when applied

in agronomy. In agrifood chains, the products traditionally go through the

intermediate stages of processing, storage, transport, packaging and reach

the consumer (the demand) from the producer (the supply). It is only re-

cently, due to an increase in quality constraints, that the notion of reverse

engineering control has emerged (Perrot et al., 2011). In this case the de-

mand (and not the supply) sets the speci�cations of desired products and it

is up to the supply to adapt and �nd its ways to respond. In what follows,

starting from the desired target criteria for the �nal product, the methods

allowing one to identify ways to achieve these criteria (by intervention on the

various stages of the supply chain) are named �reverse engineering�.

Reverse engineering is known to be challenging from a methodological

5

✶✻✹

viewpoint. This is due to two main aspects. First, the di�culty of de�ning

the speci�cations for the expected �nished product. The desired quality cri-

teria are multiple, questionable, and not necessarily compatible. The second

di�culty lies in the fact that the impact of di�erent steps of food process-

ing and their order is not completely known. Some steps are more studied

than others, several successive steps can have opposite e�ects (or unknown

e�ects), the target criteria may be outside of the characteristics of products.

Second, reconciling di�erent viewpoints involved in the food sector still raises

unaddressed questions. The problem does not simply consist in addressing

a multi-criteria optimisation problem (Bouyssou et al., 2009): the domain

experts would need to be able to justify why a certain decision (or set of

possible decisions) is taken.

3.2. Argumentation

Argumentation is a reasoning model based on the construction and the

evaluation of interacting arguments. It has been applied to nonmonotonic

reasoning, decision making, or for modeling di�erent types of dialogues in-

cluding negotiation. Most of the models developed for these applications are

grounded on the abstract argumentation framework proposed by Dung in

Dung (1995). This framework consists of a set of arguments and a binary

relation on that set, expressing con�icts among arguments. An argument

gives a reason for believing a claim, for doing an action.

Argumentation theory in general (Dung, 1995; Besnard and Hunter, 2008;

Rahwan and Simari, 2009) is actively pursued in the literature. Some ap-

proaches combine argumentation and multi criteria decision making (Am-

goud and Prade, 2009).

6

✶✻✺

Value based Argumentation Frameworks (Bench-Capon, 2003a) have been

proposed, where the strength of an argument corresponds to the values it pro-

motes. What we call viewpoint later on in this paper would then correspond

to the notion of audience in such setting. Although intuitive, this approach

is not adapted in the case of the considered application. Here a value can be

�split� into several audiences: there could be contradictory goals even from

the same viewpoint. The notion of viewpoint and goals introduced in this

setting also remind those proposed by (Assaghir et al., 2011).

3.2.1. Logic-based Argumentation

In this paper we present a methodology combining reverse engineering

and logical based argumentation for selecting the actions to take towards the

agronomy application at hand. The logical instantiation language is a subset

of �rst order logic denoted in this paper SRC equivalent to Datalog+- (Calì

et al., 2010), Conceptual Graphs or Description Logics (more precisely the EL

fragment (Baader et al., 2005) and DL-Lite families (Calvanese et al., 2007)).

All above mentioned languages are logically equivalent in terms of representa-

tion or reasoning power. The reason why this application is using SRC is the

graph based representation proper to SRC (and not to the other languages).

This graph based representation (implemented in the Cogui tool (Chein and

Mugnier, 2009; Chein et al., 2013)) makes the language suitable for interact-

ing with non computing experts (Chein et al., 2013).

Here we use the instantiation of (Croitoru and Vesic, 2013) for de�ning

what an argument and an attack are. While other approaches such as (García

and Simari, 2004), (Besnard and Hunter, 2005), (Muller and Hunter, 2012)

etc. address �rst order logic based argumentation, the work of (Croitoru and

7

✶✻✻

Figure 1: The Cogui visual graph based interface

Vesic, 2013) uses the same SRC syntax and graph reasoning foundations. In

Figure 1 the visual interface of Cogui is depicted: knowledge is represented as

graph which is enriched dynamically by rule application. More on the visual

appeal of Cogui for knowledge representation and reasoning can be found in

(Chein et al., 2013).

4. Approach

As mentioned above, in this paper we use an instantiation of logic based

argumentation based on a speci�c fragment of �rst order logic. This subset

is equivalent to Datalog+- (Calì et al., 2010), Conceptual Graphs or Descrip-

tion Logics (the EL fragment (Baader et al., 2005) and the DL-Lite families

(Calvanese et al., 2007)). The reason for which our application required this

8

✶✻✼

speci�c logic fragment is related to the information capitalisation needs of

the food sector. The long term aim is to enrich ontologies and data sources

based on these ontologies and join the Open Data movement. This entails

that the language used by the food applications needs to be compatible with

the Semantic Web equivalent languages as mentioned before.

The choice of the SRC syntax and graph reasoning mechanism is justi�ed

by the visual appeal of this language for non computing experts.

In a nutshell our methodology is as follows. The set of goals, viewpoints

as well as the knowledge associated with the goals / viewpoints is elicited

either by the means of interviews with the domain experts or manually from

di�erent scienti�c papers. This step of the application is the most time con-

suming but the most important. If the knowledge elicited is not complete,

sound or precise the outcome of the system is compromised. Then, based on

the knowledge elicited from the knowledge experts and the goals of the ex-

perts, we enrich the knowledge bases using reverse engineering (implemented

using backwards chaining algorithms). Putting together the enriched knowl-

edge bases obtained by backwards chaining from the di�erent goals will lead

to inconsistencies. The argumentation process is used at this step and the

extensions yield by the applications computed. Based on the extensions and

the associated viewpoints we can use voting functions to determine the ap-

plication choice of viewpoints.

4.1. Use Case Real Data

Expressing the target characteristics � or goals � according to various

points of view consists of identifying the facets involved in the construction

of product quality: points of view, topics of concern such as nutrition, envi-

9

✶✻✽

ronment, technology, etc. In addition, such viewpoints have to be addressed

according to their various components (�bers, minerals, vitamins, etc). De-

sirable directions need to be laid down, and in a �rst step we consider them

independent one from another.

The considered sources of information include, from most formal to less

formal: (1) peer reviewed scienti�c papers; (2) technical reports or infor-

mation posted on websites; (3) conferences and scienti�c meetings around

research projects; (4) expert knowledge obtained through interviews. The sci-

enti�c articles we have analysed � with the supervision of experts in agrifood

� include: (Bourre et al., 2008; Slavin and Green, 2007; Dubuisson-Quellier,

2006; Ginon et al., 2009; Layat, 2011). (Bourre et al., 2008) compares the

di�erent types of �our from a nutritional point of view. (Slavin and Green,

2007) explores the link between �ber and satiety. (Dubuisson-Quellier, 2006;

Ginon et al., 2009) deal with consumer behaviour and willingness to pay.

They focus on French baguette when information concerning the level of

�bers is provided, and they base their results on statistical studies of con-

sumer panels. (Layat, 2011) provides a summary of the nutritional aspects

of consumption of bread and the link with technological aspects.

We also reviewed technical reports available on o�cial websites on health

policy: the public PNNS (National Program for Nutrition and Health, www.

mangerbouger.fr/pnns) (PNNS (documents statutaires), 2010), the Euro-

pean project Healthgrain (looking at improving nutrition and health through

grains) (Dean et al., 2007; HEALTHGRAIN, 2009), as well as projects and

symposia on sanitary measures regarding the nutritional, technological and

organoleptic properties of breads (DINABIO, 2008; CADINNO, 2008; AQUA-

10

✶✻✾

NUP, 2009; FCN, 2009). Finally, several interviews were conducted to collect

domain expert knowledge, in particular for technology specialists in our lab-

oratory.

A summary of the results obtained in the baking industry is synthesised in

Figure 2 regarding nutritional and organoleptic aspects. Figure 2(a) shows

the main identi�ed goals to reach for a nutritionally optimised bread (for

instance, containing a high level of soluble �bers, vitamins and minerals, low

salt, etc.), whereas Figure 2(b) sums up the main goals to achieve for an

enjoyable bread regarding sensorial concerns (for example, crusty, etc.).

5. Technical Soundness

In this section we explain the technical results that ensure the soundness

and completeness of our agronomy application method. The section is com-

posed of three parts. A �rst subsection explains the logical subset of �rst

order logic language employed in the paper. The second subsection shows

how to construct arguments and attacks in order to obtain extensions when

a knowledge base expressed under this language is inconsistent. Last, the

third section shows how we used reverse engineering to complete the knowl-

edge base with all possible actions and how argumentation can be used in

order to select consistent subsets of knowledge which support given actions.

5.1. The Logical Language

In the following, we give the general setting knowledge representation

language used throughout the paper.

A knowledge base is a 3-tuple K = (F ,R,N) composed of three �nite

sets of formulae: a set F of facts, a set R of rules and a set N of constraints.

11

✶✼✵

(a)

(b)

Figure 2: Nutritional (a) and organoleptic (b) goals

12

✶✼✶

Let us formally de�ne what we accept as F , R and N .

Facts Syntax. Let C be a set of constants and P = P1∪P2 . . .∪Pn a set

of predicates of the corresponding arity i = 1, . . . , n. Let V be a countably

in�nite set of variables. We de�ne the set of terms by T = V ∪ C. As

usual, given i ∈ {1 . . . n}, p ∈ Pi and t1, . . . , ti ∈ T we call p(t1, . . . , ti) an

atom. A fact is the existential closure of an atom or an existential closure

of a conjunction of atoms. (Note that there is no negation or disjunction in

the facts and that we consider a generalised notion of facts that can contain

several atoms.)

• Bread, Cereal, LowSalt, ContaminantFree are examples of unary pred-

icates (arity 1) and IsIngredientOf is a binary predicate (arity 2).

• Wheat, oats, rye, barley are constant examples.

• Cereal (wheat) is an atom.

• ∃ x (Bread(x) ∧ IsIngredientOf(wheat, x)) is a fact.

Due to lack of space we do not show the full semantic de�nitions of facts

(or rules and constraints in the following section). For a complete semantic

depiction of this language please check (Chein and Mugnier, 2009; Chein

et al., 2013; Croitoru and Vesic, 2013). It is well known that F ′ |= F (read

the fact F ′ entails the fact F) if and only if there is a homomorphism from

F to F ′ (Chein and Mugnier, 2009).

Rules. A rule R is a formula of the form

∀x1, . . . , ∀xn ∀y1, . . . , ∀ym (H(x1, . . . , xn, y1, . . . , ym) →

∃z1, ...∃zk C(y1, . . . , ym, z1, ...zk))

where H, the hypothesis, and C, the conclusion, are atoms or conjunctions

of atoms, n,m, k ∈ {0, 1, . . .}, x1, . . . , xn are the variables appearing in H,

13

✶✼✷

y1, . . . , ym are the variables appearing in bothH and C and z1, . . . , zk the new

variables introduced in the conclusion. An example of a rule is the following:

∀ x (Bread(x) ∧ PesticideFree(x) ∧ MycotoxinFree(x)

→ ContaminantFree(x)).

In the following we will consider rules without new existential variables

in the conclusion.

Reasoning consists of applying rules on the set F and thus inferring new

knowledge. A rule R = (H,C) is applicable to set F if and only if there

exists F ′ ⊆ F such that there is a homomorphism σ from the hypothesis

of R to the conjunction of elements of F ′. A rule R = (H,C) is inversely

applicable to a fact F if there is a homomorphism π from C to F . In this

case, the inverse application of R to F according to π produces a new fact

F ′ such that R(F ′) = F . We then say that the new fact is an immediate

inverse derivation of F by R, abusively denoted R−1(F).

Note that this technique is commonly used, for example, for backward

chaining query answering (Baget and Salvat, 2006; Konig et al., 2012) where

a query is rewritten according to the rules. The same mechanism is also

discussed by abductive reasoning algorithms (Klarman et al., 2011) where

minimal sets of facts (in the set inclusion sense) are added to the knowledge

base in order to be able to deduct a query.

Let F = Bread(bleuette) ∧ PesticideFree(bleuette) ∧ MycotoxinFree(bleu-

ette) and R the rule ∀ x (Bread(x) ∧ PesticideFree(x) ∧ MycotoxinFree(x) →

ContaminantFree(x)).

R is applicable to F and produces by derivation the following fact: Bread

(bleuette) ∧ PesticideFree(bleuette) ∧MycotoxinFree(bleuette) ∧ Contaminant-

14

✶✼✸

Free(bleuette).

Let F = Bread(bleuette) ∧ ContaminantFree(bleuette) and R the rule ∀ x

(Bread(x) ∧ PesticideFree(x) ∧ MycotoxinFree(x) → ContaminantFree(x)).

R inversely applicable to F and produces by inverse derivation the fact:

F ′ = Bread(bleuette) ∧ PesticideFree(bleuette) ∧ MycotoxinFree(bleuette).

Let F be a subset of F and let R be a set of rules. A set Fn is called

an R-derivation of F if there is a sequence of sets (called a derivation se-

quence) (F0, F1, . . . , Fn) such that F0 ⊆ F , F0 is R-consistent, for every

i ∈ {1, . . . , n− 1}, it holds that Fi is an immediate derivation of Fi−1.

Given a set {F0, . . . , Fk} ⊆ F and a set of rules R, the closure of

{F0, . . . , Fk} w.r.t. R, denoted ClR({F0, . . . , Fk}), is de�ned as the small-

est set (with respect to ⊆) which contains {F0, . . . , Fk}, and is closed for

R-derivation (that is, for every R-derivation Fn of {F0, . . . , Fk}, we have

Fn ⊆ ClR({F0, . . . , Fk})). Finally, we say that a set F and a set of rules R

entail a fact G (and we write F ,R |= G) i� the closure of the facts by all

the rules entails F (i.e. if ClR(F) |= G).

Constraints. A constraint is a formula ∀x1 . . . ∀xn (H(x1, . . . , xn)

→ ⊥), where H is an atom or a conjunction of atoms and n ∈ {0, 1, 2, . . .}.

Equivalently, a constraint can be written as ¬(∃x1, ..., ∃xnH(x1, ...xn)). As

an example of a constraint, consider N = ¬(∃ x (Growth(x) ∧ Decrease(x))).

Given a knowledge base K = (F ,R,N), a set {F1, . . . , Fk} ⊆ F is said

to be inconsistent if and only if there exists a constraint N ∈ N such that

{F1, . . . , Fk} |= HN , where HN denotes the existential closure of the hypoth-

esis of N . A set is consistent if and only if it is not inconsistent. A set

{F1, . . . , Fk} ⊆ F is R-inconsistent if and only if there exists a constraint

15

✶✼✹

N ∈ N such that ClR({F1, . . . , Fk}) |= HN , whereHN denotes the existential

closure of the hypothesis of N .

Let K = (F ,R,N) where:

• F contains the following facts:

− F1 = Bread(bleuette) ∧ ContaminantFree(bleuette)

− F2 = ∃ e ExtractionRate(e,bleuette)

− F3 = ∃ f (FiberContent(f,bleuette) ∧ High(f))

• R consists of the following rules:

− R1 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ PesticideFree(x)

→ Decrease(y))

− R2 = ∀ x,y,z (Bread(x) ∧ ExtractionRate(y,x) ∧ FiberContent(z,x) ∧

High(z) → Growth(y))

− R3 = ∀ x (Bread(x) ∧ ContaminantFree(x)

→ PesticideFree(x) ∧ MycotoxinFree(x))

• N contains the following negative constraint:

− N = ¬(∃ x (Growth(x) ∧ Decrease(x)))

K is inconsistent since (F ,R) |= N . Indeed, F1 and R3 allow to deduce

PesticideFree(bleuette). Combined to F2 and R1 we obtain Decrease(e). F3

and R2 deduce Growth(e), violating the negative constraint N .

Given a knowledge base, one can ask a conjunctive query in order to

know whether something holds or not. Without loss of generality we consider

16

✶✼✺

boolean conjunctive queries (which are facts). As an example of a query, take

∃x1cat(x1). The answer to query α is positive if and only if F ,R |= α.

Answering Q, traditionally, has two di�erent algorithmic approaches: ei-

ther forward chaining or backwards chaining. The two approaches come to

either (1) �nding an answer of Q in the R-derivations of the facts in the

knowledge base or (2) computing the inverse R-derivations of the query and

�nding if there is a match in the facts. We will focus on the latter approach

in the following.

5.2. Arguments and Attacks

This section shows that it is possible to de�ne an instantiation of Dung's

abstract argumentation theory (Dung, 1995) that can be used to reason with

an inconsistent ontological KB.

We �rst de�ne the notion of an argument. For a set of formulae G =

{G1, . . . , Gn}, notation
∧

G is used as an abbreviation for G1 ∧ . . . ∧Gn.

De�nition 1. Given a knowledge base K = (F ,R,N), an argument a is a

tuple a = (F0, F1, . . . , Fn) where:

• (F0, . . . , Fn−1) is a derivation sequence with respect to K

• Fn is an atom, a conjunction of atoms, the existential closure of an

atom or the existential closure of a conjunction of atoms such that

Fn−1 |= Fn.

This de�nition, following the de�nition of (Croitoru and Vesic, 2013) is a

straightforward way to de�ne an argument, since an argument corresponds

to a derivation.

17

✶✼✻

To simplify the notation, from now on, we suppose that we are given a

�xed knowledge base K = (F ,R,N) and do not explicitly mention F , R nor

N if not necessary. Let a = (F0, ..., Fn) be an argument. Then, we denote

Supp(a) = F0 and Conc(a) = Fn.

Arguments may attack each other, which is captured by a binary attack

relation Att ⊆ Arg(F)× Arg(F).

De�nition 2. Let K = (F ,R,N) be a knowledge base and let a and b be

two arguments. The argument a attacks argument b, denoted (a, b) ∈ Att,

if and only if there exists φ ∈ Supp(b) such that the set {Conc(a), φ} is

R-inconsistent.

This attack relation is not symmetric. To see why, consider the following

example. Let F = {p(m), q(m), r(m)}, R = ∅, N = {∀x1(p(x1) ∧ q(x1) ∧

r(x1) → ⊥)}. Let a = ({p(m), q(m)}, p(m)∧ q(m)), b = ({r(m)}, r(m)). We

have (a, b) ∈ Att and (b, a) /∈ Att. This will ensure that the naive extension

is di�erent, at least in theory, from the preferred, stable, etc. semantics.

However, in our application they all entail the same information as shown

later on.

De�nition 3. Given a knowledge base K = (F ,R,N), the corresponding

argumentation framework AFK is a pair (A = Arg(F), Att) where Arg(F)

is the set of all arguments that can be constructed from F and Att is the

corresponding attack relation as speci�ed in De�nition 2.

Let E ⊆ A and a ∈ A. We say that E is con�ict free i� there exists no

arguments a, b ∈ E such that (a, b) ∈ Att. E defends a i� for every argument

b ∈ A, if we have (b, a) ∈ Att then there exists c ∈ E such that (c, b) ∈ Att.

18

✶✼✼

E is admissible i� it is con�ict free and defends all its arguments. E is a

complete extension i� E is an admissible set which contains all the arguments

it defends. E is a preferred extension i� it is maximal (with respect to set

inclusion) admissible set. E is a stable extension i� it is con�ict-free and for

all a ∈ A \ E , there exists an argument b ∈ E such that (b, a) ∈ Att.

E is a grounded extension i� E is a minimal (for set inclusion) complete

extension.

For an argumentation framework AS = (A, Att) we denote by Extx(AS)

(or by Extx(A, Att)) the set of its extensions with respect to semantics x.

We use the abbreviations c, p, s, and g for respectively complete, preferred,

stable and grounded semantics.

An argument is sceptically accepted if it is in all extensions, credulously

accepted if it is in at least one extension and rejected if it is not in any

extension.

Based on this de�nition of arguments and attacks in (Croitoru and Vesic,

2013) was also shown that the rationality postulates of (Caminada and Am-

goud, 2007) are respected. This instantiation respects the direct, indirect

consistency as well as the closure.

5.3. Formalising the use case

In this subsection we formalise the notions presented in section 4.

Let K = (F ,R,N) be a consistent knowledge base. This is the knowledge

base that all actors share and agree upon. In this paper we assume that the

rules and negative constraints are common to everybody.

The goals of the di�erent actors can be seen as a set of existentially closed

conjuncts. We denote them by G1, G2, ..., Gn.

19

✶✼✽

Let Gi be a goal and K the knowledge base. K is consistent and K does

not entail Gi. We compute the inverse R-derivations of Gi (where R is the

set of rules of the knowledge base). We add all of the R−1(Gi) to the facts.

We thus obtain a new knowledge base Ki which di�ers from K solely by its

facts set (which now also includes R−1(Gi)): K = (F ∪R−1(Gi),R,N) . We

also impose that Ki is consistent.

Given G = {G1, G2, ..., Gn}, the goals correspond to a set of viewpoints V

(there exists a function κ : G → 2V). This function can assign a goal to one

or more viewpoints and each viewpoint can be associated with one or more

goals. Given a goal Gi, the (set of) viewpoint(s) associated with this goal is

denoted by κ(Gi). Similarly, given a viewpoint vi, the set of goals associated

with it is denoted by κ−1(vi).

Example 1. Let the set of viewpoints V = {nutrition, sanitary, organolep-

tic} and G consisting of the following goals: G1 = ∃ x (Bread(x) ∧ LowSalt(x)),

G2 = ∃ x (Bread(x) ∧ ContaminantFree(x)), G3 = ∃ x (Bread(x) ∧ Crusty(x)),

G4 = ∃ x (Bread(x) ∧ TraceElementRich(x)).

We have κ(G1) = κ(G4) = nutrition, κ(G2) = sanitary and κ(G3) =

organoleptic. Conversely κ−1(nutrition) = {G1, G4}, κ
−1(sanitary) = {G2}

and κ−1(organoleptic) = {G3}.

The rules will correspond to the set of su�cient conditions needed for

the goal Gi. In the context of our practical application this is illustrated in

Figure 3 (with respect to nutrition goals).

Example 2. To reach the goal G1 = ∃ x (Bread(x) ∧ LowSalt(x)), the

20

✶✼✾

Figure 3: Ways to reach nutritional goals

knowledge base K contains the following rule: ∀ x,y (Bread(x) ∧ SaltAd-

junction(y,x) ∧ Decrease(y) → LowSalt(x))

Let us now consider the set of goals G = {G1, G2, ..., Gn} and the initial

knowledge base K = (F ,R,N). As described above we compute the n

knowledge bases, corresponding to each goal: Ki = (F ∪R−1(Gi),R,N) for

each i = 1, ..., n. We consider the union of all these knowledge bases:

Kagg = (F
∪

i=1,...,n

R−1(Gi),R,N)

Example 3. Let K = (F ,R,N) where :

• F = {F1} = {CurrentExtractionRate(T65)}

• R contains the following rules:

21

✶✽✵

− R1 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ Decrease(y)

→ Digestible(x))

− R2 = ∀ x,z (Bread(x) ∧ SaltAdjunction(z,x) ∧ Decrease(z)

→ LowSalt(x))

− R3 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ Growth(y)

→ TraceElementRich(x))

− R4 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧ Decrease(y)

→ PesticideFree(x))

• N contains the following negative constraint:

− N = ¬(∃ x (Growth(x) ∧ Decrease(x)))

Let the goal set G as follows:

• G1 = ∃ p (Bread(p) ∧ Digestible(p)), where κ(G1) = nutrition

• G2 = ∃ p (Bread(p) ∧ LowSalt(p)), where κ(G2) = nutrition

• G3 = ∃ p (Bread(p) ∧ TraceElementRich(p)), where κ(G3) = nutrition

• G4 = ∃ p (Bread(p) ∧ PesticideFree(p)), where κ(G4) = sanitary.

Then:

• K1 = (F1,R,N) where F1 = F ∪R−1(G1) contains the following facts:

− F1 = CurrentExtractionRate(T65)

− F2 = Bread(p) ∧ ExtractionRate(τ ,p) ∧ Decrease(τ)

• K2 = (F2,R,N) where F2 = F ∪R−1(G2) contains the following facts:

− F1 = CurrentExtractionRate(T65)

− F3 = Bread(p) ∧ SaltAdjunction(s,p) ∧ Decrease(s)

• K3 = (F3,R,N) where F3 = F ∪R−1(G3) contains the following facts:

22

✶✽✶

− F1 = CurrentExtractionRate(T65)

− F4 = Bread(p) ∧ ExtractionRate(τ ,p) ∧ Growth(τ)

• K4 = (F4,R,N) where F4 = F ∪R−1(G4) contains the following facts:

− F1 = CurrentExtractionRate(T65)

− F2 = Bread(p) ∧ ExtractionRate(τ ,p) ∧ Decrease(τ)

Finally Kagg = (F
⋃

i=1,...,n R
−1(Gi),R,N) where

F
⋃

i=1,...,n R
−1(Gi) = {F1, F2, F3, F4}.

As observed in the previous example, it may happen that Kagg is incon-

sistent (and it does so even for goals belonging to the same viewpoint). We

then use argumentation, which, by the means of extensions will isolate sub-

sets of facts we can accept together (called extensions). Furthermore, the

extensions will allow us to see which are the viewpoints associated to each

maximal consistent subset of knowledge (by the means of the function κ). A

choice procedure then has to be used (see example below).

The argument framework we can construct from the above knowledge

base is (A, Att) where A contains the following:

• a = ({F2}, F2, R1(F2)) where R1(F2) = Bread(p) ∧ ExtractionRate(τ ,p)

∧ Decrease(τ) ∧ Digestible(p).

• b = ({F4}, F4, R3(F4)) where R3(F4) = Bread(p) ∧

ExtractionRate(τ ,p) ∧ Growth(τ) ∧ TraceElementRich(p).

• c = ({F2}, F2, R4(F2)) where R4(F2) = Bread(p) ∧

ExtractionRate(τ ,p) ∧ Decrease(τ) ∧ PesticideFree(p).

• d = ({F3}, F3, R2(F3)) where R2(F3) = Bread(p) ∧ SaltAdjunction(s,p)

∧ Decrease(s) ∧ LowSalt(p) and

Att = {(a, b), (b, a), (b, c), (c, b)}.

23

✶✽✷

In this argumentation system de�ned we now obtain:

• Extstable(A, Att) = Extsemi−stable(A, Att) = Extprefered(A, Att) = {{a, c, d},

{b, d}}.

Starting from the extensions Extx(A, Att), the proposed decision support

system functions as follows: for every extension ε ∈ Extx(A, Att) :

• Consider the facts occurring in the arguments of ε ;

• Identify the knowledge bases Ki where these facts occur;

• Obtain the goals Gi which are satis�ed by the extension;

• Using the κ function to obtain the viewpoints corresponding to these

goals;

• Show domain experts the set of goals, and compatible viewpoints cor-

responding to the given extension.

This method allows us to obtain a set of options equal to the cardinal-

ity of Extx(A, Att). For taking a �nal decision several possibilities can be

considered and presented to the experts:

• Maximise the number of goals satis�ed;

• Maximise the number of viewpoints satis�ed;

• Use preference relations of experts on goals and / or viewpoints.

In the previous example (please recall that the goals G1 and G2 are asso-

ciated with the nutritional viewpoint while G4 is associated with the sanitary

viewpoint) we have:

24

✶✽✸

• The �rst extension {a, c, d} is based on the facts F2 and F3 obtained

from K1, K2 and K4 that satisfy the goals G1, G2 and G4.

• The second extension {b, d} is based on F3 and F4 obtained from K2 and

K3 satisfying G2 and G3 both associated with the nutritional viewpoint.

One �rst possibility (corresponding to the extension {a, c, d}) consists of

accomplishing F2 and F3 and allows to satisfy the biggest number of goals

and viewpoints.

The second possibility (corresponding to the extension {b, d}) consists of

accomplishing F3 and F4. It would satisfy two goals and one viewpoint. It

could be considered though if the goal G3 (not satis�ed by the �rst option)

is preferred to the others.

6. Evaluation

The evaluation of the implemented system was done via a series of in-

terviews with domain experts. The above knowledge and reasoning pro-

cedures were implemented using the Cogui knowledge representation tool

(Chein et al., 2013), with an extension of 2000 lines of supplemental code.

Three experts have validated our approach: two researchers in food science

and cereal technologies of the French national institute of agronomic research,

specialists respectively of the grain-to-�our transformation process and of the

breadmaking process, and one industrial expert - the Director of the French

National Institute of Bread and Pastry.

The �rst meeting dealt with the delimitation of the project objectives and

addressed fundamental questions such as: Is it possible to uniquely de�ne a

25

✶✽✹

�good� bread? Which scenarii of �good bread� should be considered? How

could they be de�ned from a nutritional, sanitary, sensorial and economic

point of view? Which are the main known ways to achieve them?

Then a series of individual interviews constituted the elicitation phase.

Each expert gave more arguments which were complementing one each other.

In parallel, the writing of speci�cations for the demonstrator and the de�ni-

tion of the knowledge base structure were conducted.

In the following plenary meeting the real potential of the approach was

shown. The experts were formulating goals and viewpoints they were inter-

ested in and the Cogui system together with the argumentation extension was

yielding the associated possible propositions. Figure 6 shows a screenshot of

the demonstrator answers for a two-goal query: a nutritional goal (high �ber

content) and an organoleptic goal (crusty bread). Two sets of compatible

actions are proposed, some choices (such as increasing or decreasing the ex-

traction rate) being incompatible for both goals, and thus separated in the

two alternative sets.

Four scenarii were more speci�cally evaluated. These scenarii concern

four kinds of consumers: obeses (�ber preference), people with iron de�ciency

(micronutrient preference), people with cardivascular disease (decreased salt

preference) and vegetarians (limited phytic acid), which produces di�erent

sets of goals. For each scenario, the system proposes several outputed rec-

ommendations. The audience for decreasing salt tips the balance in favour

of a recommendation for the T80 bread, while the audience for decreasing

phytic acid pushes to specify recommendations towards a natural sourdough

bread or a conservative T65 bread. Other audiences are in favor of a status

26

✶✽✺

Figure 4: Demonstrator screenshot showing two sets of possible actions

quo. The results were considered as explanable by experts, but not obvious,

since many considerations had to be taken into account.

Two interests of the approach were more particularly highlighted. They

concern cognitive considerations. Firstly, experts were conscious that the

elicitation procedure was done according to their thought processes, that is,

in a forward way which is more natural and intuitive. The system was thus

able to restitute the knowledge in a di�erent manner than the experts usually

do. Secondly, from a problem that could initially seem simple, the experts

realized that it covered a huge complexity that a human mind could hardly

address alone. The tool is currently available to them under restricted access.

The knowledge modeling task can be a very time-consuming step. As

presented in Section 4.1, several sources of information were used, from peer

reviewed scienti�c papers and technical reports, to conference meetings and

expert interviews. On the one hand, expert interviews appeared to be the

27

✶✽✻

least expensive ones in terms of time. A one-day period allows both elicitating

knowledge through an interview and formalizing it in the software system �

which constitutes the longest part of the work. However, this relatively short

time hides a strong prerequisite: having already a clear view of the case study,

a synopsis of the questions to ask the expert and an implemented knowledge

model. On the other hand, websites, technical reports and scienti�c articles

are more costly to analyze. For instance, the critical reading a scienti�c

paper of the domain may require a one-day period on its own, for a discerning

reader. However they allow one to to grasp the ins and outs of the question.

During the evaluation step, the experts raised the question of the impor-

tance attached to the di�erent pieces of knowledge modeled in the system.

Moreover, in some cases experts may hesitate on the relevance of some facts

or rules. A possibility would thus be to adopt a preference-based argumen-

tation system, as proposed in several works such as (Amgoud and Cayrol,

2002; Bench-Capon, 2003b; Kaci and van der Torre, 2008; Amgoud et al.,

2000; Bourguet et al., 2013a), able to take into account di�erent levels of

importance among arguments.

7. Conclusion

Even if argumentation based decision making methods applied to the food

industry were also proposed by (Bourguet, 2010; Bourguet et al., 2013b),

this paper addresses a key point in the context of current techniques used

by the food sector and namely addressing reverse engineering. Also, in this

approach, an argument is used here as a method computing compatible ob-

jectives in the sector. This case study represents an original application and

28

✶✽✼

an introspective approach in the agronomy �eld by providing an argumenta-

tion based decision-support system for the various food sectors. It requires

nevertheless the very expensive task of knowledge modeling. Such task, in

its current state cannot be automated. It strongly depends on the quality of

expert opinion and elicitation (exhaustiveness, certainty, etc). The current

trend for decision-making tools includes more and more methods of argu-

mentation as means of including experts in the task of modeling and the

decision-making processes. Another element to take into account, not dis-

cussed in this paper, is the di�culty of technologically (from an agronomy

viewpoint) putting in place the facts of each option. Modeling this aspect in

the formalism is still to be studied.

Amgoud, L., Cayrol, C., 2002. A reasoning model based on the production

of acceptable arguments. Annals of Mathematics and Arti�cial Intelligence

34, 197�216.

Amgoud, L., Parsons, S., Perrussel, L., 2000. An argumentation framework

based on contextual preferences. In: Proceedings of the International Con-

ference on Formal and Applied and Practical Reasoning. pp. 59�67.

Amgoud, L., Prade, H., 2009. Using arguments for making and explaining

decisions. Arti�cial Intelligence 173 (3-4), 413�436.

AQUANUP, 2009. http://www.inra.fr/inra_cepia/vous_recherchez/

des_projets/france/aquanup.

Assaghir, Z., Napoli, A., Kaytoue, M., Dubois, D., Prade, H., 2011. Numeri-

29

✶✽✽

cal information fusion: Lattice of answers with supporting arguments. In:

ICTAI. pp. 621�628.

Baader, F., Brandt, S., Lutz, C., 2005. Pushing the el envelope. In: Proc. of

IJCAI 2005.

Baget, J.-F., Salvat, E., 2006. Rules dependencies in backward chaining of

conceptual graphs rules. In: Conceptual Structures: Inspiration and Ap-

plication, 14th International Conference on Conceptual Structures. Vol.

4068 of LNCS. Springer, pp. 102�116.

Bench-Capon, T. J., 2003a. Persuasion in practical argument using value-

based argumentation frameworks. Journal of Logic and Computation

13 (3), 429�448.

Bench-Capon, T. J. M., 2003b. Persuasion in practical argument using

value-based argumentation frameworks. Journal of Logic and Computa-

tion 13 (3), 429�448.

Besnard, P., Hunter, A., 2005. Practical �rst-order argumentation. In: Proc.

of AAAI. pp. 590�595.

Besnard, P., Hunter, A., 2008. Elements of Argumentation. The MIT Press.

Bourguet, J.-R., 2010. Contribution aux methodes d'argumentation pour la

prise de decision. application a l'arbitrage au sein de la �liere cerealiere.

Thèse de doctorat, Université Montpellier II, Montpellier, France.

Bourguet, J.-R., Thomopoulos, R., Mugnier, M.-L., Abécassis, J., September

2013a. An arti�cial intelligence-based approach to deal with argumentation

30

✶✽✾

applied to food quality in a public health policy. Expert Systems with

Applications 40 (11), 4539�4546.

Bourguet, J.-R., Thomopoulos, R., Mugnier, M.-L., Abécassis, J., 2013b. An

arti�cial intelligence-based approach to deal with argumentation applied to

food quality in a public health policy. Accepted for publication in: Expert

Systems With Applications.

Bourre, J.-M., Bégat, A., Leroux, M.-C., Mousques-Cami, V., Pérandel, N.,

Souply, F., 2008. Valeur nutritionnelle (macro et micro-nutriments) de

farines et pains français. Médecine et Nutrition 44 (2), 49�76.

Bouyssou, D., Dubois, D., Pirlot, M., Prade, H., 2009. Decision-making pro-

cess � Concepts and Methods. Wiley.

Brunelière, H., Cabot, J., Dupé, G., Madiot, F., 2014. Modisco: A model

driven reverse engineering framework. Information and Software Technol-

ogy 56 (8), 1012 � 1032.

CADINNO, 2008. Information, choix, consommateurs responsables : des

leviers pour un développement durable ? http://www.melissa.

ens-cachan.fr/IMG/pdf/Colloque_CadInno_FR.pdf.

Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A., 2010.

Datalog+/-: A family of logical knowledge representation and query lan-

guages for new applications. In: LICS. pp. 228�242.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R., 2007.

Tractable reasoning and e�cient query answering in description logics:

The dl-lite family. J. Autom. Reasoning 39 (3), 385�429.

31

✶✾✵

Caminada, M., Amgoud, L., 2007. On the evaluation of argumentation for-

malisms. Arti�cial Intelligence 171 (5), 286�310.

Chein, M., Mugnier, M.-L., 2009. Graph-based Knowledge Representation

and Reasoning�Computational Foundations of Conceptual Graphs. Ad-

vanced Information and Knowledge Processing. Springer.

Chein, M., Mugnier, M.-L., Croitoru, M., 2013. Visual reasoning with graph-

based mechanisms: the good, the better and the best. The Knowledge

Engineering Review 28, 249�271.

Croitoru, M., Vesic, S., 2013. What can argumentation do for inconsistent

ontology query answering? In: Proc. of SUM 2013 (to appear).

Dean, M., Sheperd, R., Arvola, A., Lampila, P., Lahteenmaki, L., Vassalo,

M., Saba, A., Claupein, E., Winkelmann, M., 2007. Report on consumer

expectations of health bene�ts of modi�ed cereal products. Tech. rep.,

University of Surrey, UK.

DINABIO, 2008. Proceedings of dinabio développement et innovation en

agriculture biologique. http://www.inra.fr/ciag/revue_innovations_

agronomiques/volume_4_janvier_2009.

Dubuisson-Quellier, S., 2006. De la routine à la délibération. les arbitrages

des consommateurs en situation d'achat. Réseaux 135/136, 253�284.

Dung, P. M., 1995. On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person games.

Arti�cial Intelligence Journal 77, 321�357.

32

✶✾✶

FCN, 2009. Fibres, céréales et nutrition. http://www.inra.fr/content/

view/full/24670029.

García, A. J., Simari, G. R., 2004. Defeasible logic programming: An argu-

mentative approach. Theory and practice of logic programming 4, 95�138.

Ginon, E., Lohérac, Y., Martin, C., Combris, P., Issanchou, S., 2009. E�ect

of �bre information on consumer willingness to pay for french baguettes.

Food Quality and Preference 20, 343�352.

HEALTHGRAIN, 2009. http://www.healthgrain.org.

Kaci, S., van der Torre, L., 2008. Preference-based argumentation: Argu-

ments supporting multiple values. International Journal of Approximate

Reasoning 48 (3), 730�751.

Klarman, S., Endriss, U., Schlobach, S., 2011. Abox abduction in the de-

scription logic alc. J. Autom. Reasoning 46 (1), 43�80.

Konig, M., Leclere, M., Mugnier, M.-L., Thomazo, M., 2012. A sound and

complete backward chaining algorithm for existential rules. In: Krotzsch,

M., Straccia, U. (Eds.), Web Reasoning and Rule Systems. Vol. 7497 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 122�

138.

Layat, T., 2011. Place du pain dans l'équilibre alimentaire. Pratiques en

nutrition 7 (26), 45�50.

Muller, J., Hunter, A., 2012. An argumentation-based approach for decision

making. In: Proc. of ICTAI. pp. 564�571.

33

✶✾✷

Perrot, N., Trelea, I., Baudrit, C., Trystram, G., Bourgine, P., 2011. Mod-

elling and analysis of complex food systems: State of the art and new

trends. Trends in Food Science & Technology 22 (6), 304 � 314.

PNNS (documents statutaires), 2010. http://www.sante.gouv.fr/htm/

pointsur/nutrition/pol_nutri4.htm.

Rahwan, I., Simari, G., 2009. Argumentation in Arti�cial Intelligence.

Springer.

Slavin, J., Green, H., 2007. Diatery �bre and satiety. British Nutrition Foun-

dation 32(1), 32�42.

Thomopoulos, R., Charnomordic, B., Cuq, B., Abécassis, J., September 2009.

Arti�cial intelligence-based decision support system to manage quality of

durum wheat products. Quality Assurance and Safety of Crops & Foods

1 (3), 179�190.

34

✶✾✸

Query Failure Explanation in Inconsistent
Knowledge Bases Using Argumentation

Abdallah ARIOUA a Nouredine TAMANI b Madalina CROITORU b and
Patrice BUCHE a

a IATE, INRA, University of Montpellier 2
b LIRMM, INRIA, University of Montpellier 2

Abstract.

We address the problem of explaining Boolean Conjunctive Query (BCQ) failure
in the presence of inconsistency within the Ontology-Based Data Access (OBDA)
setting, where inconsistency is handled by the intersection of closed repairs seman-
tics (ICR) and the ontology is represented by Datalog+/- rules. Our proposal relies
on an interactive and argumentative approach where the processes of explanation
takes the form of a dialogue between the User and the Reasoner. We exploit the
equivalence between argumentation and ICR-semantics to prove that the Reasoner

can always provide an answer for user’s questions.

1. Introduction

In the popular ONTOLOGY-BASED DATA ACCESS setting the domain knowledge is rep-
resented by an ontology facilitating query answering over existing data [15]. In practi-
cal systems involving large amounts of data and multiple data sources, data inconsis-
tency with respect to the ontology is unavoidable. Many inconsistency-tolerant seman-
tics [3,2,12,13] have been proposed that rely on the notion of data repairs i.e. subsets
of maximally consistent data with respect to the ontology. Query answering under these
semantics may not be intuitively straightforward and can lead to loss of user’s trust, sat-
isfaction and may affect the system’s usability [14]. As argued by Calvanese et al.[6] ex-

planation facilities should not just account for user’s “Why Q ?” question (why a query
holds under a given inconsistency-tolerant semantics) but also for question like “Why
not Q ?” (why a query does not hold under a given inconsistency-tolerant semantics).

The research problem addressed by this paper is the boolean conjunctive query fail-
ure explanation in inconsistent knowledge bases, precisely: “Given an inconsistent KB

and a boolean conjunctive query Q, why Q is not entailed from KB under the ICR-

semantics?”. We use argumentation as an approach for explanation. We consider the log-
ical instantiation of Dung’s [10] abstract argumentation framework for OBDA in [8] and
we exploit the equivalence result shown by the authors between the ICR-semantics and
sceptical acceptance under preferred semantics to guarantee the existence of an expla-
nation for any failed query. The explanation takes the form of a dialogue between the
User and the Reasoner with the purpose of explaining the query failure. At each level
of the dialogue, we use language-based introduced primitives such as clarification and

✶✾✹

deepening to further refine the answer. The added value of our contribution lies in its
significance and originality. We are the first to propose query failure explanation in the
context of OBDA for inconsistent knowledge bases by means of argumentation. Our
approach differs from [4,6] in handling query failure since we consider an inconsistent
setting within OBDA. In addition, the work presented in [11] is neither applied to an
OBDA context nor to the Datalog+/- language.

2. Background and Overview

In this section, we introduce the motivation and the context of our work and a formal
definition of the addressed problem. Consider a knowledge base about university staff
and students which contains inconsistent knowledge. This inconsistency is handled by
ICR-semantics. The User might be interested in knowing why the knowledge base does

not entail the query Q:“Luca is a student”. Observe that the individual δ (e.g. Luca in
the example above) is a negative answer for a conjunctive query Q (e.g. get me all the
students in the example above) if and only if the boolean conjunctive query Q(δ) (e.g.
student(Luca) in the example above) has failed. Hence, in this paper we concentrate
only explaining the failure of a boolean conjunctive query. Let us formally introduce the
problem of Query Failure Explanation in inconsistent knowledge bases.

Definition 1 (Query Failure Explanation Problem P) Let K be an inconsistent knowl-

edge base, Q a Boolean Conjunctive Query such that K 2ICR Q. We then call P =
〈K ,Q〉 a Query Failure Explanation Problem (QFEP).

To address the Query Failure Explanation Problem, we use a logical instantiation
of Dung’s [10] abstract argumentation framework for OBDA in [8] ensuring that the
argumentation framework used respects the rationality postulates [7].

Let us first introduce the OBDA setting and inconsistency-tolerant semantics. We
consider the positive existential conjunctive fragment of first-order logic, denoted by
FOL(∧,∃), which is composed of formulas built with the connectors (∧,→) and the
quantifiers (∃,∀). For more details about the language please check [8]. In this paper,
for lack of space we simply give an example of a knowledge base K = (F ,R,N) is
composed of finite set of facts F and finite set of existential rules R and a finite set of
negative constrains N .

Example 1 Let us consider an example inspired from [5]. In an enterprise, employees

work in departments and use offices which are located in departments, some employees

direct departments, and supervise other employees. In addition, a supervised employee

cannot be a manager. A director of a given department cannot be supervised by an em-

ployee of the same department, and two employees cannot direct the same department ,

and an employee cannot work in more than one department. The following sets of (exis-

tential) rules R and negative constraints N model the corresponding ontology:

R =

∀x∀y(works_in(x,y)→ emp(x)) (r1)

∀x∀y(directs(x,y)→ emp(x)) (r2)

∀x∀y(directs(x,y)∧works_in(x,y)→ manager(x)) (r3)

∀x∀y∀z locate_office(y,z)∧uses_office(x,y)→ works_in(x,z) (r4)

✶✾✺

N =

∀x∀y(supervises(x,y)∧manager(y))→⊥ (n1)

∀x∀y∀z(supervises(x,y)∧works_in(x,z)∧directs(y,z))→⊥ (n2)

∀x∀y∀z(works_in(x,y)∧works_in(x,z))→⊥ (n3)
Let us suppose the following set of facts F that represent explicit knowledge:

F =

directs(John,d1) (f1) directs(Tom,d1) (f2)
directs(Tom,d2) (f3) supervises(Tom,John) (f4)

works_in(John,d1) (f5) works_in(Tom,d1) (f6)
works_in(Carlo,Statistics) (f7) works_in(Luca,Statistics) (f8)
works_in(Jane,Statistics) (f9) works_in(Linda,Statistics) (f10)

uses_office(Linda,o1) (f11) locate_office(o1,Accounting) (f12)

Let F ⊆ F be a set of facts and R be a set of rules. An R-derivation of F in K is
a finite sequence 〈F0, ...,Fn〉 of sets of facts s.t F0 = F , and for all i ∈ {0, ...,n} there is a
rule ri = (Hi,Ci)∈R and a logical entailment from the Hi to Fi. For a set of facts F ⊆F

and a query Q and a set of rules R, we say F,R |= Q iff there exists an R-derivation
〈F0, ...,Fn〉 such that Fn |= Q. Given a set of facts F ⊆F and a set of rules R, the closure
of F with respect to R, denoted by ClR(F) is the minimal set of all the knowledge that
can be derived from a set of facts F by applying all the rules of R. Finally, we say that
a set of facts F ⊆ F and a set of rules R entail a fact f (and we write F,R |= f) iff the
closure of F by all the rules entails f (i.e. ClR(F) |= f).

Given a knowledge base K = (F ,R,N), a set F ⊆ F is said to be inconsistent

iff there exists a constraint n ∈ N such that F |= Hn, where Hn is the hypothesis of
the constraint n. A set of facts is consistent iff it is not inconsistent. Notice that (like in
classical logic) one can entail everything from an inconsistent set. A common solution [2,
12] is to construct maximal (with respect to set inclusion) consistent subsets of K . Such
subsets are called repairs and denoted by Repair(K). Once the repairs are computed,
different semantics can be used for query answering over the knowledge base. In this
paper we focus on (Intersection of Closed Repairs semantics) [2] and we will denote
ICR entailment as K |=ICR Q.

Example 2 The knowledge base in Example 1 is inconsistent because the set of facts

{ f1, f4, f6} ⊆ F is inconsistent since it violates the negative constraint n2. To be able to

reason in presence of inconsistency one has to construct first the repairs and intersect

their closure. The following is of the repairs:

A1 = {directs(John,d1), supervises(Tom,John), works_in(Linda,Statistic),
uses_office(Linda,o1), directs(Tom,d1), directs(Tom,d2), works_in(Carlo,Statistic),
works_in(Jane,Statistic), works_in(Luca,Statistic), emp(John), emp(Tom), emp(Carlo),
emp(Luca), emp(Jane), emp(Linda)}.

The intersection of all closed repairs is:
⋂

A∈Repair(K)) ClR(A)= {directs(Tom,d1), directs(Tom,d2), works_in(Carlo,Statistics),
works_in(Luca,Statistics), works_in(Jane,Statistics), emp(Carlo), emp(Jane), emp(Luca),
emp(Tom), emp(John), emp(Linda)}.

Observe that in the intersection of all closed repairs there is works_in(Luca,Statistics).
That means that works_in(Luca,Statistics) is ICR-entailed from the knowledge base.
Whereas, works_in(Linda,Statistics) is not ICR-entailed since the facts about Linda are
conflicting (because she works also for the department of Accounting).

✶✾✻

3. Argumentation Framework, Deepening and Clarification

In what follows we quickly recall the definition of argumentation framework in the con-
text of rule-based languages. We use the definition of argument of [8] and extend it to the
notions of deepened and clarified arguments. Given a knowledge base K = (F ,R,N),
the corresponding argumentation framework A FK is a pair (Arg,Att) where Arg is
the set of arguments that can be constructed from F and Att is an asymmetric binary re-
lation called attack defined over Arg×Arg. Given an argument a we denote by Supp(a)
the support of the argument and by Conc(a) the conclusion.

Example 3 (Argument) The following argument indicates that John is an employee be-

cause he directs department d1:

a = ({directs(John,d1)},{directs(John,d1),emp(John)},emp(John)).

Example 4 (Attack) Consider the argument a of Example 3, the following argument

b = ({supervises(Tom,John),works_in(Tom,d1)},supervises(Tom,John)∧
works_in(Tom,d1)) attacks a, because {supervises(Tom,John)∧works_in(Tom, d1),
directs(John,d1)} is R-inconsistent since it violates the constraint n2.

The results of [8] show the equivalence between sceptically acceptance under pre-
ferred semantics and ICR-entailment. Let us now propose functionalities that give the
User the possibility to manipulate arguments to gain clarity for query answering and
namely: deepening and clarification. Deepening aims at showing the reason why an ar-
gument attacks another. In our knowledge base the attack is justified by the violation of a
constraint. Put differently, an argument attacks another argument if the conclusion of the
former and the hypothesis of the latter are mutually exclusive. Thus deepening amounts
to explain the attack between two arguments by showing the violated constraint.

Definition 2 (Deepening D) Given two arguments a,b ∈ A . The mapping deepening

denoted by D is a total function from the set Att to 2N defined as follows: D(b,a) = {n|
1. n ∈ N and ,

2. ∃ f ∈ Supp(a) such that ClR({Conc(b), f}) |= Hn.

}
Note that Hn is the hypothesis of the constraint n.

Example 5 (Deepening) Consider the argument a of Example 3, the argument b =
({supervises(Tom,John) ,works_in(Tom,d1)}, supervises(Tom,John)∧
works_in(Tom,d1)) attacks a, hence deepening is D(b,a) = {∀x∀y∀z(supervises(x,y)∧
work_in(x,z)∧directs(y,z))→⊥}. This explains why the argument b attacks a.

The information carried by the argument would be more useful if the structure ex-
hibits the line of reasoning leading to the conclusion, called clarifying the argument.

Definition 3 (Clarifying C) Given an argument a ∈ A . The mapping clarification de-

noted by C is a total function from the set A to 2R such that: C(a= 〈F0, ...,Fn〉) = {r|r ∈
R s.t r is applicable to Fi and the application of r on Fi yields Fi+1 for all i ∈ {0, ...,n}}.

Definition 4 (Clarified Argument) Given an argument a ∈A . The corresponding clar-

ified argument Ca is a 3-tuple 〈Supp(a),C(a),Conc(a)〉 such that C(a)⊆R are the rules

used to derive the conclusion Conc(a).

✶✾✼

Example 6 (Clarification count. Example 3) A clarified version of the argument a

is Ca =({diretcs(John,d1)},{∀x∀d directs(x,d) → emp(x)},emp(John))} such that

Supp(Ca)= {directs(John,d1)}, C(Ca)= {∀x∀d directs(x,d)→ emp(x)} and Conc(Ca)=
emp(John).

4. Dialectical Explanation for Query Failure

In what follows, we describe a simple dialectical system of explanation based on the
work of [9]. Our system is custom-tailored for the problem of Query Failure Explanation

under ICR-semantics in inconsistent knowledge bases with rule-based language. Our di-

alectical explanation involves two parties: the User and the Reasoner. The User wants
to understand why the query is not ICR-entailed and the Reasoner provides a respond
aiming at showing the reason why the query is not ICR entailed. We model this explana-
tion through a dialogue composed of moves (speech acts) put forward by both the User

and the Reasoner. This dialogue is governed by rules (pre/post conditions rules, termi-
nation rules, success rules) that specify what type of moves should follow the other, the
conditions under which the dialogue terminates, and when and under which conditions
the explanation has been successfully achieved (success rules).

We denote by Arg+(Q) the set of all arguments that support the query Q, namely
a ∈ Arg+(Q) iff Conc(a) |= Q. In what follows we define types of moves that can be
used in the dialogue.

Definition 5 (Moves) A move is a 3-tuple m = 〈ID, I,ω〉 such that:

1. m is an explanation request, denoted by mERQ iff ID =User, I is a query Q and ω

is an argument supporting Q.

2. m is an explanation response, denoted by mERP iff ID=Reasoner, I is an argument

supporting Q and ω is an argument such that ω attacks I.

3. m is a follow-up question, denoted by mFQ iff ID =User, I is an argument and ω

is either Conc(I) or an argument ω1 that supports Q s.t (ω ,ω1) ∈ Att.

4. m is a follow-up answer, denoted by mFA iff ID = Reasoner, I is an argument and

ω is either a deepening D or a clarified argument C(I).

The explanation request mERQ = 〈User,Q,ω〉 is an explanation request made by the
User asking "why the query Q is not ICR-entailed while there is an argument ω as-

serts the entailment of Q", an explanation response mERP = 〈Reasoner,ω ,ω1〉 made by
the Reasoner is an explanation for the previous inquiry by showing that the argument
ω (that supports Q) is the subject of an attack made by ω1. The User also can ask
a follow-up question if the Reasoner provides an explanation. The follow-up question
mFQ = 〈User,ω1,ω〉 is a compound move, it can represent a need for deepening (the
User wants to know why the argument ω1 is attacking the argument ω) or the need for
clarification (how the argument ω1 comes to a certain conclusion). To distinguish them,
the former has ω = Conc(ω1) and the latter has ω as an argument. A follow-up answer
mFA = 〈Reasoner,ω1,ω

′
1〉 is also a compound move. Actually, it depends on the follow-

up question. It shows the argument ω1 that needs to be deepened (resp. clarified) and its
deepening (resp. clarification) by the deepening mapping D(ω1,ω) (resp. clarification
mapping C(ω)) in Definition 4 (resp. Definition 6). An example is provided afterward.

✶✾✽

In what follows we specify the structure of dialectical explanation and the rules that
have to be respected throughout the dialogue.

Definition 6 (Dialectical Explanation) Given a QFEP P . A dialectical explana-

tion Dexp for P is a non-empty sequence of moves 〈ms
1,m

s
2, ...,m

s
n〉 where s ∈

{ERQ,FQ,ERP,FA} and i ∈ {1, ...,n} such that:

1. The first move is always an explanation request m
ERQ

1 , we call it an opening.

2. s ∈ {ERQ,FQ} iff i is odd, s ∈ {ERP,FA} iff i is even.

3. For every explanation request m
ERQ

i = 〈User, Ii,ωi〉, Ii is the query Q to be ex-

plained and ωi is an argument supporting Q and for all m
ERQ

j s.t j < i ωi 6= ω j.

4. For every explanation response mERP
i = 〈Reasoner, Ii,ωi〉 s.t i ≥ 1, Ii = ωi−1 and

ωi = ω ′ s.t (ω ′, Ii) ∈ Att.

5. For every follow-up question m
FQ

i = 〈User, Ii,ωi〉 , i > 1, Ii = ωi−1 and ω is either

Ii−1 or Conc(ωi−1).

6. For every follow-up answer mFA
i = 〈Reasoner, Ii,ωi〉 , i > 1, Ii = Ii−1 and ωi =

D(Ii,ωi−1) or ω = C(Ii).

We denote by Arguser(Dexp) the set of all arguments put by the User in the dialogue.

Every dialogue has to respect certain rules (protocol). Theses rules organize the
way the Reasoner and the User should put the moves. For each move we specify the
conditions that have to be me for the move to be valid (preconditions). We also specify
the conditions that identify the next moves (postconditions).

Definition 7 (Pre/Post Condition Rules) Given a QFEP P and a dialectical explana-

tion Dexp for P . Then, Dexp has to respect the following rules:

Explanation request:

• Preconditions: The beginning of the dialogue or the last move of the Rea-

soner was either an explanation response or a follow-up answer.

• Postconditions: The next move must be an explanation answer.

Explanation response:

• Preconditions: The last move by the User was an explanation request.

• Postconditions: The next move must be either another explanation request (it

may implicitly means that the User had not understood the previous expla-

nation) or a follow-up question.

Follow-up question:

• Preconditions: The last move by the Reasoner was an explanation response

or this follow-up question is not the second in a row.

• Postconditions: The next move must be a follow-up answer.

Follow-up answer:

• Preconditions: The last move by the User was a follow-up question.

• Postconditions: The next move must be an explanation request (it may im-

plicitly means that the User had not understood the previous explanation).

✶✾✾

Beside the previous rules, there are termination rules that indicate the end of a di-
alectical explanation.

Definition 8 (Termination Rules) Given a QFEP P and a dialectical explanation Dexp

for P . Then, Dexp terminates when the User puts an empty explanation request m
ERQ

i =
〈User, /0, /0〉 or when ArgUser(Dexp) = Arg+(Q).

The rules in Definition 7 & 8 state that the Reasoner is always committed to re-
spond with an explanation response, the User then may indicate the end of the dialogue
by an empty explanation request (Definition 8) declaring his/her understanding, other-
wise starts another explanation request (this indicates that he/she has not understood the
last explanation) or asks a follow-up question, the User cannot ask more than two suc-
cessive follow-up questions. If the User asks a follow-up question then the Reasoner is
committed to a follow-up answer. When the User asks for another explanation he/she
cannot use an argument that has already been used. If the User ran out of arguments and
he/she has not yet understood, the dialogue ends (Definition 8) and the explanation is
judged unsuccessful. It is important to notice that when the Reasoner wants to answer the
User there may be more than one argument to chose. There are many “selection strate-
gies” that can be used in such case (for instance, the shortest argument, the least attacked
argument...etc), but their study is beyond the scope of the paper.

In what follows we elaborate more on the success and the failure of an explanation.

Definition 9 (Success Rules) Given a QFEP P and a dialectical explanation Dexp for

P . Then, Dexp is successful when it terminates with an empty explanation request m
ERQ

i =
〈User, /0, /0〉, otherwise it is unsuccessful.

A dialectical explanation is judged to be successful if the User terminates the dia-
logue voluntarily by putting an empty explanation request. If the User has used all ar-
guments supporting Q then he/she is forced to stop without indicating his/her under-
standing, in this case we consider the explanation unsuccessful. By virtue of the equiv-
alence between ICR-semantics and argumentation presented in Section 3, the existence
of response is always guaranteed. This property is depicted in the following proposition.

Proposition 1 (Existence of response) Given a QFEP P and a dialectical explanation

Dexp for P . Then, For every ms
i ∈ Dexp s.t s ∈ {ERQ,FQ} and 1 ≤ i ≤ |Dexp|, the next

move ms
i+1 s.t s ∈ {ERP,FA} always exists.

5. Conclusion

In this paper, we have presented a dialectical approach for explaining boolean conjunc-
tive queries failure, designated by Query Failure Explanation Problem (QFEP), in an in-
consistent ontological knowledge base where inconsistency is handled by inconsistency-
tolerant semantics (ICR) and issued from the set of facts. The introduced approach relies
on both (i) the relation between ontological knowledge base and logical argumentation
framework and (ii) the notions of argument deepening and clarifications. So, through a
dialogue, the proposed approach explains to the User how and why his/her query is not
entailed under ICR semantics.

✷✵✵

We currently investigate the explanation problem not only for Query Failure but
also for Query Answering. We have proposed a Query Explanation framework under the
CoGui editor[1] and plan to test the two approaches within the DUR-DUR ANR project
which investigates the use of argumentation in agri-food chains.

Acknowledgement Financial support from the French National Research Agency
(ANR) for the project DUR-DUR and ASPIQ (ANR-12-BS02-0003) is gratefully ac-
knowledged.

References

[1] A. Arioua, N. Tamani, and M. Croitoru. On conceptual graphs and explanation of query answering
under inconsistency. In N. Hernandez, R. Jaesche, and M. Croitoru, editors, Proceedings of the 2014

International Conference of Conceptual Structures (ICCS), volume LNAI 8577, pages 51–64. Springer,
2014.

[2] M. Bienvenu. On the complexity of consistent query answering in the presence of simple ontologies. In
Proc of AAAI, 2012.

[3] M. Bienvenu and R. Rosati. Tractable approximations of consistent query answering for robust ontology-
based data access. In Proceedings of IJCAI’13, pages 775–781. AAAI Press, 2013.

[4] A. Borgida, D. Calvanese, and M. Rodriguez-Muro. Explanation in the dl-lite family of description
logics. In R. Meersman and Z. Tari, editors, On the Move to Meaningful Internet Systems: OTM 2008,
volume 5332 of LNCS, pages 1440–1457. Springer Berlin Heidelberg, 2008.

[5] A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable query answer-
ing over ontologies. Web Semantics: Science, Services and Agents on the World Wide Web, 14:57–83,
2012.

[6] D. Calvanese, M. Ortiz, M. Šimkus, and G. Stefanoni. Reasoning about explanations for negative query
answers in dl-lite. Journal of Artificial Intelligence Research, 48:635–669, 2013.

[7] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial Intelligence,
171(5):286–310, 2007.

[8] M. Croitoru and S. Vesic. What can argumentation do for inconsistent ontology query answering? In
W. Liu, V. Subrahmanian, and J. Wijsen, editors, Scalable Uncertainty Management, volume 8078 of
LNCS, pages 15–29. Springer Berlin Heidelberg, 2013.

[9] Douglas Walton. A Dialogue System Specification for Explanation . Synthese, 182(3), 2011,, Volume
182(3):349–374, 2011.

[10] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial intelligence, 77(2):321–357, 1995.

[11] A. J. Garcia, C. I. Chesñevar, N. D. Rotstein, and G. R. Simari. Formalizing dialectical explanation
support for argument-based reasoning in knowledge-based systems. Expert Systems with Applications,
40(8):3233 – 3247, 2013.

[12] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant semantics for
description logics. In Proceedings of the Fourth International Conference on Web Reasoning and Rule

Systems, RR’10, pages 103–117, Berlin, Heidelberg, 2010. Springer-Verlag.
[13] T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Complexity of inconsistency-tolerant query answering

in datalog+/-. In R. Meersman, H. Panetto, T. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D. Leenheer,
and D. Dou, editors, Proceedings of the 12th International Conference on Ontologies, Databases, and

Applications of Semantics, September 10-11, 2013, volume 8185 of LNCS, pages 488–500. Springer,
2013.

[14] D. L. McGuinness and P. F. Patel-Schneider. Usability issues in knowledge representation systems. In
In Proc. of AAAI-98, pages 608–614, 1998.

[15] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data to
ontologies. In Journal on data semantics X, pages 133–173. Springer, 2008.

✷✵✶

An analysis of the SUDOC bibliographic knowledge

base from a link validity viewpoint

Léa Guizol*, Olivier Rousseaux**, Madalina Croitoru*,
Yann Nicolas**, Aline Le Provost**

*LIRMM (University of Montpellier II & CNRS), INRIA Sophia-Antipolis, France
**ABES, France

Abstract. In the aim of evaluating and improving link quality in bibliographical
knowledge bases, we develop a decision support system based on partitioning se-
mantics. The novelty of our approach consists in using symbolic values criteria
for partitioning and suitable partitioning semantics. In this paper we evaluate and
compare the above mentioned semantics on a real qualitative sample. This sam-
ple is issued from the catalogue of French university libraries (SUDOC), a bibli-
ographical knowledge base maintained by the University Bibliographic Agency
(ABES).

1 Introduction

Real World Context. The SUDOC (catalogue du Système Universitaire de Documen-
tation) is a large bibliographical knowledge base managed by ABES (Agence Bibli-
ographique de l’Enseignement Supérieur). The SUDOC contains bibliographic notices

(document descriptions ≈ 10.000.000), and authorship notices (person descriptions
≈ 2.000.000). An authorship notice possesses some attributes (ppn1, appellation set,
date of birth...). A bibliographic notice also possesses some attributes (title, ppn1, lan-
guage, publication date...) and link(s) to authorship notices. A link is labeled by a role

(as author, illustrator or thesis advisor) and means that the person described by the
authorship notice has participated as the labeled role to the document described by the
bibliographic notice.

One of the most important tasks for ABES experts is to reference a new book in
SUDOC. To this end, the expert has to register the title, number of pages, types of pub-
lication domains, language, publication date, and so on, in a new bibliographic notice.
This new bibliographic notice represents the physical books in the librarian hands which
he/she is registering. He/she also has to register people which participated to the book’s
creation (namely the contributors). In order to do that, for each contributor, he/she se-
lects every authorship notice (named candidates) which has an appellation similar to
the book contributor. Unfortunately, there is not that much information in authorship
notices because the librarian politics is to give minimal information, solely in order to
distinguish two authorship notices which have the same appellation, and nothing more
(they reference books, not people!). So the librarian has to look at bibliographic notices
which are linked to authorship notices candidates (the bibliography of candidates) in

1 A ppn identifies a notice.

✷✵✷

order to see whether the book in his/her hands seems to be a part of the bibliography
of a particular candidate. If it is the case, he/she links the new bibliographic notice to
this candidate and looks at the next unlinked contributor. If there is no good candidate,
he/she creates a new authorship notice to represent the contributor.

This task is fastidious because it is possible to have a lot of candidates for a single
contributor (as much as 27 for a contributor named “BERNARD, Alain”). This creates
errors, which in turn can create new errors since linking is an incremental process. In
order to help experts to repair erroneous links, we proposed two partitioning semantics

in [11] which enables us to detect erroneous links in bibliographic knowledge bases. A
partitioning semantics evaluates and compares partitions2.

Contribution. The contribution of this paper is to practically evaluate the results quality
of partitioning semantics [11] on a real SUDOC sample. We recall the semantics in
section 3, clearly explain on which objects and with which criteria the semantics have
been applied in section 2, and present qualitative results in section 4. We discuss the
results and conclude the paper in section 5.

2 Qualitative experiments

In this section, we first adapt the entity resolution problem3[4] to investigate link qual-
ity in SUDOC in section 2.1. This problem is known in literature under very different
names (as record linkage [16], data deduplication [2], reference reconciliation [14]...).
Then we define (section 2.3) and detail (section 2.4) criteria used in order to detect er-
roneous links in SUDOC. Those criteria are used on SUDOC subsets defined in section
2.2.

2.1 Contextual entities: from erroneous links to entity resolution

In order to detect and repair erroneous links, we represent SUDOC links into contex-

tual entity (the i contextual entity is denoted Nci). A contextual entity represents a
bibliographic notice Nbj from the viewpoint of one of its contributor, named the C
contributor of Nci and denoted C(Nci). The contextual entities are compared together
with an entity resolution method, in order to see which ones have a contributor repre-
senting a same real-word person. As explained in [8], traditional entity resolution meth-
ods cannot be directly applied. This entity resolution method is supposed to group (in
a same class of the created partition) the contextual entities such as their C contributor
represents a same real-word person, and to separate the other ones (to put them in dis-
tinct partition classes). A contextual entity Nci has several attributes. Most of them are
Nb(Nci) attributes (as title, publication date, publication language, publication domain
codes list) and others depend on the C contributor:

2 A partition P of an object set X is a set of classes (X subsets) such as each object of X is in
one and only one P class.

3 The entity resolution problem is the problem of identifying as equivalent two objects repre-
senting the same real-world entity.

✷✵✸

– role of the C contributor (there is a set of typed roles as “thesis_advisor”),
– list of the possible appellations of the C contributor. An appellation is composed of

a name and a surname, sometimes abbreviated (as “J.” for surname),
– list of contributors which are not C. For each of them, we have the identifier of the

authorship notice which represents it, and the role.

The publication language attribute is typed (for example, “eng” for English lan-
guage, “fre” for French language and so on). The publication date is most of the time
the publication year (“1984”). Sometimes information is missing and it only gives the
century or decade (“19XX” means that the document has been published last century).
A publication domain is not a describing string but a code with 3 digits which represent
a domain area.

Example 1 (Contextual entity attributes). The authorship notice of ppn 026788861,
which represents “CHRISTIE, Agatha” is linked as “author” to the bibliographic no-
tice of ppn 121495094, which represents “Evil under the sun” book. The contextual
entity which represents this links has the following attributes:

– title: “Evil under the sun”
– publication date: “2001”
– publication language: “eng”
– publication domain codes list: {} (they have not been given by a librarian)
– list of the possible appellations of the C contributor: {“CHRISTIE, Agatha”,“WEST-

MACOTT, Mary”,“MALLOWAN, Agatha”,“MILLER, Agathe Marie Clarissa”}
– role of the C contributor: “author”
– list of contributors which are not C: {} (there is no other contributors in this case)

Let Nci be the contextual entity identified by i. As any contextual entity, it has been
constructed because of a link between an authorship notice and a bibliographic notice,
which are respectively denoted Na(Nci) and Nb(Nci). We define two particular par-
titions: the initial one and the human one.

The initial partition (denoted Pi) of contextual entities is the one such as two
contextual entities Nci, Ncj are in a same class if and only if Na(Nci) = Na(Ncj).
This represents the original organization of links in SUDOC.

The human partition (denoted Ph) of contextual entities is a partition based on an
human expert’s advice: two contextual entities Nci, Ncj are in a same class if and only
if the expert thinks that their C contributor corresponds to a same real word person.

The goal of this paper’s work is to distinguish SUDOC subsets constructed as in the
following section 2.2 with or without erroneous links. We make the hypothesis that the
human partition has to be a best one (because it is the good one according to expert) and
that the initial partition has to not be a best partition except if Pi = Ph. So, partitioning
semantics are approved if Ph is a best partition according to the semantics, but not Pi.
Let us determine what is a SUDOC contextual entities subset to partition.

2.2 Selecting contextual entities on appellation

A SUDOC subset O selected for an appellation A contains all contextual entities which
represent a link between any SUDOC bibliographic notice and a SUDOC authorship

✷✵✹

notice which has an appellation close to the appellation A. To select a SUDOC subset
for a given appellation (as “BERNARD, Alain”) is a way to separate SUDOC in sub-
sets which can be treated separately, This is also a simulation of how experts select a
SUDOC subset to work on it, as explained in part 1. In the following, we will only be
interested into partitioning SUDOC subsets selected for an appellation. Let us define
and describe criteria used in order to compare contextual entities together.

2.3 Symbolic criteria

In the general case, a criterion is a function which compares two objects and returns a
comparison value. Let c be a criterion, and oi, oj are two objects. We denote c(oi, oj),
the comparison values according to c between oi and oj .

In this work case, we use symbolic criteria which can return always, never,
neutral, a closeness value or a farness value as comparison value. always (respec-
tively never) means that objects have to be in a same (respectively distinct) partition
class2. Closeness (respectively farness) values are more or less intense and far from the
neutral value, meaning that objects should be in a same (respectively distinct) partition
class. Closeness (respectively farness) values are strictly ordered between themselves,
specific to a criterion and less intense than always (respectively never). Those values
are denoted +,++ and so on (respectively −,−−) such as the more + (respectively −)
symbols they have, the more intense and the further from neutral the value is. For a
criterion, always is more intense than + + + + +, which is more intense than ++
which is more intense than +. + is only more intense than neutral. neutral means
that the criterion has no advice about whether to put objects in a same class or not.

2.4 Criteria for detecting link issues in SUDOC

In order to simulate human expert behaviour, nine symbolic criteria have been develo-
ped. Some are closeness-criteria4 (title, otherContributors), farness-criteria4 (thesis,
thesisAdvisor, date, appellation, language) and others are both (role, domain).
Each of these criteria give the neutral comparison value when a required attribute of a
compared contextual entity is unknown and by default. Let Nci, Ncj be two contextual
entities.

– appellation criterion is a particular farness-criterion. Indeed, it compares appel-
lation lists to determine which contextual entities can not have a same contribu-
tor C. When it is certain (as when appellations are “CONAN DOYLE, Arthur” and
“CHRISTIE, Agatha”), it gives a never comparison value, which forbids other cri-
teria to compare the concerned authorship notices together. This is also used to
divide SUDOC in subsets which should be evaluated separately.

– title criterion is a closeness-criterion. This criterion can give an always value and
3 closeness comparison values. It is based on a Levenshtein comparison [13]. It is
useful to determine which contextual entities represent a same work, edited several
times. This is used by the thesis criterion.

4 A closeness-criterion (respectively a farness-criterion) c is a criterion which can give a close-
ness or always (respectively a farness or never) comparison value to two objects.

✷✵✺

– otherContributors criterion is a closeness-criterion. It counts the others contribu-
tors in common, by comparing their authorship notices. One (respectively several)
other common contributor gives a + (respectively ++) comparison value.

– thesis criterion is a farness-criterion. thesis(Nci, Ncj) = − means that Nci, Ncj
are contextual entities which represent distinct thesis (recognized thanks to the title
criterion) from their “author” point of view. thesis(Nci, Ncj) = −− means that
Nci, Ncj have also been submitted simultaneously.

– thesisAdvisor criterion is a farness-criterion. thesisAdvisor(Nci, Ncj) = −−
(respectively −) means that Nci and Ncj have a same contributor C if and only
if this contributor has supervised a thesis before (respectively two years after) sub-
mitting his/her own thesis.

– date criterion is a farness-criterion. For 100 (respectively 60) years at least between
publication dates, it gives a −− (respectively −) comparison value.

– language criterion is a farness-criterion. When publication languages are distinct
and none of them is English, language returns a − value.

– role criterion returns + when contributor C roles are the same (except for current
roles as “author”, “publishing editor” or “collaborator”), or − when they are distinct
(except for some pairs of roles as “thesis advisor” and “author”).

– domain criterion compares list of domain codes. Domain codes are pair-wise com-
pared. domain(Nci, Ncj) gives closeness (respectively farness) comparison val-
ues if every Nci domain codes is close (respectively far) from a Ncj domain code
and the other way around.

Let us resume global and local semantics before to evaluate their relevance with
respect to the above mentioned criteria on real SUDOC subsets.

3 Partitioning semantics

Let us summarize partitioning semantics detailed in [11]. A partitioning semantics eval-
uates and compares partitions on a same object set. The following partitioning seman-
tics (in sections 3.1 and 3.2) are based on symbolic criteria.

3.1 Global semantics

In this section we define what is a a best partition on the object set O (with respect
to the C criteria set) according to global semantics. A partition has to be valid5[2] in
order to be a best one. A partition P has also an intra value and an inter value per
criterion of C. The intra value of a criterion c depends of the most intense (explained
in section 2.3) farness or never value of c such as it compares two objects in a same
class (should not be the case according to c). In the same way, the inter value of c

depends of the most intense closeness or always value of c such as it compares two

5 A partition P is valid if and only if there is no two objects oi,oj such as: (i) they are in a
same class of P and they never have to be together according to a criterion (expressed by
never comparison value), or (ii) they are in distinct P classes but always have to be together
according to at least a criterion.

✷✵✻

objects in distinct P classes. The inter value measures proximity between classes and
the intra value measures distance between objects in a class [10]. We note that the
neutral comparison value does not influence partition values.

A partition P on an object set O is a best partition according to a criteria set C if
P is valid and P has a best value, meaning that it is impossible to improve an inter or
intra value of any criterion C ∈ C without decreasing inter or intra value of a criterion
C ′ ∈ C (it is a Pareto equilibrium [15]).

id title date domains [...] appellations
Nc1 “Letter to a Christian nation” religion “HARRIS, Sam”
Nc2 “Surat terbuka untuk bangsa kristen” 2008 religion “HARRIS, Sam”
Nc3 “The philosophical basis of theism” 1883 religion “HARRIS, Samuel”
Nc4 “Building pathology” 2001 building “HARRIS, Samuel Y.”
Nc5 “Building pathology” 1936 building “HARRIS, Samuel Y.”
Nc6 “Aluminium alloys 2002” 2002 physics “HARRIS, Sam J.”

Table 1. Example of objects set

Example 2 (Global semantics evaluating a partition on an object set O).

Let us represent an object set O = {Nc1, Nc2, Nc3, Nc4, Nc5, Nc6} in table 1.
Each object is a contextual entity and represents a link between a bibliographic notice
and an authorship notice (here, an “author” of a book). Id is the object identity. For each
of them, title, date of publication, publication domain and appellation of the contributor
C are given as attributes.

Nc1 and Nc2 represent a same person, as Nc4, Nc5 does. The human partition on
O is: Ph = {{Nc1, Nc2}, {Nc3}, {Nc4, Nc5}, {Nc6}}. This partition, according to
global semantics and with respect to the criteria set C = {appellation, title, domain,
date} (criteria are detailed in section 2.4) is not coherent with some of C criteria. The
Ph value is such that:

– inter classes domain value is very bad (always) because Nc1 and Nc2 are in
distinct classes but are both about religion.

– intra classes date value is bad (−−) because Nc4 and Nc5 are in a same class, but
with publication dates distant of more than 60 years and less than 100 years.

Ph has a best partition value because increasing an inter or intra criterion value (as
inter domain value by merging {Nc1, Nc2} and {Nc3} classes) is not possible without
decreasing an other inter or intra criterion value (Nc2 and Nc3 have publication dates
distant more than 100 years, so put them in a same class will decrease date intra value).

3.2 Local semantics

The local semantics, when evaluating a partition on an object set O with respect to
a criteria set C, gives a partition value per parts of O. Parts of O can be coherent or
incoherent. An incoherent part Oa is a subset of O such as:

✷✵✼

– there is no c(oi, oj), an always or closeness value with Nci ∈ O−Oa, Ncj ∈ Oa,
and c ∈ C;

– there is no subset of Oa for which the previous property is true;
– there is b(ok, ol), a farness or never value such as ok, ol ∈ Oa, and b ∈ C.

An incoherent part partition value is based on every comparison between objects which
are in it. The coherent part of an object set O is a O subset containing every O object
which is not in a incoherent part of O. The coherent part partition value of O is based
on every comparison between objects which are not in the same incoherent part of O.

Example 3 (Incoherent and coherent parts).

Let us identify incoherent parts of the object set O according to C given in example
2. Nc1, Nc2, Nc3 are close together due to domain criterion: they are about religion.
Nc1, Nc2, Nc3 are not close to Nc4, Nc5 or Nc6 according to any of C criteria and
Nc2, Nc3 are far according to date criterion (date(Nc2, Nc3) = −−) so {Nc1, Nc2,
Nc3} is an incoherent part of O. The same way, Nc4, Nc5 are close together according
to title and domain criteria, but not close to Nc6. Nc4, Nc5 are also far according to
date criterion (date(Nc4, Nc5) = −) so {Nc4, Nc5} is also an incoherent part.

So, there are 2 incoherent parts in O: {Nc1, Nc2, Nc3} and {Nc4, Nc5}. Nc6 is
not in an incoherent part so Nc6 is in the coherent part of O.

A partition on O is a best partition according to local semantics if it has best parti-
tion values for each incoherent part of O and for the O coherent part.

Example 4 (Local semantics evaluating a partition on an object sets O).

In example 3, we identified the incoherent parts of the object set O = {Nc1, Nc2,
Nc3, Nc4, Nc5, Nc6} according to the criteria set C = {appellation, title, domain,
date}.

The partition on O given in example 2: is Ph = {{Nc1, Nc2}, {Nc3}, {Nc4, Nc5},
{Nc6}}. According to local semantics, Ph has 3 values, one for the coherent part and
2 for incoherent parts (1 per incoherent part):

– a perfect value for the coherent part of O;
– the incoherent part {Nc1, Nc2, Nc3} has a very bad inter value for the domain

criterion (always);
– the incoherent part {Nc4, Nc5} has an bad intra value for the date criterion (−−);

This semantics enables us to split an object set into several parts which can be
evaluated separately. We explained local and global semantics in this part, which are
a way to solve the entity resolution problem. Let us evaluate them on a real SUDOC
sample.

4 Results

ABES experts have selected 537 contextual entity divided into 7 SUDOC subsets se-
lected for an appellation. The table 2 shows for each SUDOC subset selected for an
appellation A (please see section 2.2):

✷✵✽

1. |Nc| is the number of contextual entities which represent a link between a biblio-
graphic notice and an authorship notice which has a close appellation to A,

2. |Na| is the number of authorities notices according to human partitions (corre-
sponding to class number of human partition),

3. “Ph best” (respectively “Pi best”) shows whether the human partition Ph (respec-
tively initial partition Pi) has a best value according to global semantics and with
respect to all 9 criteria detailed in part 2.4,

4. Ph ≻ Pi is true if and only if Ph has a better value than Pi.

Appellation |Nc| |Na| Ph best Pi best Ph ≻ Pi Ph’ best Repairs
“BERNARD, Alain” 165 27 no not valid yes yes
“DUBOIS, Olivier” 27 8 no no yes no 1
“LEROUX, Alain” 59 6 no not valid yes yes

“ROY, Michel” 52 9 yes not valid yes yes
“NICOLAS, Maurice” 20 3 yes no yes yes

“SIMON, Alain” 63 13 no no yes no 1
“SIMON, Daniel” 151 16 no not valid yes yes

Table 2. Human and initial partitions with respect to 9 criteria and global semantics

Local semantics, has the same results than global semantics on this sample.
For global semantics, Pi is never a best partition. 5 times out of 7, Ph does not have

a best value (each time, it is due to the domain and language criteria, and two times
thesisAdvisor is also involved), but it is all the time valid and better than Pi, which
is encouraging for erroneous link detection. Erroneous links are particularly obvious
when Pi is not even valid (4 times out of 7). It is due to the title criterion detailed in
part 2.4. We regret that Ph is not all the time a best partition, but the global semantics
is able to distinguish Pi from Ph in 5 cases out of 7: when Pi is not valid, or when Ph

is a best partition but not Pi.
Because the domain and language criteria often considers that Ph is not a good

enough partition, Ph was also evaluated for global semantics according to all cri-
teria without domain and language (shown in table 2 in column “Ph’ best”) and
that increases the human partition which obtains a best value in 3 more cases (for
“BERNARD, Alain”, “SIMON, Daniel” and “LEROUX, Alain” appellations). This tells
us that domain and language criteria are not reasonably accurate.

In order to evaluate if Ph is far from having a best partition value, we enumerate
the number of repairs to transform Ph′ into a partition Ph′′ which has a best value
according to all criteria except domain and language. We show this repair number in
the “Repairs” column of table 2. An atomic repair could be:

– merging two partition classes (corresponds to merging two contextual entities which
represent a same real word person), or

✷✵✾

– splitting a partition class in two classes (corresponds to separate books which are
attributed to a same real word person but belong to two distinct real word persons).

We can see that only a few repairs are needed compared to the number of classes
(corresponding to |Na| column in the table): 1 repair for “DUBOIS, Olivier” and for
“BERNARD, Alain” appellations.

Let us highlight that observing human partition values has permitted to detect and

correct an erroneous link (for “ROY, Michel” appellation) in the human reference set,
validated with experts. The global semantics does not always consider that the human
partition is a best partition, but in the worst case the human partition is very close
to be one according to repairs number, and global semantics allow us to detect that
initial partitions are much worse than human partitions. This last point is encouraging.
This means that the semantics can also be useful to help in criteria tuning, by showing
which criteria are bad according to human partitions, and for which authorship notices
comparison. For example, the fact that the human partition value is often bad according
to the domain criterion shows that this criterion is actually not an accurate criterion.
Let us talk about other entity resolution methods and conclude.

5 Discussion

The entity resolution problem [4][16][14][6] is the problem of identifying as equivalent
two objects representing the same real-world entity. The causes of such mismatch can
be due to homonyms (as in people with the same name), errors that occurred at data
entry (like “Léa Guizo” for “Léa Guizol”), missing attributes (e.g publication date =
XXXX), abbreviations (“L. Guizol”) or attributes having different values for two ob-
jects representing the same entity (change of address).

The entity resolution problem can be addressed as a rule based pairwise comparison
rule approach. Approaches have been proposed in literature [12] using a training pairs
set for learning such rules. Rules can be then be chained using different constraints:
transitivity [3], exclusivity [12] and functional dependencies [1] [9].

An alternative method for entity resolution problem is partitioning (hierarchical par-
titioning [5], closest neighbor-based method [7] or correlation clustering [3]). Our work
falls in this last category. Due to the nature of treating criteria values, the closest ap-
proach to our semantics are [3] and [2]. We distinguish ourself to [3] and [2] because
of (1) the lack of neutral values in these approaches, (2) the numerization of symbolic
values (numerically aggregated into −1 and +1 values), and (3) the use of numerical
aggregation methods on these values.

Conclusion. In this paper we proposed a practical evaluation of the global and local
semantics proposed in [11]. The conclusions of this evaluation are:

– For SUDOC subsets selected by appellation, both semantics are effective to dis-
tinguish a human partition from the initial partition; however it is not perfect with
respect to our set of criteria (if the human partition is not a best partition, it has a
close value).

– Both semantics could be useful to detect meaningless criteria.

✷✶✵

As immediate next steps to complete this our work we mention using global or local
semantics to improve implemented criteria.

Acknowledgements This work has been supported by the Agence Nationale de la Recherche
(grant ANR-12-CORD-0012). We are thankful to Mickaël Nguyen for his support.

References

1. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data ware-
houses. In Proceedings of the 28th international conference on Very Large Data Bases,
VLDB ’02, pages 586–597. VLDB Endowment, 2002.

2. A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with constraints using dedupalog.
In Proceedings of the 25th International Conference on Data Engineering (ICDE), pages
952–963, 2009.

3. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. volume 56, pages 89–113.
Springer, 2004.

4. I. Bhattacharya and L. Getoor. Entity Resolution in Graphs, pages 311–344. John Wiley &
Sons, Inc., 2006.

5. M. Bilenko, S. Basil, and M. Sahami. Adaptive product normalization: Using online learn-
ing for record linkage in comparison shopping. In Data Mining, Fifth IEEE International

Conference on, pages 8–pp. IEEE, 2005.
6. P. Bouquet, H. Stoermer, and B. Bazzanella. An entity name system (ens) for the semantic

web. In Proceedings of the 5th European semantic web conference on The semantic web:

research and applications, ESWC’08, pages 258–272, Berlin, Heidelberg, 2008. Springer-
Verlag.

7. S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy duplicates. In Data

Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on, pages 865–
876. IEEE, 2005.

8. M. Croitoru, L. Guizol, and M. Leclère. On Link Validity in Bibliographic Knowledge
Bases. In IPMU’2012: 14th International Conference on Information Processing and Man-

agement of Uncertainty in Knowledge-Based Systems, volume Advances on Computational
Intelligence, pages 380–389, Catania, Italie, July 2012. Springer.

9. W. Fan. Dependencies revisited for improving data quality. In Proceedings of the twenty-

seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 159–170. ACM, 2008.

10. A. Guénoche. Partitions optimisées selon différents critères: évaluation et comparaison.
Mathématiques et sciences humaines. Mathematics and social sciences, (161), 2003.

11. L. Guizol, M. Croitoru, and M. Leclere. Aggregation semantics for link validity. AI-2013:

Thirty-third SGAI International Conference on Artificial Intelligence, page to appear, 2013.
12. R. Gupta and S. Sarawagi. Answering table augmentation queries from unstructured lists on

the web. Proceedings of the VLDB Endowment, 2(1):289–300, 2009.
13. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. In

Soviet physics doklady, volume 10, page 707, 1966.
14. F. Saïs, N. Pernelle, and M.-C. Rousset. Reconciliation de references : une approche logique

adaptee aux grands volumes de donnees. In EGC, pages 623–634, 2007.
15. S. Wang. Existence of a pareto equilibrium. Journal of Optimization Theory and Applica-

tions, 79(2):373–384, 1993.
16. W. E. Winkler. Overview of record linkage and current research directions. Technical report,

BUREAU OF THE CENSUS, 2006.

✷✶✶

✷✶✷

❇✐❜❧✐♦❣r❛♣❤②

❬✶❪ ▲✳ ❆♠❣♦✉❞✱ ▲✳ ❇♦❞❡♥st❛✛✱ ▼✳ ❈❛♠✐♥❛❞❛✱ P✳ ▼❝❇✉r♥❡②✱ ❙✳ P❛rs♦♥s✱
❍✳ Pr❛❦❦❡♥✱ ❏✳ ❱❡❡♥❡♥✱ ❛♥❞ ●✳ ❱r❡❡s✇✐❥❦✳ ❋✐♥❛❧ r❡✈✐❡✇ ❛♥❞ r❡♣♦rt ♦♥ ❢♦r♠❛❧
❛r❣✉♠❡♥t❛t✐♦♥ s②st❡♠✳❞❡❧✐✈❡r❛❜❧❡ ❞✷✳✻ ❛s♣✐❝✳ ❚❡❝❤♥✐❝❛❧ r❡♣♦rt✱ ✷✵✵✻✳

❬✷❪ ▲✳ ❆♠❣♦✉❞ ❛♥❞ ❈✳ ❈❛②r♦❧✳ ■♥❢❡rr✐♥❣ ❢r♦♠ ✐♥❝♦♥s✐st❡♥❝② ✐♥ ♣r❡❢❡r❡♥❝❡✲❜❛s❡❞
❛r❣✉♠❡♥t❛t✐♦♥ ❢r❛♠❡✇♦r❦s✳ ❏♦✉r♥❛❧ ♦❢ ❆✉t♦♠❛t❡❞ ❘❡❛s♦♥✐♥❣✱ ✷✾ ✭✷✮✿✶✷✺✕
✶✻✾✱ ✷✵✵✷✳

❬✸❪ ▲✳ ❆♠❣♦✉❞ ❛♥❞ ❍✳ Pr❛❞❡✳ ❘❡❛❝❤✐♥❣ ❛❣r❡❡♠❡♥t t❤r♦✉❣❤ ❛r❣✉♠❡♥t❛t✐♦♥✿ ❛
♣♦ss✐❜❧✐st✐❝ ❛♣♣r♦❛❝❤✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✾t❤ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥
t❤❡ Pr✐♥❝✐♣❧❡s ♦❢ ❑♥♦✇❧❡❞❣❡ ❘❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ ❘❡❛s♦♥✐♥❣✱ ♣❛❣❡s ✶✼✺✕✶✽✷✱
✷✵✵✹✳

❬✹❪ ❆✳ ❆r✐♦✉❛✱ ◆✳ ❚❛♠❛♥✐✱ ❛♥❞ ▼✳ ❈r♦✐t♦r✉✳ ❖♥ ❝♦♥❝❡♣t✉❛❧ ❣r❛♣❤s ❛♥❞ ❡①♣❧❛♥❛✲
t✐♦♥ ♦❢ q✉❡r② ❛♥s✇❡r✐♥❣ ✉♥❞❡r ✐♥❝♦♥s✐st❡♥❝②✳ ■♥ ◆✳ ❍❡r♥❛♥❞❡③✱ ❘✳ ❏❛❡s❝❤❡✱
❛♥❞ ▼✳ ❈r♦✐t♦r✉✱ ❡❞✐t♦rs✱ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✷✵✶✹ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r✲
❡♥❝❡ ♦❢ ❈♦♥❝❡♣t✉❛❧ ❙tr✉❝t✉r❡s ✭■❈❈❙✮✱ ✈♦❧✉♠❡ ▲◆❆■ ✽✺✼✼✱ ♣❛❣❡s ✺✶✕✻✹✳
❙♣r✐♥❣❡r✱ ✷✵✶✹✳

❬✺❪ ❆✳ ❆r✐♦✉❛✱ ◆✳ ❚❛♠❛♥✐✱ ▼✳ ❈r♦✐t♦r✉✱ ❛♥❞ P✳ ❇✉❝❤❡✳ ◗✉❡r② ❢❛✐❧✉r❡ ❡①♣❧❛✲
♥❛t✐♦♥ ✐♥ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❜❛s❡s ✉s✐♥❣ ❛r❣✉♠❡♥t❛t✐♦♥✳ ■♥ Pr♦❝✳ ♦❢
❈❖▼▼❆ ✷✵✶✹✱ ✷✵✶✹ ✭❚♦ ❛♣♣❡❛r✮✳

❬✻❪ ❋✳ ❇❛❛❞❡r✱ ❙✳ ❇r❛♥❞t✱ ❛♥❞ ❈✳ ▲✉t③✳ P✉s❤✐♥❣ t❤❡ ❡❧ ❡♥✈❡❧♦♣❡✳ ■♥ Pr♦❝✳ ♦❢
■❏❈❆■ ✷✵✵✺✱ ✷✵✵✺✳

❬✼❪ ❏✳✲❋✳ ❇❛❣❡t✱ ▼✳ ❈r♦✐t♦r✉✱ ❆✳ ●✉t✐❡rr❡③✱ ▼✳ ▲❡❝❧❡r❡✱ ❛♥❞ ▼✳✲▲✳ ▼✉❣♥✐❡r✳
❚r❛♥s❧❛t✐♦♥s ❜❡t✇❡❡♥ r❞❢✭s✮ ❛♥❞ ❝♦♥❝❡♣t✉❛❧ ❣r❛♣❤s✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ■❈❈❙
✷✵✶✵✱ ♣❛❣❡s ✷✽✕✹✶✱ ✷✵✶✵✳

❬✽❪ ❏✳✲❋✳ ❇❛❣❡t✱ ▼✳ ❈r♦✐t♦r✉✱ ❛♥❞ ❇✳ P❛✐✈❛ ▲✐♠❛ ❞❛ ❙✐❧✈❛✳ ❆❧❛s❦❛ ❢♦r ♦♥t♦❧♦❣②
❜❛s❡❞ ❞❛t❛ ❛❝❝❡ss✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ❊❙❲❈ ✷✵✶✹ ✭❙❛t❡❧❧✐t❡ ❊✈❡♥ts✮✱ ♣❛❣❡s
✶✺✼✕✶✻✶✱ ✷✵✶✸✳

❬✾❪ ❙✳ ❇❡♥❢❡r❤❛t✱ ❉✳ ❉✉❜♦✐s✱ ❛♥❞ ❍✳ Pr❛❞❡✳ ❆r❣✉♠❡♥t❛t✐✈❡ ✐♥❢❡r❡♥❝❡ ✐♥ ✉♥❝❡r✲
t❛✐♥ ❛♥❞ ✐♥❝♦♥s✐st❡♥t ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✾t❤ ❈♦♥❢❡r❡♥❝❡
♦♥ ❯♥❝❡rt❛✐♥t② ✐♥ ❆rt✐✜❝✐❛❧ ✐♥t❡❧❧✐❣❡♥❝❡ ✭❯❆■✬✾✸✮✱ ♣❛❣❡s ✹✶✶✕✹✶✾✱ ✶✾✾✸✳

✷✶✸

❬✶✵❪ P✳ ❇❡s♥❛r❞ ❛♥❞ ❆✳ ❍✉♥t❡r✳ ❊❧❡♠❡♥ts ♦❢ ❆r❣✉♠❡♥t❛t✐♦♥✳ ❚❤❡ ▼■❚ Pr❡ss✱
✷✵✵✽✳

❬✶✶❪ ▼✳ ❇✐❡♥✈❡♥✉✳ ❖♥ t❤❡ ❝♦♠♣❧❡①✐t② ♦❢ ❝♦♥s✐st❡♥t q✉❡r② ❛♥s✇❡r✐♥❣ ✐♥ t❤❡
♣r❡s❡♥❝❡ ♦❢ s✐♠♣❧❡ ♦♥t♦❧♦❣✐❡s✳ ■♥ Pr♦❝ ♦❢ ❆❆❆■✱ ✷✵✶✷✳

❬✶✷❪ ❉✳ ❇♦✉②ss♦✉✱ ❉✳ ❉✉❜♦✐s✱ ▼✳ P✐r❧♦t✱ ❛♥❞ ❍✳ Pr❛❞❡✳ ❉❡❝✐s✐♦♥✲♠❛❦✐♥❣ ♣r♦❝❡ss
✕ ❈♦♥❝❡♣ts ❛♥❞ ▼❡t❤♦❞s✳ ❲✐❧❡②✱ ✷✵✵✾✳

❬✶✸❪ ❉✳ ❈❛❧✈❛♥❡s❡✱ ●✳ ❉❡ ●✐❛❝♦♠♦✱ ❉✳ ▲❡♠❜♦✱ ▼✳ ▲❡♥③❡r✐♥✐✱ ❛♥❞ ❘✳ ❘♦s❛t✐✳
❚r❛❝t❛❜❧❡ r❡❛s♦♥✐♥❣ ❛♥❞ ❡✣❝✐❡♥t q✉❡r② ❛♥s✇❡r✐♥❣ ✐♥ ❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝s✿ ❚❤❡
❞❧✲❧✐t❡ ❢❛♠✐❧②✳ ❏✳ ❆✉t♦♠✳ ❘❡❛s♦♥✐♥❣✱ ✸✾✭✸✮✿✸✽✺✕✹✷✾✱ ✷✵✵✼✳

❬✶✹❪ ❉✳ ❈❛❧✈❛♥❡s❡✱ ●✳ ❉✳ ●✐❛❝♦♠♦✱ ❉✳ ▲❡♠❜♦✱ ▼✳ ▲❡♥③❡r✐♥✐✱ ❛♥❞ ❘✳ ❘♦s❛t✐✳ ❉❧✲
❧✐t❡✿ ❚r❛❝t❛❜❧❡ ❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝s ❢♦r ♦♥t♦❧♦❣✐❡s✳ ■♥ ❆♠❡r✐❝❛♥ ❆ss♦❝✐❛t✐♦♥
❢♦r ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡✱ ♣❛❣❡s ✻✵✷✕✻✵✼✱ ✷✵✵✺✳

❬✶✺❪ ▼✳ ❈❛♠✐♥❛❞❛ ❛♥❞ ▲✳ ❆♠❣♦✉❞✳ ❖♥ t❤❡ ❡✈❛❧✉❛t✐♦♥ ♦❢ ❛r❣✉♠❡♥t❛t✐♦♥ ❢♦r✲
♠❛❧✐s♠s✳ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡ ❏♦✉r♥❛❧✱ ✶✼✶ ✭✺✲✻✮✿✷✽✻✕✸✶✵✱ ✷✵✵✼✳

❬✶✻❪ ▼✳ ❈❤❡✐♥ ❛♥❞ ▼✳ ▼✉❣♥✐❡r✳ ●r❛♣❤✲❜❛s❡❞ ❑♥♦✇❧❡❞❣❡ ❘❡♣r❡s❡♥t❛t✐♦♥✿ ❈♦♠✲
♣✉t❛t✐♦♥❛❧ ❋♦✉♥❞❛t✐♦♥s ♦❢ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✳ ❙♣r✐♥❣❡r✱ ✷✵✵✾✳

❬✶✼❪ ▼✳ ❈❤❡✐♥✱ ▼✳✲▲✳ ▼✉❣♥✐❡r✱ ❛♥❞ ▼✳ ❈r♦✐t♦r✉✳ ❱✐s✉❛❧ r❡❛s♦♥✐♥❣ ✇✐t❤ ❣r❛♣❤✲
❜❛s❡❞ ♠❡❝❤❛♥✐s♠s✿ t❤❡ ❣♦♦❞✱ t❤❡ ❜❡tt❡r ❛♥❞ t❤❡ ❜❡st✳ ❑♥♦✇❧❡❞❣❡ ❊♥❣✳
❘❡✈✐❡✇✱ ✷✽✭✸✮✿✷✹✾✕✷✼✶✱ ✷✵✶✸✳

❬✶✽❪ ❙✳ ❈♦❧✉❝❝✐✱ ❚✳ ❉✳ ◆♦✐❛✱ ❆✳ ❘❛❣♦♥❡✱ ▼✳ ❘✉t❛✱ ❯✳ ❙tr❛❝❝✐❛✱ ❛♥❞ ❊✳ ❚✐♥❡❧❧✐✳
❙❡♠❛♥t✐❝ ❲❡❜ ■♥❢♦r♠❛t✐♦♥ ▼❛♥❛❣❡♠❡♥t✱ ❝❤❛♣t❡r ✶✾ ✿ ■♥❢♦r♠❛t✐✈❡ ❚♦♣✲❦
r❡tr✐❡✈❛❧ ❢♦r ❛❞✈❛♥❝❡❞ s❦✐❧❧ ♠❛♥❛❣❡♠❡♥t✱ ♣❛❣❡s ✹✹✾✕✹✼✻✳ ❘✳ ❉❡ ❱✐r❣✐❧✐♦ ❡t
❛❧✳✱ s♣r✐♥❣❡r✲✈❡r❧❛❣ ❜❡❧✐♥ ❤❡✐❞❡❧❜❡r❣ ❡❞✐t✐♦♥✱ ✷✵✶✵✳

❬✶✾❪ ▼✳ ❈r♦✐t♦r✉✱ ❊✳ ❈♦♠♣❛t❛♥❣❡❧♦✱ ❛♥❞ ❈✳ ▼❡❧❧✐s❤✳ ❍✐❡r❛r❝❤✐❝❛❧ ❦♥♦✇❧❡❞❣❡
✐♥t❡❣r❛t✐♦♥ ✉s✐♥❣ ❧❛②❡r❡❞ ❝♦♥❝❡♣t✉❛❧ ❣r❛♣❤s✳ ■♥ Pr♦❝ ♦❢ ■❈❈❙ ✷✵✵✺✱ ♣❛❣❡s
✷✻✼✕✷✽✵✳

❬✷✵❪ ▼✳ ❈r♦✐t♦r✉✱ ❈✳ ❈r♦✐t♦r✉✱ ❛♥❞ P✳ ▲❡✇✐s✳ ❇✐❞✢♦✇✿ ❛ ♥❡✇ ❣r❛♣❤✲❜❛s❡❞ ❜✐❞✲
❞✐♥❣ ❧❛♥❣✉❛❣❡ ❢♦r ❝♦♠❜✐♥❛t♦r✐❛❧ ❛✉❝t✐♦♥s✳ ■♥ Pr♦❝✳ ♦❢ ❊❈❆■ ✷✵✵✽✱ ♣❛❣❡s
✽✼✶✕✽✼✷✱ ✷✵✵✽✳

❬✷✶❪ ▼✳ ❈r♦✐t♦r✉✱ ❇✳ ❍✉✱ ❙✳ ❉❛s❤♠❛♣❛tr❛✱ P✳ ▲❡✇✐s✱ ❉✳ ❉✉♣♣❧❛✇✱ ❛♥❞ ▲✳ ❳✐❛♦✳
❆ ❝♦♥❝❡♣t✉❛❧ ❣r❛♣❤ ❞❡s❝r✐♣t✐♦♥ ♦❢ ♠❡❞✐❝❛❧ ❞❛t❛ ❢♦r ❜r❛✐♥ t✉♠♦✉r ❝❧❛ss✐✜✲
❝❛t✐♦♥✳ ■♥ Pr♦❝ ♦❢ ■❈❈❙ ✷✵✵✼✱ ✶✹✵✲✶✺✸✳

❬✷✷❪ ▼✳ ❈r♦✐t♦r✉ ❛♥❞ ◆✳ ❖r❡♥✳ ■♥❢♦r♠❛t✐♦♥ r❡✈❡❧❛t✐♦♥ str❛t❡❣✐❡s ✐♥ ❛❜str❛❝t
❛r❣✉♠❡♥t ❢r❛♠❡✇♦r❦s ✉s✐♥❣ ❣r❛♣❤ ❜❛s❡❞ r❡❛s♦♥✐♥❣✳ ■♥ Pr♦❝✳ ♦❢ ●❑❘ ❅
■❏❈❆■ ✷✵✶✸✱ ♣❛❣❡s ✶✸✕✷✵✱ ✷✵✶✸✳

❬✷✸❪ ▼✳ ❈r♦✐t♦r✉✱ ◆✳ ❖r❡♥✱ ❙✳ ▼✐❧❡s✱ ❛♥❞ ▼✳ ▲✉❝❦✳ ●r❛♣❤✐❝❛❧ ♥♦r♠s ✈✐❛ ❝♦♥❝❡♣✲
t✉❛❧ ❣r❛♣❤s✳ ❑♥♦✇❧✳✲❇❛s❡❞ ❙②st✳✱ ✷✾✿✸✶✕✹✸✱ ✷✵✶✸✳

✷✶✹

❬✷✹❪ ▼✳ ❈r♦✐t♦r✉ ❛♥❞ ❘✳ ❘♦❞r✐❣✉❡③✳ ❯♣❞❛t❡ ♦♣❡r❛t♦rs ❢♦r ✐♥❝♦♥s✐st❡♥t q✉❡r②
❛♥s✇❡r✐♥❣✿ ❆ ♥❡✇ ♣♦✐♥t ♦❢ ✈✐❡✇✳ ■♥ Pr♦❝✳ ♦❢ ❙❯▼ ✷✵✶✹✱ ✷✵✶✹✳ t♦ ❛♣♣❡❛r✳

❬✷✺❪ ▼✳ ❈r♦✐t♦r✉ ❛♥❞ ❙✳ ❘✉❞♦❧♣❤✳ ❊①❝❧✉s✐✈✐t②✲❜❛s❡❞ ❛❧❧♦❝❛t✐♦♥ ♦❢ ❦♥♦✇❧❡❞❣❡✳ ■♥
Pr♦❝✳ ♦❢ ❆❆▼❆❙ ✷✵✶✷✱ ♣❛❣❡s ✶✷✹✾✕✶✷✺✵✳

❬✷✻❪ ▼✳ ❈r♦✐t♦r✉ ❛♥❞ ❘✳ ❚❤♦♠♦♣♦✉❧♦s✳ ❘❡♣r❡s❡♥t✐♥❣ ❛♥❞ r❡❛s♦♥✐♥❣ ❛❜♦✉t ❞✐❢✲
❢❡r❡♥t ✈✐❡✇♣♦✐♥ts✿ ❆♥ ❛❣r♦♥♦♠② ❛♣♣❧✐❝❛t✐♦♥✳ ■♥ Pr♦❝ ♦❢ ■❈❈❙ ✷✵✵✾✱ ♣❛❣❡s
✶✷✽✕✶✹✵✳

❬✷✼❪ ▼✳ ❈r♦✐t♦r✉ ❛♥❞ ❑✳ ❱❛♥✲❉❡❡♠t❡r✳ ❆ ❝♦♥❝❡♣t✉❛❧ ❣r❛♣❤ ❛♣♣r♦❛❝❤ ❢♦r t❤❡
❣❡♥❡r❛t✐♦♥ ♦❢ r❡❢❡rr✐♥❣ ❡①♣r❡ss✐♦♥s✳ ■♥ Pr♦❝✳ ♦❢ ■❏❈❆■ ✷✵✵✼✱ ♣❛❣❡s ✷✹✺✻✕
✷✹✻✶✱ ✷✵✵✼✳

❬✷✽❪ ▼✳ ❈r♦✐t♦r✉ ❛♥❞ ❙✳ ❱❡s✐❝✳ ❲❤❛t ❝❛♥ ❛r❣✉♠❡♥t❛t✐♦♥ ❞♦ ❢♦r ✐♥❝♦♥s✐st❡♥t
♦♥t♦❧♦❣② q✉❡r② ❛♥s✇❡r✐♥❣❄ ■♥ ❲✳ ▲✐✉✱ ❱✳ ❙✉❜r❛❤♠❛♥✐❛♥✱ ❛♥❞ ❏✳ ❲✐❥s❡♥✱
❡❞✐t♦rs✱ Pr♦❝❡❡❞✐♥❣s ♦❢ ❙❯▼ ✷✵✶✸✱ ♣❛❣❡s ✶✺✕✷✾✳ ❙♣r✐♥❣❡r✱ ✷✵✶✸✳

❬✷✾❪ ❙✳ ❉❡st❡r❝❦❡✱ P✳ ❇✉❝❤❡✱ ❛♥❞ ❱✳ ●✉✐❧❧❛r❞✳ ❆ ✢❡①✐❜❧❡ ❜✐♣♦❧❛r q✉❡r②✐♥❣ ❛♣✲
♣r♦❛❝❤ ✇✐t❤ ✐♠♣r❡❝✐s❡ ❞❛t❛ ❛♥❞ ❣✉❛r❛♥t❡❡❞ r❡s✉❧ts✳ ❋✉③③② s❡ts ❛♥❞ ❙②st❡♠s✱
✶✻✾✿✺✶✕✻✹✱ ✷✵✶✶✳

❬✸✵❪ ❏✳ ❉✐①✱ ❙✳ P❛rs♦♥s✱ ❍✳ Pr❛❦❦❡♥✱ ❛♥❞ ●✳ ❘✳ ❙✐♠❛r✐✳ ❘❡s❡❛r❝❤ ❝❤❛❧❧❡♥❣❡s ❢♦r
❛r❣✉♠❡♥t❛t✐♦♥✳ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡ ✲ ❘✫❉✱ ✷✸✭✶✮✿✷✼✕✸✹✱ ✷✵✵✾✳

❬✸✶❪ P✳ ▼✳ ❉✉♥❣✳ ❖♥ t❤❡ ❛❝❝❡♣t❛❜✐❧✐t② ♦❢ ❛r❣✉♠❡♥ts ❛♥❞ ✐ts ❢✉♥❞❛♠❡♥t❛❧ r♦❧❡
✐♥ ♥♦♥♠♦♥♦t♦♥✐❝ r❡❛s♦♥✐♥❣✱ ❧♦❣✐❝ ♣r♦❣r❛♠♠✐♥❣ ❛♥❞ ♥✲♣❡rs♦♥s ❣❛♠❡s✳ ❆r✲
t✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡✱ ✼✼✭✷✮✿✸✷✶✕✸✺✼✱ ✶✾✾✺✳

❬✸✷❪ ❉✳ ❉✉♣♣❧❛✇✱ ▼✳ ❈r♦✐t♦r✉✱ ❙✳ ❉❛s♠❛❤❛♣❛tr❛✱ ❆✳ ●✐❜❜✱ ●✳ ●♦♥③❛❧❡③✲❱❛❧❡③✱
▼✳ ▲✉r❣✐✱ ❇✳ ❍✉✱ P✳ ▲❡✇✐s✱ ❛♥❞ ❆✳ P❡❡t✳ ❆ ❦♥♦✇❧❡❞❣❡✲r✐❝❤ ❞✐str✐❜✉t❡❞ ❞❡❝✐✲
s✐♦♥ s✉♣♣♦rt ❢r❛♠❡✇♦r❦✿ ❛ ❝❛s❡ st✉❞② ❢♦r ❜r❛✐♥ t✉♠♦✉r ❞✐❛❣♥♦s✐s✳ ❑♥♦✇❧✲
❡❞❣❡ ❊♥❣✳ ❘❡✈✐❡✇✱ ✷✻✭✸✮✿✷✹✼✕✷✻✵✱ ✷✵✶✶✳

❬✸✸❪ ▲✳ ●✉✐③♦❧✱ ▼✳ ❈r♦✐t♦r✉✱ ❛♥❞ ▼✳ ▲❡❝❧❡r❡✳ ❆❣❣r❡❣❛t✐♦♥ s❡♠❛♥t✐❝s ❢♦r ❧✐♥❦
✈❛❧✐❞✐t②✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ❙●❆■ ✷✵✶✸✱ ♣❛❣❡s ✸✺✾✕✸✼✷✱ ✷✵✶✸✳

❬✸✹❪ ▲✳ ●✉✐③♦❧✱ ❖✳ ❘♦✉ss❡❛✉①✱ ▼✳ ❈r♦✐t♦r✉✱ ❨✳ ◆✐❝♦❧❛s✱ ❛♥❞ ❆✳ ▲❡ Pr♦✈♦st✳ ❆♥
❛♥❛❧②s✐s ♦❢ t❤❡ s✉❞♦❝ ❜✐❜❧✐♦❣r❛♣❤✐❝ ❦♥♦✇❧❡❞❣❡ ❜❛s❡ ❢r♦♠ ❛ ❧✐♥❦ ✈❛❧✐❞✐t②
✈✐❡✇♣♦✐♥t✳ ■♥ Pr♦❝✳ ♦❢ ■P▼❯ ✷✵✶✹✱ ✷✵✶✹ ✭❚♦ ❛♣♣❡❛r✮✳

❬✸✺❪ ❇✳ ❍❛s❧❤♦❢❡r✱ ❊✳ ▼✳ ❘♦♦❝❤✐✱ ❇✳ ❙❝❤❛♥❞❧✱ ❛♥❞ ❙✳ ❩❛♥❞❡r✳ ❊✉r♦♣❡❛♥❛ ❘❉❋
st♦r❡ r❡♣♦rt✳ ❚❡❝❤♥✐❝❛❧ r❡♣♦rt✱ ❯♥✐✈❡rs✐t② ♦❢ ❱✐❡♥♥❛✱ ❱✐❡♥♥❛✱ ▼❛r✳ ✷✵✶✶✳

❬✸✻❪ P✳ ❍❛②❡s✳ ❘❉❋ ❙❡♠❛♥t✐❝s✳ ❲✸❈ ❘❡❝♦♠♠❡♥❞❛t✐♦♥✳
❤tt♣✿✴✴✇✇✇✳✇✸✳♦r❣✴❚❘✴✷✵✵✹✴❘❊❈✲r❞❢✲♠t✲✷✵✵✹✵✷✶✵✴✱ ✷✵✵✹✳

❬✸✼❪ ❍✳ ❍♦rst✳ ❊①t❡♥❞✐♥❣ t❤❡ ❘❉❋❙ ❊♥t❛✐❧♠❡♥t ▲❡♠♠❛✳ ■♥ Pr♦❝✳ ♦❢ t❤❡ ❚❤✐r❞
■♥t❡r♥❛t✐♦♥❛❧ ❙❡♠❛♥t✐❝ ❲❡❜ ❈♦♥❢❡r❡♥❝❡■❙❲❈✬✵✹✱ ✈♦❧✉♠❡ ✸✷✾✽ ♦❢ ▲◆❈❙✳
❙♣r✐♥❣❡r✱ ✷✵✵✹✳

✷✶✺

❬✸✽❪ ❇✳ ❍✉✱ ▼✳ ❈r♦✐t♦r✉✱ ❙✳ ❉❛s♠❛❤❛♣❛tr❛✱ P✳ ▲❡✇✐s✱ ❛♥❞ ◆✳ ❙❤❛❞❜♦❧t✳ ■♥❞❡①✐♥❣
♦♥t♦❧♦❣✐❡s ✇✐t❤ s❡♠❛♥t✐❝s✲❡♥❤❛♥❝❡❞ ❦❡②✇♦r❞s✳ ■♥ Pr♦❝ ♦❢ ❑✲❈❆P✱ ♣❛❣❡s
✶✶✾✕✶✷✻✱ ✷✵✵✼✳

❬✸✾❪ ❇✳ ❍✉✱ ▼✳ ❈r♦✐t♦r✉✱ ❘✳ ❘♦s❡t✱ ❉✳ ❉✉♣♣❧❛✇✱ ▼✳ ▲✉r❣✐✱ ❙✳ ❉❛s♠❛❤❛♣❛tr❛✱
P✳ ▲❡✇✐s✱ ❏✳ ▼❛rtí♥❡③✲▼✐r❛♥❞❛✱ ❛♥❞ ❈✳ ❙❛❡③✳ ❚❤❡ ❤❡❛❧t❤❛❣❡♥ts ♦♥t♦❧♦❣②✿
❦♥♦✇❧❡❞❣❡ r❡♣r❡s❡♥t❛t✐♦♥ ✐♥ ❛ ❞✐str✐❜✉t❡❞ ❞❡❝✐s✐♦♥ s✉♣♣♦rt s②st❡♠ ❢♦r ❜r❛✐♥
t✉♠♦✉rs✳ ❑♥♦✇❧❡❞❣❡ ❊♥❣✳ ❘❡✈✐❡✇✱ ✷✻✭✸✮✿✸✵✸✕✸✷✽✱ ✷✵✶✶✳

❬✹✵❪ ❙✳ ■❡♦♥❣ ❛♥❞ ❨✳ ❙❤♦❤❛♠✳ ▼❛r❣✐♥❛❧ ❝♦♥tr✐❜✉t✐♦♥ ♥❡ts✿ ❆ ❝♦♠♣❧❛❝t r❡♣r❡✲
s❡♥t❛t✐♦♥ s❝❤❡♠❡ ❢♦r ❝♦❛❧✐t✐♦♥❛❧ ❣❛♠❡s✳ ❆❈▼ ❊❈✲✵✻✱ ♣❛❣❡s ✶✼✵✕✶✼✾✱ ✷✵✵✻✳

❬✹✶❪ ❆✳ ❈✳ ❑❛❦❛s✱ ◆✳ ▼❛✉❞❡t✱ ❛♥❞ P✳ ▼♦r❛✐t✐s✳ ▲❛②❡r❡❞ str❛t❡❣✐❡s ❛♥❞ ♣r♦t♦❝♦❧s
❢♦r ❛r❣✉♠❡♥t❛t✐♦♥✲❜❛s❡❞ ❛❣❡♥t ✐♥t❡r❛❝t✐♦♥✳ ■♥ ■✳ ❘❛❤✇❛♥✱ P✳ ▼♦r❛✐t✐s✱ ❛♥❞
❈✳ ❘❡❡❞✱ ❡❞✐t♦rs✱ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ❋✐rst ■♥t❡r♥❛t✐♦♥❛❧ ❲♦r❦s❤♦♣ ♦♥ ❆r✲
❣✉♠❡♥t❛t✐♦♥ ✐♥ ▼✉❧t✐✲❛❣❡♥t ❙②st❡♠s✱ ✈♦❧✉♠❡ ✸✸✻✻ ♦❢ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ❆r✲
t✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡ ✭▲◆❆■✮✱ ♣❛❣❡s ✻✻✕✼✾✱ ◆❡✇ ❨♦r❦✱ ✷✵✵✹✳ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✳

❬✹✷❪ ❉✳ ▲❡♠❜♦✱ ▼✳ ▲❡♥③❡r✐♥✐✱ ❘✳ ❘♦s❛t✐✱ ▼✳ ❘✉③③✐✱ ❛♥❞ ❉✳ ❋✳ ❙❛✈♦✳
■♥❝♦♥s✐st❡♥❝②✲t♦❧❡r❛♥t s❡♠❛♥t✐❝s ❢♦r ❞❡s❝r✐♣t✐♦♥ ❧♦❣✐❝s✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢
t❤❡ ❋♦✉rt❤ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❲❡❜ ❘❡❛s♦♥✐♥❣ ❛♥❞ ❘✉❧❡ ❙②st❡♠s✱
❘❘✬✶✵✱ ♣❛❣❡s ✶✵✸✕✶✶✼✱ ❇❡r❧✐♥✱ ❍❡✐❞❡❧❜❡r❣✱ ✷✵✶✵✳ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✳

❬✹✸❪ ▼✳ ▲❡♥③❡r✐♥✐✳ ❉❛t❛ ✐♥t❡❣r❛t✐♦♥✿ ❆ t❤❡♦r❡t✐❝❛❧ ♣❡rs♣❡❝t✐✈❡✳ ■♥ Pr♦❝✳ ♦❢
P❖❉❙ ✷✵✵✷✱ ✷✵✵✷✳

❬✹✹❪ ❉✳ ▲✳ ▼❝●✉✐♥♥❡ss ❛♥❞ P✳ ❋✳ P❛t❡❧✲❙❝❤♥❡✐❞❡r✳ ❯s❛❜✐❧✐t② ✐ss✉❡s ✐♥ ❦♥♦✇❧❡❞❣❡
r❡♣r❡s❡♥t❛t✐♦♥ s②st❡♠s✳ ■♥ ■♥ Pr♦❝✳ ♦❢ ❆❆❆■✲✾✽✱ ♣❛❣❡s ✻✵✽✕✻✶✹✱ ✶✾✾✽✳

❬✹✺❪ ❙✳ ▼♦❞❣✐❧ ❛♥❞ ❍✳ Pr❛❦❦❡♥✳ ❆ ❣❡♥❡r❛❧ ❛❝❝♦✉♥t ♦❢ ❛r❣✉♠❡♥t❛t✐♦♥ ✇✐t❤ ♣r❡❢✲
❡r❡♥❝❡s✳ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡✱ ✶✾✺✿✸✻✶✕✸✾✼✱ ✷✵✶✸✳

❬✹✻❪ ◆✳ ▼♦r❡❛✉✱ ▼✳ ▲❡❝❧❡r❡✱ ❛♥❞ ▼✳ ❈r♦✐t♦r✉✳ ❉✐st✐♥❣✉✐s❤✐♥❣ ❛♥s✇❡rs ✐♥ ❝♦♥✲
❝❡♣t✉❛❧ ❣r❛♣❤ ❦♥♦✇❧❡❞❣❡ ❜❛s❡s✳ ■♥ Pr♦❝✳ ♦❢ ■❈❈❙ ✷✵✵✾✱ ♣❛❣❡s ✷✸✸✕✷✹✻✳

❬✹✼❪ ◆✳ ◆✐s❛♥✳ ❇✐❞❞✐♥❣ ❛♥❞ ❛❧❧♦❝❛t✐♦♥s ✐♥ ❝♦♠❜✐♥❛t♦r✐❛❧ ❛✉❝t✐♦♥s✳ ■♥ ❆❈▼
❈♦♥❢❡r❡♥❝❡ ♦♥ ❊❧❡❝tr♦♥✐❝ ❈♦♠♠❡r❝❡ ✭❊❈✲✷✵✵✵✮✱ ✷✵✵✵✳

❬✹✽❪ ◆✳ ❖r❡♥✱ ❚✳ ❏✳ ◆♦r♠❛♥✱ ❛♥❞ ❆✳ ❉✳ Pr❡❡❝❡✳ ❆r❣✉✐♥❣ ✇✐t❤ ❝♦♥✜❞❡♥t✐❛❧ ✐♥❢♦r✲
♠❛t✐♦♥✳ ■♥ Pr♦❝ ♦❢ ❊❈❆■ ✷✵✵✻✱ ♣❛❣❡s ✷✽✵✕✷✽✹✱ ✷✵✵✻✳

❬✹✾❪ ❍✳ Pr❛❦❦❡♥✳ ❆♥ ❛❜str❛❝t ❢r❛♠❡✇♦r❦ ❢♦r ❛r❣✉♠❡♥t❛t✐♦♥ ✇✐t❤ str✉❝t✉r❡❞
❛r❣✉♠❡♥ts✳ ❆r❣✉♠❡♥t ❛♥❞ ❈♦♠♣✉t❛t✐♦♥✱ ✶✭✷✮✿✾✸✕✶✷✹✱ ✷✵✶✶✳

❬✺✵❪ ■✳ ❘❛❤✇❛♥✱ ❋✳ ❩❛❜❧✐t❤✱ ❛♥❞ ❈✳ ❘❡❡❞✳ ▲❛②✐♥❣ t❤❡ ❢♦✉♥❞❛t✐♦♥s ❢♦r ❛ ✇♦r❧❞
✇✐❞❡ ❛r❣✉♠❡♥t ✇❡❜✳ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡✱ ✶✼✶✭✶✵✲✶✺✮✿✽✾✼✕✾✷✶✱ ✷✵✵✼✳

❬✺✶❪ ❚✳ ❘❛❤✇❛♥ ❛♥❞ ◆✳ ❘✳ ❏❡♥♥✐♥❣s✳ ❈♦❛❧✐t✐♦♥ str✉❝t✉r❡ ❣❡♥❡r❛t✐♦♥✿ ❉②♥❛♠✐❝
♣r♦❣r❛♠♠✐♥❣ ♠❡❡ts ❛♥②t✐♠❡ ♦♣t✐♠✐s❛t✐♦♥✳ ■♥ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ❆❆❆■✱
♣❛❣❡s ✶✺✻✕✶✻✶✱ ✷✵✵✽✳

✷✶✻

❬✺✷❪ ❚✳ ❘❛❤✇❛♥ ❛♥❞ ◆✳ ❘✳ ❏❡♥♥✐♥❣s✳ ❆♥ ✐♠♣r♦✈❡❞ ❞②♥❛♠✐❝ ♣r♦❣r❛♠♠✐♥❣ ❛❧✲
❣♦r✐t❤♠ ❢♦r ❝♦❛❧✐t✐♦♥ str✉❝t✉r❡ ❣❡♥❡r❛t✐♦♥✳ ■♥ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ❆❆▼❆❙✱
♣❛❣❡s ✶✹✶✼✕✶✹✷✵✱ ✷✵✵✽✳

❬✺✸❪ ❚✳ ❘❛❤✇❛♥✱ ❚✳ ◆❣✉②❡♥✱ ❚✳ ▼✐❝❤❛❧❛❦✱ ▼✳ P♦❧✉❦❛r♦✈✱ ▼✳ ❈r♦✐t♦r✉✱ ❛♥❞
◆✳ ❏❡♥♥✐♥❣s✳ ❈♦❛❧✐t✐♦♥❛❧ ❣❛♠❡s ✈✐❛ ♥❡t✇♦r❦ ✢♦✇s✳ ■♥ Pr♦❝ ♦❢ ■❏❈❆■ ✷✵✶✸✱
✷✵✶✸✳

❬✺✹❪ ❚✳ ❘❛❤✇❛♥✱ ❙✳ ❉✳ ❘❛♠❝❤✉r♥✱ ❱✳ ❉✳ ❉❛♥❣✱ ❛♥❞ ◆✳ ❘✳ ❏❡♥♥✐♥❣s✳ ◆❡❛r✲♦♣t✐♠❛❧
❛♥②t✐♠❡ ❝♦❛❧✐t✐♦♥ str✉❝t✉r❡ ❣❡♥❡r❛t✐♦♥✳ ■♥ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ■❏❈❆■✱ ♣❛❣❡s
✷✸✻✺✕✷✸✼✶✱ ✷✵✵✼✳

❬✺✺❪ ❚✳ ❘✐❡♥str❛✱ ▼✳ ❚❤✐♠♠✱ ❛♥❞ ◆✳ ❖r❡♥✳ ❖♣♣♦♥❡♥t ♠♦❞❡❧s ✇✐t❤ ✉♥❝❡rt❛✐♥t②
❢♦r str❛t❡❣✐❝ ❛r❣✉♠❡♥t❛t✐♦♥✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✷✸r❞ ■♥t❡r♥❛t✐♦♥❛❧ ❏♦✐♥t
❈♦♥❢❡r❡♥❝❡ ♦♥ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡✱ ♣❛❣❡ t♦ ❛♣♣❡❛r✱ ✷✵✶✸✳

❬✺✻❪ ❏✳ ❋✳ ❙♦✇❛✳ ❈♦♥❝❡♣t✉❛❧ ●r❛♣❤s✳ ■❇▼ ❏♦✉r♥❛❧ ♦❢ ❘❡s❡❛r❝❤ ❛♥❞ ❉❡✈❡❧♦♣✲
♠❡♥t✱ ✷✵✭✹✮✿✸✸✻✕✸✼✺✱ ✶✾✼✻✳

❬✺✼❪ ❏✳ ❋✳ ❙♦✇❛✳ ❈♦♥❝❡♣t✉❛❧ ❙tr✉❝t✉r❡s✿ ■♥❢♦r♠❛t✐♦♥ Pr♦❝❡ss✐♥❣ ✐♥ ▼✐♥❞ ❛♥❞
▼❛❝❤✐♥❡✳ ❆❞❞✐s♦♥✲❲❡s❧❡②✱ ✶✾✽✹✳

❬✺✽❪ ◆✳ ❚❛♠❛♥✐ ❛♥❞ ▼✳ ❈r♦✐t♦r✉✳ ❋✉③③② ❛r❣✉♠❡♥t❛t✐♦♥ s②st❡♠ ❢♦r ❞❡❝✐s✐♦♥
s✉♣♣♦rt✳ ■♥ ❆✳ ❡✳ ❛✳ ▲❛✉r❡♥t✱ ❡❞✐t♦r✱ Pr♦❝❡❡❞✐♥❣s ♦❢ ■P▼❯ ✷✵✶✹✱ ✈♦❧✉♠❡
❈❈■❙ ✹✹✷✱ ♣❛❣❡s ✼✼✕✽✻✳ ❙♣r✐♥❣❡r✱ ✷✵✶✹✳

❬✺✾❪ ◆✳ ❚❛♠❛♥✐ ❛♥❞ ▼✳ ❈r♦✐t♦r✉✳ ❆ q✉❛♥t✐t❛t✐✈❡ ♣r❡❢❡r❡♥❝❡✲❜❛s❡❞ str✉❝t✉r❡❞
❛r❣✉♠❡♥t❛t✐♦♥ s②st❡♠ ❢♦r ❞❡❝✐s✐♦♥ s✉♣♣♦rt✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ❋✉③③✲■❊❊❊
✭t♦ ❛♣♣❡❛r✮✱ ✷✵✶✹✳

❬✻✵❪ ◆✳ ❚❛♠❛♥✐✱ ▼✳ ❈r♦✐t♦r✉✱ ❛♥❞ P✳ ❇✉❝❤❡✳ ❈♦♥✢✐❝t✐♥❣ ✈✐❡✇♣♦✐♥t r❡❧❛t✐♦♥❛❧
❞❛t❛❜❛s❡ q✉❡r②✐♥❣✿ ❆♥ ❛r❣✉♠❡♥t❛t✐♦♥ ❛♣♣r♦❛❝❤✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✷✵✶✹
■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❆✉t♦♥♦♠♦✉s ❆❣❡♥ts ❛♥❞ ▼✉❧t✐✲❛❣❡♥t ❙②st❡♠s✱
❆❆▼❆❙ ✬✶✹✱ ♣❛❣❡s ✶✺✺✸✕✶✺✺✹✱ ❘✐❝❤❧❛♥❞✱ ❙❈✱ ✷✵✶✹✳ ■♥t❡r♥❛t✐♦♥❛❧ ❋♦✉♥❞❛✲
t✐♦♥ ❢♦r ❆✉t♦♥♦♠♦✉s ❆❣❡♥ts ❛♥❞ ▼✉❧t✐❛❣❡♥t ❙②st❡♠s✳

❬✻✶❪ ◆✳ ❚❛♠❛♥✐✱ ▼✳ P❛tr✐❝✐♦✱ ▼✳ ❈r♦✐t♦r✉✱ P✳ ❇✉❝❤❡✱ ❱✳ ●✉✐❧❧❛r❞✱ ❈✳ ●✉✐❧❧❛✉♠❡✱
❛♥❞ ◆✳ ●♦♥t❛r❞✳ ❊❝♦✲❡✣❝✐❡♥t ♣❛❝❦❛❣✐♥❣ ♠❛t❡r✐❛❧ s❡❧❡❝t✐♦♥ ❢♦r ❢r❡s❤ ♣r♦✲
❞✉❝❡✿ ■♥❞✉str✐❛❧ s❡ss✐♦♥✳ ■♥ ◆✳ ❍❡r♥❛♥❞❡③✱ ❘✳ ❏❛❡s❝❤❡✱ ❛♥❞ ▼✳ ❈r♦✐t♦r✉✱
❡❞✐t♦rs✱ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✷✵✶✹ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦❢ ❈♦♥❝❡♣t✉❛❧
❙tr✉❝t✉r❡s ■❈❈❙ ✷✵✶✹✱ ✈♦❧✉♠❡ ▲◆❆■ ✽✺✼✼✱ ♣❛❣❡s ✸✵✺✕✸✶✵✳ ❙♣r✐♥❣❡r✱ ✷✵✶✹✳

❬✻✷❪ ❘✳ ❚❤♦♠♦♣♦✉❧♦s✱ ▼✳ ❈r♦✐t♦r✉✱ ❛♥❞ ◆✳ ❚❛♠❛♥✐✳ ❉❡❝✐s✐♦♥ s✉♣♣♦rt ❢♦r ❛❣r✐✲
❢♦♦❞ ❝❤❛✐♥s✿ ❆ r❡✈❡rs❡ ❡♥❣✐♥❡❡r✐♥❣ ❛r❣✉♠❡♥t❛t✐♦♥✲❜❛s❡❞ ❛♣♣r♦❛❝❤✳ ❊❝♦❧♦❣✲
✐❝❛❧ ■♥❢♦r♠❛t✐❝s✱ ✷✵✶✹ ✭❚♦ ❆♣♣❡❛r✮✳

❬✻✸❪ ❙✳ ❱❡s✐❝ ❛♥❞ ▲✳ ✈❛♥ ❞❡r ❚♦rr❡✳ ❇❡②♦♥❞ ♠❛①✐✲❝♦♥s✐st❡♥t ❛r❣✉♠❡♥t❛t✐♦♥
♦♣❡r❛t♦rs✳ ■♥ ✶✸t❤ ❊✉r♦♣❡❛♥ ❈♦♥❢❡r❡♥❝❡ ♦♥ ▲♦❣✐❝s ✐♥ ❆rt✐✜❝✐❛❧ ■♥t❡❧❧✐❣❡♥❝❡
✭❏❊▲■❆✬✶✷✮✱ ♣❛❣❡s ✹✷✹✕✹✸✻✱ ✷✵✶✷✳

✷✶✼

❬✻✹❪ ■✳ ❱❡ts✐❦❛s ❛♥❞ ▼✳ ❈r♦✐t♦r✉✳ ❍♦✇ ♠✉❝❤ s❤♦✉❧❞ ②♦✉ ♣❛② ❢♦r ✐♥❢♦r♠❛t✐♦♥❄
■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ■❈❊❇❊ ✷✵✶✸✱ ♣❛❣❡s ✹✹✕✹✾✱ ✷✵✶✸✳

❬✻✺❪ ▲✳ ❳✐❛♦✱ ❙✳ ❉❛s♠❛❤❛♣❛tr❛✱ P✳ ▲❡✇✐s✱ ❇✳ ❍✉✱ ❆✳ P❡❡t✱ ❆✳ ●✐❜❜✱ ❉✳ ❉✉♣♣❧❛✇✱
▼✳ ❈r♦✐t♦r✉✱ ❋✳ ❊st❛♥②♦❧✱ ❏✳ ▼❛rtí♥❡③✲▼✐r❛♥❞❛✱ ❍✳ ●♦♥③❛❧❡③✲❱❛❧❡③✱ ❛♥❞
▼✳ ▲❧✉❝❤✳ ❚❤❡ ❞❡s✐❣♥ ❛♥❞ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❛ ♥♦✈❡❧ s❡❝✉r✐t② ♠♦❞❡❧ ❢♦r
❤❡❛❧t❤❛❣❡♥ts✳ ❑♥♦✇❧❡❞❣❡ ❊♥❣✳ ❘❡✈✐❡✇✱ ✷✻✭✸✮✿✷✻✶✕✷✽✷✱ ✷✵✶✶✳

✷✶✽

