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Abstract

The « Habilitation à Diriger des Recherches » is the occasion to look back on my research
work since the end of my PhD thesis in 2006. I will not present all my results in this manuscript
but a selection of them: this will be an overview of eleven papers which have been published in
international journals or are submitted and which are included in annexes. These papers have been
done with different coauthors: Marthe Bonamy, Daniel Gonçalves, Benjamin Lévêque, Amanda
Montejano, Mickaël Montassier, Pascal Ochem, André Raspaud, Sagnik Sen and Éric Sopena. I
would like to thanks them without whom this work would never have been possible.

I also take this opportunity to thank all my other co-authors: Luigi Addario-Berry, François
Dross, Louis Esperet, Frédéric Havet, Ross Kang, Daniel Král’, Colin McDiarmid, Michaël Rao,
Jean-Sébastien Sereni and Stéphan Thomassé. Working with you is always a pleasure !

Since the beginning of my PhD, I have been interested in various fields of graph theory, but
the main topic that I work on is the graph coloring. In particular, I have studied problems such as
the oriented coloring, the acyclic coloring, the signed coloring, the square coloring, . . . It is then
natural that this manuscript gathers results on graph coloring. It is divided into three chapters.
Each chapter is dedicated to a method of proof that I have been led to use for my research
works and that has given results described in this manuscript. We will present each method, some
extensions and the related results. The lemmas, theorems, and others which I took part are shaded
in this manuscript.

***
The entropy compression method

In the first chapter, we present a recent tool dubbed the entropy compression method which
is based on the Lovász Local Lemma. The Lovász Local Lemma was introduced in the 70’s to
prove results on 3-chromatic hypergraphs [EL75]. It is a remarkably powerful probabilistic method
to prove the existence of combinatorial objects satisfying a set of constraints expressed as a set of
bad events which must not occur. However, one of the weakness of the Lovász Local Lemma is
that it does not indicate how to efficiently avoid the bad events in practice.

A recent breakthrough by Moser and Tardos [MT10] provides algorithmic version of the Lovász
Local Lemma in quite general circumstances. To do so, they used a new species of monotonicity
argument dubbed the entropy compression method. This Moser and Tardos’ result was really
inspiring and Grytczuk, Kozik and Micek [GKM13] adapted the technique for a problem on combi-
natorics on words. This nice adaptation seems to be applicable to coloring problems, but not only,
whenever the Lovász Local Lemma is, with the benefits of providing better bounds. For example,
the entropy compression method has been used to get bounds on non-repetitive coloring [DJKW14]
that improve previous results using the Lovász Local Lemma and on acyclic-edge coloring [EP13].

In this context, we developed a general framework that can be applied to most of coloring
problems. We then applied this framework and we get the best known bounds, up to now, for
the acyclic chromatic number of graphs with bounded degree, non-repetitive chromatic number of
graphs with bounded degree, facial Thue chromatic index of planar graphs, . . . We also applied
the entropy compression method to problems on combinatorics on words: we recently solved an
old conjecture on pattern avoidance.
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6 Abstract

This chapter is based on joint works with Daniel Gonçalves, Mickaël Montassier and Pascal
Ochem.

[GMP14] D. Gonçalves, M. Montassier, and A. Pinlou. Entropy compression method applied to graph colorings.
Submitted, 2014. Available on Arxiv:1406.4380.

[OP14a] P. Ochem and A. Pinlou. Application of entropy compression in pattern avoidance. The Electronic
Journal of Combinatorics, 21(2):1–12, 2014.

***
Graph homomorphisms and graph colorings

In this chapter, we present some notions of graph colorings from the point of view of graph
homomorphisms. It is well-known that a proper k-coloring of a simple graph G corresponds to a
homomorphism of G to Kk. Considering homomorphisms from a more general context, we get
a natural extension of the classical notion of coloring. We present in this chapter the notion of
homomorphism of (n,m)-colored mixed graphs (graphs with arcs of n different types and edges
of m different types) and the related notions of coloring. This has been introduced by Nešetřil
and Raspaud [NR00] in 2000 as a generalization of the classical notion of homomorphism. We
then present two special cases, namely homomorphisms of (1, 0)-colored mixed graphs (which are
known as oriented homomorphisms) and homomorphisms of (0, 2)-colored mixed graphs (which
are known as signed homomorphisms).

While dealing with homomorphisms of graphs, one of the important tools is the notion of
universal graphs: given a graph family F , a graph H is F-universal if each member of F admits a
homomorphism to H. When H is F-universal, then the chromatic number of any member of F is
upper-bounded by the number of vertices of H. We study some well-known families of universal
graphs and we list their structural properties. Using these properties, we give some results on
graph families such as bounded degree graphs, forests, partial k-trees, maximum average degree
bounded graphs, planar graphs (with given girth), outerplanar graphs (with given girth), . . .

Among others, we will present the Tromp construction which defines well known families of
oriented and signed universal graphs. One of our major contributions is to study the properties
of Tromp graphs and use them to get upper bounds for the oriented chromatic number and the
signed chromatic number. In particular, up to now, we get the best upper bounds for the oriented
chromatic number of planar graphs with girth 4 and 5: we get these bounds by showing that every
graph of these two families admits an oriented homomorphism to some Tromp graph. We also get
tight bounds for the signed chromatic number of several graph families, among which the family
of partial 3-trees which admits a signed homomorphism to some Tromp graph.

This chapter is based on joint works with Amanda Montejano, Pascal Ochem, André Raspaud,
Sagnik Sen and Éric Sopena.

[MOP+10] A. Montejano, P. Ochem, A. Pinlou, A. Raspaud, and É. Sopena. Homomorphisms of 2-edge-colored
graphs. Discrete Applied Mathematics, 158(12):1365–1379, 2010.

[MPRS09] A. Montejano, A. Pinlou, A. Raspaud, and É Sopena. Chromatic number of sparse colored mixed planar
graphs. In European Conference on Combinatorics, Graph Theory and Applications, EuroComb 2009,
volume 34 of Elect. Notes in Discrete Math., pages 363–367, 2009.

[OP08] P. Ochem and A. Pinlou. Oriented colorings of partial 2-trees. Information Processing Letters,
108(2):82–86, 2008.

[OP14] P. Ochem and A. Pinlou. Oriented coloring of triangle-free planar graphs and 2-outerplanar graphs.
Graphs and Combinatorics, 30(2):439–453, March 2014.

[OPS14] P. Ochem, A. Pinlou, and S. Sen. Homomorphisms of signed planar graphs. submitted, 2014. Available
on Arxiv:1406.4380.

[Pin09] A. Pinlou. An oriented coloring of planar graphs with girth at least five. Discrete Mathematics,
309(8):2108–2118, 2009.
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***
Coloring the square of graphs with bounded maximum average degree

using the discharging method

The discharging method was introduced in the early 20th century, and is essentially known
for being used by Appel, Haken and Kock [AH77, AHK77] in 1977 in order to prove the Four-
Color-Theorem. More precisely, this technique is usually used to prove statements in structural
graph theory, and it is commonly applied in the context of planar graphs and graphs with bounded
maximum average degree.

The principle is the following. Suppose that, given a set S of configurations, we want to
prove that a graph G necessarily contains one of the configuration of S. We assign a charge ω to
some elements of G. Using global information on the structure of G, we are able to compute the
total sum of the charges ω(G). Then, assuming G does not contain any configuration from S,
the discharging method redistributes the charges following some discharging rules (the discharging
process ensures that no charge is lost and no charge is created). After the discharging process,
we are able to compute the total sum of the new charges ω∗(G). We then get a contradiction by
showing that ω(G) ̸= ω∗(G).

Initially, the discharging method was used as a local discharging method. This means that
the discharging rules was designed so that an element redistributes its charge in its neighborhood.
However, in certain cases, the whole graph contains enough charge but this charge can be arbitrarily
far away from the elements that are negative. In the last decade, the global discharging method
has been designed. This notion of global discharging was introduced by Borodin, Ivanova and
Kostochka [BIK07]. A discharging method is global when we consider arbitrarily large structures
and make some charges travel arbitrarily far along those structures. In some sense, these techniques
of global discharging can be viewed as the start of the “second generation” of the discharging
method, expanding its use to more difficult problems.

The aim of this chapter is to present this method, in particular some progresses from the last
decade, i.e. global discharging. To illustrate these progresses, we will consider the coloring of the
square of graphs with bounded maximum average degree for which we obtained new results using
the global discharging method. Coloring the square of a graph G consists to color its vertices so
that two vertices at distance at most 2 get distinct colors (i.e. two adjacent vertices get distinct
colors and two vertices sharing a common neighbor get distinct colors). This clearly corresponds
to a proper coloring of the square of G. This coloring is called a 2-distance coloring. It is clear
that we need at least ∆+1 colors for any 2-distance coloring since a vertex of degree ∆ together
with its ∆ neighbors form a set of ∆ + 1 vertices which must get distinct colors. We investigate
this coloring notion for graphs with bounded maximum average degree and we characterize two
thresholds. We prove that, for sufficiently large ∆, graphs with maximum degree ∆ and maximum
average degree less that 3− ϵ (for any ϵ > 0) admit a 2-distance coloring with ∆+ 1 colors. For
maximum average degree less that 4 − ϵ, we prove that ∆ + C colors are enough (where C is
a constant not depending on ∆). Finally, for maximum average degree at least 4, it is already
known that C ′∆ colors are enough. Therefore, thresholds of 3− ϵ and 4− ϵ are tight.

This chapter is based on joint works with Marthe Bonamy and Benjamin Lévêque.

[BLP14a] M. Bonamy, B. Lévêque, and A. Pinlou. Graphs with maximum degree ∆ ≥ 17 and maximum average
degree less than 3 are list 2-distance (∆+ 2)-colorable. Discrete Mathematics, 317:19–32, 2014.

[BLP14b] M. Bonamy, B. Lévêque, and A. Pinlou. 2-distance coloring of sparse graphs. Journal of Graph Theory,
to appear, 2014.

[BLP14c] M. Bonamy, B. Lévêque, and A. Pinlou. List coloring the square of sparse graphs with large degree.
European Journal of Combinatorics, 41:128–137, 2014.


