]. R. Aggarwal-2007, J. Aggarwal, I. Ward, P. Balasundaram, T. Sains et al., Proving the Effectiveness of Virtual Reality Simulation for Training in Laparoscopic Surgery, Annals of Surgery, vol.246, issue.5, pp.771-779, 2007.
DOI : 10.1097/SLA.0b013e3180f61b09

]. R. Agha and G. Muir, Does laparoscopic surgery spell the end of the open surgeon?, JRSM, vol.96, issue.11, pp.544-546, 2003.
DOI : 10.1258/jrsm.96.11.544

N. Seyed-ahmad-ahmadi, K. Padoy, S. M. Rybachuk, N. Heining, and . Navab, Motif Discovery in OR Sensor Data with Application to Surgical Workflow Analysis and Activity Detection. Modeling and Monitoring of Computer Assisted Interventions, pp.36-39, 2009.

]. K. Ahmed, D. Miskovic, A. Darzi, T. Athanasiou, and G. B. Hanna, Observational tools for assessment of procedural skills: a systematic review, The American Journal of Surgery, vol.202, issue.4, pp.469-480, 2011.
DOI : 10.1016/j.amjsurg.2010.10.020

N. Ahmidi, Y. Gao, B. Béjar, S. S. Vedula, S. Khudanpur et al., String Motif-Based Description of Tool Motion for Detecting Skill and Gestures in Robotic Surgery, Medical Image Computing and Computer-Assisted Intervention, vol.8149, issue.46, pp.26-33, 2013.
DOI : 10.1007/978-3-642-40811-3_4

]. M. Altieri, J. Yang, D. A. Telem, J. Zhu, C. Halbert et al., Robotic approaches may offer benefit in colorectal procedures, more controversial in other areas: a review of 168,248 cases, Surgical Endoscopy, vol.29, issue.7, 2015.
DOI : 10.1007/s00464-015-4327-2

. Andre-obrecht, A new statistical approach for the automatic segmentation of continuous speech signals, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.1, pp.29-40, 1988.
DOI : 10.1109/29.1486

URL : https://hal.archives-ouvertes.fr/inria-00076043

]. R. Barnes, Surgical handicraft: Teaching and learning surgical skills, The American Journal of Surgery, vol.153, issue.5, pp.422-427, 1987.
DOI : 10.1016/0002-9610(87)90783-5

]. Haro, L. Zappella, and R. Vidal, Surgical Gesture Classification from Video Data, Medical Image Computing and Computer-Assisted Intervention, vol.7510, issue.44, pp.34-41, 2012.

]. Benenson and M. Mathias, Radu Timofte et Luc Van Gool. Pedestrian detection at 100 frames per second, IEEE Conference on Computer Vision and Pattern Recognition, pp.2903-2910, 2012.

]. Benenson, O. M. Hosang, and B. Schiele, Ten Years of Pedestrian Detection, What Have We Learned ? European Conference on Computer Vision -CVRSUAD Workshop, pp.2014-2047, 2014.

P. Kristin, C. Bennett, and . Campbell, Support Vector Machines : Hype or Hallelujah ?, 2000.

. Ayoubi and . Design, control and testing of a novel compact laparoscopic endoscope manipulator, Journal of Systems and Control Engineering, vol.217, issue.4, pp.329-341, 2003.

]. O. Bholat, R. S. Haluck, W. B. Murray, P. J. Gorman, and T. M. , Tactile feedback is present during minimally invasive surgery, Journal of the American College of Surgeons, vol.189, issue.4, pp.349-355, 1999.
DOI : 10.1016/S1072-7515(99)00184-2

]. Botden, S. N. Buzink, P. Marlies, J. J. Schijven, and . Jakimowicz, Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference?, World Journal of Surgery, vol.19, issue.5, pp.764-772, 2007.
DOI : 10.1007/s00268-006-0724-y

]. P. Breedveld, H. G. Stassen, D. W. Meijer, and L. P. Stassen, Theoretical background and conceptual solution for depth perception and eye-hand coordination problems in laparoscopic surgery, Minimally Invasive Therapy & Allied Technologies, vol.6, issue.2, pp.227-234, 1999.
DOI : 10.3109/13645709909153166

]. P. Breedveld and M. Wentink, Eye-hand coordination in laparoscopy -an overview of experiments and supporting aids, Minimally Invasive Therapy & Allied Technologies Allied Technologies, vol.10, issue.3, pp.155-162, 2001.

. Calabi, C. Olver, . Shakiban, S. Tannenbaum, and . Haker, Differential and Numerically Invariant Signature Curves Applied to Object Recognition, International Journal of Computer Vision, vol.26, issue.2, pp.107-135, 1998.
DOI : 10.1023/A:1007992709392

]. Chen, R. Wang, L. Liu, and J. Song, Clustering of trajectories based on Hausdorff distance, 2011 International Conference on Electronics, Communications and Control (ICECC), pp.1940-1944, 2011.
DOI : 10.1109/ICECC.2011.6066483

]. G. Chiniara, Simulation médicale pour acquisition des compétences en anesthésie. Congrès national d'anesthésie et de réanimation, pp.41-49, 2007.

]. J. Chipman and C. C. Schmitz, Using Objective Structured Assessment of Technical Skills to Evaluate a Basic Skills Simulation Curriculum for First-Year Surgical Residents, Journal of the American College of Surgeons, vol.209, issue.3, pp.364-370, 2009.
DOI : 10.1016/j.jamcollsurg.2009.05.005

M. K. Chmarra, S. Klein, J. C. De-winter, F. W. Jansen, and J. Dankelman, Objective classification of residents based on their psychomotor laparoscopic skills, Surgical Endoscopy, vol.14, issue.5, pp.1031-1039, 2010.
DOI : 10.1007/s00464-009-0721-y

J. Cifuentes, M. T. Pham, R. Moreau, F. Prieto, and P. Boulanger, An arc-length warping algorithm for gesture recognition using quaternion representation, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.6248-6251, 2013.
DOI : 10.1109/EMBC.2013.6610981

URL : https://hal.archives-ouvertes.fr/hal-00847499

R. Timothy, D. Coles, N. W. Meglan, and . John, The role of haptics in medical training simulators : A survey of the state of the art, IEEE Transactions on Haptics, vol.4, issue.1, pp.51-66, 2011.

A. Michol, A. Cooper, H. Ibrahim, M. A. Lyu, and . Makary, Underreporting of Robotic Surgery Complications, BIBLIOGRAPHIE Journal for Healthcare Quality, pp.1-5, 2013.

S. Cotin, N. Stylopoulos, M. P. Ottensmeyer, P. F. Neumann, D. W. Rattner et al., Metrics for Laparoscopic Skills Trainers : The Weakest Link ! Medical Image Computing and Computer-Assisted Intervention, pp.35-43, 2002.

A. Cully and J. Mouret, Evolving a Behavioral Repertoire for a Walking Robot, Evolutionary Computation, vol.5, issue.2, 2005.
DOI : 10.3758/BF03196322

URL : https://hal.archives-ouvertes.fr/hal-01095543

]. V. Datta, A. Chang, S. Mackay, and A. Darzi, The relationship between motion analysis and surgical technical assessments, The American Journal of Surgery, vol.184, issue.1, pp.70-73, 2002.
DOI : 10.1016/S0002-9610(02)00891-7

]. A. Derossis, G. M. Fried, M. Abrahamowicz, H. H. Sigman, J. S. Barkun et al., Development of a Model for Training and Evaluation of Laparoscopic Skills 11This work was supported by an educational grant from United States Surgical Corporation (Auto Suture Canada)., The American Journal of Surgery, vol.175, issue.6, pp.482-487, 1998.
DOI : 10.1016/S0002-9610(98)00080-4

F. Despinoy, J. Leon-torres, M. Vitrani, and B. Herman, Toward Remote Teleoperation with Eye and Hand : A First Experimental Study, Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, 2013.

A. Dosis, F. Bello, D. Gillies, S. Undre, R. Aggarwal et al., Laparoscopic task recognition using Hidden Markov Models, Studies in health technology and informatics, vol.111, issue.44, pp.115-122, 2005.

D. Anca, S. S. Dragan, C. T. Srinivasa-et-kenton, and . Lee, Teleoperation with Intelligent and Customizable Interfaces, Journal of Human-Robot Interaction, vol.2, issue.2, pp.33-57, 2013.

]. Du, P. Zhang, J. Mai, and Z. Li, Markerless Kinect-Based Hand Tracking for Robot Teleoperation, International Journal of Advanced Robotic Systems, vol.1, issue.12, pp.1-10, 2012.
DOI : 10.5772/50093

V. Lucile-dupin, M. Hayward, and . Wexler, Direct coupling of haptic signals between hands, Proceedings of the National Academy of Sciences, vol.112, issue.2, pp.619-643, 2014.
DOI : 10.1073/pnas.1419539112

H. Egi, M. Okajima, M. Yoshimitsu, S. Ikeda, Y. Miyata et al., Objective assessment of endoscopic surgical skills by analyzing direction-dependent dexterity using the Hiroshima University Endoscopic Surgical Assessment Device (HUESAD), Surgery Today, vol.13, issue.8, pp.705-710, 2008.
DOI : 10.1007/s00595-007-3696-0

]. O. Elle, M. G. Gulbrandsen, E. Samset, G. Ten-cate, L. Aurdal et al., Head tracking of a surgical robotic scopeholder - a user involvement test of the system, Computer Assisted Radiology and Surgery, pp.188-193, 2002.
DOI : 10.1007/978-3-642-56168-9_31

]. R. Flin, Non-technical skills for anaesthetists, surgeons and scrub practitioners (ANTS, NOTSS and SPLINTS). The Health Foundation, pp.1-9, 2013.

F. Germain-forestier, L. Lalys, B. Riffaud, P. Trelhu, and . Jannin, Classification of surgical processes using dynamic time warping, Journal of Biomedical Informatics, vol.45, issue.2, pp.255-264, 2012.
DOI : 10.1016/j.jbi.2011.11.002

]. N. Francis, G. B. Hanna, and A. Cuschieri, Reliability of the Advanced Dundee Endoscopic Psychomotor Tester for Bimanual Tasks, Archives of Surgery, vol.136, issue.1, pp.40-43, 2001.
DOI : 10.1001/archsurg.136.1.40

]. C. Freschi, V. Ferrari, F. Melfi, M. Ferrari, F. Mosca et al., Technical review of the da Vinci surgical telemanipulator, The International Journal of Medical Robotics and Computer Assisted Surgery, vol.13, issue.3, pp.396-406, 2013.
DOI : 10.1002/rcs.1468

S. S. Gao, C. E. Vedula, N. Reiley, B. Ahmidi, H. C. Varadarajan et al., JHU- ISI Gesture and Skill Assessment Working Set (JIGSAWS) : A Surgical Activity Dataset for Human Motion Modeling, Modeling and Monitoring of Computer Assisted Interventions, pp.1-10, 2014.

]. J. Gilbert, The EndoAssist??? Robotic Camera Holder as an Aid to the Introduction of Laparoscopic Colorectal Surgery, The Annals of The Royal College of Surgeons of England, vol.91, issue.5, pp.389-393, 2009.
DOI : 10.1308/003588409X392162

J. Guna, G. Jakus, M. Poga?nik, S. Toma?i?, and J. Sodnik, An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking, Sensors, vol.14, issue.2, pp.3702-3720, 2014.
DOI : 10.3390/s140203702

S. Gary, K. Guthart, and . Salisbury, The Intuitive Telesurgery System : Overview and Application, IEEE International Conference on Robotics and Automation, vol.1, pp.618-621, 2000.

]. J. Hamdorf and J. C. Hall, Acquiring surgical skills, British Journal of Surgery, vol.23, issue.1, pp.28-37, 2000.
DOI : 10.1046/j.1365-2168.2000.01327.x

]. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan et al., Raven-II: An Open Platform for Surgical Robotics Research, IEEE Transactions on Biomedical Engineering, vol.60, issue.4, pp.954-959, 2013.
DOI : 10.1109/TBME.2012.2228858

M. A. Hayter, Z. Friedman, M. D. Bould, J. G. Hanlon, R. Katznelson et al., Validation du dispositif d?????valuation chirurgicale du Imperial College (ICSAD) pour le positionnement de la p??ridurale pour le travail obst??trical, Canadian Journal of Anesthesia/Journal canadien d'anesth??sie, vol.347, issue.6, pp.419-426, 2009.
DOI : 10.1007/s12630-009-9090-1

F. Hernoux, R. Béarée, L. Gajny, E. Nyiri, J. Bancalin et al., Leap Motion pour la capture de mouvement 3D par spline L1 -Application à la robotique. Conférence Groupe de Travail en Modélisation Géométrique, pp.1-6, 2013.

M. Stephen-holden, T. Ungi, D. Sargent, R. C. Mcgraw, E. C. Chen et al., Feasibility of Real-Time Workflow Segmentation for Tracked Needle Interventions, IEEE Transactions on Biomedical Engineering, vol.61, issue.6, pp.1720-1728, 2014.
DOI : 10.1109/TBME.2014.2301635

]. R. Hollis and S. E. Salcudean, Lorentz Levitation Technology : A New Approach to Fine Motion Robotics, Teleoperation, Haptic Interfaces, and Vibration Isolation, 1993.

]. T. Horeman, J. Dankelman, F. W. Jansen, and J. J. Van-den-dobbelsteen, Assessment of Laparoscopic Skills Based on Force and Motion Parameters, IEEE Transactions on Biomedical Engineering, vol.61, issue.3, pp.805-813, 2014.
DOI : 10.1109/TBME.2013.2290052

]. , H. , and J. Szewczyk, Visuo-haptic feedback for 1-D Guidance in laparoscopic surgery, International Conference on Biomedical Robotics and Biomechatronics, vol.127, pp.58-65, 2014.

]. C. Hundtofte, G. D. Hager, and A. M. Okamura, Building a task language for segmentation and recognition of user input to cooperative manipulation systems, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, pp.225-230, 2002.
DOI : 10.1109/HAPTIC.2002.998962

]. P. Jannin, M. Raimbault, X. Morandi, E. Seigneuret, and B. Gibaud, Design of a neurosurgical procedure model for multimodal image-guided surgery, International Congress Series, vol.1230, pp.102-106, 2001.
DOI : 10.1016/S0531-5131(01)00025-5

C. Pierre-jannin, C. R. Grova, and . Maurer, Model for defining and reporting reference-based validation protocols in medical image processing, International Journal of Computer Assisted Radiology and Surgery, vol.11, issue.2, pp.63-73, 2006.
DOI : 10.1007/s11548-006-0044-6

]. P. Jannin and X. Morandi, Surgical models for computer-assisted neurosurgery, NeuroImage, vol.37, issue.3, pp.783-791, 2007.
DOI : 10.1016/j.neuroimage.2007.05.034

URL : https://hal.archives-ouvertes.fr/inserm-00185435

J. Pierre and W. Korb, Assessment of image-guided interventions, Image-Guided Interventions : Technology and Applications, pp.531-549, 2008.

N. Jarrassé, A. Tacilo-ribeiro, A. Sahbani, W. Bachta, and A. Roby-brami, Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects, Journal of NeuroEngineering and Rehabilitation, vol.11, issue.1, p.113, 2014.
DOI : 10.1186/1743-0003-11-113

]. T. Judkins, D. Oleynikov, and N. Stergiou, Objective evaluation of expert and novice performance during robotic surgical training tasks, Surgical Endoscopy, vol.18, issue.3, pp.590-597, 2009.
DOI : 10.1007/s00464-008-9933-9

]. Prasad, T. Nagarajan, A. Hema, and . Murthy, Automatic segmentation of continuous speech using minimum phase group delay functions, Speech Communication, vol.42, issue.3-4, pp.429-446, 2004.
DOI : 10.1016/j.specom.2003.12.002

Z. Peter-kazanzides, A. Chen, . Deguet, S. Gregory, . Fischer et al., An open-source research kit for the da Vinci?? Surgical System, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.6434-6439, 2014.
DOI : 10.1109/ICRA.2014.6907809

K. Shehzad and A. Naftel, Classifying Spatiotemporal Object Trajectories using Unsupervised Learning of Basis Function Coefficients, ACM International Workshop on Video Surveillance and Sensor Networks, pp.45-52, 2005.

K. Shehzad and A. Naftel, Evaluation of Matching Metrics for Trajectory-based Indexing and Retrieval of Video Clips, IEEE Workshop on Applications of Computer Vision, pp.242-249, 2005.

]. Kim, C. Peter, R. Kim, A. Selle, A. Shademan et al., Experimental evaluation of contact-less hand tracking systems for tele-operation of surgical tasks, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.3502-3509, 2014.
DOI : 10.1109/ICRA.2014.6907364

]. D. Kragic and G. D. Hager, Task Modeling and Specification for Modular Sensory Based Humanâ ? A¸SMachineA¸SMachine Cooperative Systems, IEEE International Conference on Intelligent Robots and Systems, pp.3192-3197, 2003.

M. Kranzfelder, A. Schneider, A. Fiolka, S. Koller, S. Reiser et al., Reliability of sensor-based real-time workflow recognition in laparoscopic cholecystectomy, International Journal of Computer Assisted Radiology and Surgery, vol.6, issue.1, pp.941-948, 2014.
DOI : 10.1007/s11548-014-0986-z

]. Y. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Transactions on Biomedical Engineering, vol.35, issue.2, pp.153-160, 1988.
DOI : 10.1109/10.1354

L. Florent-lalys, X. Riffaud, P. Morandi, and . Jannin, Surgical phases detection from microscope videos by combining SVM and HMM, Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging, pp.54-62, 2011.

L. Florent-lalys, D. Riffaud, P. Bouget, and . Jannin, A Framework for the Recognition of High-Level Surgical Tasks From Video Images for Cataract Surgeries, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.966-976, 2012.
DOI : 10.1109/TBME.2011.2181168

C. Lea, G. D. Hager, and R. Vidal, An Improved Model for Segmentation and Recognition of Fine-Grained Activities with Application to Surgical Training Tasks, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.1-7, 2015.
DOI : 10.1109/WACV.2015.154

C. Henry, I. Lin, T. E. Shafran, A. M. Murphy, D. D. Okamura et al., Automatic Detection and Segmentation of Robot-Assisted Surgical Motions, Medical Image Computing and Computer-Assisted Intervention, vol.3749, issue.42, pp.802-810, 2005.

C. Henry, I. Lin, D. Shafran, G. D. Yuh, and . Hager, Towards automatic skill evaluation : Detection and segmentation of robot-assisted surgical motions, Computer Aided Surgery, vol.11, issue.43, pp.220-230, 2006.

]. Lin and D. Kuli´ckuli´c, Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, issue.1, pp.2881-2884, 2014.
DOI : 10.1109/TNSRE.2013.2259640

D. Ian, . Loram, J. Peter, M. Gawthrop, and . Lakie, The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors, The Journal of physiology, vol.577, issue.67, pp.417-432, 2006.

J. H. Mitchell, D. C. Lum, G. Friedman, H. Sankaranarayanan, K. King et al., The RAVEN : Design and Validation of a Telesurgery System, The International Journal of Robotics Research, vol.28, issue.9, pp.1183-1197, 2009.

]. C. Lyons, D. Goldfarb, S. L. Jones, N. Badhiwala, B. Miles et al., Which skills really matter? proving face, content, and construct validity for a commercial robotic simulator, Surgical Endoscopy, vol.187, issue.3, pp.2020-2030, 2013.
DOI : 10.1007/s00464-012-2704-7

]. C. Mackenzie, J. A. Ibbotson, C. G. Cao, and A. J. Lomax, Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment, Minimally Invasive Therapy & Allied Technologies, vol.29, issue.3, pp.27-29, 2001.
DOI : 10.1080/136457001753192222

A. Malpani, S. S. Vedula, C. C. , G. Chen, and G. D. Hager, Pairwise Comparison-Based Objective Score for Automated Skill Assessment of Segments in a Surgical Task, International Conference on Information Processing in Computer-Assisted Interventions, pp.138-147, 2014.
DOI : 10.1007/978-3-319-07521-1_15

]. J. Martin, G. Regehr, R. Reznick, H. Macrae, J. Murnaghan et al., Objective structured assessment of technical skill (OSATS) for surgical residents, British Journal of Surgery, vol.66, issue.2, pp.273-278, 1997.
DOI : 10.1002/bjs.1800840237

]. T. Matsuda, E. M. Mcdougall, Y. Ono, R. Hattori, S. Baba et al., Positive Correlation Between Motion Analysis Data on the LapMentor Virtual Reality Laparoscopic Surgical Simulator and the Results from Videotape Assessment of Real Laparoscopic Surgeries, Journal of Endourology, vol.26, issue.11, pp.1506-1511, 2012.
DOI : 10.1089/end.2012.0183

]. Megali, S. Sinigaglia, O. Tonet, and P. Dario, Modelling and Evaluation of Surgical Performance Using Hidden Markov Models, IEEE Transactions on Biomedical Engineering, vol.53, issue.10, pp.1911-1919, 2006.
DOI : 10.1109/TBME.2006.881784

]. L. Mitchell, R. Flin, S. Yule, J. Mitchell, K. Coutts et al., Development of a behavioural marker system for scrub practitioners' non-technical skills (SPLINTS system), Journal of Evaluation in Clinical Practice, vol.19, issue.6, pp.317-323, 2013.
DOI : 10.1111/j.1365-2753.2012.01825.x

]. K. Moorthy and Y. Munz, Objective assessment of technical skills in surgery, BMJ, vol.327, issue.7422, pp.1032-1037, 2003.
DOI : 10.1136/bmj.327.7422.1032

]. K. Moorthy, Y. Munz, A. Dosis, F. Bello, A. Chang et al., Bimodal assessment of laparoscopic suturing skills, Surgical Endoscopy, vol.13, issue.suppl 1, pp.1608-1612, 2004.
DOI : 10.1007/BF02637130

]. , M. , and M. Trivedi, Learning Trajectory Patterns by Clustering : Experimental Studies and Comparative Evaluation, IEEE Conference on Computer Vision and Pattern Recognition, pp.312-319, 2009.

L. Murayama, Y. Bougrila, and . Luo, SPIDAR G&G : A two-handed haptic interface for bimanual VR interaction, Eurohaptics, pp.138-146, 2004.

]. V. Naik, A. Perlas, D. B. Chandra, D. Y. Chung, and V. W. Chan, An Assessment Tool for Brachial Plexus Regional Anesthesia Performance, Regional Anesthesia and Pain Medicine, vol.32, issue.1, pp.41-45, 2007.
DOI : 10.1097/00115550-200701000-00008

O. Cherie-ann, V. Nathan, K. Chakradeo, . Malhotra, D. Horacio et al., The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella, Skull base : official journal of North American Skull Base Society, vol.16, issue.3, pp.123-131, 2006.

N. Thomas-neumuth, M. Durstewitz, G. Fischer, A. Strauß, J. Dietz et al., Structured recording of intraoperative surgical workflows, The International Society for Optical Engineering, vol.6145, 2006.

G. Thomas-neumuth, J. Strauß, . Meixensberger, U. Heinz, O. Lemke et al., Acquisition of Process Descriptions from Surgical Interventions, International Conference on Database and Expert Systems Applications, pp.602-611, 2006.

]. A. Nishikawa, T. Hosoi, K. Koara, D. Negoro, A. Hikita et al., Real-time visual tracking of the surgeonâ ? A ´ Zs face for laparoscopic surgery, Medical Image Computing and Computer- Assisted Intervention, vol.2208, pp.9-16, 2001.

]. J. Nix, A. Smith, M. E. Kurpad, E. M. Nielsen, R. S. Wallen et al., Prospective Randomized Controlled Trial of Robotic versus Open Radical Cystectomy for Bladder Cancer: Perioperative and Pathologic Results, European Urology, vol.57, issue.2, pp.196-201, 2010.
DOI : 10.1016/j.eururo.2009.10.024

S. Nomm, E. Petlenkov, J. Vain, J. Belikov, F. Miyawaki et al., Recognition of the Surgeon's Motions During Endoscopic Operation by Statistics Based Algorithm and Neural Networks Based ANARX Models, IFAC Proceedings Volumes, vol.41, issue.2, pp.14773-14778, 2008.
DOI : 10.3182/20080706-5-KR-1001.02501

D. E. Gianluca, R. Novi, R. Bardsley, M. P. Shah, J. C. Ottensmeyer et al., Event-driven Surgical Gesture Segmentation and Task Recognition for Ocular Trauma Simulation, International Conference on Intelligent Environments, pp.341-352, 2012.

]. I. Oropesa, P. Sánchez-gonzález, M. K. Chmarra, P. Lamata, Á. Fernández et al., EVA: Laparoscopic Instrument Tracking Based on Endoscopic Video Analysis for Psychomotor Skills Assessment, Surgical Endoscopy, vol.21, issue.3, pp.1029-1039, 2013.
DOI : 10.1007/s00464-012-2513-z

N. Padoy and G. D. Hager, Human-Machine Collaborative surgery using learned models, 2011 IEEE International Conference on Robotics and Automation, pp.5285-5292, 2011.
DOI : 10.1109/ICRA.2011.5980250

N. Padoy, T. Blum, S. Ahmadi, H. Feussner, M. Berger et al., Statistical modeling and recognition of surgical workflow, Medical Image Analysis, vol.16, issue.3, pp.632-641, 2012.
DOI : 10.1016/j.media.2010.10.001

URL : https://hal.archives-ouvertes.fr/inria-00526493

]. V. Pandey, J. H. Wolfe, C. D. Liapis, and D. Bergqvist, The examination assessment of technical competence in vascular surgery, British Journal of Surgery, vol.86, issue.9, pp.1132-1138, 2006.
DOI : 10.1002/bjs.5302

B. Olivier-pauly, S. Diotte, S. Habert, E. Weidert, P. Euler et al., Relevance-based Visualization to improve Surgeon Perception, International Conference on Information Processing in Computer- Assisted Interventions, pp.178-185, 2014.

]. Perez, Chirurgie Robotique : de l'Apprentissage à l'Application, 2012.

F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping, with applications to clustering, Pattern Recognition, vol.44, issue.3, pp.678-693, 2011.
DOI : 10.1016/j.patcog.2010.09.013

F. Petitjean, G. Forestier, I. Geoffrey, A. E. Webb, Y. Nicholson et al., Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification, 2014 IEEE International Conference on Data Mining, pp.470-479, 2014.
DOI : 10.1109/ICDM.2014.27

M. Gwénolé-quellec, B. Lamard, G. Cochener, and . Cazuguel, Real-Time Segmentation and Recognition of Surgical Tasks in Cataract Surgery Videos, IEEE Transactions on Medical Imaging, vol.33, issue.12, pp.2352-2360, 2014.
DOI : 10.1109/TMI.2014.2340473

]. T. Reader, R. Flin, K. Lauche, and B. H. Cuthbertson, Non-technical skills in the intensive care unit, British Journal of Anaesthesia, vol.96, issue.5, pp.551-559, 2006.
DOI : 10.1093/bja/ael067

C. E. Reiley, H. C. Lin, B. Varadarajan, B. Vagvolgyi, S. Khudanpur et al., Automatic Recognition of Surgical Motions Using Statistical Modeling for Capturing Variability, Studies in health technology and informatics, vol.132, issue.38, pp.396-401, 2008.

E. Carol, . Reiley, D. Gregory, and . Hager, Decomposition of Robotic Surgical Tasks : An Analysis of Subtasks and Their Correlation to Skill. Modeling and Monitoring of Computer Assisted Interventions, 2009.

E. Carol, G. D. Reiley, and . Hager, Task versus Subtask Surgical Skill Evaluation of Robotic Minimally Invasive Surgery, Medical Image Computing and Computer-Assisted Intervention, vol.5761, pp.435-442, 2009.

E. Carol, E. Reiley, G. D. Plaku, and . Hager, Motion generation of robotic surgical tasks : Learning from expert demonstrations, IEEE Engineering in Medicine and Biology Society, vol.45, pp.967-970, 2010.

]. C. Reiley, H. C. Lin, D. D. Yuh, and G. D. Hager, Review of methods for objective surgical skill evaluation, Surgical Endoscopy, vol.31, issue.9, pp.356-366, 2011.
DOI : 10.1007/s00464-010-1190-z

]. R. Reznick, Teaching and testing technical skills, The American Journal of Surgery, vol.165, issue.3, pp.358-361, 1993.
DOI : 10.1016/S0002-9610(05)80843-8

]. J. Rosen, B. Hannaford, C. G. Richards, and M. N. Sinanan, Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills, IEEE Transactions on Biomedical Engineering, vol.48, issue.5, pp.579-591, 2001.
DOI : 10.1109/10.918597

M. Jacob-rosen, B. Solazzo, M. Hannaford, and . Sinanan, Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model, Computer Aided Surgery, vol.70, issue.4, pp.49-61, 2002.
DOI : 10.1109/10.918597

J. D. Jacob-rosen, L. Brown, M. N. Chang, B. Sinanan, and . Hannaford, Generalized Approach for Modeling Minimally Invasive Surgery as a Stochastic Process Using a Discrete Markov Model, IEEE Transactions on Biomedical Engineering, vol.53, issue.3, pp.399-413, 2006.
DOI : 10.1109/TBME.2005.869771

]. J. Sackier and Y. Wang, Robotically assisted laparoscopic surgery, Surgical Endoscopy, vol.7, issue.1, pp.63-66, 1994.
DOI : 10.1007/BF02909496

]. G. Saggio, G. L. Santosuosso, P. Cavallo, C. A. Pinto, M. Petrella et al., Gesture recognition and classification for surgical skill assessment, 2011 IEEE International Symposium on Medical Measurements and Applications, pp.662-666, 2011.
DOI : 10.1109/MeMeA.2011.5966681

]. S. Sankararaman, P. K. Agarwal, T. Molhave, and A. P. Boedihardjo, Computing Similarity between a Pair of Trajectories, Computational Geometry, pp.1-18, 2013.

B. Santos-carreras, M. Hagen, R. Gassert, and H. Bleuler, Survey on Surgical Instrument Handle Design, Surgical Innovation, vol.38, issue.1, pp.50-59, 2012.
DOI : 10.1177/1553350611413611

]. Schulz and A. Woerner, Automatic Motion Segmentation for Human Motion Synthesis, International Conference on Articulated Motion and Deformable Objects, pp.182-191, 2010.
DOI : 10.1109/ICCV.2003.1238468

]. F. Secin, C. Savage, C. Abbou, A. Taille, J. Rassweiler et al., The Learning Curve for Laparoscopic Radical Prostatectomy: An International Multicenter Study, The Journal of Urology, vol.184, issue.6, pp.2291-2296, 2010.
DOI : 10.1016/j.juro.2010.08.003

M. Shokoohi-yekta, B. Hu, H. J. Wang, and E. Keogh, Generalizing Dynamic Time Warping to the Multi-Dimensional Case Requires an Adaptive Approach, Data Mining and Knowledge Discovery, pp.76-101, 2015.

A. Simorov, R. Stephen-otte, M. Courtni, D. Kopietz, and . Oleynikov, Review of surgical robotics user interface: what is the best way to control robotic surgery?, Surgical Endoscopy, vol.23, issue.6, pp.2117-2125, 2012.
DOI : 10.1007/s00464-012-2182-y

]. S. Spaner and G. L. Warnock, A Brief History of Endoscopy, Laparoscopy, and Laparoscopic Surgery, Journal of Laparoendoscopic & Advanced Surgical Techniques, vol.7, issue.6, pp.369-373, 1997.
DOI : 10.1089/lap.1997.7.369

R. Stauder, A. Okur, L. Peter, A. Schneider, and M. Kranzfelder, Hubertus Feussner et Nassir Navab Random Forests for Phase Detection in Surgical Workflow Analysis, International Conference on Information Processing in Computer-Assisted Interventions, pp.148-157, 2014.

]. P. Steinberg, P. A. Merguerian, W. Bihrle, J. A. Heaney, and J. D. Seigne, A da Vinci Robot System Can Make Sense for a Mature Laparoscopic Prostatectomy Program, Journal of the Society of Laparoendoscopic Surgeons, vol.12, issue.1, pp.9-12, 2008.

]. B. Tang, G. B. Hanna, F. Carter, G. D. Adamson, J. P. Martindale et al., Competence Assessment of Laparoscopic Operative and Cognitive Skills: Objective Structured Clinical Examination (OSCE) or Observational Clinical Human Reliability Assessment (OCHRA), World Journal of Surgery, vol.84, issue.4, pp.527-534, 2006.
DOI : 10.1007/s00268-005-0157-z

L. Tao, E. Elhamifar, S. Khudanpur, G. D. Hager, and R. Vidal, Sparse Hidden Markov Models for Surgical Gesture Classification and Skill Evaluation, Information Processing in Computer-Assisted Interventions, pp.167-177, 2012.
DOI : 10.1007/978-3-642-30618-1_17

L. Tao, L. Zappella, G. D. Hager, and R. Vidal, Surgical Gesture Segmentation and Recognition, Medical Image Computing and Computer-Assisted Intervention, vol.8151, issue.48, pp.339-346, 2013.
DOI : 10.1007/978-3-642-40760-4_43

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. Holt, M. J. Reinders, and E. Hendriks, Multi-Dimensional Dynamic Time Warping for Gesture Recognition. Annual Conference of the Advanced School for Computing and Imaging, pp.76-101, 2007.

A. Tobergte, P. Helmer, U. Hagn, P. Rouiller, S. Thielmann et al., Alin Albu-Schäffer, François Conti et Gerd Hirzinger . The sigma.7 haptic interface for MiroSurge : A new bi-manual surgical console, IEEE International Conference on Intelligent Robots and Systems, pp.3023-3030, 2011.

M. Tokunaga, H. Egi, M. Hattori, M. Yoshimitsu, T. Kawahara et al., Approaching time is important for assessment of endoscopic surgical skills, Minimally Invasive Therapy & Allied Technologies, vol.240, issue.3, pp.142-149, 2012.
DOI : 10.1001/archsurg.1997.01430260098021

]. S. Tsuda, D. Scott, J. Doyle, and D. B. Jones, Surgical Skills Training and Simulation, Current Problems in Surgery, vol.46, issue.4, pp.271-370, 2009.
DOI : 10.1067/j.cpsurg.2008.12.003

M. Uemura, M. Tomikawa, R. Kumashiro, T. Miao, R. Souzaki et al., Analysis of hand motion differentiates expert and novice surgeons, Journal of Surgical Research, vol.188, issue.1, pp.8-13, 2014.
DOI : 10.1016/j.jss.2013.12.009

S. Miller, D. Duckworth, H. Hu, A. Wan, X. Y. Fu et al., Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations, IEEE International Conference on Robotics and Automation, vol.42, pp.2074-2081, 2010.

]. R. Van-der-schatte-olivier, C. D. Van-'t-hullenaar, J. P. Ruurda, and I. A. Broeders, Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery, Surgical Endoscopy, vol.33, issue.2, pp.1365-1371, 2009.
DOI : 10.1007/s00464-008-0184-6

F. R. Van-velthoven and P. Hoffmann, Methods for laparoscopic training using animal models, Current Urology Reports, vol.24, issue.2, pp.114-119, 2006.
DOI : 10.1007/s11934-006-0069-y

B. Varadarajan, C. Reiley, H. Lin, S. Khudanpur, and G. Hager, Data-Derived Models for Segmentation with Application to Surgical Assessment and Training, Medical Image Computing and Computer- Assisted Intervention, vol.5761, issue.42, pp.426-434, 2009.
DOI : 10.1007/978-3-642-04268-3_53

]. M. Vassiliou, L. S. Feldman, C. G. Andrew, S. Bergman, K. Leffondré et al., A global assessment tool for evaluation of intraoperative laparoscopic skills, The American Journal of Surgery, vol.190, issue.1, pp.107-113, 2005.
DOI : 10.1016/j.amjsurg.2005.04.004

X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann et al., Experimental comparison of representation methods and distance measures for time series data, Data Mining and Knowledge Discovery, vol.15, issue.1, pp.275-309, 2013.
DOI : 10.1007/s10618-012-0250-5

]. Weinkauf, Y. Gingold, and O. Sorkine, Topology-based Smoothing of 2D Scalar Fields with C1-Continuity, Eurographics Conference on Visualization, pp.1221-1230, 2010.
DOI : 10.1111/j.1467-8659.2009.01702.x

]. , W. , and G. Bishop, An Introduction to the Kalman Filter, Special Interest Group in Graphics, pp.1-81, 2001.

]. M. Wilson, R. Stone, A. Middlebrook, R. F. Mccloy, and C. Sutton, MIST VR : a virtual reality trainer for laparoscopic surgery assesses performance, Annals of the Royal College of Surgeons of England, vol.79, pp.403-404, 1997.

D. Shandong, Y. F. Wu, and . Li, Flexible signature descriptions for adaptive motion trajectory representation, perception and recognition, Pattern Recognition, vol.42, pp.194-214, 2009.

S. Yang, T. S. Wells, R. A. Maclachlan, and C. N. Riviere, Performance of a 6-Degree-of-Freedom Active Microsurgical Manipulator in Handheld Tasks, IEEE International Conference on Engineering in Medicine and Biology Society, pp.5670-5673, 2013.

]. S. Yule, R. Flin, S. Paterson-brown, and N. Maran, Non-technical skills for surgeons in the operating room: A review of the literature, Surgery, vol.139, issue.2, pp.140-149, 2006.
DOI : 10.1016/j.surg.2005.06.017

]. S. Yule, R. Flin, S. Paterson-brown, N. Maran, and D. Rowley, Development of a rating system for surgeons' non-technical skills, Medical Education, vol.2, issue.11, pp.1098-1104, 2006.
DOI : 10.1007/s10111-004-0158-y

L. Zappella, B. Béjar, G. Hager, and R. Vidal, Surgical gesture classification from video and kinematic data, Medical Image Analysis, vol.17, issue.7, pp.732-745, 2013.
DOI : 10.1016/j.media.2013.04.007

]. Zhou and F. Torre, Generalized Time Warping for Multimodal Alignment of Human Motion, IEEE Conference on Computer Vision and Pattern Recognition, pp.1282-1289, 2012.

]. Zhou, M. E. Cabrera, and J. P. Wachs, A Comparative Study for Touchless Telerobotic Surgery, International Conference on Intelligent Robots and Systems, pp.2014-117, 2014.
DOI : 10.1007/978-3-319-12943-3_17

]. Zhou, M. E. Cabrera, and J. P. Wachs, Touchless Telerobotic Surgery : Is It Possible at All ?, AAAI Conference on Artificial Intelligence, pp.4228-4229, 2015.

]. Zhou, I. Ioannou, J. B. , S. Wijewickrema, G. Kennedy et al., Automated Segmentation of Surgical Motion for Performance Analysis and Feedback, Medical Image Computing and Computer-Assisted Intervention, 2015.
DOI : 10.1007/978-3-319-24553-9_47