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1.2 Summary of scientific activities

1.2.1 Preamble

I have carried out all my studies in Italy. Moreover, after a PhD in Computer Engineering

in the domain of the test and verification of digital systems at the Politecnico di Torino

(Italy), I pursued 1 year of post-doc research at the same institute still in the same

domain. Thanks to cooperations between the Politecnico di Torino and the LIRMM of

Montpellier, I had the opportunity to obtain a post-doc position in France. There, in

addition to the topics which were already familiar to me, I had the occasion to explore

new fields in the test topic: the diagnosis and the power-aware test. My scientific results,

students I have supervised, my teaching activities, and in general my research projects

directly reflects my career path.

1.2.2 Current research activities

Research activities I carried on after my nomination as Mâıtre de conférences deal with

three main axes: the fault diagnosis, the power-aware test and the test of low-power

devices. In the next subsections I will introduce each research axe, the details are given

in the Chapter 2 Section 2.1.

1.2.2.1 Fault Diagnosis

The ever-increasing growth of the semiconductor market results in an increasing com-

plexity of digital circuits. Smaller, faster, cheaper and low-power consumption are the

main challenges in semiconductor industry. The reduction of transistor size and the lat-

est packaging technology (i.e., System-On-a-Chip, System-In-Package, Trough Silicon

Via 3D Integrated Circuits) allows the semiconductor industry to satisfy the latest chal-

lenges. Although producing such advanced circuits can benefit users, the manufacturing

process is becoming finer and denser, making chips more prone to defects. Physical

defects like shorts and opens will occur during any single step of the fabrication process.

These defects can be randomly caused by contaminations or due to systematic process-

design interaction [1]. In modern deep submicron technologies, systematic defects are

becoming more likely to appear than random defects. This is caused by the reduced

chip sizes, the use of new complex process technologies, new materials and the increas-

ing number of vias and contacts [2]. Today, systematic defects appear not only in the

cell interconnection, but also inside the cell itself (intra-cell defect).
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The test is one of the most critical tasks in the semiconductor production process. It is

not only necessary to seek for fault free devices but it plays a key role in analyzing defects

in the manufacturing process as well. The feedbacks derived from the test process are

the only way to analyze and isolate many of the defects in today’s processes enabling

to obtain a fast and efficient yield ramp-up. Fault Diagnosis plays a crucial role in this

scenario, since test can only provide information on the system behavior (good/no good).

Fault diagnosis starts from the test response with the aim to locate the faulty part of

the circuit and then identify which is the source of the observed failures. Unraveling

the location and cause of the defect helps to improve both the circuit design and the

manufacturing process, thus leading to a lower cost, an improved yield and a shorter

time-to-market.

The main contributions of this work focus on the development of efficient diagnosis

approach targeting digital circuits.

1.2.2.2 Power-Aware Test

Nowadays, electronic products present various issues that become more important with

CMOS technology scaling. High operation speed and high frequency are mandatory

requests. On the other hand, power consumption is one of the most significant con-

straints due to large diffusion of portable devices. These needs influence not only the

design of devices, but also the choice of appropriate test schemes that have to deal with

production yield, test quality and test cost.

Testing for performance, required to catch timing or delay faults, is therefore mandatory,

and it is often implemented through at-speed scan testing for logic circuits. At-speed

scan testing consists of using a rated (nominal) system clock period between launch and

capture for each delay test pattern, while a longer clock period is normally used for scan

shifting (load and unload cycles).

In order to test for transition delay faults, two different schemes are used in practice dur-

ing at-speed scan testing: Launch-off-Shift (LOS) [12] and Launch-off-Capture (LOC)

[13].

Although at-speed scan testing is mandatory for high- quality delay fault testing, its

applicability is severely challenged by test-induced yield loss, which may occur when a

good chip is declared as faulty during at-speed scan testing [15]. Both schemes (LOS

and LOC) may suffe from this problem, whose the major cause is Power Supply Noise

(PSN), i.e., IR- drop and Ldi/dt events, caused by excessive switching activity (leading

to excessive power consumption) during the launch- to-capture cycle [16] of delay testing
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schemes. In order to deal with this problem, dedicated techniques to reduce the risk

of artificial yield loss induced by excessive PSN during at-speed scan testing have been

proposed in the literature [17]. These techniques are mainly based on test pattern

modification or power-aware Design-for-Testability (DfT).

Despite the fact that reduction of test power is mandatory to minimize the risk of yield

loss, some experimental results have proved that too much test power reduction might

lead to test escape and reliability problems because of the under-stress of the circuit

during test [18]. So, in order to avoid any yield loss and test escape due to power issues

during test, test power has to map the power consumed during functional mode. To

this purpose, the knowledge of functional power for a given CUT is required and can

be exploited as a reference for defining the power consumption (upper and lower) limits

during power-aware delay test pattern generation for LOS or LOC.

The main contributions of this work is the development of meaningful test solutions

respecting the power-constraints.

1.2.2.3 Test of Low-Power Devices

System-on-chips (SOCs) have found their application in every latest hand-held consumer

devices, such as smart phones, PDAs, digital cameras and other mobile applications.

This is because SOCs designed with deep-submicrometer technologies can integrate all

components and functions that historically were placed on a printed-circuit board. This

trend allows SOCs to embrace a variety of IP cores, such as embedded processors, MPEG

encoders/decoders, DSPs, embedded memories, etc.

The need of power efficient electronic devices leads to implement dedicated structures to

reduce as much as possible the power consumption. These needs influence not only the

design of devices, but also the choice of appropriate test schemes or eventually design

the novel DfT structures that have to deal with production yield, test quality and test

cost (ITRS).

The overall SoC power consumption has two contributors: (i) dynamic and (ii) static

power. While the dynamic power is strictly related to the running application, the static

power is only dependent on the leakage currents. As shown in [24], static power con-

sumption is becoming the most important contributor to the overall power consumption

especially for the latest technologies (i.e., under 65nm). In order to reduce the static

power consumption the so-called power-gating techniques have been proposed so far.

The power-gating relies on splitting the SoC into different blocks called power islands.
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Each power island can be switched on/off independently of the others. Using this tech-

nique, if one or more power islands are not used by the running application, they are

switched off, in order to reduce the static power consumption.

The main contributions of this work is the analysis of the impact of defects in the

power-gating circuitry and in the development of efficient test solutions.

1.2.3 Students

After my Ph.D. I have co-supervised 8 Ph.D. students and 20 master students. Table

1.1 summarizes Ph.D. students in chronological order. Master students are not listed in

this table for the sake of simplicity. Section 2.2 of Chapter 2 will describe the work of

each student in detail. Sheet1

Page 1

2006 2007 2008 2009 2010 2011 2012 2013 2014 Current Situation

Technical Manager @ TRAD Company

Test Engineer @ ST Microelectronics

-

CAD Technical Assistance @ Cadence

Post Doc @ TIMA

R&D @ Intel 

-

Post Doc @ Politecnico di Torino

Y. BENABBOUD

F. WU
Z. SUN

M. VALKA

L. ZORDAN

A. TOUATI

A. SAVINO

A. ROUSSET

Table 1.1: Students Summary.

1.2.4 Research Contracts

Starting from my Ph.D., I have cooperated to national- and european-funded research

contracts. The following list summarizes each contract. Details are given in Chapter 2

Section 2.4

• 2005-2008: Participation to NanoTEST project (European MEDEA+ 2A702) that

has the ambition to create a breakthrough in methods and flows used by the test

technologies by considering the test in the whole value chain from Design to Ap-

plication. A strong consortium composed of European Semiconductor industries,

Academics and Small and Medium Enterprises has grouped their competences to

successfully address this challenge

• 2007-2009: Participation to the contract with STM Crolle (“Bourse Cifre”)

• 2008-2011: Participation to TOETS project (European CATRENE CT302) that

is the continuation of the NanoTEST project
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• 2011-2013: Participation to the contract with INTEL that focuses on the test of

low-power SRAMs

• 2011-2014: Participation to the contract with STE (“Bourse Cifre”)

• 2011-2014: Participation to the contract with STE Grenoble (“Bourse Cifre”)

• 2013-2016: Participation to LIA LAFISI (CNRS and Université de Montpellier 2

funded international laboratory) that has the following main objectives:

– Synergize research efforts on all aspects of test and fault tolerance of hardware-

software integrated systems, from the circuit to system level.

– Promote joint education of students to research careers and set up advanced

course programs, summer schools, or research internships.

– Facilitate diffusion of a scientific culture of high quality in the field of hardware-

software integrated systems.

– Set up the necessary means for the valorization and technological transfer of

research results obtained in the framework of the LIA.

1.2.5 Teaching activities

Starting from my Ph.D. studies, I have performed various teaching activities at Politec-

nico di Torino, University of Montpellier 2 and the USTH, students of private institu-

tions. Table 1.2 summarizes my pedagogical activities. The column dedicated to the

time spent for each subject is classified in 3 set: lectures (i.e., “Cours Magistraux” and

“Travaux Dirigés”), and practical work (i.e., “Travaux Pratique”).
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1.2.6 Dissemination of knowledge

� International Symposium on Industrial Embedded Systems (SIES): Publication

Chair (2008)

� Design and Test of Integrated Circuits (DTIS): Publication Chair (2014 and 2015)

� European Test Symposium (ETS): Publication Chair (ETS’15)

� South European Test Seminar (SETS): General Chair (2014)

� “Testing, Reliability, and Fault-Tolerance” Track Chair of ISVLSI’15

� Program Committee: ISQED (from 2009), DDECS (from 2011), ETS (from 2013)

� Web Master of the “Test Technology Technical Council” (tab.computer.org/tttc)

of IEEE Computer Society (from 2012)

� Web Master of the “European Test Symposium” general home (http://www.ieee-

ets.org/) from 2012

� Web Master of ETS’13

� Web Master of BTW’10, BTW’11, BTW’12 and BTW’14

� Reviewer for the following main Journals: IEEE Transaction on VLSI, IEEE Trans-

action on Computer, Journal of Electronic Testing - Theory and Applications, IET

Computers & Digital Techniques

� Reviewer for the following main conferences: DAC, ITC, VTS, ETS, ATS

� Paper on IEEE Transaction on Computer, awarded by a movie published at “Com-

puting Now” (http://www.computer.org/portal/web/computingnow/1211/whatsnew/tc)

1.2.7 Publications

Table 1.3 summarizes the number of my publications for each year, classified by patent,

book, journal papers (with review process), papers published in official proceedings

(coming from conferences or workshops with review process). The complete list of

publications is given in Chapter 4.
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Year Patent Book Journal
Prooceding

Total
Invited Conference Workshop

2005 0 0 0 0 2 0 2

2006 0 0 0 1 6 1 8

2007 0 0 1 0 4 1 6

2008 0 0 2 0 4 1 7

2009 0 1 1 0 5 0 7

2010 0 0 2 0 5 0 7

2011 0 0 0 2 8 0 10

2012 0 0 1 1 5 0 6

2013 0 0 2 0 4 0 6

2014 2 0 2 0 4 1 10

Total 2 1 11 55 69

Table 1.3: Publications Summary.



Chapter 2

Details

2.1 Research activities

This section summarizes the research activities I carried out starting from my master

thesis in 2002.

Research activities at Politecnico di Torino

Since 2002, I worked in the area of test of digital systems and dependability for safety-

critical applications at the Politecnico di Torino (Italy), in cooperation with Prof. Paolo

Prinetto’s research group. My research activity mainly focused on the definition of

new methodologies and the implementation of tools able to improve the development of

highly dependable systems, at different levels: for basic digital components, for systems

on chip, up to microprocessor-based systems.

My research activity, developed during 1 year of master thesis, plus 3 years of PhD and

1 years of PostDoc focused on test and functional verification of digital systems and .

In particular I worked on the following topics:

� Definition of functional fault models for memories RAM and automatic generation

of test sequences (Section 2.1.1);

� Definition of functional test generation methodology for RISC microprocessor cores

(Section 2.1.2);

� Definition of a design environment to verify the system core-wrapper 1500-Compliance

with the purpose to assure that the component can be successfully integrated in a

SoC (Section 2.1.3).

11
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Research activities at LIRMM

Starting from November 2006 I started working at LIRMM with the group of Patrick

Girard and Serge Pravossoudovitch still working on the test topic but now focusing on

diagnosis, power-aware test and test of low-power devices. In the following I will detail

the main contributions.

The diagnosis is the process of isolating possible sources of observed failures in a defective

circuit. Today, manufacturing defects appear not only in the cell interconnection, but

also inside the cell itself (intra-cell defect). State of the art diagnosis approaches can

identify the defect location at gate level (i.e, one or more standard cells and/or inter-

connections can be provided as possible defect location). Some approaches have been

developed to target the intra-cell defects. In this work, we propose an intra-cell diagnosis

method based on the “Effect-Cause” paradigm aiming at locating the root cause of the

observed failures inside a logic cell. It is based on the Critical Path Tracing (CPT) here

applied at transistor level. The main characteristic of our approach is that it exploits

the analysis of the faulty behavior induced by the actual defect. In other word, we locate

the defect by simply analyzing the effect induced by the defect itself. The advantage

is the fact that we are defect independent (i.e., we do not have to explicitly consider

the type and the size of the defect). Moreover, since the complexity of a single cell in

terms of transistor number is low, the proposed intra-cell diagnosis approach requires

a negligible computational time. The efficiency of the proposed approach has been

evaluated by means of experimental results carried out on both simulations-based and

industrial silicon data case studies. This activity is described in Section 2.1.4.

High power consumption during test may lead to yield loss and premature aging. In

particular, excessive peak power during at-speed delay fault testing represents an im-

portant issue. In the literature, several techniques have been proposed to reduce peak

power consumption during at-speed LOC or LOS delay testing. On the other hand, some

experiments have proved that too much test power reduction might lead to test escape

and reliability problems. So, in order to avoid any yield loss and test escape due to

power issues during test, test power has to map the power consumed during functional

mode. In literature, some techniques have been proposed to apply test vectors that

mimic functional operation from the switching activity point of view. In this work, we

propose a novel flow to determine the functional power to be used as test power (upper

and lower) limits during at-speed delay testing. This activity is described in Section

2.1.5.

In low-power SRAMs, power gating mechanisms are commonly used to reduce static

power consumption. When the SRAM is not accessed for a long period, such mechanisms

allow shutting off one or more memory blocks (core-cell array, address decoder, I/O
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logic, etc), thus reducing leakage currents. In order to guarantee static power reduction

in low-power SRAMs, reliable operation of power gating mechanisms must be ensured

by adequate test techniques. In this work, we first present a detailed analysis based on

electrical simulations to identify faulty behaviors caused by realistic defects that may

affect power gating mechanisms embedded in low-power SRAMs. Based on this analysis,

we present an efficient test solution targeting detection of observed faulty behaviors. This

activity is described in Section 2.1.6.

2.1.1 Memory Test (Master and Ph. D. Thesis)

Embedded memories are the densest components within a System on Chip (SoC), ac-

counting for up to 90% of its real size. Today’s technologies allow the design and man-

ufacturing of memory cores with many I/O ports, and multi-port RAM core generators

are commonly available in many ASIC vendors library. To have an idea of today’s SoC

complexity, it is enough to consider that typically more than 30 embedded memories are

placed on a single chip, they are scattered around the device rather than concentrated

in one location, they all have different types, sizes, and access protocols and timing, and

they can even be doubly embedded inside embedded cores. Many activities have been

devoted to Built-In Self-Test of embedded memories. In this context, the research activ-

ity focused then on the definition of test algorithms for memories. Among the different

types of algorithms proposed to test random access memories (RAM), March Tests have

proven to be faster, simpler, regularly structured and linear in complexity. A March

Test consists of a sequence of March Elements, each composed by a sequence of basic

read/write operations to be performed on each cell of the memory, in either ascend-

ing or descending order, before proceeding to the next memory cell. The majority of

the published March Tests has been manually generated; unfortunately, the continuous

evolution of the memory technology requires the constant introduction of new classes

of faults, such as dynamic and linked faults, and makes the task of hand-writing test

algorithms harder and not always leading to optimal results. Although some researchers

published hand-made March Tests able to deal with new fault models, the problem of

a comprehensive methodology to automatically generate March Tests for SRAMs, ad-

dressing both classic and new fault models, is still an open issue. This work proposed a

new approach to the automatic generation of March Tests. The formal model adopted

to represent memory faulty behaviors allows the definition of a general methodology

to deal with both the most important classes of memory faults (Dynamic, Static, and

also linked faults), and even new user-defined fault models. Experimental results show

that the new automatically generated March Tests can reduce the test complexity, and
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therefore the test time, compared to the well-known state of the art in memory testing

of about 15%.

This work and its extension are published in [W1, C1, C2, C4, C5, C6, C8, C15, C26,

C28, J1, J2, J3] referenced in the Publication list of chapter 4.

2.1.2 Microprocessor Test (Ph. D. Thesis and Post-Doc at Politecnico

di Torino)

In order to guarantee very high performance, a large number of SoC designs are built

around embedded RISC microprocessor or digital signal processor (DSP) cores. Never-

theless, due to the high complexity and the limited accessibility of their internal logic,

embedded microprocessor cores often introduce testability issues. As an example, Scan

Chains insertion is often avoided not to impact the processor performance and there-

fore structural testing of a microprocessor core is usually unfeasible. Several alterna-

tive approaches have been developed in the last years. The most successful are called

Software-Based Self-Test (SBST) and are based on the idea of testing the microproces-

sor by having it executing a given and predetermined list of instructions. The list of

executed instructions constitutes the test program. Test programs are usually stored

either in a dedicated ROM or loaded into a RAM by an external system (i.e. ATE or

the Operating System). The main advantages are that no extra area is required and

the test is executed by the microprocessor itself (at-speed test). Several methodologies

have been proposed to generate the test programs. The empirical approach requires

neither a microprocessor nor a fault model. This approach is fairly easy to apply but

lacks of a formal way to compute the fault coverage or the quality of the test program.

Other researchers propose the use of pseudo-random sequences of instructions, where

both operands and/or instructions could be randomized, and or deterministic sequences

of instructions. The deterministic approach demonstrated to be better than the pseudo-

random one both in the final coverage of functional faults and the overall test time

(and therefore number of instructions in the program). Despite their efficiency, many of

the suggested approaches lack of focus on the more complex functional blocks, like the

pipelining interlock mechanism or the cache hierarchy. In the test of a microprocessor

core used in critical applications none of these blocks can be ignored. This research

activities led to a test generation methodology designed to build a non-concurrent on-

line test of a RISC microprocessor core; the proposed solution allows to generate very

complex test programs based on a deterministic SBST approach and to execute them

under very tight timing constraints. The presented case study is a Motorola PowerPC

603 Microprocessor core for which, to our knowledge, no SBST solution has ever been

published.
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The proposed methodology is defined in four steps:

� Identification of all the functional components of the target microprocessor;

� Identification of the fault models for each component;

� Collection of the state of the art about the test strategies available for each com-

ponent;

� Development of the test programs.

This work and its extension are published in [C3, I1, J7] referenced in the Publication

list of chapter 4.

2.1.3 Functional Verification of IEEE std. 1500 Compliance(Ph. D.

Thesis and Post-Doc at Politecnico di Torino)

The race to market high-volume quality products demands a shorter design-to-manufacturing

cycle, forcing System-on- Chip (SoC) designers to strongly rely on Intellectual Property

(IP) cores from multiple sources. The shorter time-to-volume requires faster silicon

bring-up with a high degree of diagnosability. This means being able to isolate each

embedded core during test and debug activities. The adoption of adequate test and di-

agnosis strategies is therefore a major challenge in modern SoCs production. The IEEE

Standard Testability Method for Embedded Core-Based Integrated Circuits (IEEE std.

1500) addresses the specific challenges that come with testing deeply embedded reusable

cores supplied by different providers, who often use different hardware description levels

and mixed technologies. It defines a comprehensive set of guidelines for building the

core test infrastructure. It includes:

� A Core Test Wrapper: a wrapper placed around the boundaries of the core that

allows accessing its testing functionalities using a standard interface and protocol.

The wrapper is completely transparent when the core is not in test mode;

� An Information Model: a formal description of the IEEE std. 1500 functionalities

implemented by the Core Test Wrapper. The standard supports many function-

alities, some mandatory and some optional. The Information Model is the bridge

between core providers and core users and facilitates the automation of test data

transfer and reuse between these two entities. The Information Model is described

using the IEEE std. 1450.6 Core Test Language (CTL) and includes:

� The set of wrapper’s signals;
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� The wrapper communication protocol;

� Information about test patterns.

Some literature presents solutions to build SoCs with IEEE std. 1500 testability features;

nevertheless, by analyzing the standard, it is clear that implementing a fully compliant

core is not a trivial task. The need to support as wide a range of embedded core test

applications as possible has led to a very flexible solution. The IEEE std. 1500 specifies

a mandatory minimal set of hardware support. However, a designer can extend the test

infrastructure by creating virtually unlimited sets of registers and instruction exten-

sions. An IEEE std. 1500 compliant design is therefore exposed to a range of possible

design errors that require to be early identified and fixed. A comprehensive approach

to thoroughly verify the functionality of IEEE std. 1500 wrappers and wrapped cores

in a SoC environment is therefore mandatory. The problem of verifying the compliance

of an IP core to the IEEE std. 1500 has been poorly addressed in literature. The main

drawbacks of the existing solutions are that, for each core, the verification module must

be configured by hand and that the verification strategy, i.e. the order used to verify

each aspect (rule) of the standard, is fixed. Moreover, the authors verify the SoC and

wrapper functionalities without systematically addressing every single aspect (rule) of

the standard. To overcome these problems, we present a verification framework based

on the use of the UML language, designed to systematically address the verification of

the standard. Besides providing the actual implementation of the framework, this work

focuses on the definition of an abstract model of the standard enabling core providers

andor integrators to build their custom verification environments. Starting from the ab-

stract model proposed in, it is possible to build a verification environment for the IEEE

std. 1500. In particular we will show how the functionalities provided by Specman

EliteTM(Cadence), a commercial functional verification EDA can be used to implement

such a verification environment.

This work and its extension are published in [C9, W2, J4] referenced in the Publication

list of chapter 4.

2.1.4 Diagnosis (from the Post-Doc at LIRMM)

The ever-increasing growth of the semiconductor market results in an increasing com-

plexity of digital circuits. Smaller, faster, cheaper and low-power consumption are the

main challenges in semiconductor industry. The reduction of transistor size and the lat-

est packaging technology (i.e., System-On-a-Chip, System-In-Package, Trough Silicon
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Via 3D Integrated Circuits) allows the semiconductor industry to satisfy the latest chal-

lenges. Although producing such advanced circuits can benefit users, the manufacturing

process is becoming finer and denser, making chips more and more prone to defects.

Physical defects like shorts and opens will occur during each step of the fabrication

process. These defects can be randomly caused by contaminations or due to systematic

process-design interaction [1]. In modern deep submicron technologies, systematic de-

fects are becoming more likely to appear than random defects. This is caused by the

reduced chip sizes, the use of new complex process technologies, new materials and the

increasing number of vias and contacts [2]. Today, systematic defects appear not only in

the cell interconnection, but also inside the cell itself (intra-cell defect). In the literature,

existing works prove that these defects can escape classical test solutions.

The test is one of the most critical tasks in the semiconductor production process. It is

not only necessary to seek for fault free devices but it plays a key role in analyzing defects

in the manufacturing process as well. The feedbacks derived from the test process are

the only way to analyze and isolate many of the defects in today’s processes enabling to

obtain a fast and efficient yield ramp-up.

Fault Diagnosis plays a crucial role in this scenario, since test can only provide infor-

mation on the system behavior (good/no good). Fault diagnosis starts from the test

response with the aim to locate the faulty part of the circuit and then identify which

is the source of the observed failures. Unraveling the location and cause of the defect

helps to improve both the circuit design and the manufacturing process, thus leading

to a lower cost, an improved yield and a shorter time-to-market. State of the art fault

diagnosis approaches can identify the defect location at gate level (i.e, one or more stan-

dard cells and/or inter-connections can be provided as possible defect location) [30].

The fault diagnosis results (i.e., possible defect locations) are then further used in defect

analysis, where the circuit is physically examined to determine the mechanism of the

failure. Physical Failure Analysis (PFA) is physical analysis that corresponds to the

physical identification of the defect. It mainly consists in selective de-layering and cross-

sectioning of a die. PFA is not only crucial and time-consuming but also destructive

and irreversible. Therefore, a preliminary diagnosis procedure is mandatory to correctly

guide the PFA to eventually save time and increase success rate.

As previously discussed, state of the art fault diagnosis approaches are able to locate

the possible defect at gate level (i.e., inter-cell). Therefore, in the case of circuit affected

by intra-cell defects, results of inter-cell fault diagnosis may cause problems and impact

the efficient of the PFA. So that, PFA may take more time to identify the actual defects.

Moreover, in the worst case, PFA may fail (i.e., it does not identify the root cause of
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the observed error) and it can destroy the circuit. The solution is to develop an efficient

diagnosis approach able to target intra-cell defects.

To the best of our knowledge, commercial tools only target inter-cell fault diagnosis,

while in the literature some research works already addressed the intra-cell fault diagnosis

problem [10, 11, 31]. The approach of [11] is based on the use of a defect dictionary. The

dictionary is created by means of defect injection campaign at transistor level. During

diagnosis, the observed failures are used to search in to the defect dictionary the most

suitable defect location and type. However, the need of pre-computed defect dictionary

for each cell and defect type makes this approach highly complex. Moreover, if the

injected defect is not accurate enough it can lead to erroneous results during diagnosis.

The approach of [31] is based on the use of a fault dictionary. The main difference

w.r.t. [11] is that the dictionary is created exploiting a switch-level simulation (i.e., the

transistors are considered as switches). Thus, instead of injecting defects, only fault

models are injected. The advantage is the reduced simulation time compared to [11].

Two types of fault are considered, the stuck-at and dominant bridging fault. These

faults are modeled at switch-level in order to be simulated and to create the related

fault dictionary. However, defects leading to delay faults are not targeted. Moreover,

to include delay faults or other types of faults a switch-level model of them has to be

defined.

The approach of [10] proposes to convert transistor level netlist into an equivalent gate

level netlist. Then classical inter-cell fault diagnosis tools can be applied. The main

drawback of this approach is that the set of transformation rules depends on targeted

defect types.

Due to the drawbacks and limitations of previous works on intra-cell diagnosis, it is

necessary to develop an efficient and accurate intra-cell diagnosis solution to ensure the

PFA success rate. In this work we propose a new intra-cell diagnosis approach able

to provide accurate defect localization in order to improve the efficiency of PFA and to

eventually save cost and time. The main characteristic of our approach is that it exploits

the analysis of the faulty behavior induced by the actual defect. In other word, we locate

the defect by simply analyzing the effect induced by the defect itself. Thus, conversely

to previous work on intra-cell diagnosis [11], there is no need to characterize the library

to create a defect dictionary. The faulty behavior analysis is performed by applying the

Critical Path Tracing (CPT) at transistor level. Compared to [10, 31] there is no need

to pre-compute any fault dictionary and to convert the netlist.
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2.1.4.1 From Defects To Fault Models

In this section, we present the main causes of physical defects and how these defects are

usually modeled at transistor-level domain. Then, we discuss about the faulty behavior

induced by defects and how the fault models represent them. This analysis is impor-

tant in order to give the basics on how the proposed approach is defect independent

while targeting transistor-level circuit descriptions. A physical defect can be caused

by several phenomena such as metal line broken/deformed, contact or via broken/de-

formed. These phenomena will lead to either an unexpected connection between two or

more nets (short) or a missing connection on one net (open). A net, at transistor-level

domain, correspond to different elements: polysilicon (the transistor gate terminal), ac-

tive (the transistor drain and source terminals), metal line (interconnections between

transistors), contact (connection trough active and metal level 1) or via (connections

trough metal levels). Usually, these defects are modeled at transistor-level domain as:

(i) an unexpected connection between two nets associated to a specific resistance value

(resistive-short), (ii) an unexpected resistance value on a given net (resistive-open). De-

pending on the considered resistance value, the effect induced by the defect can vary.

Thus, the choice of meaningful resistance values is crucial to have an accurate model of

physical defects. Existing works on intra-cell diagnosis rely on this way to model defects

to create the defect dictionary.

Figure 2.1: Physical defects modeling at transistor-level domain b) Equivalent circuit
when the stimuli “0111” are applied.

Figure 2.1.a) shows an example of physical defects and the related model at transistor-

level domain for a complex gate composed of four primary inputs (A, B, C and D) and

one primary output (Z). In the transistor-level netlist four defects are highlighted in red.
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Please note that the four defects are only an example, the proposed approach can target

any possible defects.

Defect D1 models an unexpected connection between net118 and ground. The behavior

of this defect depends on the resistance value R1. If R1 is lower than a threshold value

RT, then the Vgs (voltage level between gate and source terminal of transistor T7) is

always lower than Vth of T1. Thus T1 remains switched off (faulty behavior). If R1

is grater than RT, then Vgs depends on the voltage level of Net118 (correct behavior).

From a logical point of view the first case (when R1 <RT) is equivalent to have Net118

stuck at logic value ‘0’. A similar consideration can be done for defect D2. Depending

on R2 value, it impacts the voltage level of net88. From a logical point of view it is

equivalent to have net88 stuck at logic value ‘1’.

Defect D3 models an unexpected connection between net110 and net106. The behavior

of this defect depends on the resistance value R3 and also on the applied stimuli (i.e.,

it can activated or not). For example Figure 2.1.b) gives the circuit when the stimuli

“0111” are applied to inputs ABCD respectively. Transistors T8 and T10 are switched-

on while T9 is switched-off and output Z is set to logic ‘1’. However, due to the presence

of this defect, the output is now connected to the ground through R3. Thus the defect

is activated. Once the defect is activated we analyze the R3 value to determine its

behavior. If R3 is lower than Rmin then, the output will be set to logic value ‘0’. In

this case, from a logic point of view the Net106 force its logic value ‘0’ to the Net110

and then the output is changed. On the other hand, if R3 is greater than Rmin but

lower than Rmax (Rmin <R3 <Rmax) then, output Z will be affected by an undesired

transition (from logic ‘1’ to ‘0’) due to the long discharge time. Finally, if R3 is grater

than Rmax then output Z will take the correct logic value and the circuit behavior is

faulty free. Note that the value of Rmin and Rmax depends on the circuit technology.

Finally, defect D4 affects the net Net118. For certain values of R4 the signal propagation

trough gate of transistor T4 is delayed. To summarize, the analyzed faulty behavior

induced by the four defects of Figure 2.1.a) are:

� D1, D2: the faulty behavior results in a net always set to a given logic value (either

‘1’ or ‘0’);

� D3: the faulty behavior results in a net set to a given logic value (in the example

logic ‘0’) depending on the input configuration or in a signal propagation delay

affecting primary output Z;

� D4: the faulty behavior results in net where the signal propagation is affected by

a given delay.



Chapter 2. Details 21

Even if we target the transistor-level domain, we exploit the knowledge of the analyzed

faulty behavior to be defect independent. Thus, we can avoid to explicitly considering

the resistance value. We will show in the next section that the proposed intra-cell

approach identifies the possible locations of a defect. Usually faulty behaviors induce

by defects are represented by means of fault models. From above the example we can

list the exploited fault models:

� Stuck-at fault model [28]: the logic value of a given net appears to be stuck at

a constant logic value (‘0’ or ‘1’), referred as stuck-at-0 or stuck-at-1 respectively

(e.g., defects D1 and D2 in Figure 2.1).

� Dominant Bridging fault model [28]: this fault involves two nets called aggressor

and victim. The logic value of the victim is set to the logic value of the aggressor

(e.g., defect D3 in Figure 2.1).

� Delay fault model [28]: the transition from a given logic value V to the oppo-

site logic value !V is delayed. Two types of delay faults are defined: slow-to-rise

transition fault model (slow transition from logic ‘0’ to logic ‘1’) and slow-to-fall

transition fault model (slow transition from logic ‘1’ to logic ‘0’).

Since the proposed diagnosis approach provides possible defect locations, for each of

them we will associate one or more fault models according to the observed faulty be-

havior.

2.1.4.2 Intra-Cell Diagnosis Flow

In this section, we present the whole intra-cell logic diagnosis approach. It is able to

locate the root cause of observed failures inside a logic cell. Since the proposed approach

works at transistor-level, it cannot be applied to the whole circuit due to its complexity

(i.e., billions of transistors). However, it can be easily applied to a single target logic

cell (i.e., up to fifty transistors) identified by a logic-level diagnosis tool.

Figure 2.2 sketches the overall diagnosis flow. First of all, the test applies test patterns

to the DUT (Device Under Test) to distinguish between the correct circuit behavior

and the faulty circuit behavior caused by defects. These defects induce failing output

responses for one or more input test patterns. Input test patterns leading to observed

faulty behavior are called failing test patterns and stored in to a file called datalog.

Input patterns for which no faulty behavior is observed are called passing test patterns.

Then, the inter-cell fault diagnosis exploits datalog information to determine a list

of suspected logic cells (i.e., candidates). Any available commercial diagnosis tool can
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Figure 2.2: Overall diagnosis flow.

be adopted. For each suspected cell, we have to know logical values applied to it when

failing and passing test patterns are applied to the DUT (i.e., DUT simulation). DUT

simulation aims at determining the local set of failing/passing patterns for each sus-

pected logic cell reported by inter-cell diagnosis. Finally, the intra-cell diagnosis is

executed for each Suspected Gate (SG) and the pre-determined local failing/passing

test patterns set (lfp and lpp). The intra-cell diagnosis result is a list of candidates at

transistor level. For each suspected net a set of fault models able to explain observed

failures is associated.

2.1.4.3 DUT Simulation

The intra-cell diagnosis is applied on a single candidate identified as the Suspected

Gate (SG). The preliminary step of the proposed intra-cell diagnosis approach aims at

determining the local failing/passing patterns defined as lfp and lpp respectively.

Figure 2.3 shows the SG located in the circuit. When a failing test pattern fp is applied

to the circuit PIs, the fault affecting the SG is sensitized and its effect is then propagated

to at least one circuit PO. This is guaranteed by the fact that during the test a failure is

observed when the fp is applied to the circuit. Since the intra-cell diagnosis is applied to

the SG only, we have to known the logical values of the SG inputs (called local patterns)

when the fp is applied to circuit PIs. Thus, a logic simulation of the fp is required to get
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Figure 2.3: Local Failing/Passing test patterns.

those values. This simulation has to be performed for each given failing test pattern. In

a similar way, we have to know which are the logical values applied to the SG in the case

of passing test patterns. A test pattern does not detect any fault for two reasons: (i)

the fault is not sensitized (ii) the fault is sensitized but is effect is not observed because

the fault effect cannot be propagated to reach the primary outputs. For the passing test

pattern, we have to discriminate the reason why the fault located in the SG has not

been detected (i.e., discriminate between (i) and (ii)). Thus, we have to verify if the

fault effect can be propagated or not. If yes, then the pattern could be considered as a

local passing test pattern because any failures should be observed during the test.

However, one more consideration must be done. In section 2.1.4.1 we described the

faulty behavior considered in this work. Some of them depend only on the local gate

input values (i.e., stuck-at and bridging faults). Some others depend not only on the

local gate input values but also on the previous local values (i.e., delay faults). Taking

in to account this consideration, we can now classify a given lpp as follows:

� If we assume that the defect affecting the suspected gate SG leads to a static faulty

behavior (i.e., stuck-at, bridging) then, lpp is classified as local passing pattern;

� If we assume that the defect affecting the suspected gate SG leads to a dynamic

faulty behavior (i.e., delay) then, lpp can not be classified as local passing test

pattern, because we do not consider the previous pattern.

At this stage of the diagnosis flow, we must consider as valid both the above assumption.

Therefore, we will store the lfp and lpp in to different data structure associated to the

static faulty behavior and to the dynamic faulty behavior respectively. Finally, for the

case of defects leading to a dynamic faulty behavior, a sequence of test patterns has to

be applied to detect the defects. It may be possible that the same local pattern could be
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declared falling and passing. For this case, we knew that the defect affecting the circuit

is a dynamic type so that only delay fault will be targeted thus discarding both stuck-at

and bridging faults. The analysis performed to determine local failing and passing test

patterns leads to the taxonomy shown in Figure 2.4.

Figure 2.4: failing and passing local test patterns taxonomy.

After the test, patterns can be classified into two categories: failing and passing test

patterns.

� Definition 1: Failing test patterns are used to determine local failing test pat-

terns. Zone 2 in Figure 2.4 shows this type of test patterns.

� Definition 2: Passing test patterns are used to determine local passing test pat-

terns. The passing test patterns illustrated in zone 1 of Figure 2.4.

� Definition 3: When at least one local test pattern is declared at the same time

failing and passing (lfp ∩ lpp 6= ∅) as shown in the zone 3 of Figure 2.4, it means

that the defect affecting the circuit leads to a dynamic faulty behavior. In this

case, we can discard the static faulty behavior (i.e, static and bridging) to be the

root cause of observed failures.

� Definition 4: If lfp ∩ lpp = ∅, then defect affecting the circuit can lead either

to a dynamic or static faulty behavior. In this case, we must consider both static

and dynamic faulty behavior can be to be the root cause of observed failures.

In the next section we will describe in detail the applied intra-cell diagnosis approach

and how the information extracted during DUT simulation are exploited.

2.1.4.4 Effect-Cause Intra-cell diagnosis algorithm

In this section we present the proposed intra-cell diagnosis approach. It is based on

the “Effect-Cause” paradigm and it exploits the Critical Path Tracing (CPT) algorithm

here applied at transistor level.
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The proposed intra-cell diagnosis approach requires two main inputs: the SG description

at transistor level and the local set of failing/passing test patterns. Figure 2.5 gives the

pseudo code of the intra-cell diagnosis procedure.

Intra-cell Diagnosis(SG, lfp, lpp)

1 GSL = GDSL = all SG nets and transistor terminals
2 GBSL = all SG couple of nets
3 for each lfp
4 do
5 Fault-free-simulation(SG, lfp)
6 CPT(SG, lfp, CSL,BSL,DSL)
7 GSL = GSL ∩ CSL
8 GBSL = GBSL ∩ CBSL
9 GDSL = GDSL ∩ CDSL

10
11 for each lpp
12 do
13 Fault-free-simulation(SG, lpp)
14 CPT(SG, lpp, CV L,CBV L)
15 GSL = GSL− CV L
16 GBSL = GBSL− CV SL
17
18 fault-allocation(GSL,GBSL,GDSL)

Figure 2.5: Intra-cell diagnosis pseudo code.

The procedure is divided in two blocks identified by the two “for loop” statements. The

first one targets the lfp. For each lfp, a fault-free simulation is performed by using a

switch-level simulation. In the switch-level simulation, the transistors (i.e., nMOS and

pMOS) behave as on-off switches.

Since the simulated netlist is composed of few transistors the required simulation time

is negligible. The fault-free simulation is mandatory to determine the logic value of each

net. Then, Critical Patch Tracing (CPT) is executed starting from the SG output. It

traces back internal nets to reach the SG inputs. Each traced net is set as critical. A

net is critical if the inversion of its logical value causes the inversion of the output value.

Each critical net is marked as a suspect. A suspect can be the root cause of observed

errors or simply a net that propagate the fault effect. Each suspect is stored in a list

with its logic value. The logic value is kept in the list because it will be used during

the fault model allocation. The result of the CPT is the Suspect List (SL). The SL is

defined as follows:

SL = {(net0, LV0), (net1, LV1), ..., (netn − 1, LVn − 1)} (2.1)
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where:

� neti: is the critical net (transistor-level interconnection nets and transistor termi-

nals).

� LVi = {0, 1, U}: is the logic value of the critical net. U is the unknown value.

As stated before, a given suspect can simply propagate the fault effect (i.e., it is not the

root cause of observed errors). This case can happen for two reasons:

1. The suspect net belongs to the propagation path of the actual faulty net. In this

case, the suspect is logically equivalent to the actual faulty net.

2. The suspect net is indeed the victim of a bridging fault. In this case, another net

(i.e. the aggressor) “forces” a faulty value on the victim.

The second case is more complex than the first one from the diagnosis point of view.

Here, we have to verify if a bridging fault is possible. For this reason, after the CPT a

second list of suspects is created. The so-called Bridging Suspect List (BSL) contains all

the possible couples “Victim/Aggressor” that can be involved in a bridging fault. The

victim belongs to the actual SL, while the aggressor can be any net having an inverted

logic value w.r.t. the logic value of the victim. The BSL is defined as follows:

BSL = {(V0/A0), (V1/A1), ..., (Vm − 1/Am − 1)} (2.2)

where:

� Vi ∈ SL: is the victim.

� Ai = (Netj , LVj): is the aggressor. It can be any net of the gate having a logic

value opposite to the logic value of the victim. Thus LVj =!LVi.

So far (equations 2.1 and 2.2), we defined as critical nets for which the inversion of their

logical value causes the inversion of the output. With these two lists, we are able to

identify any static faults (see Section 2.1.4.1). To complete our analysis, we have also

to consider the case of dynamic faults affecting the analyzed gate and thus the circuit

(see Section 2.1.4.1). As for the equation 2.1 we look for critical nets, where a critical

net can be either a transistor terminal or an interconnection net. We define those nets

as critical delay nets. Critical delay nets are added in a list called Delay Suspect List

(DSL) defined as follows:
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DSL = (Net0, Net1, ...Netn − 1) (2.3)

where:

� Neti is the critical net (transistor-level interconnection nets and transistor termi-

nals).

Please note that in this case, the logical value of a critical delay net is not stored in

the list because it is not used during the fault model allocation. Basically we do not

distinguish between a slow-to-rise/slow-to-fall delay fault. The three lists are stored

in a so-called Current Suspect List (CSL), the Current Bridging Suspect List

(CBSL) and the Current Delay Suspect List (CDSL). The assumption of this work

is the presence of only one defect on a given circuit. Thus, the root cause of observed

errors has to be present in all lists provided by the CPT application. For this reason, we

update the global suspect lists by performing an intersection (line 7, 8 and 9 in Figure

2.5). The intersection between two suspects lists SLa and SLb is defined as follows:

SN = (neti, LVi) ∈ SLa ∩ SLbif(SN ∈ SLa)and(SN ∈ SLb) (2.4)

This definition removes a net from the suspect list if the net is traced with different

logic values (e.g., once with ‘0’ and another with ‘1’). This is coherent with the stuck-at

fault model. If a net is affected by a stuck-at fault, its value must be always the same

during the failing test patterns application. Otherwise, the net cannot be affected by a

stuck-at fault. Thus it is removed from the suspect list.

The intersection between two bridging suspect lists elements BSLEa and BSLEb is

defined as follows:

BSLEa∩BSLEb = (neti, LVi∩LVm)/(netj , LVj∩LVn)if(neti = netm)and(netj = netn)

(2.5)

The intersection between logic values is defined in the Figure 2.6

The above leads to keep a couple Victim/Aggressor (V/A) even if it appears in two lists

with different logic values. Conversely to the case of a stuck-at fault, this case can occur

if a strong dominant bridging fault is the root cause of observed failures.

The intersection between two delay suspects lists is similar to the one for SL (suspects

lists). The difference is that there is no logic value associated to the delay candidates.

The intersection between two delay suspects DSLa and DSLb is defined as follows:
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Figure 2.6: Logic values intersection.

DSN = (neti) ∈ DSLa ∩DSLbif(DSN ∈ DSLa)and(DSN ∈ DSLb) (2.6)

The DSN is kept if and only if it belongs to all DSLs. Please note that the logic value

is not stored in the DSL (equation 2.6), thus, we don’t need to consider the logic value

of candidates during the DSLs intersection.

The result of the intersection is stored in the so-called Global Suspect List) (GSL),

the Global Bridging Suspect List (GBSL) and the Global Delay Suspect List

(GDSL).

The second block of the intra-cell diagnosis procedure aims at applying the CPT for

each lpp to vindicate the suspected elements. The main concept behind this block has

been already exploited for the inter-cell diagnosis. This step is applied for the GSL and

GBSL list but not for the GDSL. This is because we can determine local passing pattern

only for the case of static fault, thus we can vindicate only for GSL and GBSL. As for

the first block, we create two suspect lists. The first one contains critical nets called

Vindicate List (VL). In this case each critical net is vindicated to be the root cause

of the observed failure. The second list contains all possible couple V/A that can be

vindicated to be involved in a bridging fault called Bridging Vindicate List (BVL). The

victim belongs to the actual VL, while the aggressor can be any net having an opposite

logic value w.r.t. to the logic value of the victim.

We compute the difference between the vindicate lists and the suspect lists (lines 15

and 16 of Figure 2.5). Owing to the knowledge of the actual passing test patterns it is

possible to narrow down the actual list of suspects.

The difference between a suspect list SL and a vindicate list VL is defined as follows:

SN = (neti, LVi) ∈ (SL− V L)if(SN ∈ SL)and(SN 3 V L) (2.7)
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In the same way the difference between a bridging suspect list BSL and a bridging

vindicate list BVL is defined as follows:

SBN = (neti, LVi)/(netjnLVj) ∈ (BSL−BV L)if(SN ∈ SL)and(SN 3 V L) (2.8)

Finally, the last step of the intra-cell diagnosis is the fault model allocation. Basically

for each suspect we exploit the stored logic value to associate a fault model. Once again,

three types of fault models are considered: (i) the stuck-at fault, (ii) the dominant

bridging fault and (iii) the delay fault. During the fault model allocation, it could be

happen that one or several suspected lists are empty. This means that the root cause

of observed errors cannot be the fault model corresponding to the empty suspected list.

For example, when lfp∩ lpp 6= only dynamic faults are possible. So that, after suspected

lists construction for lfp and lpp, GSL and GBSL will be empty and we consider only

faults in the GDSL.

2.1.4.5 Experimental Results

The proposed intra-cell diagnosis procedure has been implemented in C++. It has been

validated by means of simulations and actual silicon data. The simulation-based valida-

tion exploits a defect injection campaign. Physical defects can take forms of missing or

extra materials and they are often modeled by open- and short-circuits as presented in.

Defects are thus injected into the transistor-level netlist of a given gate of a DUT. Then,

by using a spice simulator, the faulty gate is simulated in order to determine its truth

table. The truth table is then used as library model, so that the whole faulty circuit is

simulated at gate level to emulate the test phase. Observed failures are stored in the

failure file (i.e., datalog). Injected defects lead to stuck-at, bridging and delay faults.

The silicon-based validation has been carried out on STM circuits declared faulty during

the production test.

Simulation-based validation

We used two circuits named A and B to perform the simulation-based validation. The

circuits correspond to actual STM products and have been synthesized with a STM

90nm technology. Table 2.1 shows the characteristics of the circuits in terms of gates,

FFs and scan chains.

For each logic cell in the targeted technology library, we randomly injected one defect

at time and we perform spice simulation to characterize the behavior of the faulty logic
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Circuit #Gate #FlipFlop #ScanChain

A 258 30 1
B 69,8804 56,373 25

Table 2.1: Circuit Characteristics.

cell. Injected defects lead to have 3 types of faulty behaviors. The 30% of them lead

to stuck-at faults, the 30% lead to bridging faults and the remaining 40% lead to delay

faults.

Then, we randomly select one gate in the target circuit and we replace it by the faulty

gate. We perform the simulation and we store observed failures, if any, in the datalog.

For each datalog we then run a commercial logic diagnosis tool to identify our suspected

gate.

The test patterns applied for the experiments have been generated exploiting a commer-

cial ATPG tool. The test sets target transition fault models and the test length is 25

and 500 patterns for circuit A and B respectively. After the DUT simulation step, we

got in average 3 local failing patterns and 6 local passing patterns.

Table 2.2, Table 2.3 and Table 2.4 show the achieved intra-cell diagnosis results for

stuck-at, bridging and delay faults respectively. The first column reports the suspected

gate name (given by the logic diagnosis tool). The second and third column report the

number of input and output of the gate. Column 4 shows the gate complexity in terms

of internal gate nets. The fifth column gives the actual injected in terms of location and

type. Finally, column 6 shows the result of the proposed intra-cell diagnosis approach.

First of all the results show the accuracy of the proposed approach because in all the

cases, the injected defect has been correctly identified. The second comment is related

to the resolution. Basically the resolution depends on the injected defect. For the case

of defects leading to stuck-at faults (Table 2.2), two out of five cases have only one

stuck-at fault reported and one case has two equivalent faults identified. For the other

two cases, the proposed intra-cell diagnosis method pointed out 3 equivalent stuck-at

faults. Please note that the diagnosis results contain also some bridging and delay faults.

The average size of suspect stuck-at and bridging faults list is 7. For the case of defects

leading to bridging faults (Table 2.3), four cases have only one fault identified and the

other one case has 2 equivalent faults reported. Moreover, the proposed approach leads

to an empty list of suspected stuck-at and delay. This happens because the behavior of

a bridging fault cannot be modeled by a stuck-at fault (in most of the cases). Finally,

concerning the resolution of defects leading to delay faults, we have than the best result

identifies two suspects, while the worst result has 5 suspects. For example, for the first

case AO7NHVTX1, the injected fault is delay fault affecting N2D (the drain of the
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transistor N2). Intra-cell diagnosis has identified the transistor N2 and P5 as suspects.

When a transistor is identified as suspect, all of the three terminals of this transistor

are suspected. The proposed approach leads to an empty list of suspected stuck-at and

bridging. This happens because the behavior of a delay fault cannot be modeled by a

stuck-at and bridging fault (in most of the cases). To conclude, the CPU time required

for the intra-cell diagnosis is lower than 1sec. The low execution time and the small

number of suspect candidates will save time during FA procedure.

SG Input Output Complexity Injected Fault Results

AO7SVTX1 3 1 6 N16 Sa1 N16 Sa1; Input A
Sa0

NR3ASVTX1 3 1 7 N022 Sa0 N022 Sa0; N029,
Input A Sa1

AO6CHVTX4 3 1 8 N113 Sa0 Input C, N147
Sa1; N113 Sa0

AO8DHVTX1 4 1 9 Input A Sa1 Input A Sa1
AO5NHVTX1 3 1 9 N71 Sa0 N71 Sa0

Table 2.2: Stuck-at-Faults Results.

SG Input Output Complexity Injected Fault Results

AO7SVTX1 3 1 6 Z-Gc Z-Gc
AO7NHVTX1 3 1 7 N50-Gc N50-Gc
AO6CHVTX4 3 1 8 N113-N109 N113-N109,

N113-N125
AO5NHVTX1 3 1 9 N55-A N55-A
AO9SVTX1 5 1 10 N22-N31 N22-N31s

Table 2.3: Bridging-Faults Results.

SG Input Output Complexity Injected Fault Results

AO7SVTX1 3 1 6 N2D N2, P5
AO8DHVTX1 4 1 9 Net118 Z, Net118, D
AO5NHVTX1 3 1 9 N0D N0, N1, P7,

Net55, Z
AO9SVTX1 5 1 10 P4S Z, Net9, P4

Table 2.4: Delay-Faults Results.

In the last part of the simulation-based validation, we run an extensive set of exper-

iments. For each targeted library cell we randomly select in the circuit (circuit B in

Table 2.1) 100 cell instances. For each cell instance we inject 10 random defects for a

total of 1000 diagnosis run. The test set is the same than the one used for the previous

experiments. Table 2.5 reports the select library cell name, the input output number

and the complexity in the first four columns. Last column gives the average resolution

expressed as the average number of candidates provided by the proposed approach. The

select cells have different complexity from 6 up to 24 transistors and different number
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of input. The main objective of this experiment was to validate the efficiency of the

approach on more complex cells. In this sense we achieved good results since in average

we have about 1 candidate. However, two cases lead to have about 4 candidates. For

these cases the reason why the resolution is worst than the others is the few number

of inputs (i.e., only two) that corresponds to a limited set of local patterns (i.e., up to

four).

SG Input Output Complexity Resolution

AO7SVTX1 3 1 6 1.5
AO7NHVTX1 3 1 6 2
NR3ASVTX1 3 1 7 1.8
AO6CHVTX4 3 1 8 2.1
AO8DHVTX1 4 1 9 1.7
AO5NHVTX1 3 1 9 1.4
AO9SVTX1 5 1 10 1.2
AN2BHVTX8 2 1 18 4.1
MUX21HVTX6 3 1 24 1.03
ND4ABCHVTX8 4 1 23 1.1
EOHVTX6 4 1 14 1.3
OR4ABCDHVTX4 4 1 14 1.3

Table 2.5: Experimental Results.

Silicon-based validation

To finally prove the efficiency of the proposed approach, we used some actual faulty

circuits to highlight the effectiveness of the proposed intra-cell diagnosis approach. All

the experiments are carried out on STM actual circuits. Table 2.6 shows the character-

istics of circuits in terms of technology node, gates, FFs, scan chains and test patterns

number. Test patterns target stuck-at, transition and bridging faults. After the DUT

simulation step we got a number of local passing patterns varying from 5 to 7 depending

on the circuit and the applied test set. The number of local failing patterns varies from

2 to 4.

Circuit Technology #Gate #FlipFlop #ScanChain #Patterns

H 90nm 698,804 56,373 25 500
M 90nm 896,417 60,006 219 1,055
C 55nm 1,995,419 183,868 43 1,000

Table 2.6: Circuit Characteristics.

Circuit H

Three faulty cases of circuit H were used as case study for the proposed intra-cell diag-

nosis approach. Table 2.7 shows the logic diagnosis, intra-cell diagnosis results and the

actual defect location with defect mechanism identified after physical analysis.
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Sample Logic Diag Intra Diag Actual defect

H1 U2890/Z (sa01) A-Z, A-B, A-C A-Z
H2 U280/Z (sa0),

U280/C
(sa1),U280/D
(sa1)

Net61 (sa0), A-Net61 Net61 metal1 bridging with gnd

H3 U280/A (str) N0S (open) N0S metal 1 open

Table 2.7: Logic diagnosis vs intra-cell diagnosis vs actual defect.

The first column gives different circuits names and, the second column presents the logic

diagnosis results. The third column shows the intra-cell diagnosis results and the last

column gives the actual defect location and the defect mechanism. Logic diagnosis gives

one logic cell as candidate. Please note that for the case of H2, the logic diagnosis pro-

vides 3 candidates. However, the 3 candidates refer to the same cell “U280”. Targeting

these logic cells, intra-cell diagnosis is applied. For all the cases, the proposed intra-cell

diagnosis gives the actual defect. The resolution is quiet good. One case has only one

candidate. For the other two cases, there are two and three equivalent faults obtained.

For the sample H1, intra-cell diagnosis was applied to the given suspect gate U2890.

After intra-cell diagnosis, 3 bridges inside the gate were identified as suspects (Table

2.7). i) Bridge between Input A and output Z, ii) bridge between Input A

and Input B and iii) bridge between Input A and Input C. Input A is always the

aggressor for every case. During Physical Failure Analysis (PFA), a FIB cross section

is performed to verify the intra-cell diagnosis result. Figure 2.7 gives the photo showing

the bridge defect identified by PFA. The actual defect is the bridge between input A

and output Z. This result proves the effectiveness of our intra-cell diagnosis approach

and the proposed diagnosis flow.

Figure 2.7: Physical failure analysis result.

For the sample H2, logic diagnosis identifies three nets leading to one suspect cell (Table

2.7). On the suspect gate the intra-cell diagnosis gives 2 suspects: Net61 stuck-at 0
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and bridge between Net61 and Input A. The actual defect is the net61 shorted to

GND and thus showing a behavior like a stuck at 0. For the case H3, logic diagnosis

tool gives one gate as candidate associated to the slow to rise transition fault (StR) at

the input A. In this case intra-cell diagnosis gives just one suspect the source terminal

of transistor N0 that is the actual defect. Once again, this proves the efficiency and

accuracy of our approach.

Circuit M

For circuit M, logic diagnosis identifies a stuck-at 0 fault at the output of the gate I552

(AO7HVTX1). The intra-cell diagnosis flow is then applied to this gate. Two open

defects have been identified as suspects. Figure 2.8.a) depicts the netlist at transistor

level of the suspect gate AO7HVTX1 and shows the two identified open defect in red.

Figure 2.8: Physical failure analysis result.

To verify the intra-cell diagnosis result, we performed the PFA. In this case, the PFA

identified a multiple open defect (5 contacts are deformed and missing). Figure 2.8.b)

reports in red the 5 open defects on the transistor level netlist of the suspect gate.

Since our approach is based on the single defect assumption, the result of the intra-cell

diagnosis is two open defects equivalent to the real multiple defects. Even if the diagnosis

is not correct, it is very interesting to note that the suspect location identified by our

approach include the actual defect position. That means that even in the presence of a

multiple defect, the intra-cell diagnosis can provide useful information to correctly guide

the PFA.

Circuit C
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For circuit C, logic diagnosis gives a composite stuck-at fault model 01 at the output of

gate U32362 as suspect. Then, the intra-cell diagnosis is thus applied to this gate. The

intra-cell diagnosis flow provides an empty list of suspects. This result means that the

actual defect is not inside a gate (i.e., it is an inter-cell defect). Thanks to this result, the

PFA is applied to search an inter-cell defect. The analysis has been carried out closest

nets to the suspect gate. Layout of these nets is shown in Figure 2.9 (left picture). The

PFA successfully identified the actual defect as a bridging fault as shown in Figure 2.9

(right picture). In this case, the result of the intra-cell diagnosis avoids wasting time in

investigating for a defect inside the suspect gate.

Figure 2.9: Layout view of suspects (left) and actual defect (right).

The second case of failure concerning the circuit C has been exploited to compare our

approach w.r.t. the defect- and fault- dictionary based approaches. For this experi-

ment we built a dictionary only for the cell identified by the inter-cell diagnosis (i.e.,

because the dictionary was not created during the design of the circuit). To create the

dictionaries we applied the serial simulation algorithm (i.e., we injected one defect/fault

at a time) that has a complexity corresponding to O(n2) per pattern, where n is the

number of defects/faults. The complexity is dominated by the bridging defect/faults

for which we have to consider all the possible combination of two nets. On the other

hand, the proposed approach requires two simulations per pattern (the first is the fault

free simulation and the second one corresponds to the CPT application). Thus, our

approach has a complexity of O(1). All the approaches report one candidate that was

actually a short between two nets as reported in Figure 2.10. This experiment is impor-

tant because it shows that our approach can be precise as the one based on defect- and

fault-dictionary. Moreover, for this case we do not have the pre-computed dictionary

because at the time were the circuit was designed no dictionary were computed. Thus,

it was more time consuming to build the dictionary even for only one cell than simply

apply our approach.
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Figure 2.10: Layout view of suspects (left) and actual defect (right).

2.1.4.6 Conclusions

In this work, we have presented an intra-cell diagnosis approach. The proposed approach

is based on the Critical Path Tracing here applied at transistor level. The CPT exploits

the knowledge of the faulty behavior induced by a defect so that the proposed intra-

cell diagnosis is not depended on a given defect. The diagnosis approach takes into

consideration 3 fault models such as stuck-at, bridging and delay to represent the faulty

behaviors induced by the physical defects (i.e., short and open). The proposed intra-cell

diagnosis approach has been validated by means of simulation and on actual silicon data.

It leads to a precise localization of the root cause of observed errors. Experimental results

on actual cases show that the intra-cell diagnosis generally gives meaningful information

further exploited by PFA engineers. This information allows saving times in searching

the root cause of a faulty device.

This work and its extension are published in [W3, C10, C11, C12, C13, C14, C17, C18,

C19, C21, C25, C35, C42, J5, J10] referenced in the Publication list of chapter 4.

2.1.5 Power-Aware Test

Nowadays, electronic products present various issues that become more important with

CMOS technology scaling. High operation speed and high frequency are mandatory

requests. On the other hand, power consumption is one of the most significant con-

straints due to large diffusion of portable devices. These needs influence not only the

design of devices, but also the choice of appropriate test schemes that have to deal with

production yield, test quality and test cost.

Testing for performance, required to catch timing or delay faults, is therefore mandatory,

and it is often implemented through at-speed scan testing for logic circuits. At-speed

scan testing consists of using a rated (nominal) system clock period between launch
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and capture for each delay test pattern, while a longer clock period is normally used

for scan shifting (load and unload cycles). In order to test for transition delay faults,

two different schemes are used in practice during at-speed scan testing: Launch-off-Shift

(LOS) and Launch-off-Capture (LOC) [18].

Although at-speed scan testing is mandatory for high-quality delay fault testing, its

applicability is severely challenged by test-induced yield loss, which may occur when a

good chip is declared as faulty during at-speed scan testing [15]. Both schemes (LOS

and LOC) may suffer from this problem, whose the major cause is Power Supply Noise

(PSN), i.e., IR-drop and Ldi/dt events, caused by excessive switching activity (leading

to excessive power consumption) during the launch-to-capture cycle [16] of delay testing

schemes. In order to deal with this problem, dedicated techniques to reduce the risk

of artificial yield loss induced by excessive PSN during at-speed scan testing have been

proposed in the literature [18]. These techniques are mainly based on test pattern

modification or power-aware Design-for-Testability (DfT).

Despite the fact that reduction of test power is mandatory to minimize the risk of yield

loss, some experimental results have proved that too much test power reduction might

lead to test escape and reliability problems because of the under-stress of the circuit

during test [18]. So, in order to avoid any yield loss and test escape due to power issues

during test, test power has to map the power consumed during functional mode. To

this purpose, the knowledge of functional power for a given CUT is required and may be

used as a reference for defining the power consumption (upper and lower) limits during

power-aware delay test pattern generation for LOS or LOC.

A solution has been proposed in [21] and [22], where authors introduce a new process to

generate test vectors that mimic functional operation from the switching activity point

of view. The process consists of shifting-in a test vector (at low speed) and then applying

several successive at-speed clock cycles before capturing the test response. These tests

are based on a LOC scheme with the insertion of multiple functional cycles between

launch and capture operations. The idea behind this process is that after a certain

number of clock cycles, the CUT reaches a pseudo-functional state (i.e., a state similar

to a functional state) which insures that test power will mimic functional power, thus

preventing any possible yield loss or test escape due to power issues.

In this work, our goal is to evaluate the accuracy of the above-mentioned solution pre-

sented in [21] and [22]. We propose a methodology in which several power estimation

flows are built to compare the power consumption of pseudo-functional patterns (used

in [21] and [22]) and LOS patterns (used in a conventional LOS scheme with a single

launch-to-capture cycle) with the power consumption of actual functional patterns. For
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this purpose, we have used the framework presented in [23] that deals with stimuli gen-

eration for design validation. In this framework, functional patterns are generated to

maximize the switching activity of a given design, which can be used to determine the

test power limits during at-speed delay testing. The proposed methodology has been

validated on the Intel MC8051 microcontroller synthesized in a 65nm industrial technol-

ogy. Experimental results show that the peak power consumption of pseudo-functional

patterns obtained as in [21] and [22] is about 9% lower than the maximum functional

peak power consumption of the MC8051 microcontroller. The output of this compar-

ative study is a new flow to determine the functional power to be used as test power

limits during at-speed scan delay fault testing.

2.1.5.1 The Proposed Methodology

The methodology proposed in this paper mainly relies on the framework presented in

[23]. The goal is still to generate functional stimuli (i.e., test programs) for design

validation purpose that maximize power consumption of the design. In the remainder

of the paper, we refer to such stimuli as functional patterns.

These stimuli are here used for defining test power limits during the application of

at-speed delay test patterns. Then, power limits are first compared with the power

consumed during the application of the LOS test patterns. We focus on LOS since it

is the test scheme providing a higher transition fault coverage but also a higher power

consumption compared to LOC [18]. In the remainder of the paper, we refer to such

stimuli as LOS patterns.

Next, we compare power consumption limits obtained with functional patterns with

those obtained from patterns generated as described in [21] and [22]. In the remainder

of the paper, we refer to such stimuli as pseudo-functional patterns. In order to generate

pseudo-functional patterns, we use a LOS-based ATPG program in which many clock

cycles are considered between launch and capture.

In the next subsections we detail how the functional stimuli are generated and what are

the metrics used to perform the power analysis.

Test program generation

In the literature, main research works focus on the generation of methodologies oriented

to minimize power consumption of both hardware and software. Conversely, as described

in [23] and [32] the authors consider the mirror problem, that is, how to generate test

programs oriented to maximize power consumption of the considered processor. In

[23] the authors propose a methodology that deals with stimuli generation for design
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validation. Specifically, the main objective of the test program is not just verifying the

circuit functionality, but rather, the robustness of the whole system by applying test

programs that maximize power consumption. More intuitively, increasing the power

consumption can be seen as a kind of self-burn-in process, where the functionalities of

the circuit are tested on extreme power conditions. In fact, exploiting similar approaches,

in [32] authors propose a methodology for the automatic generation of stress programs

to be used during the reliability characterization process of microprocessors.

In this work, we exploit the methodology proposed in [32], in order to generate power-

aware test programs. The proposed approach exploits the logic simulation of a RTL

description of the processor core, integrated in the generation loop. Supported by an

evolutionary optimization tool, introduced in [33], syntactically correct assembly pro-

grams are generated, forming a population of programs; then, a high-level logic simulator

evaluates every test program providing to the evolutionary optimizer a feedback value

representing the test program goodness. This value, also known as fitness value, is

computed by measuring the switching activity of the RTL signals that correspond to

flip-flops in the synthesized version of the processor core. The evolutionary optimizer

improves test programs by mimicking the Darwinian concepts of evolution. The higher

the fitness value, the better the test program is. The generation process iterates up to

reaching a steady condition, and then, the processor RTL description is substituted with

the gate-level one, starting a new generation phase that improves the initial results.

Evaluation Framework

Power consumption has been evaluated during the application of functional patterns,

LOS patterns and pseudo-functional patterns [21] and [22].

The power analysis has been done considering two power metrics: cycle average power

and peak power consumption. Both cycle average and peak power consumption are

measured by means of WSA (Weighted Switching Activity).

In general, cycle average refers to the average of instantaneous power consumed by the

device during a specified time window. Peak power refers to the highest power value

measured during the same time window. The definition of the time window varies

according to the stimuli applied to the device. In the following, we define for each type

of applied stimuli the time window and its meaning.

Functional patterns

The applied functional patterns correspond to a test program executed by the micropro-

cessor as described above. Before the test program execution, the microprocessor has to
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execute a small piece of Operating System (OS) to ensure the correct initialization of

the microprocessor itself.

	  
Figure 2.11: Functional patterns time window.

Figure 2.11 depicts a snapshot of a test program execution waveform. For the sake of

readability only the clock signal and the I/O data are reported. After the OS execution,

the test program execution starts at time t0 and ends at time t0 + ∆. For each test

program we consider the time window (t0, t0 + ∆) as the period to estimate the cycle

average and the peak power.

LOS patterns

Power consumption can be evaluated during the launch and capture cycles of the LOS

testing schemes. Launch power is the power consumed during the launch cycle (also

called “launch-to-capture” or “test” cycle), which is performed with an at-speed clock

cycle. Capture power is the power consumed right after the capture edge, during a time

interval also equal to the rated clock period of each experimented circuit. Figure 2.12

shows the time windows in which these power measures are made.

	  
Figure 2.12: LOS patterns time window.

In [18], it has been proved that launch power is greater than capture power. For this

reason, in this paper we only consider launch cycle as the time window to estimate the

cycle average and the peak power. Both values are evaluated for the whole set of LOS

test patterns. Then, the most power-consuming pattern concerning cycle average and

peak power is considered.

Pseudo-functional patterns

Pseudo-functional patterns are based on a LOS test scheme modified by adding n capture

cycles. Since in [21] and [22] the number of capture cycles necessary to reach a pseudo-

functional state is not specified, we generate several pseudo-functional patterns having

n = {5, 10, 50, 100}.
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Figure 2.13: Pseudo-functional patterns time window.

Figure 2.13 shows the “n capture method”. This method considers the power consumed in

the last capture cycle as a good approximation of the real functional power consumption.

Thus, the time window used to measure both the cycle average and the peak power

corresponds to the last capture cycle. The calculation of the average and peak power

values is repeated for the whole set of test vectors generated by the ATPG tool. Since

we are interested only in the critical values of the power, we will take into account only

the most power-consuming pseudo-functional patterns, in terms of cycle average and

peak power.

2.1.5.2 Case Study

The adopted case study is the Intel microcontroller MCS-51 (MC8051) synthesized under

a 65nm industrial technology library. MC8051 represents a classical Harvard architecture

non-pipelined CISC architecture, with 8-bit ALU and 8-bit registers. Table 2.8 gives the

details of the microcontroller synthesis in terms of number of primary inputs/outputs,

flip-flops, logical gates and number of transition faults. During the synthesis one scan

chain has been added.

#Primary Inputs 65

#Primary Outputs 94

#Scan Chains 1

#FFs 578

#Logical Gates 9,451

#Transition Faults 37,752

Table 2.8: MC8051 Synthesis.

The MC8051 is embedded into a SoC [34] composed of three cores: (i) the MC8051

microcontroller, (ii) a 64Kx8 bit SRAM memory and (iii) a 16x16 parallel multiplier.

During its mission mode, the microcontroller core reads the program to be executed from

an external RAM memory, it communicates with the outside through its parallel port

and it drives the multiplier for arithmetic computations. The SoC structure is shown in

Figure 2.14.
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Figure 2.14: SoC Architecture.

In order to estimate power consumption (in terms of both cycle average and peak power)

for Functional, LOS and Pseudo-functional patterns three different flows have been

implemented.
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Figure 2.15: Functional patterns power estimation flow.

Figure 2.15 shows the implemented flow to estimate power consumption for the func-

tional patterns. Each functional pattern corresponds to a generated test program. The

test program is compiled in order to obtain the memory content to be loaded into the

SoC. The SoC with the test program loaded in memory is simulated using ModelSimr.

The switching information related to the MC8051 primary inputs is stored in a VCD file.

So, in the resulting VCD file we have the stimuli applied to the microcontroller when the

target test program is executed. The last step of the flow actually estimates the power

consumed during the test program execution. Since our goal is to evaluate the power

consumed by the microcontroller, we simulate only the MC8051 microcontroller gate

level netlist by applying the stimuli stored in the VCD. The tool used to perform such

analysis is NanoSimr. The result is the power report containing both cycle average and

peak power evaluated during the time window (t0, t0 + ∆).
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Figure 2.16: LOS patterns power estimation flow.

Figure 2.16 shows the implemented flow to estimate power consumption for the LOS

patterns. The LOS pattern set is generated using TetraMAXr. The required inputs

are the MC8051 gate level netlist and the test protocol file (.spf) in which the timing

to be applied during the LOS test scheme is described. Note that we used the default

setting and random filling options for the ATPG. Static and dynamic compactions were

used during test set generation. The number of generated LOS patterns is 1405 and the

achieved fault coverage is 79%. The generated LOS test patterns set is then simulated

using ModelSimr. The switching information for the patterns is stored in a VCD file.

Finally, the VCD file is used to perform the power analyses with NanoSimr. The result

is the power report containing both cycle average and peak power evaluated during the

time window (the launch-to-capture cycle).
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Figure 2.17: Pseudo-functional patterns power estimation flow.

Figure 2.17 shows the implemented flow to estimate power consumption for the Pseudo-

functional patterns. Pseudo-functional patterns are based on a LOS test scheme modified

by adding n captures cycles, where n = {5, 10, 50, 100}. Each pseudo-functional pattern

is then simulated using ModelSimr. The switching information for the patterns is

stored in a VCD file. Finally, the VCD file is used to perform the power analyses with
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NanoSimr. The result is the power report containing both cycle average and peak

power evaluated during the time window.

Experimental results

This section decscribes the experimental results. All the experiments were carried our

on an Intel Xeon@3.16GHz with 8GB of RAM.

Experiments have been done on a MC8051 description synthesized with an industrial

65nm technology, considering a power supply voltage of 1.2V. Only dynamic switching

power due to switching capacitances has been considered (short-circuit power and leakage

power consumptions were neglected). This is a valid assumption for the considered tech-

nology with the purpose of comparing between Functional, LOS and Pseudo-functional

patterns. Similarly, although in deeper technologies the impact of leakage power on the

overall power consumption is greater than in the 65nm technology, we may assert that

it will not affect the main conclusions of our comparison between Functional, LOS and

Pseudo-functional patterns. This forecast is based on the fact that we expect that a

higher leakage power will possibly impact the three sets of patterns in the same manner

(as the circuit and numbers of scan FFs are the same, a similar level of leakage currents

can be predicted).

The power consumption measured during the time window (t0, t0+∆) for the functional

patterns is reported in Table 2.9. Results are expressed in milliWatt. In our experiments

we generated 30 different functional patterns (i.e., test programs). The second column

(“Clock cycles”) reports the length of each test program in terms of the number of clock

cycles that corresponds to the size of the time window. The value reported for each

functional pattern in the “Peak” column represents the highest peak power measured

over the considered time window (t0, t0 + ∆). The value reported for each functional

pattern in the “Average” column represents the Average power measured over the con-

sidered time window (t0, t0+∆). Note that all measurements represent the overall circuit

power consumption, including both logic power (power in the combinational logic) and

sequential power (power in scan flip-flops). Clock power (power in the clock tree) is not

included.

Functional patterns considered in Table 2.9 have been developed recurring to two differ-

ent approaches. Both strategies guarantee a comprehensive excitation of the processor

core, though they exploit different generation schemes. The first 25 test programs, la-

beled test program 01, test program 02, etc., were developed by hand, targeting the

stuck-at fault coverage of the processor core. These programs achieved about 95% fault

coverage on the targeted fault model. Interestingly, the highest peak value was obtained

by test program 25, which repeatedly sweeps the addressable memory for exciting the
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Functional Patterns Clock cycles Peak (mW) Average (mW)

test program 01 4349 106.25 3.56

test program 02 4721 106.86 3.88

test program 03 5697 106.58 4.11

test program 04 6433 106.24 4.50

test program 05 6561 106.21 4.58

test program 06 8613 107.80 5.44

test program 07 12185 107.51 1.30

test program 08 14732 107.09 1.34

test program 09 162567 106.97 7.01

test program 10 19973 106.03 7.20

test program 11 20415 108.49 5.14

test program 12 10851 107.04 4.79

test program 13 23851 111.29 7.27

test program 14 27056 107.46 2.23

test program 15 26980 107.50 2.22

test program 16 42463 106.24 1.08

test program 17 42943 107.64 6.53

test program 18 52113 105.84 8.45

test program 19 53835 107.35 8.02

test program 20 71947 109.02 7.69

test program 21 79892 107.51 2.37

test program 22 94349 106.11 3.39

test program 23 277617 110.27 8.34

test program 24 1048261 106.14 12.61

test program 25 1050438 119.10 9.41

program stress alu 553 107.96 1.30

program stress fsm 421 106.73 0.79

program stress mem 609 108.48 1.68

program stress uP 391 106.79 1.02

program stress ram 407 107.78 1.00

Table 2.9: Functional Patterns Power Estimation.

program counter circuitry. On the other hand, patterns labeled programs stress alu,

fsm, etc., were automatically generated. In this case, functional programs stress mainly

the single part of the processor core highlighted in the program name.

Patterns Peak (mW) Average (mW)

LOS 146.93 14.09

LOS 5 108.78 12.15

LOS 10 108.89 12.19

LOS 50 108.62 11.97

LOS 100 108.73 11.63

Table 2.10: LOS And Pseudo-Functional Patterns Power Estimation.

Table 2.10 reports the power consumption for LOS and Pseudo-functional patterns. In
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the first column (“Patterns”) we report LOS patterns and the set of pseudo-functional

patterns denoted by the number of capture cycles (5, 10, 50, 100). Results are expressed

in milliWatt. The value reported for each functional pattern in the “Peak” column rep-

resents the highest peak power measured during the launch-to-capture cycle for LOS

patterns. The peak power of the pseudo-functional patterns is measured during the last

capture cycle. The value reported for each pattern in the “Peak” column represents

the highest peak power measured over the complete set of patterns. The value reported

for each pattern in the “Average” column represents the Average power measured dur-

ing the launch-to-capture cycle for LOS patterns. For the pseudo-functional patterns

the average is measured during the last capture cycle. As for peak values, the average

power is measured over the complete set of patterns. Note that similarly to the experi-

ments carried out on functional patterns, all measurements represent the overall circuit

power consumption, including both logic power (power in the combinational logic) and

sequential power (power in scan flip-flops). Clock power (power in the clock tree) is not

included.

	  
Figure 2.18: Behavior of LOS and pseudo-functional patterns.

The results in Table 2.10 are further elaborated in the graph of Figure 2.18 where both

Peak power and cycle Average power are reported. As predicted in [21] and [22] both

peak power and average power reach a steady state value after a certain number of

capture cycles. In our experiments, the peak power converges at a stable value after

10 capture cycles, while the average power converges after 5 capture cycles. The peak

power convergence value is lower than that during the launch-to-capture cycle for LOS

patterns. The reduction of peak power achieved by applying more than 10 capture

cycles is about 26% compared to the peak power during the launch-to-capture cycle for

LOS patterns. The same conclusions can be drawn for the average power. In this case,

the reduction is about 17% compared to the cycle average power during the launch-to-

capture cycle for LOS patterns. The trend depicted in Figure 2.18 confirms the data

given in [21] and [22].
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Figure 2.19: Behavior of Functional and Pseudo-functional patterns.

Figure 2.19 shows a comparison between the functional peak power and the peak power

obtained with LOS and Pseudo-functional patterns. In the figure is reported the two

bounds (upper and lower) representing respectively the maximum and the minimum

functional peak power. From the analysis of data reported in Figure 2.19 we can make

the following observations:

� As reported in the literature [18], the power consumed during test application is

higher than the power consumed during functional mode. The gap between LOS

peak power (the peak power consumed by LOS patterns during the launch-to-

capture cycle) and the maximum functional peak power is about 23.37%. The gap

between LOS peak power and the minimum functional peak power is 38.82%.

� The comparison between the functional peak power and the pseudo-functional peak

power shows that the latter is not a very accurate prediction of the actual functional

peak power (at least in our case study). The pseudo-functional peak power is about

9% lower than the maximum functional peak power. This is also confirmed by the

fact that it is really close to the minimum functional peak power (only 2.8% lower).

Thus, only considering pseudo-functional peak power for defining test power limits

may lead to test escapes due to under stress.

2.1.5.3 Conclusions

In this work we proposed a novel flow to estimate functional power to be used as power

limits during at-speed delay fault test. A first (predictable) conclusion shown by this

study is that power consumed during test is higher than power consumed during func-

tional mode. A second (unpredicted) conclusion of this study is that the peak power

consumption of pseudo-functional patterns is not so accurate compared to the real func-

tional peak power. Thus, as a final conclusion we have shown that a procedure to

generate meaningful functional patterns to estimate the functional power is mandatory

to avoid test escape and yield loss.
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This work and its extension are published in [W4, C23, C24, C27, C29, C30, C31, C34,

C38, C39, C46, I2, I4, J6, J8, J9] referenced in the Publication list of chapter 4.

2.1.6 Test of Low Power Devices

With the growing demand of high performance, multi-functional and hand-held devices,

power consumption has emerged as a major design concern. Simultaneously, technology

scaling is shrinking device features as well as lowering transistor threshold voltage, which

is associated with an exponential increase in subthreshold leakage current. Therefore,

power consumption due to leakage currents (i.e. static power) has become a major

contributor to the total power consumption in CMOS circuits [35].

Despite increasing static power consumption, aggressive device scaling in each technology

generation allows high integration density. Nowadays, system-on-chips (SOCs) designed

using deep-submicrometer technologies can integrate all components and functions that

historically were placed on a printed-circuit board. Among all different IP cores included

in a single SOC, embedded memories are the densest components, accounting for more

than 90% of the overall chip area [24]. Due to such high density, memory devices

are arising as the main contributor to the overall SOC static power consumption, which

requires the development of appropriate mechanisms to reduce static power consumption

in memories.

Since SRAMs are still dominant in most SOCs, techniques to reduce static power con-

sumption of such devices have been proposed in all stages of design process. At transistor

level, dynamic control of the transistor gate-source and substrate-source back bias has

been exploited to reduce leakage during standby periods [36]. At architectural level,

a mechanism based on so-called canary cells has been proposed to dynamically reduce

the voltage supplied to the core-cell array [37]. Another approach, widely used in in-

dustry, is based on embedded power gating mechanisms and voltage regulation systems,

which allow significant static power savings by lowering the voltage supplied to SRAM

memory blocks (e.g. the core-cell array) that are not in use [38]. Even though such

devices offer substantial benefits in reducing static power of SRAMs, their adoption in

practice depends on the availability of test methods, such that their correct operation

can be ensured in the field. This is because the dense structure of SRAMs designed with

deep-submicrometer technologies prompts all memory blocks to be extremely vulnerable

to physical defects, which may lead to faulty behaviors during functional operation [25].

Due to the complex nature of SRAM internal behavior, identification of faulty behaviors

and development of efficient test solutions are non-trivial tasks. Hence, in order to

minimize test development effort and produce more efficient and dedicated memory
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tests, we can rely on information provided by electrical simulations. In this context,

the analysis of the memory layout allows determining realistic defects (e.g. resistive-

opens and resistive-bridges) within memory blocks, and electrical simulations are then

performed to determine those defects that may lead to faulty behaviors. Finally, test

solutions are generated based on results of such failure analysis. Several studies have

been performed, according to this approach, to understand failure mechanisms and to

develop efficient test solutions for SRAMs, notably [25, 39]. However, only few works,

notably [26], target test of devices that are specific to low-power SRAMs, such as power

gating mechanisms. Existing test techniques for power gating mechanisms are based

on dedicated design-for-test (DFT) solutions [26]. Nevertheless the efficiency of such

solutions, none of them is viable to characterize, from the functional point of view, the

faulty behaviors of power gating mechanisms. Thus, existing solutions cannot be used

to mitigate the presence of defects. Moreover, if the DFT cannot be applied due to

specific design constraints, another test strategy must be developed.

To overcome such limitations of state-of-the art SRAM test methods, in this paper we

focus on functional test solutions targeting power gating mechanisms. In this work, we

present extensive electrical simulation results, using a commercial low-power SRAM as

case-study, to show the impact of realistic defects that may affect the correct functioning

of power gating mechanisms. Finally, we present an efficient test solution targeting

sensitization and detection of faulty behaviors identified in previous failure analysis.

2.1.6.1 Low-Power Sram: Architecture And Functioning

Figure 2.20 depicts a conceptual view of the low-power SRAM used as case study in

this work. It is a commercial single-port word-oriented SRAM, designed by Intel with

a 40nm low-power process technology. Such SRAM has a core-cell array divided in N

core-cell blocks (CBs), where each CB is connected to an I/O block (IOB), as shown in

Figure 2.20.

Each pair CBi/IOBi, i ∈ [0, N − 1], is referred to as a memory element. As illustrated

in Figure 2.21, a CB is composed of core-cells connected to a subset of m bit lines (BLs)

and n word lines (WLs), whereas an IOB consists of a multiplexer of BL pairs and

an I/O circuitry (a write driver and a sense amplifier). The multiplexer controls the

access of such m BLs to the I/O circuitry. Before every operation, pre-charge circuits

are turned on to maintain all BL pairs, write driver input signals (WD and WDB) and

sense amplifier input signals (SA and SAB) at VDD level. In this case, control signals

BLeqWD, BLeqSA and all signals BLeqy, y ∈ [0,m − 1], are set to logic ‘0’. When an

operation is being performed, pre-charge circuits are turned off and a single BL pair
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Figure 2.20: Low-power SRAM architecture.

accesses the I/O circuitry. If a BL pair BLy/BLBy is accessing the I/O circuitry, then

SELy is set to logic ‘1’ and SELz is set to logic ‘0’, ∀y 6= z, y, z ∈ [0,m − 1]. In this

case, BLy is connected to nodes WD and SA and BLBy is connected to nodes WDB

and SAB. During a write operation, signal Write EN activates the write driver, whereas

signal SAON activates the sense amplifier during a read operation.

Figure 2.21: SRAM memory element.

Each memory element provides access to one core-cell of the array when executing read

and write operations. As the result of a read, the data stored in the accessed core-cell

is returned in memory element output Data out[i], while the data to be written in the

accessed core-cell, during a write, is specified through input Data in[i]. The SRAM input

Data in and output Data out group signals Data in[i] and Data out[i], respectively, of
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all memory elements (i.e. Data in and Data out have N bits each). Hence, the number

N of memory elements corresponds to the SRAM word width.

As shown in Figure 2.20, this low-power SRAM also embeds power gating mechanisms,

which are implemented using power switch blocks, to control the voltage supplied to the

core-cell array and the peripheral circuitry (IOBs, control block and address decoder).

In next subsection, we provide a detailed description of the power gating architecture.

Power Gating Architecture

The power switches (PSs) connected to the core-cell array and the peripheral circuitry

are structured in N segments [26], as shown in Figure 2.20, with N equals to the number

of memory elements of the SRAM. The power gating architecture described in this work

is a classical one, thus widely adopted in industry for both SRAMs and cores. This is

because its segmented structure allows redundancy and ensures that all structures are

always powered uniformly as described in [26]. Figure 2.22 illustrates the structure of

each segment CSegi and PSegi, i ∈ [0, N −1], of the PS connected to the core-cell array

and the peripheral circuitry, respectively.

Each segment CSegi is composed of four PMOS transistors in parallel, as shown in Figure

2.22.a. Such transistors, indexed from P CC0 to P CC3, have a dedicated control signal

connected to the gate terminal (signals Ctrl CC0 to Ctrl CC3 ). This allows transistors

in segments CSegi to be controlled individually. Segments PSegi are composed of two

PMOS transistors in parallel, P PC0 and P PC1, as shown in Figure 2.22.b. Such

transistors also have dedicated control signals connected to the gate terminal (signals

Ctrl PC0 and Ctrl PC1 ), which allows transistors in segments PSegi to be controlled

individually as well.

Figure 2.22: Segment of the power switch connected to (a) the core-cell array and
(b) the peripheral circuitry.

Such power gating mechanisms, along with a voltage regulation system (highlighted in

red in Figure 2.20), enable power modes on the SRAM by varying the voltage applied to

the core-cell array and peripheral circuitry internal supply lines (VDD CC and VDD PC

in Figure 2.20, respectively).

Power Modes
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For the low-power SRAM studied in this work, three power modes can be distinguished:

1) active, 2) deep-sleep, and 3) power-off.

In active (ACT) mode, PSs connected to both core-cell array and peripheral circuitry

are activated (i.e. the gate of all PMOS transistors in all segments is at 0V). This allows

supply lines VDD CC and VDD PC to be driven by the main supply rail, which provides

VDD voltage level. Hence, both core-cell array and peripheral circuitry are powered

at VDD, which allows operations to be performed. Note that the voltage regulator is

switched off (i.e. signal REGON is set to logic ‘0’) in ACT mode.

In both deep-sleep (DS) and power-off (PO) modes, PSs connected to both core-cell

array and peripheral circuitry are deactivated (i.e. the gate of all PMOS transistors

in all segments is at VDD level). Hence, lines VDD CC and VDD PC are no longer

connected to the main supply rail, and, consequently, no operation is allowed to be

performed.

In DS mode, the voltage regulator is switched on (i.e. signal REGON is set to logic ‘1’)

to generate a fixed voltage level (Vreg in Figure 2.20), lower than VDD, to be provided

to the core-cell array through VDD CC, whereas VDD PC discharges to 0V. The voltage

Vreg, which must be high enough to guarantee data retention in all core-cells of the

array, drastically reduces static power consumption due to current leakage.

In PO mode, the embedded voltage regulator is switched off, hence both supply lines

VDD CC and VDD PC discharge to 0V. Core-cells are no longer able to retain any data

in PO mode.

All control signals driving PSs, which are required to set the SRAM into different power

modes [9-10], are generated by the power mode control (PM control) logic. It is impor-

tant to note that the PM control logic is always supplied at VDD level (refer to Figure

2.20), such that the SRAM is able to switch among power modes in any time. Such

circuit is described in detail in the next subsection.

Figure 2.23 illustrates the structure of the PM control logic. It is important to note that,

in Figure 2.23, resistances Df1 to Df6 (highlighted in red) are resistive-open defects

that do not occur in a defect-free PM control logic. Such defects will be studied in the

following sections.

The PM control logic generates control signals driving PSs according to inputs SLEEP

and PWRON . Such inputs allow configuring the SRAM power mode as follows:

1. ACT mode: SLEEP and PWRON must be set to logic ‘1’ and logic ‘0’, respec-

tively.
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2. DS mode: SLEEP must be set to logic ‘0’, regardless of PWRON .

3. PO mode: both inputs must be set to logic ‘1’.

Figure 2.23: Power mode control logic.

The most important role of the PM control logic is to activate transistors into PS seg-

ments in the correct order when the SRAM is switched from DS or PO mode to ACT

mode, which is referred to as wake up (WU) phase. A specific activation order exists be-

cause transistors that compose PS segments have different drive strength DRS, such that

DRSP CC0<DRSP CC1<DRSP CC2<DRSP CC3 and DRSP PC0<DRSP PC1. During

WU phase, transistors into PS segments must be activated in a cascade fashion w.r.t

the increasing order of drive strength, which allows the voltage at lines VDD CC and

VDD PC to rise slowly towards VDD. Consequently, when high drive strength transis-

tors P CC3 and P PC1 are activated, the voltage level at lines VDD CC and VDD PC

is higher than 90% of VDD, which avoids large peak currents that are generated when

VDD line is connected directly to a line at low voltage through high drive strength tran-

sistors. Such cascade WU technique is commonly used in commercial VLSI circuits (e.g.

an SRAM) to reduce the overall power noise on the system, during WU phase.

The PM control logic ensures the expected activation order by controlling the fall tran-

sition of signals connected to the gate of transistors into PS segments during WU phase,

which is described as follows. The WU phase is started by the WU command, i.e. by

configuring the SRAM in ACT mode. Consequently, signals Ctrl CC0 and Ctrl PC0 are

immediately set to logic ‘0’, letting PMOS transistors controlled by such signals to be

turned on. Next, signals Ctrl CC1 and Ctrl CC2 are set to logic ‘0’ after one and two

delay units from the beginning of WU phase, respectively. In Figure 2.23, we can verify

that the fall transition of signal Ctrl CC1 follows the fall transition of Ctrl CC0, while

the fall transition of signal Ctrl CC2 follows the fall transition of Ctrl CC1. Finally,

the WU phase terminates when signals Ctrl CC3 and Ctrl PC1 are pulled down, which

occurs after three delay units from the WU command.
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The duration of the WU phase, i.e. the time interval between the WU command and

the instant in time when all transistors into all PS segments are activated, is referred

to as WU time. Note that read and write operations are not allowed to be performed

during this time interval.

2.1.6.2 Resistive-Open Defects In The Power Mode Control Logic

In this section, we present an in-depth study, based on electrical simulations, to charac-

terize the SRAM behavior in presence of resistive-open defects shown in Figure 2.23. As

shown in Figure 2.23, defects Df1 to Df4 affect control signals driving PSs connected to

the core-cell array, whereas Df5 and Df6 affect control signals driving PSs connected to

the peripheral circuitry.

Note that we did not study defects affecting internal nodes of the PM control logic.

This is because the presented PM control logic is an Intel specific circuit, hence, defects

inside such circuit may lead to impacts that may not occur in other memories (e.g.

an SRAM developed by another producer), with a different implementation of the PM

control logic. On the other hand, defects affecting control signals of PSs have a similar

impact on every SRAM that embeds power gating mechanisms. Thus, presented results

are valid for any SRAM that embeds such facilities.

Experimental Setup

All electrical simulations have been performed using an extracted Spice model corre-

sponding to the SRAM described in Section 2.1.6.1 reference memory block with 64

memory elements and 4K addresses (i.e. each address provides access to 64 core-cells)

has been considered, organized as a core-cell array of 6-transistors core-cells composed

of 512 BLs and 512 WLs.

Each simulation has been performed in presence of a single defect, since the occurrence

of multiple defects has low probability in a small circuit such as the PM control logic,

and consisted of the following main steps:

1. Transition from ACT to DS or PO mode (the SRAM is configured in ACT mode

at the beginning of all simulations).

2. Transition to ACT mode (i.e. WU phase).

3. Execution of operation sequences (OSs), after WU time.

Such steps have been chosen to sensitize potential issues that may be caused by mal-

functions of PSs. Step one allows verifying whether or not PSs are correctly deactivated
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during a switch to DS or PO mode, whereas step two allows verifying the correct activa-

tion order of transistors into PS segments, during WU phase. Finally, step three allows

verifying if the SRAM remains functional following WU phase.

In our experiments, the whole set of process corner, voltage and temperature (PVT)

conditions (selected according to the SRAM specifications) have been examined when

analyzing each defect. Hence, for each defect, electrical simulations have been performed

by varying the following parameters:

� Process corner: slow, typical, fast, fast NMOS/slow PMOS and slow NMOS/fast

PMOS.

� Supply voltage VDD: 0.9V, 1.0V and 1.1V.

� Temperature: -30C, 25C and 125C.

Nominal values of clock cycle (Tcycnom) and the WU time (WUTnom) used on the

experiments have also been extracted from the SRAM specifications, as follows:

� Tcycnom: 4ns, 3ns and 2.5ns for supply voltage equals to 0.9V, 1.0V and 1.1V,

respectively.

� WUTnom: 185ns, 150ns and 125ns for supply voltage equals to 0.9V, 1.0V and

1.1V, respectively. The same values have been used for WU phase from both DS

and PO modes.

Finally, it is important to mention that resistance values of defects have been chosen

from a few Ωs up to several MΩ in order to provide a complete view of the studied

phenomena.

Summary of Experimental Results

Experimental results have shown that all studied defects induce a delay on the fall

transition of signals controlling PS segments, during WU phase. In presence of Df1, Df2,

Df3 and Df5, we observed that such delay may break the activation order of transistors

into PS segments, which provokes large peak currents during WU phase. Simulation

results have shown that the worst-case impact is caused by Df5. Such defect may induce

a peak current that is up to 22 times higher than the expected maximum current. This

worst-case situation occurs during WU phase from DS mode, with PVT = fast, 1.1V,

-30C.

Despite the induced peak currents, experiments have shown that Df1, Df2, Df3 and

Df5 do not impact the activation of high drive strength transistors P CC3 and P PC1,
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during WU phase. Hence, supply lines VDD CC and VDD PC remain fully charged and

stable at VDD when OSs are performed after WUTnom. Consequently, no faulty behavior

(FB) has been observed during the execution of such operations. A FB corresponds to

an observed memory behavior that deviates from the expected one, when a given a set

of operations is executed in the memory.

On the other hand, it has been observed that Df4 and Df6 induce a delay on the

activation of high drive strength transistors P CC3 and P PC1, respectively, during

WU phase. Depending on the resistance value defects, such transistors may not be fully

activated after WUTnom, when the execution of OSs is started. Experimental results

have shown that this effect provokes voltage droop phenomena in lines VDD CC and

VDD PC during the execution of operations.

In particular, we verified that Df4 causes a voltage droop in line VDD CC that is always

less than 5% of VDD, which can be considered as negligible. This is because Df4 does

not impact the activation of transistors P CC0, P CC1 and P CC2 into PS segments

connected to the core-cell array, thereby avoiding high voltage droop phenomena on line

VDD CC . However, it has been observed that Df6 induces high voltage droop in line

VDD PC when OSs are executed after WU phase. Even though Df6 does not impact the

activation of transistors P PC0, such transistors alone cannot maintain line VDD PC

fully charged and stable at VDD when operations are executed, thereby provoking the

observed voltage droop phenomena. In the worst-case situation, voltage droop reaches

400mV, which occurs with PVT = fast, 1.1V, 125C.

The high voltage droop phenomena induced by Df6 can lead to FB during the execution

of such operations, especially due to performance loss issues caused by such degradation

of the voltage supplied to the peripheral circuitry. In the next section, our aim is to

investigate the execution of OSs after WU phase, in presence of Df6, to identify FBs

that such defect may cause.

2.1.6.3 Failure Analysis In Presence Of Df6

To better understand the SRAM behavior in presence of Df6, we first describe how the

SRAM control block generates control signals to perform read and write operations.

Next, we present the impacts of Df6 by means of two experimental scenarios.

Generation of Control Signals

The SRAM control block generates signals to perform operations based on a self-timing

mechanism. According to this approach, operations start executing in rising edges of
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the clock and the SRAM itself, based on the discharge of a self-timing signal, generates

control signals to complete them.

Figure 2.24 depicts the generation of control signals based on such mechanism dur-

ing a write and a read operation. In Figure 2.24, notation BLeq SA∗, BLeq WD∗,
Write EN* and SAON* designate signals BLeq SA, BLeq WD, Write EN and SAON,

respectively, of all memory elements, while BLeq∗ represents all control signals driving

pre-charge circuits connected to BL pairs, of all memory elements (refer to Section 2.1.6.1

for details about such signals).

Figure 2.24: Generation of control signals based on a self-timing mechanism.

When the SRAM is in stand-by, the self-timing signal (Self Sig in Figure 2.24) is at VDD

level. Once a rising edge of the clock occurs, signal Self Sig starts discharging, which

turns off all pre-charge circuits. Hence, all control signals driving pre-charge circuits are

set to logic ‘1’, as indicated by arrows “1” in Figure 2.24. In the next step (not shown in

Figure 2.24), a BL pair is selected to access the I/O circuitry, in each memory element,

and a WL is activated to access the addressed core-cells.

During a write operation, write drivers of all memory elements are enabled at the be-

ginning of the fall transition of Self Sig (refer to arrow “2”) in order to set the selected

BLs to the proper voltage levels. During a read operation, sense amplifiers of all mem-

ory elements are enabled when the weak voltage difference between the selected BLs is

high enough to perform the read, which corresponds to the end of the fall transition of

Self Sig (refer to arrow “3”). At the end of each operation, signal Self Sig is restored to

VDD. This turns off write drivers and sense amplifiers (refer to arrows “4”) and activates

all pre-charge circuits (refer to arrows “5”). The time required for a full cycle of the

self-timing signal (discharge to 0V and restore to VDD) reflects approximately the time

needed to complete an operation.

We can also observe in Figure 2.24 that the discharge rate of signal Self Sig depends

on the operation type (rate is higher in the write operation). Once a rising edge of the

clock occurs, a latch inside the SRAM control block holds the primary input signal that

indicates the operation type (input RW in Figure 2.21) during the whole cycle of signal
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Self Sig. The held data is then used to determine the discharge rate of the self-timing

signal.

Finally, it is important to mention that the SRAM is blocked during the discharge of the

self-timing signal, when core-cells are being accessed to perform an operation. Hence, if

a rising edge of the clock occurs during the discharge of the signal Self Sig, the operation

that is expected to start is discarded.

Experimental Scenario 1

In the first experiment, we have executed OS = “r1r1w0r0” with a fixed memory address,

which provides access to 64 core-cell (remember that the studied SRAM has 64 memory

elements), after WU phase from DS mode, considering WUTnom as WU time and clock

cycle equals to Tcycnom. Note that all accessed core-cells store logic ‘1’ prior to OS

execution. The experiment has been performed with Df6 set to a high resistance value

(25KΩ), such that all transistors P PC1 of the PS connected to the peripheral circuitry

are turned off when OS is executed. Figure 2.25 shows waveforms obtained through the

experiment.

Figure 2.25: Execution of operation sequence r1r1w0r0 after wake up phase from
deep-sleep mode.

In Figure 2.25, SAON, Write EN, BLeq SA and SA/SAB are signals corresponding to

a given memory element i, i ∈ [0, 63], while S and SB correspond to storage nodes of

the accessed core-cell CCx,y in memory element i, which is connected to a given selected

WL x and to a given selected BL pair BLy/BLBy, x, y ∈ [0, 511]. Signal Data out[i] is

the output of memory element i, which corresponds to data read from core-cell CCx,y.

In this experiment, we first observe that signal Data out[i] is at logic ‘1’ at the end of

the OS, while logic ‘0’ was expected. Thus, Df6 leads to an observable error when the
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OS is executed. Secondly, we observe that storage nodes S and SB of CCx,y do not

change during OS execution, while a transition 1 → 0 was expected in such core-cell.

This is because operation w0 has not been executed, since write driver is never activated

(note that signal Write EN is always at logic ‘0’). In the remainder of this subsection,

the observed phenomena are investigated in further details.

During the first clock cycle, when the first r1 is performed, we observe that the sense

amplifier is correctly activated at the end of the discharge of signal Self Sig (refer to

arrow “1” in Figure 2.25). Hence, the weak potential difference between the BLs is

amplified through signals SA and SAB (refer to “2”) and the output Data out[i] is set

to logic ‘1’, as expected (refer to “3”). At the second rising edge of the clock, note that

signals driven by the peripheral circuitry (e.g. signal Self Sig) are charged at a voltage

level lower than VDD (1.1V), which indicates a voltage droop in line VDD PC.

During the execution of the second r1, which occurs in the second clock cycle, the sense

amplifier is also correctly activated at the end of the discharge of signal Self Sig, as

indicated by arrow “4”. However, we observe that the full cycle of Self Sig (discharge

to 0V and restore to VDD) lasts for more than a clock cycle (refer to “5”), which is

longer compared to the previous r1. Since the full cycle of the self-timing signal reflects

approximately the time required to complete an operation, we can conclude that the

voltage droop in supply line VDD PC causes performance loss. Despite of this issue, the

read operation is correctly performed, similarly to the previous one.

Due to the observed performance loss, the third rising edge of the clock (when w0 is sup-

posed to start) occurs when the self-timing signal is in restore phase, which corresponds

to the end of the previous operation (refer to “6”). Moreover, we observe that the sense

amplifier is still activated to complete the previous r1 (refer to “7”). As a consequence,

the discharge of Self Sig starts delayed more than half of a clock cycle with respect to

the third rising edge of the clock. Although the operation starts executing, we observe

that the write driver is not activated (signal Write EN remains set to logic ‘0’). Instead,

we verify the third rising edge of signal SAON, which occurs when signal Self Sig is fully

discharged, as indicated by arrow “8” in Figure 2.25. Therefore, a read operation is

performed instead of the w0 operation, and then the transition 1→ 0 does not occur in

the accessed core-cell CCx,y.

This is because the cycle of the self-timing signal corresponding to the previous operation

is not completed when the third rising edge of the clock occurs (signal Self Sig is in

restore phase). Hence, in such instant, the latch inside the SRAM control block holds

the type of the previous operation, which is a read. As a consequence, a read operation

is executed in the third clock cycle.
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At the fourth rising edge of the clock, we observe the discharge of the self-timing signal

corresponding to the previous operation is not completed (refer to “9”). As a conse-

quence, the fourth operation, which is expected to be a r0, is discarded. At the end

of the OS execution, signal Data out[i] remains at logic ‘1’ (the result of the operation

executed in the third clock cycle), while logic ‘0’ was expected. Therefore, the observed

FB is detected.

Finally, note that BLBy is discharged over 400mV during the read operation executed

in the third clock cycle, while normally it is discharged over 250mV. This is because

signals SA and SAB are not equalized at VDD when such read operation starts (refer

to “10”). Instead, SAB is at 0V, which pulls down BLBy to a lower level than the

expected one. This occurs because the pre-charge circuit of the sense amplifier is not

turned on (i.e. signal BLeq SA remains at logic ‘1’) during the restore of Self Sig that

occurs at the end of the second operation (refer to “11”).

Additional experiments have also shown that a read operation may return incorrect data

if nodes SA/SAB and WD/WDB of memory elements are not equalized at VDD at the

beginning of the operation. For example, let us consider a core-cell that stores logic ‘0’,

connected to a given BL pair BLy/BLBy of a memory element, during a read access.

When the operations starts, BLBy is connected directly to SAB and WDB. If SAB

or WDB is at 0V, this provokes an undesired discharge of BLBy. At the end of the

operation, if BLBy discharges more than BLy, the sense amplifier transmits logic ‘1’ to

the SRAM output, thus leading to an incorrect read fault.

As described above, the observed faulty behaviors are due to performance loss caused

by Df6. In the next subsection, we investigate the possibility to mitigate the effect of

such defect by modifying either the frequency or the WU time of the memory.

Experimental Scenario 2

The second experimental scenario is based on the execution of the same OS = “r1r1w0r0”,

after WU phase from DS mode, with a fixed memory address and with Df6 set to the

same resistance value (25KΩ) as in experimental scenario 1. This experimental scenario

differs from the first one because we varied either the WU time or the clock cycle used

in the electrical simulation instead of using nominal values for both.

Figure 2.26.a shows waveforms generated during the execution of OS when considering

WU time and clock cycle equal to 2∗WUTnom and Tcycnom, respectively, whereas Figure

2.26b presents waveforms obtained with WU time and clock cycle equal to WUTnom and

2 ∗ Tcycnom, respectively.
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Figure 2.26: Execution of operation sequence r1r1w0r0 after wake up phase from
deep-sleep mode (a) WU time 2 ∗ WUTnom and clock cycle Tcycnom (b) WU time

WUTnom and clock cycle 2 ∗ Tcycnom .

In both Figure 2.26.a and Figure 2.26.b, waveforms show that all operations are correctly

executed, despite the presence of Df6. First, we can observe that, during read operations,

the sense amplifier is activated at the end of the fall transition of Self Sig (refer to arrows

“1”, “2” and “4” in both Figure 2.26.a and Figure 2.26.b), as expected. Moreover,

during write operations, we can verify that the write driver is correctly activated at

the beginning of the fall transition of Self Sig (refer to arrows “3”). Secondly, we can

verify that Data out[i] always contains the result of read operations, i.e. it is set to

logic ‘1’ during the first r1 (refer to arrows “5”), while it is set to logic ‘0’ during the

r0 (refer to arrows “6”). Note that Data out[i] is set according to the weak voltage

difference between the BLs generated during the read. Moreover, we can observe that

storage nodes S and SB are set to logic ‘0’ and logic ‘1’, respectively, as a result of w0,

thus indicating that such operation has been correctly performed (refer to arrows “7”).

Finally, note that BLy and BLBy are discharged over 250mV during read operations, as

expected. This is because pre-charge circuits connected to all BL pairs, sense amplifiers

and write drivers are properly activated at the end of operations.

In particular, no FB occurs in the experiment depicted in Figure 2.26.a because the

considered WU time is large enough to guarantee activation of all transistors P PC1

of the PS connected to the peripheral circuitry before OS execution. This is confirmed

by observing that no voltage droop occurs at nodes driven by VDD PC (e.g. signal

Self Sig) during OS execution. Finally, no FB occurs in the experiment illustrated

in Figure 2.26.b because the used clock cycle compensates the performance loss issues

caused by Df6 even if the WU time is the nominal one. This is confirmed by observing

that a full cycle of Self Sig never lasts for more than a clock cycle. This experiment
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proves that effects caused by Df6 can be mitigated by reducing memory performance

parameters.

Summary

The above discussed experiments have shown that Df6 can lead to FBs during the

execution of operations after WU phase, especially when considering minimum values

of WU time (WUTnom) and clock cycle (Tcycnom). We have also performed additional

experiments by varying the OS executed after WU phase, PVT conditions and resistance

value of Df6. In such experiments, we observed other FBs apart from those shown during

the above experiments. The complete set of FBs can be enumerated as follows:

� FB1: a read operation is discarded, as shown in the experimental scenario 1.

� FB2: a write operation is discarded. This FB is similar to FB1, except that the

faulty operation is a write.

� FB3: a write operation preceded by a read is erroneously executed as a read

operation, as shown in the experimental scenario 1.

� FB4: a read operation preceded by a write is erroneously executed as a write

operation. This FB is similar to FB3, except that the faulty operation is a read.

� FB5: a rx operation performed right after a rx returns an incorrect value. Here

and below, x, x ∈ {0, 1}, x 6= x. This FB is caused by the partial equalization of

SA and SAB nodes of memory elements at the beginning of read operations.

� FB6: a rx operation performed right after a wx returns an incorrect value. This FB

is caused by the partial equalization of WD and WDB nodes of memory elements

at the beginning of read operations.

All FBs are caused by performance loss issues induced by degradation of the voltage

supplied to the peripheral circuitry. When a FB occurs, the sensitizing operation fails

because it is launched when the previous operation is still executing, i.e. in the middle

of a cycle of the SRAM self-timing signal. The possible causes of failure can be listed as

follows: 1) the SRAM is blocked executing the previous operation (FB1 and FB2), 2) the

SRAM control block fails to catch the operation type (FB3 and FB4); 3) equalization

of signals SA and SAB is not completed at the end of a read operation (FB5) and 4)

equalization of signals WD and WDB is not completed at the end of a write operation

(FB6).

In this extensive set of experiments, we have also observed that ability of a given OS in

sensitizing FBs caused by Df6 does not depend on the addressed core-cells. For example,
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in the experimental scenario 1, the same FB (FB3) is sensitized when each operation of

the OS is executed in the same core-cells (i.e. with fixed memory address) and when

different core-cells are addressed in each operation. This was expected, since Df6 does

not affect the core-cell array, but the peripheral circuitry.

Moreover, additional experiments shown that a given OS may sensitize a FB only for

specific scenarios of PVT conditions and resistance value of Df6. For example, no FB

occurs when the experiment described in the experimental scenario 1 is performed by

changing only the resistance value of Df6 to 20KΩ. However, if the OS is also changed

to “r1w0r0w1r1”, the last read operation sensitizes FB4. This shows that it is very

challenging to determine an OS that is capable to sensitize a FB in presence of a given

resistance value of Df6 and under a given PVT condition. This makes the test of such

defect also very challenging.

Finally, experimental results presented in experimental scenario 2 have shown that the

impacts of Df6 can be mitigated at the expense of performance in two ways, described

as follows:

1. Consider a WU time greater than WUTnom before executing operations after WU

command. No FB should occur if such adjusted WU time is large enough to

guarantee the correct activation of transistors P PC1 when operations are executed

after WU phase. This approach has been validated by the experiment described

in Figure 2.26.a.

2. Use a clock cycle greater than Tcycnom when executing operations after WU phase.

No FB should occur if such adjusted clock cycle is large enough to compensate the

performance loss issues caused by Df6, described in the experimental scenario 2.

This approach is validated by the experiment described in Figure 2.26.b.

In next section, we exploit the failure analysis presented in this section to present an

efficient test solution to detect Df6.

2.1.6.4 Test Solution

In this section, we present an efficient March test algorithm (defined in [? ]) targeting

detection of Df6, which contain OSs that allow sensitization and detection of the FBs

previously identified. Before analyzing the proposed test algorithm, we discuss about

special conditions that must be satisfied by a March test in order to detect a subset of

the FBs above presented.

Conditions to detect faulty behaviors
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The conditions presented in this section particularly refer to detection of FB1, FB2, FB3

and FB4. Such conditions can be summarized as follows:

1. To detect FB1 and FB4, a March test must ensure that two consecutive read

operations are executed in core-cells that store opposite logic value.

2. To detect FB2 and FB3, a March test must ensure that write operations are per-

formed in core-cells that store opposite data compared to the one that is supposed

to be written.

The first condition is required because, in most commercial SRAMs, the data output (i.e.

Data out in the SRAM used as case study) stores the result of the last read operation.

Hence, if a rx operation is not executed, either because it is discarded (FB1) or because

it is erroneously executed as a write (FB4), such fault is masked if the last read operation

that is correctly performed is a rx as well. This is because the SRAM output will be set

to logic x at the end of the faulty operation (as a result of the previous rx), which is the

expected logic value.

The second condition is required because, if a fault occurs due to a discarded write

operation (FB2) or due to a write operation that is erroneously executed as a read

(FB3), such fault is masked if the accessed core-cells already store the logic values that

is supposed to be written.

Such detection conditions are the base of the March test algorithm presented in the next

subsection, called March LZ.

March LZ

The structure of March LZ is the following:

March LZ

{
l (w1); ME1

DSM ; ME2

WUP ; ME3

↑ (r1, w0, r0); ME4

}

In March LZ, March element (ME) [? ] ME1 initializes all core-cells at logic ‘1’,

while ME2 switches the SRAM from ACT to DS (represented by notation DSM). In
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ME3, the SRAM is turned back to ACT mode, which corresponds to the WU phase

(WU command followed by WU time), represented by notation WUP. Finally, ME4

corresponds to operations executed after WU phase to sensitize and detect FBs cause

by Df6. The time complexity of March LZ is 4N + K, where N is the total number of

SRAM addresses and K is a time constant corresponding to the execution time of ME2

and ME3 (i.e. DSM and WUP).

The analysis presented in the above sections shown that it is not trivial to determine

OSs that are effective to sensitize FBs caused by Df6. This is because a given OS may

be effective only for particular scenarios of PVT conditions and resistance value of the

defect. Hence, to maximize the coverage of Df6, the March tests we propose have been

developed such that all operations executed after WU phase, along with the preceding

operations, compose an OS that can potentially sensitize at least one detectable FB

caused by Df6.

In March LZ, the execution of ME4 generates OSs that can sensitize and detect FB1,

FB2, FB3, FB4 and FB5. FB1 can be sensitized and detected by each read operation in

ME4. The w0 operation can sensitize FB2, whereas it is detected by the r0 operation that

follows. FB3 can be sensitized in each execution of the sequence “r1w0” and detected

by the r0 operation that follows, while FB4 can be sensitized and detected each time

the sequence “w0r0” is executed. Finally, FB5 is sensitized and detected by r0 and

the following r1. We can observe that the condition to detect FB1 and FB4 is fulfilled

in March LZ, since two consecutive read operations in ME4 are always operations of

opposite logic values. Moreover, March LZ also satisfies the requirement to detect FB2

and FB3, since core-cells are initialized at logic ‘1’ when the w0 is performed.

It is important to mention that, since Df6 causes performance loss issues, it is manda-

tory to execute the algorithm at maximum frequency (i.e. clock cycle set to Tcycnom)

to maximize the occurrence of FBs. Moreover, it is also mandatory to consider the min-

imum WU time (i.e. WUTnom) during test phase to maximize the time interval when

operations are executed with transistors P PC 1 deactivated. This also maximizes the

occurrence of FBs caused by Df6.

Finally, in terms of defect coverage, we verified through electrical simulations that 40KΩ

is the minimal resistance value of Df6 that March LZ can detect in all considered PVT

conditions.
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2.1.6.5 Conclusions

In this work, we presented an extensive study, based on electrical simulations, to charac-

terize the impacts of resistive-open defects affecting signals driving power gating mecha-

nisms embedded in a commercial low-power SRAMs. For each defect, both a qualitative

and a quantitative analysis of its impacts have been presented. We have shown that one

particular defect causes performance loss issues, which can provoke faulty behaviors.

Based on such failure analysis, an efficient March test has been developed to sensitize

and detect the observed faulty behaviors.

This work and its extension are published in [C36, C37, C40, C41, C43, I3, J11] refer-

enced in the Publication list of chapter 4.

2.2 Students

2.2.1 Master students

2.2.1.1 Master 1

� Vincent COUBARD (2008): Réalisation d’un système de fichier pour NAND-

FLASH

� Ibrahim AMER (2008): Réalisation d’un outil d’injection de fautes

� Cheikh Bounama NIANG (2009): Mise en oeuvre d’un simulateur de fautes Date

� Ludovic LE-BRAS, Romain SEIGLE (2009): Réalisation d’un dictionnaire de

fautes

� Papa Magatte DIAGNE (2009): Réalisation d’un debugger pour microprocesseur

� Sébastien PHERON (2010): Etude de réalisation d’un simulateur de faute Déductif

� Pierre YANG (2010): Implantation d’une interface graphique

� Ranavy HONG (2010): Etude et Réalisation d’un simulateur de fautes concurrent

� Long NGUYEN THANH (2012): Simple robot movement

2.2.1.2 Master 2

� Matteo VEZZANI (2004): Automatic March Test Generator for Static and Linked

Faults
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� Alessandro SAVINO, Fabio NAZIONALI (2005): Microprocessor software based

self test

� Roland MOBEANG (2008): Réalisation d’un outil de gestion des bibliothèques

technologiques pour la simulation des circuits numériques

� Ahmed Amine REKIK (2008): Simulateur de mémoires, étude bibliographique

� Laila DAMRI (2009): Implantation d’un Soc TMR sur FPGA

� Liang SHAO (2010): Test of TSV-Based 3D Stacked Integrated Circuits

� Yannick LAFFRAY (2011): Transmission des informations d’un chronotachy-

graphe et interface utilisateur

� Amine BEN MARIEM (2012): Analyse Automatique de datalog et génération de

patterns haute résolution

� Artem MARISOV (2013): Implementation of a TMR scheme at flip-flop level

2.2.2 Ph.D. students

Table 2.11 summarizes the Ph.D. students I co-directed, along with the period of the

thesis and the percentage of supervision.

Ph.D. Student Years %

Alessandro SAVINO 2006 50

Alexandre ROUSSET 2006-2008 50

Youssef BENABBOUD 2007-2010 50

Fangmei WU 2008-2011 30

Zhenzhou SUN 2011-2014 50

Miroslav VALKA 2010-2014 50

Leonardo ZORDAN 2010-2013 50

Aymen TOUATI 2013- 70

Table 2.11: Summary of the Ph.D. Students.

Alessandro SAVINO

Title: Software-based Self-Test of Microprocessor

System-On-Chip technology trends are so advanced that in a single chip one can em-

bed different core, having different functionality, making possible the definition of the

Intellectual Properties, such as microprocessor, memories and other peripherals. Mi-

croprocessor core testing becomes a very difficult task, due to the high complexity of

internal architecture, moreover nature of an embedded core makes impracticable resort
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to classic external test mechanisms such Automatic Test Equipments. Rising of Built

In Self Test (BIST) overcomes this problem porting the test mechanism and patterns

inside the core. BIST solution usually requires to stop the core functionality in order

to perform the test. However, critical applications require an on-line test executed in

working condition (it means that the component is placed inside the environment where

it will work since its lifetime). On-line test nature suggests the typical preferred ap-

proach: Software-Based Self-Test (SBST), where test patterns are the microprocessor

instructions, provided by the Instruction Set Architecture.

The PhD thesis studied and investigates novel microprocessor test generation method-

ologies.

Alexandre ROUSSET

Title: Logic Diagnosis for digital circuits

Due to the advances in manufacturing technologies and more aggressive clocking strate-

gies used in modern design, more and more defects lead to failures which can no longer

be modeled by classical stuck-at faults. Numerous actual failures exhibit timing or para-

metric behaviors which are not represented by stuck-at faults. Such failures have to be

taken into account during the test process in order to reach acceptable DPM (Defect

per Million) figures

The PhD thesis designed and implemented a unified diagnostic framework. The frame-

work was based on an Effect-Cause approach which relies on the two following main

operations. The first one is based on Critical Path Tracing algorithm and consists in

identifying critical lines in the failing device which can be sources of observed errors.

The second one consists in allocating a set of possible fault models to each critical

line, so that root causes of failures can be finally determined. The main advantage of

this method is that it does not need to explicitly consider each fault model during the

identification of critical lines.

I was a member of his thesis defense jury.

Youssef BENABBOUD

Title: Logic Diagnosis for System-on-Chip

System on Chip (SoC) has become a widely accepted architecture for complex and

heterogeneous systems that include digital, analog, mixed-signal, radio-frequency, mi-

cromechanical, and other types of components on a single piece of silicon. Despite the

efficiency of their design and manufacturing processes, SoCs may be affected by defects.
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Numerous actual failures exhibit timing or parametric behaviors, which are not repre-

sented by stuck-at faults. Such failures have to be taken into account during test and

diagnosis of SoCs in order to reach acceptable DPM (Defect per Million) figures. The

context of this study is the following. We consider SoCs which are composed of several

different cores such as Memory, PLL, ADC, DAC, Logic, DSP, and CPU. To simplify

the presentation in this paper, we consider that cores can be classified in three main

categories: memory, logic and analog cores respectively.

The PhD thesis proposed a diagnosis framework able to handle a whole SoC. The frame-

work is an extension of the one developed during the PhD thesis of Alexandre ROUS-

SET, the main modification are: the introduction of a preprocessing step to deal with

the complete SoC architecture instead of a simple logic block, the definition of a new

algebra for the CPT process during fault localization, and a new fault model allocation

procedure. In the case the failure is located in a non-logic core, the logic diagnosis

approach will identify the outputs of the core as the location of the failure. The new

(system level) diagnosis tool has been evaluated with SoC test cases built from typical

ST Microelectronics SoCs. The diagnosis resolution (i.e. absolute number of suspects)

has been measured and proves the accuracy of the proposed diagnosis approach.

This work was funded in the context of the research contract STM.

I was a member of his thesis defense jury.

Fangmei WU

Title: Power-Aware Test

Power consumption during structural test can be higher than the function power con-

sumption. Power reduction is thus mandatory to reduce the problems related to the

over-test (i.e., yield loss and circuit damage).

The PhD thesis proposed a new power-aware test pattern generation technique for LOS

testing. This technique is based on test relaxation and an iterative X-filling process, and

reduces power consumption during test at a level that can be compared to the level of

power consumption during functional mode. This additional feature (obtaining compa-

rable power consumption during test and during functional mode) is really important

as, in addition to solving the yield loss problem, it also avoid test escape (bad chips

are declared as good during manufacturing test) that may occur when test power is too

much reduced compared to functional power.

This work was funded in the context of the research contract TOETS.

Zhenzhou SUN
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Title: Defect Localization Improvement through Transistor Level Diagnosis

The rapid growth in semiconductor field results in an increasing complexity of digital

circuits. The ability to identify the root cause of a failing digital circuit is becoming

critical for defect localization. Logic diagnosis is the process of isolating the source of

observed errors in a defective circuit, so that a physical failure analysis can be performed

to determine the root cause of such errors. Effective and precise logic diagnosis is crucial

to speed up the failure analysis and eventually to improve the yield. “Effect-Cause” and

“Cause-Effect” are the two classical approaches for logic diagnosis. Logic diagnosis

provides a list of gates as suspects. However, this approach may not leads to accurate

results in the case of the defect is inside a gate.

The PhD thesis proposed a new intra-cell diagnosis method based on “Effect-Cause”

approach to improve the defect localization accuracy at transistor level. The proposed

approach exploits the CPT (Critical Path Tracing) applied at transistor level. For each

suspected cell, we apply the CPT for every given failing test vector. The result is a

preliminary list of candidates. Each candidate can be a net or a transistor drain, gate

or source. After that, we apply the CPT for each passing test vector in order to narrow

down the the list of candidates. The proposed method gives precise localization of the

root cause of the observed errors. Moreover, it does not require the explicit use of a

fault model.

This work was funded in the context of the research contract STM Grenoble.

I was a member of his thesis defense jury.

Miroslav VALKA

Title: Power aware test and Test of Low Power Devices

Nowadays, electronic products present various issues that become more important with

CMOS technology scaling. High operation speed and high frequency are mandatory

requests. On the other hand, power consumption is one of the most significant con-

straints due to large diffusion of portable devices. The need of power efficient electronic

devices leads to implement dedicated structures to reduce as much as possible the power

consumption. These needs influence not only the design of devices, but also the choice

of appropriate test schemes that have to deal with production yield, test quality and

test cost. Testing for performance, required to catch timing or delay faults, is there-

fore mandatory, and it is often implemented through at-speed scan testing for logic

circuits. In the meanwhile, specific test solutions have to be developed for the structures

dedicated to power savings. This PhD thesis targets both the above aspects: (i) the

test for performances in order to guarantee the best tradeoff between test quality and



Chapter 2. Details 71

power consumption during test, (ii) the test of power gating structures allowing power

reduction.

This work was funded in the context of the research contract STE.

I was a member of his thesis defense jury.

Leonardo ZORDAN

Title: Test of Low-Power Memories

Nowadays, embedded memories are the densest components within System-On-Chips

(SOCs), accounting for more than 90% of the overall SOC area. Among different types

of memories, SRAMs are still widely used for realizing complex SOCs, especially because

they allow high access performance, high density and fast integration in CMOS designs.

On the other hand, high density SRAMs designed with deep-submicrometer technologies

have become the main contributor to the overall SOC power consumption. Hence, there

is an increasing need to design low-power SRAMs, which embed mechanisms to reduce

their power consumption. Moreover, due to their dense structure, SRAMs are more are

more prone to defects compared to other circuit blocks, especially in recent technologies.

Hence, SRAMs are arising as the main SOC yield detractor, which raises the need to

develop efficient test solutions targeting such devices.

In this PhD thesis, failure analysis based on electrical simulations has been exploited

to predict faulty behaviors caused by realistic defects affecting circuit blocks that are

specific to low-power SRAMs, such as power gating mechanisms and voltage regulation

systems. Based on identified faulty behaviors, efficient March tests and low area overhead

design for testability schemes have been proposed to detect studied defects. Moreover,

the reuse of read and write assist circuits, which are commonly embedded in low-power

SRAMs, has been evaluated as an alternative to increase stress in the SRAM during test

phase and then improve the defect coverage.

This work was funded in the context of the research contract INTEL.

I was a member of his thesis defense jury.

Aymen TOUATI

Title: Exploring the Impact of Functional Test Programs Re-Used for Power-Aware

Testing

High power consumption during at-speed delay fault testing may lead to yield loss and

premature aging. On the other hand, reducing too much test power might lead to test

escape and reliability problems. Thus, to avoid these issues, test power has to map
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the power consumed during functional mode. Existing works target the generation of

functional test programs able to maximize the power consumption in functional mode

of microprocessor cores. The obtained power consumption will be used as threshold to

tune the power consumed during testing.

This PhD thesis investigates the impact of re-using such functional test programs for

testing purposes. We propose to apply them by exploiting existing DfT architecture

to maximize the delay fault coverage. Then, we combine them with the classical at-

speed LOC and LOS delay fault testing schemes to further increase the fault coverage.

Preliminary results show that it is possible to achieve a global test solution able to

maximize the delay fault coverage while respecting the functional power budget.

This work is partially funded in the context of the research contract LIA LAFISI.

The thesis is supposed to be concluded at the end of 2016.

2.3 Teaching activities

Starting from my Ph.D. studies, I have performed various teaching activities at different

levels: engineering students of the Politecnico di Torino as well as the Engineering School

of the University of Montpellier 2, master and bachelor students of the University of

Montpellier 2 and master students of the University of Science and Technology of Hanoi

(USTH - Vietnam).

The topics of my teaching activities (focusing on academic courses only), as well as

the description of the course and the targeted students are described in the following

paragraphs:

Computer Science:

This class introduces the student to the issues related to computer science and it aims

at teaching the use of computer programming using the C and C++ languages.

• Covered topics:

– C language: Data types, Symbolic constants, Input/output operations (printf

and scanf), Control-Flow structures (iterative and conditional), Arrays and

multidimensional arrays (of integers, reals and characters), Functions and

calls (by reference, by value, pointers), Strings, Command line arguments

(argc and argv), Files, Struct, Dynamic memory allocation.
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– C++ language: Classes, Objects, Polymorphisme, Template, STL, operator

overloads

• When, where, for who:

– 2003/04, 2004/05 Politecnico di Torino, Computer Engineering students

– from 2007/08 until now, Université de Montpellier II, master and bachelor

students

• Responsibility: I’m the responsible of the computer science course in the second

year of the Master from 2007/08 until now. For all my courses I have prepared

both handouts and lab exercices. The latter can be accessed from my home page

Digital System Testing:

The course aims at showing the importance of testing within the design and manu-

facturing process. It presents the techniques for testing custom Integrated Circuits,

microprocessors, memories, and system test.

• Covered topics: Fault modeling, understanding of the tools for testing an embed-

ded system: fault simulator, automatic test pattern generator, tools for automatic

scan chain insertion. Concept of Built-In Self-Test (BIST).

• When, where, for who:

– 2004/05, Politecnico di Torino, Computer Engineering students

– from 2009/10 until now, Polytech’ Montpellier (Université de Montpellier II),

Engineering students

• Responsibility: I share the responsibility of the digital system testing course and

I have prepared both handouts and lab exercices. The latter can be accessed from

my home page

Computer Network:

The course aims at showing the basic principle of computer networking. It presents the

main protocols of the TCP/IP stack and the UNIX socket API for programming.

• Covered topics: IEEE ethernet, IPv4, TCP, UDP, NAT .

• When, where, for who:

http://www2.lirmm.fr/~bosio/
http://www2.lirmm.fr/~bosio/
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– from 2007/08 until now, Université de Montpellier II, master and bachelor

students

• Responsibility: I’m the responsible of the computer network course from 2007/08

until now. For all my courses I have prepared both handouts and lab exercices.

The latter can be accessed from my home page

Digital System Design:

The course aims at teaching advanced design methodologies for simple digital systems.

(Both manual and automatic approaches are presented), highlighting on product life-

cycle, focusing on all the aspects of the design phase and finally providing hands-on

experience on EDA (Electronic Design Automation) tools

• Covered topics: combinational design, sequential design, VHDL language, simula-

tion and synthesis (manual and automatic).

• When, where, for who:

– from 2007/08 until now, Université de Montpellier II, master students

– from 2011/12 until now, University of Science and Technology of Hanoi, mas-

ter students

• Responsibility: I prepared both handouts and lab exercices. The latter can be

accessed from my home page

Advanced MPSoC Architecture:

The course aims at teaching parallel programming paradigm, Multi-Processor SoC Ar-

chitectures and fault tolerant architectures

• Covered topics: Threads, Process, IPC, Petri Nets, Redundancy, Reliability esti-

mations.

• When, where, for who:

– from 2007/08 until now, Université de Montpellier II, master students

– from 2011/12 until now, University of Science and Technology of Hanoi, mas-

ter students

• Responsibility: I prepared both handouts and lab exercices. The latter can be

accessed from my home page

http://www2.lirmm.fr/~bosio/
http://www2.lirmm.fr/~bosio/
http://www2.lirmm.fr/~bosio/
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2.4 Research Contracts

NanoTEST

Title: Nano TEST (NanoTEST)

Place and period: 2005-2008, LIRMM

Participants: STMicroelectronics, Infineon, Philips, NXP, Q-Strar Test, Temento, CEA-

LETI, TIMA, LIRMM

Funding: Projet CEE EUREKA - MEDEA - n 2A702

Goal of the project: The microelectronics industry is rapidly entering the nanotechnology

era with circuit nodes well below 90 nm. Mass production is only economically feasible

when the proper test technology is in place to reduce costs, improve quality and cut time

to market. It is therefore essential for European chipmakers to develop new in-house tools

and proprietary test methodologies in addition to the mainly US-sourced commercial test

tools. NanoTEST will ensure development of the tools and standards for system-on-chip

and system-in-package technologies. Availability of the right methods and tools earlier

than for US and Asian competitors will contribute significantly to commercial success

in Europe.

Contribution and results: I was involved in the diagnosis task. My scientific contribu-

tions in this project have been published in [C10, C11, C12, C13, J5].

STM

Title: Diagnosis of Integrated Circuits

Place and period: 2007-2009, LIRMM

Participant: LIRMM, STM

Funding: STMicroelectronics Crolles (These CIFRE)

Goal of the project: Analysing the impacts of the defects in the latest technologies and

develop meaningful diagnosis framework.

Contribution and results: I was the “co-encadrant” for the Ph.D student involved in the

contract (Youssed BENABBOUD). My scientific contributions in this project have been

published in [C17, C18, C19, C21, C25].

TOETS Title: Towards One European Test Solution (TOETS)

Place and period: 2008-2011, LIRMM
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Participants: NXP, Infineon, Philips, Q-Star Test, Semicon, STMicroelectronics, Temento,

iRoC, ATMEL, E2V Semiconductor, JTAG Technologies, Salland Engineering, Ad-

vanced Digital Design, Tomorrow Options Microelectronics, Ophtimalia, CEA- LETI,

CEA-LIST, University of Twente, LIRMM, TIMA, KULEUVEN, SUPELEC, IMSE-

CNM, INESC Porto

Funding: European Project CATRENE CT302

Goal of the project: has the ambition to create a breakthrough in methods and flows

used by the test technologies by considering the test in the whole value chain from De-

sign to Application. It faces the giga-scale complexity of SoC with various and numerous

implemented functions (RF, analogue, digital, memory), for which test becomes an eco-

nomical roadblock. Its objectives are the definition of test architectures for minimizing

the costs of test operation, to develop alternative test solutions and test flows for test

cost reduction and product quality improvement. TOETS is geared toward the secure

and safety critical application domain (consumer and medical).

Contribution and results: I was involved in the power-aware test task, in particular I

was the “co-encadrant” for the Ph.D student involved in the contract (Fangmei WU)

.My scientific contributions in this project have been published in [C23, C24, C27, C34,

I2, J6].

INTEL

Title: Test of Low-Power SRAM

Place and period: 2011-2013, LIRMM

Participant: LIRMM, INTEL

Funding: INTEL

Goal of the project: Analysing the impacts of the defects affecting the low-power SRAM

produced by INTEL and develop meaningful test solutions.

Contribution and results: I was the “co-encadrant” for the Ph.D student involved in

the contract (Leonardo ZORDAN). My scientific contributions in this project have been

published in [C28, C36, C37, C40, C41, C43, I3, J11].

STE

Title: Test of Low-Power Circuits

Place and period: 2011-2014, LIRMM

Participant: LIRMM, STE
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Funding: STE

Goal of the project: Analysing the impacts of the defects affecting the low-power dedi-

cated circuitry of modern SoCs and develop meaningful test solutions.

Contribution and results: I was the “co-encadrant” for the Ph.D student involved in

the contract (Miroslav VALKA). My scientific contributions in this project have been

published in [C30, C38, C45, C46, J9, P1, P2].

STM Grenoble

Title: Transistor-Level logic Diagnosis

Place and period: 2011-2014, LIRMM

Participant: LIRMM, STM Grenoble

Funding: STM Grenoble

Goal of the project: Target the defects affecting the transitor-level netlist of combina-

tional library cells, and develop appropriate diagnosis solutions.

Contribution and results: I was the “co-encadrant” for the Ph.D student involved in

the contract (Zhenzhou SUN). My scientific contributions in this project have been

published in [C35, C42, J10].

LIA LAFISI

Title: French-Italian research LAboratory on hardware-software Integrated Systems

(LAFISI)

Place and period: 20013-2016, LIRMM

Participants: LIRMM, Politecnico di Torino

Funding: CNRS and UM2

Goal of the project: The main objective of the LIA “LAFISI” is to promote the French-

Italian collaboration in the field of hardware-software integrated systems, by developing

novel approaches for built-in self-test and design-for-test, test pattern generation and

fault simulation, performance verification, diagnosis, fault tolerance and improvement

of system reliability. The wide expertise of the two partners in the fields of automatics,

informatics and microelectronics, once combined, will allow to conduct researches on

hardware-software integrated systems targeting classical applications such as processors
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for computational units or systems-on-chip for mobile communications, or more criti-

cal applications such as embedded systems for space, medical, avionic or automotive

domains.

Contribution and results: I was actively involved in the creation of the contract, and

I’m actually a member of the international laboratory. My scientific contributions in

this project have been published in [W4, C44].
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Perspectives

My cursus has a clear background on all activities, disciplines and skills related to test

and diagnosis of digital systems. At the beginning of my research carrier, these skills were

applied to memories as well as microprocessor. After moving to LIRMM, I specialized

in diagnosis, power-aware test and test of low-power devices. My perspectives are thus

organized following the 3 main themes of my current research activities. In the following

I will detail each one ranked in short-, medium- and long-term perspectives.

3.1 Short-term Perspective

IC manufacturers exploit the technology scaling to produce smaller and faster electronic

devices. However, manufacturing defects affecting latest technologies lead to dynamic

faults (i.e., delay faults). Such faults require at-speed test to be detected. Usually,

at-speed test is achieved by exploiting structural test patterns.

At-speed structural test leads to excessive power consumption that can either damage

the Circuit Under Test (CUT) or lead to yield loss. Reducing the power during test

is a well-known technique but reducing too much the power consumption leads to test

escapes phenomena as depicted in Figure 3.1.

Therefore, to cope with the above issue, we have to control this risk by tuning the test

power depending on the functional power of the device itself. The knowledge of the

actual functional power is thus mandatory. In chapter 2 section 2.1.5, we exploited a

generator of functional test programs for microprocessor core. The generator aims at

maximizing the power consumption of the target microprocessor, thus the generated

programs are good candidates to accurately estimate the functional power limits (i.e.,

to avoid both over- and under-test).

79
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Figure 3.1: Over and Under Test phenomena.

Since generated programs maximize the power consumption, they are definitively charac-

terized by a high switching activity. In other words, they could be also good candidates

for delay faults. In this context, we would like to investigate more in detail the capability

of such generated functional-programs to satisfy other metrics than the power consump-

tion. Two metrics will be considered : structural and functional. The first one is related

to the fault coverage, where the fault models are the stuck-at and the transition faults.

The second one corresponds to the code coverage, such as statement, branch and toggle

coverage.

Basically, the question we would like to answer is: can the functional programs, generated

to maximize the power consumption, be re-used for verification and test purposes?

The future work will first consist in the evaluation of the functional test programs

generated w.r.t the functional coverage. We will investigate on how much these test

programs can meet the design quality needs by exercising each piece of code in the

behavioral description of the microprocessor. A first analysis will be based on the most

basic metrics, which are the statement, toggle and branch coverage. Then, a deeper

analysis will move to a more sophisticated metric, which is the FSM coverage, to evaluate

how many states are reached during the application of the functional programs. In a

second part we will target the capability of such functional test programs to detect delay

faults.

The main goal of this comprehensive evaluation is to verify whether or not the above

metrics are in some way correlated in order to provide a meaningful test that can be

reused many times during the overall product flow (i.e., during verification and for power

aware test).
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3.2 Medium-term Perspective

Guaranteeing the reliability, robustness, and manufacturability of complex and multi-

technology electronic systems for 2020 and beyond is becoming a major challenge. There

is experimental evidence that defects occurring in such emerging systems may escape

existing manufacturing testing and diagnosis approaches.

In the case of remote, mission-critical and safety-critical applications, defect escapes may

result in catastrophic consequences, placing in danger human lives, causing environmen-

tal accidents, jeopardizing the trustworthiness and integrity of data communication,

causing non-repairable damages, etc. Therefore, efficient diagnosis schemes to locate

and assess failures at different system levels and point to reliability hazards are of vital

importance. Diagnosis offers insight about the failing part of the system that needs to

be repaired, about the environmental conditions that can jeopardize the system’s health,

and about corrective actions that should be applied to prevent failure re-occurrence and,

thereby, expand the safety features.

Efficient diagnosis schemes are also essential at the design stage to diagnose the sources

of failures in the first prototypes. In this case, diagnosis tools can be combined with

post-silicon validation tools to improve the debugging procedure. In this way, diagnosis

can help to reduce design iterations and to meet the time-to-market goal.

Moreover, in high-volume production, diagnosing the sources of failures assists the de-

signers in collecting valuable information regarding the underlying failure mechanisms,

in order to enhance yield for future product generations through improvement of the

manufacturing environment and development of design techniques that minimize the

failure rate.

The outputs of fault diagnosis are the defect locations and the “strength” of the defects.

The first step in the diagnosis flow is to perform Electrical Diagnosis (ED) which consists

of crafting test stimuli and extracting test signatures that pinpoint with the highest

resolution possible the area on the die where defects have occurred. The outcome of the

first step guides the second step which consists of performing Failure Analysis (FA). The

aim of FA is to physically examine the circuit to highlight anomalies in the operation

and reduce further the area that should be analyzed with more scrutiny. As an example,

a thermal camera can be used to locate hot spots inside the system. In the third and

final step, based on the outcome of the FA, the circuit is submitted to Physical Failure

Analysis (PFA) where selective de-layering and cross-sectioning of the die is performed

using different types of imaging tools, such as Focused Ion Beam (FIB) etching, as

shown in Figure 3.2. The aim of PFA is to confirm with incontestable certainty the

defect locations and the “strength” of the defects.
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It is clear that the level of success of ED determines to a very large extent the success

of the PFA, as well as the time to diagnose the failures. The ED needs to be able to

isolate with as much rigor as possible the area wherein the fault has occurred.

Figure 3.2: Cross sectioning and delayering of dies showing the defect location as
identified by the PFA.

Furthermore, a modern system typically consists of independent and heterogeneous

blocks and each block may comprise memory, digital, Analog and Mixed-Signal (AMS)

circuits, as shown in Figure 3.3. Diagnosis solutions are circuit-dependent, that is, dif-

ferent and largely distinct diagnosis solutions apply according to the circuit type.

Figure 3.3: Heterogeneous System-on-Chip (courtesy of Synopsis).

The perspectives in this context mainly consist in the development of ED methodologies

and tools with the aim to identify defects down to the transistor level, in order to speed-

up and guide appropriately the PFA and improve its success rate. Among the different

cores that compose a complex SoC (as shown in Figure 3.3) we will focus on the digital

IP blocks.

Concerning digital IP blocks, existing ED commercial tools and methodologies present

several limitations that can be summarized as follows:
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� Too many defect candidates are reported, thus slowing down FA and reducing the

chances that PFA successfully points to the actual defect that has occurred.

� There is no ED approach for the so-called “purely-functional” circuits, e.g. circuits

that do not embed design-for-test circuitry which enables structural test.

� Each candidate provided by existing ED approaches is an interconnection between

logic gates (e.g. inter-cell defect) and, therefore, existing ED approaches do not

account for the case where the real defect is located inside one logic gate (e.g.

intra-cell defect).

To address the challenge of diagnosing intra-cell defects, three different approaches will

be investigated. The first approach will be based on a combination of cause-effect and

effect-cause analyses to obtain a list of candidates. Then, a diagnostic test pattern

generator will be developed for distinguishing between equivalent intra-cell defects. The

second approach aims at proposing a cell design modification, in order to facilitate the

ED (e.g. design-for-ED). For example, extra inputs can be added to the cell in order to

force the cell to behave in a specific way depending on the intra-cell defect that is present.

The third approach will exploit knowledge regarding the layout of the cell (e.g. layout-

aware ED). These three approaches may turn out to be complementary and, thereby, a

mixture of them could be used for developing an optimal ED flow for intra-cell defects

that culminates in no or little defect ambiguity. As a by-product, an ED flow targeting

specifically intra-cell defects can be used to prune the list of candidate inter-cell defects

and to facilitate defect ranking. Finally, to address the challenge of purely-functional

digital circuits, our approach will be to resort on functional test and build on top a

dedicated functional diagnosis flow. This novel flow will be based on generating a fault

dictionary which contains a set of functional tests able to distinguish between defects.

This fault dictionary approach will result in a list of candidate inter-cell defects which,

thereafter, can be pruned by applying the ED flow for intra-cell defects.

Another important aspect is related to the system-level. Thus, another research perspec-

tive is exploiting the information extracted during the IP block diagnosis to develop a

system-level ED. The main idea is to design and embed in to the SoC dedicated circuitry

to guide the test engineer during the diagnosis. The goal is to facilitate the localization

of the faulty block(s). The required inputs by the system-level ED are the knowledge

of the System under Diagnosis (SuD) and the test infrastructure already present on-

chip to support semiconductor testing. Examples of infrastructure to be reused for the

purpose of ED are scan-paths, Built-In Self-Test (BIST) and Design-for-Test (DfT) fa-

cilities, pattern compression/decompression schemes, on-chip sensors, signal buses, etc.

The reusability requires some standardization, which is already observed, for instance,
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in the shift towards IJTAG or IEEE 1500. When necessary, additional test instruments

will be embedded to enhance diagnostic information paying attention that such instru-

ments must be non-intrusive, transparent, and incur low-overhead. The output of the

system-level ED is the suspect IP block or the interconnection between IP blocks that is

responsible for system failure. Thereafter, the appropriate IP block-level ED procedure

will be executed. Each ED procedure must be able to identify the root cause of observed

failures at transistor-level or rate defects according to their probability of occurrence.

3.3 Long-term Perspectives

The large diffusion of portable devices (i.e., smartphone, tablet, ...) and the continuous

scale down of technology require the production of Integrated Circuits (ICs) having an

efficient management of energy consumption. The latter is of paramount importance for

battery handheld devices. The autonomy and lifespan of such devices directly depends

on procedures aimed at saving energy. Achieving high-energy efficiency for these com-

ponents, while maintaining a high degree of performances, has been a major issue in low

power integrated circuits from a hardware design standpoint. Energy savings can also

be obtained using a software-based control. Most typically, energy hungry components

are switched off during idle times.

The overall IC power consumption has two contributors: (i) static and (ii) dynamic

power. The static power only depends on the leakage currents. In order to reduce

the static power consumption the so-called power-gating techniques have been proposed

so far in the literature. The basic idea behind power-gating relies on splitting the IC

into different blocks called power islands. Each power island can be switched on/off

independently of the others. Using this technique, if one or more power islands are not

used by the running application, they are switched off, in order to reduce the static

power consumption. Power-gating is usually implemented by means of power switches.

In this context, we will target the dynamic power that is strictly related to the running

application. In the literature several techniques have been already presented. The so-

called Adaptive Voltage Scaling (AVS) technique aims at modifying the supply voltage

level of an IC in order to reduce as much as possible the power consumption for a given

running application. Actually, it exists an “off-line” AVS technique where the required

supplied voltage level is pre-determined during characterization/production phase. In

this case, the applied voltage level is usually determined by using the worst-case scenario

that could be far from the optimum. Moreover, it is limited by strictly chosen set of

applications. On the other hand, the “on-line” AVS technique aims at automatic tuning

the supply voltage level. In the literature can be found several solutions based on
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“power” sensors, where depending on the measured value, the Power Management Unit

(PMU) can increase or decrease the supplied voltage level. Main limitations of existing

techniques represent the own power sensor because (i) it does not allow catch the local

voltage variations caused by currently running application(s) and (ii) it measures only

an averaged value of power. Moreover, the measured value has to be compared to the

threshold one that is again obtained in “off-line” mode based on applied set of chosen

applications. Another existing solution is based on the use “performance” sensors in

order to understand if the performance of the current application is good enough or not.

Existing performance sensors represent Ring oscillators and Canary circuits. However,

they might fail to capture within-die variations that are local to real circuits such as

random manufacturing variations and circuit aging.

The main goal relies on the development of meaningful architecture and design guide-

lines for tuning the supply voltage level of an IC. We will study further energy savings

that can be obtained by considering different performance modes and controlling the

required power supply. Each performance mode of a Device Under Control (DUC) has

a different power consumption associated with it. The implementation of such an ap-

proach is not straightforward. A major challenge is to guarantee the performance level

during each DUC mode by controlling the power supply during all the operational life

of the device. We will study a closed loop control scheme aiming to adjust the power

consumption for integrated DUC according to the required performance mode. Since the

DUC performances are not directly available for measurement, the idea is to estimate

them using stored regression functions. The estimation inputs are signals coming from

embedded jitter based power noise sensors that have been developed in the previous

works.

The main advantage w.r.t. the state-of-the-art will be (i) the absence of ring oscillators

and/or canary circuits, (ii) the absence of power sensor(s) that will be replaced by power

supply variations detector (PSVD) and finally (iii) removing all off-line characterization

procedures. Our goal is to be sensitive as much as possible to the running application, to

the in die- variations, circuit aging and any random manufacturing variations that is not

the case for the existing solutions. To meet our goal, we propose to develop architecture

composed of (i) performance and PSVD sensors and a (ii) control unit (CU) as shown

the Figure 3.4.

The first sensor represents a PSVD able to carefully determine the local voltage supply

variations on measured IP. For this purpose, it uses the jitter measurement of distributed

clock signal. The clock signal is propagated across clock tree composed of series of buffers

that are sensitive to the voltage supply variations. In order to determine the local voltage

variations on measured IP, the set of paths from distributed network of clock tree have
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Figure 3.4: Proposed Principle of Power Aware Auto-Adaptive Mechanism.

to be chosen. Dependent on the “stress” level of measured IP (i.e., caused by applying

various applications), the voltage supply variations on power grid in the area closed to

the choosing paths are changing proportionally with jitter of propagated clock signal

through given path. Thanks this dependency, by simple measuring of jitter on chosen

clock path, the voltage supply variations can be determined.

The second one is the performance sensor. Actually this sensor will be the responsible

of the measure of the performance quality achieved by the IC under a given voltage

supply value. As the target is to avoid any special circuitry (i.e., ring oscillator/ canary

circuits), we propose to modify the architecture of the IC to embed the sensor, so

that it will be sensitive to the IC variations (i.e., process variations, aging effects and

so on). Basically, when the supplied voltage level is lowered by the CU, we have to

understand if the IC can still execute correctly the application or it requires a higher

level of supplied voltage. However, one consequence could be that the application may

fail (i.e., it produces a wrong output) due to the too low supplied voltage level. To tackle

this problem we propose to investigate the impact of re-using error detection circuitry.

In this case, failures due to a too low voltage level will be detected and thus the CU can

react by increasing the voltage level. To avoid the re-execution of the whole application,

we have to implement roll back mechanism able to restore a safe state of the current

application.

Finally, the CU closes the loop and it provides the final voltage supply to the measured

IP. It takes as the input the data from both sensors (i.e., performance sensor and PSVD)

in form of signatures and it calculates the error (i) for performance and after for (ii)

voltage supplies variations. If performance is too much degraded and the measured IP

is not working properly, the roll back mechanism on elevated voltage supply is activated

and context of currently running application is restored. However, if performance is

degraded but measured IP is still working properly, the PSVD will adapt the voltage

supply level in order to provide the requested performance.

To conclude, this kind of objectives require several skills to success: analog design, digital

design, fault tolerance, correction and recovery mechanisms.
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Uncorrelated Power Supply Noise and Ground
Bounce Consideration for Test Pattern Generation

Aida Todri, Member, IEEE, Alberto Bosio, Member, IEEE, Luigi Dilillo, Member, IEEE,
Patrick Girard, Senior Member, IEEE, and Arnaud Virazel, Member, IEEE

Abstract— Power supply noise and ground bounce can cause
considerable path delay variations. Capturing the worst case
power supply noise at a gate level is not a sufficient indicator for
measuring the worst case path delay. Furthermore, path delay
variations depend on multiple parameters such as input stimuli,
cell placement, switching frequency, and available decoupling
capacitors. All these variables obscure the rapport between
supply noise and path delay and make the selection of stimuli
for worst case path delay a difficult task during test pattern
generation. In this paper, we utilize power supply noise and
ground bounce distribution along with physical design data to
generate test patterns for capturing worst case path delay. We
propose accurate close-form mathematical models for capturing
the effect of power supply noise and ground bounce on path delay.
These models are based on modified nodal analysis formulation
of power and ground networks, where current waveforms are
obtained from levelized simulation and cell library characteriza-
tion. The proposed test pattern generation flow is a simulated-
annealing-based iterative process, which utilizes mathematical
models for capturing the impact of supply noise on path delay
for a given input pattern. We perform experiments on ITC’99
benchmarks and show that path delay variation can be consid-
erable if test patterns are not properly selected.

Index Terms— Automatic test pattern generation (ATPG), deep
submicrometer, delay test, ground bounce, pattern selection,
power supply noise, timing analysis.

I. INTRODUCTION

THE ONGOING miniaturization of circuits at the nanome-
ter regime has introduced significant changes on the

device’s parasitics and behavior. Circuit densities increase with
each nanotechnology generation because of smaller devices
and larger dies, and, consequently, current density and total
current consumption increase accordingly. Simultaneously,
circuits with high switching frequencies impose faster cur-
rent transients on power and ground distribution networks.
Transient currents increase exponentially with each technol-
ogy node and cause significant deviations on the voltage
distribution. Such deviations of the voltage levels from their
nominal values are referred to as “power supply noise and
ground bounce.” Both these conditions are undesirable, as they
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significantly impact signal propagation. Analysis shows that
power supply noise and ground bounce can considerably affect
circuit’s performance [1]. Furthermore, simulations show that
delay can have a speed-up/slow-down effect depending on the
noise conditions on the neighboring gates and/or the crosstalk
between gates as shown, respectively, by [2] and [3]. We
consider the uncorrelated behavior of power supply noise and
ground bounce (independent noise peaks and frequencies) in
order to represent them as realistically as they would occur in
an actual design. Gates can be placed in different locations on
chip and they do not experience the same power or ground
noise due to temporal and spatial switching. Also, power
and ground parasitics for each cell can vary because of their
proximity to the nearest power and ground pins. Moreover,
as all gates share the same power and ground network, there
is also noise transfer that occurs from one region to its
neighboring regions, which can cause further delay variations.
Another important factor that leads to uncorrelated noise is the
amount of decoupling capacitance available at a given region.
In general, decoupling capacitors are not evenly distributed,
resulting in different amounts of generated noise. Owing to
the aforementioned reasons, we treat power supply noise and
ground bounce as uncorrelated.

Traditionally, the impact of power supply noise on delay
was considered at the cell library development step where
each cell was characterized for the worst case voltage drop.
Such approach assumes that all cells experience the worst case
voltage drop, which is unrealistic. Several other approaches
have been proposed in the literature which can be grouped
into two main areas: 1) power supply noise aware timing
analysis methods and 2) power supply noise aware test pattern
generation. In the first group, there has been a substantial
amount of work on how to estimate power supply noise-
induced worst case delay, notably [4]–[9]. In [4], the authors
propose a method to compute the upper bound of circuit delay
under voltage variations. A vectorless approach is presented
in [5] to estimate the maximum delay under power supply
noise, and a delay maximization problem is formulated as
an optimization problem. Similarly, the authors in [6]–[9]
provide a worst case delay analysis taking into account power
supply variations. In the second group of works, such as
[10]–[14], the authors propose different techniques for test
pattern generation while considering the impact of power
supply noise. These works target critical path delay maximiza-
tion under power supply noise while maximizing switching
activity using approaches based either on the Monte Carlo

1063-8210/$31.00 © 2012 IEEE
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method or on genetic algorithms. These existing delay-testing
and timing-analysis techniques capture worst case timing
scenarios which might not reflect the worst case circuit
delay. This is due to the following: 1) the model is based
on simplified logic-level delay fault models, where physi-
cal design information such as the {R, L, C} parasitics of
the circuits, package, power/ground network, and available
decoupling capacitor information are ignored; 2) the combined
and uncorrelated impact of power supply noise and ground
bounce is not considered which can lead to either delay
speedup or slowdown; and 3) impact of resonance frequency
on path delay is ignored. Power supply noise and ground
bounce in the range of resonance frequencies have been
shown as the dominant noise component for high-performance
microprocessors [15]. For the reasons mentioned above, we
believe that test pattern generation in presence of supply noise
deserves reexamination and an effort to understand and capture
the interdependencies among path delay variations and noise
conditions.

In this paper, we propose a pattern generation technique that
takes into account combined effect of power supply noise and
ground bounce on path delay as a function of applied inputs.
Noise impact on delay is highly dependent on the applied
input patterns. We provide mathematical models to represent
the circuit based on physical extracted data after it has been
placed and routed with power/ground grids. We propose close-
form mathematical models to capture the impact of input
patterns on path delay in the presence of power supply noise
and ground bounce. We use a simulated annealing (SA)-based
approach to find patterns that maximize critical path delay.
Our method generates patterns to cause such power supply
noise and ground bounce distribution that leads to maximum
path delay. The contributions of this paper are summarized as
follows.

1) We propose accurate and close-form mathematical mod-
els to derive the impact of input test patterns on path
delay in the presence of noise.

2) We propose a path delay calculation method that takes
into account the amount of noise on neighboring cells
and switching frequency.

3) We propose a test pattern generation flow that takes
into account circuit physical design data (i.e., para-
sitics, pad/pin location, and cell placements) and speed-
up/slow-down effects of noise on path delay.

4) The proposed technique is versatile and can be utilized
for delay testing and/or timing analysis techniques.

Furthermore, in contrast to previous works which initially
aimed to find patterns for maximum supply noise and then
compute delay, our method targets directly to find the worst
case delay which might not necessarily occur under worst case
power supply noise due to path delay speed-up/slow-down
phenomena from the noise conditions on neighboring gates.

The rest of this paper is organized as follows. A motivational
example is presented in Section II. The delay model consid-
ering power supply noise and ground bounce is presented in
Section III. In Section IV, we present our test pattern gener-
ation flow in the presence of power supply noise and ground

Fig. 1. (a) Illustration of gate placement on chip and (b) representative model
for the two-stage buffer circuit used for path delay analysis in the presence
of power supply noise and ground bounce.

bounce. Experimental results are presented in Section V. We
conclude this paper in Section VI.

II. MOTIVATIONAL EXAMPLE

Power supply noise and ground bounce can cause path delay
variations. To highlight the impact of power supply noise and
ground bounce on path delay, we provide the analysis of a
sample circuit as shown in Fig. 1. A similar analysis was
performed in [3] and [5], but we extend such analysis on mesh
networks along with decoupling capacitors for capturing the
impact of supply noise and resonance frequency on the path
delay.

In this paper, we consider on-die power and ground net-
works along with controlled-collapse chip-connection (C4)
package bumps, on-chip decoupling capacitors, and switching
circuits. Printed circuit board parasitics are not considered
and are beyond the scope of this paper. The sample circuit
is a two-stage buffer chain implemented in 90 nm with
VDD = 1 V. As shown in Fig. 1(a), the buffer gates share
the same global power and ground networks, however, they
can be placed in different locations and proximities from the
power and ground pins. Fig. 1(b) shows the circuit model
which we utilize for our analysis. Power and ground networks
are represented with their extracted parasitics of resistance
R, capacitance C , and self-inductance L. We ignore mutual
inductances. The extracted values are based on the dimensions
of power/ground tracks as used in [16]. We include package
parasitics represented by extracted R and L values as described
in [17].
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TABLE I

IMPACT OF VOLTAGE DROP ONLY ON DELAY

TABLE II

IMPACT OF GROUND BOUNCE ONLY ON DELAY

We perform HSPICE transient analysis on the sample circuit
and measure delay variations as a function of power supply
noise and ground bounce. In the following subsections, we
report on path delay variations by performing: 1) stand-alone
power supply noise analysis; 2) stand-alone ground bounce
analysis; and 3) combined power and ground noise analysis
with respect to resonance frequency.

A. PSN Impact on Delay Variations

In this experiment, to capture the impact of power supply
noise only, the ground network is considered ideal. Delay is
plotted as a function of measured maximum power supply
noise (represented as voltage drop) on each gate, as shown
in Fig. 2. Delay variations are plotted as delay ratios with
respect to nominal delay with no noise on the circuit. Negative
(positive) values on the x- and y-axis present the measured
voltage overshoot (undershoot) from VDD. Table I presents
the percentages of delay variations. Two observations from this
experiment can be made. 1) Depending on the noise conditions
on each gate, path delay can increase/decrease. 2) The worst
case voltage droop on both gates does not lead to worst path
delay.

B. Ground Bounce Impact on Delay Variations

The same circuit is used to analyze the impact of ground
bounce on delay. Fig. 3 shows the path delay map as a function
of measured ground bounce on each gate. Table II shows the
percentages of path delay variations. The main observation
from this analysis is that the worst path delay does not occur
when both gates experience worst case ground bounce. As
shown in Fig. 3, the worst case path delay is on lower right-
hand corner of the map, when gate 1 has the largest ground
bounce and gate 2 has no ground bounce.

Fig. 2. Path delay variation in presence of power supply noise.

Fig. 3. Path delay map as a function of ground bounce only.

C. Uncorrelated PSN and Ground Bounce Impact on Path
Delay

In this experiment, we perform path delay analysis with
both power supply noise and ground bounce. We use the
same two-buffer circuit. Figs. 4 and 5 show different path
delay variations with respect to power supply noise and ground
bounce. The delays are represented as ratios with respect to
nominal delay with no noise.

Path delay variations are plotted for four cases: 1) both gates
have no ground bounce [Fig. 4(a)]; 2) only gate 2 experiences
ground bounce [Fig. 4(b)]; 3) only gate 1 experiences ground
bounce [Fig. 4(c)]; and 4) both gates experience ground
bounce [Fig. 4(d)]. We observe that considering uncorrelated
power and ground noise introduces further delay variations.
For example, there is a decrease on path delay when gate 2
suffers from ground bounce versus the case when both gates
have no ground bounce as shown in Fig. 5(a). In Fig. 5(a),
there are two delay distribution layers where one layer shows
delay distribution with no ground bounce on both gates (red
layer) and the other layer shows delay distribution with ground
bounce on gate 2 only (green layer). Their overlap shows the
delay speed-up effect that occurs when gate 2 has ground
bounce. In the case when only gate 1 has ground bounce,
there is a slow-down effect as shown in Fig. 5(b).

We repeat the above experiments with varying input signal
switching frequency between 150 MHz to 1 GHz in order
to capture path delay variations with resonance frequency.
Resonance frequency on chip is created due to large package
inductance L and on-chip capacitance C , which together
create a series LC tank. The LC tank creates an oscillator
where energy is being transferred between the inductance and
capacitor leading to excessive voltage harmonics on power and
ground networks. Moreover, as power and ground networks
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(c)                                                (d)

(a) (b)

Fig. 4. Path delay variations as a function of power supply noise on both gates. (a) No ground bounce on any of the gates. (b) Ground bounce only on
gate 1. (c) Ground bounce only on gate 2. (d) Ground bounce on both gates.

(a) (b)

(green layer) ground 
bounce on gate 2 (blue layer) ground 

bounce on gate 1

(red layer) no 
ground bounce

Fig. 5. Path variations with power and ground supply noise showing speedup and slowdown. (a) Ground bounce injected on gate 2. (b) Slowdown when
ground bounce injected on gate 1.

cover a significant on-chip area, they provide a large amount
of parasitic resistance (R), inductance ( jwL) and capacitance
(1/jwC), which are sensitive to frequency (w) variations and
can considerably change network impedance Z = R + jwL +
1/jwC . Consequently, power and ground network impedance
increases with resonance frequency which further increases
the supply noise. In [16], the authors have studied the impact
of package inductance at different frequencies to estimate
the amount of supply noise generated. They have concluded
that there are high- and mid/low-frequency supply noises
generated. High-frequency noise is a localized phenomenon
due to the effect of the neighboring decoupling capacitors. The
mid- to low-frequency resonance have a larger and an additive
impact on every neighboring gate, further overwhelming each
gate’s localized high-frequency effects. In our experiment,
we measure path delay variations with varying switching
frequency.

Power supply noise is derived by integrating the supply
voltage over switching period such as noise = ∫ te

ts (VDD − Vt )
where ts and te are the starting and ending switching times.
The measured noise represents the area of voltage drop under
nominal voltage level. Ground bounce is similarly measured.
Fig. 6 depicts the area for representing power supply noise.

In Fig. 7, we show the measured supply noise on each buffer
gate as a function of the switching frequency of the input
signal. We observe two resonance peaks from each buffer
gate. The first gate has a peak on the supply noise around
250 MHz, while the second gate has a peak on supply noise
around 500 MHz. This is due to the coupling of the package
inductance with capacitance of each gate thereby creating two
mid-frequency resonance effects. Fig. 7 also shows the path
delay variation as a function of the switching frequency. Reso-
nance frequency further complicates the relationship between
supply noise and delay and makes the selection of stimuli for
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Fig. 6. Illustration of power supply noise measurement.

the worst case path delay a difficult task during test pattern
generation.

From these experiments, we observe the effect of uncorre-
lated power supply noise and ground bounce on path delay as
follows: 1) performance degradation due to reduced voltage
level between power and ground; 2) delay increase/decrease
due to noise conditions on a gate and its neighboring gates;
and 3) augmented supply noise and increased path delays due
to the resonance frequency.

Thus, path delay variations are dependent on multiple
variables such as input stimuli, physical placement, pack-
age parasitics, resonance frequency, and available decoupling
capacitors. Hence, capturing the worst case delay by consid-
ering all these variables is a complicated task. In the follow-
ing section, we describe our models and pattern generation
method in the presence of power supply noise and ground
bounce.

III. DELAY MODEL FOR POWER SUPPLY NOISE AND

GROUND BOUNCE

In this section, we present our approach for modeling the
effect of power supply noise and ground bounce on path delay.
Our approach consists of two main parts: 1) current derivation
process and 2) path delay circuit analysis. Pattern generation
flow iterates between these two processes to identify the input
stimuli that generate the worst case path delay in the presence
of power supply noise and ground bounce.

A. Current Derivation Process

In this step, we derive the amount of current drawn
by switching gates on the circuit. Power supply noise and
ground bounce are dependent on the instantaneous currents
flowing through power and ground networks and their para-
sitic impedance values. Accurate current waveforms must be
obtained in order to accurately derive the amount of noise on
the circuit. The process of deriving the current consumed by
each gate is organized in three steps: 1) library characteriza-
tion; 2) circuit levelization; and 3) current derivation.

1) Library Characterization: Here, we derive the current
waveform for each cell in the library as a function of its
primary input conditions. SPICE netlist of each cell is sim-
ulated and current waveforms with respect input patterns
are obtained. We store the current characteristics, i.e., peak
current Ip , leakage current Il , transition time tr , and peak

Fig. 7. Supply noise and path delay variations with switching frequency.

time tp , for each input condition in a lookup table (LUT).
Such characterization allows us to transform each cell into a
current source (triangular waveform) model appropriate to its
input conditions.

These waveforms are computed only once and are used dur-
ing the test pattern generation step for identifying the current
consumption based on a given input pattern. We note that
current waveform characteristics {Ip, Il , tr , tp} are obtained
for ideal power and ground conditions. These current models
are later inserted on the actual power and ground networks for
more accurate power and ground network analysis.

2) Circuit Levelization: The objective of this step is to
obtain input transitions for each gate on the netlist. We
utilize a levelized simulation algorithm in order to propa-
gate the transitions from primary inputs to primary outputs
[18], [19]. The algorithm begins with primary inputs that are
assigned a level number zero. A level number can be assigned
to a gate only if all gate inputs have been assigned level
numbers. Similarly, a net can be assigned a level number
only if all driving gates have been assigned level numbers.
The level assignment process is iterative until all the nets
and gates on the netlist have been levelized and primary
outputs have been reached. Once the netlist is levelized, we
perform levelized simulation where primary input transitions
are propagated in an orderly fashion throughout the gates on
the netlist.

We note that there exist other methods and commercial tools
that perform waveform simulation for a given input pattern
[20], [21]. We employ the levelized simulation algorithm
which is incorporated in our pattern generation flow.

3) Current Derivation: After the netlist is levelized and
input transitions are propagated through each gate, we derive
each gate’s appropriate current waveform. The idea is to utilize
LUTs obtained from library characterization step in order to
represent each gate as a current source model.

As we propagate transitions throughout the netlist, there
are two main tasks being performed: 1) current modeling
based on LUT match-up with input transitions and 2) delay
accumulation as transitions are propagated in the levelized
netlist. The first task serves to identify the current source
{Ip, Il , tr }, while second task serves to identify peak transition
time {tp}. By keeping track of {tp} for each cell, we ensure
that in a given clock cycle all cells are not switching at the
same time but rather shifted in time by the accumulated delay
for each level of the netlist. The delay of each level of the
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Fig. 8. Illustration of the current source model for different gates on the
levelized netlist.

netlist is based on

delaylevel =
nr of levels∑

i=1

delaygatei
. (1)

Fig. 8 illustrates such a concept where the current waveform
of the gate with level 1 has peak time {tp1} and the gate with
level 2 has peak time {tp2}.

In this step, as we still have not derived the actual gate delay,
we utilize the gate delay measured with an ideal power and
ground network. We note that the levelized delay is simply
used for representing realistically the switching times of
current sources as they would occur during circuit’s operation.
Gate delays in the presence of supply noise are derived in the
next section.

In summary, our objective is to obtain fast and accurate
current source models according to input transitions of the
circuit. The derived current source models are a function of
input patterns as

I = f (patterns) (2)

where patterns represent the input conditions and I is the
current vector of size n × 1 where n is the total number of
nodes on the circuit for both the power and ground networks.
We note that not every node has a current source attached to
it. In the following subsections, we introduce circuit modeling
concept which takes into consideration cell placement.

B. Path Delay Circuit Analysis

The key objective of this paper is to utilize circuit physi-
cal design information that is extracted after placement and
routing. We devise physical design data in mathematical
models for performing accurate power supply noise and
ground bounce analysis with respect to applied input patterns.
Computed power supply noise and ground bounce are then
used to derive each gate’s delay while considering noise
conditions on its neighboring gates and switching frequency.
We develop a flow where path delay is derived with respect
to power/ground parasitics and input stimuli are represented
as switching current sources and switching frequency.

Path delay circuit analysis is performed in three steps:
1) circuit modeling; 2) power supply noise and ground bounce
derivation; and 3) path delay calculation.

1) Circuit Modeling: In this paper, we utilize the circuit
netlist that is extracted after the design has been placed
and routed and power/ground networks are inserted. The
extracted netlist provides R, L, and C parasitic informa-
tion of the circuit, package, power/ground networks, and
pin/cell placements. Power and ground networks are modeled
by using the extracted resistance and capacitance parasitics
{Rpwr, Rgnd, Cpg} while package is modeled by its inductance
and resistance parasitics {Rpkg, Lpkg}. Note that we only
consider self-inductance and ignore mutual inductance on
power/ground networks. While mutual inductance can alter
power grid impedance, it also results in excessively large
analysis runtimes. As the goal of this paper is to identify
quickly and accurately the impact of input patterns on path
delay in presence of power supply noise and ground bounce,
we ignore mutual inductances.

Current sources inserted between power and ground net-
works are current models obtained from current derivation
process in the previous section. Their locations are derived
from cell placement data of the extracted netlist. The initial
circuit netlist in verilog and commercial CAD tool (Cadence
SoC Encounter1) is used for place and route and generate the
extracted netlist.

Fig. 9 shows the physical layout design for a sample circuit
from ITC’99 benchmarks and a simplified two-cell circuit
to represent modeling. We note that, for the circuit sample
in Fig. 9, ground and power network is represented as a
mesh topology, however, tree topologies can also be extracted
depending on the design style.

The goal of the circuit modeling step is to represent physical
design information of the circuit in a mathematical model
which we can accurately analyze. We utilize the modified
nodal analysis (MNA) [22] approach to represent the extracted
circuit into a mathematical model using Kirchhoff’s law node
equations as in (3) and (4)

(Gnxn + sCnxn)Vnx1 = lnx1 (3)

(4)

where G p
i j is impedance between nodes i and j in the power

network and Gg
i j is the impedance between nodes i and j in

the ground network. Capacitors between power and ground
nodes are represented by Cij . Vj is voltage at node i where
the top half of the vector represents power network nodes, V p

i
and bottom half represents ground network nodes, V g

i where

1Available online at http://www.cadence.com/products/di/soc_encounter/
pages/default.aspx.
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Fig. 9. (a) Physical design of the circuit. (b) Circuit model representation.

V = [V p
i , V g

i ]. Current sources represent the current con-
sumed by the cells connected between power and ground
networks, and vector Ii is the current source vector where
the top half presents the current sources connected to power
network and the bottom half presents the same current source
connected to ground grid with opposite current flow. The loca-
tion of current sources is obtained from cell placement. m is
the number of power (ground) nodes where n = 2·m. Some of
the nodes on power and ground networks do not have a current
source connected to them and these nodes are represented by
a zero current source on the I vector. Furthermore, some of
the nodes on power and ground networks serve as VDD (GND)
pins, which can be presented by modifying (4) to identify them
as voltage sources. We note that mathematical formulation is
represented in the frequency domain (s).

2) Power Supply Noise and Ground Bounce Derivation:
The mathematical formulation in (4) provides all physical
design information of the circuit, where the G and C matrices
are obtained from the extracted netlist. Values of the I vector
vary according to the applied input stimuli and derived as
described in the previous section. Thus, for a given input pat-
tern where G, C , and I are known, the only unknown remains
node voltage vector V . Equation (3) is a set of linear equations
with n unknowns which can be accurately solved using matrix
manipulations. We utilize MATLAB [12] to perform matrix
computations where node voltages are expressed as

V = (G + sC)−1 I. (5)

Node voltages vector V is further used to obtain power
supply noise, ground bounce, and supply noise as shown in
(6)–(8)

PSNi =
∫ te

ts
(VDD − V p

i )dt (6)

G Bi =
∫ te

ts
(V g

i − Vgnd)dt (7)

SNi = PSNi + G Bi (8)

where PSNi , GBi , and SNi are the power supply noise, ground
bounce, and supply noise for cell i , and ts , te are the starting
and ending switching times.

Taking the inverse matrix can be a computationally expen-
sive task, and in this flow we compute inverse matrix only
once and utilize it with different I vectors (input patterns) to
derive the voltage distribution on power and ground networks.

Fig. 10. Illustration of neighboring cells considered for delay analysis.

Similarly, computation of power supply noise and ground
bounce is performed every time with a new I vector (input
pattern). The inverse matrix can be efficiently obtained using
various techniques, i.e., model order reduction, exploiting
matrix sparsity, multigrid method, etc. It is not the focus of this
paper to elaborate on these methods, but there exist efficient
solvers for the inverse matrix problem.

3) Delay Characterization: In this step, we aim to capture
delay variations as a function of power supply noise and
ground bounce on a gate and its neighboring gates. As shown
in the motivational example, noise conditions on a cell and
its neighboring cells can cause either path delay increase or
decrease. Such a phenomenon is further exacerbated in the
presence of resonance frequency.

Delay characterization is performed by: 1) deriving the
gate delay in presence of power and ground noise, noise
impact from neighboring gates, and switching frequency and
2) deriving path delay based on gate delays. We start by
characterizing the relationship between gate delay and noise
with respect to delay coefficient βi . For each cell on the library,
we perform an HSPICE simulation with different power and
ground voltage levels {V p

i , V g
i } and switching frequency, {w}

in order to compute its delay variations. These simulations are
performed on corner cases, i.e., no, mid- and high-level noise
and low, medium, and high switching frequencies. The results
obtained are utilized on a regression analysis in order to obtain
the coefficients βi that lead to estimate gate delay as in (9)

τcelli = β
p
i V p

i + β
g
i V g

i +
∑

jεneigh

(β
p
j V p

j + β
g
j V g

j ) + βw
i w (9)

where β
p
i is delay coefficient from the power node voltage

of cell i , β
g
i is delay coefficient from ground node voltage

of cell i , β
p
j is delay coefficient from power node voltage of

neighboring cell j , β
g
j is the delay coefficient from ground

node voltage of neighboring cell j , βw
i is delay coefficient of

cell i for frequency w, and τcelli is the delay of cell i .
Neighboring cells are chosen based on the Manhattan

distance between them and the cell under investigation. We
perform simulation and quantify the impact on path delay
from cells located in different Manhattan distances as shown
in Fig. 10. Table III provides the experimental results. In this
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TABLE III

PROXIMITY OF NEIGHBORING CELLS IMPACT ON CELL DELAY

Fig. 11. Sample circuit for illustration of delay analysis with power supply
noise and ground bounce.

experiment, neighboring cells have a slow-down effect on
path delay. There is a 22% percentage difference on path
delay when no neighboring cells are included versus when all
neighboring cells are included. For this experiment, the actual
path delay is measurement when first, second, and third unit
distance neighboring cells are considered. In the case when
only the first distance neighboring cells are considered, we
obtain less than 10% path delay difference. In our analyzes,
we consider neighboring cells located within one Manhattan
distance from the cell under investigation, as shown in Fig. 10.

The delay coefficients are derived by solving the linear least
square regression. Such mathematical formulation allows us to
capture delay speedup/slowdown due to the noise conditions
on the current cell and its neighboring cells as a function of the
switching frequency. Once regression analysis is performed,
the path delay is computed as

τpath =
∑

celliεpath

τcelli . (10)

Here, we provide a sample circuit in which we perform
all the aforementioned steps in order to exemplify our flow.
Fig. 11 shows a sample model of a three-gate circuit.

The sample circuit has three inverter gates. The current char-
acterization LUT for the inverter is shown in Fig. 12(a). The
sample circuit has one input and two outputs. We investigate
the rising condition on the input by applying input pattern
<V1, V2>=<0,1>. Levelized circuit netlist, propagated transi-
tions, and the appropriate current source model for each gate
are shown in Fig. 12(b). There are four nodes on the power
and ground network, respectively, with a total of eight nodes.
Equation (11) shows the matrix formulations where G8x8,
C8x8, and I8x1 are expressed in the Laplace s−domain and are
known variables. Power and ground node voltages in V8x1 are
unknown and can be solved accurately using any linear algebra
package solvers. Once the node voltages are obtained, they are

Fig. 12. (a) LUT for INV gate derived from library characterization step.
(b) Circuit netlist levelization and current source modeling for each gate.

used to the derive path delay, i.e., the path from cell A to B
as shown in (12) by using (9) and (10). We note that {β} coef-
ficients are already precomputed as described in the previous
subsection. The path delay computed from the mathematical
equations is 3.9 × 10−10 s versus 4.03 × 10−10 s obtained
from HSPICE (3.2% difference). Thus, throughout our flow,
we need to compute the inverse of (G+sC)−1 only once while
vector I will change with respect to the input pattern

(11)

τ A
cell = β

p
AV p

3 + β
g
AV g

3 + (
β

p
B V p

4 + β
g
B V g

4

) + βw
A w

τ B
cell = β

p
B V p

4 + β
g
B V g

4 + (
β

p
AV p

3 + β
g
AV g

3 + β
p
C V p

2 + β
g
C V g

2

)

+βw
B w

τ AB
path = τ A

cell + τ B
cell. (12)

In the next section, we use these mathematical models in our
test pattern generation flow in order to accurately determine
the impact of the input patterns on the path delay in the
presence of power supply noise and ground bounce.

IV. TEST PATTERN GENERATION FLOW CONSIDERING

POWER SUPPLY NOISE AND GROUND BOUNCE

To identify path delay faults, a vector pair needs to be
applied to the circuit. One solution to finding the maximum
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Fig. 13. Test pattern generation flow based on SA iterative process for
capturing the worst case path delay in the presence of power supply noise
and ground bounce with respect to switching frequency.

path delay in the presence of noise is to simulate all possible
two-vector patterns for a given circuit. However, this is simply
infeasible, as it would require a significantly large number of
simulations. We propose a pattern generation flow that makes
use of the closed-form equations described in the previous
section to estimate delay based on the input patterns in the
presence of supply noise.

Our test pattern generation flow for path delay faults con-
sidering power supply noise and ground bounce consists of
three steps: 1) path selection; 2) vector pair generation; and
3) SA-based pattern generation.

A. Path Selection

We employ the commercial static timing analysis tool
Synopsys Primetime [23] to identify the critical paths in the
design. Only a small subset of paths is selected by the tool,
listing the longest paths based on the timing report. From
this small subset, we select only top 10% of critical paths
to apply our pattern generation flow. We note that our pattern
generation method is independent of the path selection process
and it can be applied to any selected path.

TABLE IV

VARIOUS INPUT PATTERNS AND THEIR DELAY AND NOISE

MEASUREMENTS FOR THE b01 CIRCUIT

TABLE V

DELAY VARIATIONS FOR CRITICAL PATHS OF THE b01 CIRCUIT

B. Vector Pair Generation

Test vectors are generated such that the target path is sen-
sitized under given propagation condition (robust, nonrobust,
etc.). As shown in [24], defects on robustly testable paths are
guaranteed to be detected regardless of the delays outside the
targeted paths, while defects on nonrobustly testable paths can
be detected if transitions on certain signals not belonging to
the target path are not late.

In this paper, we use the commercial Tetramax ATPG tool
[25] to generate partially specified input vector pairs for the
selected critical paths. In this step, we attempt to leave as
many unspecified (X value) primary input values as possible
so that we can apply X filling by considering their impact on
path delay in the presence of supply noise.

C. Test Pattern Generation

Different assignments of unspecified primary input values
can result in different path delays and supply noise. This is
because path delay is dependent on the number of inputs,
which are switching and the internal switching activity on
the circuit. For the selected critical path, the objective is to
generate an input vector pair such that the impact of power
supply noise and ground bounce on path delay is maximized.
We develop a SA-based iterative process in order to evaluate
the effect of supply noise on delay for each generated input
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Fig. 14. (a) Voltage distribution on power network for different input patterns for the b01 circuit. (b) Voltage distribution on ground network for various
input patterns for the b01 circuit.

Fig. 15. (a) Voltage drop and (b) ground bounce maps for the b01 circuit for the selected input vector from test pattern generation flow.

vector pair. SA is a well-known optimization technique widely
used for various applications.

The iterative flow is based on: 1) generating a test vector
pattern by filling unspecified primary input values; 2) comput-
ing current waveforms by using library characterization data as
in Section III-A; 3) computing power supply noise and ground
bounce using closed-form equations as in Section III-B; and 4)
computing path delay in presence of noise as in Section III-B.

In the first two steps, unspecified input values are randomly
filled by either a 0 or 1. Thus, the number of generated patterns
is dependent on the number of unspecified input values. In
the third and fourth steps, the generated input test pattern
is evaluated for supply noise and path delay. Computed path
delay serves as the evaluation function for the generated input
test pattern. The temperature parameters for SA are set to
Ti+1 = Ti ·C Rk−1, where the cooling rate is C R = 0.92 and k
is the cooling step in the iteration loop. For each temperature
step, equilibrium is reached if there is no more change in path
delay for a perturbed input vector configuration. SA iterates
among different input patterns in order to identify the pattern
that generated the maximum delay in the presence of power
supply noise and ground bounce with respect to switching
frequency. Fig. 13 illustrates the proposed SA-based approach
for pattern generation flow.

V. EXPERIMENTAL RESULTS

Our experiments are conducted on the combinational part
of ITC’99 [26] benchmarks which are described in regis-

ter transfer level and synthesized using STMicroelectronics
90-nm cell library with VDD = 1 V. The gate level netlists
are generated and imported to the SoC Encounter where
physical layout information is obtained after power/ground
network design, floorplanning, placement, and routing. Timing
information and critical path lists obtained from Synopsys
PrimeTime along with the circuit netlist are fed to TetraMax
to generate input test patterns with unspecified input values
(X values). In this paper, we use 10% of worst critical
path reported from PrimeTime. The extracted netlist with
{R, L, C} parasitics of the power /ground network, inter-
connects, and cell placement is then provided to MATLAB2

where the SA-based test pattern generation is implemented.
All the mathematical models and equations described in the
previous sections are implemented in MATLAB. The voltage
drop constraints were set to 10% of nominal voltage values.
The experiments were run on a Linux machine with a speed of
2.5 GHz, memory 4 GB of RAM, and capacity of 250 GB. We
studied the effect of power supply noise and ground bounce
on path delay and multiple critical path behavior and applied
our pattern generation flow on several circuits.

A. Impact of Power Supply Noise and Ground Bounce
on Path Delay

We experiment with the b01 benchmark of ITC’99 to
demonstrate the impact of power supply noise and ground
bounce on path delay.

2Available online at http://www.mathworks.fr/.
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TABLE VI

CIRCUIT DESCRIPTION

TABLE VII

RESULTS OF SA-BASED TEST PATTERN GENERATION FLOW FOR

SEVERAL ITC’99 CIRCUITS

The number of primary inputs for the b01 benchmark is
5, which allows us to perform a thorough analysis of various
input vectors. Input vectors are <V1 = X X011, V2 = X X010>
and there are 16 possible vectors that can be generated by
specifying either a 0 or 1 on X values. To highlight the
importance of considering both power supply noise and ground
bounce for path delay testing, we evaluate the path delay
and supply noise generated from each possible input vector
<V1, V2>. Table IV shows our results. We have highlighted
the minimum and maximum path delay and supply noise
(power supply noise and ground bounce) for all vectors. There
are two main observations from these experiments. First, we
observe that the maximum supply noise on the circuit does

TABLE VIII

COMPARISON RESULTS OF SA-BASED TEST PATTERN GENERATION

FLOW WITH 0 FILLING, 1 FILLING, AND RANDOM FILLING

METHODS FOR SEVERAL ITC’99 CIRCUITS

not lead to the maximum path delay. This is due to path delay
speed-up/slow-down phenomena triggered from noise condi-
tions on the cell and its neighboring cells. Second, there is a
maximum up to 19% of the measured path delay difference
between the input vector selected from our SA-based approach
and the pattern with minimum delay [< V1, V2 >= (11011,
01010)]. These experimental results clearly indicate the need
for a new delay testing technique that takes into account the
impact that power supply noise and ground bounce can cause
on path delay.

Fig. 14(a) and (b) show the voltage distribution on power
and ground networks generated throughout the pattern gen-
eration flow. As shown in Fig. 14(a), there are many layers
of voltage distribution due to different input patterns applied
on the circuit. Our objective in this paper is to not select the
pattern with minimum or maximum voltage drop or ground
bounce, but rather to select a pattern that causes maximum
delay in the presence of supply noise. Similarly, Fig. 14(b)
shows the various voltage distributions on the ground network
for different input patterns as listed in Table IV. Fig. 15 shows
the voltage drop and ground bounce map for the the selected
input pattern that causes maximum path delay.

B. Impact of Multiple Critical Paths

Here, we investigate critical paths for the benchmark b01
provided from the static timing analysis tool and compute their
path delay variations in the presence of power supply noise
and ground bounce. The results are listed in Table V. Paths
are listed based on their criticality where path1 is the most
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critical and path4 is the least critical. From the results shown
in Table V, we observe that path delay of path2 is larger than
the delay of path1 when both power supply noise and ground
bounce are considered.

Such an observation indicates that critical paths selected
by the timing analysis tools might not necessarily be the
actual critical paths of the circuit, as the impacts of power
supply noise, ground bounce, and resonance frequency are
ignored. Therefore, for accurate results, the test pattern gener-
ation methodology should be combined with the critical path
selection technique in order to take into account the impact of
power supply noise and ground bounce.

C. Test Pattern Generation Flow

We apply our test pattern generation flow to the combination
part of circuits on the ITC’99 benchmark. Table VI shows the
list of circuits and their characteristics in terms of the number
of inputs, outputs, and critical paths (reported by the static
timing analysis tool). We apply our SA-based test pattern flow
on the circuits and list their supply noise (power supply noise
and ground bounce) and path delay. The results are listed in
Table VII.

The number of the generated patterns greatly depends on
the number of unspecified input values which also impact
the runtime and the quality of the solution obtained by test
pattern generation flow. The quality of the solutions depends
on the number of X values, as a smaller number of X values
on the input pattern imposes less flexibility to our pattern
generation flow for finding a pattern that generates maximum
path delay. Additionally, the runtime grows proportionally with
the number of X values, as it increases the number of patterns
and mathematical computations to be evaluated. Furthermore,
the choice of the simulator (MATLAB) to perform the analysis
of the linear system (power/ground network analysis) can also
contribute to the long runtime.

We implement three other methods for comparison. The
first method performs 0 filling on the unspecified input values
and labeled as F0. The second method performs 1 filling
on the unspecified input values and is labeled F1. The third
method performs random filling on the unspecified input
values and is labeled FR. Table VIII shows the results.
We obtain that 0, 1, and random fillings underestimate the
impact of supply noise on path delay. These experiments
clearly indicate the need for a power supply noise and ground
bounce aware test pattern generation tool. As future work,
we aim to integrate signal integrity issues (i.e., crosstalk)
and switching activity distribution (i.e., accurate hot spot
and voltage droop distribution) and combine them with the
path selection step for more accurate path delay compu-
tation in the presence of power supply noise and ground
bounce.

VI. CONCLUSION

Current path delay testing techniques do not consider the
combined impact of power supply noise and ground bounce on
path delay. In this paper, we proposed close-form mathematical
models for capturing the impact of supply noise on path

delay variation for generating suitable input test patterns.
We proposed an SA-based pattern generation technique which,
for its fitness function, uses the mathematical models for
deriving accurately the impact of supply noise on path delay.
Experimental results showed considerable differences in path
delays when both power supply noise and ground bounce
effects were considered.
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Abstract—What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain

working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time

consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at

estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main

ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of

each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software

application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has

the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to

structurally maximize the probability of a correct execution of the target software.
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1 INTRODUCTION

AS microprocessor technology scales down to the very
deep submicron range, high-production variability,

voltage scaling, and high-operating frequency increase the
hardware susceptibility to (soft) errors [1], [2], [3], [4], [5], [6],
[7], [8]. This has a negative impact on the reliability of a wide
range of computer-based applications which are critical to
our health, safety, and financial security. Since 1996, several
studies reported cases of large computer system failures
caused by cosmic-ray-induced soft-errors [9], [10].

Several techniques have been proposed to protect digital
circuits against soft-errors, e.g., radiation-hardened tech-
nologies [11], [12], error detection/correction codes [13],
and redundant architectures [14], [15]. Software Implemen-
ted Hardware Fault Tolerance (SIHFT) also gained attention
in the last decade [16], [17]. These techniques have a
negative impact on systems’ performance, power consump-
tion, area, and design complexity. Their application must
therefore be carefully evaluated depending on the soft-error
rate (SER) of the target system.

Unfortunately, tools and techniques to estimate the
susceptibility of a computer system to soft errors, taking
into account both the hardware and the software domain,
are not readily available or fully understood. The execution

of a program may mask a large amount of soft errors. In
fact, at the system level soft errors do not matter as long as
the final outcome of the program is correct. To efficiently
tradeoff between fault tolerance cost and system reliability
one has to ask: what is the probability of a program P to
have a correct execution state given a certain hardware
(raw) soft-error rate? Fault injection is a viable solution to
answer this question [18], [19], [20]. However, it can be very
expensive and time consuming.

This paper proposes the baseline for a new methodology
to estimate computer-based systems reliability against soft-
errors. The target microprocessor is first characterized to
profile the probability of successful execution of each
instruction of its Instruction Set Architecture (ISA). A static
and very fast analysis of the control and data flow of the
executed software is then performed to compute its prob-
ability of successful execution in case of soft errors. The
presented method has the potential to help engineers to
choose the best hardware and software architecture to
minimize the impact of soft errors on the system’s reliability.

This paper is organized as follows: Section 2 shortly
overviews the related literature, while Sections 3 and 4
present the proposed model whose experimental validation
is given in Section 5. To conclude, Section 6 introduces
future improvements and Section 7 summarizes the main
contributions of the paper.

2 RELATED WORKS

Previous works on the estimation of the Soft-Error Rate of
an IC can be classified into three categories, namely circuit-
level, gate-level, and architectural-level.

Circuit-level SER estimation tries to estimate the prob-
ability of an error (glitch) at the output of a logic gate hit
by a particle. This is mandatory to define technological
mitigation techniques to soft errors [21], [22].
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Gate-level SER estimation moves the focus to the nodes
of a netlist [23]. Estimating the error susceptibility of a node
requires computing the probability of sensitizing the node
with an input vector able to propagate the erroneous value
to one of the outputs of the circuit [24]. This however
requires the simulation of several random vectors whose
number significantly increases with the size of the circuit
[22], [25], [23], [21], [26], [27].

Only recently the research on SER estimation has
moved from circuit and gate-level to the architectural
level [28], [29], [30], [31], [32]. The Architectural Vulner-
ability Factor (AVF) expresses the probability of a system
error caused by a raw error in a particular hardware
structure [29]. In fact, several raw errors occurring at the
device/circuit level are masked at the architectural level
(e.g., 85 percent, Wang et al. [31]) due to low-resource
utilization and introduction of computational blocks that
affect performance but not correctness (e.g., branch
prediction unit). Several publications propose methods to
estimate the AVF of a functional block [28], [29], [30], [31],
[32], [33], [34]. An interesting solution that includes the
software layer is provided by Sridharan and Keli [35].
They propose to compute a Program Vulnerability Factor
(PVF) for a set of benchmarks that can be then used to save
computation while calculating the AVF of several micro-
processors. Differently to what we propose in this paper,
the final software workload is not explicitly considered.
Only a few publications try to introduce this concept [36],
[37]. However, apart from using fault injection, to the best
of the authors’ knowledge, a very efficient algorithm to
estimate the error probability of a computer system taking
into account its hardware, architecture, and running
software, is still missing, thus motivating the research
proposed in this paper.

3 SOFT-ERROR AND SYSTEM MODELS

This section shortly introduces the soft-error model con-
sidered in this work, together with some basic concepts
required to perform the proposed reliability analysis.

3.1 Soft-Errors Model

Neutron radiations from cosmic rays, alpha particles from
packaging materials, and environmental/design variations
are common causes of perturbations of digital circuit’s
nodes that manifest as current pulses of very short duration.
If this happens in the hold state of a memory cell or in a flip-
flop, the content of the storage element is flipped, causing a
soft error. This model is referred to as Single-Event Upset
(SEU) and represents the target error model of this work.
Perturbations can also cause a glitch in a combinational
node of a circuit causing a Single-Event Transient (SET). If a
SET is latched into a sequential logic unit, it then manifests
as a SEU. SETs have been considered for long time
negligible due to different natural masking effects [38], but
are becoming a significant source of errors as technology
nodes scale down below 100 nm [38], [39].

3.2 Soft-Error Rate and System Modeling

The raw soft-error rate of an electronic component, also
denoted with �compðtÞ, is the rate at which the device
encounters or is predicted to encounter soft errors. Vendors
express the SER either as number of failures-in-time (FIT) or

as mean-time-between-failures (MTBF). SER can be used
together with a probability distribution to define a reliability
function RðtÞ and a failure function FðtÞ providing, respec-
tively, the probability of no error (success) and failure of the
component before time t [40]. Given a constant raw error
rate �comp the exponential distribution is a good approxima-
tion to model the reliability of an electronic device

RðtÞ ¼ e��compt; ð1Þ

FðtÞ ¼ 1�RðtÞ ¼ 1� e��compt: ð2Þ

Other distributions such as the Weibull distribution or
log-normal distribution can be used when raw error rates
are not constant. In practice, �comp is small enough to
reasonably allow considering these two probabilities as
constants over a period of time as short as the execution of a
program P . In this paper, TM (mission time) denotes the time
during the life of the component at which its reliability is
evaluated, andRðTMÞ and FðTMÞ denote its raw probability
of success and failure at that time.

Among the different devices that constitute a computer
systems, the microprocessor is by far the most critical and
complex component. A microprocessor can be split into two
set of resources called storage elements and operators. The
set S ¼ fsi j i 2 ½1;#S�g of storage elements includes regis-
ters and memory elements where data processed by
instructions are stored. The set OP ¼ fopi j i 2 ½1;#OP �g
of operators contains all remaining microprocessor blocks
(e.g., control state machines, arithmetical units, branch
prediction units, etc.) that are used during the execution of
an instruction to process data contained into storage
elements. Assuming an equal spatial distribution of failures
in a component, the raw error rate of a resource �res is a
portion of �comp proportional to the fraction of its silicon area
Ares over the total area of the component Acomp: �res ¼
�comp

Ares

Acomp

According to the models proposed in this section, by
denoting with Cres the not-deterministic event “the resource
res is correct at time 0 � t � TM ,” and with NCres its
complementary event, then the raw probabilities of success
and failure of a resource at TM are

P Cresð Þ ¼ RðTMÞj�¼�res¼ e
��comp � AresAcomp

�TM ; ð3Þ

P ðNCresÞ ¼ F TMð Þj�¼�res¼ 1� e��comp
Ares
Acomp

TM : ð4Þ

These two probabilities represent the basis of our
reliability estimation model. As a first approximation, the
set of events fCres j res 2 ðOP [ SÞg can be considered
independent. Dependencies are in fact introduced by the
execution of the program, and they will be taken into account
in the model by the introduction of specific heuristics.

4 SOFTWARE RELIABILITY ESTIMATION

In the context of this work, estimating the failure probability
of a computer system running a program P means estimat-
ing the probability of observing an error in the outcome of the
program (assumed bugs-free) running on a hardware system
affected by soft errors only. Soft errors in the hardware may
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be masked either because they affect idle resources, or
because the program’s execution somehow overwrites the
error. Based on this assumption, this section introduces an
analytical model to estimate the probability of success of a
program in presence of soft errors in the hardware.

4.1 Analytical Model

Programs are analyzed using the concept of program traces.

Definition 1. A program trace is an ordered sequence of
k instructions (k-tuple) executed while running a program P:
T ¼ I1; I2; . . . ; Ikh i with Ii 2 ISA; 81 � i � k (ISA identi-
fies the Instruction Set Architecture of the target
microprocessor).

Program traces are a general concept used with many
variants in software engineering whenever the sequence of
instructions executed by a program must be recorded or
statically computed to perform further analysis [41].

The probability of success of a trace T can be predicted
by computing the probability of a correct program’s
outcome during the execution of each instruction of the
trace. The outcome of the program is usually a portion of
the entire state of the system. This is modeled introducing
the concept of active state.

Definition 2. The active state of a program P during the
execution of an instruction I 2 T , denoted with AT

I � S, is the
set of storage elements representing the outcome of the program
when executing the instruction I.

Programs whose output is evaluated only once at the end
of the execution have a not-empty active state only for the
last instruction of the trace; programs whose output is
continuously evaluated have a not-empty active state for
each instruction of the trace. The definition of the active
state is application dependent and usually defined by the
programmer. In the worst case scenario, the complete state
of the system can be considered as active.

The execution of each instruction of a trace may
propagate or mask errors among resources, thus modifying
their raw probability of success defined in (3). This
propagation must be evaluated by modeling the way
executed instructions react to soft errors in the hardware.
An instruction I 2 T can be modeled as a triplet I ¼
OUTI;OPI ; IN Ih i where:

. OUTI ¼ fout1; . . . ; outz j outi 2 Sg is the set of sto-
rage elements updated by the instruction (outputs),

. OPI : OUTI 7�! O � OP is a function that defines,
for each output, the set O of operators required for
its computation, and

. IN I : OUTI 7�! J � S is a function that defines, for
each output, the set J of storage elements (operands)
required for its computation.

All instructions include the program counter intoOUTI since
the execution of an instruction always updates this register.
Errors in the control flow of the program can be considered
including the program counter into the active state.

Let us denote with ex a stochastic variable indicating
the execution of the instruction Iex 2 T and with f 2 ½1; k�
(k denotes the number of instructions of the trace) a

stochastic variable indicating that a soft error occurs in the

hardware during the execution of the instruction If 2 T .

The probability of success of each storage element s 2 S
given that ex ¼ f , i.e., a soft error manifests in the

hardware while the instruction is executed, can be

computed as follows:

1. the initial probability of success of each storage
element s 2 S (P 0ðCsÞ), is the probability of an error-
free resource (event CsÞ or a resource with an error
(event NCs) that is masked by the hardware

P
0 ðCsÞ ¼ P ðCs [ ðMs \NCsÞÞ

¼ P ðCsÞ þ P ðMsÞP ðNCsÞ:
ð5Þ

Mres is the event: “an error in res is masked” and

P ðMresÞ is the error masking probability of the

resource;
2. the final probability of success of each output s 2

OUTIf of the instruction (P ðCs j ex ¼ fÞ), is com-
puted considering that an output is correct if: a) all
operators required for its computation are error free
or able to mask the error (this event is denoted with
COPIf ðsÞ and its probability defined in (8)) and b) all
operands required for the computation are error free
(events Cin, 8in 2 IN If ðsÞ) or able to mask the error.
This is formally expressed in the following equation:

P ðCs j ex ¼ fÞ ¼ P COPIf ðsÞ
\ \

8in2IN If
ðsÞ
Cin

2
4

3
5

8<
:

0
@

[
DMIf

\
1�

\
8in2IN If

ðsÞ
Cin

0
@

1
A

2
4

3
5
9=
;
1
A

¼ P ðCOPIf ðsÞÞ �
Y

8in2IN If
ðsÞ
P 0ðCinÞ

8<
:

þ P ðDMIf Þ � 1�
Y

8in2IN If
sð Þ
P 0ðCinÞ

0
@

1
A
9=
;;

ð6Þ

where DMIf represents the event: “the execution of

If masks an error in one of its operands” and

P ðDMIf Þ is the probability that an instruction masks

an error in its operands. This probability can be

computed either with fault injection experiments or,

as explained later in this paper, by an analytical

analysis of each instruction; and
3. the final probability of success of all storage

elements not in the output set of the instruction
(8s 2 S �OUTIf ) is not affected by the execution
and is computed as follows:

P Cs j ex ¼ fð Þ ¼ P 0 Csð Þ: ð7Þ

P ðCOPIf ðsÞÞ used in (6) denotes the probability of success of

all operators used to compute the resource s. Similarly to

(5), it can be computed as the probability of respecting, for

all considered operators, the following conditions: 1) the
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operator is error free or, 2) the operator manifests an error

but the error is masked. This can be formalized as follows:

P ðCOPIf ðsÞÞ ¼ P
\

8op2OPIf ðsÞ
½Cop [ ðMop \NCopÞ�

0
@

1
A

¼
Y

8op2OPIf ðsÞ
½P ðCopÞ þ ðP ðMopÞ � P ðNCopÞÞ�:

ð8Þ

With this model, the contribution of a fault tolerant

operator to (8) is: P ðCopÞ þ ð1 � P ðNCopÞÞ ¼ RopðTMÞ þ
ð1�RopðTMÞÞ ¼ 1. This correctly models that the fault

tolerance mechanism resets the contribution of this operator

to the error probability of other resources.
Similarly to the case ex ¼ f , the probability of success of

each resource at the end of the execution of an instruction

Ij 2 T following If (i.e., ex ¼ j > f) is computed taking into

account that an error in one of the operands can be

propagated to one of the outputs:

1. the probability of success of each storage element not
in OUTIj (8s 2 S �OUTIj ) is constant

P ðCs j ex ¼ j ^ j > fÞ ¼ P ðCs j ex ¼ j� 1Þ: ð9Þ

2. the probability of success of each storage element
s 2 OUTIj is the probability that all operands of Ij
are correct or that at least one operand of Ij is not
correct but the error is masked by the execution of
the instruction

P ðCs j ex ¼ j ^ j > fÞ ¼ P
\

8in2IN Ij
ðsÞ
Cin

2
4

3
5

0
@

[
DMIj

\
1�

\
8in2IN Ij

ðsÞ
Cin

0
@

1
A

2
4

3
5
1
A

¼
Y

8in2IN Ij
ðsÞ
P ðCs j ex ¼ j� 1Þ

þ P ðDMIjÞ � 1�
Y

8in2IN Ij
ðsÞ
P ðCs j ex ¼ j� 1Þ

0
@

1
A:
ð10Þ

When evaluating the execution of a trace T , soft errors may

manifest during any of the k instructions of the trace (i.e.,

1 � f � k). According to our model, the correctness of a

resource s 2 S during the execution of an instruction Ij
(ex ¼ j) depends on the instant the soft error manifests in

the hardware (If ). A set of j error conditions must therefore

be analyzed: 1) the error manifests during the first

instruction of the trace (f ¼ 1Þ, 2) the error manifests

during the second instruction of the trace (f ¼ 2Þ and so on

until the case (f ¼ jÞ. The probability of success of the

resource for each error condition can be computed accord-

ing to (6), (7), (9), and (10). Since all error conditions have

the same probability and represent disjoint events, the

probability of success of a resource after the execution of a

generic instruction Ij can be computed as follows:

P ðCs j ex ¼ j; 81 � f � jÞ

¼ P
 [j�1

x¼1

ððf ¼ xÞ \ ðCs j ex ¼ j ^ j > fÞÞ
" #

[ ½ðf ¼ jÞ \ ðCs j ex ¼ fÞ�
!

¼
Xj�1

x¼1

1

j

� �
� P ðCs j ex ¼ j ^ j > fÞ

þ 1

j

� �
� P ðCs j ex ¼ fÞ:

ð11Þ

The jth instruction Ij of a program trace T is considered
correctly executed if all storage elements of its active state
AT
Ij

are error free. Denoting CIj the nondeterministic event
“the instruction Ij is correctly executed,” the probability of
success of the instruction given that AT

Ij
6¼ � is defined as

P ðCIjÞ ¼ P
\
8s2AT

Ij

ðCs j ex ¼ j; 81 � f � jÞ

0
B@

1
CA: ð12Þ

Computing (12) is not trivial, since the execution of an
instruction introduces dependencies among storage ele-
ments. Algorithm 1 proposes an heuristic to evaluate these
dependencies. It produces a subset of the active state
containing independent resources that can be used to
compute (12). In Algorithm 1, D is a integer matrix with each
row corresponding to an instruction of T and each column to
one of the storage elements. The condition D½j�½i� 6¼ 0
indicates that, during the execution of the jth instruction,
the resource i must be discarded when computing (12) since
its contribution has already been taken into account in a
different set of resources. On the other hand, D½j�½i� ¼ 0
denotes that the resource must be considered since its
contribution was not considered before. When the program
starts (j ¼ 1) all resources are independent (Algorithm 1,
row 2). For a generic instruction Ij, the status of each resource
in D is initially set to those of the previous instruction
(Algorithm 1, row 5), and then the outputs of the instruction
are considered. The overall idea is that each output already
includes the contribution of the corresponding operands that
can therefore be excluded from the set of resources to
consider (Algorithm 1, row 14-16). If more than one output is
computed based on the same set of operands, only one of
these outputs must be considered (Algorithm 1, row 18-25).
Whenever a storage element is written, the operands used
during the last instruction targeting the same resource must
be considered again (Algorithm 1, row 14-16). The array LW
stores, for each storage element, the index of the last
instruction of the trace where the resource was written.
Algorithm 1 is an approximated approach to take into
account dependencies among resources; however, the
experimental results of Section 5 will show that it is able to
provide estimations with a reasonable level of confidence.

Algorithm 1. Algorithm to compute the subset of indepen-

dent resources for an instruction

Require: j: index of the evaluated instruction

1: if j ¼ 1 then

2: D½j� ¼ ð0; . . . ; 0Þ
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3: LW ¼ ð0; . . . ; 0Þ
4: else

5: D½j� ¼ D½j� 1�
6: end if

7: for i ¼ 1 to countðOUTIjÞ do

8: s ¼ OUTIj ½i�
9: if LW[s]<>0 then

10: for all r in IN ILW½s� ðsÞ do

11: D½j�½r� ¼ D½j�½r� � 1

12: end for

13: end if

14: for all r in IN IjðsÞ do

15: D½j�½r� ¼ D½j�½r� þ 1

16: end for

17: LW½s� ¼ j

18: D½j�½s� ¼ 0

19: for k ¼ 1 to i� 1 do

20: x ¼ OUTIj ½k�
21: if IN IjðxÞ ¼ IN IjðsÞ then

22: D½j�½s� ¼ 1

23: break

24: end if

25: end for

26: end for

Based on Algorithm 1, the probability expressed in (12)
can be estimated as follows:

P ðCIjÞ ffi
Y

8s2AT
Ij
jD½j�½s�¼0

P Cs j ex ¼ j; 81 � f � jð Þ: ð13Þ

Given that (13) provides the probability of success of
each instruction of a trace, the probability of success of the
full trace T (P ðCT Þ) can be approximate as the average
probability of success of those instructions characterized by
a not empty active state

P CTð Þ ffi 1

countðIi j AT
Ii
6¼ �Þ

X
8IijAT

Ii
6¼�
P CIið Þ: ð14Þ

Several traces can be generated by the execution of a
program, depending on the specific workload. Let us
denote with T P the complete set of possible traces of a
program P , with each trace T 2 T P an independent event
characterized by an execution probability P ðT Þ andP
8T2T P P ðT Þ ¼ 1. The probability of success of the program

P (P ðCP Þ), can be computed as a weighted average of the
probability of success of each trace

P CPð Þ ¼
X
8T2TP

P Tð Þ � P CTð Þ: ð15Þ

Generating the full set of traces of a real application is
obviously often not feasible in a reasonable computational
time. A subset of all possible traces (TS), must therefore be
sampled in order to statistically represent a significant
group of execution alternatives. The more traces are
sampled, the better (15) will estimate the reliability of the
system as the probability of success of the program in
presence of soft errors in the hardware. In order to take into
account the contribution of all traces not included in TS,
(15) can be rewritten as follows:

P ðCP Þ ffi
X
8T2TS

ðP ðT Þ � P ðCT ÞÞ

þ 1�
X
8T2TS

P ðT Þ
 !

� RðTMÞj�¼�comp :
ð16Þ

The first portion of (16) computes (15) on TS. The second
portion of the formula considers that in all situations not
included in TS the probability of success of the program
can be approximated to the worst case represented by the
raw reliability of the component defined in (1).

4.2 Program Traces Generation

Two approaches can be followed to obtain a relevant set of
traces for the proposed reliability estimation model.

Whenever a strong, statistically relevant set of inputs for
the target software is available, it can be exploited to derive
a corresponding set of traces. Several runs of the program
are executed, each with a different input, and runtime
information about executed instructions and accessed data
are recorded to compose each trace. The probability
assigned to each trace (P ðT Þ in (16)) can be uniformly
distributed or calculated based on the knowledge of the
probability of occurrence of the corresponding inputs.
However, in several situations in which very early design
exploration is performed, a statistically relevant set of
inputs might not be available, or it might be difficult to
estimate how much it covers the set of possible executions.
For these situations, this paper presents an algorithm that
generates a set of traces by performing a static analysis of
the program’s binary code. The goal of this algorithm is to
cover as many parts as possible of the control-flow graph of
the application, providing also a metric to measure how
many of the possible paths have been covered.

The control-flow graph of a program P , is a labeled
directed graph CFGP ¼ ðInstr; A; LÞ where:

. Instr ¼ fIi j Ii 2 ISAg is the set of nodes of the
graph, with each node representing a single instruc-
tion of the program,

. A ¼ fðIi; IjÞ j Ii; Ij 2 ISAg is the set of arcs modeling
allowed sequences of instructions, and

. L : A! labels is a function that maps each arc to a
label.

Each CFG has two special nodes denoted with Istart and Iend
representing the entry point and the exit point of the
program. Multiple exit points are connected to a single node.
In our model, the label of an arc ðIi; IjÞ is the probability pi;j
of crossing the arc during the execution of the program. pi;j
can be assigned applying the following policies:

1. If Ij is the only direct successor of Ii, and therefore it
is not a branch instruction, the probability of
crossing the arc ðIi; IjÞ is equal to 1;

2. If Ii has m direct successors on the graph, i.e., there
are m arcs directed from Ii, and no runtime
information about the probabilities of crossing each
arc is available, then each arc is assigned a
probability equal to 1

m ; and
3. If Ii has m direct successors, and from the knowl-

edge of the program or from runtime information it
is possible to conclude that some of the arcs are less
probable than others (e.g., arcs that terminate the
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program in case of errors), custom probabilities can
be assigned given that the sum of the probabilities
of the arcs directed from the node must be equal to
1. Variable probabilities can be also assigned,
modeling for instance loops that start with a high
probability that decreases when the number of
iterations increases.

The control-flow graph of a program can be automatically

generated by statically analyzing its binary code with tools

such as Diablo [42].
A modified depth-first search algorithm on the CFG of the

program named Traces Generation Algorithm (TGA) is used
to statically compute a set of execution traces (Algorithm 2).
The main problem of this approach is that, in the case of
loops, the number of traces that can be generated is
theoretically infinite. A set of terminating conditions is
therefore introduced to stop the generation either when the
computed traces provide the desired coverage of the CFG, or
when a maximum number of traces has been generated.

Algorithm 2. Traces Generation Algorithm

Require: TS �,
TARGET_CEP  [0, 1],

MAX_T,

CEP 0,

STOP_IF_ALL_ARCS_COVERED  {true,false}

1: TGA (node ¼ Istart, T ¼ �, prob ¼ 1)

2: T T [ node

3: if node ¼ vend then

4: TS TS [ T

5: CEP CEPþ prob

6: mark all arcs traversed by T as visited

7: if all_arc_visited AND

STOP_IF_ALL_ARCS_COVERED¼true then

8: exit

9: end if

10: if jTSj ¼ MAX T then

11: exit
12: end if

13: if CEP >¼ TARGET_CEP then

14: exit

15: end if

16: return

17: else

18: for all I in directed_successors(node) do

19: newprob  newprob 	pnode;v
20: TGA (v,T,newprob)

21: end for

22: end if

TGA is a recursive algorithm that requires the following

set of global variables:

. TS: the set of generated traces. It is an empty set
when the algorithm starts;

. TARGET_CEP: according to (15), each trace is
associated with an execution probability P ðT Þ. If
all possible traces of a program can be generated,
their cumulative execution probability (CEP) is equal
to 1, thus guaranteeing the full coverage of all
execution paths. When instead, the number of

possible traces is theoretically infinite, TARGET_
CEP is the minimum cumulative execution prob-
ability that has to be reached before stopping the
trace generation. This value is also used as a metric
of the completeness of the generated set of traces;

. MAX_T: is an upper bound on the number of
generated traces. It forces the algorithm to stop even
if TARGET_CEP has not been reached; and

. STOP_IF_ALL_ARCS_COVERED: if set to true, this
flag allows to stop the generation when all arcs of the
CFG have been traversed at least once. This
represents the minimum set of traces that must be
considered to analyze a program. It can be used for
early and very fast evaluations.

TGA begins the generation considering the starting node Is
and an empty trace T with execution probability equal to 1
(Algorithm 2, row 1). It adds the current node to the trace
(Algorithm 2, row 2) and then checks if the current node
corresponds to Iend to detect whether the end of a trace has
been reached (Algorithm 2, row 3).

In case the current trace is not complete (Algorithm 2,
rows 18-21), the algorithm selects iteratively each direct
successor of the current node and, for each corresponding
arc, it generates a new trace by recursively calling itself
(Algorithm 2, row 20). The probability of the new trace is
the product of the current probability by the probability of
execution of the arc (Algorithm 2, row 19).

In case the current trace is complete (Algorithm 2,
rows 4-16), it is added to the set TS (Algorithm 2, row 4).
CEP (Algorithm 2, row 5) and the set of arcs traversed at
least once (Algorithm 2, row 6) is updated. The different
terminating conditions are then evaluated. Rows 7-9
terminate the generation if all arcs have been traversed
at least once and STOP_IF_ALL_ARCS_COVERED is set
to true. Rows 10-12 stop the generation if MAX_T traces
have been generated and, finally, rows 13-15 stop the
generation if target TARGET_CEP has been reached. If
none of these conditions are true, the generation con-
tinues exploring additional paths on the graph.

Listing 1 shows a simple example of a program, coded
for the Intel 8088 microprocessor, counting the number of
elements of an array. Items are stored in memory at address
0100 h and range boundaries are passed through the stack.
The program loops until all items are evaluated (CX is used
to count the number of items in the array passed in the
stack). In order to simplify the example, the program omits
any context saving operation.

Listing 1. Intel 8088 example program.
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The CFG of the program is summarized in Fig. 1. No
runtime information about the probability of traversing
each arc is available. In case of branches, all arcs directed
from the node have been assigned with the same execution
probability (policies 1 and 2). The CFG shows different
paths and a loop.

By executing Algorithm 2 with STOP_IF_ALL_ARCS_
COVERED set to true, the following set of traces is
generated:

.

T1 ¼ <Istart; I1; I2; I3; I4; I5; I6; I7; I8; I9;I14; I15; Iend>

ðPT1 ¼ 0:25Þ

.

T2 ¼ <Istart; I1; I2; I3; I4; I5; I6; I7; I8; I10; I11; I12;

I14; I15; Iend> ðPT2 ¼ 0:125Þ

.

T3 ¼ <Istart; I1; I2; I3; I4; I5; I6; I7; I8; I10; I11; I13;

I14; I15; Iend> ðPT3 ¼ 0:125Þ

.

T4 ¼ <Istart; I1; I2; I3; I4; I5; I6; I7; I8; I9;I14; I15;

I6; I7; I8;I9; I14; I15; Iend> ðPT4 ¼ 0:0625Þ:

This set allows to reach a CEP equal to 0.5625. Fig. 2
plots how CEP increases by increasing the number of
generated traces. By traversing the loop multiple times,
i.e., arc ðI15; I6Þ, additional execution alternatives can be
evaluated reaching, with about 40 traces, a CEP almost
equal to 1.

5 EXPERIMENTAL MODEL VALIDATION

This section presents the experimental setup used to
validate the model proposed in the previous sections. It
covers three main aspects: the microprocessor characteriza-
tion, the statistical reliability estimation, and the validation
and discussion of the results.

5.1 Microprocessor Characterization

The microprocessor characterization is a key operation that
must be performed only once, independently from the
program that will be executed in the system. Two micro-
processor cores have been characterized in this paper: the
Intel 8088 and the OpenRISC1200.

The Intel 8088 (hereinafter referred to as 8088) has the
same architecture of the more famous Intel 8086 with the
only difference being that the external data bus width is
reduced from 16 to 8 bit. It is a CISC microprocessor with a
very simple two-stage pipeline. It is equipped with 16-bit
registers grouped as follows: four general purpose registers
(AX, BX, CX, DX) also accessible as eight 8-bit registers;
four memory indexing registers (stack-pointer SP, base-
pointer BP, source-index SI, destination-index DI); four
segment registers (code segment CS, data segment DS,
stack segment SS, extra segment ES) and two registers for
controlling the execution flow (program counter PC, status
flags SF). The 8088 ISA contains 111 instructions without
floating-point support. The microprocessor model is pro-
vided by the HT-LAB toolkit [43]. This toolkit, distributed
under the GNU license, includes the VHDL code of a
complete 8088-based system: the processor, the ROM and
the RAM, some peripheral devices, and a set of facilities to
convert assembly code in a format that can be directly
included and executed in the VHDL code.

The OpenRISC1200 (hereinafter referred to as OR1200) is
a 32-bit scalar RISC microprocessor with Harvard architec-
ture and five stage integer pipeline. It has 32 general
purpose 32-bit registers, caches, virtual memory support,
and basic DSP functions. It supports the ORBIS32 instruction
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Fig. 2. Plot of the cumulative trace execution probability versus the
number of generated traces.

Fig. 1. Control-flow graph statically computed from the binary code of
Listing 1.



set for a total of 215 instructions. The instruction set includes
32-bit integer instructions, basic DSP instructions, 32-bit
Load and Store instructions, program control flow instruc-
tions, and some special instructions. The VHDL model of the
OR1200 is freely available on the OpenCores website
(http://www.opencores.org).

Both processors have been synthesized using Synopsis
Design Compiler with the AMS 350 nm technology library.
The choice of the target library could lead to small
fluctuations in the reliability results, but this issue is beyond
the scope of this paper. Fig. 3 provides a summary of the area
occupation of the two cores that gives an idea of the
complexity of the two microprocessors. The 8088 accounts
for a total of 652 flip-flops while the OR1200 accounts for a
total of 1,891 flip-flops, all of them considered as potential
target SEU locations.

The microprocessor characterization process estimates
the masking probabilities P ðCOPI Þ and P ðDMIÞ required to
compute (6) and (10).

The most efficient way to compute P ðCOPI Þ is to setup a
fault injection campaign. For each instruction <INSTR> of
the ISA, and for each possible combination of operands,
fault injection has been performed with the microprocessor
executing a simple program composed of the target
instruction preceded and followed by a set of NOP

instructions. This solution guarantees that <INSTR> tra-
verses all stages of the pipeline (two for the 8088 and five
for the OR1200) without other instructions interfering with
its operations. The same instruction is simulated several
times with different operands in order to explore different
execution conditions. An average of 10,000 SEUs for the
8088 and 30,000 SEUs for the OR1200 has been injected for
each variant of each instruction. At this stage, fault injection
only targets operators and it does not include flip-flops
associated with operands and output registers that will be
considered instead when estimating P ðDMIÞ. Obviously,
the size of the fault list, and therefore the length of the fault
injection experiment, heavily depends on the number of
registers and instructions of the microprocessor.

The effort required to perform this part of the character-
ization can be extremely variable depending on several
factors. The most important ones are the available computa-
tional resources, which impact the time required to perform
the experiments and elaborate the results, the level of detail

of the microprocessor model, which directly affects both the
confidence in the generated fault list and the reliability of its
injection, and the chosen fault injection mechanism (hard-
ware, software, or simulation based), which determines the
cost and precision of the injection results. Nevertheless, it is
worth reminding that having to consider only the micro-
processor without any workload but the individual instruc-
tions of its ISA, the fault list generation is faster, easier, and
more complete because it can be exhaustively generated
with a simple software program.

Differently from P ðCOPI Þ, P ðDMIÞ can be analytically
computed by analyzing the behavior of each instruction
without the need of performing VHDL simulations.
Instead, a set of C programs exhaustively performs this
analysis simulating the behavior of each instruction in
presence of faults in its operands. Let’s take as an example
two instructions, ADD and CMP (compare) for the 8088:

. ADD computes the sum of two 16-bit operands and
stores it into a new 16-bit word. Regardless of their
value, any error in one of the operands will generate
an error in the output result. P ðDMADDÞ is therefore
equal to 0.

. CMP compares two 16-bit operands. The result in
this case heavily depends on the value of the
compared data. By analyzing all possible combina-
tions and errors, a P ðDMCMP Þ ¼ 0:95 is obtained.
This means that 95 percent of the errors in the
operands will be masked by the instruction itself.

Fig. 4 reports an example of the characterization of a subset
of instructions for the two considered processors. For each
instruction, the figure reports: 1) the operators area ratio
(i.e., the number of flip-flops of the used operators over the
total number of flip-flops) required to compute (3) and (4)
for the operators, 2) the overall operators masking prob-
ability P ðCOPI Þ, and 3) the data masking probability
P ðDMIÞ. The figure highlights that the 8088 has a lower
capability of masking errors in the hardware compared to
the OR1200. As shown in the following sections, this will
negatively reflect on the reliability at the system level.

5.2 Experiments and Validation

Experiments have been conducted on three application
programs, two of them (QSORT and AES) obtained from
the MiBench Ver. 1.0 benchmarks [44]:

1. HUFFMAN: performs Huffman encoding applied to
a list of 16 symbols. The result is the Huffman code
associated with each symbol.

2. QSORT: sorts a given array of integer numbers stored
in the main memory using the quick sort algorithm.

3. AES: performs AES encryption of a 138-Bytes
message.

The reliability of the two microprocessors while running
these three benchmarks has been assessed both by
applying the proposed estimation model, and by executing
a very extensive fault injection campaign aimed at
confirming the estimated results. In order to reduce the
complexity of the fault injection experiments, the three
benchmarks do not contain I/O instructions and all input
data are predefined and stored in the RAM along with the
program’s binary code.
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All experiments have been performed on a workstation

equipped with a dual Intel Xeon@3.16 GHz quad core

processor and 32 GB of RAM.
The proposed estimation model has been coded in a

C program. The tool includes a library of parsers for the
assembly language of the two considered microprocessors,
and it implements a multithread architecture to fully
exploit the parallelism offered by the available workstation.
Experiments only focused on faults in the microprocessor.
For this reason, each instruction that writes data outside
the microprocessor (e.g., any instruction storing data in the
memory) has a not empty active state. When generating
program traces using Algorithm 2, the knowledge of the
source code is used to assign custom variable probabilities
to the different branch instructions. Several golden runs of
the program with random data have been performed to
obtain an estimation of the most probable branches of the
program. This makes it possible to reduce the number of
traces required to reach the desired CEP level.

The fault injection campaign has been performed
resorting to a custom fault simulation environment devel-
oped at LIRMM [45]. To fairly compare performances, the
fault injector proposed in [45] has been extended to allow
multiprocess simulations. Fault injection experiments have
been setup as follows:

1. The overall system, including the microprocessor,
RAM, ROM, etc., is simulated and all activities over
the primary inputs and outputs of the processors
(control signals, data, and address buses) are logged
in an external file. A table mapping each instruction
of the target program to its execution time expressed
in terms of clock cycle is also generated.

2. Fault simulation of SEUs in the microprocessor’s
flip-flops is performed while applying the inputs
stored in step 1. An exhaustive fault injection
campaign is performed. All possible clock cycles as
well as all possible flip-flops have been considered as
target fault locations. This makes it possible to reach
100 percent of confidence in the simulated results.

3. A report is generated starting from the results of the
fault simulations. This report summarizes, for each
instruction, how many faults are detected and how
many are masked.

Fig. 5 compares the performance of the proposed method
compared to fault injection in terms of CPU time. Results
are provided in hours of CPU time using a logarithmic
scale. It is evident how the proposed model outperforms
fault injection, reducing the computation time by several
orders of magnitude. When considering the fault injection
campaign, the 8088 is the most critical core in terms of
computation time. This is due to the fact that instructions of
the 8088 ISA usually require multiple clock cycles to be
executed, strongly increasing the simulation time of the
synthesized core. For the proposed method the situation is
instead inverted. The computation time is mainly affected
by the number of instructions composing the program. The
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Fig. 5. Comparison of the computation time between the proposed
model and the fault injection analysis. Time is expressed in hours of
CPU and reported using a logarithmic scale.

Fig. 4. Characterization of a subset of instructions of the (a) OR1200 and (b) 8088 microprocessors.



OR1200, which like all RISC processors only implements
simple instructions, requires more instructions to code a
program (see Table 1), therefore making the reliability
analysis more time consuming.

Fig. 6 compares the storage requirement for the two
methods. Storage requirement is reduced compared with
fault injection, especially considering the 8088 whose fault
injection requires saving long simulations in terms of clock
cycles. Overall, the amount of data to store is quite small
and does not represent a critical issue for the analysis.

To conclude the description of the experimental setup,
Table 1 summarizes the information about the complexity
of the different benchmarks in terms of number of
instructions and average number of clock cycles for an
execution (CC). It also reports the number of traces that
have been simulated along with the reached CEP. For all
experiments the trace generation algorithm has been
executed with a TARGET CEP ¼ 0:95.

5.3 Results

Fig. 7 proposes six plots that summarize the results of the
reliability analysis performed on the six case studies. Each
plot reports the following three curves:

. Raw rel. fun.: it is the raw reliability function of the
microprocessor computed according to (1) for a
mission time TM of six years and an error rate � ¼
0:019 � 10�6 for both the 8088 and the OR1200 (the
specific value of � characterizes the technology and
does not influence the accuracy of the prediction).

. FI based rel. fun.: it is the reliability function
estimated considering the results of the fault
injection as: RðTMÞ ¼ e��TM þ ð1� e��8088TM Þ � Pmask.
This function takes into account the probability of
having a fault free device at time TM , and the
probability of having a faulty device whose error is
masked with a given probability. The masking
probability for the given benchmark, reported in
Table 2, has been computed according to the fault
injection results as the number of masked faults over
the total number of injected faults.

. Estimated rel. fun.: it is the reliability function
estimated with the proposed model considering
different values of TM .

Fig. 7 clearly shows that the estimated reliability function
is in general able to approximate the fault injection based
reliability function, thus confirming the capability of the
proposed method to efficiently estimate the reliability of the
target microprocessor considering the running program.
This can be better appreciated looking at Fig. 8 that reports

the error between the estimated reliability function and the
fault injection curve. With a reasonable number of traces
this error is always lower than 7 percent guaranteeing a
good confidence in the prediction.

Looking at the experimental results, one can notice that
the estimation error increases with the increment of the
mission time. A portion of this error can be accounted to the
approximated characterization of the microprocessor, and
to the impossibility of exploring the complete set of possible
traces and reaching CEP ¼ 1. However, by analyzing the
way our model works, the majority of the error is probably
introduced by the heuristic used to take into account
resources dependencies. This introduces a certain error in
the estimation that becomes evident when the mission time
TM , and consequently the fault probability of the single
resources, increases.

To conclude, Fig. 9 shows how the proposed method can
be used to perform very fast early design exploration. It
reports the estimated reliability function of the 8088
running HUFFMAN with four different fault tolerant
configurations of the microprocessor:

1. all ALU’s internal flip-flops are fault-tolerant
(ALU-FT),

2. all microprocessor’s user registers are fault-tolerant
(REG-FT),

3. both the ALU and the registers are fault-tolerant
(ALU+REG-FT), and

4. all resources of the microprocessor are fault-tolerant
(ALL-FT).

The four configurations can be easily analyzed by changing
the masking probabilities of the different resources. Even if
working with a simple microprocessor, Fig. 9 clearly
demonstrates the potential of the proposed tool. In this
specific case study, introducing a fault tolerant ALU has a
minimal impact on the overall reliability of the system (8088
versus ALU-FT), while protecting the registers provides a
major improvement. Although this is somehow expected, it
is interesting to note that protecting the whole processor
provides a minimal improvement in the overall reliability
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model and the fault injection analysis. Results are expressed in MBytes
using a logarithmic scale.

TABLE 1
Summary of the Experimental Setup



with respect to protecting only the registers. It is worth

remembering here that, according to (16), even if all

resources of the processor are fault tolerant the estimated

probability decreases with TM every time the CEP of the

generated traces is not equal to one, confirming the

estimation of Fig. 9.

6 FUTURE IMPROVEMENTS

The reliability analysis proposed in Sections 4.1 and 4.2 is
clearly limited by the complexity of the analyzed software,
and in particular by the complexity of the corresponding
CFG. This section discusses how this complexity could be
managed by exploiting the intrinsic hierarchy of a program.
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Fig. 7. Result of the reliability analysis for the two microprocessors running the three considered benchmarks. Each plot shows the raw reliability
function of the microprocessor (raw rel. fun.), the reliability function estimated through fault injection (FI based rel. fun.) and the reliability function
estimated with the proposed model (Estimated rel. fun.).



Considering the simple CFG including a call to a function F
reported in Fig. 10a, the CFG can be clearly partitioned into
two portions: 1) the main program, and 2) the function F
(gray part of Fig. 10a).

The full portion of the graph modeling the function F can
be collapsed into a single node (Node F of Fig. 10b),
defining a new high-level instruction. The new instruction
will be characterized by a set of input operands including
all function parameters, a set of output values correspond-
ing to the return values of the function, and finally, a single
operator corresponding to the actual computation per-
formed by the function with a probability of success
computed using (15) by considering the CFG of the function
in isolation. The state of this instruction will contain both
local and global variables of the program, but in general, the
active state of the function will include the function return
values only. This collapsing technique has the potential to
reduce the complexity of the CFG by analyzing portions of
it in isolation. This will allow the reduction of the amount
and complexity of the traces to analyze, thus allowing the
management of very complex applications.

7 CONCLUSION

This paper proposed a new reliability evaluation metho-
dology targeting microprocessors running a software

application. Compared to fault injection, the proposed
approach makes it possible to save a considerable amount
of time: fault injection is used only once for a one time,

reusable, characterization of the microprocessor in terms of
probability of success of each of its instructions in the

presence of a soft error in the hardware. The overall
reliability of the microporocessor running a given workload

is then computed with a purely probabilistic approach. The
same characterization can then be reused every time the

same CPU is used to build a new system or a new
application software needs to be evaluated. The proposed

method makes it possible to perform early exploration of
design alternatives giving the possibility of comparing the
system reliability using different processor architectures,

even before the actual system’s design is available. In the
long run, the diffusion of this approach could lead to the

availability of libraries of microprocessor characterizations
(freely available or proprietary) that would allow users to

evaluate the reliability of microprocessor-based systems
without the need of neither a single fault-injection
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Fig. 10. Control flow graph reduction.

TABLE 2
Summary of Fault Injection Experiments
in Terms of Injected and Masked SEUs

Fig. 8. Plot of the error between the fault injection based reliability
function and the estimated reliability function for the considered
benchmarks and microprocessors.

Fig. 9. Early design exploration for the implementation of fault-tolerant
resources. The graphs shows the estimated reliability function of the
8088 running HUFFMAN with four different fault tolerant configurations
of the microprocessor.



campaign, nor a deep knowledge of the microprocessor
architecture (usually proprietary).

There is still a room for several improvements. Simula-
tion and computational constraints do not allow to manage
more than one program at a time, or to consider the
introduction of operating system code. In order to manage
very complex applications, further optimizations such as
the one proposed in Section 6 must be implemented to
brake down the complexity into more manageable subpro-
blems. Since the execution time is not a part of the model, in
its current form the proposed approach does not allow the
targeting of real-time constraints. In order to obtain an even
more precise reliability estimation, the proposed heuristic
for the computation of the dependency among resources,
which represents one of the most critical elements of the
model, can be further refined.

Experimental results performed on the Intel 8088 and the
OpenRISC1200 microprocessors are very promising. All the
presented experiments show very small differences in the
reliability estimation between this approach and a tradi-
tional fault injection experiment, but with a huge saving in
computation time. The complexity of the microprocessors
used for the experiments is not very high, but they
nevertheless include several of the most critical functional-
ities of state-of-the-art devices (e.g., pipelines, floating-point
units, etc.). The results suggest that there is no reason to
believe that the proposed methodology would not be
applicable to more complex microprocessors, provided that
the resources to characterize them are available. It should
also be considered that if the complexity of a modern
microprocessor does not allow its characterization as
proposed in this paper, it would neither allow a reliable
fault injection campaign.
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Abstract—This paper presents a comprehensive framework for logic diagnosis consisting of two main phases. In the first phase, a set

of suspected faulty sites is obtained by applying an approach based on an Effect-Cause analysis. Then, in the second phase, a set of

realistic fault models is associated with each suspected faulty site by analyzing specific information, called fault evidences, collected

during the first phase. The main advantage of the proposed methodology is its capability to deal with several fault models at the same

time. Another advantage is that it is able to handle both single and multiple fault occurrences. Experiments on ISCAS85, ISCAS89, and

ITC99 benchmark circuits show the efficiency of the proposed method both in terms of diagnosis resolution and accuracy of the

predicted fault models.

Index Terms—Diagnosis, critical path tracing, fault modeling, circuit simulation, fault simulation.

Ç

1 INTRODUCTION

FAILURE analysis is an important operation for the
production of good chips and has a growing role in fast

yield ramp-up. Failure analysis first relies on logic diagnosis
that aims at providing a set of suspected faulty sites in the
defective circuit. In a second time, it resorts to sophisticated
physical equipments (e.g., laser beam) in order to precisely
locate and identify the defect(s). The objective of logic
diagnosis is thus to identify potential faulty sites explaining
the Circuit Under Test (CUT) erroneous behavior. Informa-
tion provided by the logic diagnosis process is, therefore,
used to guide the circuit physical observation during failure
analysis.

Classical algorithms targeting logic diagnosis are based
on two paradigms named Cause-Effect and Effect-Cause
[1], [2]. The Cause-Effect paradigm, which is usually based
on fault simulation, builds a fault dictionary containing
circuit responses for a given test set in presence of a given
set of faults [3], [4]. Logic diagnosis is then performed by
comparing actual circuit responses with those stored in the
dictionary. Unfortunately, the Cause-Effect paradigm ex-
hibits some drawbacks. The first one is the need to have an
a priori knowledge of the fault models used to build the
fault dictionary. The second drawback is related to the huge
amount of data that must be generated by the fault
simulator, particularly for large industrial circuits.

The second paradigm, called Effect-Cause, resorts to an
error backtracing process, such as the Critical Path Tracing
process [5]. It starts from the CUT failing Primary Outputs to
reach the CUT Primary Inputs. Each CUT lines traversed by

the backtracing process is considered as a possible source of
the observed error. The advantages of this approach are
twofold. First, it does not require any explicit fault simula-
tion process, and hence, does not need to consider explicitly
each fault model during the diagnosis. Second, the required
amount of data is negligible compared to the one generated
by a Cause-Effect approach [6], [7].

Recent approaches presented in the literature combine
the advantages of these two paradigms to obtain a mixed-
based approach [8], [9], [10].

Nevertheless, a common feature of all the methods
proposed so far is that they handle one single fault model at
a time or scarcely two fault models when the induced
effects are identical [11], [12], [13]. Moreover, due to the
advances in manufacturing technologies and more aggres-
sive clocking strategies used in modern designs, more and
more defects lead to failures that can no longer be modeled
by classical stuck-at faults. Numerous actual failures exhibit
timing or parametric behaviors, which are not represented
by stuck-at faults. Such failures have to be taken into
account during the test and diagnosis processes in order to
reach acceptable Defect per Million (DPM) figures.

The concept of composite fault models has been adopted
in order to partially solve this drawback. Basically, it
assumes that the behavior of some complex fault models
(e.g., bridging fault model) can be modeled as multiple
stuck-at faults [14]. It is based on stuck-at fault simulation
and analysis of resulting test responses to provide a list of
suspected faulty lines. An example is the SLAT paradigm
[15] and its extension presented in [16] and [17]. The
problem is that when an error is observed during the test
application, it does not exist any deterministic information
about the defect inducing this error, and hence, there is no
knowledge of the fault model to be used a priori for the
diagnosis process. As considering each fault model ex-
plicitly is not a viable solution, there is a need to develop a
comprehensive framework for logic diagnosis that is
independent of any fault model.
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This paper presents a logic diagnosis approach, which
assumes that the nature of the defects affecting the CUT is
not known a priori before running the diagnosis process. The
proposed approach uses the background presented in [18].
Starting from the information provided by the tester (pass/
fail), our main goal is to provide a minimal set of suspected
lines (sites) in the shortest possible time. The proposed
diagnosis solution consists of a two-phase approach: 1) the
Fault Localization analyzes the circuit to extract the minimal
set of suspected lines that can be the source of the observed
error. This phase has been extended with respect to [18] by
adding an optimization step. The optimization step aims at
narrowing down the list of suspects by considering
information provided by the fault-free outputs (coming
both from faulty and fault-free test patterns). This informa-
tion, called fault evidences, is further used to discriminate
between possible fault models in order to finally 2) allocate a
set of realistic fault models to the suspected lines during the
second phase called Fault Model Allocation.

The main advantage of the proposed approach is its
capability to deal with several fault models at the same time.
Moreover, it is able to distinguish between single and
multiple faults affecting the CUT. Compared to our previous
work [18] and [21], the advantages are twofold. First, the list
of suspects is reduced due to a new optimization step
described in Section 3.3, and ranked, thus, achieving a better
resolution with respect to [18]. Second, the information
extracted during the optimization step is used to reduce the
number of fault models associated with each suspect. Thus,
the number of fault models associated with each suspect is,
on average, lower than [18].

Experimental results show the efficiency and reliability
of the method in terms of diagnosis resolution and accuracy
of the predicted fault models.

The remainder of the paper is organized as follows:
Section 2 gives an overview of the proposed approach.
Section 3 details the fault localization phase. Section 4
presents the fault model allocation phase. In Section 5,
experimental results are presented. Finally, conclusions are
given in Section 6.

2 OVERVIEW OF THE LOGIC DIAGNOSIS APPROACH

Errors observed on circuit outputs are the result of physical
defects in the circuit. These defects are usually represented

by various fault models, which may represent logic
deviations (stuck-at, short, open), timing deviations (gate/
path delay), or parametric deviations (resistive short,
resistive open). Some fault models (stuck-at, open, AND/
OR bridging) affect the static behavior and some others
(delay, resistive short, resistive open, and stuck-on/open)
affect the dynamic behavior, and thus, need a transition to
be sensitized and propagated.

Nevertheless, the outcome of these failures on the circuit
outputs is always a change of logic value. When an error is
located on a given line L, this error can be caused by a defect
affecting the line L or is due to the propagation of an error
generated by an upstream faulty site. As shown in Fig. 1, the
error observed on line L can be L ¼ 1 instead of 0 (Fig. 1a) or
L ¼ 0 instead of 1 (Fig. 1b) depending on the logic value
carried out by the line L. This error can be caused by various
defects and it can be determined assuming the knowledge
of 1) the expected value on line L, 2) the values on other
lines (for short faults), and 3) the transition induced on line
L by the applied test pattern (for dynamic faults). Therefore,
the possible fault models associated with a given logic error
can be deduced from the knowledge of the fault-free circuit
behavior during the test phase.

The principle of the proposed diagnosis method is thus
divided into two main phases as presented in Fig. 2.

The first phase, called Fault Localization, consists in
determining the suspect lines. The required inputs are:
1) the circuit description at gate level (CUT), 2) the test
vectors (Test Sequence), and 3) the output responses
associated with input vectors (Test Response). After this
phase, we obtain the set of suspect lines associated with the
set of fault evidences. In the second phase, a Fault Model
Allocation procedure identifies a reduced set of possible
fault models for each suspect line by analyzing the fault
evidences and then provides the diagnosis report.

3 FAULT LOCALIZATION

The Fault Localization is done by using the Effect-Cause
analyses. It mainly relies on Critical Path Tracing (CPT) and
consists of the two following steps: For each faulty test
pattern, we perform 1) a fault-free multivalued simulation
of the circuit. Then, 2) the CPT process is performed starting
from each Failing Primary Output (FPO) caused by the
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current faulty test pattern, and hence, determines the
critical lines. The critical lines identified from all the faulty
test patterns are ranked in a list of suspects depending on
their single or multiple nature.

At this step, the list of suspects provided by the Effect-
Cause analysis is further reduced 3) by considering
information provided by the fault-free outputs (coming
both from faulty and fault-free test patterns).

3.1 Fault-Free Circuit Simulation

For each failing vector of the test sequence, a fault-free
circuit simulation is done by applying the vector to the
CUT inputs, and subsequently, propagating values trough
the circuit toward POs. As previously mentioned (Section
2), we need to know not only the logic value on a given line
but also its dynamic behavior. For this purpose, we have to
consider not only a single test vector Vi but rather two
consecutive vectors (Vi�1, the vector preceding Vi during
the test application has also to be considered) when
defining the fault-free values on each line. To represent
signals, we therefore resort to a six-valued logic algebra [19]
by considering the couple of logic values (Vi�1Vi). The
signals are therefore defined as follows:

. C0: static 0 ¼ 00,

. C1: static 1 ¼ 11,

. R1: rising transition ¼ 0� 1,

. F0: falling transition ¼ 1� 0,

. P0: static 0-hazard ¼ 0� 0, and

. P1: static 1-hazard ¼ 1� 1,

where:

. C0 (C1): static 0 (1), represents a signal remaining
absolutely stable at 0 (1) (whatever the gate
propagation delays and timing defects).

. F0 (R1): fall (rise), represents a signal with the initial
value 1 (0) and the final value 0 (1) (after circuit
stabilization).

. P0 (P1): pulse 0 (pulse 1), represents a signal with the
same initial and final value 0 (1), but with possible
logic transitions to 1 (to 0) induced by circuit timing
parameters or delay faults.

Furthermore, the proposed symbols can be further
classified into two different sets used to formalize some
steps of the proposed method as follows:

. 0-set ¼ fC0;F0;P0g,

. 1-set ¼ fC1;R1;P1g,

where the 0-set (respectively, 1-set) represents symbol with
a final value equal to 0(1).

In the rest of the paper, we use the term Test Pattern (T)
to refer to the couple of test vectors (Vi�1Vi), encoded with
the six-valued algebra, and computed by considering the
following equation:

Ti ¼
ðVi�1ViÞ if i > 0;
ðViViÞ if i ¼ 0:

�
ð1Þ

Note that when considering the first test vector (the case
i ¼ 0 in (1)) no transition (both rising and falling) is
possible, so the test pattern related to the first test vector
is always composed by static symbols (C0, C1) only.

Table 1 gives an example of Test Pattern computation
starting from a sequence of Test Vectors. The first column of
Table 1 reports the index of each test vector (Vi) while the
second column provides each test vector. Column 3 gives
the index of the corresponding test pattern (Ti) and the last
column shows the test pattern. Each test pattern has been
computed by applying (1).

From encoded symbols at all inputs, the fault-free
multivalued circuit simulation consists in propagating
these values toward the circuit outputs by using propaga-
tion tables associated with each logic gate. Propagation
tables for classical AND, OR, and NOT gates are shown in
Tables 2, 3, and 4, respectively. All other propagation tables
can be easily obtained from these three basic ones [18].

For example, let us consider the circuit in Fig. 3. It has six
inputs (E1-E6) and three outputs (S1, S2, S3). The test pattern
applied on the circuit is T5 ¼ (F0, F0, F0, R1, C1, F0) coming
from Table 1. Then, values propagated during the fault-free
circuit simulation are shown in Fig. 3 (labels on each line).

3.2 Critical Path Tracing

The CPT has been developed for stuck-at faults [1] and
extended for delay fault in [19]. The CPT starts from a failing
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primary output to reach the primary inputs by tracing each
critical line passing trough sensitive gate inputs.

The sensitive inputs of each gate are defined from the
rules provided in [5] and [18]. More formally, a gate input i
is sensitive if complementing the value of i changes the
value of the gate output. In presence of a gate with only
nonsensitive inputs, the CPT stops at this gate and restarts
at the reconverge fan-out stem, associated with this
nonsensitive gate. All details about this process can be
found in [19] and lately in [18].

The CPT process is executed by starting from each failing
primary output so that the total amount of times that the
CPT process is applied is given by (2):

#CPT ¼
X#FTP
i¼1

ð#FPOiÞ; ð2Þ

where #CPT is the number of CPT process application, #FTP
is the number of Failing Test Pattern, and #FPOi is the
number of Failing Primary Outputs caused by the corre-
sponding ith FTPi.

Each circuit line traced during the CPT is stored in a so-
called list of suspects defined as follows:

L ¼ fðLC0; CNT0; S0Þ; ðLC1; CNT1; S1Þ; . . .

ðLCN�1; CNTN�1; SN�1Þg;
ð3Þ

where LCi (suspect line) is the name of the critical line,
CNTi and Si are, respectively, a counter and a symbol
associated with the line LCi. Symbol S and Counter CNT
are defined as fault evidence used to further determine the
fault candidate. When a line LCi is traced by the CPT, both
its counter (CNTi) and symbol (Si) are updated by
executing a routine called Trace. Basically, this procedure
verifies whether the traced line LCi is indeed included in
the list of suspects L. If not, the CNT is set to 1 and symbol
Si is set to S. In case the line has already been traced (from

another failing primary output), the counter is simply

incremented (CNTi ¼ CNTi þ 1) and the symbol is updated

by performing an intersection as follows:

Si ¼ S \ Si; ð4Þ

where S is the current symbol associated with the traced

line and Si is the symbol associated with the line as stored

in the list of suspects. The intersection is done according to

the intersection table (Table 5).
Each column in Table 5 represents the symbol associated

with a line LCk obtained after the current fault-free circuit

simulation (S from (4)). Each row in Table 5 represents the

symbol stored in the list of suspect L for the same line LCk

(Si from (4)). When the intersection is performed between

two “dynamic” symbols (F0, R1, P0, P1) belonging to two

different sets (0-set and 1-set), we obtain the new

symbol “D.” This new symbol “D,” added to the set of

symbols used for the fault-free simulation, allows repre-

senting a line with a signal possibly delayed for both falling

and rising transitions. On the other hand, we need to

characterize a line that exhibits different final values during

the application of different failing test patterns. We resort to

the new symbol “SDW” meaning Strong Driver Wired. The

symbol “SDW” allows representing a possible situation,

where the logic value of the suspect line depends on the

value of another line. In this case, the suspect line will be

considered as possible victim of a bridging fault (details are

given in Section 4). This symbol is generated when lines

exhibit symbols belonging to two different sets (0-set and

1-set) with at least one “static” symbol (C0, C1).
Let us consider an example to better clarify the CPT

application. We consider the circuit shown in Fig. 3 affected

by a dominant AND bridging fault between lines a and c.

After the test phase, one test vector is declared fail. The

failing test vector is V5 and comes from the example of

Table 1. From this failing test vector, we obtain the

corresponding test pattern, which has been shown in Table 1,

T5 ¼ (F0, F0, F0, R1, C1, F0). Fig. 4 gives the circuit when the

test pattern T5 is considered. T5 leads to have three failing

primary outputs S1, S2, and S3.
Here, the CPT process starts from S1 and stops at the

primary inputs. The critical lines provided by the CPT

(highlighted with a black dot in Fig. 4) are S1, c, b, E4, and

E5 stored in the list of suspects L defined as follows:
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L ¼ fðS1; 1; P1Þ; ðc; 1; P1Þ;
ðb; 1; P1Þ; ðE4; 1; R1Þ; ðE5; 1; C1Þg:

ð5Þ

Since this is the first application of the CPT, no critical
line has been traced before, so the CNT is set to 1 and the
associated symbol is the one obtained after the fault-free
multivalued simulation.

Now the CPT starts from S2 and provides as critical lines
S2, c, E5, b, and E4. Therefore, the list of suspects L given by
(5) is updated as follows:

L ¼ fðS1; 1; P1Þ; ðS2; 1; P0Þ; ðc; 2; P1Þ;
ðb; 2; P1Þ; ðE4; 2; R1Þ; ðE5; 2; C1Þg:

ð6Þ

Line S2 is added to the list, since it is traced by the CPT
for the first time. The other lines are updated by increment-
ing the counter and modifying the symbol by using the
intersection table shown in Table 5.

Eventually, the CPT starts again from the failing primary
output S3 and provides the critical lines S3, c, E5, b, and E4.
Consequently, the list of suspects L of (6) is further updated
as follows:

L ¼ fðS1; 1; P1Þ; ðS2; 1; P0Þ; ðS3; 1; P1Þ; ðc; 3; P1Þ;
ðb; 3; P1Þ; ðE4; 3; R1Þ; ðE5; 3; C1Þg:

ð7Þ

Line S3 is added to the list, while the remaining lines
are updated.

At the end of the Effect-Cause analysis, we obtain the list
of suspects L (7) that contains only the lines traced at least
one time (i.e., having CNT greater than 0) with the
corresponding symbol S.

Table 6 reports the list of suspected lines, ranked by
descending order of CNT values, obtained after the
complete Effect-Cause analysis (7). Lines E5, E4, b, and c
have a CNT equal to 3. The remaining lines were traced
only one time. It can be observed that the actual faulty line
(line c as the victim of the bridging fault) is included in the
set of lines having the highest CNT (CNT ¼ 3).

Suspect lines having a CNT equal to #FPO were traced
during each CPT process application. So, each of these
suspect lines can explain all faulty responses. On the other
hand, suspect lines having a CNT lower than the number of
failing primary outputs were traced a number of times
lower than #FPO. Consequently, these suspect lines are not
likely to explain all faulty responses when considering the
single fault assumption. In this case, only multiple faults
may have occurred. Resulting faults can therefore be single
or multiple faults. Finally, each suspect line has its
associated symbol S summarizing the history of the values
carried by the line. At this stage, an important point to note

is that by only analyzing the counter associated with each
line, we can determine if the CUT is affected by a single or a
multiple fault.

3.3 Optimization of the List of Suspect Lines

At this step, the list of suspects provided by the Effect-
Cause analysis can be further reduced by considering
information provided by the fault-free outputs (coming
both from faulty and fault-free test patterns). A first
solution would consist in applying the CPT process by
starting from the fault-free outputs [1]. Unfortunately, the
total amount of fault-free outputs provided by a given test
set is generally much larger than the number of faulty
outputs, making this solution computationally unexploita-
ble for realistic circuits. In order to reduce the complexity
while taking into account the information available from
fault-free outputs, we propose an alternative solution based
on fault simulation. This solution consists in performing a
stuck-at fault simulation with all test vectors (both faulty
and fault-free test vectors) on the set of suspect lines
previously identified. In particular, we consider only the
suspect lines having the CNT equal to #FPO. The suspect
lines with CNT lower than #FPO are associated with
multiple faults occurrence, and therefore, the single stuck-
at fault simulation does not provide significant information
on them. Such stuck-at fault simulation allows to analyze all
the possible propagations of the logic error on each line so
that it is finally possible, by considering this additional
information, to narrow down the list of fault candidates. As
the list of suspect lines is generally much smaller than the
total amount of lines in the CUT, this solution is suitable for
large designs from the CPU time perspective.

Let us now introduce some definitions to better explain
the proposed flow:

. Faulty Test Vector (FTV): a test vector causing an
output error on the CUT during the test phase.

. Fault-Free Test Vector (FFTV): a test vector that does
not cause any error during the test phase.

The type of simulated stuck-at faults during fault
simulation depends on the symbol S associated with each
line as follows:

. If S 2 0-set, then we simulate a stuck-at 1 (Sa1) fault
on the line.

. If S 2 1-set, then we simulate a stuck-at 0 (Sa0) fault
on the line.

In case a symbol S is equal to “D” or “SDW,” the
corresponding line is not considered in the fault simulation
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TABLE 6
List of Suspects

Fig. 4. CPT application example.



process. Using these rules, we determine the fault list to be
used during the fault simulation process.

Table 7 provides an example of the fault list obtained by
applying the above rules on the list of suspects given in
Table 6. The first column of Table 7 reports the line (L), the
second column gives the type of stuck-at to be used during
fault simulation. From Table 6, we consider lines E5, c, b, and
E4 to be simulated, since they have a CNT equal to #FPO.
The considered fault model is the Sa0 since the lines have the
symbol S 2 1-set. Lines S1, S2, and S3 are not considered in
the fault list since they have counter lower than #FPO and
are therefore related to multiple fault occurrences.

Fig. 5 sketches the flow applied during the optimization
of the list of suspects.

The fault list FL1 is first defined as mentioned above
(according to the suspect list and the associated symbol).
Then, fault simulation with FTV is performed. After the
fault simulation, we compare the results obtained with
those provided by the tester when applying the same FTV.
Two cases are possible as follows:

1. The fault simulation provides the same output
values than those provided by the tester.

2. The fault simulation provides different output
values than those provided by the tester.

In the first case, the simulated fault on line LCk can
explain the observed faulty behavior. In this case, we cannot
further reduce the set of suspects, we remove it from FL1
and store it in FL2.

In the second case, the simulated static fault model
(stuck-at) does not explain the observed faulty behavior. In
this case, we know that the fault is sensitized because errors
are observed on POs, and we can conclude that only
dynamic fault on line LCk can be the root cause of the
observed errors. To indicate that only dynamic fault has to
be considered on suspected line LCk, we mark it by the
symbol “�” and remove it from FL1.

In the fault list FL2, we collect all the faults that do not
provide any differences between fault simulation of FTV
and test phase. To further analyze those faults, a second
fault simulation is applied with FL2 and the FFTV. Again
we compare the results provided by the tester with those
obtained by the fault simulation. Two cases are possible
as follows:

1. The fault simulation provides the same output values
than those provided by the tester (fault not detected).

2. The fault simulation provides different output
values than those provided by the tester (fault
detected on a PO).

In the first case, the suspect line can indeed be the cause of
the observed errors, since the simulation with the injected

stuck-at fault provides the same results than those provided
by the tester for both Faulty and Fault-Free test vectors. In the
second case, the simulated fault leads to failing primary
outputs for an FFTV. We conclude that this line can be
associated only with the case of a fault involving at least two
lines (e.g., bridging faults) or with a dynamic faults. This
consideration is detailed in Section 4, where we analyze these
results to associate the fault models on each line. To indicate
this situation, the suspect line S is marked by the symbol “þ.”

We take this information into account in order to further
rank the suspected lines in the suspect list. As the simulation
of a stuck-at fault on a line marked by “�” does not explain
the errors observed during test application, we consider
such lines as affected by dynamic faults only. On the other
side, lines marked by “þ” can better explain the observed
errors since the simulation with faulty test patterns of a
stuck-at fault on such lines has provided the same results
than those provided by the tester (a difference only occurs in
the case of an FFTV). Hence, we can consider that these lines
as more likely to be the cause of the observed errors. Note,
however, that suspect lines which are the most likely to
explain the observed errors are those having a conventional
symbol (marked neither by “�” nor by “þ”).

Let us consider again the example circuit described
in Fig. 4.

Table 8 reports the set of applied test vectors (defined in
Table 1) on the circuit of Fig. 4. For each test vector, we
provide the results after the test phase by marking as “F” the
failing primary outputs and as “P” the passing outputs
(outputs are S1, S2, and S3). We can see that we have one
failing test vector and six passing test vectors. To perform the
fault simulation, we use the fault list presented in Table 7.

Table 9 reports the results after fault simulation. The first
column gives the index of the simulated test vector, the
other columns report the detail for each primary output of
the circuit. We note with a “-” the case when the simulated
fault is not observable at a given primary output for a given
test vector. Otherwise, we specify which fault is observable
by a given primary output. For example, faults b, c, and E5

are detectable by test vector V4 at S2.
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Fig. 5. Optimization flow.

TABLE 7
Fault List Example



We obtain that fault E4 has the same behavior than
that reported by the test phase. Therefore, no marker is
added on its symbol. For the remaining faults, we have a
difference when FFTVs are applied. Therefore, these
faults lead to have a “þ” marker.

Table 10 reports the list of suspect lines after the stuck-at
fault simulation. In our example, we obtain three lines
having a “þ” symbol. This information will be used during
the fault model allocation for reducing the number of
possible fault models associated with each line.

4 FAULT MODEL ALLOCATION

The fault models considered in this study include all the
classical single fault models as stuck-at faults, transistor
stuck-open faults, transistor stuck-on faults, open and
resistive open faults, bridging and resistive bridging faults,
delay faults including slow-to-rise, slow-to-fall, and both
slow-to-rise and slow-to-fall faults. Moreover, since the
proposed method can deal with both single and multiple
fault assumptions, we also consider several types of
bridging faults (Byzantine, AND-Bridge, OR-Bridge, Strong
Driver Wired, etc.). These types of bridging faults show a
multiple faulty behavior and we use it as a case study to
analyze multiple faults. The whole set of considered fault
models is detailed in the first column of Table 11.

As mentioned in Section 2, fault models associated with a
suspect line can be deduced from the knowledge of the fault-
free circuit behavior during the test phase. This information
is known from the knowledge of the symbol associated with
the line. Lines marked by a stable symbol (C0 or C1) lead to
static faults only, since no transition has appeared on the
line, and hence, no dynamic faults can be sensitized.
Columns 2 and 3 of Table 11 report the static fault models

deduced from these symbols. Lines marked by a symbol
representing a transition (F0, P0, R1, P1) can represent either
static or dynamic faults. Columns 4 and 5 of Table 11 report
both static and dynamic fault models deducted from
dynamic symbols. Finally, columns 6 and 7 show the fault
models associated with symbols “D” and “SDW,” respec-
tively. These two symbols are the results of the intersection
procedure. A “D” symbol represents a situation where the
suspected line has carried both rising and falling transitions,
thus only dynamic faults are possible or Byzantine fault. The
“SDW” symbol represents a line that has different values
“0” and “1” coming from both dynamic and static symbols.
In this case, we vindicate dynamic faults because the line has
carried a static symbol (C0 or C1), but we also vindicate
static fault models, since the value on the line varies from 0
to 1. In this case, either a strong driver wired fault or
bridging fault is considered to be the possible cause of the
observed error as detailed in [21].

Let us now analyze the fault model allocation in case of
the markers “�” and “þ” introduced during the optimiza-
tion. If the symbol associated with a suspect line is marked
by a “�,” it means that the selected fault models cannot be
static. Therefore, we vindicate these lines to be affected by
any static fault. As shown in Table 11, lines marked by C0�

and C1� (columns 8 and 9) can, therefore, be completely
removed from the list of suspect lines, while fault models
associated with transition symbols (F0�, P0�, R1�, P1�) are
considered as dynamic only (delay and resistive open) as
shown in columns 10 and 11.

When symbols are marked by a “þ,” the fault model
allocation is more complex. First of all, the line can be
vindicated to be affected only by static faults involving only
one line (such as stuck-at, transistor stuck-on/open, and
open 0/1) as reported in columns 12-15. This consideration
is easily explained because the fault simulation has
provided differences with results provided by the tester
when applying Fault-Free Test Vectors. Therefore, the stuck-
at fault model and other equivalent fault models in terms of
logic error can be vindicated. On the other side, during the
stuck-at fault simulation of the Fault-Free Test Vectors, the
activation condition on the aggressor line (a logic “0” or “1”
depending on the OR/AND behavior of the bridge) cannot
be ensured (because in the test phase, these patterns did not
cause any error). Therefore, we cannot exclude these types
of faults as possible root cause of the observed error.

Let us consider again our previous example and the list
of suspects provided after the fault localization phase and
reported in Table 10. After the fault model allocation, we
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TABLE 10
List of Suspects after Fault Simulation

TABLE 8
Applied Test Vectors



obtain a set of fault models associated with each suspected
line as given in Table 12. Remember that for this example,
we have injected a dominant AND bridging fault (between
lines a and c). We can observe that the real faulty line (c)
with the real type of injected fault appears in this table, thus
demonstrating the reliability of the proposed solution.

5 EXPERIMENTAL RESULTS

We have validated the proposed diagnosis method by
performing an intensive set of experiments on a set of the

ISCAS85 combinational benchmark circuits and the full
scan version of ISCAS89 and ITC99 benchmark circuits. In
our experiments, we first compare the proposed methodol-
ogy with a commercial diagnosis tool in order to show the
importance of considering several fault models at a time.
Moreover, we also compare the proposed methodology
with our previous work detailed in [18]. Then, we validate
our methodology in terms of diagnosis resolution (i.e.,
absolute number of suspect lines). Finally, we investigate
the capability of our framework to deal with multiple
faults (i.e., for the case of bridging faults).
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Diagnosis Report

TABLE 11
Fault Models Allocation According to Symbols



Let us first define how we instrument the experimental
environment. Each test sequence has been generated by
using a commercial ATPG tool. The fault model considered
during the test generation is the stuck-at fault model, and
test patterns were generated with the random fill option.
The fault coverage achieved is up to 98 � 99 percent for
each circuit. To simulate the behavior of a faulty circuit, we
first randomly inject a fault (of various nature) in the
structural description of the circuit. Then, the faulty circuit
is simulated and the output responses are compared to
those obtained with the fault-free circuit simulation.

Let us now compare the diagnosis results provided by
the proposed method with those obtained by using a
commercial tool targeting stuck-at faults only. The compar-
ison is also done with respect to our previous work [18].
Table 13 summarizes experiments performed on circuit c432
(ISCAS85). For each experiment, we applied a test sequence
composed of 71 test vectors. We report in the first column
(Scenario) the faulty line and the injected fault model
(Stuck-at 0/1, Slow-to-Fall/Rise, and bridging faults Wired
AND/OR). In the case of bridging faults, the notation L1)
L2 means that the fault is injected in L1 (aggressor) that
attacks L2 (victim). Column 2 reports the number of failing
patterns (#FP) and column 3 the number of failing primary

outputs (#FPO) provided by the tester after test application.
Column 4 gives the number of suspect lines identified by
using the reference commercial tool (Ref. Tool). Column 5
gives the number of suspect lines identified by using our
previous approach (PA) detailed in [18]. The last column
reports the number of lines identified by the proposed
unified diagnosis approach (PDA).

A first comment on these results is that the reference tool
provides, in some cases, an erroneous diagnosis. As shown
in Table 13, in the case where we have injected an
AND Bridging fault (I2) L100, row 6), the reference tool
has found one suspect line that is not the line on which the
fault has been injected. Another problem appears for the two
last injected faults, i.e., Gate46 StF and Gate72 StF (two last
rows in Table 13). In these cases, the reference tool fails to find
any suspect line while our approach provides a list contain-
ing the actual defect. These experiments on circuit c432 show
the correctness of the proposed methodology.

A second comment on the results is that our approach
(PA and PDA) generally provides more suspect lines than
the reference tool. This difference can be simply explained
by the fact that the reference tool considers only the stuck-at
fault model in its analysis. Only stuck-at fault candidates
are therefore provided by the reference tool, which is of
course pessimistic. As the proposed approach does not
consider a priori a fault model during the diagnosis process,
it does not exclude the same lines than the reference tool
(note that the same set of stuck-at faults has been found by
the two tools). Consequently, the number of suspect lines
can be greater than that obtained with the reference tool.

A third comment is about the differences between our
PA and PDA. As mentioned before, the optimization of the
list of suspect lines, introduced in the presented approach,
allows to reduce and rank the list of suspects. So, the last
column in Table 13 gives the number of suspects consider-
ing the optimization procedure proposed in Section 3.3. As
shown in Table 13, the diagnosis resolution is usually lower
with the presented diagnosis approach compared to our
previous approach. This clearly points out the advantage
achieved by introducing the optimization step.

To better explain this situation, we analyze in detail in
Table 14 the diagnosis report obtained for the scenario
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Diagnosis Report for L96-Sa1 of c432



reported in the second row of Table 13 (L96-Sa1). In this case,
the reference tool reports only one suspect (L96-Sa1) while
our approach identifies nine suspects in the diagnosis report
(reported in Table 14). Each suspect has the CNT value equal
to 5. Therefore, the ranking of the suspects is done by
considering the results of the fault simulation. As explained
in the previous section, lines with symbol without any
marker are the most likely to be the real cause of the observed
error. In this example, the most likely suspect is line L96
associated with a stuck-at 1 fault, which is the real cause of
the observed error. The other suspect lines in the diagnosis
report are associated with a fault that leads the circuit to have
the same faulty behavior than that one obtained after
injecting Sa1 on line L96. Again, this proves the fact that
the proposed approach is not oriented to consider only one
type of fault but rather a comprehensive set of faults.

The next set of experiments aims at proving the
efficiency of the proposed diagnosis approach when a
single fault occurs in the CUT. Table 15 reports the results
obtained on ITC99 benchmarks (named in Column 1).
Columns 2, 3, and 4 give the number of applied test vectors,
the number of failing test vectors, and the number of failing
outputs, respectively. Column 5 reports the average number
of suspect lines from 100 random scenarios (injected faults).
As can be seen, the number of suspects is quite low (less
than 33 w.r.t. approximately 20,000 lines). Moreover, the
average ranked position of the actual faulty line is always
less than 12 (Column 6).

Finally, we investigate the capability of our approach to
deal with multiple faults by considering a subset of multiple
faults induced by some bridging faults (Byzantine, Wired
And, Wired Or, Strong Driver Wired, etc.). These types of
bridging faults show a multiple faulty behavior and we use
it as a case study to analyze multiple faults.

For each fault model, we performed 100 random fault
injections. Table 16 presents the results on ISCAS89 and
ITC99 benchmark circuits. Column 2 shows the number of
applied test vectors while Column 3 reports the injected
fault model. Columns 4 and 5 give the number of failing
patterns and the number of failing outputs, respectively.
Column 6 (#CL) gives the average number of lines traced at
least one time by the CPT. Column 7 (#S) provides the
average number of lines having a CNT equal to #FPO.

A first comment is that, again, we always find as suspect
the line on which we have injected the fault as well as the
type of fault model.

A second comment is related to the absolute number of
suspects provided by the tool (#CL), which is always much
lower than the total number of CUT lines.

A third comment is about the position of the line on which
we injected the fault in the ranked list of suspects (Column 8).
We can see that the line is always classified among the most

likely suspects (on average, between positions 2 and 19). It is
important to note that the resolution (accuracy) strictly
depends on the test set used during the test phase. Since for
our experiments the test set was generated for stuck-at
faults, the coverage, and consequently, the diagnosis
resolution on other fault models could be lower than those
obtained on the stuck-at faults. Although the resolution may
vary with the size of the CUT and the test set, we can
consider that we proposed a very efficient diagnosis tool that
can provide reliable and fruitful information to be used
during the next phase of the failure analysis process.

In Table 17, we report the performance comparison
between the proposed approach and the reference commer-
cial tool in terms of required CPU time (in second) and
memory size (in megabyte). The first column gives the circuit
used to perform 100 experiments (Column 2). Columns 3 and
4 provide the average number of faulty patterns and failing
primary outputs, respectively. Columns 5 and 6 show the
average CPU time and memory requirements of the reference
commercial tool (Ref. Tool). The last two columns show the
average CPU time and memory requirements of the PDA. As
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ITC99 Result Summary
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ISCAS’89 and ITC’99 Result Summary

TABLE 17
Performances



clearly shown in the table, the CPU time and Memory size
required by our approach are generally lower than those of
the reference tool. Moreover, the CPU time is always lower
than 60 s and the memory size used by our approach is at most
35 MB. Again, this proves the feasibility of our approach.

6 CONCLUSION

The diagnosis approach proposed in this paper relies on two
phases. In the first phase (Fault Localization), a set of suspect
lines is obtained. Then, in the second phase (Fault Model
Allocation), a set of realistic fault models is associated with
each suspect line by resorting to fault evidences extracted
during the previous step. Compared to other diagnosis
solutions, the proposed approach allows to obtain more
comprehensive and realistic sets of fault models in a unified
manner (i.e., at the same time). Moreover, it is able to
manage both single and multiple faults.

Experiments have shown the efficiency of the proposed
approach in terms of reliability, diagnosis resolution, and
accuracy of the associated fault models. Future work will
consider more information provided from the fault simula-
tion in order to achieve a better resolution to obtain a more
comprehensive ranking procedure of the suspected lines.
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� THE CONTINUAL SCALING of semiconductor technol-

ogy represents the basis for SoC integration. Conse-

quently, the race to market high-quality products with

an ever shorter design-to-manufacturing cycle compels

designers and manufacturers to emphasize the reuse

of IP-embedded cores into SoC design. Core reuse also

implies the ability to reuse the core test in the SoC test.

IEEE Std 1500 for Embedded Core Test is currently one

of the most effective solutions for supporting SoC manu-

facturing test,1 and it also allows easy interoperability

among different cores.2

The standard defines a set of guidelines to build

a scalable and standard test data interface (core

test wrapper), completed with an information

model describing the implemented test features.

The IEEE 1500 information model, described using

the IEEE Std 1450.6 Core Test Language (CTL),3

expedites the transfer of test data from core pro-

viders to core integrators.

An entire set of challenges arises when we consider

the heterogeneous nature of today’s IP market. Core

providers must provide IEEE-1500-compliant cores to

integrators to facilitate customer test integration into

system-level infrastructures. Core integrators, on the

other hand, must ensure that IEEE-1500-ready IP blocks

properly comply with the standard’s

required functionalities. The question

for both designers and integrators is

whether IEEE-1500-compliant cores re-

ally are compliant to the standard.

The design of an IEEE 1500 core test

wrapper includes several steps whereby

bugs might be introduced. To support

a wide range of test applications, IEEE

1500 defines only a minimal set of mandatory hard-

ware features, giving designers the freedom to extend

the test infrastructure with virtually unlimited sets

of registers and instructions.2,4 A comprehensive

approach to thoroughly verify the functionality of

IEEE 1500 core test wrappers in a SoC environment

is therefore mandatory.

The problem of verifying an IP core’s compliance

to IEEE 1500 has been poorly addressed in the litera-

ture. To solve the problem of verifying an IP core’s

compliance to IEEE 1500, Globetech Solutions

(http://www.globetechsolutions.com) has proposed

a commercial answer.5-7 In part, for example, Diaman-

tidis et al. addressed IEEE 1500 in proposing a unified

DFT verification methodology to provide a complete,

methodical, and automatic verification flow for SoC

DFT infrastructures.5 The authors showed how to

build and manage a database of reusable verification

components, targeting different DFT techniques. The

database facilitates the implementation of a complete

SoC verification plan. The authors only briefly men-

tioned IEEE 1500 verification as an example of a ver-

ification component.

Elsewhere, Diamantidis et al. and Oikonomou et al.

introduced an IEEE 1500 compliancy verification

IEEE Std 1500 and Its Usage
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component based on dynamic functional verifica-

tion.6,7 The component performs verification by com-

paring the given design with a reference model. One

of this solution’s key advantages is the ability to con-

sider the verification of both isolated and daisy-

chained wrappers. Nevertheless, although the authors

claim their verification flow is completely automated,

they provide little information on how the verification

component is actually configured, and their verifica-

tion plan is predefined, which means the plan

might be not optimal when looking at the overall

SoC verification, and therefore it might prevent the re-

duction of overall SoC verification time. Moreover,

they do not completely specify how the reference

model is implemented, and it is not clear whether

the model can systematically address every aspect

of the standard. For example, it is not clear how

that model verifies the IEEE 1500 information model,

which is a relevant part of the standard. Finally, it is

not clear how that model measures overall compli-

ancy to the standard.

Recently, we presented a Unified Modeling Lan-

guage (UML) abstraction of an IEEE 1500 verification

framework.8 The main contribution of that work was

the definition of a rule-based approach for IEEE 1500

compliancy verification that systematically addressed

each design rule imposed by the standard. In partic-

ular, besides focusing on the implementation alterna-

tives, we proposed a design rule classification on the

basis of the methodology required for their verifica-

tion, and we defined a detailed abstract model of

the framework.

In this article, we present a complete implementa-

tion of the abstract framework model proposed previ-

ously.8 We show how to map most of the verification

tasks required by that model into the functionalities

of a commercial verification tool such as Verisity’s

Specman Elite (http://www.verisity.com/products/

specman.html; Verisity is now part of Cadence). In

particular, we will show how

� IEEE Std 1647 Functional Verification Language e

(e for short) can be easily used to write reusable

rule verification components;9

� the embedded interface of Specman Elite with a

commercial simulator can be used to verify a crit-

ical class of design rules; and

� coverage metrics the tool provides can be used to

measure the quality and completeness of the ver-

ification process.

We also present an application of the proposed

prototype verification framework to a benchmark

SoC’s validation. The outcome of this article is a veri-

fication component that designers and integrators

can insert into a global SoC verification strategy

such as that described by Diamantidis et al.5

Verification flow
Figure 1 introduces the basic steps of our pro-

posed verification flow. The goal is to see if an IEEE-

1500-compliant core fully respects (observes) the de-

sign rules defined by the standard. By ‘‘IEEE-1500-

compliant core’’ (core for short), we mean an IP

core that incorporates an IEEE 1500 core test wrapper,

IEEE-1500-compliant
core

<VHDL> <Verilog>

IEEE 1500
information model

<CTL>  

Static check

Intermediate
description 

Failure
report (static)

Dynamic
check 

Yes

No

Verification
plan

Pass?

Failure
report (dynamic) 

Yes Pass? No

IEEE-Std.-1500
compliant core

 

Figure 1. IEEE 1500 verification flow.
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and comes with a corresponding CTL file (which is

the IEEE 1500 information model) that describes the

core test knowledge, including how to operate

the wrapper at its external terminals. We consider

cores provided using hardware description languages

(HDLs) such as Verilog, VHDL, and so on.

The IEEE 1500 verification process consists of two

distinct phases: static and dynamic check. The static

check is a preliminary verification task to verify the

syntax of the core description and the related CTL

file. This check is particularly important for the

CTL file. Although the core’s HDL description is usually

automatically synthesized and should not contain syn-

tax errors, CTL files generation is usually not auto-

mated. The core designer should therefore identify

any incorrect CTL files, which may contain errors or

CTL dialects that are not fully compliant with the stan-

dard, before moving on to the next verification steps.

The syntax analysis can be efficiently performed

using special programs called lexers and parsers10 au-

tomatically built over a formal grammar��for example,

Vern Paxson’s JFlex (http://jflex.de) and Scott Hudson’s

CUP (http://www2.cs.tum.edu/projects/cup).

Besides verifying the syntax analysis, another goal

of the static check is to collect IEEE-1500-related infor-

mation and convert it to a suitable format for the next

verification steps (the ‘‘intermediate description’’ in

Figure 1 refers to this process). Information collected

during this phase includes the wrapper’s signals and

register names, implemented instructions, and so

on. Because the static check phase is not complex,

we don’t provide additional details on its implementa-

tion but focus instead on the more interesting, dy-

namic aspects of verification.

To understand the tasks to be performed during

the dynamic check phase, we must first recall the

characteristics of IEEE 1500 as Benso et al. modeled

them.8 The standard, a collection of design rules for

a core test wrapper realization,1 identifies two classes

of wrapper aspects that must be verified: semantic

aspects and behavioral aspects.

Semantic aspects concern the CTL IEEE 1500 infor-

mation model and do not depend on the core behav-

ior. Verifying semantic aspects involves identifying the

correct definition of structures such as scan chains,

macros, and environments in the information

model. These can be easily verified by analyzing

the CTL file provided with the core. Although this is

a fast and powerful way to verify part of IEEE 1500

compliancy (because it does not require any

simulation of the core itself), it is not enough to guar-

antee the core’s complete verification. Semantic

aspects are only a relatively small subset of the

whole set of rules to verify. Moreover, semantic analy-

sis is performed on information model data supplied

by the core provider, so there is no guarantee that the

data perfectly matches the actual hardware imple-

mentation. An efficient way to implement semantic

aspects verification is to store the intermediate de-

scription in Figure 1 into a relational database. The

verification can then be easily translated into a set

of queries performed on the database.

Behavioral aspects target communication proto-

cols and core behavior, and they are the most difficult

to verify. Their verification requires core simulation. In

fact, simulation is the only effective approach to verify

timing, protocols, signal connections, and correct im-

plementation of instructions. ATPG tools perform a

similar task, for example, during design rule check-

ing. Nevertheless, these tools must deal with well-

known test structures inserted into the circuit, thus

reducing the verification activity’s complexity. With re-

spect to IEEE 1500, the way the core test wrapper is

implemented relates strictly to the target design,

which makes verification more complex. Accordingly,

in this article we exploit dynamic functional verifica-

tion for this task.11

Finally, an overview of the verification flow would

be incomplete without a few considerations on how

both semantic and behavioral aspects can be derived

from the standard. IEEE 1500 design rules are pro-

vided in a natural-language format. By thoroughly

analyzing the standard, we can identify the following

information for each rule:

� Rule type. Does the rule identify a behavioral as-

pect, a semantic aspect, or both?

� Involved units. Which wrapper elements does the

rule involve (wrapper instruction register, wrapper

bypass register, and so forth)?

� Dependence. What dependence does this rule

have with other rules?

� Observation points. This concerns the wrapper’s

elements��that is, signals, and units, where a po-

tential violation of the rule can be observed.

� Actions. A natural-language description of the

actions required to verify the rule.

Starting from this structured description, we have

translated each action into the appropriate

IEEE Std 1500 and Its Usage
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formalism��for example, the e language for beha-

vioral aspects��to build the verification framework.

Dynamic functional verification
By functional verification we mean the task of dem-

onstrating that the intent of a design is preserved in

the design’s implementation.11 The most widespread

method of functional verification is dynamic func-

tional verification. It is called dynamic because

input patterns are generated and applied to the de-

sign by simulation, and the corresponding results

are collected and compared against a reference

model for checking their conformance with the

specifications.

Verifying all possible behaviors under every possi-

ble combination of inputs is, in most cases, unfeasible

because the test space is too large to be fully covered

in a reasonable amount of time. To overcome this

problem, one of the best solutions is to apply

constrained-random pattern generation. Verification

patterns are randomly generated under a set of con-

straints, limiting the set of legal values on the input

signals that drive the design. Moreover, we could

also apply coverage-driven verification. Functional

coverage metrics are automatically stored in real

time to ascertain whether, and how effectively, a par-

ticular test verifies a given feature. This information

can then be fed back into the generation process to

drive additional verification effort toward the required

goal. Coverage metrics are evaluated on coverage

monitoring points defined by the user and specified

in the verification plan.

The market offers various tools to support dy-

namic functional verification��for example, Verisity’s

Specman Elite and Synopsys’ Vera. Specman Elite

(Specman for short), which is our reference verifica-

tion environment, uses the e language to capture

behaviors defined in the specifications and to auto-

matically generate tests. Designers use the e language

to write e verification cores (eVCs)��that is, software

modules modeling the functional behavior of the en-

vironment surrounding the system under verification.

IEEE 1500 behavioral-aspects
verification

The verification of IEEE 1500 behavioral as-

pects starts from the definition of an eVC able to

fully stress the target core and to compare the obtained

results with a core test wrapper reference model. Be-

sides modeling a generic reference IEEE 1500 core

test wrapper (which is almost impossible, due to the

number of customizations allowed by the standard),

we accordingly consider all IEEE 1500 design rules

and determine whether the target design actually

respects all rules.8 This will in turn require us to

� translate rule design constraints into portions of e

code that can generate verification patterns and

verify the rules’ correctness; and

� identify, for each rule, the related coverage

points��that is, wrapper signals or registers used

to evaluate the coverage reached during the veri-

fication process.

The challenge stems from the definition of rule

verifiers and rule coverage points independent of

the specific wrapper design. This definition strongly

depends on the core internal structure’s level of con-

trollability and observability. In a white-box design,

which is customarily what core designers develop,

the core internal structure is completely accessible.

Internal core signals can be fully controlled and

observed; therefore, designers can fully verify all

IEEE 1500 rules. In a black-box design��the usual sit-

uation for core integrators, who buy cores from differ-

ent vendors��the only available information for IP

protection is the core I/O interface. This strongly

impacts Specman’s ability to generate verification pat-

terns and evaluate the verification coverage. The only

rules that can be fully verified are those that do not

require direct controllability or observability of core

or wrapper internal signals. Full IEEE 1500 compli-

ancy verification can thus be achieved only for

white- or black-box designs that implement the stan-

dard’s basic functionalities.

IEEE 1500 eVC architecture

Here, we highlight the IEEE 1500 eVC architecture

used to verify IEEE 1500 behavioral aspects. The full

verification is based on a single verification compo-

nent, according to the recommendations of the e

Reuse Methodology (eRM; http://www.verisity.com/

products/erm.html). We refer to IEEE 1500 rules

with their corresponding rule number.1

Figure 2 sketches the architecture of the proposed

eVC, highlighting for each block the related e files.

The IEEE_1500_env (IEEE 1500 environment) built

over the predefined any_env unit (a default environ-

ment used as the starting point to build eVCs),

according to eRM, represents the overall eVC

5May/June 2009
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environment. The environment defines the verifica-

tion events required to perform the verification. For

each design rule under verification, the environment

defines a start event to begin the rule verification and

an end event to control the verification result.

Figure 3a shows an example of shr_ieee1500_env.e,

including a checkpoint flag to stop the verification if

one of the defined rules is not observed.

The eVC ports are defined through the shr_

ieee1500_input.e and shr_ieee1500_ouput.e files.

The core is then configured through the shr_ieee1500_

constant.e and shr_ieee1500_hierarchy.e files.

The shr_ieee1500_constant.e file provides the

eVC enough information to apply verification pat-

terns at the core inputs, monitor the corresponding

outputs, and store core-specific information, such

as wrapper signal names, register sizes, and so

on. The generation of this configuration file can

be easily automated, starting from the intermediate

description of the target core (see Figure 1). This

file provides the basis for guaranteeing the eVC’s

reusability.

The shr_ieee1500_hierarchy.e file is one of the

eVC’s most important elements. It defines the verifica-

tion plan��that is, what must be verified and in

which order. It describes the scope of the verification

problem and serves as the functional specifica-

tion for the verification environment, highlighting

dependencies among results of different verification

steps. Moreover, it lets us optimize the verification

time, thus reducing overall verification costs. Figure 3b

is a small verification plan example. Each time the

verification of a given rule ends��that is, the end_

rulenumber event occurs��the verification plan identi-

fies the next rule to verify. When there is rules depen-

dency, the result of a specific rule verification might

modify the verification plan. For example, consider

rule 7_4_1_a in Figure 3b: its verification starts only

if rule 10_3_1_j is correctly verified. Moreover, rule

10_3_1_j is verified after rule 10_3_1_a3, regardless

of whether the verification of rule 10_3_1_a3 was suc-

cessful. Users can freely modify this file to build their

own verification plan.

The actual verification is then performed by

instantiating multiple eVC agents. The agent has a

subtype target to identify the target IEEE 1500 design

rule. Each agent instantiates a Specman bus func-

tional model (BFM) and a monitor. The BFM gener-

ates and simulates the verification patterns for the

target rule, and the monitor evaluates the simulation

results to understand whether the rule is respected

(by using the subtype target). The monitor includes

a scoreboard to perform a static analysis of the simu-

lation results (that is, it verifies whether or not the

core output signals assume the proper sequence of

values regardless of their actual timing), and a

IEEE Std 1500 and Its Usage

Agent
target = <rulenumber> 

IEEE_1500_env
shr_ieee1500_env.e

Config
shr_ieee1500_hierarchy.e

shr_ieee_constant.e

e-Ports
shr_ieee1500_input.e
shr_ieee_output.e

BFM
target = <rulenumber>

shr_ieee1500_bfm_<rulenumber>.e 

Monitor
target = <rulenumber>

Checker
target = <rulenumber>

shr_ieee1500_checker_<rulenumber>.e

Scoreboard
target = <rulenumber>

shr_ieee1500_scoreboard_<rulenumber>.e

IEEE-1500-
compliant core

Figure 2. Structure of the IEEE Std 1647 Functional Verification Language e verification core (eVC).
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checker to perform the timing

analysis. Moreover, the BFM

defines the set of coverage

items used to evaluate the final

verification coverage.

To better understand the pro-

posed verification strategy, con-

sider the following behavioral

rule corresponding to Chapter

10.3.1, rule (e), of IEEE 15001

(WIR: wrapper instruction register;

WRCK: wrapper clock; WRSTN:

wrapper reset):

The WIR circuitry shall re-

tain its current state (i.e., shift

stage values and currently ac-

tive modes) indefinitely while

the WRCK signal is stopped (i.e.,

WRCK held at a fixed logic value

of 1 or 0) and the signal con-

nected to the WRSTN terminal is

logic 1.

The verification of this rule re-

quires that we

1. Fetch one instruction.

2. Force WRCK to 0 (1).

3. Force WRSTN to 1.

4. Drive all the wrapper’s input

signals except WRCK and

WRSTN.

5. Check that the WIR circuitry

retains its state.

All operations are repeated for the 11 mandatory

or optional instructions defined by the standard.1

Item 4 resorts to random generation to efficiently

drive a not-involved signal. Figure 3c shows the e

code of the function in charge of randomly generat-

ing a vector and of driving it to the device under

test. The vector drives all signals specified in

shr_ieee1500_constant.e. In general, each rule

determines a set of signals with a deterministic

fixed value, while for the remaining signals, we

apply random generation. Because of the proposed

eVC’s open architecture, users can extend the ran-

dom generation function while considering the spe-

cific core functionality in order to cope with corner

cases. Item 5 is finally performed by the checker; it

ensures that the core respects the rule.

A complete analysis of IEEE 1500 enabled us to

identify a set of 165 mandatory rules and 27 optional

rules. Our current prototype eVC component imple-

ments the verification of 138 mandatory rules sum-

marized as follows: 40 semantic rules, 25 behavioral

rules, and 73 mixed rules, including both semantic

and behavioral aspects. Moreover, we can readily

extend eVC to address new rules for optional proper-

ties of the standard by adding additional agent instan-

tiations for the new rules and by inserting their

verification in the overall verification plan.

Experimental results
We have tested the effectiveness of our proposed

verification flow on a benchmark SoC consisting of

an 8080 8-bit microprocessor, and an 8-bit programma-

ble interrupt controller (PIC) from OpenCores (http://

www.opencores.it), complete with a 256 bit � 8 bit

<'
gen_and_drive (sig_size: uint, sig_name: list of string, is_wire: 
list of bit) is {

 var i: uint;

 gen input_vector keeping {

  -- Generates a random vector

  .size()==sig_size;
 };

 for i from 0 to sig_size - 1 do {

  -- Assigning generated values to sig_name list of signals

  drive_value(sig_name[i], is_wire[i], pack(packing.low, 

    input_vector[i:i]));
}; '>

event start_13_1_1_a;
event end_13_1_1_a;
event start_7_2_1_c;
event end_7_2_1_c;
event start_7_2_1_b;
event end_7_2_1_b;
checkpoint: bit;
keep soft checkpoint == 0;

on end_10_3_1_a3 {
 emit start_10_3_1_j;
};
on end_10_3_1_j {
 if checkpoint == 1 {
  stop_run;
 } else {
  emit start_7_4_1_a;
 };
};

(a) (b)

(c)

Figure 3. eVC code snapshots: eVC environment (a), hierarchy (b), and rule

verification example (c).
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SRAM. Each core has an IEEE 1500 core test wrapper

with the following characteristics:

� a wrapper instruction register (WIR), 3-bit length;

� a wrapper bypass (WBY) register, 1-bit length;

� a wrapper boundary register (WBR);

� an optional TransferDR wrapper serial control; and

� four implemented instructions: WS_BYPASS,

WS_PRELOAD, WS_INTEST, and WS_EXTEST.

Figure 4a shows the basic SoC architecture, and

Figure 4b shows the wrapper architecture. Table 1

shows the SoC complexity in terms of gates.

We applied the complete verification flow to the

three SoC cores using a Sun Blade 1000 workstation,

and 100% of the implemented rules were correctly

verified. Table 2 shows the verification time for each

core in terms of clock cycles and CPU time. The sim-

ulation time is obviously strictly connected to the

core’s complexity.

In addition to providing the list of verified rules,

Table 3 shows an example of verification coverage

analysis on five rules. Verification coverage metrics

are an efficient and easy way to assess the result of

verification. For each IEEE 1500 rule and defined cov-

erage items that we considered (in column 1), we

IEEE Std 1500 and Its Usage

Core

W
B
R

Core
functional
inputs

Core
functional

outputs

Wrapper
functional
inputs

Wrapper
functional
outputs

WIR

WBY

Wrapper
serial input
(WSI)

Wrapper
serial output
(WSO)

Test enable(s)

Wrapper serial control
(WSC)

Mandatory wrapper serial port (WSP)

Transfer DR

W
B
R

(b)

IEEE 1500 wrapper

IEEE 1500 wrapper

8080

256 x 8-bit
SRAM

IEEE 1500 wrapper

PIC

WSI

Test bus

WSO

(a)

Figure 4. Test case general architecture: SoC architecture (a) and wrapper architecture (b).

Table 1. Synthesized SoC characteristics.

Number of blocks

11,292

3,092

1 (256 bits × 8 bits)

Block type

Combinational gate

Nonscan flip-flops

RAM blocks

Table 2. Simulation time.

Clock cycles

207,453

181,751

18,112

CPU time (s)

840

730

120

Core

8080

SRAM

PIC
* PIC: programmable interrupt controller.
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analyzed the actual number of

measured hits for the three

circuits��8080, SRAM, and PIC��
with respect to the number of

required hits (RH).

Coverage items and RH de-

pend on the target rule. For ex-

ample, consider rule 12.1.1.b:

The WBR shall have at least

one configuration in response to

the state of the WIR, allowing se-

rial access to and from all WBR

cells between TI and TO.

This rule implies shifting data through the WBR

cells, and requires a number of WBR shift events at

least equal to the WBR length. This metric was

respected in the three analyzed cores (see Table 3).

Table 3 also shows that RH was always reached for

all rules, ensuring the reliability of the verification

framework.

Finally, to carefully validate the verification capa-

bilities of the framework, we designed a set of differ-

ent wrappers, systematically violating different rules

of IEEE 1500. Table 4 summarizes the verification

results for each of these experiments. The first col-

umn reports the target rule number, the second

column describes the injected error, and the third col-

umn reports the verification result. All violations

Table 3. Coverage results. 

No. of hits
(PIC), RH 

6, 4

8, 8

13, 4

4, 4

1, 1

No. of hits
(SRAM), RH

7, 4  

16, 16

4, 4  

4, 4  

15, 1  

No. of hits
(8080), RH  

4, 4  

24, 24

4, 4  

17, 4  

1, 1  

Rule, coverage Item

10.1.1.c, instruction fetch

12.1.1.b, WBR shift

10.3.1.g, WRSTN transition

13.1.1.c, WRSTN set

11.1.1.b, WBY register select
* WBR: wrapper boundary register; WBY: wrapper bypass; WRSTN: wrapper reset.

Table 4. Rules failure tests.

Rule

7.2.1.c

7.2.1.e

7.4.1.c

7.4.1.d

7.4.1.e

10.1.1.b

10.2.1.a

10.2.1.b

10.2.1.c

10.2.1.d

10.2.1.e

10.2.1.f

10.3.1.a

10.3.1.b

10.3.1.d

10.3.1.e

10.3.1.f

10.3.1.h

10.3.1.i

10.3.1.j

11.1.1.a

11.1.1.b

Violation

No register selected during WS_PRELOAD

Modified signals configuration for the update WIR register

Inverted wrapper reset

WBR not in functional mode during WS_BYPASS

WBY register shift signal stuck at 0

Last flip-flop of WBR not connected to WSO

WBR register never selected

WIR mode signal stuck at 0

WRSTN connected to one of the core inputs

Unconnected wire in WIR

Inverted WSI during WIR shift

Update operation on every shift

WS_BYPASS not selectable

updateWR signal of WIR combined with one or more core inputs

updateWR signal of WIR combined with captureWR

WIR shifts without clock

ShiftWR signal of WIR connected to a core input

ShiftWR sampled on both the rise and fall clock transitions

WSI and WSO sampled at the wrong clock transition

UpdateWR sampled at both the rise and fall clock transitions

WBY duplicated

Modified WBY register select signal

Detected?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes, 10.3.1.h fails

Yes, 10.3.1.a3 and 10.3.1.j fail

Yes, 10.3.1.g, 13.1.1.b, 7.3.1.h,

and 13.1.1.d fail

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
* WBY: wrapper bypass; WIR: wrapper instruction register; WSI: wrapper serial input; WSO: wrapper serial output. 
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have been correctly detected. It is interesting that, in

some cases, the violation of a single rule was propa-

gated to other rules, generating multiple design

errors.

OUR AUTOMATED ENVIRONMENT for IEEE 1500 compli-

ancy verification targets different users, from core

designers to core integrators. The environment can

therefore guarantee various compliancy levels,

depending on the amount of information about the

internal core structure that is available to users.

Soon, a verification environment such as this will

help designers increase productivity, reduce design

time, and optimize the test plan of very complex

SoCs. Moreover, the same approach used to build

the IEEE 1500 verification environment could be

exploited to build verification environments for

other types of standards such as IEEE 1149.1. �
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March Test Generation Revealed
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Abstract—Memory testing commonly faces two issues: the characterization of detailed and realistic fault models and the definition of

time-efficient test algorithms. Among the different types of algorithms proposed for testing Static Random Access Memories,

march tests have proven to be faster, simpler, and regularly structured. The majority of the published march tests have been manually

generated. Unfortunately, the continuous evolution of the memory technology introduces new classes of faults such as dynamic and

linked faults and makes the task of handwriting test algorithms harder and not always leading to optimal results. Although some

researchers published handmade march tests able to deal with new fault models, the problem of a comprehensive methodology to

automatically generate march tests addressing both classic and new fault models is still an open issue. This paper proposes a new

polynomial algorithm to automatically generate march tests. The formal model adopted to represent memory faults allows the definition

of a general methodology to deal with static, dynamic, and linked faults. Experimental results show that the new automatically

generated march tests reduce the test complexity and, therefore, the test time, compared to the well-known state of the art in

memory testing.

Index Terms—Automatic test generation, memory test, memory fault modeling, march tests.

Ç

1 INTRODUCTION

MEMORIES are the predominant majority in semiconduc-
tor device production, with also the fastest growing

technology [1]. The complex nature of their internal
behavior and the very high density of their cell arrays
make memories extremely vulnerable to physical defects.
The challenge of memory testing stems from the difficulty
of defining realistic fault models and designing time-
efficient test algorithms [2].

In the last years, the so-called static faults (i.e., faults
sensitized by the execution of just a single memory
operation) [3] have been the predominant class of fault
models addressed by researchers and the industry. Un-
fortunately, the latest technologies show new faulty beha-
viors like dynamic [4] and linked faults [5] that need to be
considered as well.

March tests [2] are an efficient class of memory tests with
low time complexity and high fault coverage. Several hand-
designed and automatically generated march tests have
been proposed in the literature.

One of the first march test generation algorithms is
presented in [6]. It is based on the notion of a transition tree
where each path from the root to a leaf corresponds to a
certain march test able to cover a target set of faults. The
main drawback of this approach is that the transition tree is

unbounded and the search process is of exponential
complexity in general. Several improvements to this
technique have been proposed. Zarrineh et al. [7] restricts
the search process to the parts of the tree where a solution
exists using the notion of primitive march tests, whereas in
[8], a branch-and-bound approach and a fault-collapsing
procedure are used to limit the search space. Al-Harbi and
Gupta [9] applies the methodology presented in [8] to
generate march tests detecting linked faults. The generation
process is not detailed, and only one march test is generated.

All these solutions consider a limited set of static fault
models, and the extension to new faults is complex.
Niggemeyer and Rudnick [10] presents a generation
algorithm for the test and diagnosis of memory faults based
on a fault description able to model the complete set of
single-cell and two-cell static faults. It suffers from the same
problems as [6] since it is still based on transition trees, but
it theoretically allows covering all possible static faults,
even if only stuck-at faults (SAFs), transition faults (TFs),
and idempotent and inversion coupling faults (CFid and
CFinv) are considered in the paper.

Wu et al. [11] presents a completely different approach,
named Test Algorithm Generation by Simulation (TAGS).
Several known march tests of different lengths are
generated, and their fault coverage is evaluated using the
RAMSES fault simulator [12]. The approach allows high
flexibility in terms of fault models, but its complexity is still
exponential since it requires an exhaustive search. The
authors also propose heuristics to overcome the complexity
issue, but in this case, they cannot guarantee the optimality
of the results.

In [13], we presented a generation algorithm based on a
Test Pattern Graph (TPG) to model static memory faults.
The generation problem is thus a search problem on the
graph. The main contribution of [13] is the extended set of
addressed functional faults. Its main drawback is the
computational complexity that reduces the number of total
faults that can be included in the target fault list.
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In [14], we introduced a generation algorithm able to
manage both static and dynamic unlinked faults. It is based
on a graph representation where the set of edges represents
the fault models. March tests are generated by traversing
each edge of the graph. Despite its effectiveness, the
proposed approach lacks of a rigorous formalization, and
in the worst case, it has a nonpolynomial complexity.

In this paper, we propose a new approach to auto-
matically generate march tests targeting static, dynamic,
and linked faults. The main contributions of this work are,
from one side, a formal fault model representation that
extends the fault primitive notation proposed in [3] and a
completely new march test generation algorithm with a
polynomial complexity that strongly reduces the generation
time.

The paper is organized as follows: Section 2 introduces
the memory model and the fault model used to automati-
cally generate the march test, whereas Section 3 details the
steps of the automatic generation process. Section 4 presents
the results obtained by using the proposed algorithm.
Section 5 proposes some optimizations, and finally, Section 6
summarizes the main contributions of the paper.

2 FORMAL MODELS

The generation algorithm proposed in this paper relies on
the use of formal models to describe both the good and the
faulty memory behaviors.

2.1 Memory Model

This section introduces the formal model adopted to
represent the memory under test. In this paper, we focus
on bit-oriented memories only. The extension of the
obtained march tests to word-oriented memories can be
easily done according to the algorithm proposed in [15].

Definition 1. An N-cell 1-bit memory can be formally defined as
a 4-upla:

hA;N;M;X0i; ð1Þ

where

. A ¼ f0; 1g is the set of possible states of a memory cell,

. N is the number of cells,

. M ¼ ðc0; c1; c2; . . . ; cN�1Þjci 2 A; 0 � i � N � 1 i s
the array of N cells, and

. X0 ¼ fri; widj0 � i � N � 1; d 2 Ag is the set of
possible memory operations, where ri means a read
operation on the cell i, whereas wid means a write
operation of the value d 2 A on the ith cell.

The behavior of an N-cell 1-bit memory (Definition 1) can
be formally represented by an Edge-Labeled Directed
Graph (ELDG) G defined as

G ¼ ðV ;E; LeÞ; ð2Þ

where

. V is the set of 2N vertices representing the possible
states of the memory,

. E ¼ fðu; vÞju; v 2 V g is the set of edges, each one
representing one of the possible memory opera-
tions that cause the transition from a vertex u to a
vertex v, and

. Le : E ! flabelsg is a label function that maps edges
to labels, where given the edge ðu; vÞ, the corre-
sponding label is defined as follows:

label ¼ x=k; ð3Þ

where

– x 2 X0 (Definition 1) is the memory operation
able to fire the transition from u to v, and

– k 2 f0; 1; Ug is the corresponding memory out-
put, where the symbol U denotes the unknown
value at the memory data output signals when a
write operation is performed.

The proposed model is a modification of the mealy
automata model proposed in [16]. The use of the ELDG
allows modeling faulty situations where the result of a read
operation is incorrect even if the content of the memory is
correct. These situations were not representable using the
model presented in [16].

As an example, Fig. 1 shows the model of a two-cell
memory where the letters i and j are used to identify the
first and the second cell, respectively. The ELDG has four
states corresponding to the four possible combinations of
the values stored into the cells. For the sake of readability,
edges having the same initial and final state have been
represented as a single edge with multiple labels.

2.2 Fault Model

This section introduces the formalism used to represent the
target memory functional faults. Faults are modeled
starting from Faulty Behaviors (FBs), i.e., deviations of the
memory behavior from the expected one. An FB is
expressed using the following notation:

. Di represents a faulty value D 2 A (Definition 1)
stored in the cell i.

. Ri
D represents an erroneous output D 2 A

(Definition 1) obtained while reading the content of
the cell i. This formalism is needed to represent classes
of faults where a read operation returns an erroneous
value, while the content of the memory cell is correct.
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For example, 0i means that the ith cell assumes an

erroneous value 0, while Ri
1 means that a read operation on

cell i returns the value 1 even if the content of the cell is 0.
The set of faulty memory cells involved in the faulty

behavior is called f-cells. Based on the f-cells cardinality

ðjf-cellsjÞ, faults can be clustered into the following classes:

. Single-cell faults ðjf-cellsj ¼ 1Þ.

. Two-cell faults ðjf-cellsj ¼ 2Þ. In this case, we can
distinguish between an aggressor cell ða-cellÞ and a
victim cell ðv-cellÞ. The former is the cell that
sensitizes the FB, and the latter is the cell that shows
the effect of the FB;

. Multiple-cell faults ðjf-cellsj � 2Þ. Not all multiple-cell
faults are detectable using march tests. Our model
allows describing multiple-cell faults, but the pro-
posed generation algorithm will be able to produce
results only for those faults detectable using march
tests, i.e., faults described by two-cell FBs sharing the
same aggressor cell, for example, three-cell linked
faults [5].

An FB is sensitized by the application of a sequence of

stimuli on the f-cells. A stimulus S is composed of an initial

condition C of the f-cells, followed by an optional sequence

of memory operations op1; op2; . . . ; opm:

S ¼ ðC; op1; op2; . . . ; opmÞjopi 2 X;m � 0; ð4Þ

where

. C¼ðs1; s2; . . . ; skÞjsi2A[f�g, 1�k�jf-cellsj, where
si identifies one of the f-cells, and “�” denotes a don’t
care condition, i.e., the initial value of that cell does not
influence the faulty behavior,

. opi 2 X ¼ X0 [ fridj0 � i � N � 1; d 2 Ag, where X0

is defined in Definition 1, and rid is a read-and-verify
operation performed on the ith cell. The value d
means “read the content of the cell i and verify that its
value is equal to d.” The sequence of memory
operations can be omitted when an FB is sensitized
just by the f-cells being in a certain condition (e.g.,
State Coupling fault [17]).

According to the number of operations in the

sequence ðmÞ, the fault is classified as Static ðm � 1Þ or

Dynamic ðm > 1Þ.
Examples of possible stimuli are the following:

. S ¼ 0i corresponds to an FB sensitized by the state of
the faulty cell i equal to 0.

. S ¼ �, wi1corresponds to an FB sensitized by writing
1 into the faulty cell i, regardless of the current state
of the cell.

. S ¼ 1i, wi1r
i corresponds to an FB sensitized by a

write operation of the value 1 on the faulty cell i,
immediately followed by a read operation on the
same cell. In this case, the FB is sensitized only if the
two operations are applied starting with the cell i
containing the value 1.

Definition 2. A Functional Fault Primitive (FFP) represents

the difference between an expected (fault-free) and the observed

(faulty) memory behavior under a set of performed operations,
denoted by

FFP ¼ hS=FBi; ð5Þ

where S (4) and FB represent a stimulus and a faulty behavior,
respectively.

A functional memory fault model is a nonempty set of
FFPs. For example, the Inversion Coupling Fault (a transition
performed on an aggressor cell a causes the inversion of the
logic value stored in a victim cell v [2]) can be described by
the following two FFPs:

Cinv ¼
�
FFP1 ¼ h0a0v; wa1|fflfflfflffl{zfflfflfflffl}

S

= 1v|{z}
FB

i;

FFP2 ¼ h0a1v; wa1|fflfflfflffl{zfflfflfflffl}
S

= 0v|{z}
FB

i
�
:

ð6Þ

3 AUTOMATIC TEST GENERATION METHODOLOGY

The proposed march test generation methodology is based
on the functional memory model introduced in Section 2.1
and on the definition of functional faults in terms of FFPs
(Section 2.2). The main steps of the generation process are
summarized as follows:

1. Fault list representation. Translate each FFP in the
fault list into an “operational” representation of the
faulty behavior, referred to as Addressed FFP, or
AFFP (Section 3.1).

2. Test pattern (TP) generation. Generate the set of TPs
able to cover each AFFP. Each TP is represented by
an additional edge on the ELDG modeling the
memory (Section 3.2).

3. March test generation. Traverse the ELDG to generate
the march test.

3.1 Fault List Representation

The FFP formalism describes the conditions to sensitize
and detect FBs by considering the f-cells only. It does not
consider the actual position of these cells in a generic
N-cell memory. To map an FFP into a generic N-cell
memory model, we therefore introduce the concept of
AFFP. An AFFP is an instantiation of an FFP with an
explicit indication of the addresses of the involved cells
and both the faulty and the fault-free final memory state,
after applying the stimulus S defined in the FFP (see
Definition 2). The AFFP formalism strictly depends on
both the number of memory cells involved in the fault
ðjf-cellsjÞ and on the size N of the target memory. It can be
formalized as

AFFP ¼ hI; Es; Fv; Gvi; ð7Þ

where

. I ¼ ði0; i1; i2; . . . ; iN�1Þjik 2 A [ f�g, 0 � k � N � 1 is
the initial state of the memory, i.e., the values stored
in the N cells of the target memory as defined by the
initial conditions of the FFP. The first value
corresponds to the less significant bit (i.e., the
memory cell with the lowest address).
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. Es ¼ ðop1; op2; . . . ; opmÞjopi 2 X, 1 � i � m is the
sequence of m operations, performed on the aggres-
sor cell, needed to sensitize the fault, according to
the stimulus defined in the FFP. Each operation
belongs to the alphabet X defined in (4).

. Fv ¼ ðf0; f1; . . . ; fN�1Þjfk 2 A [ fUg, 0 � k � N � 1
are the logical values (faulty state) stored in the
memory cells after applying Es in case of a faulty
memory.

. Gv ¼ ðg0; g1; . . . ; gN�1Þjgk 2 A [ fUg, 0 � k � N � 1
are the logical values (expected state) stored in the
memory cells after applying Es on a fault-free
memory.

SinceN does not necessarily corresponds to the number of

involved faulty memory cells ðjf-cellsjÞ, each FFP can

generate several AFFPs. For example, considering the

Inversion Coupling fault FFPs defined in (6) applied to the

two-cell memory represented in Fig. 1 ðN ¼ 2; i ¼ address

of the first cell; j ¼ address of the second cellÞ, we obtain the

following AFFPs:

FFP1 ¼ 0a0v; wa1=1v
� � AFFP1 ¼ 00; wi1; 11; 10

� �
;

AFFP2 ¼ 00; wj1; 11; 01
D E

;

8<
:

FFP2 ¼ 0a1v; wa1=0v
� � AFFP3 ¼ 01; wi1; 10; 11

� �
;

AFFP4 ¼ 10; wj1; 01; 11
D E

:

8<
:

ð8Þ

3.2 Test Pattern Generation

From an AFFP, it is easy to define the sequence of memory

operations, TP, used to detect the corresponding faulty

behavior as

TP ¼ hAFFP;Osi; ð9Þ

where AFFP is the target AFFP, and Os ¼ fridg is the read-

and-verify operation (4) performed on the victim cell,

needed to observe the fault effect.
For example, the four AFFPs defined in (8) are covered by

the following TPs in a two-cell memory:

AFFP1 ¼ 00; wi1; 11; 10
� �

! TP1 ¼ 00; wi1; 11; 10
� �

; rj0

D E
;

AFFP2 ¼ 00; wj1; 11; 01
D E

! TP2 ¼ 00; wj1; 11; 01
D E

; ri0

D E
;

AFFP3 ¼ 01; wi1; 10; 11
� �

! TP3 ¼ 01; wi1; 10; 11
� �

; rj1

D E
;

AFFP4 ¼ 10; wj1; 01; 11
D E

! TP4 ¼ 10; wj1; 01; 11
D E

; ri1

D E
:

ð10Þ

Each TP can be represented by an additional directed edge

(faulty edge) from the state I to the state Gv defined in (7) on

the memory model introduced in Section 2.1. The faulty

edge label is defined as Es, Os, where Es is the sequence of

sensitizing operations, and Os is the read-and-verify

operation required to detect the fault, as defined in (7)

and (9), respectively. The ELDG including the faulty edges

is named Pattern Graph (PG) and is defined as

PG ¼ ðV ;E [ F;Le [ LfÞ; ð11Þ

where each vertex v 2 V is associated to one of the 2N

memory states (1), E is the set of edges modeling the fault-

free memory (1), F is the set of faulty edges, Le is the label

function for the fault-free edges (2), and Lf is the label

function for the faulty edges.
It is clear that considering a real N-cell memory, the

complexity of the model explodes due to the number of

nodes of the PG. Anyway, a march test covering an n-cell

fault can detect the same fault on any memory of size

N � n [2]. In general, the minimum number of required

states of the PG can be defined as 2MaxF , where MaxF is

the maximum number of faulty cells involved in the FFPs

defined in the fault list. As stated in Section 2.2, the

proposed algorithm is designed to work with faults

described by two-cell FBs only, thus requiring a four-

state PG.
Fig. 2 shows the PG (named PGCF in the sequel)

modeling the four TPs defined in (10). Bold edges represent

the faulty edges.

3.3 March Test Generation Algorithm

In this section, the PG introduced in Section 3.2 is used to

generate a march test detecting the set of faults described in

the graph.

Definition 3. A march test consists of a sequence of march

elements (MEs). An ME consists of a sequence of operations

applied to each cell in the memory based on a given addressing

order (AO) (* for the up AO, + for the down AO, and m for

any AO) [2].

The generation problem consists of finding a sequence of

TPs (i.e., memory operations) able to detect the target set of

memory faults while respecting the definition of march test

(see Definition 3).

Definition 4. Given an ELDG G ¼ ðV ;E; LeÞ, a directed path

ðv0; viÞ with v0, vi 2 V is an ordered sequence of vertices and

edges ðv0; e0; v1; e1; . . . ; vi�1; ei�1; viÞ, where each edge ej 2 E
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is incident from vj and incident to vjþ1 ð0 � j < i� 1Þ. We
represent a directed path as

DP ¼ ðv0; ‘‘e0’’; ‘‘e1’’; . . . ; ‘‘ei�1’’Þ; ð12Þ

where v0 is the starting vertex, and ‘‘e0’’; ‘‘e1’’; . . . ; ‘‘ei�1’’ is
the ordered set of edges that have to be traversed in order to
reach the final vertex of the path.

Considering a PG representing a faulty memory (11) and
considering that each faulty edge in the PG represents a TP
able to detect one of the FFPs in the target fault list, the
problem of generating a march test is equivalent to the
problem of finding a directed path in PG (i.e., a sequence of
TPs) traversing all the faulty edges. The labels on the edges
of the path represent the operations needed to sensitize and
to observe the target faults. This sequence of operations has
to respect the march test definition (see Definition 3).

For example, let us consider the PG in Fig. 3, where
faulty edges are in bold.

A directed path starting from the state “00” and
including all the faulty edges is

DP ¼ ð00; ‘‘wj
1r

j; ri0’’; ‘‘wj
0’’; ‘‘ri; rj0’’; ‘‘wi1; r

j
0’’; ‘‘wj

1; r
i
1’’Þ: ð13Þ

The sequence of operations identified by DP does not
identify a march test since it is not composed of operations
applied on every memory cell before considering the next
sequence (MEs). From this consideration, it is clear that only
a subset of the possible directed paths traversing the faulty
edges actually identifies a march test. The goal of the
proposed algorithm is to find a minimal directed path in the
PG (i.e., a DP where faulty edges are traversed only once)
that can be converted into a march test.

To solve this problem, we have to formalize the
conditions that make possible the transformation of a
directed path into a march test.

Let us consider the following ME: * ðr0w1Þ. It identifies
the following sequence of memory operations: ðr0

0; w
0
1; r

1
0;

w1
1; . . . ; rN�1

0 ; wN�1
1 Þ. The sequence includes the operations

composing the ME repeated N times, one per memory cell
in ascending order, i.e., starting from cell 0 to cell N � 1.

The order in which cells are addressed corresponds to
the AO of the ME. From this example, the following lemma
is clear.

Lemma 1. A Sequence of Memory Test Operations (SMTO)
is march-able (i.e., it can be transformed into an ME) if and
only if it can be described by the same set of operations repeated
on every cell of the memory in a given order.

In order to generate a march test, we try to build one ME
at a time. This procedure consists of traversing the edges of
the PG in such a way that the labels on the edges identify a
march-able SMTO. When a march-able SMTO cannot be
further expanded i.e., no other faulty edges can be traversed
without violating the march-ability constraint, it is trans-
lated into an ME by specifying its AO (“* ” if the sequence
of addresses in the SMTO starts from the address 0 and “+ ”
if the sequence of addresses in the SMTO starts from the
address N � 1). The algorithm exits when all faulty edges
are traversed.

In this paper, we consider only classical up and down
AOs. For this reason, we cannot generate tests detecting
fault models requiring a specific AO to be sensitized (e.g.,
the fault model proposed in [18]). The extension to
additional AOs can be considered by increasing the number
of states of the PG in order to be able to model the required
sequence of addresses and by modifying the way the AO is
determined, thus increasing the complexity of the genera-
tion process.

To understand how the algorithm traverses the PG, some
additional definitions are required.

Definition 5. FEv is the set of faulty edges incident from the
state v. FEv ¼ fTP jI ¼ vg. It represents the set of TPs
(Section 3.2) having the initialization state I (7) equal to the
state v.

Referring to the example in Fig. 3, we have four sets
of faulty edges: FE00 ¼ f‘‘wj

1r
j; ri0’’; ‘‘ri; r j0 ’’; ‘‘wi1; r

j
0 ’’g,

FE01¼f�g, FE10 ¼ f‘‘wj
1; r

i
1’’g, and FE11 ¼ f�g.

Definition 6. FEi
v is the set of faulty edges incident from state v,

with an aggressor cell equal to i, 0 � i � N � 1, FEi
v ¼

fTP jI ¼ v; a-cell ¼ ig (Section 3.2). It represents the subset
of TPs having the initialization state equal to state v and the
aggressor cell address equal to i.

According to Definition 6, we can split the set FEv into
several subsets, each one identified by an aggressor cell,
and we can define FEv in terms of FEi

v as

FEv ¼
[N�1

i¼0

FEi
v: ð14Þ

Referring to the example in Fig. 3, we can build the
following sets of faulty edges:

FEi
00 ¼ ‘‘ri; r j0 ’’; ‘‘wi1; r

j
0 ’’

n o
; FEj

00 ¼ ‘‘wj
1r

j; ri0’’
n o

;

FEi
10 ¼f�g; FE

j
10 ¼ ‘‘wj

1 ; r
i
1’’

n o
:

ð15Þ

Definition 7. FEi
v1!v2

is the set of faulty edges incident from the
state v1 and incident to the state v2, with an aggressor cell
equal to i, 0 � i � N � 1, FEi

v1!v2
¼ fTP jI ¼ v1; G ¼ v2;

a-cell ¼ ig (Section 3.2).
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It represents the set of TPs with the same aggressor cell and
for which the application of the sensitizing operations changes
the memory state from v1 to v2.

We call transition a TP that belongs to FEi
v1!v2 with

v1 6¼ v2, while we call loop a TP that belongs to FEi
v1!v2 with

v1 ¼ v2.

As an example, let us consider the two TPs, TP1 ¼
hh00; wi1; 11; 10i; rj0i and TP2 ¼ hh00; ri; 01; 00i; rj0i. Both TP1

and TP2 have the same aggressor cell ðiÞ. After applying
TP1, the memory state changes from 00 to 01. According to
Definition 7, TP1 is a transition, while TP2 is a loop.

We can define FEi
v in terms of FEi

v1!v2 as

FEi
v ¼ FEi

v!v

zfflfflffl}|fflfflffl{Loops [ [
8vj 6¼v

FEi
v!vj

h izfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Transitions
0
BB@

1
CCA: ð16Þ

We actually split the set of faulty edges into two sets: the
former representing the set of faulty edges incident from v
and incident to v (the loops set) and the latter being the
union of the sets of faulty edges incident from v and
incident to a node vj different from v (the transition set).

Definition 8. We define the cardinality of a set FEv (written as
#ðFEvÞ) as the number of elements in the set and the cost ($)
of a set FEv as

$ðFEvÞ ¼
XN�1

i¼0

$ FEi
v

� �
: ð17Þ

The cost of the ith component FEi
v is defined as the cost of the

loop set ðFEi
v!vÞ plus the cost of the transition set:

$ FEi
v

� �
¼ $ FEi

v!v
� �

þ
X
8w2H1

$ FEi
v!wjw 6¼ v

� �
; ð18Þ

where H1 is the set of nodes reachable from v by traversing a
single faulty edge.

The cost of the loop set corresponds to its cardinality:
$ðFEi

v!vÞ ¼ #ðFEi
v!vÞ. The cost of the transition set is

defined as 0 if the set is empty and as 1 plus the cost of the
ith component of the destination state if the set is not
empty. The value 1 represents the cost of the operation
needed to move from state v to state w:

$ FEi
v!w

� �
¼ 1þ $ FEi

w

� �
if # FEi

v!w
� �

> 0;
0 if # FEi

v!w
� �

¼ 0:

	
ð19Þ

We now have all the elements and the definitions
required to present the generation algorithm, whose main
steps are summarized in Fig. 4 and described in the
following.

The first operation required by the algorithm (step 1 in
Fig. 4) is to select the initial state. Due to the march test
characteristics (see Definition 3), the only valid initial states
are the ones with all memory cells initialized with the same
value (i.e., all “0” or all “1”). Among them, the algorithm
chooses the state V with the maximum number of faulty
edges incident from it, i.e., maxð#ðFEvÞÞ8v. An empty ME
is initialized (step 2 in Fig. 4). At this point, no AO is
specified for the current ME. The algorithm has to select one
faulty edge ðfeÞ incident from the current state V (step 4 in
Fig. 4).

To select the new fe the get_fe function is invoked
(Fig. 5). This function identifies the FEi

V (see Definition 6)
with the maximum cost (step 2 in Fig. 5). Since no AO is still
selected and since we consider classic up and down AOs
only, the only choice the algorithm has to generate a march-
able sequence of operations (see Lemma 1) is to select an fe
with an a-cell equal to the first or to the last cell of the given
memory model.

First, the algorithm tries to select a loop that still needs to
be traversed (if more than one loop exists, then the choice is
random) (steps 16 and 17 in Fig. 5); otherwise, one of the
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Fig. 4. March test generation algorithm.

Fig. 5. Function get_fe ðFEvÞ: returns the selected fe.



transitions is selected (again, the choice among the transi-

tions is random) (steps 19 and 20 in Fig. 5). The selected

faulty edge automatically determines the AO (steps 3-7 in

Fig. 5). From this point to the end of the ME generation,

only operations performed on the first cell of the identified
addressing sequence (the first cell in case of * and the last

cell in case of + ) can be added (steps 9-13 in Fig. 5).
This constraint guarantees that the resulting ME is a

march-able SMTO (see Lemma 1). Every time a faulty edge

is traversed, the operations in its label are added to the ME

(step 11 in Fig. 4). If not already present in the ME (due to

previous operations), also the read-and-verify operation

needed to observe the fault is added. At this point, the new

memory state is calculated according to the fault-free

memory model (step 12 in Fig. 4), and the faulty edge is

deleted from the graph (the fault is detected) (step 13 in

Fig. 4).
The ME generation ends if no faulty edges can be

selected from the current state V (step 5 in Fig. 4). Before

completing the generation of the ME (step 7 in Fig. 4), the

close_me function (Fig. 7) is invoked (step 6 in Fig. 4). It

simulates the application of the operations in the ME on

each memory cell of the target memory model. Starting

from V , the initial state of the current ME, each operation is

applied, and the current state is updated according to the

memory model of the fault-free memory (step 2 in Fig. 7). If

during this operation additional faulty edges are traversed,

they are marked as detected and removed from the graph
(step 3 in Fig. 7).

At this point, we have reached the final state of the ME.
The ME is completely defined, and if there are still faulty

edges to traverse (step 15—Fig. 4), the next ME is initialized,

and the process is repeated.
Each time a faulty edge is selected the put_fe_in_me

(Fig. 6) function is invoked to append the faulty edge label

to the ME. Before adding the operations needed to sensitize

and observe the target fault (step 2 in Fig. 6), the function

checks whether the ME already contains the required

operations (step 1 in Fig. 6). If it does, then no operations
are added.

After the sensitizing operations, the read and verify must
be inserted. Two cases may occur:

. The a-cell is equal to the v-cell (i.e., a single-cell fault)
(step 5 in Fig. 6). The read-and-verify operation is
placed after the sensitizing operations (if it does not
already exists) (step 6 in Fig. 6).

. The a-cell differs from the v-cells (i.e., an n-cell fault
with a single aggressor cell and a set of victim cells):

— If a-cell > v-cells and the AO is * (or a-cell <
v-cells and AO is + ) (step 7 in Fig. 6), the read
operation is inserted at the beginning of the ME
(step 8 in Fig. 6).

— Otherwise, the ME is closed, and the read
operation is added as the first operation of the
next ME according to [6] (step 10 in Fig. 6).

The behavior of the algorithm is greedy since it tries to
insert in each ME the highest possible number of faulty
edges. A key point is the faulty edge selection (step 4 in
Fig. 4). The basic idea is to choose the faulty edges from the
FEi

v having the highest cost (step 2 in Fig. 5), where, in fact,
the cost corresponds to the number of loops and transitions.
This actually means selecting the FEi

v allowing the highest
number of movements (transitions) on the PG.

When the current memory state has an empty FEV , the
algorithm needs to move to a new memory state v1 having
the highest $ðFEv1Þ (step 9 in Fig. 4). The function
get_new_state (Fig. 8) performs this operation by traversing
the fault-free edges of the graph and by appending the
corresponding operations (labels) to the ME. In other
words, the algorithm builds an initialization ME to reach
the target state v1.

To better understand the generation algorithm, we will

show its application on the PG in Fig. 3. The initial selected

state is V ¼ 00, since #ðFE00Þ ¼ 3 (00 is the state with the

highest number of faulty edges incident from it). We have

to choose one faulty edge, so we calculate the cost of the

different sets of faulty edges: FEi
00 ¼ f‘‘ri; r

j
0’’; ‘‘wi1; r

j
0 ’’g,

$ðFEi
00Þ ¼ 2, FEj

00 ¼ f‘‘w
j
1r
j; ri0’’g, and $ðFEj

00Þ ¼ 1. The

algorithm chooses FEi
00 (up AO as defined in steps 3-7 in

Fig. 5), and ‘‘ri, rj0’’ (loop set) is selected and added to the

ME, which becomes ðri0Þ with the current memory state still

equal to “00.” At this point, the algorithm chooses the only
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Fig. 6. Function put_fe_in_me (fe, ME).

Fig. 7. Function close_me (ME).

Fig. 8. Function get_new_state(): returns the new memory state.



remaining choice in FEi
00 represented by ‘‘wi1, rj0’’. wi1

(sensitizing sequence) is added to the ME, which becomes

ðri0wi1Þ, while the observation is not required since it is

already present.
The new state is now v ¼ 10. FEi

10 ¼ f�g, so the
algorithm closes the ME and generates the corresponding
ME: * ðr0w1Þ. It then simulates the operations of the ME on
cell j. The simulation shows that also ‘‘wj

1, ri1’’ (from state
“10”) is traversed. The read-and-verify operation performed
on cell i is added to the next ME, which becomes ðri1Þ again
with up AO (step 10 in Fig. 6).

The current state is now v ¼ 11. Since FE11 is empty, the
ME is closed, and the corresponding ME is generated:
* ðr1Þ. We now must change state to “00,” which is the only
state still having faulty edges. The operation to move to
“00” is wi0, it is added to the new ME, which becomes ðwi0Þ
with up AO. The ME is closed, and the corresponding
generated ME is * ðw0Þ. Now, the algorithm traverses the
last faulty edge, and it adds the operations on its label into a
new ME, obtaining an ME equal to ðwj

1r
j
1Þ with down AO. It

also inserts the read-and-verify operation, obtaining an ME
equal to ðr j0w

j
1r

j
1Þ. At this point, all the faulty edges are

traversed, the ME is closed, and the generated ME is
+ ðr0w1r1Þ. The algorithm ends, and the final generated
march test is * ðw0Þ * ðr0w1Þ * ðr1Þ * ðw0Þ + ðr0w1r1Þ, where
the first ME allows initializing the memory in the selected
initial state.

4 EXPERIMENTAL RESULTS

This section reports some experimental results obtained by
applying the proposed generation algorithm to different
fault lists. Tables 1 and 2 report the generated march tests
for different sets of target unlinked static and dynamic
faults. For each march test, we report the name (column 1),
the algorithm (column 2), the complexity in terms of the
number of operations (column 3), and the target fault list
(column 4).

Table 1 reports march tests targeting different sets of
static unlinked faults. Static faults have been deeply studied
in the last years, and all the algorithms generated by the tool
were already published in previous works.

When we move to the more complex dynamic unlinked
faults, the proposed algorithm demonstrates its real value.
In this case, we have been able to generate tests shorter than

the ones already published. We started from the set of
dynamic faults described in [20]. These faults are consid-
ered to be some of the most realistic ones for current
memory technologies.

March AB1 (Table 2), with a complexity of 11n, is able
to detect the entire set of single-cell two-operation dynamic
faults [20]; compared with March RAW1 (13n), which was
manually designed, it guarantees the same fault coverage
but reduces the test length by two operations or
18.18 percent. March AB (Table 2), with a complexity of
22n, is able to detect the entire set of realistic two-cell two-
operation dynamic faults [20]; compared with March RAW
(26n), again manually designed, it provides the same fault
coverage but reduces the test length by four operations or
15.38 percent. Finally, we propose three new march tests,
March AB2, March AB3, and March AB4, generated for
particular subsets of dynamic faults in order to demon-
strate the freedom in choosing the target fault list.

We also applied the proposed algorithm, after applying
the modification to the PG proposed in [22] to model linked
faults, to the set of realistic linked faults presented in [5]. In
Table 3, Fault List #1 includes single-, two- and three-cell
linked faults proposed in [5], whereas Fault List #2 includes
all single-cell linked faults proposed in [5].
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TABLE 1
Generated March Tests for Unlinked Static Faults

TABLE 2
Generated March Tests for Unlinked Dynamic Faults

TABLE 3
Generated March Tests for Linked Faults



We compared our new generated march tests with
already published algorithms targeting the same fault list.
In particular, we considered the following:

. 43n March test [9]. It is automatically generated and
deals only with a subset of faults defined in Fault
List #1.

. 41n March SL [5]. It is the state of the art in the
class of hand-generated march tests. It covers Fault
List #1.

. 23n March MSL [23]. It is automatically generated,
and it reduces the complexity of March SL. It covers
Fault List #1.

. 11n March LF1 [5]. It is one of the most used march
tests, and it is able to cover Fault List #2.

March AB of complexity 22n, targeting Fault List #1,
reduces the test time by 48.8 percent with respect to the 43n
march test, 46.3 percent with respect to March SL, and
4.35 percent with respect to March MSL. Similarly, March
ABL1, which targets Fault List #2, reduces the test length by
18.1 percent with respect to March LF1 (the state of the art
for the same list of faults).

It is relevant to note that using our algorithm, we have
been able to generate a new test, March AB, able to detect
both dynamic and linked faults. Moreover, the same
algorithm is also able to detect the full list of static unlinked
faults detected by the 22n March SS. In all the experiments,
the generation process was shorter than 1 second of CPU
time. All generated march tests have been verified by fault
simulation using the memory fault simulator published in
[24] and [25] to validate the correctness of the test with
respect to the target fault list.

5 OPTIMIZATIONS

March tests are critical components in any ATE-based or
BIST Memory test architecture. In the latter case, it has been
shown that the BIST hardware overhead can be reduced if
the march test shows some particular characteristics such as
uniformity [8] (a constant number of operations in each
ME), symmetry [2] (particularly important on transparent
march tests), or single AO. The proposed march test
generation algorithm already produces, if possible, sym-
metric march tests (see Table 3). Additional constraints can
be very easily added in the generation phase performed by
traversing the ELDG. We successfully implemented the
possibility of generating single-AO march tests, by adding
this additional constraint in the get_fe function (see Fig. 5),
which is the function defining the AO. Using this
optimization, we have been able to generate the single-AO
march test proposed in Table 4. Other constraints can be
easily implemented; the only drawback is that they can lead
to situations where no solutions can be generated.

6 CONCLUSIONS

This paper addresses two very important issues usually
faced by researchers and test engineers in the field of
memory testing. It provides a clear and flexible formalism
to model memories and faulty behaviors, and it proposes an
efficient algorithm to automatically generate march tests.
The flexibility of the fault model formalism allows describ-
ing not only traditional static and dynamic faults but also
linked and user-defined faults. This feature makes the
proposed research very appealing for both memory
manufacturers and users. With respect to previously
presented approaches, our methodology allows generating
shorter march tests in a very low computation time, without
exhaustive searches. The paper presents march tests for the
complete set of static faults and for most of the known
dynamic faults, obtaining both already published and new
test algorithms. What emerges from the experimental
results is the efficiency of the algorithm, which is able to
significantly reduce the march test length and, therefore, the
test time for many significant fault lists. Ongoing research
activities are focusing on the extension of the model to
multiport memory faults and on the possibility of introdu-
cing additional constraints on the generated march tests.
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