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Managing software evolution is a complex task. Indeed, throughout their whole lifecycle, software

systems are subject to changes to extend their functionalities, correct bugs, improve performance and

quality, or adapt to their environment. If not evolved, software systems degrade, become obsolete or

inadequate and be replaced. While unavoidable, software changes may engender several inconsistencies

and system dysfunction if not analyzed and handled carefully hence leading to software degradation

and phase-out.

This thesis proposes an approach to improve the evolution management activity in component-based

software development processes. The solution adopts a Model-Driven Engineering (Mde) approach.

It is based on Dedal, an Architecture Description Language (Adl) that explicitly separates software

architecture descriptions into three abstraction levels: specification, configuration and assembly. These

abstraction levels respectively correspond to the three major steps of component-based development (de-

sign, implementation and deployment) and trace architectural decisions all along development. Dedal

hence efficiently supports evolution management: It enables to determine the level of change, analyze

its impact and plan its execution in order to prevent architecture inconsistencies (erosion, drift, etc.).

Rigorous evolution management requires the formalization, on the one hand, of intra-level relations

linking components within models corresponding to different architecture abstraction levels and on the

other hand, of the formalization of inter-level relations linking models describing the same architecture

at different abstraction levels. These relations enable the definition of the consistency and coherence

properties that prove necessary for architecture correctness analysis. The evolution process therefore

consists of three steps: First, change is initiated on an architecture description at a given abstraction

level; then, the consistency of the impacted description is checked out and restored by triggering

additional changes; finally, the global coherence of the architecture definitions is verified and restored

by propagating changes to other abstraction levels.

Relations and properties are expressed in B, a set-theoretic and first-order logic language. They are

applied on B formal Adl the meta-model of which is mapped to Dedal’s and helps automatic model

transformations. This integration enables to implement a development environment that combines the

benefits of both Mde and formal approaches: Software architecture design using Dedal tools (graphical

modeler) and architecture analysis and evolution management using B tools (animator, model-checker,

solver).

In particular, we propose to use a B solver to automatically calculate evolution plans according to our

approach. The solver explores a set of defined evolution rules that describe the change operations that

can apply on architecture definitions. It automatically searches for a sequence of operations that both

changes the architecture as requested and preserves architecture consistency and coherence properties.

The feasibility of the evolution management approach is demonstrated through the experimentation of

three evolution scenarios, each addressing a change at different abstraction level. The experimentation

relies on an implementation of a search-based software engineering approach mixing software engineer-

ing and optimization and integrates our own solver with specific heuristics that significantly improve

calculation time.
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Pour finir, je remercie ma famille qui m’a toujours accompagné et encouragé (malgré la dis-
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Chapter 1

Introduction

This introductory chapter briefly presents the context of this thesis, the addressed problematic,

our proposal and the organization of the dissertation.

Contents

1.1 Context of Component-Based Software Engineering . . . . . . . . 1

1.2 Problematic of architecture evolution in CBSD processes . . . . . 2

1.3 Thesis proposal and contributions . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Context of Component-Based Software Engineering

Software engineering has greatly evolved since its early days due to the increasing complexity

of software systems and the rising need to produce and maintain software cost-effectively.

Component-Based Software Engineering (Cbse), a sub-discipline of software engineering, is one

of the most promoted development trends that addresses these requirements. Emerged in late

1990s, Cbse promotes an approach to software development centered on effective component

reuse [Sommerville, 2010]. It provides methods, models and guidelines to help and improve

Component-Based Software Development (Cbsd). The principle of Cbsd is to build software

systems by assembling pre-developed and decoupled components stored in software repositories

(often referred to as Off-The-Shelf (OTS) components) instead of building all parts from

scratch. This approach has the benefit to significantly decrease development cost and time-

to-market without giving up quality [Crnkovic, 2002].

Central to Cbsd are software architectures. They describe the high-level structure of the

software system and expose the dimensions along which it is expected to evolve [Garlan,

2000]. An architecture model lists the constituent elements of the system and the way they

1



Chapter 1. Introduction 2

are connected together. It captures the design decisions of the software and enables to reason

about its evolution. As the complexity of software systems increases, the focus of software

development reorients from code to architectures [Shaw and Garlan, 1996]. Evolving software

architectures avoids to delve into low-level source code which is harder to understand and

modify [Georgas et al., 2006].

While Cbse has greatly evolved since its emergence, some issues such as reuse, complexity and

maintenance [Crnkovic, 2003] are still challenging today. In particular, managing architecture

evolution [Breivold et al., 2012] in Cbsd processes is a serious issue.

1.2 Problematic of architecture evolution in CBSD processes

Managing architecture evolution in Cbsd processes is non trivial. Indeed, throughout their

whole lifecycle, software systems are subject to several changes to correct bugs, improve per-

formance and quality, or be adapted to their host environment. While unavoidable, software

changes may alter the system’s architecture leading to several inconsistencies. If not analyzed

and handled carefully, architecture inconsistencies engender the loss of evolvability of the soft-

ware and lead to its degradation and phase-out. A famous problem is software architecture

erosion [de Silva and Balasubramaniam, 2012, Perry and Wolf, 1992]. It arises when modifica-

tions of the software implementation violate the design principles captured by its architecture.

While a lot of work has been dedicated to architectural modeling and software evolution in

general, there still is a lack of foundations and techniques to manage architecture evolution

in Cbsd processes and in particular to tackle architecture inconsistencies notably erosion.

Indeed, existing approaches to architecture evolution hardly support the whole life-cycle of

component-based software (i.e., design, implementation and deployment). Changes are usually

applied at architectural level and then mapped on one-way to implementation (source code)

and runtime. The problem of such approaches is that they do not guarantee the traceability

of design decisions since the links between design, implementation and deployment are not

elucidated. This limits to determine the impact of software changes on architectural decisions

across the whole development stages. Notably, dynamic changes (i.e., at runtime) are not

fully dealt with since changes are propagated only on one-way (from design to runtime) but

not on the opposite way (from runtime to design), hence increasing the risk of erosion and its

consequences (i.e., loss of evolvability, degradation and phase-out).
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1.3 Thesis proposal and contributions

To increase confidence in reuse-centered, component-based software systems, software archi-

tectures must support change at any step of Cbsd (i.e., specification, implementation and

deployment). All architecture descriptions must remain consistent after changes and whatever

part of the architectural description changes affect, their effects have to be propagated to the

other parts.

This thesis proposes an approach to improve the evolution management activity in component-

based software development processes. The approach is based on Dedal [Zhang et al., 2010,

2012], an Architecture Description Language (Adl) that explicitly separates software archi-

tecture descriptions into three abstraction levels: specification, configuration and assembly.

These abstraction levels respectively correspond to three major steps of component-based de-

velopment (design, implementation and deployment) and keep the traceability of architectural

decisions across the whole development process.

The Dedal three architecture abstraction levels present a convenient support for managing

architecture evolution in Cbsd. We are confronted to the following research questions in order

to establish the evolution management approach:

• What kind of relations should be made explicit between the three architecture abstraction

levels to trace the design decisions all along Cbsd?

• What architecture properties should be defined to avoid architecture inconsistencies and

erosion in particular?

• How to enable architectural change and control its impact on the three architecture

abstraction levels?

• How to enable automated architecture analysis and evolution?

This thesis answers these questions through two main contributions.

The first contribution consists in a type theory for Dedal that formally defines its semantics and

the relations between the three architecture abstraction levels. On the one hand, we define

intra-level architecture consistency properties to ensure the well-formedness of architecture

definitions at any abstraction level. On the other hand, we define inter-level architecture

coherence properties to guarantee the traceability of architectural decisions across the three

architecture abstraction levels. To enable automated architecture analysis, the type theory is

formalized in B [Abrial, 1996], a set-theoretic and first-order predicate language.
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The second contribution consists in an evolution management model and a formal approach to

deal with architectural change in Cbsd processes. The approach enables to determine the level

of change, analyze its impact and plan its execution in order to preserve architecture consis-

tency and coherence properties. Evolution plans are constituted of sequences of architecture

change operations calculated using a search-based strategy solver. Instead of using general-

purpose solvers, we propose our own solver with specific heuristics to automatically calculate

evolution plans according to our approach. This could significantly improve calculation time,

especially when the complexity of architecture models increases.

Finally, we undertake an experimentation to demonstrate the feasibility of our approach.

It consists in the experimentation of three evolution scenarios, each addressing a change at

a different abstraction level. For that purpose, we have implemented DedalStudio, a Case

(Computer-Aided Software Engineering) tool that supports Dedal architecture modeling and

evolution management. The tool integrates the specific solver to generate evolution plans. An

evaluation of its performance is also presented.

1.4 Dissertation outline

The dissertation is organized as follows:

• Chapter 2 introduces the context of this thesis, namely the Cbse and software architec-

ture fields and their issues. It then presents the Dedal Adl.

• Chapter 3 establishes two state-of-the-art studies related to this thesis. The first study

surveys a number of existing approaches to architecture evolution and highlights their

limits. The second study surveys five formal modeling languages including B and com-

pares them in terms of expressiveness and tool support. This study argues our choice

for the B modeling language to support our approach.

• Chapter 4 introduces the type theory underlying the Dedal architectural model and

defines the rules to check architecture consistency and coherence between architecture

definitions at all abstraction levels.

• Chapter 5 presents the evolution management model, its associated approach to auto-

matically handle architectural change throughout the whole component-based software

lifecycle and the evolution-solving algorithm enhanced with heuristics.

• Chapter 6 presents the implementation of DedalStudio tool suite supporting our ap-

proach, demonstrates its feasibility on three evolution scenarios and gives an evaluation

of the proposed solver.
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• Chapter 7 summarizes our contributions, discusses the limitations of our approach and

proposes future work directions.





Chapter 2

Context of component-based

software engineering and software

architectures

As mentioned in the introductory chapter, this thesis contributes to the field of Component-

Based Software Engineering (Cbse) and more precisely addresses the problematic of architec-

ture evolution in reuse-intensive, component-based development processes. Thus, this chapter

introduces in more details the context of Cbse and software architectures. Section 2.1 gives

the principles of Cbse, compares the component-based software development (Cbsd) process

with traditional software development processes and agile methods. Section 2.2 introduces

the concepts and definitions related to software architectures and finally Section 2.3 presents

Dedal, an architecture model tailored for Cbsd processes.
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2.1 Component-Based Software Engineering

Component-Based Software Engineering is the sub-discipline of software engineering that con-

cerns the development of software systems making considerable use of components. It provides

methods, models and guidelines for the developers of component-based systems [Pree, 1997].

Cbse emerged in the late 1990’s as an approach centered on effective software reuse [Som-

merville, 2010]. The principle is to produce software systems from already existing compo-

nents instead of developing all parts from scratch. The main motivations of such approach is

to reduce development cost and time to market, meet rapidly emerging customer demands and

increase software reliability and maintainability [Szyperski, 2002]. Cbse has quickly grown up

and becomes recognized as an important sub-discipline of software engineering. There are

several reasons behind this fast emergence. First, software systems are becoming increasingly

complex and provide more functionality. By using components, it is possible to produce more

functionalities with the same investment of time and money [Pree, 1997]. Second, traditional

approaches failed to support reuse. For instance, single object classes are too detailed and

specific whereas components are more abstract and can be considered to be standalone service

providers [Sommerville, 2010]. Third, systems need to be constantly updated and maintained

to respond to new requirements. This need requires a support for easy additions. Heineman

and Councill summarize the three major goals of Cbse [Heineman and Councill, 2001]:

• To support the development of components as reusable entities;

• To provide support for the development of systems as assemblies of components;

• To facilitate the maintenance and upgrading of systems by customizing and replacing

their components.

Although these goals are very promising, it has been shown that achieving them in practice

is very hard and the process of improving reuse has been long and laborious [Pree, 1997]. In

particular, evolving component-based systems in practice is not that easy, especially after the

deployment phase. A deep understanding of the component-based software life-cycle is hence

required to better highlight the issues of Cbse.

2.1.1 Component-based software life-cycle

This section outlines traditional software development processes and agile methods then presents

the component-based development process.
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2.1.1.1 Traditional software development processes

The waterfall Process model. Most of traditional software development approaches ad-

here to the waterfall process model proposed by Royce in 1970 [Royce, 1987]. The principal

stages of the waterfall model (cf. Figure 2.1) map to the following fundamental development

activities [Sommerville, 2010]:

• Requirements definition: This step consists in identifying the system’s functionalities,

constraints and goals by consulting system users. A more detailed and possibly formal

specification of the system is then defined.

• System and software design: This step consists in describing a conceptual and tech-

nical solution to realize the software. An overall system architecture is established.

• Implementation and unit testing: During this step, a set of program units are

realized according to the software design. Unit testing ensures that each unit meets each

specification.

• Integration and system testing: This step consists in integrating all the individual

program units into a whole system, performing complete tests to ensure that system

requirements are met, and delivering the product to the customer.

• Operation and maintenance This step is the post-delivery phase. It involves fixing

bugs which were not yet discovered in earlier stages, improving the implementation of

system units and including new services as new requirements might need to be considered.

Figure 2.1: The waterfall process model

The waterfall model proposes a clear separation between the different stages of software devel-

opment. Its main advantage is that phases do not overlap and documentation is produced at



Chapter 2. Context 10

each stage [Sommerville, 2010]. The waterfall model is more suitable for small projects where

requirements are very well understood. However, such partitioning of software development

makes it difficult to respond to changing customer requirements. Indeed, commitments must

be made at an early stage in the process while results are produced very late [Sommerville,

2010].

2.1.1.2 Agile methods

Agile methods emerged in 1990s to cope with the disadvantages of traditional process models.

They support rapid software development and are more amenable to requirement change.

Agile methods were primarily designed to support the development of business applications

and quickly deliver working software to customer in an iterative manner [Sommerville, 2010].

In 2001, a group of practitioners established a consensus -called the manifesto of agile software-

that sets the values and principles of agile methods 1. The manifesto advocates these four

values:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Agile methods are iterative and focus on incremental development. They actively involve

customer in the development process for feedback and facilitate requirements change even

after software delivery [Sommerville, 2010].

The main disadvantage of such methods is that they depend too much on human personalities

(team developers, customers). Developers are not always willing to support the pressure

of such intense processes and customers are not always willing to spend the time necessary

to give useful feedback [Sommerville, 2010]. Moreover, prioritizing changes may become a

difficult task when the system involves many stakeholders since each stakeholder sees priorities

differently [Sommerville, 2010]. Agile methods are more suitable for small and medium-sized

systems with no associated risks than large, complex and critical systems [Sommerville, 2010].

2.1.1.3 Component-based software development process

The main idea of Cbsd is building systems from pre-existing components. This entails two

consequences on the software development process [Crnkovic et al., 2006] (cf. Figure 2.2).

1http://www.agilealliance.org/the-alliance/the-agile-manifesto/
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First, software development (so called development by reuse) is separated from component

development (so called development for reuse). Therefore, components are supposed to be

already developed when the software development process starts. Second, a component iden-

tification step [Sommerville, 2010] is included in the development process. In the remainder,

we detail the principal stages of Cbsd.

Figure 2.2: Component-Based Development Process

Requirements. In component-based approach, requirements can be defined as abstract

component types describing the funtionalities of the system. Defining requirements in a

component-based approach must consider that, if possible, resulting specification has to be

fulfilled by available software components. If not, either new components have to be devel-

oped or requirements have to be negotiated and modified to use existing components [Crnkovic

et al., 2006].

System design. The design phase consists in defining a complete system architecture with

refined component types to be fulfilled with existing software components. Similar to the

requirement phase, the design phase is strongly related to the availability of components.

Component identification. Component identification step is specific to Cbsd. It replaces

the implementation phase in traditional development processes. Component identification

consists in three sub activities:

• component search: This activity consists in browsing component repositories (such as

Off-The-Shelf (OTS) components) and identify the set of candidate components that are

the most qualified to fulfill system design.
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• component selection: This activity consists in deciding which component composition

provides the best coverage of requirements [Sommerville, 2010]. Selection might be

more complex than search since finding a perfect matching between components and

requirements is often unrealistic.

• component validation: Once components are selected, the architect has to test and vali-

date if they behave as advertised. This activity corresponds to unit testing in traditional

development processes and can be omitted if the component provider is trustworthy.

System integration. This step consists in downloading component from repositories, de-

ploying them into a component container and assembling them into an executable system

architecture.

System validation. Like in traditional development processes, this step is performed to

ensure that all system requirements are met.

Maintenance. In a component-based approach, maintenance is achieved by checking the

availability of new components or new versions of available components. This step maps back

to the component identification step to search for updates.

2.1.2 Discussion

Cbse presents a reuse-based approach to software development. While its associated devel-

opment process (Cbsd) provides numerous benefits compared to the traditional approaches

(e.g., reducing complexity and time to market, separating concerns, improving software qual-

ity, etc.), Cbsd also presents some issues. First, reuse is not such easy since finding trusty

software components that perfectly match with system requirements is not always possible.

Revising and adapting requirements and/or developing new software components that fit to

the system’s specification is often necessary. Second, managing software evolution in Cbsd

processes is a complex task. Indeed changes may affect software at any step of its life-cycle

(e.g., new requirements, new software component versions, component failure, etc.). The im-

pact of change might take high extents compromising thus the whole system, if not analyzed

and handled carefully. We address this issue in chapter 5.

Crucial to Component-Based Software Engineering are software architectures. Next section

introduces the definitions, concepts and activities related to software architectures.
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2.2 Software architectures

This section introduces the basic concepts of software architectures as well as their related

activities; architecture modeling, architecture evolution and architecture analysis.

2.2.1 Basic concepts

Software architectures are the blueprint of software system’s construction and evolution [Tay-

lor et al., 2009]. They describe the high-level structure of the software system and expose

the dimensions along which it is expected to evolve [Garlan, 2000]. A software architecture

captures the principal design decisions made about the system such as its structure, func-

tional behavior, interaction and non-functional properties. Perry and Wolf [Perry and Wolf,

1992] define three types of architectural elements that may be consolidated into two major

architectural concepts; components and connectors:

• Processing elements are components that process the data.

• Data elements are components that contains data to be processed.

• Connecting elements are mediators that hold connections between the different compo-

nents.

In the remainder, we define and detail the concepts of components and connectors.

2.2.1.1 Components

Several definitions about software components exist in the literature. We give two widely cited

definitions that say the essential about what a component is. The first definition was given

by Taylor et al. [Taylor et al., 2009] as follows:

“A software component is an architectural entity that (1) encapsulates a subset

of the system’s functionality and/or data, (2) restricts access to that subset via

an explicitly defined interface, and (3) has explicitly defined dependencies on its

required execution context.”

In other words, a component is a unit of computation that encapsulates data, provides services

to process it and may require services from other components for its execution. Depending on

the architecture, a component may be as simple as an operation or as complex as an entire

system. The second definition is the one of Clemens Szyperski [Szyperski, 2002] who defined

a software component as follows:
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“A software component is a unit of composition with contractually specified inter-

faces and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parties.”

Roughly said, a component is a ”black box” where code and implementation details are entirely

hidden and data is accessed only via interfaces. Components hence adhere to the software en-

gineering principles of encapsulation, abstraction and modularity. They are decoupled entities

developed for reuse. A component comprises three parts: a set of interfaces, an implementation

and a specification.

Interfaces. An interface is the communication point that manages the interaction of com-

ponent with its environment, i.e., the other components [Szyperski, 2002]. Components are

made abstract thanks to their interfaces that hide the implementation details and ease reuse.

Interfaces can be either provided or required (cf. Figure 2.3):

• A provided interface exposes the set of services provided by the component to other

components. The communication point enables to receive service invocations from other

components.

• A required interface defines the services required by the component from other compo-

nents. The communication point enables to send service requests to other components.

Figure 2.3: Component interfaces (adapted from [Sommerville, 2010])

Implementation. On the contrary, an implementation refers to the concrete and internal

definition of a component (white box), i.e., its source code. Once the component is developed,

its implementation is hidden and decoupled thanks to interfaces. Components can then be

(re)used to build architectures without any required knowledge about their inner implemen-

tation.

Specification. The component specification refers to the definition (type) of its interfaces [Crnkovic,

2002]. At the beginning, an interface specification was limited to its syntactical definition,

i.e., a set of operation signatures where each signature includes a name and a set of parame-

ters. Several Idls (Interface Definition Languages) were then proposed to specify component
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interfaces. Later, Meyer introduced the notion of contract [Meyer, 1992] that extends the

syntactical definition with behavior (by adding pre- and post-conditions on the interface oper-

ations). The contract concept was in turn enriched to include additional characteristics such as

synchronization (the order of operations) and quality of service [Beugnard et al., 1999, 2010].

2.2.1.2 Connectors

Another fundamental aspect of software systems is managing interaction between its building

blocks, i.e., components. While software components implements the functionalities of the sys-

tem, software connectors bind components together and act as mediators between them [Taylor

et al., 2009]. This separates the computation concern handled by components from the in-

teraction concern managed by connectors, hence strengthening reuse. Interaction may even

become more challenging than selecting appropriate components. This is often the case when

systems are built from large numbers of complex components distributed across multiple hosts

and updated over long time periods [Taylor et al., 2009]. A software connector can provide

multiple services in the architecture. Mehta et al. identify eight types of software connectors

depending on the services they realize [Mehta et al., 2000]: procedure call, event, data access,

linkage, stream, arbitrator, adapter and distributor.

Connectors can be explicitly represented as specific components with two communication

points; the provided connector end and the required connector end (e.g., C2SADEL [Med-

vidovic et al., 1999], Wright [Allen and Garlan, 1997]). Each connector end is the counterpart

of the connected component interface. Connectors can also be implicitly represented by a

simple link binding two opposite interfaces of two different components (e.g., Darwin [Magee

et al., 1995]).

2.2.2 Architecture modeling

Architecture modeling is the activity of documenting one or several aspects of a system’s archi-

tecture using a particular notation. An architectural model is hence an artifact that captures

some or all of the design decisions comprised in the software architecture [Taylor et al., 2009].

Architecture models are sometimes referred to as architecture descriptions. An architectural

modeling notation is a language or means used to model software architectures. In the re-

mainder, we focus on architecture modeling notations and namely, Architecture Description

Languages.
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2.2.2.1 Level of formalism of architectural modeling notations

Available notations range from the informal to the highly formal. The choice of a modeling

architectural notation depends on the stakeholders to which models are addressed. Taylor et

al. [Taylor et al., 2009] classify architectural modeling notations into three categories according

to their level of formalism:

• Informal models: A model is said to be informal when it does not have a formally

defined syntax. Usually, informal models are captured in boxes-and-lines diagrams and

are intended for non-technical stakeholders such as managers and system customer.

• Semi-formal models: A semi-formal model has a formally defined syntax and is mostly

used for both technical and non-technical system stakeholders. It tries to strike a balance

between precision and formalism on one hand, and expressiveness and understandability

on the other. A widely spread example of semi-formal languages is Uml [UML, 2013].

Unlike informal boxes-and-lines notations, Uml is standardized and its notation obey to

a common specification.

• A formal model has formally defined semantics in addition to a formally defined syntax.

Formal models are typically intended for the system’s technical stakeholders. They are

used to address the most critical aspects of a system and are amenable to automated

analysis [Taylor et al., 2009].

2.2.2.2 Architecture Description Languages

An Architecture Description Language (Adl) is a language dedicated to architecture model-

ing. It provides features and specific constructs to express the basic concepts of a software

architecture i.e., components and their connections. The definition of an Adl has long been

ambiguous. Consensus on this definition was established by Medvidovic et al. as they surveyed

a large number of Adls and identified their common properties [Medvidovic and Taylor, 2000].

The following definition can hence be given to an Adl [Medvidovic, 2006]:

“An architecture description language is a language that provides features for mod-

eling a software system’s conceptual architecture, distinguished from the system’s

implementation. An Adl must support the building blocks of an architectural de-

scription.”

An Adl must hence be able to express components and their interfaces, connectors (implicitly

or explicitly) and configurations (i.e., the topology of the architecture). First-generation Adls



Chapter 2. Context 17

were domain-specific. Examples include C2-SADEL [Medvidovic et al., 1999] for the design

of concurrent systems and Wright [Allen and Garlan, 1997] and Darwin [Magee and Kramer,

1996] for the design and analysis of distributed architectures. Later, attempts to unify Adls

and make them general-purpose were made. ACME [Garlan et al., 1997] was designed for

such purpose. It consists in a common interchange description language that offers annotation

facilities to support architecture descriptions in other languages. Another relevant example is

xAdl 2.0 [Dashofy et al., 2001]. It was designed to support various types of systems. The

particularity of xAdl 2.0 resides in its extensibility since it is XML-based. It offers then an

easy way for architects to adapt its use to any kind of architectures.

Adls can also be used to perform architecture analysis and support architecture evolution.

Chapter 3 surveys a number of approaches that rely on Adls to support such activities.

2.2.3 Architecture evolution

As software ages, its architecture must evolve to tackle all the changes that arise during the

software life-cycle. Architecture evolution is considered as one of the most challenging tasks

of component-based software engineering. To better identify the motivations and issues of

architecture evolution, this section gives a quick overview of software evolution in general and

architecture-centric evolution in particular.

2.2.3.1 Software evolution

Since the early years of software engineering, there was an awareness that the most costly

and difficult part of software development is its maintenance phase. In a study conducted by

Lientz and Swanson et al. in the 70’s [Lientz et al., 1978], it has been proven that mainte-

nance costs represent about 60% of the overall costs of software production. Maintenance as

shown in the waterfall development process (cf. Figure 2.1) is the final phase of the life-cycle

of a software system that comes after its deployment to fix bugs and bring some adjust-

ments. This classical view has long governed in practice and is still widely used in industry

today [Mens and Demeyer, 2008]. It also became a part of IEEE 1219 Standard for software

maintenance [IEEE1219-1998, 1998] which defines maintenance as follows:

“Software maintenance is the modification of a software product after delivery to

correct faults, to improve performance or other attributes, or to adapt the product

to a modified environment.”

This process model is too strict and not flexible enough to deal with evolution. Indeed,

requirements continue to change during the entire software life-cycle. It is hence unrealistic
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to assume that the requirements are all known and fixed before starting software design.

Moreover, knowledge gained during the later phases may need to be fed back to the earlier

phases [Mens and Demeyer, 2008]. The limitation of this process model was noticed a long

time ago and a particular interest to software evolution was started by Manny Lehman when

he stated the famous ”Laws of software evolution” [Lehman, 1984]. Lehman defined software

evolution as follows:

“Software evolution is the collection of all programming activities intended to gen-

erate a new version of some software from an older operational version. If these

activities can be performed at runtime without the need for system recompilation

or restart, it becomes dynamic software evolution.”

The particularity of Lehman’s definition is that it deals with the evolution of systems not just

the evolution of code. Later research on software evolution resorted to evolving software at

the architectural level rather than source code.

Several evolutionary process models were proposed to tackle the limitations of the waterfall

process model. Among the most famous models is the staged process model of Bennett and

Rajlich [Bennett and Rajlich, 2000] presented in Figure 2.4.

Figure 2.4: Staged process model for evolution [Bennett and Rajlich, 2000]

The Bennett and Rajlich model has the particularity to explicit the inevitable problem of

software aging [Parnas, 1994]. After the initial development, the software is subject to several

changes that lead to its degradation. When there is a loss of evolvability, servicing stage starts

to keep software running up by applying small patches (minor changes) [Mens and Demeyer,

2008]. When the servicing stage becomes too hard and costly, the software enters the phase

out stage and then is closed down.
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2.2.3.2 Architecture-centric evolution

One of the major assets of software architecture is undoubtedly its support for evolution. As

stated in the most common definitions, a software architecture is also the backbone of software

evolution. It exposes the dimensions along which the system is expected to evolve [Garlan,

2000]. Reasoning about evolution at the architectural level enables a better understanding of

change and allows a better estimation of modifications costs. Evolving software architectures

avoids to delve into low-level source code which is harder to understand and modify [Georgas

et al., 2006]. Indeed, evolution is resorted out to manipulating the constituent parts of the

software and their connections as for instance replacing, deleting or adding components.

Nevertheless, architecture evolution presents several issues. Software architectures may be

altered due to changes leading to several inconsistencies (or mismatches). Architecture mis-

matches engender loss of evolvability and lead to software degradation (cf. Figure 2.4). Avoid-

ing architectural mismatches is one of the major challenges of Cbse. As argued by Garlan

et al., the difficulty of reuse comes essentially from architectural mismatches that arise due

to several changes that affect software [Garlan et al., 1995, 2009]. Next section discusses in

more details architecture mismatches and chapter 5 presents our architecture evolution model

to deal with such inconsistencies.

2.2.4 Architecture analysis

Architecture analysis can be defined as the activity of discovering important system properties

captured by the system’s architecture models [Taylor et al., 2009]. It relies on rigorous formal

models and helps the early detection of inappropriate or incorrect design decisions. Architec-

ture analysis presents an efficient way to anticipate architecture inconsistencies that may arise

during software evolution.

Architecture inconsistencies. Taylor et al. [Taylor et al., 2009] define consistency as an

internal property intended to ensure that different elements of an architectural model do

not contradict one another. They cite five examples of inconsistencies that may occur in an

architectural model:

• Name inconsistencies concern the names of components or their constituent elements

such as exported services. Inconsistency may occur when multiple elements have the

same name and the wrong one is accessed or when attempting to access a non-existent

element.
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• Interface inconsistencies can result from name inconsistencies when the name of a

required service does not match with another component’s provided one. Interface in-

consistencies concern also type mismatches between a required and a provided interface.

Notably, when the parameter types of the required service or their return types do not

match with the provided one according to the type system followed by the architectural

model.

• Behavioral inconsistencies can occur between two components that satisfy name and

interface consistencies but have services which behaviors do not match.

• Interaction inconsistencies occur when the interaction protocol between two compo-

nents is violated. An example is the order of accessing their services.

• Refinement inconsistencies concern multiple levels of abstraction of a software sys-

tem description and occur when architectural design decisions are omitted, changed or

violated in a description according to a more abstract one.

Apart from the inconsistencies identified by Taylor et al., there are two famous architecture

mismatches highly cited in the literature which are erosion and drift introduced by Perry

and Wolf in 1992 [Perry and Wolf, 1992]. These architecture problems have gained a lot

of interest several years ago and are now recognized as major issues of architecture-centric

evolution [de Silva and Balasubramaniam, 2012]. Erosion can be defined as the violation of

design decisions described at a higher abstraction level by its lower abstraction level whereas

drift can be defined as the introduction of new design decision at a lower abstraction level that

are not included or implied by its higher abstraction level. Given these definitions, erosion and

drift might be considered as refinement inconsistencies. Some other definitions refer to these

terms in a more generalized way such as architectural degeneration [Hochstein and Lindvall,

2005] or architectural decay [Riaz et al., 2009]. De Silva et al. [de Silva and Balasubramaniam,

2012] proposed the following definition of architecture erosion:

“Erosion is the phenomenon that occurs when the implemented architecture of a

software diverges from its intended architecture.”

This definition is interesting because it highlights the relation between two architecture levels,

i.e., the intended architecture and the implemented architecture. Taylor et al. use the terms

prescriptive architecture and descriptive architecture [Taylor et al., 2009] to respectively denote

these levels. Few work however has been dedicated to expliciting these two levels and studying

their relationship. To better control erosion in Cbse processes, the intended architecture and

the implemented architecture must be explicitly described. Additionally, the runtime archi-

tecture level must be taken into account since erosion can be engendered by dynamic changes.
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The problem of erosion can also be seen in the opposite way, i.e., the intended architecture

diverges from its implemented architecture. This often happens when new requirements are

included in the system’s specification but some of them are not implemented. Zhang, in her

thesis [Zhang, 2010], gives the name pendency to this problem and defines it as the introduc-

tion of new design decisions into a higher architecture level that are not implemented by its

lower architecture level. Next section discusses the abstraction levels that must be elucidated

in Cbsd process to foster reuse and better control architecture inconsistencies that may arise

during architecture-centric evolution.

2.3 The Dedal architecture model

Zhang proposes a new vision of Cbsd [Zhang, 2010] that explicits the architecture descriptions

produced at each development step (cf. Figure 2.5).

Figure 2.5: Reuse development process [Zhang, 2010]

The proposed process focuses on three development steps: specification (or design), implemen-

tation and deployment. After a classical requirement analysis, architects design an architecture

specification that defines which services should be supplied by components and how compo-

nents should be connected to meet requirements. The architecture specification corresponds to

the architecture as intended. The next step consists in creating an architecture configuration

that implements the specification. During this step architects select suitable concrete compo-

nents that match those specified in the previous step and compose them to realize a complete

architecture. The architecture configuration corresponds to the architecture as implemented.

The final step consists in instantiating and deploying the architecture configuration. The
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corresponding model is called the architecture assembly and represents the architecture as

deployed.

Dedal [Zhang et al., 2010, 2012] is an Adl and architecture model that supports such process.

It explicitly separates software architecture definitions into three abstraction levels: speci-

fication, configuration and assembly. To illustrate the concepts of Dedal, we introduce the

Home Automation Software (Has) example that manages comfort scenarios. Here, it auto-

matically controls the building’s lighting in function of the time. For this purpose, we propose

an architecture with an orchestrator component that interacts with the appropriate devices

to implement the desired scenario. In the remainder, we present the Dedal three architecture

levels. Figure 2.6 is recalled to illustrate each architecture abstraction level corresponding to

the Has example.

2.3.1 The Dedal architecture specification level

The architecture specification level corresponds to the design step of the Cbsd process. It

defines the functional requirements of the software system and gives an abstract view of its

constituent elements. The design decisions to be taken at this level consist in identifying the

types of components which will be (re)used to perform the required functionalities. These

abstract component types are called component roles.

Component roles. Specifying an architecture consists on defining component roles that

represent the expected fucntionalities to be provided by available components. A component

role only declares the functionalities (as a set of interface specifications). This abstract def-

inition allows a wider set of components to match the specification and be later selected to

implement the architecture. Hence, component roles are used as a guide to help the search for

concrete existing component in the next step.

Figure 2.6-a shows an example of architecture specification. It is constituted of the Home-

Orchestrator component role that manages the building’s lighting using both Light and Lu-

minosity component roles, in function of time by calling the Time component role.
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Figure 2.6: The Dedal architecture levels

2.3.2 The Dedal architecture configuration level

The configuration architecture level corresponds to the implementation step of the Cbsd pro-

cess. It describes a concrete implementation of the software system. An architecture configu-

ration is defined by the set of components selected during the identification process and that

best match with the abstract component types (i.e., component roles) defined in the architec-

ture specification. These artifacts are called component classes and their associated types are

called concrete component types.

Component classes. Component classes correspond to existing software components stored

in repositories (such as OTS components). In Dedal, component classes can either be prim-

itive or composite. A primitive component class encapsulates executable code. A composite

component class encapsulates an inner architecture configuration (i.e., a set of connected com-

ponent classes which may, in turn, be primitive or composite). A composite component class

exposes a set of interfaces corresponding to the unconnected interfaces of its inner components.

Component classes can also have attributes that enable parametrization.

Concrete component types. A component type gives an abstract representation of a

set of component classes. It defines the set of interfaces that a class must hold to be an

implementation of this type. Component types are used to classify component classes and
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build indexes on the content of component repositories. To search for component classes that

can be used to implement an architecture specification, component roles are matched with

component types (using classification based on specialization and substitution in a manner

similar to Arévalo et al. [Aboud et al., 2009, Arévalo et al., 2008]).

Figure 2.6-b shows an example of architecture configuration. It represents an implementation

of Has conforming to the architecture specification shown in Figure 2.6-a. The HomeOrches-

trator and Time component roles are respectively realized by the Orchestrator and Clock

component classes whereas the Light and Luminosity coomponent roles are both realized by

the AdjustableLamp component class. The relations between component classes and compo-

nent roles are studied in depth in Chapter 4.

2.3.3 The Dedal architecture assembly level

The architecture assembly level corresponds to the deployment step of the Cbsd process. It

consists in an assembly of instantiated concrete component selected during the implementation

step. These artifacts are called component instances. The architecture assembly describes

software at runtime and holds information about its internal state. It lists the instances of

the component classes that compose the deployed architecture at runtime and their assembly

constraints (such as the maximum number of connected instances).

Component instances. Component instances document how the component classes from

an architecture configuration are instantiated in the deployed software. Each component

instance has an initial and a current state defined by a list of valued attributes.

Figure 2.6-c shows an example of architecture assembly. It represents a possible instantiation of

Has. This assembly enables to manage the lighting in two rooms, desk and sitting room, thanks

to the two instances of the AdjusatbleLamp component class: lampDesk and lampSitting.

Discussion. Dedal introduces three architecture abstraction descriptions that document the

three majors steps of Cbsd process. It helps hence a better understanding of the component-

based development activity and provides more flexibility to software design by reuse. It pro-

vides an XML-based textual syntax (the Adl) that enables to specify software architectures

in three separate architecture descriptions (i.e., specification, configuration and assembly). In

this work, we focus on studying the relations between the Dedal architecture levels (e.g., the

realizes relation between component roles and component classes) and formally define their

semantics to enable architecture analysis and evolution. Therefore, the Dedal Adl syntax is

out of the scope of this work and the interested reader may find it in Zhang’s thesis [Zhang,

2010].
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2.4 Conclusion

This chapter introduced the context of Component-Based Software Engineering and Software

Architectures and highlighted the issues of both fields. We draw attention to two main issues.

First, reuse is still difficult because fulfilling requirements with existing software components

often needs revision and requirement adaptation. Second, managing architecture evolution in

Cbsd processes is a complex task because of the several inconsistencies that may alter the archi-

tecture (e.g., interface inconsistencies, interaction inconsistencies, erosion, etc.). Changes may

intervene at any step of Cbsd, i.e., requirements, implementation or deployment. Therefore,

determining and handling the impact of change on the traceability of architecture decisions is

also challenging.

This chapter also presented Dedal, a novel architecture model tailored for Cbsd processes.

The particularity of Dedal is that it explicitly separates architecture definitions into three

abstraction levels (i.e., specification, configuration and assembly) that correspond to there

major steps of Cbsd process (i.e., design, implementation and deployment). Therefore, we

opt for Dedal to support our approach to architecture evolution management.





Chapter 3

Software architecture evolution and

formal modeling languages:

A state of the art

The previous chapter introduced the context of component-based software development and

the concepts related to software architectures as they present the blueprint of software system

construction and evolution. This chapter addresses the issues of managing software architec-

ture evolution. For that, we conduct two studies. In the first study (Section 3.1), we survey

a number of existing approaches based on architecture-centric evolution and classify them

according to a number of criteria we consider crucial to handle evolution in reuse-centered,

component-based processes. This study aims to highlight the advantages and limits of exist-

ing approaches and to help us set the basis for an alternative approach. In the second study

(Section 3.2), we survey a number of formal modeling languages and compare them in terms of

expressiveness and tool support. This study aims to evaluate the suitability of formal modeling

languages to support architecture evolution analysis. This chapter concludes on the choices

considered to address the issues of component-based architecture evolution management.
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3.1 Study of existing evolution approaches

In this state-of-the-art, we survey a number of approaches addressing the evolution of software

architectures. Since the literature about architecture evolution is very abundant, the survey

covers the most relevant approaches proposed during the two last decades and that are related

to this thesis. In this survey, we try to answer the following questions in order to evaluate

existing approaches:

• Is the approach general-purpose or domain-specific?

• What does the approach use as a support to model architectures and manage software

evolution?

• What architecture abstraction levels does the approach take into account? And does

the approach support multi-level evolution (i.e., top-down evolution and bottom-up

evolution).

• What kinds of change operations are possible with the approach? Is there any mechanism

to specialize and substitute components?

• What kind of analysis does the approach support? And what kind of formalism is used

to perform architecture analysis?

• Is there any tool support for the proposed approach?

In the remainder, we present existing evolution approaches and in Section 3.1.11 we give their

comparison based on the previous questions.
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3.1.1 C2-SADEL

Medvidovic et al. [Medvidovic et al., 1999] propose an approach to evolve software architectures

based on the C2-style [Taylor et al., 1995]. C2 is a component and message-based architecture

style designed to specify GUI (Graphical User Interface) and distributed applications. The ap-

proach relies on C2-SADEL (Software Architecture Description and Evolution Language), an

Adl for modeling architectures in the C2-style provided with subtyping mechanisms to enable

architecture evolution. C2-SADEL separates between component types and component in-

stances. Architectures hence can be explicitly modeled at two abstraction levels: a description

that contains component types and their connections and another description that contains

instances of component types and connectors. However, there is no clear distinction however

between abstract component types and concrete ones. C2-SADEL also provides a sub lan-

guage for describing changes called AML (Architecture Modification Language). AML allows

five change operations: addition (addComponent), deletion (removeComponent), connection

(weld), disconnection (unweld) and replacement (upgrade).

Component subtyping is in the heart of the evolution approach proposed by Medvidovic et

al.. The subtyping mechanism is built upon a type theory [Medvidovic et al., 1998] inspired

from Object-Oriented subtyping rules. The theory proposes multiple rules for subtyping com-

ponents. Depending on the architect’s goal, it is possible to specialize one or multiple aspects

of components (i.e., name, interfaces, behavior or implementation). The type theory also

enables architecture analysis like type-checking and checking interoperability between two

components. The evolution process depicted in Figure 3.1 enables evolution on one direction.

Changes are firstly applied on architectural models. Then, they are reified to synchronize

the implementation with architectural models and finally implemented. While the evolution

process is complete, it only supports forward evolution. Dynamic changes cannot be captured

and propagated to architecture models through a reverse evolution process. Moreover, the

approach applies only to C2-style architectures that imposes strict communication rules be-

tween components and requires a specific expertise from the architect (e.g., event-based and

asynchronous programming, concurrency handling) [Oreizy et al., 1998].

3.1.2 Dynamic Wright

Dynamic Wright [Allen et al., 1998] is an extension of the Wright [Allen and Garlan, 1997]

Adl that supports architecture evolution. Wright is basically designed to model and ana-

lyze the dynamic behavior of distributed architectures. It provides only one representation

to model architectures. An architecture description in Wright (called Style) lists component

and connector types as well as their instances. Reuse is not favored since component types

are not defined as independent entities. Wright supports architecture analysis thanks to Csp
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Figure 3.1: Evolution process in C2-SADEL [Oreizy and Taylor, 1998]

(Communicating Sequence Processes) [Hoare, 1978], its formal ground. The evolution in Dy-

namic Wright is managed by control events. A control event consists in a condition under

which the dynamic change is allowed. Control events are grouped into a configuration program

that specifies how reconfiguration actions (new, del, attach and detach) will be triggered. The

approach based on Dynamic Wright addresses only one level of change (runtime). Moreover,

the Adl is domain-specific (distributed architectures) and is based on the Csp notation which

makes its use limited to experienced users.

3.1.3 Darwin

Darwin [Magee et al., 1995] is an Adl designed for the specification of the structure of dis-

tributed systems. It provides a hierarchical decomposition scheme to define components.

Hence, an architecture description in Darwin consists in a root composite component includ-

ing a set of component instances and their connections. Basic semantics in Darwin are defined

with π-calculus [Milner et al., 1992]. They consist in services (provide and require), bindings

(bind) and primitive components defined as compositions of services. Darwin hence enables

analysis and guarantees the correctness of connections.

Darwin provides two mechanisms to deal with anticipated dynamic architecture evolution [Magee

and Kramer, 1996]: lazy instantiation and direct dynamic instantiation. Lazy instantiation

consists in instantiating a component only when one of its services is invoked. However, in-

volved components and the way they are attached must have been specified at design-time.

Direct dynamic instantiation allows dynamic structures to evolve in arbitrary ways. Darwin

also deals with unanticipated evolution. This process is controlled through a reconfiguration
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manager that makes decisions regarding changes. Required changes are specified in a script

using a change language providing addition (create), deletion (remove) connection (link) and

disconnection (unlink) directives [Kramer and Magee, 1990]. When a change affects one or

several components, all impacted entities (either directly or through impact propagation) are

temporarily disabled (passive state) until change is processed (cf. Figure 3.2). Darwin pro-

vides an approach to capture and control the dynamic change and its impact. However, it only

covers a single abstraction level (the configuration) and does not support change propagation

from runtime to the design level.

Figure 3.2: Unanticipated changes management in Darwin [Kramer and Magee, 1990]

3.1.4 ArchWare

ArchWare is an European project [Oquendo et al., 2004] that provides a set of architecture-

centric languages and tools for the engineering of evolvable software systems. π-Adl [Oquendo,

2004a] is the language proposed to model and evolve static, dynamic and mobile architectures.

It is founded on the higher order logic π-calculus [Milner et al., 1992] – from hence its name.

Component and connectors can be explicitly modeled as independent entities. The architec-

ture structure is composed of instances of these entities and their links. Only the assembly

level is hence covered by π-Adl. ArchWare also includes π-Arl [Oquendo, 2004b], (Archi-

tecture Refinement Language) that enables the stepwise refinement of architectures expressed

in π-Adl. The refinement in π-Arl enables a forward evolution of the original architecture

description to a more concrete one. The language provides refinement actions to add and

delete architectural elements to/from the original architecture. Dynamic evolution in Arch-

ware is managed through two dedicated components: the ”choreographer” and the ”evolver”.

The ”choreographer” is in charge of applying user-requested changes like the creation/deletion

of new component or connector instances (new/del) and attachment/detachment (attach/de-

tach). The “evolver” manages unanticipated changes using a virtual machine in a manner

similar to Darwin. This component is called whenever an evolution must be done. The

“evolver” responds to the change by loading the necessary elements. The latter should have

been previously described in a file that will be loaded by the virtual machine. Like Darwin,

Archware covers both static and dynamic evolution and enables verification and architecture

analysis since it is founded on π-calculus. However, there is neither a clear distinction between
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the abstraction levels related to the component-based development process nor a support for

reverse evolution.

3.1.5 Dynamic reconfiguration with Plastik

Plastik [Joolia et al., 2005] is an approach that addresses dynamic architecture reconfiguration

at both design-time and runtime (cf. Figure 3.3). It explicitly separates the Adl level from the

runtime level. The Adl level consists of a style description where component types, connector

types and constraints (invariant) over them are expressed and, a system description that lists

the instances of component and connector types as well as their attachments. The runtime

level consists of the runtime engine that supports the execution of the system and manages

its reconfiguration.

Figure 3.3: The architecture of Plastik [Joolia et al., 2005]

The Adl level descriptions are expressed using an extension of ACME [Garlan et al., 1997],

a general-purpose and extensible Adl providing common architectural constructs (i.e., com-

ponents, ports, connectors, roles, attachments and representations). The extension (called

Armani [Monroe et al., 1998]) is based on first-order predicate logic to support analysis (e.g.,

topology constraints) and provides specific constructs to support programmed (anticipated)

and ad-hoc (unanticipated) changes. The mapping of the Adl level to the runtime level is

realized using the OpenCOM component model [Coulson et al., 2004] that supports runtime

reconfiguration. Like all other surveyed approaches, Plastik supports only Adl-to-runtime

evolution and the used Adl, ACME/Armani, covers only a single architecture level that cor-

responds to the configuration architecture.

3.1.6 Approach of Hansen et al.

Hansen and Ingstrup propose a way to model and analyze runtime architectural change [Hansen

and Ingstrup, 2010, Ingstrup and Hansen, 2009]. The approach is based on a runtime architec-

ture model (cf. Figure 3.4) that closely maps to the OSGi [OSGi, 2015] platform to facilitate
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implementation and on Alloy [Jackson, 2002] as a relational first-order logic modeling language

to formalize the static and dynamic concepts (operations) of the architecture model.

Figure 3.4: Runtime architecture model [Hansen and Ingstrup, 2010]

The choice of Alloy is motivated by its support for object-oriented modeling and its accompa-

nying analyzer that enables automated verification. The objective is to ensure a reliable way

to apply architectural changes without violating some predefined properties. For this purpose,

the authors model the reconfiguration planning as a predicate satisfaction problem with pre-

and post-conditions. Then, they run the Alloy analyzer to find sequences of the model in-

stances satisfying the problem where the first instance satisfies the pre-conditions and the last

instance satisfies the post-conditions. This work focuses only on one level of change which is

runtime. Moreover, the adopted architecture model is dependent on OSGi implementation.

3.1.7 SAEV

SAEV (Software Architecture EVolution Model) [Oussalah et al., 2005, Sadou et al., 2005]

is a generic model that enables the specification and management of software architecture

evolution. The model, as shown in Figure 3.5, associates a set of evolution strategies to each

architectural element.

An evolution strategy consists of a set of evolution rules applicable to the architectural model

with respect to its invariants. Evolution rules are specified using the ECA formalism (Event-

Condition-Action) where the event represents the invocation message, the condition represents

the constraints to be satisfied to execute the rule and the action corresponds to an elementary

evolution operation (e.g., addition, modification, deletion). The whole process is managed by

the evolution manager. SAEV is intended to be generic and independent from any Adl. For

this purpose, the model is based on three abstraction levels meta-level, architectural level and

application level related by an instantiation relation as illustrated in Figure 3.6.
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Figure 3.5: SAEV meta-model [Oussalah et al., 2005]

Figure 3.6: Architecture abstraction levels supported by SAEV [Sadou et al., 2005]

The meta-level gathers the generic architectural concepts (i.e., components, connectors, con-

figurations) to be used/extended by any Adl to model architectures. The architectural level

represents the architecture descriptions expressed by instantiating the concepts of the meta-

level. Finally, the application level represents the assemblies that instantiate the descriptions

of the architectural level. This way, SAEV manages static evolution at both architectural

and application levels by applying the same mechanisms. The evolution process includes a

specification phase and an execution phase. The specification phase consists in defining the

evolution strategies and the invariants to be preserved by the architectural elements targeted
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by the change. The execution phase starts when the user selects the element to evolve and the

associated change operation. The evolution manager intercepts the event and searches for the

adequate evolution strategy to use and then selects the associated evolution rules. Rules are

then triggered by forward chaining to handle the impact of change. The evolution is validated

or canceled by the user after the verification of invariants. In the second case, the user has to

choose another strategy.

SAEV proposes a generic approach to deal with architecture evolution. Unlike the other ap-

proaches, it addresses two abstraction levels (i.e., the architectural and application levels)

that correspond to configuration and assembly levels according to Dedal. The approach how-

ever does not support dynamic change and still lacks tool support and formal concepts and

mechanisms to automate the evolution process. Moreover, change is propagated only in one

direction since the evolution of each abstraction level is handled by its top level.

3.1.8 SAEM

SAEM (Style-based Architecture Evolution Model) [Goaer et al., 2008, Tamzalit et al., 2006]

is a model that addresses the specification and evolution of domain-specific architectures. It

adopts the same architecture levels as SAEV (i.e., meta-level, architectural level and applica-

tion level) to be generic and independent from any Adl. Unlike the other approaches, SAEM

considers that architectural evolutions must be treated as first-class entities that can be spec-

ified independently and classified for reuse by a particular family of systems. For that, it

introduces the notion of evolution style that refers to such entities. SAEM defines the vocab-

ulary of evolution styles using Uml 2.0 [UML, 2013] (notably OCL to specify the semantics).

It proposes four relations to manipulate them: instantiation, specialization, composition and

use. Evolution styles can hence be instantiated several times by an architecture (at the appli-

cation level), specialized to more refined/specific styles, composed to form complex styles and

used directly by other styles. The evolution process in SAEM contains four phases: invocation

of the evolution by the user or by another evolution style, search for the required evolution

style (user may be requested if several possibilities are presented), execution and validation.

An evolution invocation implies its instantiation. Change is propagated during execution in

several ways thanks to composition, specialization and use relations. Validation ensures that

invariants related to an architectural element are respected like in SAEV. SAEM focuses more

on specifying and reusing evolution styles rather than o the way evolution is managed. It

addresses only the application level (which corresponds to Dedal’s assembly level) even if

evolution is specified and managed at the top level (architectural level). Hence, changes are

captured at only one level (the application) and only top-down propagation is considered.

Moreover, like SAEV, evolution management lacks tool support and rigorous mechanisms.
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3.1.9 Approach of Barnes et al.

Barnes et al. [Barnes et al., 2014] propose an approach to specify and plan architecture evolu-

tion for specific classes of systems. The approach is centered on the concepts of evolution styles

and evolution paths. An evolution path represents an evolution trace leading from an initial ar-

chitecture to a desired target architecture. The notion of evolution style is wider than the one

introduced by SAEM. An evolution style defines the set of path constraints (e.g., invariants,

ordering) that identify permissible evolution paths and provides adequate operators to apply

transformations (that represent transitions in an evolution path) as well as a set of evaluation

functions used to compare evolution paths according to quality metrics. Thereby, an evolution

style denotes a family of evolution paths sharing common properties and satisfying a common

set of constraints. Evolution operators are specified using combinations of elementary change

operations (e.g., component addition, attachment, replacement, etc.).

The approach is intended to be language-neutral and formalism-independent. Indeed, there

is no proposed formalism to support architecture modeling. It is presumed that architectures

are modeled using an Adl or Uml (with Ocl for defining constraints and Qvt [OMG, 2011]

for transformations). Specifying constraints and operators depends on the chosen formalism.

While this language in-dependency may be advantageous, it is not guaranteed that the chosen

formalism will be able to cover all the features of the approach. Incidentally, Barnes et al.

conducted two case studies, one using ACME [Garlan and Schmerl, 2009] and one using

UML [Barnes et al., 2014], which cover only some features of the approach. The approach also

admits multiple architecture views such as those proposed by Clements et al. [Garlan et al.,

2010] (module view, component and connector view and allocation view) to capture properties

related to different facets of the software architecture. However, there is no explicit distinction

between the three main steps of the software lifecycle nor a way to capture and control the

impact of change since evolution is fully planned and analyzed beforehand.

Technically, the approach is still not mature. Path constraints can be formally specified using

the path constraint language, a specific extension of LTL (Linear Temporal Logic) proposed

by Barnes et al.. While the computability of the language was proved, there is still no existing

model checker to support the automated analysis of path constraints. Moreover, the practi-

cality of such a language is not guaranteed since the language has not been widely used yet.

Barnes et al. also propose a solution to automate evolution planning [Barnes et al., 2013].

This solution relies on PDDL [McDermott, 1998] –the Planning Domain Definition Language–

to specify the evolution problem. Since there is no proposed translation from the Adl level to

PDDL, this solution requires an expertise from the architect that he does not necessary have.



Chapter 3. State-Of-The-Art 37

3.1.10 Approach of Tibermacine et al.

Tibermacine et al. [Tibermacine et al., 2005, 2006] propose an approach to assist the ar-

chitecture evolution activity at component-based software design and implementation steps.

The approach aims to preserve architecture decisions related to quality attributes that may

be weakened during software evolution thus leading to its degradation. To do so, the authors

introduced the concept of evolution contract described by the meta-model shown in Figure 3.7.

Figure 3.7: Structure of Evolution Contracts [Tibermacine et al., 2006]

An evolution contract encompasses a set of architectural tactics that link architectural decisions

to quality attributes (for instance those defined by the ISO/IEC 9126 [ISO/IEC, 2001]). The

interest of such linkage is twofold. First, it enables to warn the developer about the impact of

architectural changes (that directly affect architectural decisions) on quality attributes (e.g.,

potential loss, deterioration). Second, it helps architecture comprehension by highlighting the

motivation of some architectural decisions.

Technically, the structure of evolution contracts is specified using Xml 1 representations that

capture architectural decisions and their rationale. To document and check architectural deci-

sions, the authors proposed Acl (Architecture Constraint Language) that enables to express

structural constraints on architecture models at both design and implementation levels. The

language is based on Ccl (Core Constraint Language) a slightly modified version of Ocl and a

set of Mof 2 meta-models. On the one hand, Ccl enables to express constraints on a particular

instance of the Uml component meta-model (which is not possible using Ocl). Additionally,

it enables to constrain evolution by defining conditions relating two versions of architectural

artifacts (the old version is designated using the @old operator). On the other hand, the

1http://www.w3.org/XML/
2http://www.omg.org/mof/
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Mof meta-models represent architectural abstractions related to Adls (for the design step)

and component technologies (for the implementation step). The interest of meta-models is

to make Acl as generic as possible by allowing developers to use their preferred Adl and/or

component technology. Ccl combined with one of these meta-models form an Acl profile.

The approach also guarantees the traceability of architecture decisions throughout the design

and implementation steps of Cbsd. For this purpose, the authors defined a pivot meta-model

called ArchMM that captures the generic architectural abstractions and make it possible to

automatically translate Acl constraints from one profile to another. The approach is tooled

with AURES (ArchitectURe Evolution aSsistant) with which evolution contracts can be spec-

ified and evaluated. Given a version of an architecture description (using one of the supported

Adls, for instance xAdl [Dashofy et al., 2001]), AURES evaluates its associated evolution

contract and notifies the maintainer if any architectural decisions do not hold anymore. The

user hence has to either reconfigure the architecture again or modify the evolution contract.

Unlike other approaches, the work of Tibermacine et al. highlights the importance of maintain-

ing architectural decisions while evolving component-based software architectures. It covers

both design (specification level) and implementation (configuration level) steps of Cbsd pro-

cesses and traces architectural decisions at both steps. Runtime changes however are not taken

into account since the assembly level is not explicitly defined. Moreover, the accompanying

tool is only a notifier of the violation of evolution contracts but it does not yet include any

mechanism to handle the changes initiated by the architect.

3.1.11 Synthesis and comparison

Most of the approaches dealing with architecture evolution adopt an Adl to model architec-

tures and propose a mapping between the Adl and a runtime framework in order to implement

the change and enable dynamic evolution. C2-SADEL, Darwin, ArchWare, Plastik fall into

this category. C2-SADEL models architectures in the C2 style and provides multiple compo-

nent subtyping mechanisms to favor reuse and enable architecture evolution. Its tool support

is Dradel, an environment that enables the mapping between architectural description and

the implementation by translating them into Java code. The tool supports static evolution

by applying changes on architectural descriptions first and then implementing them. The ar-

chitecture analysis however is limited since no powerful analysis techniques were integrated.

Darwin and ArchWare (which provides π-Adl as an Adl) focus on modeling dynamic struc-

tures. They both rely on π-calculus to define the semantics of architecture constructs and

guarantee a reliable interaction between components. They compile architecture descriptions

into code. ArchWare also proposes π-Arl an architecture refinement language to evolve archi-

tecture descriptions by stepwise refinement. Plastik was also proposed to deal with dynamic

reconfigurations. It relies on Armani, an extension of the ACME Adl to express invariants and
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reconfigurations properties. Compared to the previous approaches, Plastik has the advantage

to map its Adl to OpenCOM, a runtime component model dedicated to component-based pro-

gramming and proposing built-in reconfiguration operations. The main shortcoming of these

approaches is that they do not consider changes as first-class elements and focus more on how

to implement architecture evolution rather than specify, analyze and propagate it. Moreover,

adopted Adls hardly cover the entire Cbsd process. The specification level (necessary to

guide reuse) and assembly level (that describes the software at runtime) are often missing. To

some extent, C2-SADEL is the only Adl that favors the reuse of Ots components. It provides

the “upgrade” function to replace components by their new versions. C2-SADEL however is

domain-specific and like all the other approaches, it does not guarantee the coherence between

architectural descriptions and implementations since evolution is only processed top-down.

The second category of evolution approaches showed a particular interest to specifying archi-

tecture evolution as first-class entities, independently from any Adl. First insights were given

by SAEV that enables to specify evolution rules or use predefined ones to handle architecture

evolution at both configuration and assembly levels (so called architectural and application

levels). SAEM then introduced the notion of evolution styles, first-class entities that can be

specified and classified for reuse to evolve a particular family of systems. Evolution styles

include evolution operations that can be specialized, composed and instantiated to deal with

change. SAEM adopts the same architecture abstraction levels as SAEV and both support

only top-down evolution ignoring the specification level necessary for reuse-based processes.

Moreover, evolution analysis is limited to checking invariant related to architectural artifacts.

Barnes et al. adopt a wider definition of evolution styles than the one of Tamazalit, Le Goaer

and others and introduce the concept of evolution paths as a way to analyze and plan the evo-

lution of domain-specific software systems. Like the other approaches, it does not cover the

whole component-based development process (mainly the specification level needed to foster

and guide reuse is ignored). The approach of Tibermacine et al. shows a particular interest to

analyzing the impact of architecture evolution at specification and configuration levels using

evolution contracts. While it is able to detect inconsistencies between the two architecture

levels, the approach lacks support to manage architecture evolution in general.

Table 3.1 classifies existing approaches in terms of architecture activities (i.e., modeling, anal-

ysis and evolution) and tool support, and answers the questions asked in the beginning of this

section 3.1.
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Discussion. With respect to the state of the art, our study shows that existing approaches to

architecture evolution lack support for component-based software development. We highlight

the limits of the surveyed approaches as well as our requirements according to the classification

shown in Table 3.1.

Architecture modeling. Existing approaches fall into two categories. The first category

(C2-SAEDL, Dynamic Wright, Darwin, ArchWare, Plastik and Hansen et al.) relies on an Adl

to model architectures while a second category is intended to be Adl-independent (SAEV,

SAEM, Barnes et al. and Tibermacine et al.). The latter provide flexibility to the architect

to use his preferred Adl and/or modeling language. All things considered, both categories

hardly support three-level architecture modeling in conformance with Cbsd. In particular,

the specification level, we judge crucial to design for reuse is usually ignored.

Requirement 1: To support architecture modeling in Cbsd processes, we need a general-

purpose modeling language that explicitly represents the three architecture abstraction levels

of component-based software. Dedal presented in Chapter 2 corresponds to this requirement.

Architecture analysis. Almost all approaches support some static architecture analysis.

Domain-Specific Adls like C2-SAEDL, Wright, Darwin and π-Adl rely on rigorous formalisms

to verify specific architecture properties. For instance, Darwin and π-Adl focus on behavioral

and interaction checking using languages tailored for such purpose (mainly CSP or π-calculus).

The other approaches (e.g., SAEV and SAEM) enable invariant checking (e.g., properties

specified by the architect). However, none of the surveyed approaches addresses all the ar-

chitecture inconsistencies as identified in Chapter 2. In particular, refinement inconsistencies

that arise between architecture abstraction levels (e.g., erosion) are hardly addressed. To some

extent, Tibermacine et al. focus on maintaining architectural decisions at specification and

configuration levels but they do not address the assembly level.

Requirement 2: To support rigorous architecture analysis, we need to ensure that archi-

tecture descriptions are consistent at all abstraction levels and all descriptions are coherent

with each other (i.e., traceability of design decisions is preserved at all abstraction levels). To

respond to this requirement, consistency and coherence properties have to be specified and

verified using a formal modeling language with rich expressiveness and that supports powerful

automated analysis. In Section 3.2, we survey five modeling languages to choose the one we

judge most suitable to our problem.

Architecture evolution. Almost all approaches enable architecture-centric evolution (ex-

cept the approach of Tibermacine et al. that focuses on analyzing the impact of architecture
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evolution on architectural decisions). Some approaches (C2-SADEL, Wright, Darwin, Arch-

ware and Plastik) propose a set of predefined elementary operations to enable architecture

change. However, these approaches hardly treat changes as first class entities and focus more

on implementing change than specifying and analyzing it. The other approaches (Hansen et

al., SAEV, SAEM and Barnes et al.) consider software changes as first-class entities and let

the architect specifying change operations by himself. However, component substitutability

is hardly provided by existing approaches (except for C2-SAEDL that provides multiple com-

ponent subtyping mechanism). This feature enables to replace software components while

preserving architecture consistency. Moreover, none of the surveyed approaches supports

multi-directional (top-down and bottom-up) evolution. In most of cases changes are prop-

agated top-down but not bottom-up, hence increasing the risk of architecture inconsistencies

like erosion. There is no proposed process to analyze and handle the impact of change at

all architecture levels. In most cases, changes are analyzed at architectural level and then

committed and applied on implementation.

Requirement 3: To enable architecture evolution in Cbsd processes, we need to establish a

formal approach to capture the change at any abstraction level, analyze and handle its impact

locally (i.e., at the same abstraction level) and propagate it to the other abstraction levels.

We address this requirement in Chapter 5.

3.2 Formal modeling languages

Formal modeling is a way to bring software systems design to a high abstraction level. It

intervenes at the very early stages of software development to give a formal specification

of the system’s requirements. Formal modeling requires a certain mathematical knowledge

from the specifier. It helps a deep understanding of the system by encouraging him to be

rigorous, precise and abstract. Resulting models hence constitute unambiguous descriptions

to be used by software analysis, verification and validation. Several languages and methods

were proposed to aid formal modeling. Formal languages provide abstractions to represent

concepts, properties over them and sometimes behavior. however, they differ in expressiveness,

underlying semantics and purpose. Some languages focus more on descriptions and how to

make formal modeling more accessible whereas others focus more on automated analysis and

neglect expressiveness. A good formal language must present a compromise between both

aspects. In the following, we survey five formal modeling languages among the most prominent

ones. These languages are B, Z, Ocl, Alloy and Vdm. All of them share many similarities

and have been widely used and applied in several projects. We finish by a comparison of these

languages and a discussion that justifies the choice of the B language.
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3.2.1 Overview of formal modeling languages

3.2.1.1 The B method

B [Abrial, 1996, Cansell and Méry, 2003] is a formal modeling language and a proof-based

development method for software systems. The principle of such method is to start from a

very abstract model of the system and then gradually refine it. Initially designed by Jean-

Raymond Abrial in 1985 as to specify critical systems, B was rapidly adopted by industry and

used in several case studies such as the Meteor project [Behm et al., 1999] for controlling

train traffic and the Pci protocol [Cansell et al., 2002]. B is also widely used and studied

in academia, mainly as a formal modeling language for verification, validation and model-

checking.

B basics. B is based on Zermelo-Fraenkel (ZF) set theory and first order logic language.

The B notation is very similar to mathematical language and includes all standard logical

connectors (e.g. ∧,∨,⇒), set-theoretic operations (e.g. ∈,⊂,∪), closure and specific relations

like injective (�), surjective (�) and bijective (��) functions. B also supports sequences,

booleans (BOOL), integers (INTEGER) and naturals (NAT) as basic types.

B specifications are composed of abstract machines similar to modules. They are defined in-

dependently and can be reused as modules and refined to obtain more concrete models. An

abstract machine is divided into a declarative part and a dynamic part. The declarative part

contains the declaration of sets (SETS ), constants (CONSTANTS ), variables (VARIABLES )

which represent the state of the machine and invariant properties related to variables (IN-

VARIANT ). Optionally, it is also possible to set definitions (DEFINITIONS ) in the spirit

of macros. Definitions are useful to define extensive sets and parametrized predicates and

can be reused by invariants and operations. The dynamic part contains the initialization

(INITIALISATION ) of the machine as well as operations (OPERATIONS ) over the state

(variables) of the machine. The behavior of operations is explicitly defined in B using various

constructs such as preconditions (PRE P THEN S END), bounded choice (CHOICE S1 OR

S2 ) or non-determinism (ANY v WHERE P THEN S END). Post-conditions are expressed

by substitutions that state the new assignments of the involved variables. Output variables

may also be defined as values returned by operations.

Tool support for B. B tools focus mainly on theorem proving and code generation like

Atelier-B [ClearSy, 2001] and BToolkit [Bto, 1997]. Atelier-B enables type checking and gen-

erates proof obligations (PO) related to a model. It is also able to prove automatically a

number of generated PO. For the unproven ones, Atelier-B provides an interactive assistant

for experienced users to prove them manually. Recently, Bware [Delahaye et al., 2014], a front
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end platform was developed to automatically prove as much PO generated by Atelier-B as pos-

sible. BWare gives the input to several provers and merge their results to obtain a maximum

number of proven POs.

Another kind of powerful tool for B is ProB [Leuschel and Butler, 2008]. ProB is a model

checker and animator for B models. It automatically generates counterexamples for given

assertions by exploring exhaustively the model (using state space exploration techniques). It

also simulates the execution of operations on a given subset of the model and generates traces

leading to some desired state. ProB also enables constraint-solving by reduction to SAT using

a front-end engine called KodKod [Torlak and Jackson, 2007]. This feature does not yet cover

all the abstractions of B but it is being improved in the recent releases. An Api is also provided

for developers to integrate the features of ProB in their tools.

3.2.1.2 The Z language

Z (Zed) [Spivey, 1992] is a formal specification language and a mathematical notation widely

used in education and research. Firstly developed at Oxford University in the 1980’s, Z was

then standardized by ISO in 2002. The language has been successfully applied on several

industrial projects like the CICS system conducted by IBM and Oxford university and the

security verification of the Mondex electronic purse developed by NatWest Bank.

Z basics. Z is also based on ZF-set theory and first order logic. It shares the same roots

as B since Jean-Raymond Abrial, the designer of B is also one of the contributors to Z.

The main difference between both languages is that Z is more abstract and was basically

designed for modeling whereas B is emphasized on refining models into code. Like B, the Z

notation is close to the mathematical language. It provides a number of useful constructs like

comprehensive and extensive sets, power set, operations on sets, closure, relations and several

kinds of functions.

A Z specification is a collection of schemas. A schema has a name and is divided into a

signature part and a predicate part. The signature part lists the attributes of the schema and

the predicate part lists all the constraints and properties over these attributes. A schema can

also represent an operation. In contrast to B, there is no distinction between pre and post

conditions in an operation definition. However, pre and post states are differentiated using

the prime symbol (e.g., s and s′).

Tool support for Z. Z was mainly designed to perform proof on models, the reason why

theorem provers are the most promoted tools for Z. Examples include Z/Eves [Saaltink et al.,

1999] that can perform automatic proof in many steps. Complex theorems however need
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experienced user assistance. Z/Eves can also perform domain checks (to ensure that partial

functions are not applied outside their domains) and evaluate preconditions. Z is also sup-

ported by animation tools such as Jaza [Utting, 2005]. Jaza can simulate the execution of

operations and check invariant properties on a given state. The animator is also able to per-

form constraint-solving but restricted to very small domains. Unlike B and Alloy, Z is not

well supported by automatic verification tools especially model-checkers [Smith and Wildman,

2005]. This is due to the high abstract nature of the Z language making its handling challeng-

ing. Nevertheless, continuous attempts to build a model checker for Z are undertaken [Derrick

et al., 2011].

3.2.1.3 OCL

Ocl [OCL, 2012], the Object Constraint Language was developed at IBM in 1995. It was

rapidly adopted as a formal specification language within UML and became an OMG standard.

Ocl was firstly designed in the hope to be simpler than the classical formal languages such

as Z and VDM. Hence, Ocl was basically not emphasized to support strong model analysis

such as proof or model-checking. Later, several attempts were undertaken by the Precise UML

Group to enhance Ocl and make it comparable to the other formal languages [Bruel et al.,

2000].

OCL basics. Ocl is also based on first order logic. Ocl specifications are defined as anno-

tations of Uml diagrams. Hence, unlike the other studied formal languages, Ocl is dependent

on graphical descriptions. The main syntactic unit in Ocl is an expression. Expressions are

used to define invariants, pre-conditions or post-conditions. Ocl includes a standard library

of primitive types like basic types (Integer, Boolean, String, etc.), collection types (Set, Bag,

Sequence) and enumerations. Class types in Ocl are related to a class diagram. Indeed, each

defined class in a class diagram is a type in an Ocl expression. However relations are not

included in the Ocl type library. As a consequence, expressing constraints is sometimes ver-

bose compared to other formal languages. Ocl enables predicates and functions to be defined

recursively. While this brings useful expressiveness such as enabling multi-step navigation, it

makes the logical interpretation of predicates hard. This is the reason why constraint-solving

can not be applied on Ocl [Jackson, 2006].

Tool support for OCL. Ocl is supported by several standalone testing tools like Use [Gogolla

et al., 2007]. Use (Uml-based Specification Environment) is an environment for the specifica-

tion of Information Systems. It proposes a textual syntax of Uml class diagrams that includes

constraints expressed with Ocl. Use also enables model animation and the creation and
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manipulation of snapshots (i.e., states of a running system). Constraints can be automati-

cally checked over each snapshot. The environment provides a graphical Uml view and an

evaluation view to query detailed information about a system’s state.

HOL-Ocl [Brucker and Wolff, 2008] is another tool that aims to provide interactive proof for

Ocl. The tool is based on translating Ocl to HOL (High Order Logic) to benefit from the

Isabelle theorem-prover. As being a part of Uml, Ocl has been also the cornerstone of several

works integrating Uml with other formal methods notably B, Z and Alloy.

3.2.1.4 Alloy

Alloy [Jackson, 2006] is a modeling language designed by Daniel Jackson at the Massachusetts

Institute of Technology. The first version of Alloy was developed in 1997. Since, the language

has been greatly improved through several iterations and now includes many features such as

signatures, subtyping and polymorphism. Alloy has now become a strong competitor to its

anterior formal modeling languages.

Alloy basics. Alloy was inspired by Z in its semantics and by object modeling languages

in its notation. Like B and Z, Alloy is state-based and it is based on first-order relational

logic. The particularity of Alloy is that all data structures (even sets and scalars) are unified

within the notion of relation. This makes Alloy usage more generic since its structures can be

used for various purposes. For instance, the relational composition operator ”.” can be used

in a manner similar to object-oriented programming (e.g., accessing signature fields, applying

functions). However, Alloy is less expressive than the other languages and is strictly first order

whereas B, Z and Vdm support higher order structures such as set of sets (e.g., the domain

of domain of a relation that maps two functions) [Jackson, 2006].

An Alloy module is mainly constituted of signature declarations and facts. A signature decla-

ration includes a set of immutable units called atoms and ,optionally, fields that relate between

signatures. Signatures can be subtyped using the extends operator. Facts are used to express

constraints on signatures that represent invariant properties. Alloy also enables to declare

named and parametrized constraints using predicates. Predicates may be invoked and reused

in facts. Being generic, Alloy does not provide built-in structures to model operations. Hence,

unlike B, there is no standard way to express the dynamic behavior of operations. One way

is to use predicates to represent operations. Pre- and post-states have to be defined explicitly

using a specific signature (e.g., Time). This operation representation is similar to operation

schemas in Z.
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Tool support for Alloy. Alloy was developed step by step with its accompanying tool

the Alloy analyzer, a SAT-based constraint-solver. Given constraints of a model, the Alloy

analyzer finds structures satisfying them. It performs two opposite checking ways, either as

a model finder by exhaustively exploring the model and generating sample structures or as a

model checker by generating counterexamples. Alloy analyzer is similar to ProB in the sense

that both tools perform model checking and work as constraint solvers using reduction to SAT

technique (namely KodKod). One of the advantages of ProB compared to the Alloy analyzer

is that ProB is also an animator and enables checking on a given restricted subset (instance)

of the model.

3.2.1.5 VDM

Vdm [Jones, 1990], the Vienna Development Method was developed in the early 1970’s at IBM

Vienna Laboratory. The latest version of the language, Vdm-Sl was then standardized by ISO

in 1990’s. Vdm was firstly developed to model the semantics of programming languages. It

was later adopted as a language for modeling software systems in general. Like B, Vdm is a

language and also a method for refining specifications into code. Another variant of Vdm called

Vdm++ was developed to support object-oriented features and concurrency. The language has

been widely applied in several industrial projects such as the development of electronic trading

systems and secure smart cards.

VDM basics. A Vdm specification is a description of a state machine. It is mainly com-

posed of a set of states (state) and a collection of operations (operations). Unlike the other

approaches, states are explicitly defined in Vdm. They consist in mutable structures with two

separate values denoting pre- and post-states. A specification also contains type declarations

to be used by states. Unlike states, types are immutable and can be simple (token types) or

composite (record types). Each declaration may be followed by an invariant (inv). Operations

and their pre- (pre) and post-conditions (post) are explicitly defined in Vdm. Additionally,

Vdm introduces the notion of frame condition to specify the state variables that may be ac-

cessed (read) or modified (written) by an operation. Using frame condition simplifies the

operation definition since there is no need to reassign state variables left unchanged by the

operation like in Alloy and Z.

Tool support for VDM. Vdm is supported by VdmTools, a software development tool

suite based on formal specifications. VdmTools supports the analysis models written in both

the standard version Vdm-SL and the object-oriented one Vdm++. The toolkit includes syntax
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and type checker, theorem prover and code generator. Like Z, Vdm does not support model-

checking. One of the proposed solutions was to translate a subset of Vdm-Sl to Alloy in order

to enable automated analysis [Lausdahl, 2013].

3.2.2 Synthesis and comparison

Almost all surveyed formal modeling languages – B, Z, Alloy, Vdm and at some extent Ocl –

follow the same approach for modeling software systems. They are all state-based in the sense

that specifications can be seen as state machines manipulated using a collection of operations.

All of them are based on first-order logic to express predicates. Comparing these languages

is a little bit challenging since there is no best language but one can be more convenient

than the others in a particular context. In this comparison, we focus on two main aspects:

expressiveness and analysis support.

Expressiveness. This aspect denotes how much the language is expressive. The more the

language is expressive, the easier modeling becomes. Expressiveness is crucial if models have

to be shared between multiple users (For instance, descriptions may be validated by a user

different from the specifier) and hence must be as much clear and understandable as possi-

ble. Moreover, expressiveness is important when it comes to translate another language (e.g.,

ADLs, semi-formal models) to the formal one. Indeed, higher expressive languages are priv-

ileged to find a mapping for the most constructs of the source language and cover as much

features as possible. Expressiveness depends on the structures provided by the language and

the notation afforded to write models. To compare the expressiveness of the formal modeling

languages, we propose the following criteria:

• States: How states are represented? Are they explicit? Implicit?

• Operations: Are operations and their behavior (preconditions, actions, post-conditions)

explicitly represented?

• Invariants: Are invariants explicit? Grouped into a single clause or declared separately

anywhere in the specification?

• Types: What are the types supported by the language?

• Notation: What kind of notation is supported by the language (mathematical, object-

oriented, relational, etc.)?
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Analysis support. Model analysis [Jackson and Rinard, 2000] is crucial to check that the

model is consistent and satisfies the desired properties. It may address one or several aspects

of the model related to a verification purpose (e.g., syntax, types, correctness, etc.) and/or

a validation purpose (e.g., required properties, expected behavior, etc.). There are different

ways and techniques to perform model analysis. The use of any technique depends firstly

on the semantics of the language and then on the availability of the tool supporting it. To

compare languages according to analysis, we focus on the following techniques:

• Type-checking : Type-checking is compulsory when languages are typed. It verifies that

types are used correctly and in conformance with the typing rules of the language. Type-

checking is generally performed with syntax-checking and precedes any other verification

activity like proof.

• Animation: Animation is a technique to test models by simulation. Given an input

(subset of the model), the user can see the model at different states and observe its

behavior. Animation is efficient for design-time validation and test-driven modeling.

• Proof : Theorem proving is the process that attempts to find a mathematical proof for

a property of the specification. It is mostly used for the development of critical systems

to ensure that resulting programs are error-free and do not present risks. While theorem

proving guarantees the correctness of models, this process can hardly be fully automated

because it is an undecidable problem for expressive logic like the first order logic.

• Model-checking : Model-checking is a technique that checks automatically if a desired

property holds on a finite model [Clarke and Wing, 1996]. The check is performed

by exhaustive exploration of the model searching for a counter-example breaking the

property. In contrast to theorem proving, the model-checking process is guaranteed to

terminate on finite models. However, the main inconvenient of such technique is the

state explosion problem that occurs in large scale systems with an enormous number of

states.

• Constraint-solving : Constraint-solving is an analysis based on boolean satisfiability

(SAT) to find a solution for a propositional formula. In other words, given a constraint

expressed with propositional variables, the aim is to find a boolean assignment of those

variables so that the constraint returns true. Since modeling languages are usually more

expressive than propositional logic, this technique is applied by translating constraints

to propositional logic (also called reduction to SAT) to benefit from SAT solvers.

Table 3.2 summarizes the characteristics of the surveyed modeling languages according to

expressiveness and analysis support.
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B, Z and Vdm are quite similar in term of expressiveness since they were basically designed

for theorem-proving. All of them enable to express properties in a similar way and support

almost the same types (In addition, Vdm supports real numbers). However there are some

subtle differences between them. Z is more abstract while Vdm and B are more low level

and intended to be refined into code. Both (i.e., Vdm and B) adopt a similar structure that

reflects the notion of state machines. They explicitly separate between the declarative part and

the dynamic part (operations) and unlike Z they separate between pre-conditions and post-

conditions. B has the particularity to modify variables by assignments like in programming

languages while in Vdm and Z, pre and post states must be explicit. Ocl and Alloy are

different and were designed for different purposes. Ocl was basically developed to enforce

UML diagrams with constraints that cannot be expressed using graphical notations. It has

an object-oriented notation and heavily relies on navigation. Hence predicate expressions are

sometimes verbose compared to the mathematical notation adopted by the other languages.

Alloy is less expressive than all the other languages since it is intended to be more generic and

simple. The reason is also that Alloy was mainly designed to support automated lightweight

analysis which requires simple semantics.

Regarding analysis support, all the surveyed languages are typed and hence support type-

checking. Except for Alloy, all languages are provided with animators. The reason is that

the Alloy analyzer aims to perform more powerful analysis than animators and does not

restrict the model to an executable subset. Theorem-proving is only supported by Z, B and

Vdm which were basically designed for software correctness. B and Vdm provide also a

refinement mechanism and enables code generation. Model-checking and constraint solving

is only supported by B (through the ProB tool) and Alloy (through the Alloy analyzer). At

some extent, Jaza, the animator of Z can do some constraint-solving on small domains.

3.2.3 Discussion

B seems to be the best compromise between expressiveness and analysis support. It has

a clear structuring and it enables to model explicitly both static and dynamic aspects of

software systems. Moreover, it supports all kinds of analysis. We believe that the use of B and

its accompanying ProB tool provide a good support for formalizing and analyzing software

architecture evolution. Alloy is also a good candidate. However, regardless its expressiveness, it

presents another shortcoming. As witnessed by Torlak et al. [Torlak and Jackson, 2007], Alloy

lacks support of partial instances. Partial instances are explicit representations of instances

included in the specification of the model. Montaghami et al. [Montaghami and Rayside,

2012] argued that this feature enables a number of capabilities such as test-driven development,

regression testing, modeling by example, and combined modeling and meta-modeling. Authors
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also proposed a syntax extension of Alloy to support partial instance definition but, as far as

we know, this feature is not yet integrated in the last version of Alloy 3.

3.3 Conclusion

The state of the art study showed that evolution management in reuse-centered, component-

based development processes still lacks both foundations and techniques. Foundations relate

to explicit the semantics of the three steps of Cbsd (i.e., specification, implementation and

deployment) as well as the rules that govern their relationships (i.e., how to get from specifi-

cation to implementation to deployment and back). For that, we need an Adl that explicitly

models architectures conforming to Cbsd process. For that, we opt for Dedal introduced in

Chapter 2. Then, we need a formal modeling language to set the semantics of Dedal and

enable automatic evolution management in a reliable way (i.e., preventing architecture incon-

sistencies). For that, we opt for the B modeling language as our study showed that it happens

to be the best candidate.

3http://alloy.mit.edu/alloy/documentation/book-chapters/alloy-language-reference.pdf



Chapter 4

A type theory for three-level

software architectures

Dedal introduces a novel approach for component-based software engineering by representing

explicitly three architecture descriptions corresponding to the specification, implementation

and deployment steps of Cbsd (cf. chapter 2). The semantics of these descriptions as well as

their relationships, need to be elucidated and formally defined to enable component reuse and

support architecture analysis and evolution throughout the whole component-based software

lifecycle. This chapter introduces a type theory for Dedal that formally defines its semantics

and the rules that govern their relationships. Section 4.1 gives an overview of the proposed

type theory and its goals. The formalization of Dedal using the B modeling language is

presented in Section 4.2. Then, Section 4.3 and Section 4.4 respectively explain the intra-level

and inter-level rules.
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4.1 Overview of the three-level type theory

The three level type theory [Mokni et al., 2014] defines the semantics of the Dedal architecture

model and the rules that govern the relationships between Dedal artifacts. It consists of a set

of mathematical definitions and rules built upon the set theory and first-order predicate logic.

In the remainder, we set the goals, hypothesis and structure of the type theory.

4.1.1 Goals of the type theory

The three-level type theory aims to:

• enable component substitutability which is central to architecture evolution.

• formally document the traceability of structural design decisions throughout the whole

Cbsd lifecycle.

• foster component reuse by elucidating the semantics of the linkage between the specifi-

cation level and implementation level.

• enable architecture analysis and evolution and deal with architecture inconsistencies,

notably the erosion problem discussed in Chapter 2, Section 2.2.4.

The type theory assumes that:

• reused components are trustworthy and behave correctly once assembled into software.

• adaptability between components is implicitly managed by connections.

The type theory established in this thesis addresses the syntactic level of software component

specification and the structural aspect of software architectures. These aspects present the ba-

sis that may be extended later to support other component specification levels (e.g., behavior,

synchronization and quality of service) [Beugnard et al., 1999].
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4.1.2 Structure of the type theory

To establish the type theory, we start by formalizing the underlying concepts of the Dedal

three-level architectural model using the B formal modeling language as argued in Chapter 3.

The set of resulting models, named FormalDedal are presented in Section 4.2.

On the basis of the Dedal formalization, we define the semantics related to the relations

between the Dedal artifacts. In Dedal, there are two kinds of relations (cf. Figure 4.1) that

adhere to the type theory:

(a) Example of intra-level relations

(b) Example of inter-level relations

Figure 4.1: Relations kinds in Dedal

• Intra-level relations: concern the relations between the architecture elements at the

same architecture level. They include component substitutability rules and compatibility

rules and intra-level architecture consistency rules. The rules for intra-level relations are

discussed through Section 4.3.

• Inter-level relations: concern the relations between the architecture elements of dif-

ferent architecture levels. They include the realization relation between component roles

and component classes, the instantiation relation between component classes and compo-

nent instances as well as the coherence relations between each two adjacent abstraction

levels. The rules for inter-level relations are discussed through Section 4.4.

4.2 Formalization of the Dedal architectural model

The formal Dedal comprises two kinds of concepts:
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• The common architectural concepts (i.e., architecture, component, interface, etc.). These

concepts define the generic structure of architecture descriptions (e.g., an architecture

is composed of components and their connections).

• The Dedal architectural concepts related to the component-based development steps

(i.e., the architecture specification, the architecture configuration and the architecture

assembly). These concepts are a specialization of the common concepts (e.g., component

roles and concrete component types inherit from the concept of component) and have

specific relations between them (e.g., a component class realizes a component role and

a component instance instantiates a component class).

Using the modularity of B, we divide the formalization of Dedal into five B machines as

depicted in Figure 4.2:

Figure 4.2: Modularization of Dedal formalization

• Basic concepts machine includes the formalization of the interface concept part (i.e.,

interface directions, interface types, signatures and parameters).

• Arch concepts machine includes the formalization of the common architecture concepts

(i.e., architecture, components and connections). It includes the Basic concepts machine

as it reuses the definitions related to the interface concept.

• Arch specification machine includes the formalization of the concepts related to the

architecture specification level (i.e., specification and component roles). It includes the

Arch concepts machine as it specializes the common architectural concepts.

• Arch configuration machine includes the formalization of the concepts related to the

architecture configuration level (i.e., configuration, component types, component classes,

composite component classes). It uses the Arch specification machine to define the

relations between the specification and configuration levels.
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• Arch assembly machine includes the formalization of the concepts related to the architec-

ture assembly level (i.e., assembly and component instances). It uses the Arch configuration

machine to define the relations between the configuration and assembly levels.

The motivation behind organizing the formalization in such way is twofold: (1) As separated

into an independent B model, the common architectural concepts may be reused, extended

and specialized by other models. (2) The formalization must explicit the three architecture

descriptions of component-based software in accordance with Dedal. This enables to perform

verification and validation at each development step separately.

Remark. Intuitively, one could think that the B machines corresponding to the three archi-

tecture abstraction levels should be linked through a refinement relation. However, this is not

the case for two reasons. The first is that semantically, the assembly level can not be consid-

ered as a refinement of the configuration level since both levels represent two different aspects

of the software (i.e., design-time and runtime). The second is that the operational semantics

(i.e., the set of operations discussed in Chapter 5) of the three architecture levels is different

and technically cannot be specified using refinement. Indeed, B imposes that a refinement

machine should reuse the same operations as the refined machine whereas two operations at

two different abstraction levels do not necessarily manipulate the same variables. Still, the re-

finement mechanism opens an interesting perspective toward obtaining a concrete architecture

configuration from an abstract architecture specification by successive refinements.

4.2.1 Formalization of the common architectural concepts

This section presents the formalization related to common architectural concepts, namely

components, interfaces, connections and architectures.

The Basic concepts machine. The Basic concepts machine (cf. Table 4.1) represents

a formal model of the component concept at the interface granularity level. It proposes

a syntactic definition of the interface concept. Structurally, each interface has a direction

(int direction) (PROVIDED or REQUIRED) and a type (int type). Each interface type is

constituted of a non-empty set of signatures (int signatures) and each signature has a name

(sig name), a return type (sig return) and eventually a parameter list (parameters). Finally,

each parameter has a name (param name) and a type (param type).
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MACHINE Basic concepts
SETS

PARAM NAMES; PARAMETERS; INTERFACES;
TYPES; INTERFACE TYPES;
SIGNATURES; SIG NAMES;
DIRECTION = {PROVIDED, REQUIRED}

VARIABLES
parameter, interface, type, subtype,
param name, param type, int direction,
int type, interfaceType,
signature, sig name, parameters, sig return, int signatures

INVARIANT
/* Definition of type */
type ⊆ TY PES ∧

/*A parameter has a name and a type */
parameter ⊆ PARAMETERS ∧
param name ∈ parameter → PARAM NAMES ∧
param type ∈ parameter → type ∧

/*A signature has a name, a list of parameters and
a return type */
signature ⊆ SIGNATURES ∧
sig name ∈ signature→ SIG NAMES ∧
parameters ∈ signature→ P(parameter) ∧
sig return ∈ signature→ type ∧

/* An interface type has a name and a list of signatures */
interfaceType ⊆ INTERFACE TY PES ∧
int signatures ∈ interfaceType→ P1(signature) ∧

/* An interface has a type and
a direction (provided or required) */
interface ⊆ INTERFACES ∧
int type ∈ interface→ interfaceType ∧
int direction ∈ interface→ DIRECTION

Specific B notations:
↔: relation →: total function P(<set>): powerset of <set>

P1(<set>): powerset of <set> minus the empty set (i.e., P(<set>)− ∅)

Table 4.1: B specifications related to interfaces

The Arch concepts machine. The Arch concepts machine (cf. Table 4.2) represents a

formal model of component-based architectures from a structure viewpoint and independently

from any architectural style. It reuses the formalization of the interface concept defined in the

Basic concepts machine. Structurally, an architecture is composed of a set of components

(arch components) and a set of connections (arch connections). A component has a name

(comp name) and a set of interfaces (comp interfaces). The comp interfaces function is

injective since each set of interfaces belongs to one and only one component. A connection

relates a client element (client) to a server element (server). A client (resp. server) element

is defined as a component’s required interface (resp. provided interface).
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MACHINE Arch concepts
INCLUDES Basic concepts
SETS
ARCHITECTURES;COMPONENTS;COMP NAMES
VARIABLES
component, comp name, connection, comp interfaces, client, server
architecture, arch components, arch connections
INVARIANT
component ⊆ COMPONENTS ∧
comp name ∈ component→ COMP NAMES ∧
comp interfaces ∈ component� P(interface) ∧
client ∈ component↔ interface ∧
server ∈ component↔ interface ∧
connection ∈ client↔ server ∧
architecture ⊆ ARCHITECTURES ∧
arch components ∈ architecture→ P(component) ∧
arch connections ∈ architecture→ P(connection)
arch clients ∈ architecture→ P(client)
arch servers ∈ architecture→ P(server)
Specific B notations:
�: injective function

Table 4.2: B Specification of the underlying architecture concepts

Using the DEFINITION clause of B machine, we add the following macros:

• providedInterfaces and requiredInterfaces respectively denote the set of provided inter-

faces and the set of required interfaces of a component (comp). Both definitions are

deduced from the comp interfaces relation:

providedInterfaces(comp) == {int | int ∈ interface ∧
int ∈ comp interfaces(comp) ∧
int direction(int) = PROV IDED};

requiredInterfaces(comp) == {int | int ∈ interface ∧
int ∈ comp interfaces(comp)

∧ int direction(int) = REQUIRED}

• It will be practical to get the component element and/or the interface element from the

client and server relations. We define the following relations for such purpose:

clientInterfaceElem = {cl, int | cl ∈ client ∧ int ∈ interface ∧
∃(comp, rint).(comp ∈ component ∧ rint ∈ interface ∧ cl = (comp, rint) ∧ int = rint)}

The clientInterfaceElem enables to get the interface element (int) of a given client (cl). This

relation is calculated by identifying the required interface (rint) related to the given cl client.

Similarly, the clientComponentElem enables to get the component element (c) as follows:

clientComponentElem = {cl, c | cl ∈ client ∧ c ∈ component ∧
∃(comp, rint).(comp ∈ component ∧ rint ∈ interface ∧ cl = (comp, rint) ∧ c = comp)}
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In the same way, serverInterfaceElem and serverComponentElem enable to respectively

get the interface element and component element of a given server (se):

serverInterfaceElem = {se, int | se ∈ server ∧ int ∈ interface ∧
∃(comp, pint).(comp ∈ component ∧ pint ∈ interface ∧ se = (comp, pint) ∧ int = pint)}

serverComponentElem(se) = {se, c | se ∈ server ∧ c ∈ component ∧
∃(comp, pint).(comp ∈ component ∧ pint ∈ interface ∧ se = (comp, pint) ∧ c = comp)}

The formalization of the common architectural concepts serves as a basis to define the intra-

level rules that apply to any architecture abstraction level (see Section 4.3).

4.2.2 Formalization of Dedal architectural concepts

This section presents the formalization related to the Dedal architecture model, namely the

architecture specification, configuration and assembly levels.

The Arch specification machine. The Arch specification machine (cf. Table 4.3) rep-

resents a formal model of the architecture specification concepts. It specializes the defini-

tions of COMPONENT to define the concept of component role (COMP ROLES). The

inheritance feature is not explicitly provided by the B modeling language. Therefore, we

represent inheritance with an inclusion property relating the subtype to its supertype. For in-

stance, the statement ”a component role is a component” is formalized as COMP ROLES ⊆
COMPONENTS. This way, all the relations that apply to components also apply to compo-

nent roles without being obliged to redefine them. For instance, the comp interfaces relation

is also valid to use for any element of the set compRole.

MACHINE
Arch specification USES Arch concepts
CONSTANTS
COMP ROLES
PROPERTIES
COMP ROLES ⊆ COMPONENTS
VARIABLES
specification, spec components, spec connections, compRole, spec clients, spec servers
INVARIANT
compRole ⊆ COMP ROLES ∧
specification ⊆ ARCHITECTURES ∧
spec components ∈ specification→ P(compRole) ∧
spec connections ∈ specification→ P(connection) ∧
spec clients ∈ specification→ P(client) ∧
spec servers ∈ specification→ P(server)

Table 4.3: B model of the specification level
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The Arch configuration machine. The Arch configuration machine (cf. Table 4.4) rep-

resents the formal model of the architecture configuration level. The Arch concepts machine

is used again to define concrete component types (COMP TY PES) as a specialization of

COMPONENTS. The Arch configuration machine also introduces the concepts of compo-

nent attribute (class attributes), composite component class (compositeComp) and delegated

interface (delegatedInterface). A composite component class is a specialization of a compo-

nent class. This specialization preserves the encapsulation principle since the type description

of a composite component exposes only its delegated interfaces. Its composition is defined as

an inner architecture configuration (composite uses). The Arch configuration machine also

uses Arch specification to check the inter-level relations between both levels.

MACHINEArch configuration
USES Arch concepts, Arch specification
SETS

COMP CLASS;CLASS NAME;ATTRIBUTES;ATT NAMES;
CONFIGURATIONS

CONSTANTS
COMP TY PES

PROPERTIES
/* Component types are also a specialization of components

distinct from component roles */
COMP TY PES ⊆ COMPONENTS ∧
COMP TY PES ∩ COMP ROLES = ∅

VARIABLES
configuraton, config components, config connections,
compType, compClass, class name, class attributes,
compositeComp, delegatedInterface, delegation,
attribute, attribute name, attribute type, composite uses

INVARIANT
compType ⊆ COMP TY PES ∧

/* A component class has a name and a set of attributes */
compClass ⊆ COMP CLASS ∧
class name ∈ compClass → CLASS NAME ∧
class attributes ∈ compClass → P(attribute) ∧

/* An attribute has a name and a type */
attribute ⊆ ATTRIBUTES ∧
attribute name ∈ attribute → ATT NAMES ∧
attribute type ∈ attribute → TYPES ∧

/* A composite component is a component class
compositeComp ⊆ compClass ∧

/* A delegation is a mapping between a delegated interface and its corresponding one */
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface

inj.→ interface ∧
/* A configuration is a set of component classes */

configuration ⊆ CONFIGURATIONS ∧
config components ∈ configuration → P1(compClass) ∧
config connections ∈ configuration → P(connection) ∧

/* The composition of a composite component is described using a configuration */
composite uses ∈ compositeComp → configuration

Specific B notations:
inj.→ : injective function P(<set>): powerset of <set>

P1(<set>): powerset of <set> without the empty set (i.e., P(<set>)− ∅)

Table 4.4: B specification of the configuration level

The Arch assembly machine. The Arch assembly machine (cf. Table 4.5) represents

the formal model of the architecture assembly level. It introduces the concept of component

instance (compInstance), its initial state (initial state) and its current state (current state).
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MACHINE Arch assembly
USES Arch configuration
SETS
COMP INSTANCES; INSTANCE NAME;ASSEMBLIES;
ATTRIBUTES V ALUES

VARIABLES
compInstance, compInstance name, initial state,
current state, attribute value,
assm, assm components

INVARIANT
compInstance ⊆ COMP INSTANCES ∧
compInstance name ∈ compInstance→ INSTANCE NAME ∧
attribute value ∈ attribute→ ATTRIBUTES V ALUES ∧
initial state ∈ compInstance→ P(attribute value) ∧
current state ∈ compInstance→ P(attribute value) ∧
assm ⊆ ASSEMBLIES ∧
assm components ∈ assm→ P1(compInstance)

Table 4.5: B specification of the assembly level

The formalization of Dedal architectural concepts serves as a basis to define the inter-level rules

that govern the relations between two adjacent abstraction architecture levels (cf. Section 4.4).

4.2.3 An illustrative example: B formal specifications of the Home Au-

tomation Software

We consider the Home Automation Software example illustrated in Figure 4.3 and which recalls

the example presented in Chapter 2, Section 2.3.

Figure 4.3: The architecture descriptions of HAS

The software enables to manage the light of the building in function of time through an orches-

trator. As shown in the specification, the architecture involves three component roles. The

HomeOrchestrator component role checks the time using the Time component role and turns

on/off the light using the Light component role according to time information. The architec-

ture configuration shows a concrete implementation of the HAS. The assembly architecture
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shows a possible instantiation enabling to control the light in two locations (sitting room and

desk) at different times.

For the sake of simplicity, we list just an extract of the Arch specification machine correspond-

ing to the Has specification (cf. Table 4.6). The full B specifications corresponding to the

Has example are shown in Appendix A.

MACHINE
Arch specification USES Arch concepts
CONSTANTS
COMP ROLES
PROPERTIES
COMP ROLES ⊆ COMPONENTS ∧
COMP ROLES = {cr1, cr2, cr3}
VARIABLES
specification, spec components, spec connections, compRole, spec clients, spec servers
INVARIANT
. . .
INITIALISATION
compRole := {cr1, cr2, cr3}||
specification := {HASSpec}||
spec components := {HASSpec 7→ {cr1, cr2, cr3}}||
spec connections := {HASSpec 7→ {

((cr3, rintILight) 7→ (cr1, pintILight)),
((cr3, rintIT ime) 7→ (cr2, pintIT ime))}||

spec clients := {(HASSpec 7→ {(cr3, rintILight), (cr3, rintIT ime)}||
spec servers := {(HASSpec 7→ {(cr1, pintILight), (cr2, pintIT ime))}}

Table 4.6: An extract of the B model of the HAS at specification level

4.3 Intra-level rules

Intra-level rules are crucial to enable architecture analysis at a given abstraction level. They

provide a subtyping mechanism for software components that enables to check their substi-

tutability and compatibility. Moreover, intra-level rules include general-purpose architecture

consistency properties that we judge crucial to check by any architecture definition apart from

its specific properties like the architectural style. This section explains these rules.

4.3.1 Intra-level component rules

Intra-level component rules govern the relations between components. They include substi-

tutability and compatibility rules. The definitions of these rules depend on the syntactic

specification of components and provide a basis to involve other aspects such as behavior. We

draw inspiration from the Object-Oriented type theories [Abadi and Cardelli, 1996] to define

intra-level component rules, namely subtyping and method specialization.
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4.3.1.1 Substitutability rules

Substitutability determines whether a component can be substituted for another in a given

architecture without altering its consistency. Specifying substitutability is non trivial since

components are complex entities and include different specification levels (syntactic, behavior,

synchronization, non-functional properties, etc.). Substitutability thus depends on the archi-

tectural aspect that we would like to preserve. As discussed in Section 4.1, this work focus

on the syntactic level since it presents the basis. To ease the explanation of substitutability

rules, we illustrate them along considering the example shown in Figure 4.4.

Figure 4.4: Example of component substitutability

The example shows that deciding about the subtitutability of two components (comp substitution,

cf. Rule 4) requires to check the substitutability between their interfaces (int substitution)

which in turn depends on their directions and the relations held between their types (cf.

Rule 3). Interface subtyping (int subtype, cf. Rule 2) in turn, depends on signature special-

ization (sig subtype and param subtype, cf. Rule 1). In the remainder, we detail all these

rules.

Signature specialization. Signature specialization is analogous to method subtyping in

Object-Oriented Programming (OOP). A specialized signature must have contravariant spe-

cialization of parameter types and covariant specialization of return type as it must require

less information and provide richer results when invoked. To define signature specialization,

we first consider parameter list specialization.
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Rule 1. Parameter specialization: a signature sigsub is parameter subtype of a signature sigsup

iff there exists an injection inj between the parameters of sigsup and the parameters of sigsub

and for each parameter p of sigsup, inj(p) has the same name as p and the type of inj(p) is

same as or subtype of p’s type.

∀(sigsup, sigsub).
(sigsup ∈ signature ∧ sigsub ∈ signature ∧ sigsup 6= sigsub

⇒ (

(sigsup, sigsub) ∈ param subtype

⇔
∃ inj.(inj ∈ parameters(sigsup)

inj.→ parameters(sigsub) ∧
∀ p.(p ∈ parameter ∧

p ∈ parameters(sigsup)

⇒
param name(p) = param name(inj(p)) ∧
param type(inj(p))

∈ subtype[{param type(p)}]))
)

)

We note that the injective function ensures that the subtype has at least the same elements

as the supertype. The parameter list specialization enables to add more parameters.

Signature specialization: a signature sig sub specializes a signature sig sup if and only if they

have the same name and sig sup is parameter subtype of sig sub (contravariant parameter

specialization) and the return type of sig sub is same or subtype of the return type of sig sup

(covariant return type specialization).

∀(sigsup, sigsub).
(sigsup ∈ signature ∧ sigsub ∈ signature ∧ sigsup 6= sigsub

⇒
(sigsup, sigsub) ∈ sig subtype

⇔ (

sig name(sigsup) = sig name(sigsub) ∧
(sigsub, sigsup) ∈ param subtype ∧
sig return(sigsub) ∈ subtype[{sig return(sigsup)}])
)

)

Unlike OOP, our definition of signature specialization tolerates that subtype signature has less

parameters than its supertype. Hence, even when invoked with extra parameters, the subtype

operation still returns the expected result. This flexibility is allowed in components to enhance

their interoperability. Adaptability issues are managed by connectors (cf. Chapter 2).
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To illustrate signature specialization, we consider the case of setDateFormat as described in

the example shown in Figure 4.4. The supertype signature (belonging to ISetting) requires two

parameters, the format of type SimpleDateFormat and the date of type Date and it returns

an object of type Date including the date conforming to the given format parameter. In ac-

cordance with rule 1, the subtype signature (belonging to ISettingV2 ) requires less parameters

than the supertype since the Date parameter is no more required and the type of format is

generalized to DateFormat. In the counter part, it provides a richer result since the return

type, Time is a subtype of Date.

On the basis of signature specialization, we define interface subtyping.

Interface subtyping. Interface subtyping deals with the interface type description inde-

pendently from its direction. Indeed, an interface type can be assigned to several interfaces

with same or opposite directions. Interface subtyping relies on signature specialization.

Rule 2. Interface subtyping. An interface type intTypeSub is a subtype of an interface type

intTypeSup iff there exists an injection inj between the signature set of intTypeSup and

the signature set of intTypeSub such that for each signature sig of intTypeSup, inj(sig)

specializes sig.

Interface subtyping involves the following relations:
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int subtype ∈ interfaceType↔ interfaceType ∧
∀ (intTypeSup, intTypeSub).

(intTypeSup ∈ interfaceType ∧ intTypeSub ∈ interfaceType ∧
intTypeSup 6= intTypeSub

⇒
((intTypeSup, intTypeSub) ∈ int subtype
⇔
∃ inj.

(inj ∈ int signatures(intTypeSup) inj.→ int signatures(intTypeSub) ∧
∀(sig).

(sig ∈ signature ∧ sig ∈ int signatures(intTypeSup)
⇒

inj(sig) ∈ sig subtype[{sig}]))
)

)

Similar to signature specialization, interface subtyping enables to have more signatures in

the subtype (ensured by the injection condition). As an example of interface subtyping, we

consider the relation between the interface types ISetting and ISettingV2 (cf. Figure 4.4).

ISettingV2 is a subtype of ISetting since it has the same (or specialized) signatures as ISetting

(setTime and setDateFormat) plus one more signature to set the time zone (setTimeZone).

Interface substitutability. Interface substitutability determines whether an interface can

replace another while holding all the connections with the other interfaces correct.

Rule 3. Interface substitutability depends on the interface type and direction. When both

interfaces are provided, substitutability is covariant with interface subtyping (i.e., a provided

interface intsup is substituted for a provided interface intsub iff the type of intsub is a subtype

of intsup’s type). In the second case where the two interfaces are required, substitutability

is contravariant with interface subtyping (i.e., a required interface intsup is substituted for a

required interface intsub iff the type of intsup is a subtype of intsub’s type).

The interface substitutability rule involves the following relations:
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int substitution ∈ interface↔ interface ∧
∀(intsup, intsub).
(intsup ∈ interface ∧ intsub ∈ interface ∧
intsup 6= intsub

⇒
((intsup, intsub) ∈ int substitution
⇔

((int type(intsub) ∈
int subtype[{int type(intsup)}]) ∧
int direction(intsup) = PROV IDED ∧
int direction(intsub) = PROV IDED)

∨
((int type(intsup) ∈
int subtype[{int type(intsub)}]) ∧
int direction(intsup) = REQUIRED ∧
int direction(intsub) = REQUIRED)

))

Again, we illustrate interface substitutability with the example shown in Figure 4.4. ISetting

can be substituted for ISettingV2 since they have the same direction (both are provided inter-

faces) and ISettingV2 ’s type is subtype of ISetting ’s. In a contravariant way, ILocation&GMT

can be substituted for ILocation since they are both required and ILocation&GMT ’s type is

subtype of ILocation’s type.

Component substitutability. We consider that two components are substitutable if the

subtype component exposes at least the same provided interfaces and at most the same required

interfaces as the supertype component.

Rule 4. A component Csup can be substituted for a component Csub iff there exists an injection

inj1 between the set of provided interfaces of Csup and the set of provided interfaces of Csub

such that int can be substituted for inj1(int), int being a provided interface of Csup, and there

exists an injection inj2 between the set of required interfaces of Csub and the set of required

interfaces of Csup such as inj2(int) can be substituted for int, int being a required interface

of Csub.

The component substitutability rule involves the following relations:
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comp substitution ∈ component↔ component ∧
∀(Csup, Csub).

(Csup ∈ component ∧ Csub ∈ component ∧ Csup 6= Csub

⇒
(Csub ∈ comp substitution[{Csup}]
⇔

∃(inj1, inj2).

(inj1 6= ∅ ∨ inj2 6= ∅ ∧
inj1 ∈ providedInterfaces(Csup)

inj.→ providedInterfaces(Csub) ∧
∀(int).

(int ∈ interface ∧ int ∈ providedInterfaces(Csup)

⇒
inj1(int) ∈ int substitution[{int}]) ∧

inj2 ∈ requiredInterfaces(Csub)
inj.→ requiredInterfaces(Csup) ∧

∀(int).
(int ∈ interface ∧ int ∈ requiredInterfaces(Csub) ∧

⇒
int ∈ int substitution[{inj2(int)}]))))

We note that two injections are required so that substitutability holds. The first injection

(inj1) is covariant with the substitutability rule and it ensures that the subtype component

has ”at least” the same provided interfaces as the supertype component. the second injection

(inj2) is in contravariance with the substitutability rule and it ensures that the subtype has

”at most” the same required interfaces as the supertype component. At least one injection

must be different from the empty set. This condition avoids the case where component with

only provided interfaces can substitutes for a component with only required interfaces.

We retake the example introduced in Figure 4.4. ClockV2 substitutes for ClockV1 since it

provides the ISettingV2 interface which substitutes for ISetting and provides an extra one

(IInfo). On the other side, ClockV2 requires less interfaces than ClockV1 (ILanguage is no

more required) and the ILocation required interface substitutes for ILocation&GMT.

Discussion. Substitutability rules present a mechanism to replace software components

while holding compatibility with other components correct. The principle that is enforced

is that a subtype should provide at least the same services as its supertype and require the

same or less services. This way, substitution avoids the risk of unavailability errors such as

invoking non provided methods or type errors such as using the wrong parameter types when

calling some method.
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4.3.1.2 Compatibility rules

Compatibility is important to decide whether two entities can be connected together without

compromising the functioning of the system. From a syntactic point of view, verifying com-

patibility amounts to check if a component can invoke the services of another one without

unavailability or type error risks.

Interface compatibility. Interfaces present the connection points of components. Interface

compatibility is crucial to determine whether two components can interact together from a

syntactic point of view. A provided interface should declare the same, a specialization of and

possibly extra signatures than the required interface to ensure that all the required function-

alities can be supplied. Like the interface substitutability rule, the interface compatibility rule

requires that the two interfaces are of the same type. However, in the former the two directions

must be equal whereas in the latter, the two directions must be opposite.

Rule 5. Interface compatibility.

A provided interface int1 and a required interface int2 are compatible iff the type of int1 is a

subtype of int2’s.

int compatible ∈ interface↔ interface ∧
∀(int1, int2).

(int1 ∈ interface ∧ int2 ∈ interface ∧
int direction(int1) 6= int direction(int2)

⇒ (

(int1, int2) ∈ compatible
⇔ (

(int direction(int1) = PROV IDED ∧
int direction(int2) = REQUIRED ∧
(int type(int1) ∈ int subtype[{int type(int2)}])
)

)

))

Component compatibility. Component compatibility relies on interface compatibility.

Two components can interact if and only if they have at least two compatible (connectable)

interfaces.

Rule 6. A component c1 is compatible with a component c2 if and only if they have at least

two compatible interfaces. Formally:
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comp compatible ∈ component↔ component ∧
∀(c1, c2).

(c1 ∈ component ∧ c2 ∈ component ∧ c1 6= c2

⇒
((c1, c2) ∈ comp compatible

⇔
∃(int1, int2).

(int1 ∈ interface ∧ int1 ∈ comp interface(c1) ∧
int2 ∈ interface ∧ int2 ∈ comp interface(c2) ∧

(int1, int2) ∈ compatible)))

Intra-level component rules provide formal basis to check substitutability and compatibility

between software components. To enable architecture analysis at any abstraction level, we

need general-purpose rules that concern the whole software architecture. These rules are

discussed in next section.

4.3.2 Intra-level architecture consistency

Chapter 2 enumerates five categories of architecture inconsistencies proposed by Taylor et

al. [Taylor et al., 2009]: name, interface, behavioral, interaction and refinement inconsistencies.

Name and interface inconsistencies are related to the syntactic aspect of the architectural

model. Detecting them is processed using syntactic and typing rules. Behavioral inconsisten-

cies concern rather the behavior of the operations exposed by components. Verifying them

requires the use of other rules involving the pre- and post conditions of operations. Interaction

inconsistencies concern both the structural and behavioral aspects. Indeed, from a structural

point of view a correct interaction requires that all required services are supplied and the ar-

chitecture graph is connected. From a behavioral point of view, a correct interaction is ensured

by a correct synchronization between component services invocation (i.e., the flow of in/out

calls). The behavioral verification comes usually after the syntactic one. Indeed, it makes no

sense for instance to check the behavioral consistency between two components before ensuring

that there is no type mismatches between their interfaces. Refinement inconsistencies concern

the relations between different architecture abstraction levels. This kind of inconsistencies can

be dealt with inter-level coherence rules presented in Section 4.4.2.

At this stage of work, we are confined to the syntactic and structural part of software architec-

tures. We define architecture consistency as an ensemble of properties that must be checked

within each abstraction level. These properties include name, interface and interaction in-

consistencies. Therefore, we adapt their definition to the syntactic and structural aspect of

software architectures and in accordance with the intra-level component rules.
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Definition 1. Name consistency : This property ensures that each component belonging to

the architecture holds a unique name and hence avoids conflicts when selecting and accessing

components. It avoids component name inconsistencies. Formally, let arch be an architecture

description at any abstraction level.

nameconsistency =

∀(c1, c2).(c1 ∈ component ∧ c2 ∈ component ∧ {c1, c2} ∈ arch components(arch)

⇒ comp name(c1) 6= comp name(c2)

Figure 4.5 shows an example of inconsistency that can be detected using the Name consistency

rule. There are two components named C2 which may produce a conflict when C1 invokes a

service of one of them.

Figure 4.5: Example of name inconsistency

Definition 2. Interface consistency : There is interface consistency when all architecture con-

nections are hold between a client interface and a server interface and satisfy compatibility

between both sides (i.e., a required interface is always connected to a compatible provided

one). Ensuring this property avoids interface inconsistencies since no connection between two

incompatible interfaces is permitted. Formally,

interfaceconsistency =

∀(cl, se).(cl ∈ client ∧ se ∈ server
⇒

((cl, se) ∈ connection
⇒

(serverInterfaceElem(se), clientInterfaceElem(cl)) ∈ int compatible)))

interfaceconsistency uses the clientInterfaceElem and serverInterfaceElem functions de-

fined in Section 4.2 as well as the interface compatibility Rule 5.

Figure 4.6 shows an example of interface inconsistency engendered by the incompatibility

between the interfaces IClockPos and IPosition. Indeed, IPosition does not provide the get-

Location() method required by IClockPos.
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Figure 4.6: Interface inconsistency

Definition 3. Interaction consistency : This property ensures that (1) the architecture realizes

its functional objectives (i.e., components are able to soundly cooperate through their con-

nected interfaces) and (2) the architecture definition is composed of a connected graph, so

that no part of the architecture is isolated. Accordingly, we divide the Interaction consistency

definition in two parts:

• All the architecture required interfaces are connected to compatible provided ones. For-

mally, let arch be an architecture description at any abstraction level,

archcompletness =

∀ cl.(cl ∈ client ∧ cl ∈ arch clients(arch)

⇒
∃ conn.(conn ∈ connection ∧ conn ∈ arch connections(arch) ∧ cl ∈ dom(conn)

• There is a path between every pair of components. A path can be defined as a clo-

sure of links where a link is a direct mapping between a client and a server. Unlike

connections, links can exist between two clients or two servers and independently from

orientation (i.e., the server and client order does not matter). Formally, the link and a

path definitions can be deduced from the connection definition as follows:

link = connection ∪ connection−1

To avoid cycles (i.e., link with the same edge), identity relations are removed from the link

relation closure:

path = closure(link)− id(link)

The graph connectivity property can then be defined as follows:

graphconnectivity =

∀(c1, c2, arch).

(c1 ∈ component ∧ c2 ∈ component ∧ arch ∈ architecture ∧ c1 6= c2 ∧ {c1, c2} ⊆
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arch components(arch)

⇒
∃ p1.(p1 ∈ path ∧ c1 = dom(dom(p1)) ∧ c2 = dom(ran(p1))))

We note that p1 is a relation between two links. In turn, a link is a relation between two

server or client elements. To get the component element of each, dom and ran operators are

accordingly applied where dom gives the domain of a relation and ran gives its image.

Finally, interaction consistency could be formally defined as follows:

interactionconsistency = archcompletness ∧ graphconnectivity

Figure 4.7 illustrates two examples of interaction inconsistencies that can be detected using

Interaction consistency rule.

(a) incomplete architecture

(b) unconnected graph

Figure 4.7: Examples of interaction inconsistencies

The first case (cf. Figure 4.7a) is due to the required interface of C1 left unconnected. The

second case (cf. Figure 4.7b) is due to an unconnected graph (for instance, there is no path

linking C5 to C2 ).

Definition 4. Intra-level architecture consistency ensures the well-formedness of an architecture

description at any abstraction level from a structural viewpoint. Architecture consistency is

hence the conjunction of all the above properties:

architectureconsistency = nameconsistency ∧ interfaceconsistency ∧ interactionconsistency

Intra-level rules are crucial to ensure the structural consistency of architecture descriptions

at any abstraction level. These rules however are not sufficient to check that architecture

definitions are coherent with each other at all abstraction levels, namely the specification,

configuration and assembly levels related to Cbsd process. Next section addresses the inter-

level rules defined for such purpose.
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4.4 Inter-level rules

Inter-level rules govern the relations between components and architecture definitions of differ-

ent abstraction levels. Specifying inter-level rules is a crucial step to ensure coherence between

architecture levels from specification to runtime. In order to go from an architecture specifi-

cation to an architecture configuration, the architect must select suitable concrete component

classes that realize the specified roles. The implementation can then be instantiated and de-

ployed in multiple contexts. Inter-level rules set the basis to guide such reuse process and

ensure the traceability of structural design decisions throughout the whole component-based

software lifecycle. This section presents the inter-level rules.

4.4.1 Inter-level component rules

Inter-level component rules concern the relations between component of different abstraction

levels as depicted in Figure 4.8 which recalls Figure 4.1 (right-hand side).

Figure 4.8: Inter-level component relations

They include two main relations. The first is the realization relation between component roles

and component classes (for instance the Lamp component class realizes the Light component

role). This relation is conditioned by the matching between concrete component type, imple-

mented by the component class, and the component role. The second relation holds between

component instances and component classes (for instance, the Lamp component class has two

component instances, lamp1 and lamp2 ). In the remainder, we elucidate the semantics of

these relations.

4.4.1.1 Relation between component classes and component roles

Component roles hold abstract and partial descriptions of software components. They specify

exactly the functional requirements of the intended software. Component classes on the other
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side, are reusable entities made available in component repositories to fit the largest possible

category of component-based software. Finding a perfect match for a component role is thus

mostly not obvious. A one-to-one mapping between a component role and a component class

is not preferred in this case. To afford more flexibility for realizing component roles, a many-

to many mapping is more promising. Indeed, a component class may be efficient to realize

many component roles and a component role may be realized through the composition of

many component classes. Figure 4.9 illustrates two possible realization cases according to the

many-to-many matching relation:

realizes ∈ compClass↔ compRole

(a) Multiple realizations (many to one) (b) Realization by composition (one to many)

Figure 4.9: Example illustrating two realization cases

The syntactic description of a component class is hold by the notion of concrete component

type while the implementation details are hold by the component class itself. A concrete

component type may hence be implemented in several ways by several component classes:

class implements ∈ compClass→ compType

Respecting the principle of component-based development, the implementation details must

not be considered while selecting component classes stored in repositories. The concrete com-

ponent type is checked instead to see whether the match holds.

Rule 7. A cl component class realizes a cr component role iff the ct concrete component type

implemented by cl matches with cr. Formally:
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realizes ∈ compClass↔ compRole ∧
∀(cl, cr).(cl ∈ compClass ∧ cr ∈ compRole
⇒

((cl, cr) ∈ realizes
⇔
∃ ct.(ct ∈ compType ∧ (ct, cr) ∈ matches ∧
(cl, ct) ∈ class implements))

)

The syntactic matching between a component type and a component role is proceeded by

comparing the interfaces of both. We consider that a concrete component type matches with

a given component role if the substitutability rule between both holds.

Rule 8. A ct component type matches with a component role cr iff ct is subtype of cr:

matches ∈ compType↔ compRole ∧
∀(ct, cr).(ct ∈ compType ∧ cr ∈ compRole
⇒
((ct, cr) ∈ matches
⇔

(ct ∈ comp substitution[{cr}])
))

Rule 8 calls the component substitutability rule (cf. Rule 4) to check that the concrete

component type is subtype of the component role. As component roles are abstract component

types, subtyping enables to refine them into concrete component types. This way, subtyping

relation preserves matching, i.e., when a component class is substituted in the configuration,

the matching with the realized component roles is preserved.

To illustrate component realization rule, we retake the example shown in Figure 4.9a. The

AdjustableLamp component class realizes the Light component role since the ILamp interface

substitutes for the ILight interface. The same condition holds between AdjusatbleLamp and

Luminosity since the IIntensity interface substitutes for the ILum interface.

4.4.1.2 Relation between component instances and component classes

The relation between component classes and component instances is analogous to the relation

between classes and objects in object-oriented paradigm. A component instance is related to

exactly one component class and a component class may have zero to many component in-

stances. This relation can then be formalized by a total function mapping the set of component

classes to the one of component instances:
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comp instantiates ∈ compInstance→ compClass

Some architectures may require a limited number of component instances per component class.

For instance, in client-server architectures, the number of connected client components may be

restricted due to the limited capacity of the server component. This relation can be formalized

as a total function mapping a component class to a natural integer:

nb instances ∈ compClass→ NAT

Component instances may also be parametrized according to the attributes of the component

class. The values of these attributes represent the state of the component instance.

instance state ∈ compInstance↔ P(attributeV alue)

attributeV alue ∈ attribute→ value

To map the component instance state to its corresponding component class attributes, the

instance state relation is enforced by the following predicate:

∀(ci, state).(ci ∈ compInstance ∧ state ∈ P(attribute value) ∧ (ci, state) ∈ instance state
⇒
∀ att.(att ∈ attribute ∧ att ∈ dom(state)⇒
∃ cl.(cl ∈ compClass ∧ (ci, cl) ∈ comp instanciates ∧ att ∈ class attributes(cl))))

Inter-level component rules give formal basis to the relations hold between the different Dedal

components (i.e., component roles, component classes and component instances). On the basis

of these relations, we define the inter-level architecture coherence.

4.4.2 Inter-level architecture coherence

Architecture coherence is defined between two adjacent abstraction levels. It is used to check

the conformity between two architecture descriptions at two adjacent abstraction levels. Co-

herence is important to determine whether design decisions are maintained across all the

software development steps. Verifying architecture coherence helps to detect architectural in-

consistencies such as erosion and prevents software from degradation. Inter-level coherence

definition may be confusing in the sense that it seems to match with the notion of refine-

ment consistency given by Taylor et al. (cf. Chapter 2). Indeed, both definitions address the

preservation of design decisions while moving from an abstraction level to another. However,

we consider that refinement is complementary to inter-level architecture coherence. Indeed,

each of the three architecture descriptions addressed by the coherence definition may itself be
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the result of several architecture refinements. Inter-level coherence is more specific than the

refinement notion since it addresses only the relations between the three main architecture

descriptions of component-based software.

Inter-level coherence rules are depicted in Figure 4.10.

Figure 4.10: Relations between architecture abstraction levels

Inter-level coherence rules include the relation between specification and configuration levels

and the relation between the configuration and assembly levels. In the remainder, we elucidate

the semantics of these relations.

4.4.2.1 Relation between specification level and configuration level

As discussed in Chapter 2, one of the issues of Cbsd is the difficulty to find suitable software

components that fulfill requirements. The reason is that the link between the two steps is

not elucidated. An architecture specification is a description that captures functional soft-

ware requirements within abstract component types (i.e., component roles). These abstract

descriptions provide a guide to search for suitable component classes needed to implement the

software (using the Rule 7). To ensure that design decisions are preserved in both specification

and configuration architectures, coherence between them has to be checked. Two conditions

must be met to satisfy this coherence:

• all component roles from the specification are realized by component classes in the con-

figuration. This results in a many-to-many relation as several component roles may be
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realized by a single component class and a composition of component classes (composite

component class) may be needed to realize a single role.

Formally:

implements ∈ configuration↔ specification ∧
∀(Conf, Spec).(Conf ∈ configuration ∧ Spec ∈ specification
⇒

(Conf, Spec) ∈ implements
⇔

∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(Spec)⇒
∃ cl.(cl ∈ compClass ∧ cl ∈ config components(Conf) ∧

(cl, cr) ∈ realizes)))

• each connected provided (server) interface in the configuration is included in the specifi-

cation. This prevents having a configuration that includes an extra set of functionalities

that are not specified at the higher level (increasing hence the risk of software erosion).

Formally:

conform ∈ specification↔ configuration ∧
∀(Conf, Spec).(Conf ∈ configuration ∧ Spec ∈ specification
⇒

(Spec, Conf) ∈ conform
⇔

∀ se1.(se1 ∈ server ∧ se1 ∈ config servers(Conf)⇒
∃ se2.(se2 ∈ server ∧ se2 ∈ spec servers(Spec) ∧

(serverInterfaceElem(se1), serverInterfaceElem(se2)) ∈ int substitution)))

The coherence between the specification and configuration levels involves the following rela-

tions

and,
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where (se1, se2) ∈ int substitution′ ⇔ ((serverInterfaceElem(se1), serverInterfaceElem(se2)) ∈
int substitution)

4.4.2.2 Relation between configuration level and assembly level

An architecture configuration may be instantiated in several ways and deployed in multiple

platforms. An architecture assembly is a representation of the software at runtime (after its

deployment). Elucidating the link between both levels is crucial to keep track of software

change and avoid architecture inconsistencies. Coherence between assembly and configuration

is satisfied if every component class (resp. connected provided interface) of the configuration

is instantiated at least once in the assembly and, every component instance (resp. connected

provided interface instance) of the assembly is instance of a component class (resp. connected

provided interface) of the configuration. Formally:

An architecture assembly Asm instantiates an architecture configuration Conf iff:

instantiates ∈ assembly → configuration

∀(Asm,Conf).(Asm ∈ assembly ∧ Conf ∈ configuration
⇒
((Asm,Conf) ∈ instantiates
⇔

• every component class cl of Conf is instantiated at least once by a component instance

ci in Asm and every component instance ci in Asm is an instance of a component class

in Conf :

∀ cl.(cl ∈ compClass ∧ cl ∈ config components(Conf)

⇒
∃ ci.(ci ∈ compInstance ∧ ci ∈ assm components(Asm) ∧
(ci, cl) ∈ comp instantiates) ∧

∀ ci.(ci ∈ compInstance ∧ ci ∈ assm components(Asm)

⇒
∃ cl.(cl ∈ compClass ∧ cl ∈ config components(Conf) ∧

(ci, cl) ∈ comp instantiates)) )

• and, it exists a surjective function (fs) between the set of connected assembly servers

(assm servers(Asm)) and the set of connected configuration servers (config servers(Conf))

such that for each se1 connected server instance, fs(se1)’s interface has the same type

as se1’s interface and the se1’s component instance element (serverInstElem(se1)) is

an instance of fs(se1)’s component class element (serverClassElem(fs(se1))):
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∧ ∃ fs.(fs ∈ assm servers(Asm)
surj.→ config servers(Conf) ∧

∀ se1.(se1 ∈ server ∧ se1 ∈ assm servers(Asm)⇒
(int type(serverInterfaceElem(fs(se1))) = int type(serverInterfaceElem(se1))) ∧
(serverInstElem(se1), serverClassElem(fs(se1))) ∈ comp instantiates)

))

The surjection condition imposes the one-to-many relation between a configuration

servers and assembly servers. This condition also applies to the relation between compo-

nent classes and component instances an that we express in a different (but equivalent)

manner in the first point.

To summarize, this rule involves the following relations:

and,

where (se1, se2) ∈ comp instantiates′ ⇔ ((serverInstElem(se1), serverClassElem(se2)) ∈
comp instantiates) and int type′ = int type ◦ serverInterfaceElem

Global coherence. There is a global coherence when all architecture descriptions at all

abstraction levels are coherent with each other. Let specConfigCoherence be the coherence

condition between the specification and configuration level and configAssemblyCoherence be

the coherence condition between the configuration and assembly levels. The global coherence

is defined as the conjunction of the these two conditions:

Global Coherence = specConfigCoherence ∧ configAssemblyCoherence
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4.5 Conclusion

This chapter presented the formal grounds of Dedal as well as a type theory to support the

structural analysis of software architecture descriptions at the three main steps of component-

based development (i.e., specification, implementation and deployment). The formalization

of Dedal using the B modeling language offers a way to automate the analysis activity in

a transparent manner. The three-level type theory sets the basic rules crucial to enable

the analysis of Dedal architecture descriptions. While only the syntactic level is taken into

account, the type theory provides the basis to reason about more challenging aspects out of

the scope of this thesis, notably the behavioral one. The structural analysis addresses two

main architecture properties characterizing the component-based development process: the

consistency of architecture descriptions at any abstraction level and the coherence between

all those descriptions. The next step is to enable an automatic evolution management of the

three architecture descriptions guaranteeing the consistency and coherence properties.





Chapter 5

A formal approach to three-level

software architecture evolution

Managing software evolution in component-based software development processes is a complex

task. Indeed, software architectures must support change at any step of component-based

development to meet new user needs, improve software quality, or cope with component failure.

As discussed in Chapter 3, existing approaches to architecture-centric evolution hardly deal

with this issue. They hardly cover the three main steps of Cbsd, necessary to keep the

traceability of design decisions. This shortcoming often leads to architecture erosion which in

turn leads to software degradation. Dedal (cf. Chapter 2) presents a convenient way to model

software architectures at the three main steps of the component-based software lifecycle (i.e.,

design, implementation and runtime). In the previous chapter, we defined the semantics of

Dedal as well as the links between its three architecture levels. While this contribution provides

a formal ground to support architecture analysis, it still lacks foundations and mechanisms

to support evolution management throughout the whole component-based software lifecycle.

This chapter discusses such proposal. Section 5.1 presents the proposed evolution management

model based on Dedal and Section 5.2 presents the approach undertaken to automate the

evolution process.
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5.1 The evolution management model

Architecture evolution management is a complex task. Indeed, many criteria should be taken

into account while evolving software architectures. For instance, the initial level of change and

its impact on the other abstraction levels, the properties to be preserved when applying change

or the available operations used to apply the change. To make all these criteria explicit, we

propose an evolution management model [Mokni et al., 2015] (cf. Figure 5.1) that encompasses

all the elements involved in the evolution management activity. The interest of the evolution

management model is twofold. First, it simplifies the evolution management task by separating

the evolution management concern from the architectural modeling concern. Second, it helps

understanding and analyzing the architectural change by representing changes as first class

entities at the same level as the architectural model.

The evolution management model consists of three main parts:

• The architectural model (meta-classes of group 1 in Figure 5.1) is the target of change.

Since the objective is to manage evolution throughout all the stages of component-based

development, the target is architectural models derived from Dedal (cf. Dedal meta-

model in Figure 6.2).

• The architectural change (meta-classes of group 2 in Figure 5.1) gathers all the

necessary information about the change such as its origin and abstraction level.

• The evolution manager (meta-classes of group 3 in Figure 5.1) is the system that

captures the change request and tries to find a solution to evolve the architectural model

with respect of all the pre-defined conditions.

Each part of the evolution management model is detailed through the following sections.

5.1.1 The architectural model (Group 1)

The architectural model is an abstract representation of the software system. From an evolu-

tion point of view, the architectural model provides a support to reason about the change and

to simulate it before effectively applying it on the software system. The objective of this thesis

is to manage evolution throughout all the stages of component-based development. There-

fore, we consider three-level architectural models derived from Dedal since it supports well
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the three main steps of component-based development. Consequently, the target architectural

models are constituted of three architecture descriptions conform to Dedal (i.e., architecture

specification, architecture configuration and architecture assembly).

5.1.1.1 Artifacts subject to change

Artifacts are the elements of architectures that are subject to change. At specification level,

artifacts are component roles and connections between them. At configuration level, artifacts

are component classes, server interfaces (provided interfaces to be connected) and connec-

tions. And, at assembly level, artifacts are component instances, server interface instances

and bindings. As they represent dependencies, client interfaces are not dissociated from com-

ponent artifacts and must be connected in all cases (at the difference of server interfaces that

represent functionalities and can be left unconnected).

5.1.1.2 Architecture properties

Architecture properties refer in general to all the properties that must be verified during the

architectural analysis activity to guarantee that the system works correctly and respects all its

requirements. These properties also have to be maintained when evolving the software system.

Architecture properties could be general-purpose like intra-level architecture consistency rules

defined in chapter 4 or specific properties related for instance to an architecture style (e.g.,

pipe and filter style) [Garlan and Shaw, 1994]. In this thesis, we consider two main properties

that we judge crucial to control multi-level architecture evolution: intra-level architecture

consistency and inter-level architecture coherence.

5.1.1.3 Model manipulation operations

Model manipulation operations are elementary operations that manipulate the artifacts of

the architectural model (e.g., addition, deletion and replacement). A model manipulation

operation is composed of four parts:

• a signature that defines the operation name and states its arguments,

• pre-conditions related to the architectural model (e.g., a precondition checks if substi-

tutability between two components holds),

• actions that update a set of variables related to the architectural model (e.g., the set of

components belonging to an architecture),
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• and post-conditions that describe the desired effect of actions after their execution. Post-

conditions are not explicitly defined in the operation but they are deduced from the

operation actions.

Table 5.1 summarizes the model manipulation operations according to the type of the op-

eration, abstraction levels supporting the operation, arguments, pre-conditions and post-

conditions. Operations are specified using the B modeling language and we use the same

notational guidelines defined in Chapter 4 to represent architectural elements.

Operation
type

Level Arguments Pre-condition Post-condition

component
addition

specification,
configura-
tion

arch, new-
Comp

newComp /∈ arch components(arch) newComp ∈
arch components(arch)

component
deletion

specification,
configura-
tion and
assembly

arch, comp comp ∈ arch components(arch) comp /∈ arch components(arch)

component
substitu-
tion

specification,
configura-
tion and
assembly

arch, old-
Comp,
newComp

oldComp ∈ arch components(arch) ∧
newComp /∈ arch components(arch) ∧
(oldComp, newComp) ∈
comp substitution

oldComp /∈
arch components(arch) ∧
newComp ∈
arch components(arch)

adding con-
nection

specification,
configura-
tion and
assembly

arch, cl, se cl ∈ arch clients(arch) ∧ se ∈
arch servers(arch) ∧ (cl 7→
se) /∈ arch connections(arch) ∧
(interfaceElem(se), interfaceElem(cl)) ∈
int compatible

(cl 7→ se) ∈ arch connections(arch)

removing
connection

specification,
configura-
tion and
assembly

arch, cl, se cl ∈ arch clients(arch) ∧ se ∈
arch servers(arch) ∧ (cl 7→ se) ∈
arch connections(arch)

(cl 7→ se) /∈ arch connections(arch)

server addi-
tion

configuration
and assem-
bly

arch, se se ∈ server ∧ se /∈ arch servers(arch) se ∈ arch servers(arch)

server dele-
tion

configuration
and assem-
bly

arch, se se ∈ server ∧ se ∈ arch servers(arch) ∧
∀ cl.(cl ∈ client ⇒ (cl 7→ se) /∈
arch connections(arch)

se /∈ arch servers(arch)

component
instance
deploy-
ment

assembly assm,
newIn-
stance,
compClass

newInstance ∈
instantiates(compClass) ∧
newInstance /∈
assm components(assm) ∧
nbInstance(compClass) ≤
maxInstance(compClass)

newInstance ∈
assm components(assm)

Table 5.1: Summary of model manipulation operations

Component addition is the same for all abstraction levels except for the assembly which is

component instance deployment instead. At assembly level, component instance deployment

takes an extra argument which is the component class to be instantiated and its precondition is

enforced with the maximum number of allowed instances. Component deletion, substitution,

connection and disconnection operations follow the same schema at all abstraction levels.

Component substitution imposes that the new component is a subtype of the replaced one

according to the substitutability rule (cf. Chapter 4, Rule 4). Adding a connection requires

that the server interface and the client interface elements are compatible and are not already

connected. We note that server addition and deletion are not supported by the specification

level since its definition (i.e., specification architecture) imposes that all interfaces must be
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connected to hold interaction consistency. Indeed, at specification level, what is described is

exactly what is required whereas at configuration level, what is described is what is reused to

realize the requirements. This entails that at most all the proposed implemented functionalities

will be reused and not necessary all of them. Server addition and deletion operations are thus

used for this purpose.

The complete formalization related to model manipulation operations at specification, config-

uration and assembly levels can be respectively found in Appendix A, Section A.3, Section A.4

and Section A.5.

5.1.2 The architectural change (Group 2)

Architectural changes characterize all the modifications that alter the software architecture.

They meet new requirements to keep software up-to-date or arise due to an environmental

change (e.g., lack of resources, or faults). Software architectures are subject to change at any

abstraction level of component-based development. The impact of change may affect the other

abstraction levels. All of these facts about software change make its handling a non trivial

task.

5.1.2.1 Change origin

There are two types of change origin: initiated change and triggered change. Initiated change

has an external source. It may be originated from user action or from the execution environ-

ment. Triggered change is internal and is induced by the evolution manager to reestablish

the architecture consistency at the same abstraction level (local change) and/or preserve co-

herence between all architecture descriptions at other abstraction levels (propagated change).

In multi-level evolution, propagated change can be bottom-up when it is propagated to the

higher abstraction levels, top-down when it is propagated to the lower abstraction levels or

mixed when it is propagated to both lower and higher levels.

5.1.2.2 Change level

Change may be initiated at any step of the component-based software lifecycle.

Change at specification level. Change at specification level is usually a response to a new

software requirement. For instance, the architect may need to add new functionalities to the

system by adding new roles to the architecture specification. Enabling change at architecture

specification level makes Cbsd process similar to agile methods (cf. Chapter 2) where software
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increments can be specified and implemented easily and rapidly in the development process.

A specification may also be modified due to a change on its lower configuration level (through

change propagation) to be adapted to the software implementation.

Change at configuration level. Change is usually initiated at configuration level due to

the need to upgrade to new versions of component classes or to adapt the implementation to

a specific operating system before deployment. An implementation may also be impacted by

change propagation either from the specification level, in response to new requirements, or

from the assembly level, in response to a dynamic change of the system.

Change at assembly level. Several kinds of change may occur at runtime. For instance,

dynamic software change may be needed due to a change in the execution context (e.g., lack of

resources, mobility).Dealing with unanticipated changes is one of the most important issues in

software evolution. Indeed, some software systems have to be self-adaptive to keep providing

their functions despite environmental changes.

5.1.2.3 Change subject

It designates the artifacts subject to change. This information is useful to identify the elements

that have to be manipulated during the evolution process.

5.1.3 The Evolution Manager System (Group 3)

The evolution manager is the system in charge of handling the architectural change through-

out the whole software lifecycle. It captures software change, controls its impact on the local

abstraction level to preserve architecture consistency and to propagate it to the other abstrac-

tion levels to keep all architecture descriptions coherent. The state of the architecture model

is analyzed and evolved through a formal evolution manager model. The latter contains all

the definitions of architecture properties and the evolution rules required by the Evolution

Manager System (EMS) to generate evolution plans satisfying a given evolution goal. The

generation process is performed using a solver. Figure 5.2 describes the workflow of the EMS.

5.1.3.1 The evolution manager machine

Chapter 4, Section 4.2 presents the B formal models of Dedal. These models however, are not

sufficient to support evolution management and to enable the analysis of architectural change
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Figure 5.2: EMS workflow

across all the three abstraction levels. Therefore, we propose a B model called EvolutionMan-

ager that includes the concepts required for evolution management. Table 5.2 presents the

schema of the evolution manager machine. The full evolution manager machine specification

can be found in Appendix B.

MACHINE
EvolutionManager

INCLUDES
Arch specification, Arch configuration, Arch assembly

SETS
/*Enumerated set to designate the level of change*/

CHANGE LEVEL = {eLevel, specLevel, configLevel, asmLevel}
VARIABLES
/*Variable to designate the level of change*/
changeLevel,
/*Variables used to store the history of manipulated artifacts (i.e., added and deleted artifacts)*/
/*Boolean variables used to initialize the included machines*/
DEFINITIONS
/*Macros for the preconditions of the model manipulation operation*/
/*Predicates defining consistency and coherence properties*/
spec consistency == specification consistency predicate
config consistency == configuration consistency predicate
assm consistency == assembly consistency predicate
specConfigCoherence == coherence between specification and configuration
configAssemblyCoherence == coherence between configuration and assembly
INITIALISATION
/* changeLevel is initialized to eLevel,
Initialization of boolean variables,
history sets are initialized to empty set */
OPERATIONS
/*Initialization operations*/
/*Architecture model setter*/

mng setTargetArchitectures(spec, config, assm) = . . .
/*Change level setter*/

setChangeLevel(newChangeLevel) = . . .
/*Evolution rules*/
END

Table 5.2: The EvolutionManager machine
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The evolution manager machine includes the following features:

• The arch specification, arch configuration and arch assembly machines corresponding

respectively to the architecture specification, architecture configuration and architecture

assembly (INCLUDES clause in Table 5.2).

• The level of change (changeLevel). This variable is typed with the enumerated set

CHANGE LEVEL. It indicates the current level of change during the evolution process.

Its value is initialized to eLevel and set to the current level of change through the

setChangeLevel operation.

• Macros related to the architectural model such as the pre-conditions of the model ma-

nipulation operations (cf. Appendix B for details).

• Architecture properties that have to be preserved before and after the evolution process

(cf. Section 5.1.1.2).

• Initialization operations. These operations are used to calculate the compatibility and

substitutability between interfaces and components, the matching between component

roles and component classes and the set of all possible connections at each abstraction

level. Initialization is crucial to enable the evaluation of the operation pre-conditions

during the evolution process. For instance, replacing a component by another requires

to check if substitutability between them holds.

• Evolution rules. (They are defined in the next section).

5.1.3.2 Evolution rules

Evolution rules are specific operations that encapsulate model manipulation operations. There

is an evolution rule for each model manipulation operation and it takes the same arguments

as the embedded operation. Evolution rules manage and control access to model operations

using pre-conditions related to the level of change and the history of manipulated artifacts.

These pre-conditions act as a primary filter to model manipulation operations. For instance,

the change level pre-condition restricts the access of the EMS to operations related only to

the current level of change. History about manipulated artifacts is used to avoid redundant

unnecessary transitions that may decrease the efficiency of the EMS. Particularly, deleting

and adding the same artifact several times is unworthy during the evolution process. History

consists of two sets: one for added artifacts and the other for deleted ones. Whenever an

artifact is added (respectively deleted), the corresponding set is updated. It then becomes

possible to inhibit the execution of its inverse operation. Evolution rules also inform the EMS

about the artifacts that have to be manipulated after the last executed change operation.
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This information is used as a heuristic to increase the efficiency of the EMS as discussed in

the remainder (cf. Section 5.2.2.3).

Table 5.3 presents the schema of an evolution rule.

output ← evolutionRuleName(targetArchitecture, artifacts) =
PRE

initialization = true ∧
changeLevel = currentChangeLevel ∧
artifacts /∈ addedArtifacts ∪ deletedArtifacts ∧
manipulationOperationPrecondition

THEN
/* execute manipulationOperationName(targetArchitecture, artifacts),
update the sets of added artifacts and deleted artifacts and,
set the value of output parameters */

END

Table 5.3: The schema of an evolution rule

The pre-condition of an evolution rule (PRE) stipulates that:

• the model should be initialized (i.e., all relations between artifacts are calculated),

• the evolution is applicable at the current level of change,

• artifacts concerned by change have not been manipulated before (i.e., added or deleted)

and,

• the pre-condition of the embedded manipulation operation is satisfied.

When satisfied, this precondition enables to execute the embedded manipulation operation.

Additionally, the sets of added and/or deleted artifacts are updated as well as the output

parameters (output) to be analyzed by the EMS.

Table 5.4 presents an example of evolution rule applicable at configuration level.

changeArtifact ← config addClass(config, newClass) =
PRE

initialisation = TRUE ∧
changeLevel = configLevel ∧
classAdditionPrecondition ∧
newClass 6∈ (deletedClasses ∪ addedClasses) ∧
selectedConfig = config

THEN
addClass(config, newClass) ||
addedClasses := addedClasses ∪ {newClass} ||
changeArtifact := class implements(newClass)

END;

Table 5.4: Evolution rule at configuration level

The rule adds a new component class to a target configuration (config). The output param-

eter is set to the type of the added component class (class implements(newClass)). This

information indicates to the EMS that the next preferred operations are those involving the

elements of the new added component class (e.g., connecting some of its interfaces). The full

list of evolution rules is detailed in Appendix B.
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5.1.3.3 Evolution goal

The evolution goal defines all the conditions that must be satisfied by the architectural model

after the change. When dealing with local change, the evolution goal is set to the consistency

property related to the level of change and the post-condition of the initiated change. When

dealing with propagated change, it is set to coherence with adjacent level in addition to

consistency at the current change level.

5.1.4 Synthesis

In this section, we defined and formalized the concepts underlying evolution management in

multi-level software architectures. The identified concepts relate three orthogonal dimensions:

the architectural model, the change that may affect it and the system in charge of handling this

change. The formalization results in an evolution manager model including the architecture

formal models as well as a set of evolution rules that control the change on these models. It

is henceforth possible to put all these concepts into an automated process that manages the

evolution of component-based software architectures.

5.2 Evolution management approach

In the previous section, we identified and defined the concepts related to multi-level architec-

ture evolution management. In this section, we present our approach to deal with architecture

evolution in reuse-centered, component-based development processes. This approach has the

following objectives:

• To capture architectural change at any of the three main stages of component-based

software lifecycle (i.e., design, implementation and runtime).

• To control the impact of change where it is initiated by reestablishing the architecture

consistency if altered.

• To propagate the change to the other abstraction levels in order to restore the global

coherence of the architecture descriptions if altered.

In the remainder, we give an overview of the evolution approach and then we get into the

details of the evolution-solving process.
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5.2.1 The overall approach

Evolution management starts when a change is requested somewhere in the architectural

model. For instance, a component class addition is requested in the configuration architecture.

The evolution manager captures change and initiates it, by running adequate evolution rules

on the corresponding formal model. It then runs a resolution algorithm that attempts to find a

sequence of evolution rules leading to a consistent state of the architecture. The same algorithm

is applied to the other levels given the adequate evolution goal to restore global coherence if it is

necessary. If a solution is found, the evolution manager generates the corresponding evolution

plan that can then be committed by the user. In the other case (i.e., failure), the evolution

manager rejects the change request. Figure 5.3 shows the activity diagram corresponding to

the multi-level evolution management process.

Figure 5.3: Multi-level evolution management process
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5.2.2 The search algorithm

The problem of evolution management can be seen as follows: considering an initiated change

on the architectural model we would like to find a sequence of evolution rules that reaches the

evolution goal. The latter is defined in terms of consistency and coherence properties and the

post-condition of the requested change.

5.2.2.1 Findings

The above problem can be categorized as a classical planning problem in the area of Artificial

Intelligence [Russell and Norvig, 2010]. In classical planning, the initial state, goal state and

a number of actions with pre-conditions and effects are provided. The plan is a sequence of

actions that transform the initial state to the goal state when executed one after the other.

Planning problems can be automatically solved using explicit propositional or relational rep-

resentations of states and actions and algorithms operating on that representations. General

planners with competitive performances are proposed to solve planning problems for many

domains. The most prominent ones are those supporting the Planning Domain Definition

Language (PDDL) [McDermott, 1998]. An alternative to general planners is to develop spe-

cialized heuristic solvers. The idea is to take advantage of specific information known about

the problem to avoid exploring less promising paths and improve the performance of the search

algorithm. We opt for the second alternative for the following reasons:

• Using heuristics usually shows better results than general approaches in resolving NP-

Complete problems [Bonet and Geffner, 2001].

• In our case, implementation in our case is quite simple since the Dedal formal model

is specified in B which can be manipulated using the ProB API [Leuschel and Butler,

2008].

• B supports practically the same constructs as PDDL except some notions like metric

and durative actions [Fox and Long, 2003] that we do not need at this stage of work.

• This also make it possible to experimentally compare with other approaches (notably

general ones) for evaluation and improvement.

5.2.2.2 Issues related to establishing the search algorithm

Three questions arise when reasoning about developing an efficient evolution solver:

• Q1- Which search strategy is more efficient in our case?
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• Q2- How to avoid redundant transitions during the search process?

• Q3- What specific heuristics can be defined to improve the search strategy?

Answer to Q1: Forward search [Nau et al., 2004] is an intuitive strategy to resolve a planning

problem. It starts from the initial state and applies iteratively and non deterministically an

enabled operation until reaching the goal state or terminating after exploring all possibilities.

However, this strategy does not guarantee a good performance to find the goal state especially

when we are confronted to large state space. This is the reason why the use of effective

heuristics is highly recommended. Therefore, Section 5.2.2.3 defines specific heuristics to

improve the forward search.

Answer to Q2: Redundant transitions are forbidden using pre-conditions that inhibit the

call of the same operation (with the same arguments) more than once. Concretely, addition

and deletion operations (related to the same arguments) are mutually exclusive. Hence, once

executed, an operation cannot be canceled. Backtracking is used instead in the case where the

resulting transitions do not lead to the goal state and other directions should be explored.

5.2.2.3 Defining search heuristics

Answer to Q3: Forward search applies non deterministically an enabled operation to explore

the state space. Using information about the change request and the last executed opera-

tion determinates which operation should be applied at the current state or at least which

operations are more promising than others.

The artifact-oriented heuristic The idea of artifact-oriented heuristic is to prioritize the

operations manipulating the artifacts that are more likely to satisfy the evolution goal (there-

after called the main artifacts). For instance, adding a new component usually entails several

connection operations on that component to restore architecture consistency. Main artifacts

are determined at each iteration of the search process by the output of the last executed

evolution rule.

The operation-oriented heuristic The operation-oriented heuristic adopts an opposite

point of view. It delays the use of operations that engender unsatisfied dependencies between

the components of the architecture and hence more evolution operations to be found in order to

reestablish architecture consistency. Addition operations are the most concerned ones. They

are therefore ordered as the least priority operations while performing the search process.
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5.2.2.4 Pseudo-code of the algorithm

Let a be the selected main artifact on the current state (s) of the model, ei an enabled evolution

rule.

We define h1 as the relation that checks whether the parameters of ei include the artifact a

or not:

{
h1(ei) = true if a ∈ param(ei)

h1(ei) = false otherwise

h1 is used to evaluate the enabled evolution rules at each new state of the architectural model

and prioritize those who involve the main artifact.

We define h2 as the relation that checks whether ei is a component addition operation or not:{
h2(ei) = true if type(ei) = ′′componentaddition′′

h2(ei) = false otherwise

The search algorithm. Listing 5.1 describes the search algorithm of our customized solver.

Lines 1–14 define and initialize the main variables of the algorithm. Transitions refers to

the set of all evolution rules instances in the current state of the architecture model. The

set of already explored transitions is stored in visited, in order to avoid cycles in the search

process. The current sequence of executed transitions is stored in pl, to gradually collect the

candidate evolution plan. The traversal of the search graph is handled by stack. At each step

of the search process, the set of all the enabled transitions (i.e., the evolution rule instances

whose preconditions are verified) is pushed on the stack in order to explore them in the next

steps. Transitions are pushed on the stack along with the current state of the architecture

model and the current evolution plan. This enables to backtrack to previous nodes in the

search graph and explore other paths when dead-ends are reached. The main artifact a is used

in the evaluation of the artifact-oriented heuristics. The initialMainArtifact references

the artifact modified by the initiated change. It is calculated from the post-conditions of the

corresponding operations.

1 // initialisation step

2 s = initialState;

3 a = initialMainArtifact;

4 pl = null;

5 stack = null;

6 visited = ∅;

7 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
8 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
9 lowpriorTransitions = ∅;

10 enabledTransitions = enabledTransitions - priorTransitions;

11

12 // organizing stack

13 stack.push(s, pl, enabledTransitions);

14 stack.push(s, pl, priorTransitions);

15
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16 // starting forward , DF search

17 while (stack 6= ∅)

18 {

19 (s, pl , ei) = stack.pop();

20 if ((s, ei) /∈ visited)

21 {

22 visited = visited ∪ {(s, ei)};

23 s = execute(ei);

24 pl = pl+ei;

25 if (goal == true) return pl;

26 a = output(ei);

27 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
28 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
29 lowpriorTransitions = {ei ∈ enabledTransitions where h2(ei) == true};
30 enabledTransitions = enabledTransitions - (priorTransitions ∪ lowpriorTransitions);

31 stack.push(s, pl, lowpriorTransitions);

32 stack.push(s, pl, enabledTransitions);

33 stack.push(s, pl, priorTransitions);

34 }

35 }

36 return null; // no solution for this change request

Listing 5.1: Search algorithm of our specific solver

At each iteration of the search process (lines 17–33), the top of the stack is popped (line 19),

setting a context consisting of an architecture model state (s), an evolution plan (pl) and

an enabled transition (ei). If the transition has already been visited from this state, another

context is popped from the stack (this happens when a state can be reached by several paths

of the search tree). If the transition has not been explored (line 20), it is listed as visited (line

22) and executed (line 23), updating the state of the architecture model. The last executed

transition is appended to the evolution plan (line 24). If the goal is satisfied, an evolution plan

has been found and it is returned (line 25). Otherwise, the set of the enabled transitions in

the current state is calculated (line 27) as is the set of higher priority enabled transitions (line

28) based on the artifact-oriented heuristic (h1). This uses the main artifact defined as the

output of the last executed transition (line 26). The set of lower priority enabled transitions is

also calculated (line 29), based on the operation-oriented heuristic (h2). This enables to push

on the stack the enabled transitions to be explored depending on the priority determined

by our heuristics (lines 31–33). The use of a stack enables a Depth-First (DF) traversal

of the graph: the next iteration of the search process will pop one of the currently enabled

transitions, from the current architecture state, trying to extend the search path down to the

goal. When a dead-end is reached (no transitions are enabled in the current state), the search

process implicitly backtracks to a previous graph node by popping from the top of the stack

a previously pushed context. This enables the complete traversal of the search graph (breadth

search). The search process is iterated until the goal is reached or there is no more transition

to explore (line 17). In this latter case, the requested change is rejected (line 36).
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5.3 Conclusion

In this chapter, we presented an evolution management approach that deals with architectural

change at the three main steps of component-based development. The proposed approach relies

on Dedal formal models corresponding to the target software architecture. The Dedal formal

models are used by the EMS to analyze the impact of change and to find an evolution plan

that leads the architecture to a consistent evolved state. Moreover, the approach guarantees

the coherence of the three software architecture descriptions by propagating the change to

the impacted abstraction levels. The next step is to implement the evolution approach and

demonstrate its feasibility.





Chapter 6

Implementation and

experimentation:

The DedalStudio tool suite

Chapters 4 and 5 present the foundations of our approach to analyze the structure of software

architectures and manage architecture evolution in Cbsd processes. To establish a proof-

of-concept and demonstrate the feasability of our approach, we have implemented a Case

(Computer-Aided Software Engineering)) tool called DedalStudio. This chapter presents the

architecture of DedalStudio (Section 6.1) and the techniques used to implement each of its

parts (Section 6.2). An experimentation based on the Home Automation Software case study

and a performance evaluation are then presented in Section 6.3.

Contents

6.1 Overview of DedalStudio . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Architecture modeling (DedalModeler) . . . . . . . . . . . . . . . . . . 105

6.2.2 Formal models generation (FormalDedalGenerator) . . . . . . . . . . . 108

6.2.3 Architecture analysis and evolution (DedalManager) . . . . . . . . . . 110

6.2.4 Validating architecture evolution (DedalChangeParser) . . . . . . . . 112

6.3 Experimentation and evaluation . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

103



Chapter 6. Implementation and experimentation 104

6.1 Overview of DedalStudio

Apart from the proof-of-concept purpose, the implementation is intended to assist architects

in modeling, analyzing and evolving component-based software architectures. Hence, we em-

phasized on developing an extensible, user-friendly and efficient tool support, DedalStudio. We

chose quite modern software technologies and an object-oriented language (Java) to develop

our tool. DedalStudio is based on Eclipse 1 which is an open-source development platform

for building, deploying and managing software. It provides extensibility features and allows

developers to add functionalities via plugins. The current version of DedalStudio is composed

of four parts -DedalModeler, FormalDedalGenerator, DedalManager and DedalChangeParser -

as shown in Figure 6.1.

Figure 6.1: The architecture of DedalStudio

DedalModeler enables the creation of architecture definitions according to the Dedal archi-

tectural model. The diagram editor (i.e., DedalModeler) is based on SIRIUS 2, a generic

platform that enables the creation of graphical modeling tools on top of EMF (Eclipse Mod-

eling Framework) 3. The FormalDedalGenerator generates Formal B models corresponding

to Dedal diagrams. The DedalManager handles the evolution process and the generation of

evolution plans. It implements a customized solver built upon the ProB API 4 that enables

the animation and model-checking of B models. Finally, the DedalChangeParser parses the

generated evolution plans and applies the adequate manipulation operations on Dedal models.

All these tools, except for DedalModeler which is targeted to the architect, are fully automatic.

Next section presents the techniques used to implement each of these parts and describes their

functionalities in detail.

1https://eclipse.org/
2https://eclipse.org/sirius/
3https://eclipse.org/modeling/emf/
4http://stups.hhu.de/ProB/w/ProB Java API
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6.2 Implementation

This section presents the implemented functionalities of DedalStudio and the techniques used

to implement them.

6.2.1 Architecture modeling (DedalModeler)

Architects usually opt for graphical architecture modeling notation to design the structure of

software systems. Such semi-formal models provide a balance between precision and formalism

on one hand, and expressiveness and understandability on the other. DedalStudio follows this

guideline. It provides a diagram editor (DedalModeler) with an attractive graphical syntax

to model software architectures according to Dedal. DedalModeler is built upon EMF and

SIRIUS. On the one side, EMF enables to define models using the Ecore meta-model and

generates editors to create instances of these models. It also generates a Java Api to create

programs manipulating the instances of the defined models. On the other side, SIRIUS en-

ables to design a graphical concrete syntax for the Ecore models. It generates rich graphical

editors to create model instances. Figure 6.2 shows the Dedal meta-model (actually, an Ecore

model) that defines the abstract syntax of the architecture modeling notation provided by

DedalModeler.

The main view of DedalModeler (cf. Figure 6.3) enables to create any of the three Dedal

architecture descriptions (i.e., specification, configuration or assembly) and also component

repositories representations.

When the architect adds a new architecture description, the tool redirects him to the adequate

diagram editor (which can be Specification Diagram (SD), Configuration Diagram (CD), As-

sembly Diagram (AD) or Repository Diagram (RD)). Depending on the chosen architecture

abstraction level, the displayed view provides the adequate constructs to use. For instance,

Figure 6.4 shows the tool section corresponding to the creation of a configuration diagram.

The configuration diagram editor enables in addition to create composite component classes

(as the Dedal meta-model includes the CompositeComponentClass meta-class). In the same

way as for creating configurations, the architect is redirected to a new configuration diagram

that maps to the added composite component class. Specification, configuration and repository

diagram editors enable to define interface types and assign them to interfaces. Interface types

are more suitable to be defined textually since they contain signature definitions. Therefore,

an embedded textual editor is displayed when the user invokes an interface type assignment.

This feature is enabled using xText 5, an eclipse-based framework for defining textual Domain-

Specific Languages (Dsls). Like SIRIUS, it can generate editors based on Ecore models. Xtext

5http://www.eclipse.org/Xtext/
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Figure 6.3: The interface of DedalModeler

Figure 6.4: Configuration diagram editor

also generates parsers for Dsls. Figure 6.5 shows the embedded textual editor provided to

define interface types according to the Dedal meta-model (InterfaceType meta-class).

DedalModeler also imposes some control on user operations. For instance, connections cannot

be added between two interfaces that have the same direction or that belongs to the same

component. These kinds of rules are implemented using a subset of Ocl integrated in SIRIUS.

More complex rules like consistency and coherence properties involve too many architectural

elements at the same time and are too hard and even impossible to implement using such a
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Figure 6.5: Embedded textual editor

feature. The generation of formal models tackles with this limit and enables more powerful

architecture analysis.

6.2.2 Formal models generation (FormalDedalGenerator)

While semi-formal notations are relevant for architecture modeling, formal models are crucial

for the verification and validation of software architectures. Combining between the two levels

of formalism enables to leverage the benefits of both. The integration between semi-formal

models (notably the Uml standard) and formal models has been widely studied before and

has shown a high efficiency to increase confidence in the design of software systems. Examples

include integration between Uml and Z [Dupuy et al., 2000], B [Idani, 2006, Snook and Butler,

2006] and Alloy [Anastasakis et al., 2010], SecureUml and B [Ledru et al., 2011] and, Qvt

and Alloy [Macedo et al., 2013]. Such transformations alleviate the burden of dealing with the

verbose syntax of formal modeling languages that require mathematical knowledge and a lot

of expertise. The FormalDedalGenerator is implemented for this purpose. It automatically

generates formal Dedal models (cf. Chapter 4) from the architecture descriptions created using

the DedalModeler. The resulting models are then used to perform analysis in a transparent

way (i.e., the transformation is hidden from the end-user). The transformation approach is

described by Figure 6.6.
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Figure 6.6: The translation approach

It follows a deep embedding technique [Svenningsson and Axelsson, 2013] where the elements

of the source model are firstly mapped to those of the target model. Then, the instances of the

source model are translated and assigned to the corresponding elements of the target model.

Hence, the transformation approach consists of a static part (meta-model level) and a dynamic

part (model level). The static part corresponds to a mapping between the Dedal meta-model

(cf. Figure 6.2) and the formal Dedal models expressed using the B modeling language (cf.

Chapter 4). A meta-class is usually mapped to a B variable typed by an abstract B set while

an association relation corresponds to a B relation. For instance, Figure 6.7 presents the

extract of the arch concept machine that maps to the Component and Interface meta-classes

and their compInterfaces association.

SETS
COMPONENTS; INTERFACES
VARIABLES
component, interface, comp interfaces
INVARIANT
component ⊆ COMPONENTS ∧
interface ⊆ INTERFACES ∧
comp interfaces ∈ component → P1(interface)

Figure 6.7: Example of mapping between meta-classes and B

The dynamic part of the transformation approach represents the translation of the Dedal

instance elements into B atoms. The resulting elements are assigned to the corresponding B
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set and/or variable. This process is automated using Acceleo 6, a model-to-text transformation

engine. It provides conditional ([if]...[/if]) and iterative structures ([for]...[/for]) and partially

relies on Ocl to query the Ecore models (the instances of the Dedal meta-model in our case).

Listing 6.1 shows an example of a query that selects the component classes of the configuration

model and assigns them to the COMP CLASS set.

1 MACHINE

2 Arch_configuration

3 USES

4 Arch_specification

5 SETS

6 COMP_CLASS = {eClass

7 [if (self.repositories ->notEmpty ())]

8 [for (rep : Repository|self.repositories) before(’,’) separator(’,’)]

9 [for (cl : CompClass|rep.eContents(CompClass)) separator(’,’)]

10 [’s_cl’+cl.id/]

11 [/for]

12 [/for]

13 [/if]

14

15 [for (cl : CompClass|self.eContents(Configuration).configComponents) before(’,’)

16 separator(’,’)]

17 [’cl’+cl.id/]

18 [/for]

19 };

Listing 6.1: Acceleo query example

The query first fetches component classes in the set of Repository instances if it is not empty

(lines 7-13). Then, these of configurations are retrieved and added to the COMP CLASS set

(lines 15-18).

Once the formal models are generated, it is possible to perform architecture analysis and

automatically manage architecture evolution.

6.2.3 Architecture analysis and evolution (DedalManager)

Architecture analysis is crucial to ensure reliable evolution and preserve the consistency and

coherence properties after any architectural change. This task becomes more complex when

it comes to deal with multi-level architecture evolution. Indeed, the impact of change has to

be analyzed and controlled both locally (i.e., at a given abstraction level) and globally (for

all the architecture abstraction levels). Architects hence need an evolution manager system

that handles this task automatically. DedalManager is designed for such purpose. It conforms

to the evolution management model and follows the evolution process proposed in Chapter 5.

DedalManager is a front-end of ProB [Leuschel and Butler, 2008], a powerful animator and

6http://www.eclipse.org/acceleo/
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model-checker for B models. The evolution manager is built upon the ProB Api that provides

three programmatic abstractions necessary to communicate with the ProB kernel- Model,

StateSpace and Trace. The Model abstraction enables to retrieve static information about the

B model such as sets, variables and invariants. The StateSpace abstraction enables to retrieve

information about the states of the model and evaluate formulas (i.e., predicates) as well as

outgoing transitions. The Trace abstraction enables the animation of the model (i.e., moving

forward or backward by executing enabled operations). A trace corresponds to a path through

the state space of the model and points to its current state. Using all these abstractions, the

DedalManager inspects the EvolutionManager machine (presented in chapter 5) to analyze

the generated formal Dedal models and control the evolution process. Evolution management

starts when a change to the architecture model is requested (for instance, a component class

addition is requested in the configuration). The DedalManager receives the request, identifies

the change level and deduces the corresponding evolution goal (a set of conditions that must

be verified by the sate of the model). It then invokes its solver that explores the search space

to find a sequence of evolution rules leading to the evolution goal. If a solution is found, the

DedalManager generates an evolution plan that can then be committed by the user. Otherwise

(i.e., in case of failure), the DedalManager rejects the change request. Figure 6.8 shows the

view that displays the generated evolution plans.

Figure 6.8: Evolution plan view

The DedalManager solver State space exploration is often confronted to an increasing

calculation time especially when models become complex and the state space becomes larger.
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One of the major assets of using the ProB Api is to customize state space exploration in

order to prune the search space. Indeed, the ProB solver is general-purpose and uses classical

search space strategies for model-checking, namely Depth-first, Breadth-first and mixed Depth-

first/Breadth-first search. Aiming to provide a more efficient strategy to resolve architecture

multi-level evolution, we have implemented a customized solver based on the search algorithm

proposed in Chapter 5. The performance of the solver is evaluated in Section 6.3 and compared

to the ProB one.

6.2.4 Validating architecture evolution (DedalChangeParser)

DedalManager is only a model analyzer and animator. It generates evolution plans to be

committed by the architect but it does not apply any modifications on the architectural models.

The DedalChangeParser is then in charge of this task. When the architect validates a change,

it parses the generated evolution plans and applies the modification operations on the Ecore

models using the EMF Api. Consequently, graphical models, which are synchronized with

Ecore models, are in turn updated. The architect can hence visualize the evolved architecture

descriptions.

6.3 Experimentation and evaluation

This section firstly presents the case study used to demonstrate the feasibility of our approach

through three evolution scenarios. Then, it evaluates the DedalStudio tool and more specifi-

cally the DedalManager solver and compares its performance with the ProB solver.

6.3.1 Experimentation

Case study description. The case study handles the evolution of the Home Automation

Software introduced in Chapter 4. Three experiments are presented to assert the feasibility

of our formal evolution approach. Each evolution scenario illustrates a change propagation

issue that starts at a different abstraction level, in order to cover the three kinds of multi-level

evolution: top-down, bottom-up and mixed. While the examples are artificial, we believe that

they provide a realistic demonstration of how our approach can be applied in practice.

The initial state of HAS. Figure 6.9, Figure 6.10 and Figure 6.11 show respectively

the initial architecture of Has at specification, configuration and assembly levels and their

corresponding B model states. The meaning of the used notation is as follows:
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specification := {HAS spec}
spec components := {HAS spec 7→ {cr1, cr2, cr3}}
comp name := {cr1 7→ Light, cr2 7→ Time, cr3 7→ HomeOrchestrator}
spec connections := {HAS spec 7→ {

((cr3, rintILight) 7→ (cr1, pintILight)),
((cr3, rintITime) 7→ (cr2, pintITime))}

spec clients := {(HAS spec 7→ {(cr3, rintILight), (cr3, rintITime)}
spec servers := {(HAS spec 7→ {(cr1, pintILight), (cr2, pintITime))}}

Figure 6.9: HAS specification

configuration := {HAS config}
config components := {HAS config 7→ {cl1, cl2, cl3}}
class name := {cl1 7→ AdjustableLamp, cl2 7→ Clock,

cl3 7→ Orchestrator}
class implements := {cl1 7→ ct1, cl2 7→ ct2,

cl3 7→ ct3}
config connections := {HAS config 7→ {

((ct3, rintIPower) 7→ (ct1, pintILamp)),
((ct3, rintIClock) 7→ (ct2, pintIClock))}

config clients := {(HAS config 7→ {(ct3, rintILamp), (ct3, rintIClock)}
config servers := {(HAS config 7→ {(ct1, pintILamp), (ct2, pintIClock))}

Figure 6.10: HAS configuration

• cr, cl, ct and ci denote respectively a component role, a component class, a component

type and a component instance.

• The pint and rint prefixes denote respectively a provided interface and a required inter-

face.

• The spec, config and assm prefixes denote respectively the specification, configuration

and assembly architectures.

• The suffix inst denotes that the interface belongs to a component instance.

We note that an interface belongs to one and only one component (type, role, class or instance).

Two components may have two interfaces of the same type. We often use the same name to

denote two interfaces of the same type. Numeration is used to distinguish them. For example

ci11 and ci12 receptively have pintILampInst1 and pintILampInst2 as interfaces of the same

type.

We note that for the configuration level, connections, clients and servers are expressed using

component types (ct). Indeed, the specification of a component class (in this case its interfaces)

is hold by the component type it implements.

6.3.1.1 First experiment: requirement change

The first scenario addresses a requirement change. The initial Has architecture enables to

switch on / off the lights at specific hours. However, it does not enable any control on light

intensity. To add this new functionality, the architect should modify the Has specification.

This corresponds to a top-down evolution since the change starts at the highest abstraction

level and is then propagated to the lower abstraction levels.
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assembly := {HAS assembly}||
assm components := {HAS assembly 7→ {ci11, ci12, ci2, ci3}}
compInstance name := {ci11 7→ lampDesk,

ci12 7→ lampSitting, ci2 7→ clock1
ci3 7→ orchestrator1}||

assm connections := {HAS assembly 7→ {
((ci3, rintILampInst) 7→ (ci11, pintILampInst1)),
((ci3, rintILampInst) 7→ (ci11, pintILampInst2)),
((ci3, rintIClock) 7→ (ci2, pintIClockInst))}}

comp instantiates := {ci11 7→ cl1, ci12 7→ cl1,
ci2 7→ cl2, ci3 7→ cl3}

assm clients := {(HAS assembly 7→ {(ci3, rintILampInst),
(cl3, rintIClockInst)}||

assm servers := {(HAS assembly 7→ {(ci11, pintILampInst1),
(ci12, pintILampInst2), (ci2, pintIClockInst))}

Figure 6.11: HAS assembly

spec addRole(HAS spec, cr4)
spec disconnect(HAS spec, (cr3, rintILight), (cr1, pintILight))
spec disconnect(HAS spec, (cr3, rintITime), (cr2, pintITime))
spec deleteRole(HAS spec, cr3)
spec addRole(HAS spec, cr3a)
spec connect(HAS spec, (cr3a, rintILight2), (cr1, pintILight))
spec connect(HAS spec, (cr3a, rintILum), (cr4, pintILum))
spec connect(HAS spec, (cr3a, rintITime), (cr2, pintITime))

Figure 6.12: Evolving the HAS specifi-
cation

config addServer(HAS config, (cl1, pintIIntensity))
config disconnect(HAS config, (cl3, rintILamp), (cl1, pintILamp))
config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteClass(HAS config, cl3)
config addClass(HAS config, cl3a)
config connect(HAS config, (cl3a, rintILamp2), (cl1, pintILamp))
config connect(HAS config, (cl3a, rintIClock2), (cl2, pintIClock))
config connect(HAS config, (cl3a, rintIIntensity), (cl1, pintIIntensity))

Figure 6.13: Evolving the HAS config-
uration

Evolving the HAS specification. The change is initiated by the addition of the Lumi-

nosity component role (cr4) providing the ILum interface to control the luminosity. This op-

eration engenders an interaction inconsistency at the specification level since the ILum server

interface is not connected. To restore the consistency, an orchestrator with a new required in-

terface ((cr3a)) is added and connected to Luminosity, Light and Time. The old orchestrator

(cr3) is disconnected and removed. Figure 6.12 shows the evolved Has specification and its

corresponding evolution plan.

Propagating the change to the HAS configuration. Adding new functionalities to the

system’s specification necessarily implies updating the system’s implementation to include

these new functionalities. This is ensured by reestablishing the coherence between the speci-

fication and configuration levels. In this case, the specified functionality (i.e., control of the

luminosity) can be realized by the AdjustableLamp component class via its IIntensity server

interface. The addition of this server interface induces an interaction inconsistency in the con-

figuration since no connection with an existing compatible client interface exists. To restore

consistency, the Orchestrator (cl3) component class is removed and the AndroidOrchestrator

(cl3a) component class is added instead (cf. the evolution plan in Figure 6.13).
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asm addServerInstance(HAS assembly, (ci11, pintIIntensityInst1))
asm addServerInstance(HAS assembly, (ci12, pintIIntensityInst2))
asm unbind(HAS assembly, (ci3, rintILampInst), (ci11, pintILampInst1))
asm unbind(HAS assembly, (ci3, rintILampInst), (ci12, pintILampInst2))
asm unbind(HAS assembly, (ci3, rintIClockInst), (ci2, pintIClockInst))
asm removeInstance(HAS assembly, ci3)
asm deployInstance(HAS assembly, ci3a)
asm bind(HAS assembly, (ci3a, rintILampInst), (ci11, pintILampInst1))
asm bind(HAS assembly, (ci3a, rintIIntensityInst), (ci11, pintIIntensityInst1))
asm bind(HAS assembly, (ci3a, rintIClock2Inst), (ci2, pintIClockInst))
asm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci12, pintILampInst2))
asm bind(HAS assembly, (ci3a, rintIIntensityInst), (ci12, pintIItensityInst2))

Figure 6.14: Change propagation to the
HAS assembly

Propagating the change to the HAS assembly. In the same way, changes are propa-

gated to the Has assembly in order to restore coherence with the evolved Has configuration.

The IIntensity server interfaces of both component instances ci11 and ci12 are added. The

old component instance ci3 is removed and replaced with the androidOrchestrator one (ci3a)

(cf. Figure 6.14).

6.3.1.2 Second experiment: implementation change

The second scenario addresses an implementation change. The objective is to enable the con-

trol of the building through a mobile device (running Android OS for example). To adapt

the current implementation to Android, the Orchestrator component class should be removed

and replaced with an Android compatible one available in the component repository (An-

droidOrchestrator). The change is initiated at the configuration level and then propagated to

both specification and assembly levels.

Evolving the HAS configuration. The change is initiated by the addition of the An-

droidOrchestrator (cl3a) component class to the HAS configuration. This entails the connec-

tion of all required interfaces of AndroidOrchestrator and the disconnection and removal of

Orchestrator to restore the architecture consistency. The service IIntensity is added since

it is required by the new orchestrator. We note that the orchestrator replacement cannot

be done using component substitutability since the new orchestrator engenders more depen-

dencies (i.e., the IIntensity required interface) breaking hence the substitutability rule (cf.

Chapter 4, Rule 4).

Figure 6.15 illustrates the evolved HAS configuration as well as an alternative evolution plan.

Propagating the change to the HAS specification. The evolved HAS configuration

implements all the specified functionalities of the current HAS specification. However, the

latter does not capture the new implemented functionality that enables the control of the
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config addClass(HAS config, cl3a)
config disconnect(HAS config, (cl3, rintILamp), (cl1, pintILamp))
config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteClass(HAS config, cl3)
config connect(HAS config, (cl3a, rintILamp2), (cl1, pintILamp))
config connect(HAS config, (cl3a, rintIClock2), (cl2, pintIClock))
config addServer(HAS config, (cl1, pintIIntensity))
config connect(HAS config, (cl3a, rintIIntensity), (cl1, pintIIntensity))

Figure 6.15: Evolving the HAS config-
uration

spec disconnect(HAS spec, (cr3, rintILight), (cr1, pintILight))
spec disconnect(HAS spec, (cr3, rintITime), (cr2, pintITime))
spec deleteRole(HAS spec, cr3)
spec addRole(HAS spec, cr3a)
spec connect(HAS spec, (cr3a, rintILight2), (cr1, pintILight))
spec connect(HAS spec, (cr3a, rintITime), (cr2, pintITime))
spec addRole(HAS spec, cr4)
spec connect(HAS spec, (cr3a, rintIIntensity), (cr4, pintIIntensity))

Figure 6.16: Change propagation to the
HAS specification

asm unbind(HAS assembly, (ci3, rintILampInst), (ci11, pintILampInst1))
asm unbind(HAS assembly, (ci3, rintILampInst), (ci12, pintILampInst2))
asm unbind(HAS assembly, (ci3, rintIClockInst), (ci2, pintIClockInst))
asm removeInstance(HAS assembly, ci3)
asm deployInstance(HAS assembly, ci3a)
asm bind(HAS assembly, (ci3a, rintILampInst), (ci11, pintILampInst1))
asm addServerInstance(HAS assembly, (ci11, pintIIntensityInst1))
asm bind(HAS assembly, (ci3a, rintIIntensityInst), (ci11, pintIIntensityInst1))
asm bind(HAS assembly, (ci3a, rintIClock2Inst), (ci2, pintIClockInst))
asm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci12, pintILampInst2))
asm addServerInstance(HAS assembly, (ci12, pintIIntensityInst2))
asm bind(HAS assembly, (ci3a, rintIIntensityInst), (ci12, pintIItensityInst2))

Figure 6.17: Change propagation to the
HAS assembly

luminosity. Hence, the coherence between the two architecture descriptions does not hold

anymore and the change must be propagated to the specification level to restore coherence.

This entails the addition of an orchestrator with a new required interface (ILuminosity (cr3a))

and the Luminosity component role (cr4) providing this interface. The evolved Has specifi-

cation and a potential evolution plan are shown in Figure 6.16.

Propagating the change to the HAS assembly. Th current Has assembly is not a valid

instantiation of the evolved Has configuration. Therefore, the change must be propagated

to the assembly level to restore the coherence between the configuration and assembly. An

instance (ci3a) of the android orchestrator is then deployed and connected to the lampSitting,

deskSitting and clock component instances. The ancient orchestrator instance (ci3) is removed.

The resulted Has Assembly and the corresponding evolution plan are shown in Figure 6.17.

6.3.1.3 Third experiment: runtime change

The third scenario addresses a runtime change. It corresponds to a bottom-up evolution since

the change is initiated at the lowest abstraction level. Because of a dry battery, the clock device
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asm unbind(HAS assembly, (ci3, rintIClockInst), (ci2, pintIClockInst))
asm deleteServerInstance(HAS assembly, (ci2, pintIClockInst))
asm replaceInstance(HAS assembly, ci2, ci2a)
asm addServerInstance(HAS assembly, (ci2a, pintIClock2Inst))
asm bind(HAS assembly, (ci3, rintIClockInst), (ci2a, pintIClock2Inst))

Figure 6.18: Evolving the HAS assem-
bly

config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteServer(HAS config, (cl2, pintIClock))
config replaceClass(HAS config, cl2, cl2a)
config addServer(HAS config, (cl2, pintIClock2))
config connect(HAS config, (cl3, rintIClock), (cl2a, pintIClock2))

Figure 6.19: Change propagation to the
HAS configuration

in the building is out of service. This environmental change induces the dysfunction of the

clock1 driver (ci2 ). The objective is to find a solution to dynamically repair the architecture

in order to maintain the functionalities of the system.

Evolving the Has assembly. clock1 (ci2 ) must be replaced by another component in-

stance that provides the same services. An instance of the AndroidClock component class,

androidClock1 (ci2a), is thus chosen to replace clock1. The clock1 component instance is

disconnected first then replaced by androidClock1. This change does not alter the consistency

of the assembly architecture and no further operations are required (cf. evolution plan in

Figure 6.18).

Propagating the change to the Has configuration. Coherence with the configuration

architecture has to be reestablished. Indeed, the evolved assembly architecture is not a valid

instantiation of the current configuration architecture since the ci2a component instance is

not recognized as an instance of the cl2 component class. Change propagation induces the

substitution of the AndroidClock component class (cl2a) for the Clock component class (cl2 ),

which amounts to the evolution plan shown in Figure 6.19.

We note that this evolution scenario uses a strict evolution strategy that does not take into

account component polymorphism (i.e., a supertype component class can have component

instances of its subtype component classes). This issue can be managed using versioning

strategies where it is possible to decide to keep the old version of the clock component class

since there no type error risk or to update it accordingly to the new clock component instance

to keep an up-to-date architecture configuration.
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Propagating the change to the Has specification. The component class substitution

preserves the coherence between the specification and the configuration. Indeed, when a com-

ponent class implements a given role, any component subclass, as a substitute, also implements

the role. As a consequence, no change needs to be propagated to the specification.

6.3.1.4 Discussion

The three experiments illustrate the feasibility of our approach to evolve component-based

software architectures. They show that change can be initiated from any abstraction level,

controlled locally to preserve consistency and propagated to other levels to keep all architecture

descriptions coherent with each other. The time for resolving evolution and the way plans

are generated depend on the technique used by the solver. Next section evaluates evolution

resolution time using the customized solver of our tool DedalStudio and the general-purpose

solver of ProB.

6.3.2 Performance evaluation

This section evaluates the performance of two tools that automatically generate evolution

plans: ProB and DedalStudio. The Has architecture descriptions are modeled using DedalMod-

eler then their corresponding B formal models are generated using FormalDedalGenerator. The

same resulting models are then used to test both ProB solver and DedalManager customized

solver.

6.3.2.1 Test preliminaries for ProB

ProB [Leuschel and Butler, 2008] is basically used to ensure that a model is free from error

states such as deadlocks or invariant violations by exploring its state space. Additionally, it

can be used as a solver that attempts to find a state satisfying a given goal. It proposes one

of the three search strategies to explore the state space: depth-first (DF), breadth-first (BF)

or mixed depth-first/breadth-first (DF/BF). The most suitable strategy depends on the kind

of checking the user wants to perform. In the case of searching for a goal state by exploring a

large state space, depth first seems to be the most efficient strategy [Leuschel and Bendisposto,

2011].

ProB requires to manually set the search goal (GOAL) and the change level (changeLevel) in

the input formal model. To correctly perform the test, we use three different instances of the

EvolutionManager machine for each experiment. Each instance contains the adequate change

level and goal definition ( Table 6.1).
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Evolution
Manager
instance

State Change level GOAL

Exp 1
Instance 1 initial state of HAS specLevel spec consistency ∧ cr4 ∈

spec components(HAS spec)
Instance 2 evolved specification configLevel config consistency ∧

specConfigCoherence
Instance 3 evolved configuration assmLevel assm consistency ∧

configAssemblyCoherence

Exp 2
Instance 1 initial state of HAS configLevel config consistency ∧ cl3a ∈

config components(HAS config)
Instance 2 evolved configuration specLevel spec consistency ∧

specConfigCoherence
Instance 3 evolved configuration assmLevel assm consistency ∧

configAssemblyCoherence

Exp 3
Instance 1 initial state of HAS assmLevel assm consistency ∧ ci2 /∈

assm components(HAS assembly) ∧
ci2a ∈
assm components(HAS assembly)

Instance 2 evolved assembly configLevel config consistency ∧
configAssemblyCoherence

Instance 3 evolved configuration specLevel spec consistency ∧
specConfigCoherence

Table 6.1: Test parameters for ProB

As stated in Chapter 5, Section 5.1.3.3, the goal corresponding to the initiated change is

defined by its post-condition. For instance, in Exp1 and Exp2, the initiated change re-

spectively requires the addition of cr4 and cl3a. Hence, their respective post-conditions are

cr4 ∈ spec components(HAS spec) and cl3a ∈ config components(HAS config). In the

third experiment, the initiated change requires the replacement of the ci2 component instance

by ci2a component instance. Hence, the corresponding post-condition is as follows:

ci2 /∈ assm components(HAS assembly) ∧ ci2a ∈ assm components(HAS assembly)

Additionally, we remove all the operations unnecessary for plan generation such as initialization

operations and setChangeLevel (cf. EvolutionManager machine in chapter 5). Therefore, we

make sure that the solver explores only the evolution rules and nothing else that may decrease

its performances.

6.3.2.2 Test preliminaries for DedalManager

To evaluate the efficiency of the heuristics proposed in Chapter 5, we test two search strate-

gies implemented by DedalManager solver: Simple Depth-First search (S-DF ) and Heuristic

Depth-First search (H-DF ). Our prototype automatically initializes the model, sets the change

level and restricts the search space to applicable evolution rules (unnecessary operations are

filtered and removed from the search space). For each experiment, one instance of the Evolu-

tionManager machine is sufficient to perform the test since the last state is stored in the trace

after each evolution.

For each evolution scenario, initial change is requested via the diagram editors. Figure 6.8

shows an illustration of a change request at configuration level.
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Table 6.2 shows the parameters that DedalManager uses to perform the search for each ex-

periment.

Run State Change level Initial main artifact GOAL

Exp 1
1st run initial state of HAS specLevel cr4 specification consistency ∧ cr4 ∈

spec components(HAS spec)
2nd run evolved specification configLevel {cl1} = realizes(cr4) config consistency ∧

specConfigCoherence
3rd run evolved configuration assmLevel {ci11, ci12} =

comp instantiates(cl1)
assembly consistency ∧
configAssemblyCoherence

Exp 2
1st run initial state of HAS configLevel cl3a config consistency ∧ cl3a ∈

config components(HAS config)
2nd run evolved configuration specLevel {cr3a} =

realizes−1(cl3a)
spec consistency ∧
specConfigCoherence

3rd run evolved configuration assmLevel {ci3a} =
comp instantiates(cl3a)

assembly consistency ∧
configAssemblyCoherence

Exp 3
1st run initial state of HAS assmLevel ci2 assembly consistency ∧ ci2 /∈

assm components(HAS assembly) ∧
ci2a ∈
assm components(HAS assembly)

2nd run evolved assembly configLevel {cl2} =
comp instantiates−1(ci2)

config consistency ∧
configAssemblyCoherence

3rd run evolved configuration specLevel {cr2} = realizes−1(cl2) spec consistency ∧
specConfigCoherence

Table 6.2: Test parameters for the evolution-solver algorithm

The change level, initial main artifact and evolution goal parameters are deduced from the

change request. At the propagation step, the initial main artifact is identified thanks to the

intra-level rules defined in Chapter 4. For instance, in the second experiment, the initial main

artifact is selected from the set of component roles realized by the AndroidOrchestrator (cr3a)

component class as follows: {cr3a} = realizes (cl3a). By selecting cr3a, the solver will first

try the evolution rules applicable on cr3a. In the case where many candidates are found, the

current solver is not able to evaluate which component class is the best. Hence, an artifact

is non deterministically chosen from the list. The initial main artifact identification process

concerns only the H-DF strategy.

6.3.2.3 Performance evaluation

The performance of both solvers has been measured on the three experiments, in order to

evaluate the influence of our proposed heuristics. Tests were run on a standard PC (2.5

GHZ Intel Core i5, 8 GB SDRAM) under Windows 7. Table 6.3 shows the average time

in milliseconds of three runs for each evolution scenario, using all of the exposed strategies.

Timeout is set to 3 minutes.

We note that the order and number of evolution rules may differ from a generated evolution

plan to another (our algorithms are not deterministic as they make random choices when

sets of equivalent elements are considered, such as a set of candidate main artifacts) but all

generated plans are valid and lead to the same goal state.
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ProB solver DedalManager solver
Change level DF (ms) BF (ms) DF/BF (ms) S-DF (ms) H-DF (ms)

Exp 1

specLevel (initial) 2944 8774 4448 3260 2100
configLevel 9100 26779 27177 3254 1393
asmLevel 9140 TIME-OUT 30424 26738 1926

Exp 2

configLevel (initial) 9112 104629 12235 4712 2537
specLevel 3006 8710 5135 8733 1896
asmLevel TIME-OUT TIME-OUT 28177 TIME-OUT 1927

Exp 3

asmLevel (initial) 11589 72480 37090 4745 1184
configLevel 78939 36187 85195 TIME-OUT 2351
specLevel (not affected) – – – – –

Table 6.3: Performance evaluation

6.3.2.4 Discussion

Results doubtlessly show the benefits of a custom solver that integrates specific heuristics. In

all experiments, H-DF performs the best with a resolution time varying in [1184, 2537] ms. In

most cases, the depth-first strategy (S-DF and DF ) comes after H-DF (cf. Table 6.3 Exp1(all

levels), Exp2(configLevel and specLevel) and Exp3(asmLevel)). Some other cases however

shows that it leads to TIME-OUT (cf. Table 6.3 Exp2(asmLevel) and Exp3(configLevel)).

Indeed, exploring state space in depth is sometimes risky because the solver may waste a lot

of time in exploring a “wrong” branch, especially when the state space is large. Breadth-first

strategy is in most cases by far the worst (see for instance Exp2(configLevel) and Exp3(asmLevel)

in Table 6.3). Our interpretation is that BF waste a lot of time in trying all outgoing tran-

sitions from a source state before exploring in depth one of them (and thus trying to find

actually a suitable evolution plan), especially when the set of applicable transitions becomes

large. The mixed DF/BF strategy has sometimes good surprising results (see for instance

Exp2(asmLevel) in Table 6.3 ). This is due to the fact that this strategy randomly mix

between the DF and BF which is sometimes more efficient than DF.

A more precise performance evaluation, based on a larger set of experiments and a theoretical

study of the combinatorial complexity of the search space is needed. Performance is indeed

an inherent limitation for search-based software engineering, as the resolution time of solvers

generally grows exponentially depending on the size of the problem. Designing and integrating

new heuristics to cut down calculation time is promising (we can for instance choose prefer-

entially transitions that generate no or little incoherence in the architecture model).

6.4 Conclusion

This chapter presented an implementation and experimentation of our approach to manage

software architecture evolution in Cbsd processes. The implementation consists in DedalStu-

dio, an eclipse-based tool suite that supports architecture modeling and evolution management

based on Dedal. The tool was implemented with respect to the following criteria: extensible
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(since it is based on Eclipse plugins), user-friendly (since it is based on SIRIUS) and powerful

(since it integrates the ProB Api and uses search-based engineering techniques to automati-

cally manage architecture evolution).

Experimentation is based on three evolution scenarios for the Home Automation Software.

The generated evolution scenarios and resulting evolved architecture definitions were firstly

presented as a proof-of-concept. Then, tests were performed using both ProB and DedalStudio

to automatically generate evolution plans for each evolution scenario. The evaluation showed

that our customized solver based on specific heuristics outperforms the ProB general-purpose

solver.

Nonetheless, we assume that an evaluation on a larger set of experiments is required to de-

termine the limits of our solver. Moreover, experimenting with real architecture descriptions

might reveal other issues.
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Conclusion and future work

directions

This chapter summarizes the contributions of the thesis, points out their main limitations and

discusses future work directions.
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7.1 Contributions

This thesis contributes to Component-Based Software Engineering. In particular, it addresses

the problematic of evolution in reuse-intensive, architecture-centric, component-based devel-

opment processes. Two main issues are considered. First, dealing with evolution at any step

of component-based software lifecyle namely, requirements changes, implementation changes

and runtime changes. Second, controlling the impact of software changes all along its lifecycle

to avoid architectural inconsistencies that compromise the functioning of the software system

and lead to its degradation and phase-out.

123
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Therefore, a formal approach to automate architecture evolution management in Cbsd pro-

cesses is proposed. The contributions of this thesis can be classified according to three concerns:

conceptual, technical and applicative.

7.1.1 Conceptual contributions

From a theoretical point of view, this thesis proposes a type theory for the Dedal three-level

architecture model tailored for Cbsd. It consists of intra-level rules and inter-level rules. Intra-

level rules concern the relations linking components within models corresponding to different

architecture abstraction levels whereas inter-level rules concern the relations linking models

describing the same architecture at different abstraction levels. It follows from these rules

the definition of two main architecture properties: architecture consistency and architecture

coherence. Architecture consistency includes general-purpose architecture properties regarding

name, interface and interaction consistency that must be preserved to ensure the correctness

of the software system. Architecture coherence encompasses the properties that must be

preserved between two architecture definitions at two adjacent abstraction levels to ensure

the traceability of architectural design decisions throughout the whole software development

steps. Coherence notably enables to avoid the architectural erosion problem.

A second conceptual contribution is an evolution management model that considers architec-

tural changes as first-class entities and separates the architecture modeling concern from the

architecture evolution management concern. The proposed model supports the Dedal archi-

tectural model and highlights three abstraction levels of change in accordance with it. Besides,

it classifies architectural changes into the ones initiated externally and the ones triggered by

the evolution manager system to preserve architecture properties. Moreover, the evolution

management model introduces the notions of evolution rules, evolution goal and evolution

plan. An evolution rule is a specific operation that controls an elementary modification on the

architectural model at a given abstraction level. An evolution goal denotes the condition that

must be satisfied on the architectural model after some change. An evolution plan consists

of a sequence of evolution rules that when executed, leads the architectural model to a state

satisfying the evolution goal.

7.1.2 Technical contributions

A first technical contribution consists in the B formalization of Dedal concepts and its asso-

ciated type theory. The resulting B abstract models (so called FormalDedal) include both

generic architectural concepts and Dedal specific concepts. The generic concepts are included

in the Arch concepts machine and could be reused and/or specialized to formalize other Adls.

The specific Dedal concepts are included in the Arch specification, Arch configuration and
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Arch assembly machines that respectively correspond to the specification, configuration and

assembly levels. FormalDedal hence presents a support for powerful architecture analysis such

as proof, model-checking and constraint-solving.

A second technical contribution is the B formalization of the evolution management model.

It results in the EvolutionManager model that includes evolution rules corresponding to each

Dedal architecture abstraction level. The EvolutionManager model enables to analyze ar-

chitectural change and is used to calculate evolution plans to restore the consistency and

coherence properties of the altered architecture. An evolution management process is also

proposed. It consists of three steps: First, change is initiated on an architecture description

at a given abstraction level; then, the consistency of the impacted description is checked out

and restored by triggering additional changes; finally, the global coherence of the architecture

definitions is verified and restored by propagating changes to the other abstraction levels.

A third technical contribution consists in an evolution-solving algorithm that automatically

generates evolution plans according to a given evolution goal. The algorithm performs a for-

ward depth-first search on the state space of the architectural model. To improve calculation

time, it is enhanced with two specific heuristics: artifact-oriented heuristic and operation-

oriented heuristic. The artifact-oriented heuristic is used to prioritize the operations manip-

ulating the artifacts that are more likely to satisfy the evolution goal. The operation-oriented

heuristic delays the use of operations that engender unsatisfied dependencies between the

components and hence risk to increase the search time.

7.1.3 Applicative contributions

A tool suite, named DedalStudio was implemented to demonstrate the feasibility of the evo-

lution management approach. DedalStudio is an eclipse-based environment for architecture

modeling and evolution management. Modern technologies (e.g., EMF/SIRIUS, Acceleo and

ProB Api) and approaches were used to implement DedaLStudio. In particular, DedalStudio

presents an application of both Model-Driven engineering and search-based engineering.

Model-Driven engineering application. Adopting a Mde approach, FormalDedal is

mapped with the Dedal meta-model to enable automatic model transformations. This in-

tegration enables to combine both the benefits of semi-formal modeling notations and formal

notations: architecture modeling using the DedalModeler tool and architecture analysis and

evolution management using DedalManager tool.

Search-based engineering application. An application of search-based engineering con-

sists in the implementation of a specific solver to tackle a software engineering problem, i.e.,
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planning the evolution of software architecture models. The interest of such approach is to

optimize the planning calculation time using search-based algorithm enhanced with specific

heuristics.

7.2 Limitations and future work directions

This section points out the limitations of our work and discusses future work directions. As for

contribution, we classify perspectives into conceptual, technical and applicative. Additionally,

we discuss the threats to validity and experimental perspectives.

7.2.1 Conceptual perspectives

A first perspective is to add support for multi-level architectures versioning. Software version-

ing is intrinsic to software evolution. It enables to keep history of previous software states

(versions) and traces of the updates (changes) up to the latest available software versions.

Versioning is necessary to backup to previous versions when a bug or faulty change decision

is detected in the current version. Moreover, many variants of the software could coexist and

evolve concurrently. In Dedal, versioning consists in studying the impact of evolving an ar-

chitecture at a given abstraction level in all the related existing architecture definitions. For

instance, evolving an architecture specification may imply the evolution of all its associated

architecture configurations or evolving an architecture configuration may simply imply the

addition of a new software variant in the spirit of a software product line [Pohl et al., 2005].

At this stage of work the proposed type theory addresses only the syntactic level of software

components and the structural and functional properties of software architectures. This con-

tribution sets the basis to address more challenging issues, namely the behavioral aspect and

non-functional component properties such as performance, trustworthiness and quality. For

instance, the rules between the specification and configuration levels could be extended to

include constraints related to non-functional attributes. This would enable to trace both func-

tional and non-functional design decisions. Related work includes the approach of Tibermacine

et al. [Tibermacine et al., 2005] that addresses the traceability of non-functional properties in

component-based software lifecycle.

Another perspective is to extend the evolution management model to enable customized and

user-assisted evolution management. In particular, the following features could be added:

• Evolution rules are predefined and only control elementary model manipulation oper-

ations. An interesting perspective is to propose a language for architects to specify
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customized evolution rules in a manner similar to Le Goaer [Le Goaer, 2009] and

Sadou [Sadou, 2007]. The language would first enable to specify more complex ma-

nipulation operations as composition of elementary ones. The resulting operations could

then be stored for reuse in repositories that will be made available for the Evolution

Manger System. Second, specific evolution rules could be specified to take into account

additional criteria related for instance to the cost of using an operation in terms of time

and performance. This will enable to generate multiple candidate evolution plans and

select the optimal one according to the chosen criteria in a manner similar to Barnes et

al. [Barnes et al., 2014].

• Only general-purpose architecture properties are taken into account. Architect may need

to specify additional properties related for instance to architecture styles [Garlan and

Shaw, 1994].

7.2.2 Technical perspectives

Technical perspectives address mainly the B formalization of Dedal. A first technical limitation

of using B formal models is the inability to add new entities. All atoms should have been

predefined before in the SETS clause. This does not really matter for component classes

since they are pre-existant (stored in repositories and available for reuse). However, to deal

with unanticipated changes, component roles and component instances may need to be created

further to change propagation. We are investigating on how to make evolution manager adding

component instances and component roles to formal Dedal models during evolution without

anticipation.

A second perspective is to establish a refinement process between the specification and config-

uration levels using the B method as support. The objective is to enable a more rigorous link

between architecture specification and configuration. An architecture specification including

partial and abstract component roles could be successively refined to obtain more concrete

specification. The latter would then be used as support to obtain an implementation of the

software. Model manipulation operations however cannot be refined using B. This limitation

is fixed in Event-B [Abrial, 2010], an extended variant of B. Refining operations could be in-

teresting to specify and specialize model manipulation operations as mentioned in conceptual

perspectives.

Existing work in translating Ocl to B [Ledang and Souquieres, 2002] can be integrated to

ours in order to allow the architect to specify additional architecture properties as mentioned

in theoretical perspectives.
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Another perspective addresses the algorithm that calculates evolution plans. Existing heuris-

tics can be improved. For instance, operation-oriented heuristic may prioritize transitions that

generate no or little incoherence in the architecture model like replacement operations.

An alternative idea to minimize change propagation time is to start change propagation from an

initial solution that would be a transformation of the plan generated for the adjacent architec-

ture level. Further evolution rules are then triggered in need to reestablish consistency and co-

herence. Transformation of evolution plans can be calculated using the semantic links that ex-

ist between two adjacent levels. For instance, asm replaceInstance(HAS assembly, ci2, ci2a)

can be translated to its equivalent in configuration level as follows:

config replaceClass(HAS config, cl2, cl2a) where cl2 = comp instantiates−1(ci2) and cl2a =

comp instantiates−1(ci2a).

7.2.3 Applicative perspectives

Applicative perspectives concern the DedalStudio tool suite. DedalModeler can be improved

by enhancing user control and adding other features like specifying architecture properties. A

real architecture implementation using existing component technologies [Crnković et al., 2011]

can be generated from the architecture configuration. The languages and features mentioned

in technical perspectives can also be added to DedalStudio.

7.2.4 Threats to validity and experimental perspectives

Threats to the validity of our approach lie in the example scenarios that we have considered for

experimental validation (cf. Chapter 6), as experimenting with real architecture descriptions

might reveal scalability issues, for example. Indeed, the resolution time of solvers generally

grows exponentially depending on the size of the problems. This is a classical inherent lim-

itation of search-based engineering. A real-world case study is hence crucial to validate our

approach. A theoretical study of the combinatorial complexity of the search space is also

needed to investigate on more efficient heuristics. Alternatively, other solving approaches

(using for instance constraint-solving techniques) can be evaluated and compared to the one

proposed in this thesis.



Appendix A

Formal Dedal specifications (Home

Automation Software Example)

A.1 Basic concepts Machine

MACHINE

Basic concepts

SETS

PARAM NAMES = {none ,intensity };

PARAMETERS = {nonep ,s p5 ,p8 };

INTERFACES = { rintILight2 ,rintILum ,rinITime2 ,pintILum ,rintILamp2 ,rintIIntensity ,rintIClock2

,pintIClock2 , rintILight ,rintITime ,pintILight ,pintItime ,rintILamp ,rintIClock ,pintIClock ,pintILamp2

,pintIIntensity };

TYPES = {void, int, Date};

INTERFACE TYPES = {ILuminosity,ILight ,ITime ,ILamp ,IClock ,IIntensity };

SIGNATURES= {s sg320,sg14,sg15,sg16,sg33,sg34,sg35,sg36,sg350,sg360};

SIG NAMES = {switchOn,switchOff,getTime,setDate,setIntensity,getIntensity};

DIRECTION = {PROVIDED, REQUIRED}

VARIABLES

parameter, interface, type, subtype, parameter name, parameter type,

int direction, int type, interfaceType, int subtype,

int substitution, param subtype, int compatible, signature, sig name, parameters,

129
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sig return, int signatures, sig subtype

INVARIANT

type ⊆ TYPES ∧

subtype ∈ type ↔ type ∧

parameter ⊆ PARAMETERS ∧

parameter name ∈ parameter → PARAM NAMES ∧

parameter type ∈ parameter → type ∧

signature ⊆ SIGNATURES ∧

sig name ∈ signature → SIG NAMES ∧

parameters ∈ signature → P (parameter) ∧

∀ (p1, p2, sig).(sig ∈ signature ∧ p1 ∈ parameter ∧ p1 ∈ parameters(sig) ∧ p2 ∈ parameter ∧ p2 ∈
parameters(sig) ⇒ (p1 6= p2 ⇔ parameter name(p1) 6= parameter name(p2))) ∧

sig return ∈ signature → type ∧

/*Parameter specialization rule */

param subtype ∈ signature ↔ signature ∧

∀ (sig1, sig2).(sig1 ∈ signature ∧ sig2 ∈ signature ∧ sig1 6= sig2 ⇒ ((sig1, sig2) ∈ param subtype ⇔

∃ inj.(inj ∈ parameters(sig1) æ parameters(sig2) ∧ ∀ param.(param ∈ parameter ∧ param ∈
dom(inj) ⇒ parameter name(param) = parameter name(inj(param)) ∧ parameter type(inj(param)) :

(subtype[{parameter type(param)}] ∪ {parameter type(param)}))))) ∧

/*Signature specialization rule */

sig subtype ∈ signature ↔ signature ∧

∀ (sig1, sig2).(sig1 ∈ signature ∧ sig2 ∈ signature ∧ sig1 6= sig2 ⇒ ((sig1, sig2) ∈ sig subtype ⇔
(sig name(sig1) = sig name(sig2) ∧ (sig2, sig1) ∈ param subtype ∧ sig return(sig2) ∈
subtype[{sig return(sig1)}] ∪ {sig return(sig1)}))) ∧

interfaceType ⊆ INTERFACE TYPES ∧

int signatures ∈ interfaceType → P (signature) ∧

/*Interface subtyping rule */

int subtype ∈ interfaceType ↔ interfaceType ∧

∀ (intTypeA, intTypeB).(intTypeA ∈ interfaceType ∧ intTypeB ∈ interfaceType ∧ intTypeA 6=
intTypeB ⇒

((intTypeA, intTypeB) ∈ int subtype ⇔ ∃ inj.(inj ∈ int signatures(intTypeA) æ

int signatures(intTypeB) ∧ ∀ sig.(sig ∈ signature ∧ sig ∈ int signatures(intTypeA) ⇒ (sig, inj(sig)) ∈
closure(sig subtype) ∨ sig=inj(sig))))) ∧
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interface ⊆ INTERFACES ∧

int type ∈ interface → interfaceType ∧

int direction ∈ interface → DIRECTION ∧

/*Interface substitution rule */

int substitution ∈ interface ↔ interface ∧

∀ (int sup, int sub).(int sup ∈ interface ∧ int sub ∈ interface ∧ int sup 6= int sub ⇒

((int sup, int sub) ∈ int substitution ⇔ ((int type(int sub) ∈ int subtype[{int type(int sup)}] ∪
{int type(int sup)}) ∧ int direction(int sup) = PROVIDED ∧ int direction(int sub) = PROVIDED) ∨
((int type(int sup) ∈ int subtype[{int type(int sub)}] ∪ {int type(int sub)}) ∧ int direction(int sup) =

REQUIRED ∧ int direction(int sub) = REQUIRED))) ∧

/*Interface compatibility rule */

int compatible ∈ interface ↔ interface ∧

∀ (intA, intB).(intA ∈ interface ∧ intB ∈ interface ∧ int direction(intA) 6= int direction(intB) ⇒

((intA, intB) ∈ int compatible ⇔

((int direction(intA) = PROVIDED ∧ int direction(intB) = REQUIRED ∧ (int type(intA) ∈
int subtype[{int type(intB)}] ∪ {int type(intB)})) ∨

(int direction(intA) = REQUIRED ∧ int direction(intB) = PROVIDED ∧ (int type(intB) ∈
int subtype[{int type(intA)}] ∪ {int type(intA)})))))

DEFINITIONS

compatible interfaces1 == {int1, int2 | int1 ∈ interface ∧ int2 ∈ interface ∧ int direction(int1) =

PROVIDED ∧ int direction(int2) = REQUIRED ∧ int type(int1) ∈ int subtype[{int type(int2)}] ∪
{int type(int2)}};

compatible interfaces2 == {int1, int2 | int1 ∈ interface ∧ int2 ∈ interface ∧ int direction(int1) =

REQUIRED ∧ int direction(int2) = PROVIDED ∧ int type(int2) ∈ int subtype[{int type(int1)}] ∪
{int type(int1)}};

all compatible interfaces == compatible interfaces1 ∪ compatible interfaces2;

all int substitution == {int1, int2 | int1 ∈ interface ∧ int2 ∈ interface ∧ int1 6= int2 ∧

(((int type(int2) ∈ int subtype[{int type(int1)}] ∪ {int type(int1)}) ∧ int direction(int1) =

PROVIDED ∧ int direction(int2) = PROVIDED) ∨ ((int type(int1) ∈ int subtype[{int type(int2)}] ∪
{int type(int2)}) ∧ int direction(int1) = REQUIRED ∧ int direction(int2) = REQUIRED))};

interface subtype == {intTypeA, intTypeB | intTypeA ∈ interfaceType ∧ intTypeB ∈ interfaceType ∧
intTypeA 6= intTypeB ∧

∃ inj.(inj ∈ int signatures(intTypeA) æ int signatures(intTypeB) ∧ ∀ sig.(sig ∈ signature ∧ sig

∈ int signatures(intTypeA) ⇒ ((sig, inj(sig)) ∈ sig subtype ∨ sig=inj(sig))))};
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signature subtype == {sig1, sig2 | sig1 ∈ signature ∧ sig2 ∈ signature ∧ sig1 6= sig2 ∧ sig name(sig1)

= sig name(sig2) ∧ (sig2, sig1) ∈ param subtype ∧ sig return(sig2) ∈ subtype[{sig return(sig1)}] ∪
{sig return(sig1)}};

sig param subtype == {sig1, sig2 | sig1 ∈ signature ∧ sig2 ∈ signature ∧ sig1 6= sig2 ∧

∃ inj.(inj ∈ parameters(sig1) æ parameters(sig2) ∧ ∀ param.(param ∈ parameter ∧ param ∈
dom(inj) ⇒ parameter name(param) = parameter name(inj(param)) ∧ (parameter type(inj(param)) ∈
subtype[{parameter type(param)}] ∨ parameter type(param) = parameter type(inj(param)))))}

INITIALISATION

type := {void, int, Date} ||

subtype := ∅ ||

parameter := {s p5,p8} ||

parameter name := {s p5 7→ intensity,p8 7→ intensity} ||

parameter type := {s p5 7→ int, p8 7→ int} ||

signature := {s sg320,sg14,sg15,sg16,sg33,sg34,sg35,sg36,sg350,sg360 } ||

sig name := {s sg320 7→ setIntensity

,sg14 7→ switchOn

,sg15 7→ switchOff

,sg16 7→ getTime

,sg33 7→ switchOn

,sg34 7→ switchOff

,sg35 7→ getTime

,sg36 7→ setDate

,sg350 7→ setIntensity

,sg360 7→ getIntensity} ||

parameters := {s sg320 7→ {s p5 }

,sg14 7→ ∅

,sg15 7→ ∅

,sg16 7→ ∅

,sg33 7→ ∅

,sg34 7→ ∅
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,sg35 7→ ∅

,sg36 7→ ∅

,sg350 7→ {p8}

,sg360 7→ ∅ } ||

sig return := {s sg320 7→ void

,sg14 7→ void

,sg15 7→ void

,sg16 7→ int

,sg33 7→ void

,sg34 7→ void

,sg35 7→ int

,sg36 7→ void

,sg350 7→ void

,sg360 7→ int} ||

interfaceType := {ILuminosity,ILight,ITime,ILamp,IClock,IIntensity} ||

int signatures := {ILuminosity 7→ {s sg320},

ILight 7→ {sg14,sg15},

ITime 7→ {sg16},

ILamp 7→ {sg33,sg34},

IClock 7→ {sg35,sg36},

IIntensity 7→ {sg350,sg360 }} ||

int subtype := ∅ ||

interface := {rintILight2, rintILum, rinITime2, pintILum, rintILamp2, rintIIntensity, rintIClock2,

pintIClock2, rintILight, rintITime, pintILight, pintItime, rintILamp, rintIClock, pintIClock, pintILamp2,

pintIIntensity} ||

int type := {rintILight2 7→ ILight

,rintILum 7→ ILuminosity

,rinITime2 7→ ITime

,pintILum 7→ ILuminosity

,rintILamp2 7→ ILamp
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,rintIIntensity 7→ IIntensity

,rintIClock2 7→ IClock

,pintIClock2 7→ IClock

,rintILight 7→ ILight

,rintITime 7→ ITime

,pintILight 7→ ILight

,pintItime 7→ ITime

,rintILamp 7→ ILamp

,rintIClock 7→ IClock

,pintIClock 7→ IClock

,pintILamp2 7→ ILamp

,pintIIntensity 7→ IIntensity} ||

int direction := {rintILight2 7→ REQUIRED

,rintILum 7→ REQUIRED

,rinITime2 7→ REQUIRED

,pintILum 7→ PROVIDED

,rintILamp2 7→ REQUIRED

,rintIIntensity 7→ REQUIRED

,rintIClock2 7→ REQUIRED

,pintIClock2 7→ PROVIDED

,rintILight 7→ REQUIRED

,rintITime 7→ REQUIRED

,pintILight 7→ PROVIDED

,pintItime 7→ PROVIDED

,rintILamp 7→ REQUIRED

,rintIClock 7→ REQUIRED

,pintIClock 7→ PROVIDED

,pintILamp2 7→ PROVIDED

,pintIIntensity 7→ PROVIDED} ||
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param subtype := ∅ ||

sig subtype := ∅ ||

sig equals := ∅ ||

int substitution := ∅ ||

int compatible := ∅

OPERATIONS

initializeParam subtype =

BEGIN

param subtype := sig param subtype

END;

initializeSigSubtype =

BEGIN

sig subtype := signature subtype hierarchy

END;

initializeIntSubtype =

BEGIN

int subtype := interface subtype hierarchy

END;

computeSubstitutabilityAndCompatibility =

BEGIN

int compatible := all compatible interfaces ||

int substitution := all int substitution

END

END
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A.2 Arch concepts Machine

MACHINE

Arch concepts

INCLUDES

Basic concepts

SETS

ARCHITECTURES = {eArch,HASSpec};

COMPONENTS = {eRole, cr3a, cr4, ct3a, ct2a, cr3, cr1, cr2, ct3, ct2, ct1};

COMP NAMES = {HomeOrchestrator2, Luminosity, AndroidOrchestratorType, EmbeddedClockType,

HomeOrchestrator, Light, Time, OrchestratorType, ClockType, AdjustableLampType}

VARIABLES

architecture, arch components, arch connections, component, comp name, connection, comp interfaces,

client, server, comp substitution, comp compatible, init

INVARIANT

component ⊆ COMPONENTS ∧

comp name ∈ component → COMP NAMES ∧

comp interfaces ∈ component æ P (interface) ∧

/* component substitutability*/

comp substitution ∈ component ↔ component ∧

∀ (C sup, C sub).(C sup ∈ component ∧ C sub ∈ component ∧ C sup 6= C sub ⇒

(C sub ∈ role substitution[{C sup}] ⇔ ∃ (inj1, inj2).(inj1 ∈ comp providedInterfaces(C sup) æ

comp providedInterfaces(C sub) ∧ ∀ (int).(int ∈ interface ∧ int ∈ comp providedInterfaces(C sup) ⇒
inj1(int) ∈ int substitution[{int}]) ∧ inj2 ∈ comp requiredInterfaces(C sub) æ comp requiredInterfaces(C sup)

∧ ∀ (int).(int ∈ interface ∧ int ∈ comp requiredInterfaces(C sub) ⇒ int ∈ int substitution[{inj2(int)}]) ∧
(inj1 6= ∅ ∨ inj2 6= ∅ ))))

/* component compatibility*/

comp compatible ∈ component ↔ component ∧

∀ (C1, C2).(C1 ∈ component ∧ C2 ∈ component ∧ C1 6= C2 ⇒

((C1, C2) ∈ comp compatible ⇔ ∃ (int1, int2).(int1 ∈ interface ∧ int1 ∈ comp interfaces(C1) ∧ int2 ∈
interface ∧ int2 ∈ comp interfaces(C2) ∧ (int1, int2) ∈ int compatible))) ∧

client ∈ component ↔ interface ∧
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∀ (c1).(c1 ∈ client ⇒ ∀ (CR, int).(CR ∈ component ∧ int ∈ interface ∧ CR ∈ dom({c1}) ∧ int ∈
ran({c1}) ⇒ int ∈ comp interfaces(CR) ∧ int direction(int) = REQUIRED)) ∧

∀ c1.(c1 ∈ client ⇒ ∃ (comp, int).(comp ∈ component ∧ int ∈ interface ∧ int ∈
comp requiredInterfaces(comp) ∧ c1 = (comp, int))) ∧

server ∈ component ↔ interface ∧

∀ s1.(s1 ∈ server ⇒ ∀ (CR, int).(CR ∈ component ∧ int ∈ interface ∧ CR ∈ dom({s1}) ∧ int ∈
ran({s1}) ⇒ int ∈ comp interfaces(CR) ∧ int direction(int) = PROVIDED)) ∧

∀ s1.(s1 ∈ server ⇒ ∃ (comp, int).(comp ∈ component ∧ int ∈ interface ∧ int ∈
comp providedInterfaces(comp) ∧ s1 = (comp, int))) ∧

connection ∈ client ↔ server ∧

∀ (c1, s1).(c1 ∈ client ∧ s1 ∈ server ⇒ ((c1, s1) ∈ connection ⇒ ∃ (C1, C2, int1, int2).(C1 ∈ component

∧ C2 ∈ component ∧ C1 6= C2 ∧ int1 ∈ interface ∧ int2 ∈ interface ∧ (C1,int1)=c1 ∧ (C2, int2)=s1 ∧ (int1,

int2) ∈ int compatible))) ∧

architecture ⊆ ARCHITECTURES ∧

arch components ∈ architecture → P (component) ∧

arch connections ∈ architecture → P (connection) ∧

init ∈ BOOL

DEFINITIONS

comp providedInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = PROVIDED};

comp requiredInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = REQUIRED};

comp elem == {cl, comp | cl ∈ component × interface ∧ comp ∈ component ∧ ∃ int.(int ∈ interface ∧ cl

= (comp, int))};

interface elem == {cl, int | cl ∈ component × interface ∧ int ∈ interface ∧ ∃ comp.(comp ∈ component ∧
cl = (comp, int))};

all comp compatible == {c1, c2 | c1 ∈ component ∧ c2 ∈ component ∧ c1 6= c2 ∧ ∃ (int1, int2).(int1 ∈
interface ∧ int1 ∈ comp interfaces(c1) ∧ int2 ∈ interface ∧ int2 ∈ comp interfaces(c2) ∧ (int1, int2) ∈
int compatible)};

all comp substitution == {c1, c2 | c1 ∈ component ∧ c2 ∈ component ∧ c1 6= c2 ∧ ∃ (inj1, inj2).(inj1 ∈
comp providedInterfaces(c1) æ comp providedInterfaces(c2) ∧ (inj1 6= ∅ ∨ inj2 6= ∅ ) ∧ ∀ (int).(int ∈
interface ∧ int ∈ comp providedInterfaces(c1) ⇒ inj1(int) ∈ int substitution[{int}]) ∧ inj2 ∈
comp requiredInterfaces(c2) æ comp requiredInterfaces(c1) ∧ ∀ (int).(int ∈ interface ∧ int ∈
comp requiredInterfaces(c2) ⇒ inj2(int) ∈ int substitution[{int}]))};

all clients == {comp, int | comp ∈ component ∧ int ∈ interface ∧ int direction(int) = REQUIRED ∧ int

∈ comp interfaces(comp)};
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all servers == {comp, int | comp ∈ component ∧ int ∈ interface ∧ int direction(int) = PROVIDED ∧ int

∈ comp interfaces(comp)};

all connections == {cl, se | cl ∈ client ∧ se ∈ server ∧ ∃ (c1, c2, int1, int2).(c1 ∈ component ∧ c2 ∈
component ∧ c1 6= c2 ∧ int1 ∈ interface ∧ int2 ∈ interface ∧ (c1 7→ int1)=cl ∧ (c2 7→ int2)=se ∧ (int1, int2)

∈ int compatible)}

INITIALISATION

component := {cr3a, cr4, ct3a, ct2a, cr3, cr1, cr2, ct3, ct2, ct1} ||

comp name := {(cr3a 7→ HomeOrchestrator2)

,(cr4 7→ Luminosity)

,(ct3a 7→ AndroidOrchestratorType)

,(ct2a 7→ EmbeddedClockType)

,(cr3 7→ HomeOrchestrator)

,(cr1 7→ Light)

,(cr2 7→ Time)

,(ct3 7→ OrchestratorType)

,(ct2 7→ ClockType)

,(ct1 7→ AdjustableLampType) } ||

comp interfaces := {cr3a 7→ {rintILight2, rintILum, rinITime2}

,cr4 7→ {pintILum}

,ct3a 7→ {rintILamp2, rintIIntensity, rintIClock2}

,ct2a 7→ {pintIClock2}

,cr3 7→ {rintILight, rintITime}

,cr1 7→ {pintILight}

,cr2 7→ {pintItime}

,ct3 7→ {rintILamp,rintIClock}

,ct2 7→ {pintIClock}

,ct1 7→ {pintILamp2,pintIIntensity}} ||

client := {(cr3 7→ rintILight)

,(cr3 7→ rintITime)

,(ct3 7→ rintIClock)



Appendix A. Formal Dedal specifications 139

,(ct3 7→ rintILamp)} ||

server := {(cr1 7→ pintILight)

,(cr2 7→ pintItime)

,(ct2 7→ pintIClock)

,(ct1 7→ pintILamp2)} ||

connection := {((cr3 7→ rintILight) 7→ (cr1 7→ pintILight))

,((cr3 7→ rintITime) 7→ (cr2 7→ pintItime))

,((ct3 7→ rintIClock) 7→ (ct2 7→ pintIClock))

,((ct3 7→ rintILamp) 7→ (ct1 7→ pintILamp2))} ||

architecture:= {HASSpec} ||

arch components := {HASSpec 7→ {cr3,cr1,cr2}} ||

arch connections := ∅ ||

comp substitution := ∅ ||

comp compatible := ∅ ||

init := FALSE

OPERATIONS

/*Initialization operations*/

initializeArchModel =

BEGIN

client := all clients ||

server := all servers ||

comp compatible := all comp compatible ||

comp substitution := all comp substitution

END;

initializeConnections =

BEGIN

connection := all connections

END;

initializeParameterSubtype =
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BEGIN

initializeParam subtype

END;

initializesignatureSubtype =

BEGIN

initializeSigSubtype

END;

initializeInterfaceSubtype =

BEGIN

initializeIntSubtype

END;

initializeBasicModel =

BEGIN

computeSubstitutabilityAndCompatibility ||

init := TRUE

END

END
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A.3 Arch specification Machine

MACHINE

Arch specification

USES

Arch concepts

CONSTANTS

COMP ROLES

PROPERTIES

COMP ROLES ⊆ COMPONENTS ∧

COMP ROLES = {eRole, cr3a, cr4, cr3, cr1, cr2}

VARIABLES

specification, spec components, spec connections, compRole, spec clients, spec servers, role substitution,

role compatible

INVARIANT

compRole ⊆ COMP ROLES ∧

specification ⊆ ARCHITECTURES ∧

spec connections ∈ specification → P (connection) ∧

spec components ∈ specification → P (compRole) ∧

spec clients ∈ specification → P (client) ∧

∀ (spec, cl).(spec ∈ specification ∧ cl ∈ client ⇒

(cl ∈ spec clients(spec) ⇔ ∃ comp.(comp ∈ compRole ∧ comp ∈ dom({cl}) ∧ comp ∈
spec components(spec)))) ∧

spec servers ∈ specification → P (server) ∧

∀ (spec, se).(spec ∈ specification ∧ se ∈ server ⇒

(se ∈ spec servers(spec) ⇔ ∃ comp.(comp ∈ compRole ∧ comp ∈ dom({se}) ∧ comp ∈
spec components(spec)))) ∧

DEFINITIONS

comp providedInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = PROVIDED};

comp requiredInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = REQUIRED};
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all role compatible == {c1, c2 | c1 ∈ compRole ∧ c2 ∈ compRole ∧ c1 6= c2 ∧ ∃ (int1, int2).(int1 ∈
interface ∧ int1 ∈ comp interfaces(c1) ∧ int2 ∈ interface ∧ int2 ∈ comp interfaces(c2) ∧ (int1, int2) ∈
int compatible)};

all role substitution == {c1, c2 | c1 ∈ compRole ∧ c2 ∈ compRole ∧ c1 6= c2 ∧ ∃ (inj1, inj2).(inj1 ∈
comp providedInterfaces(c1) æ comp providedInterfaces(c2) ∧ ∀ (int).(int ∈ interface ∧ int ∈
comp providedInterfaces(c1) ⇒ inj1(int) ∈ int substitution[{int}]) ∧ inj2 ∈ comp requiredInterfaces(c2) æ

comp requiredInterfaces(c1) ∧ ∀ (int).(int ∈ interface ∧ int ∈ comp requiredInterfaces(c2) ⇒ int ∈
int substitution[{inj2(int)}]) ∧ (inj1 6= ∅ ∨ inj2 6= ∅ ))};

clientInterfaceElem == {cl, int | cl ∈ client ∧ ∃ (comp, rint).(comp ∈ component ∧ rint ∈ interface ∧ cl

= (comp,rint) ∧ int = rint)};

clientComponentElem == {cl, cr | cl ∈ client ∧ ∃ (comp, rint).(comp ∈ component ∧ rint ∈ interface ∧
cl = (comp,rint) ∧ cr = comp)};

serverInterfaceElem == {se, int | se ∈ server ∧ ∃ (comp, pint).(comp ∈ component ∧ pint ∈ interface ∧
se = (comp,pint) ∧ int = pint)};

serverComponentElem == {se, cr | se ∈ server ∧ ∃ (comp, pint).(comp ∈ component ∧ pint ∈ interface ∧
se = (comp,pint) ∧ cr = comp)};

clients(comp) == {cl | comp ∈ component ∧ cl ∈ client ∧ clientComponentElem(cl) = comp};

servers(comp) == {se | comp ∈ component ∧ se ∈ server ∧ serverComponentElem(se) = comp};

INITIALISATION

compRole := {cr3a, cr4, cr3, cr1, cr2} ||

specification := {HASSpec} ||

spec components := {HASSpec 7→ {cr3,cr1,cr2}} ||

spec connections := {HASSpec 7→ {((cr3 7→ rintILight) 7→ (cr1 7→ pintILight))

,((cr3 7→ rintITime) 7→ (cr2 7→ pintItime))}} ||

spec clients := {HASSpec 7→ {(cr3 7→ rintILight)

,(cr3 7→ rintITime)}} ||

spec servers := {HASSpec 7→ {(cr1 7→ pintILight), (cr2 7→ pintItime)}} ||

role substitution := ∅ ||

role compatible := ∅

OPERATIONS

/*initialization operations*/

initialzeArchSpecModel =

BEGIN
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role substitution := all role substitution ||

role compatible := all role compatible

END;

s initializeParameterSubtype =

BEGIN

initializeParameterSubtype

END;

s initializesignatureSubtype =

BEGIN

initializesignatureSubtype

END;

s initializeInterfaceSubtype =

BEGIN

initializeInterfaceSubtype

END;

s initializeBasicModel =

BEGIN

initializeBasicModel

END;

s initializeArchModel =

BEGIN

initializeArchModel

END;

s initializeConnections =

BEGIN

initializeConnections

END;

/* Model manipulation operations*/

addRole(spec, newRole) =



Appendix A. Formal Dedal specifications 144

PRE

spec ∈ specification ∧ newRole ∈ compRole ∧ newRole 6∈ spec components(spec) ∧

∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(spec) ⇒ comp name(cr) 6= comp name(newRole))

THEN

spec components(spec) := spec components(spec) ∪ {newRole} ||

spec servers(spec) := spec servers(spec) ∪ servers(newRole) ||

spec clients(spec) := spec clients(spec) ∪ clients(newRole)

END;

connect(cl, se, spec) =

PRE

spec ∈ specification ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈ spec clients(spec) ∧ se ∈ spec servers(spec) ∧

(cl 7→ se) ∈ connection ∧ (cl 7→ se) 6∈ spec connections(spec)

THEN

spec connections(spec) := spec connections(spec) ∪ {(cl 7→ se)}

END;

removeRole(spec, role) =

PRE

spec ∈ specification ∧ role ∈ compRole ∧ role ∈ spec components(spec) ∧

∀ cl.(cl ∈ client ∧ cl ∈ clients(role) ⇒ ∀ se.(se ∈ server ∧ se ∈ spec servers(spec) ⇒ (cl 7→ se) 6∈
spec connections(spec))) ∧

∀ (se).(se ∈ server ∧ se ∈ servers(role) ⇒ ∀ cl.(cl ∈ client ∧ cl ∈ spec clients(spec) ⇒ (cl 7→ se) 6∈
spec connections(spec)))

THEN

spec clients(spec) := spec clients(spec) - clients(role) ||

spec servers(spec) := spec servers(spec) - servers(role) ||

spec components(spec) := spec components(spec) - {role}

END;

disconnect(spec, se, cl) =

PRE
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spec ∈ specification ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈ spec clients(spec) ∧ se ∈ spec servers(spec) ∧

(cl 7→ se) ∈ connection ∧ (cl 7→ se) ∈ spec connections(spec)

THEN

spec connections(spec) := spec connections(spec) - {(cl 7→ se)}

END;

replaceRole(spec, oldRole, newRole) =

PRE

oldRole ∈ compRole ∧ newRole ∈ compRole ∧ spec ∈ specification ∧ oldRole ∈ spec components(spec) ∧

newRole 6∈ spec components(spec) ∧ (oldRole, newRole) ∈ role substitution ∧

∀ cl.(cl ∈ client ∧ cl ∈ clients(oldRole) ⇒ ∀ se.(se ∈ server ∧ se ∈ spec servers(spec) ⇒ (cl 7→ se) 6∈
spec connections(spec))) ∧

∀ (se).(se ∈ server ∧ se ∈ servers(oldRole) ⇒ ∀ cl.(cl ∈ client ∧ cl ∈ spec clients(spec) ⇒ (cl 7→ se) 6∈
spec connections(spec)))

THEN

spec components(spec) := (spec components(spec) - {oldRole}) ∪ {newRole} ||

spec servers(spec) := (spec servers(spec) - servers(oldRole)) ∪ servers(newRole) ||

spec clients(spec) := (spec clients(spec) - clients(oldRole)) ∪ clients(newRole)

END

END
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A.4 Arch configuration Machine

MACHINE

Arch configuration

USES

Arch specification

SETS

COMP CLASS = {eClass, cl3a, cl2a, cl3, cl2, cl1};

CLASS NAME = {AndroidOrchestrator, EmbeddedClock, Orchestrator, Clock, AdjustableLamp};

ATTRIBUTES;

CONFIGURATIONS = {eConfig,HASConfig};

ATT NAMES

CONSTANTS

COMP TYPES

PROPERTIES

COMP TYPES ⊆ COMPONENTS ∧

COMP TYPES = {ct3a, ct2a, ct3, ct2, ct1}

VARIABLES

configuration, config components, config connections, implements,

compType, compType substitution, compType compatible, matches,

compClass, class name, class implements, class attributes, realizes,

compositeComp, delegatedInterface, delegation, composite uses,

config clients, config servers, documents,

attribute, attribute name, attribute type, initSpec

INVARIANT

compType ⊆ COMP TYPES ∧

/*matching rule*/

matches ∈ compType ↔ compRole ∧

∀ (CR, CT).(CR ∈ compRole ∧ CT ∈ compType ⇒

((CT, CR) ∈ matches ⇔ (CR,CT) ∈ comp substitution)) ∧
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compClass ⊆ COMP CLASS ∧

class name ∈ compClass → CLASS NAME ∧

attribute ⊆ ATTRIBUTES ∧

attribute name ∈ attribute → ATT NAMES ∧

attribute type ∈ attribute → TYPES ∧

class attributes ∈ compClass → P (attribute) ∧

class implements ∈ compClass → compType ∧

/*realization rule*/

realizes ∈ compClass ↔ compRole ∧

∀ (CL, CR).(CL ∈ compClass ∧ CR ∈ compRole ⇒

((CL, CR) ∈ realizes ⇔ ∃ CT.(CT ∈ compType ∧ (CT, CR) ∈ matches ∧ (CL, CT) ∈
class implements))) ∧

configuration ⊆ CONFIGURATIONS ∧

config components ∈ configuration → P1 (compClass) ∧

∀ (cl1, cl2, C1).(cl1 ∈ compClass ∧ cl2 ∈ compClass ∧ cl1 6= cl2 ∧ C1 ∈ configuration ∧ {cl1, cl2} ⊆
config components(C1) ⇒ class name(cl1) 6= class name(cl2)) ∧

implements ∈ configuration ↔ specification ∧

documents ∈ specification ↔ configuration ∧

compositeComp ⊆ compClass ∧

delegatedInterface ⊂ interface ∧

delegation ∈ delegatedInterface æ interface ∧

∀ (int1, int2).(int1 ∈ interface ∧ int2 ∈ interface ∧ int1 6= int2 ∧ (int1, int2) ∈ delegation ⇒
int type(int1) = int type(int2) ∧ int direction(int1) = int direction(int2)) ∧

composite uses ∈ compositeComp → configuration ∧

config connections ∈ configuration → P (connection) ∧

config clients ∈ configuration → P (client) ∧

config servers ∈ configuration → P (server) ∧

initSpec ∈ BOOL

DEFINITIONS

comp providedInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = PROVIDED};
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comp requiredInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = REQUIRED};

clientInterfaceElem == {cl, int | cl ∈ client ∧ ∃ (comp, rint).(comp ∈ component ∧ rint ∈ interface ∧ cl =

(comp,rint) ∧ int = rint)};

clientComponentElem == {cl, cr | cl ∈ client ∧ ∃ (comp, rint).(comp ∈ component ∧ rint ∈ interface ∧ cl

= (comp,rint) ∧ cr = comp)};

serverInterfaceElem == {se, int | se ∈ server ∧ ∃ (comp, pint).(comp ∈ component ∧ pint ∈ interface ∧ se

= (comp,pint) ∧ int = pint)};

serverComponentElem == {se, cr | se ∈ server ∧ ∃ (comp, pint).(comp ∈ component ∧ pint ∈ interface ∧
se = (comp,pint) ∧ cr = comp)};

clients(class) == {cl | class ∈ compClass ∧ cl ∈ client ∧ clientComponentElem(cl) =

class implements(class)};

servers(class) == {se | class ∈ compClass ∧ se ∈ server ∧ serverComponentElem(se) =

class implements(class)};

class substitution == (class implements ; compType substitution ; class implements −1 );

all compType compatible == {c1, c2 | c1 ∈ compType ∧ c2 ∈ compType ∧ c1 6= c2 ∧ ∃ (int1, int2).(int1

∈ interface ∧ int1 ∈ comp interfaces(c1) ∧ int2 ∈ interface ∧ int2 ∈ comp interfaces(c2) ∧ (int1, int2) ∈
int compatible)};

all compType substitution == {c1, c2 | c1 ∈ compType ∧ c2 ∈ compType ∧ c1 6= c2 ∧ ∃ (inj1, inj2).(inj1

∈ comp providedInterfaces(c1) æ comp providedInterfaces(c2) ∧ ∀ (int).(int ∈ interface ∧ int ∈
comp providedInterfaces(c1) ⇒ inj1(int) ∈ int substitution[{int}]) ∧ inj2 ∈ comp requiredInterfaces(c2) æ

comp requiredInterfaces(c1) ∧ ∀ (int).(int ∈ interface ∧ int ∈ comp requiredInterfaces(c2) ⇒ inj2(int) ∈
int substitution[{int}]) ∧ (inj1 6= ∅ ∨ inj2 6= ∅ ))};

all matches == {ct, cr | ct ∈ compType ∧ cr ∈ compRole ∧ ∃ (inj1, inj2).(inj1 ∈
comp providedInterfaces(cr) æ comp providedInterfaces(ct) ∧ ∀ (int).(int ∈ interface ∧ int ∈
comp providedInterfaces(cr) ⇒ inj1(int) ∈ int substitution[{int}]) ∧ inj2 ∈ comp requiredInterfaces(cr) æ

comp requiredInterfaces(ct) ∧ ∀ (int).(int ∈ interface ∧ int ∈ comp requiredInterfaces(cr) ⇒ int ∈
int substitution[{inj2(int)}]))};

all realizes == {cl, cr | cl ∈ compClass ∧ cr ∈ compRole ∧ ∃ ct.(ct ∈ compType ∧ (ct, cr) ∈ matches ∧
(cl, ct) ∈ class implements)};

INITIALISATION

configuration := {HASConfig} ||

config components := {HASConfig 7→ {cl3,cl2,cl1}} ||

implements := {(HASConfig 7→ HASSpec)} ||

documents := {HASSpec 7→ HASConfig} ||

compType := {ct3a,ct2a,ct3,ct2,ct1} ||
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compType substitution := ∅ ||

compType compatible := ∅ ||

matches := ∅ ||

compClass := {cl2a,cl3a,cl3,cl2,cl1} ||

class name := {cl3a 7→ AndroidOrchestrator

,cl2a 7→ EmbeddedClock

,cl3 7→ Orchestrator

,cl2 7→ Clock

,cl1 7→ AdjustableLamp} ||

class implements := {cl3a 7→ ct3a, cl2a 7→ ct2a, cl3 7→ ct3, cl2 7→ ct2, cl1 7→ ct1} ||

class attributes := ∅ ||

realizes := ∅ ||

attribute := ∅ ||

attribute name := ∅ ||

attribute type := ∅ ||

compositeComp := ∅ ||

delegatedInterface := ∅ ||

delegation := ∅ ||

composite uses := ∅ ||

config connections := {HASConfig 7→ {((ct3 7→ rintIClock) 7→ (ct2 7→ pintIClock))

,((ct3 7→ rintILamp) 7→ (ct1 7→ pintILamp2))}} ||

config clients := {HASConfig 7→ {(ct3 7→ rintIClock)

,(ct3 7→ rintILamp)}} ||

config servers := {HASConfig 7→ {(ct2 7→ pintIClock)

,(ct1 7→ pintILamp2)}} ||

initSpec := FALSE

OPERATIONS

/*initialization operations*/

initializeArchConfig =



Appendix A. Formal Dedal specifications 150

BEGIN

compType compatible := all compType compatible ||

compType substitution := all compType substitution ||

matches := all matches

END;

computeRealizations =

BEGIN

realizes := all realizes

END;

/*model manipulation operations*/

addClass(config, newClass) =

PRE

config ∈ configuration ∧ newClass ∈ compClass ∧ newClass 6∈ config components(config) ∧

∀ cl.(cl ∈ compClass ∧ cl ∈ config components(config) ⇒ class name(cl) 6= class name(newClass) ∧
class implements(newClass) 6= class implements(cl))

THEN

config clients(config) := config clients(config) ∪ clients(newClass) ||

config components(config) := config components(config) ∪ {newClass}

END;

addServer(config, se) =

PRE

config ∈ configuration ∧ se ∈ server ∧ se 6∈ config servers(config) ∧ serverComponentElem(se) ∈
class implements[config components(config)]

THEN

config servers(config) := config servers(config) ∪ {se}

END;

class connect(cl, se, config) =

PRE

config ∈ configuration ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈ config clients(config) ∧ se ∈
config servers(config) ∧
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(cl 7→ se) ∈ connection ∧ (cl 7→ se) 6∈ config connections(config)

THEN

config connections(config) := config connections(config) ∪ {(cl 7→ se)}

END;

removeClass(config, class) =

PRE

config ∈ configuration ∧ class ∈ compClass ∧ class ∈ config components(config) ∧

∀ cl.(cl ∈ client ∧ cl ∈ clients(class) ⇒ ∀ se.(se ∈ server ∧ se ∈ config servers(config) ⇒ (cl 7→ se) 6∈
config connections(config))) ∧

∀ se.(se ∈ server ∧ se ∈ servers(class) ⇒ se 6∈ config servers(config))

THEN

config clients(config) := config clients(config) - clients(class) ||

config components(config) := config components(config) - {class}

END;

deleteServer(config, se) =

PRE

config ∈ configuration ∧ se ∈ server ∧ se ∈ config servers(config) ∧ ∀ cl.(cl ∈ client ∧ cl ∈
config clients(config) ⇒

(cl 7→ se) 6∈ config connections(config))

THEN

config servers(config) := config servers(config) - {se}

END;

class disconnect(config, se, cl) =

PRE

config ∈ configuration ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈ config clients(config) ∧ se ∈
config servers(config) ∧

(cl 7→ se) ∈ connection ∧ (cl 7→ se) ∈ config connections(config)

THEN

config connections(config) := config connections(config) - {(cl 7→ se)}

END;
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replaceClass(config, oldClass, newClass) =

PRE

oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration ∧ oldClass ∈
config components(config) ∧

newClass 6∈ config components(config) ∧ (oldClass, newClass) ∈ class substitution ∧

∀ cl.(cl ∈ client ∧ cl ∈ clients(oldClass) ⇒ ∀ se.(se ∈ server ∧ se ∈ config servers(config) ⇒ (cl 7→ se)

6∈ config connections(config))) ∧

∀ (se).(se ∈ server ∧ se ∈ servers(oldClass) ⇒ se 6∈ config servers(config))

THEN

config components(config) := (config components(config) - {oldClass}) ∪ {newClass} ||

config clients(config) := (config clients(config) - clients(oldClass)) ∪ clients(newClass)

END

END
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A.5 Arch assembly Machine

MACHINE

Arch assembly

USES

Arch specification, Arch configuration

SETS

COMP INSTANCES = {eInst, ci3a, ci2a, ci3, ci12, ci12, ci2};

INTERFACE INSTANCES = {rintILamp2Inst1, rintIIntensityInst1, rintIClock2Inst, pintIClock2Inst,

rintILampInst1, rintIClockInst1, pintILamp2Inst2, pintIItensityInst2, pintILamp2Inst1, pintIIntensityInst1,

pintIClockInst1};

INSTANCE NAME = {androidOrchestrator, embeddedClock, orchestrator1, lampDesk, lampSitting, clock};

ASSEMBLIES = {eAssm,HASAssm};

ATTRIBUTES VALUES

VARIABLES

compInstance, compInstance name, interfaceInstance, int instantiates, instInterfaces, comp instantiates,

initiation state, current state, attribute value, assembly, assm components, instantiates, binding,

assm connections,

client instance, server instance, max instances, nb instances, assm servers, assm clients

INVARIANT

compInstance ⊆ COMP INSTANCES ∧

compInstance name ∈ compInstance → INSTANCE NAME ∧

nb instances ∈ compClass → NAT ∧

max instances ∈ compClass → NAT ∧

interfaceInstance ⊆ INTERFACE INSTANCES ∧

int instantiates ∈ interfaceInstance → interface ∧

instInterfaces ∈ compInstance → P1 (interfaceInstance) ∧

comp instantiates ∈ compInstance → compClass ∧

∀ (ci, cl).(ci ∈ compInstance ∧ cl ∈ compClass ⇒

(cl = comp instantiates(ci) ⇒ ∃ surj.(surj ∈ instInterfaces(ci) ı class interfaces(cl) ∧

∀ int.(int ∈ interfaceInstance ∧ int ∈ instInterfaces(ci) ⇒ surj(int) = int instantiates(int))))) ∧
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attribute value ∈ attribute → ATTRIBUTES VALUES ∧

initiation state ∈ compInstance → P (attribute value) ∧

∀ (ci, rl).(ci ∈ compInstance ∧ rl ∈ P (attribute value) ∧ (ci, rl) ∈ initiation state ⇒ ∀ att.(att ∈ attribute

∧ att ∈ dom(rl) ⇒

∃ cc.(cc ∈ compClass ∧ (ci,cc) ∈ comp instantiates ∧ att ∈ class attributes(cc)))) ∧

current state ∈ compInstance → P (attribute value) ∧

∀ (ci, rl).(ci ∈ compInstance ∧ rl ∈ P (attribute value) ∧ (ci, rl) ∈ current state ⇒ ∀ att.(att ∈ attribute ∧
att ∈ dom(rl) ⇒

∃ cc.(cc ∈ compClass ∧ (ci,cc) ∈ comp instantiates ∧ att ∈ class attributes(cc)))) ∧

client instance ∈ compInstance ↔ interfaceInstance ∧

∀ (ci, int).(ci ∈ compInstance ∧ int ∈ interfaceInstance ∧ (ci, int) ∈ client instance ⇒ inst direction(int)

= REQUIRED) ∧

server instance ∈ compInstance ↔ interfaceInstance ∧

∀ (ci, int).(ci ∈ compInstance ∧ int ∈ interfaceInstance ∧ (ci, int) ∈ server instance ⇒
inst direction(int) = PROVIDED) ∧

binding ∈ client instance ↔ server instance ∧

assembly ⊆ ASSEMBLIES ∧

assm components ∈ assembly → P1 (compInstance) ∧

assm servers ∈ assembly → P (server instance) ∧

assm clients ∈ assembly → P (client instance) ∧

assm connections ∈ assembly → P (binding) ∧

instantiates ∈ assembly → configuration ∧

DEFINITIONS

inst direction(int) == int direction(int instantiates(int));

class interfaces(cl) == comp interfaces(class implements(cl));

clientInterfaceElem == {cl, int | cl ∈ clientInstance ∧ ∃ (inst, rint).(inst ∈ compInstance ∧ rint ∈
interfaceInstance ∧ cl = (inst,rint) ∧ int = rint)};

clientComponentElem == {cl, ci | cl ∈ client instance ∧ ∃ (inst, rint).(inst ∈ compInstance ∧ rint ∈
interfaceInstance ∧ cl = (inst,rint) ∧ ci = inst)};

serverInterfaceElem == {se, int | se ∈ server instance ∧ ∃ (inst, pint).(inst ∈ compInstance ∧ pint ∈
interfaceInstance ∧ se = (inst,pint) ∧ int = pint)};

serverComponentElem == {se, ci | se ∈ server instance ∧ ∃ (inst, pint).(inst ∈ compInstance ∧ pint ∈
interfaceInstance ∧ se = (inst,pint) ∧ ci = inst)};
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clients(inst) == {cl | inst ∈ compInstance ∧ cl ∈ client instance ∧ clientComponentElem(cl) = inst};

servers(inst) == {se | inst ∈ compInstance ∧ se ∈ server instance ∧ serverComponentElem(se) = inst};

inst substitution == (comp instantiates;class implements ; compType substitution ;

class implements −1 ;comp instantiates −1 );

all clientInstances == {ci, int | ci ∈ compInstance ∧ int ∈ interfaceInstance ∧
int direction(int instantiates(int)) = REQUIRED ∧ int ∈ instInterfaces(ci)};

all serverInstances == {ci, int | ci ∈ compInstance ∧ int ∈ interfaceInstance ∧
int direction(int instantiates(int)) = PROVIDED ∧ int ∈ instInterfaces(ci)};

all bindings == {cl, se | cl ∈ client instance ∧ se ∈ server instance ∧ ∃ (c1, c2, int1, int2).(c1 ∈
compInstance ∧ c2 ∈ compInstance ∧ c1 6= c2 ∧ int1 ∈ interfaceInstance ∧ int2 ∈ interfaceInstance ∧ (c1 7→
int1)=cl ∧ (c2 7→ int2)=se ∧ (int instantiates(int1), int instantiates(int2)) ∈ int compatible)}

INITIALISATION

compInstance := {ci2a, ci3a, ci3, ci11, ci12, ci2} ||

compInstance name := {(ci3a 7→ androidOrchestrator)

,(ci2a 7→ embeddedClock)

,(ci3 7→ orchestrator1)

,(ci11 7→ lampDesk)

,(ci12 7→ lampSitting)

,(ci2 7→ clock) } ||

max instances := {cl3a 7→ 1, cl2a 7→ 1, cl3 7→ 1, cl2 7→ 1, cl1 7→ 2} ||

nb instances := {cl3a 7→ 0, cl2a 7→ 0, cl3 7→ 1, cl2 7→ 1, cl1 7→ 2} ||

interfaceInstance := {rintILamp2Inst1, rintIIntensityInst1, rintIClock2Inst, pintIClock2Inst,

rintILampInst1, rintIClockInst1, pintILamp2Inst2, pintIItensityInst2, pintILamp2Inst1, pintIIntensityInst1,

pintIClockInst1} ||

int instantiates := {(rintILamp2Inst1 7→ rintILamp2)

,(rintIIntensityInst1 7→ rintIIntensity)

,(rintIClock2Inst 7→ rintIClock2)

,(pintIClock2Inst 7→ pintIClock2)

,(rintILampInst1 7→ rintILamp)

,(rintIClockInst1 7→ rintIClock)

,(pintILamp2Inst2 7→ pintILamp2)

,(pintIItensityInst2 7→ pintIIntensity)



Appendix A. Formal Dedal specifications 156

,(pintILamp2Inst1 7→ pintILamp2)

,(pintIIntensityInst1 7→ pintIIntensity)

,(pintIClockInst1 7→ pintIClock)} ||

instInterfaces := {ci3a 7→ {rintILamp2Inst1,rintIIntensityInst1,rintIClock2Inst}

,ci2a 7→ {pintIClock2Inst}

,ci3 7→ {rintILampInst1,rintIClockInst1}

,ci11 7→ {pintILamp2Inst2,pintIItensityInst2}

,ci12 7→ {pintILamp2Inst1,pintIIntensityInst1}

,ci2 7→ {pintIClockInst1}} ||

initiation state := ∅ ||

current state := ∅ ||

comp instantiates := {(ci3a 7→ cl3a),(ci2a 7→ cl2a), (ci3 7→ cl3), (ci11 7→ cl1), (ci12 7→ cl1), (ci2 7→ cl2)} ||

attribute value := ∅ ||

client instance := {(ci3 7→ rintILampInst1)

,(ci3 7→ rintIClockInst1)} ||

server instance := {(ci11 7→ pintILamp2Inst2)

,(ci12 7→ pintILamp2Inst1)

,(ci2 7→ pintIClockInst1)} ||

binding := {((ci3 7→ rintILampInst1) 7→ (ci11 7→ pintILamp2Inst2))

,((ci3 7→ rintILampInst1) 7→ (ci12 7→ pintILamp2Inst1))

,((ci3 7→ rintIClockInst1) 7→ (ci2 7→ pintIClockInst1))} ||

assembly := {HASAssm} ||

assm components := {HASAssm 7→ {ci3, ci11, ci12, ci2}} ||

assm connections := {HASAssm 7→ {((ci3 7→ rintILampInst1) 7→ (ci11 7→ pintILamp2Inst2))

,((ci3 7→ rintIClockInst1) 7→ (ci2 7→ pintIClockInst1))

,((ci3 7→ rintILampInst1) 7→ (ci12 7→ pintILamp2Inst1))}} ||

assm servers := {HASAssm 7→ {(ci11 7→ pintILamp2Inst2), (ci12 7→ pintILamp2Inst1), (ci2 7→
pintIClockInst1)}} ||

assm clients := {HASAssm 7→ {(ci3 7→ rintILampInst1), (ci3 7→ rintIClockInst1)}} ||

instantiates := {HASAssm 7→ HASConfig}
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OPERATIONS

/*Initialization operations*/

initializeBindings =

BEGIN

binding := all bindings

END;

initializeArchAssembly =

BEGIN

client instance := all clientInstances ||

server instance := all serverInstances

END;

/*Model manipulation operations*/

deployInstance(asm, inst, class) =

PRE

asm ∈ assembly ∧ class ∈ compClass ∧ inst ∈ compInstance ∧ class = comp instantiates(inst) ∧ inst

6∈ assm components(asm) ∧

nb instances(class) < max instances(class)

THEN

nb instances(class) := nb instances(class) + 1 ||

assm components(asm) := assm components(asm) ∪ {inst} ||

assm clients(asm) := assm clients(asm) ∪ clients(inst)

END;

addServerInstance(asm, se) =

PRE

asm ∈ assembly ∧ se ∈ server instance ∧ se 6∈ assm servers(asm) ∧ serverComponentElem(se) ∈
assm components(asm)

THEN

assm servers(asm) := assm servers(asm) ∪ {se}

END;

bind(cl, se, asm) =
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PRE

asm ∈ assembly ∧ cl ∈ client instance ∧ se ∈ server instance ∧ cl ∈ assm clients(asm) ∧ se ∈
assm servers(asm) ∧

(cl 7→ se) ∈ binding ∧ (cl 7→ se) 6∈ assm connections(asm)

THEN

assm connections(asm) := assm connections(asm) ∪ {(cl 7→ se)}

END;

deleteServerInstance(asm, se) =

PRE

asm ∈ assembly ∧ se ∈ server instance ∧ se ∈ assm servers(asm) ∧ ∀ cl.(cl ∈ client instance ∧ cl ∈
assm clients(asm) ⇒

(cl 7→ se) 6∈ assm connections(asm))

THEN

assm servers(asm) := assm servers(asm) - {se}

END;

removeInstance(asm, inst, class) =

PRE

asm ∈ assembly ∧ inst ∈ compInstance ∧ inst ∈ assm components(asm) ∧ class ∈ compClass ∧ class =

comp instantiates(inst) ∧

∀ cl.(cl ∈ client instance ∧ cl ∈ clients(inst) ⇒ ∀ se.(se ∈ server instance ∧ se ∈ assm servers(asm)

⇒ (cl 7→ se) 6∈ assm connections(asm))) ∧

∀ se.(se ∈ server instance ∧ se ∈ servers(inst) ⇒ se 6∈ assm servers(asm))

THEN

nb instances(class) := nb instances(class) - 1 ||

assm clients(asm) := assm clients(asm) - clients(inst) ||

assm components(asm) := assm components(asm) - {inst}

END;

unbind(asm, se, cl) =

PRE

asm ∈ assembly ∧ cl ∈ client instance ∧ se ∈ server instance ∧ cl ∈ assm clients(asm) ∧ se ∈
assm servers(asm) ∧
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(cl 7→ se) ∈ binding ∧ (cl 7→ se) ∈ assm connections(asm)

THEN

assm connections(asm) := assm connections(asm) - {(cl 7→ se)}

END;

replaceInstance(asm, oldInst, newInst) =

PRE

oldInst ∈ compInstance ∧ newInst ∈ compInstance ∧ asm ∈ assembly ∧ oldInst ∈
assm components(asm) ∧

newInst 6∈ assm components(asm) ∧ (oldInst, newInst) ∈ inst substitution ∧

∀ cl.(cl ∈ client instance ∧ cl ∈ clients(oldInst) ⇒ ∀ se.(se ∈ server instance ∧ se ∈
assm servers(asm) ⇒ (cl 7→ se) 6∈ assm connections(asm))) ∧

∀ (se).(se ∈ server instance ∧ se ∈ servers(oldInst) ⇒ se 6∈ assm servers(asm))

THEN

assm components(asm) := (assm components(asm) - {oldInst}) ∪ {newInst} ||

assm clients(asm) := (assm clients(asm) - clients(oldInst)) ∪ clients(newInst)

END

END





Appendix B

EvolutionManager machine

MACHINE

EvolutionManager

INCLUDES

Arch specification, Arch configuration, Arch assembly

SETS

/*Enumerated set to designate the level of change*/

CHANGE LEVEL = {eLevel, specLevel, configLevel, asmLevel}

VARIABLES

/*Variable to designate the level of change*/

changeLevel,

/*Variables used to store the history of manipulated artifacts (i.e., added and deleted

artifacts)*/

addedRoles, deletedRoles, addedConnections, deletedConnections, selectedArch,

addedClassConnections, deletedClassConnections, addedServers, deletedServers, addedClasses,

deletedClasses,

selectedConfig,

deletedInstConnections, addedInstConnections, addedInstances, deletedInstances, selectedAsm,

addedServerInstances, deletedServerInstances,

/*Boolean variables used to initialize the included machines*/

init1, init2, init3, init4, init5, init6, init7, init8, init9, init10, init11, init12,

initialisation

161
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INVARIANT

changeLevel ∈ CHANGE LEVEL ∧

/*Variables related to the specification level*/

addedRoles ⊆ compRole ∧

deletedRoles ⊆ compRole ∧

addedConnections ⊆ connection ∧

deletedConnections ⊆ connection ∧

selectedArch ∈ ARCH SPEC ∧

/*Variables related to the configuration level*/

addedClassConnections ⊆ connection ∧

deletedClassConnections ⊆ connection ∧

addedServers ⊆ server ∧

deletedServers ⊆ server ∧

addedClasses ⊆ compClass ∧

deletedClasses ⊆ compClass ∧

selectedConfig ∈ CONFIGURATIONS ∧

/*Variables related to the assembly level*/

deletedInstConnections ⊆ binding ∧

addedInstConnections ⊆ binding ∧

addedInstances ⊆ compInstance ∧

deletedInstances ⊆ compInstance ∧

selectedAsm ∈ ASSEMBLIES ∧

addedServerInstances ⊆ server instance ∧

deletedServerInstances ⊆ server instance ∧

/*Boolean variables used for initialization*/

{init1, init2, init3, init4, init5, init6, init7, init8, init9, init10, init11, init12} ⊂ P( BOOL ) ∧

initialisation ∈ BOOL

DEFINITIONS

/*generic macro definitions*/

comp providedInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = PROVIDED};
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comp requiredInterfaces(comp) == {int | int ∈ interface ∧ int ∈ comp interfaces(comp) ∧
int direction(int) = REQUIRED};

/*Macros related to the specification level*/

clientInterfaceElem == {cl, int | cl ∈ client ∧ ∃ (comp, rint).(comp ∈ component ∧ rint ∈ interface ∧ cl =

(comp,rint) ∧ int = rint)};

clientComponentElem == {cl, cr | cl ∈ client ∧ ∃ (comp, rint).(comp ∈ component ∧ rint ∈ interface ∧
cl = (comp,rint) ∧ cr = comp)};

serverInterfaceElem == {se, int | se ∈ server ∧ ∃ (comp, pint).(comp ∈ component ∧ pint ∈ interface ∧
se = (comp,pint) ∧ int = pint)};

serverComponentElem == {se, cr | se ∈ server ∧ ∃ (comp, pint).(comp ∈ component ∧ pint ∈ interface ∧
se = (comp,pint) ∧ cr = comp)};

roleClients(role) == {cl | role ∈ component ∧ cl ∈ client ∧ clientComponentElem(cl) = role};

roleServers(role) == {se | role ∈ component ∧ se ∈ server ∧ serverComponentElem(se) = role};

/*Architecture specification consistency*/

spec consistency == ∀ (cl, spec).(cl ∈ client ∧ spec ∈ specification ∧ cl ∈ spec clients(spec) ⇒ ∃ (conn,

se).(conn ∈ connection ∧ conn ∈ spec connections(spec) ∧

se ∈ server ∧ se ∈ spec servers(spec) ∧ conn = (cl 7→ se))) ∧

∀ (se, spec).(se ∈ server ∧ spec ∈ specification ∧ se ∈ spec servers(spec) ⇒ ∃ (conn, cl).(conn ∈ connection

∧ conn ∈ spec connections(spec) ∧

cl ∈ client ∧ cl ∈ spec clients(spec) ∧ conn = (cl 7→ se))) ∧

∀ (conn, spec).(conn ∈ connection ∧ spec ∈ specification ∧ conn ∈ spec connections(spec) ⇒ ∃ (cl, se).(cl ∈
client ∧ se ∈ server ∧ cl ∈ spec clients(spec) ∧

se ∈ spec servers(spec) ∧ conn=(cl 7→ se))) ∧

∀ (cr, spec).(cr ∈ compRole ∧ spec ∈ specification ∧ cr ∈ spec components(spec) ⇒ ∃ conn.(conn ∈ connection

∧ conn ∈ spec connections(spec) ∧ cr ∈ dom(dom({conn})) ∪ dom(ran({conn})))) ∧

∀ (cr, spec).(cr ∈ compRole ∧ spec ∈ specification ∧ cr ∈ spec components(spec) ⇒ ∀ cl.(cl ∈ client ∧
clientComponentElem(cl) = cr ⇒ cl ∈ spec clients(spec))) ∧

∀ (cr, spec).(cr ∈ compRole ∧ spec ∈ specification ∧ cr ∈ spec components(spec) ⇒ ∀ se.(se ∈ server ∧
serverComponentElem(se) = cr ⇒ se ∈ spec servers(spec)));

/*Macros related to the configuration level*/

class interfaces(cl) == comp interfaces(class implements(cl));

classClients(class) == {cl | class ∈ compClass ∧ cl ∈ client ∧ clientComponentElem(cl) =

class implements(class)};

classServers(class) == {se | class ∈ compClass ∧ se ∈ server ∧ serverComponentElem(se) =

class implements(class)};
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class substitution == (class implements ; compType substitution ; class implements −1 );

/*Architecture configuration consistency*/

config consistency == ∀ (cl, config).(cl ∈ client ∧ config ∈ configuration ∧ cl ∈ config clients(config) ⇒ ∃
(conn, se).(conn ∈ connection ∧ conn ∈ config connections(config) ∧

se ∈ server ∧ se ∈ config servers(config) ∧ conn = (cl 7→ se))) ∧

∀ (se, config).(se ∈ server ∧ config ∈ configuration ∧ se ∈ config servers(config) ⇒ ∃ (conn, cl).(conn ∈
connection ∧ conn ∈ config connections(config) ∧

cl ∈ client ∧ cl ∈ config clients(config) ∧ conn = (cl 7→ se))) ∧

∀ (conn, config).(conn ∈ connection ∧ config ∈ configuration ∧ conn ∈ config connections(config) ⇒ ∃ (cl,

se).(cl ∈ client ∧ se ∈ server ∧ cl ∈ config clients(config) ∧

se ∈ config servers(config) ∧ conn=(cl 7→ se))) ∧

∀ (class, config).(class ∈ compClass ∧ config ∈ configuration ∧ class ∈ config components(config) ⇒ ∃
conn.(conn ∈ connection ∧ conn ∈ config connections(config) ∧ class implements(class) ∈
dom(dom({conn})) ∪ dom(ran({conn})))) ∧

∀ (class, config).(class ∈ compClass ∧ config ∈ configuration ∧ class ∈ config components(config) ⇒ ∀ cl.(cl

∈ client ∧ clientComponentElem(cl) = class implements(class) ⇒ cl ∈ config clients(config))) ∧

∀ (class1, class2, config).(class1 ∈ compClass ∧ class2 ∈ compClass ∧ config ∈ configuration ∧ {class1,class2}
⊆ config components(config) ⇒ ((class1, class2) 6∈ class substitution ∧ (class2, class1) 6∈ class substitution));

/*Macros related to the assembly level*/

inst direction(int) == int direction(int instantiates(int));

serverInterfaceInstElem == {se, int | se ∈ server instance ∧ ∃ (inst, pint).(inst ∈ compInstance ∧ pint ∈
interfaceInstance ∧ se = (inst,pint) ∧ int = pint)};

clientInstanceElem == {cl, inst | inst ∈ compInstance ∧ cl ∈ client instance ∧ ∃ (ci, rint).(ci ∈ compInstance

∧ rint ∈ interfaceInstance ∧ cl = (ci,rint) ∧ ci = inst)};

serverInstanceElem == {se, inst | inst ∈ compInstance ∧ se ∈ server instance ∧ ∃ (ci, pint).(ci ∈
compInstance ∧ pint ∈ interfaceInstance ∧ se = (ci,pint) ∧ ci = inst)};

instanceClients(inst) == {cl | inst ∈ compInstance ∧ cl ∈ client instance ∧ clientInstanceElem(cl) = inst};

instanceServers(inst) == {se | inst ∈ compInstance ∧ se ∈ server instance ∧ serverInstanceElem(se) = inst};

inst substitution == (comp instantiates;class implements ; compType substitution ; class implements −1

;comp instantiates −1 );

/*Architecture assembly consistency*/

assm consistency == ∀ (cl, asm).(cl ∈ client instance ∧ asm ∈ assembly ∧ cl ∈ assm clients(asm) ⇒ ∃
(conn, se).(conn ∈ binding ∧ conn ∈ assm connections(asm) ∧

se ∈ server instance ∧ se ∈ assm servers(asm) ∧ conn = (cl 7→ se))) ∧
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∀ (se, asm).(se ∈ server instance ∧ asm ∈ assembly ∧ se ∈ assm servers(asm) ⇒ ∃ (conn, cl).(conn ∈
binding ∧ conn ∈ assm connections(asm) ∧

cl ∈ client instance ∧ cl ∈ assm clients(asm) ∧ conn = (cl 7→ se))) ∧

∀ (conn, asm).(conn ∈ binding ∧ asm ∈ assembly ∧ conn ∈ assm connections(asm) ⇒ ∃ (cl, se).(cl ∈
client instance ∧ se ∈ server instance ∧ cl ∈ assm clients(asm) ∧

se ∈ assm servers(asm) ∧ conn=(cl 7→ se))) ∧

∀ (inst, asm).(inst ∈ compInstance ∧ asm ∈ assembly ∧ inst ∈ assm components(asm) ⇒ ∃ conn.(conn ∈
binding ∧ conn ∈ assm connections(asm) ∧ inst ∈ dom(dom({conn})) ∪ dom(ran({conn})))) ∧

∀ (inst, asm).(inst ∈ compInstance ∧ asm ∈ assembly ∧ inst ∈ assm components(asm) ⇒ ∀ cl.(cl ∈
client instance ∧ clientInstanceElem(cl) = inst ⇒ cl ∈ assm clients(asm)));

/*Coherence between specification and configuration*/

specConfigCoherence == ∀ (spec, config).(spec ∈ specification ∧ config ∈ configuration ⇒ ((config, spec) ∈
implements ⇔ ∀ CR.(CR ∈ compRole ∧ CR ∈ spec components(spec) ⇒ ∃ CL.(CL ∈ compClass ∧ CL ∈
config components(config) ∧ (CL,CR) ∈ realizes))) ∧ (spec, config) ∈ documents ⇔ ∀ se1.(se1 ∈ server ∧ se1

∈ config servers(config) ⇒ ∃ se2.(se2 ∈ server ∧ se2 ∈ spec servers(spec) ∧ (serverInterfaceElem(se2),

serverInterfaceElem(se1)) ∈ int substitution)));

/*Coherence between configuration and assembly*/

configAssemblyCoherence == ∀ (asm, config).(asm ∈ assembly ∧ config ∈ configuration ⇒ ( (asm, config) ∈
instantiates ⇔ ( ∀ cl.(cl ∈ compClass ∧ cl ∈ config components(config) ⇒ ∃ ci.(ci ∈ compInstance ∧ ci ∈
assm components(asm) ∧ (ci, cl) ∈ comp instantiates)) ∧

( ∀ ci.(ci ∈ compInstance ∧ ci ∈ assm components(asm) ⇒ ∃ cl.(cl ∈ compClass ∧ cl ∈
config components(config) ∧ (ci, cl) ∈ comp instantiates))))));

/*Preconditions of the model manipulation operations*/

/*preconditions related to the specification level*/

roleAdditionPrecondition == spec ∈ specification ∧ newRole ∈ compRole ∧ newRole 6∈
spec components(spec) ∧ ∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(spec) ⇒ comp name(cr) 6=
comp name(newRole)) ;

roleConnectionPrecondition == spec ∈ specification ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈ spec clients(spec) ∧ se

∈ spec servers(spec) ∧ (cl 7→ se) ∈ connection ∧ (cl 7→ se) 6∈ spec connections(spec) ∧ ∀ se1.(se1 ∈ server ∧
se1 ∈ spec servers(spec) ⇒ (cl 7→ se1) 6∈ spec connections(spec)) ∧ ∀ cl2.(cl2 ∈ client ∧ cl2 ∈
spec clients(spec) ⇒ (cl2 7→ se) 6∈ spec connections(spec));

roleDeletionPrecondition == spec ∈ specification ∧ role ∈ compRole ∧ role ∈ spec components(spec) ∧ ∀ cl.(cl

∈ client ∧ cl ∈ roleClients(role) ⇒ ∀ se.(se ∈ server ∧ se ∈ spec servers(spec) ⇒ (cl 7→ se) 6∈
spec connections(spec))) ∧ ∀ (se).(se ∈ server ∧ se ∈ roleServers(role) ⇒ ∀ cl.(cl ∈ client ∧ cl ∈
spec clients(spec) ⇒ (cl 7→ se) 6∈ spec connections(spec)));

roleDisconnectionPrecondition == spec ∈ specification ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈ spec clients(spec) ∧
se ∈ spec servers(spec) ∧ (cl 7→ se) ∈ connection ∧ (cl 7→ se) ∈ spec connections(spec);
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roleSubstitutionPrecondition == oldRole ∈ compRole ∧ newRole ∈ compRole ∧ spec ∈ specification ∧ oldRole

∈ spec components(spec) ∧ newRole 6∈ spec components(spec) ∧ (oldRole, newRole) ∈ role substitution ∧ ∀
cl.(cl ∈ client ∧ cl ∈ roleClients(oldRole) ⇒ ∀ se.(se ∈ server ∧ se ∈ spec servers(spec) ⇒ (cl 7→ se) 6∈
spec connections(spec))) ∧ ∀ se.(se ∈ server ∧ se ∈ roleServers(oldRole) ⇒ ∀ cl.(cl ∈ client ∧ cl ∈
spec clients(spec) ⇒ (cl 7→ se) 6∈ spec connections(spec)));

roleInitSubstitutionPrecondition == oldRole ∈ compRole ∧ newRole ∈ compRole ∧ spec ∈ specification ∧
oldRole ∈ spec components(spec) ∧ newRole 6∈ spec components(spec) ∧ (oldRole, newRole) ∈
role substitution;

roleInitDeletionPrecondition == spec ∈ specification ∧ role ∈ compRole ∧ role ∈ spec components(spec);

/*preconditions related to the configuration level*/

classInitAdditionPrecondition == config ∈ configuration ∧ newClass ∈ compClass ∧ newClass 6∈
config components(config) ∧ ∀ cl.(cl ∈ compClass ∧ cl ∈ config components(config) ⇒ class name(cl) 6=
class name(newClass) ∧ class implements(newClass) 6= class implements(cl)) ∧ services ⊆ server ∧ services

⊆ classServers(newClass);

classAdditionPrecondition == config ∈ configuration ∧ newClass ∈ compClass ∧ newClass 6∈
config components(config) ∧ ∀ cl.(cl ∈ compClass ∧ cl ∈ config components(config) ⇒ class name(cl) 6=
class name(newClass) ∧ class implements(newClass) 6= class implements(cl));

serverAdditionPrecondition == config ∈ configuration ∧ se ∈ server ∧ se 6∈ config servers(config) ∧
serverComponentElem(se) ∈ class implements[config components(config)];

serverDeletionPrecondition == config ∈ configuration ∧ se ∈ server ∧ se ∈ config servers(config) ∧ ∀ cl.(cl ∈
client ∧ cl ∈ config clients(config) ⇒ (cl 7→ se) 6∈ config connections(config));

classConnectionPrecondition == config ∈ configuration ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈
config clients(config) ∧ se ∈ config servers(config) ∧ (cl 7→ se) ∈ connection ∧ (cl 7→ se) 6∈
config connections(config);

classDeletionPrecondition == config ∈ configuration ∧ class ∈ compClass ∧ class ∈ config components(config)

∧ ∀ cl.(cl ∈ client ∧ cl ∈ classClients(class) ⇒ ∀ se.(se ∈ server ∧ se ∈ config servers(config) ⇒ (cl 7→ se) 6∈
config connections(config))) ∧ ∀ se.(se ∈ server ∧ se ∈ classServers(class) ⇒ se 6∈ config servers(config));

classDisconnectionPrecondition == config ∈ configuration ∧ cl ∈ client ∧ se ∈ server ∧ cl ∈
config clients(config) ∧ se ∈ config servers(config) ∧ (cl 7→ se) ∈ connection ∧ (cl 7→ se) ∈
config connections(config);

classSubstitutionPrecondition == oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration ∧
oldClass ∈ config components(config) ∧ newClass 6∈ config components(config) ∧ (oldClass, newClass) ∈
class substitution ∧ ∀ cl.(cl ∈ client ∧ cl ∈ classClients(oldClass) ⇒ ∀ se.(se ∈ server ∧ se ∈
config servers(config) ⇒ (cl 7→ se) 6∈ config connections(config))) ∧ ∀ (se).(se ∈ server ∧ se ∈
classServers(oldClass) ⇒ se 6∈ config servers(config));

classInitSubstitutionPrecondition == oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration

∧ oldClass ∈ config components(config) ∧ newClass 6∈ config components(config) ∧ (oldClass, newClass) ∈
class substitution ∧ services ⊆ server ∧ ∀ se.(se ∈ server ∧ se ∈ services ⇒ se ∈ classServers(newClass)) ∧ ∀
se1.(se1 ∈ server ∧ se1 ∈ classServers(oldClass) ⇒ ∃ se2.(se2 ∈ server ∧ se2 ∈ services ∧
serverInterfaceElem(se2) ∈ int substitution[{serverInterfaceElem(se1)}]));
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classInitDeletionPrecondition == config ∈ configuration ∧ class ∈ compClass ∧ class ∈
config components(config);

/*preconditions related to the assembly level*/

instanceInitAdditionPrecondition == asm ∈ assembly ∧ class ∈ compClass ∧ inst ∈ compInstance ∧ class =

comp instantiates(inst) ∧ inst 6∈ assm components(asm) ∧ services ⊆ server instance ∧ services ⊆
instanceServers(inst) ∧ nb instances(class) < max instances(class);

instanceAdditionPrecondition == asm ∈ assembly ∧ class ∈ compClass ∧ inst ∈ compInstance ∧ class =

comp instantiates(inst) ∧ inst 6∈ assm components(asm) ∧ nb instances(class) < max instances(class);

serverInstanceAdditionPrecondition == asm ∈ assembly ∧ se ∈ server instance ∧ se 6∈ assm servers(asm) ∧
serverInstanceElem(se) ∈ assm components(asm);

instanceBindingPrecondition == asm ∈ assembly ∧ cl ∈ client instance ∧ se ∈ server instance ∧ cl ∈
assm clients(asm) ∧ se ∈ assm servers(asm) ∧ (cl 7→ se) ∈ binding ∧ (cl 7→ se) 6∈ assm connections(asm);

serverInstanceDeletionPrecondition == asm ∈ assembly ∧ se ∈ server instance ∧ se ∈ assm servers(asm) ∧
∀ cl.(cl ∈ client instance ∧ cl ∈ assm clients(asm) ⇒ (cl 7→ se) 6∈ assm connections(asm));

instanceDeletionPrecondition == asm ∈ assembly ∧ inst ∈ compInstance ∧ inst ∈ assm components(asm) ∧
class ∈ compClass ∧ class = comp instantiates(inst) ∧ ∀ cl.(cl ∈ client instance ∧ cl ∈ instanceClients(inst)

⇒ ∀ se.(se ∈ server instance ∧ se ∈ assm servers(asm) ⇒ (cl 7→ se) 6∈ assm connections(asm))) ∧ ∀ se.(se ∈
server instance ∧ se ∈ instanceServers(inst) ⇒ se 6∈ assm servers(asm));

instanceUnbindigPrecondition == asm ∈ assembly ∧ cl ∈ client instance ∧ se ∈ server instance ∧ cl ∈
assm clients(asm) ∧ se ∈ assm servers(asm) ∧ (cl 7→ se) ∈ binding ∧ (cl 7→ se) ∈ assm connections(asm);

instanceSubstitutionPrecondition == oldInst ∈ compInstance ∧ newInst ∈ compInstance ∧ asm ∈ assembly ∧
oldInst ∈ assm components(asm) ∧ newInst 6∈ assm components(asm) ∧ (oldInst, newInst) ∈ inst substitution

∧ ∀ cl.(cl ∈ client instance ∧ cl ∈ instanceClients(oldInst) ⇒ ∀ se.(se ∈ server instance ∧ se ∈
assm servers(asm) ⇒ (cl 7→ se) 6∈ assm connections(asm))) ∧ ∀ (se).(se ∈ server instance ∧ se ∈
instanceServers(oldInst) ⇒ se 6∈ assm servers(asm));

instanceInitSubstitutionPrecondition == oldInst ∈ compInstance ∧ newInst ∈ compInstance ∧ asm ∈
assembly ∧ oldInst ∈ assm components(asm) ∧ newInst 6∈ assm components(asm) ∧ (oldInst, newInst) ∈
inst substitution ∧ ∀ se1.(se1 ∈ server instance ∧ se1 ∈ instanceServers(oldInst) ⇒ ∃ se2.(se2 ∈
server instance ∧ se2 ∈ instanceServers(newInst) ∧ int instantiates(serverInterfaceInstElem(se2)) ∈
int substitution[{int instantiates(serverInterfaceInstElem(se1))}]));

instanceInitDeletionPrecondition == asm ∈ assembly ∧ inst ∈ compInstance ∧ inst ∈
assm components(asm) ∧ class ∈ compClass ∧ class = comp instantiates(inst);

INITIALISATION

/* changeLevel is initialized to eLevel

changeLevel := eLevel ||

sets are initialized to empty set */

addedRoles := ∅ ||

deletedRoles := ∅ ||
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addedConnections := ∅ ||

deletedConnections := ∅ ||

selectedArch := eArch ||

addedClassConnections := ∅ ||

deletedClassConnections := ∅ ||

addedServers := ∅ ||

deletedServers := ∅ ||

addedClasses := ∅ ||

deletedClasses := ∅ ||

selectedConfig := eConfig ||

deletedInstConnections := ∅ ||

addedInstConnections := ∅ ||

addedInstances := ∅ ||

deletedInstances := ∅ ||

selectedAsm := eAssm ||

addedServerInstances := ∅ ||

deletedServerInstances := ∅ ||

/*boolean variables are used to manage the order of execution of initialization operations*/

/*init1, associated to the first operation is set to true, all the others are set to false*/

init1 := TRUE || init2 := FALSE || init3 := FALSE || init4 := FALSE || init5 := FALSE ||

init6 := FALSE || init7 := FALSE || init8 := FALSE || init9 := FALSE || init10 := FALSE ||

init11 := FALSE || init12 := FALSE ||

initialisation := FALSE

OPERATIONS

/*Initialization operations*/

mng initializeParameterSubtype =

PRE

init1=TRUE

THEN

s initializeParameterSubtype ||
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init1:=FALSE ||

init2 := TRUE

END;

mng initializesignatureSubtype =

PRE

init2 = TRUE

THEN

s initializesignatureSubtype ||

init2 := FALSE ||

init3 := TRUE

END;

mng initializeInterfaceSubtype =

PRE

init3 = TRUE

THEN

s initializeInterfaceSubtype ||

init3 := FALSE ||

init4 := TRUE

END;

mng initializeBasicModel =

PRE

init4 = TRUE

THEN

s initializeBasicModel ||

init4 := FALSE ||

init5 := TRUE

END;

mng initializeArchModel =

PRE
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init5 = TRUE

THEN

s initializeArchModel ||

init5 := FALSE ||

init6 := TRUE

END;

mng initializeConnections =

PRE

init6 = TRUE

THEN

s initializeConnections ||

init6 := FALSE ||

init7 := TRUE

END;

mng initialzeArchSpecModel =

PRE

init7 = TRUE

THEN

initialzeArchSpecModel ||

init7 := FALSE ||

init8 := TRUE

END;

mng initializeArchConfig =

PRE

init8 = TRUE

THEN

initializeArchConfig ||

init8 := FALSE ||

init9 := TRUE
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END;

mng computeRealizations =

PRE

init9 = TRUE

THEN

computeRealizations ||

init9 := FALSE ||

init10 := TRUE

END;

mng initializeArchAssembly =

PRE

init10 = TRUE

THEN

initializeArchAssembly ||

init10 := FALSE ||

init11 := TRUE

END;

mng initializeBindings =

PRE

init11 = TRUE

THEN

initializeBindings ||

init11 := FALSE ||

init12 := TRUE

END;

/*Architecture model setter*/

mng setTargetArchitectures(spec, config, assm) =

PRE

spec ∈ specification ∧ config ∈ configuration ∧ assm ∈ assembly ∧
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init12 = TRUE

THEN

selectedArch := spec ||

selectedConfig := config ||

selectedAsm := assm ||

init12 := FALSE ||

initialisation := TRUE

END;

/*Change level setter*/

setChangeLevel(newChangeLevel) =

PRE

initialisation = TRUE ∧ newChangeLevel ∈ CHANGE LEVEL ∧ newChangeLevel 6= eLevel ∧
changeLevel 6= newChangeLevel

THEN

changeLevel := newChangeLevel

END;

/*Evolution rules*/

/*Evolution rules related to the specification level*/

changeArtifact ← spec addRole(spec, newRole) =

PRE

initialisation = TRUE ∧

changeLevel = specLevel ∧

roleAdditionPrecondition ∧

selectedArch = spec ∧

newRole 6∈ (deletedRoles ∪ addedRoles)

THEN

addRole(spec, newRole) ||

addedRoles := addedRoles ∪ {newRole} ||

changeArtifact := newRole

END;
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artifact1,artifact2 ← spec connect(cl, se, spec) =

PRE

initialisation = TRUE ∧

changeLevel = specLevel ∧

selectedArch = spec ∧

roleConnectionPrecondition ∧

(cl 7→ se) 6∈ (deletedConnections ∪ addedConnections)

THEN

connect(cl, se, spec) ||

addedConnections := addedConnections ∪ {(cl 7→ se)} ||

artifact1 := clientComponentElem(cl) ||

artifact2 := serverComponentElem(se)

END;

spec removeRole(spec, role) =

PRE

initialisation = TRUE ∧

changeLevel = specLevel ∧

roleDeletionPrecondition ∧

selectedArch = spec ∧

role 6∈ (deletedRoles ∪ addedRoles)

THEN

removeRole(spec, role) ||

deletedRoles := deletedRoles ∪ {role}

END;

artifact1, artifact2 ← spec disconnect(spec, se, cl) =

PRE

initialisation = TRUE ∧

changeLevel = specLevel ∧ roleDisconnectionPrecondition ∧

selectedArch = spec ∧
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(cl 7→ se) 6∈ (deletedConnections ∪ addedConnections)

THEN

disconnect(spec, se, cl) ||

deletedConnections := deletedConnections ∪ {(cl 7→ se)} ||

artifact1 := clientComponentElem(cl) ||

artifact2 := serverComponentElem(se)

END;

changeArtifact ← spec replaceRole(spec, oldRole, newRole) =

PRE

initialisation = TRUE ∧

changeLevel = specLevel ∧

roleSubstitutionPrecondition ∧

selectedArch = spec ∧

oldRole 6∈ (deletedRoles ∪ addedRoles) ∧ newRole 6∈ (deletedRoles ∪ addedRoles)

THEN

replaceRole(spec, oldRole, newRole) ||

deletedRoles := deletedRoles ∪ {oldRole} ||

addedRoles := addedRoles ∪ {newRole} ||

changeArtifact := newRole

END;

/*Evolution rules related to the configuration level*/

changeArtifact ← config addClass(config, newClass) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

classAdditionPrecondition ∧

newClass 6∈ (deletedClasses ∪ addedClasses) ∧

selectedConfig = config

THEN
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addClass(config, newClass) ||

addedClasses := addedClasses ∪ {newClass} ||

changeArtifact := class implements(newClass)

END;

changeArtifact ← config addServer(config, se) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

serverAdditionPrecondition ∧

se 6∈ (addedServers ∪ deletedServers) ∧

selectedConfig = config

THEN

addServer(config, se) ||

addedServers := addedServers ∪ {se} ||

changeArtifact := serverComponentElem(se)

END;

artifact1, artifact2 ← config class connect(cl, se, config) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

classConnectionPrecondition ∧

(cl 7→ se) 6∈ (deletedConnections ∪ addedConnections) ∧

selectedConfig = config

THEN

class connect(cl, se, config) ||

addedConnections := addedConnections ∪ {(cl 7→ se)} ||

artifact1 := clientComponentElem(cl) ||

artifact2 := serverComponentElem(se)

END;
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changeArtifact ← config deleteServer(config, se) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

serverDeletionPrecondition ∧

se 6∈ (addedServers ∪ deletedServers) ∧

selectedConfig = config

THEN

deleteServer(config, se) ||

deletedServers := deletedServers ∪ {se} ||

changeArtifact := serverComponentElem(se)

END;

config removeClass(config, class) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

classDeletionPrecondition ∧

class 6∈ (deletedClasses ∪ addedClasses) ∧

selectedConfig = config

THEN

removeClass(config, class) ||

deletedClasses := deletedClasses ∪ {class}

END;

artifact1, artifact2 ← config class disconnect(config, se, cl) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

classDisconnectionPrecondition ∧

(cl 7→ se) 6∈ (deletedConnections ∪ addedConnections) ∧
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selectedConfig = config

THEN

class disconnect(config, se, cl) ||

deletedConnections := deletedConnections ∪ {(cl 7→ se)} ||

artifact1 := clientComponentElem(cl) ||

artifact2 := serverComponentElem(se)

END;

changeArtifact ← config replaceClass(config, oldClass, newClass) =

PRE

initialisation = TRUE ∧

changeLevel = configLevel ∧

classSubstitutionPrecondition ∧

oldClass 6∈ (deletedClasses ∪ addedClasses) ∧ newClass 6∈ (deletedClasses ∪ addedClasses) ∧

selectedConfig = config

THEN

replaceClass(config, oldClass, newClass) ||

deletedClasses := deletedClasses ∪ {oldClass} ||

addedClasses := addedClasses ∪ {newClass} ||

changeArtifact := newClass

END;

/*Evolution rules related to the assembly level*/

changeArtifact ← asm deployInstance(asm, inst, class) =

PRE

initialisation = TRUE ∧

changeLevel = asmLevel ∧

instanceAdditionPrecondition ∧

inst 6∈ (addedInstances ∪ deletedInstances) ∧

selectedAsm = asm

THEN
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deployInstance(asm, inst, class) ||

addedInstances := addedInstances ∪ {inst} ||

changeArtifact := inst

END;

changeArtifact ← asm addServerInstance(asm, se) =

PRE

initialisation = TRUE ∧

changeLevel = asmLevel ∧

selectedAsm = asm ∧

serverInstanceAdditionPrecondition ∧

se 6∈ (addedServerInstances ∪ deletedServerInstances)

THEN

addServerInstance(asm, se) ||

addedServerInstances := addedServerInstances ∪ {se} ||

changeArtifact := serverInstanceElem(se)

END;

artifact1, artifact2 ← asm bind(cl, se, asm) =

PRE

initialisation = TRUE ∧

changeLevel = asmLevel ∧

instanceBindingPrecondition ∧

(cl 7→ se) 6∈ (deletedInstConnections ∪ addedInstConnections) ∧

selectedAsm = asm

THEN

bind(cl, se, asm) ||

addedInstConnections := addedInstConnections ∪ {(cl 7→ se)} ||

artifact1 := clientInstanceElem(cl) ||

artifact2 := serverInstanceElem(se)

END;
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asm removeInstance(asm, inst, class) =

PRE

initialisation = TRUE ∧

changeLevel = asmLevel ∧

instanceDeletionPrecondition ∧

inst 6∈ (deletedInstances ∪ addedInstances) ∧

selectedAsm = asm

THEN

removeInstance(asm, inst, class) ||

deletedInstances := deletedInstances ∪ {inst}

END;

artifact1, artifact2 ← asm unbind(asm, se, cl) =

PRE

initialisation = TRUE ∧

changeLevel = asmLevel ∧

instanceUnbindigPrecondition ∧

(cl 7→ se) 6∈ (deletedInstConnections ∪ addedInstConnections) ∧

selectedAsm = asm

THEN

unbind(asm, se, cl) ||

deletedInstConnections := deletedInstConnections ∪ {(cl 7→ se)} ||

artifact1 := clientInstanceElem(cl) ||

artifact2 := serverInstanceElem(se)

END;

changeArtifact ← asm deleteServerInstance(asm, se) =

PRE

initialisation = TRUE ∧

changeLevel = asmLevel ∧

selectedAsm = asm ∧
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serverInstanceDeletionPrecondition ∧

se 6∈ (addedServerInstances ∪ deletedServerInstances)

THEN

deleteServerInstance(asm, se) ||

deletedServerInstances := deletedServerInstances ∪ {se} ||

changeArtifact := serverInstanceElem(se)

END;

changeArtifact ← asm replaceInstance(asm, oldInst, newInst) =

PRE

initialisation = TRUE ∧

instanceSubstitutionPrecondition ∧

changeLevel = asmLevel ∧

oldInst 6∈ (deletedInstances ∪ addedInstances) ∧ newInst 6∈ (deletedInstances ∪ addedInstances) ∧

selectedAsm = asm

THEN

replaceInstance(asm, oldInst, newInst) ||

addedInstances := addedInstances ∪ {newInst} ||

deletedInstances := deletedInstances ∪ {oldInst} ||

changeArtifact := newInst

END

END
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Résumé en français

Gérer l’évolution des logiciels est une tâche complexe mais nécessaire. Tout au long de son

cycle de vie, un logiciel doit subir des changements, pour corriger des erreurs, améliorer ses

performances et sa qualité, étendre ses fonctionnalités ou s’adapter à son environnement. A

défaut d’évoluer, un logiciel se dégrade, devient obsolète ou inadapté et est remplacé. Cepen-

dant, sans évaluation de leurs impacts et contrôle de leur réalisation, les changements peuvent

être sources d’incohérences et de dysfonctionnements, donc générateurs de dégradations du

logiciel.

Cette thèse propose une approche améliorant la gestion de l’évolution des logiciels dans les pro-

cessus de développement orientés composants. Adoptant une démarche d’ingénierie dirigée par

les modèles (IDM), cette approche s’appuie sur Dedal, un langage de description d’architecture

(Adl) séparant explicitement trois niveaux d’abstraction dans la définition des architectures

logicielles. Ces trois niveaux (spécification, configuration et assemblage) correspondent aux

trois étapes principales du développement d’une architecture (conception, implémentation,

déploiement) et gardent la trace des décisions architecturales prises au fil du développement.

Ces informations sont un support efficace à la gestion de l’évolution : elles permettent de

déterminer le niveau d’un changement, d’analyser son impact et de planifier sa réalisation afin

d’éviter la survenue d’incohérences dans la définition de l’architecture (érosion, dérive, etc.).

Une gestion rigoureuse de l’évolution nécessite la formalisation, d’une part, des relations

intra-niveau liant les composants au sein des modèles correspondant aux différents niveaux

de définition d’une architecture et, d’autre part, des relations inter-niveaux liant les modèles

décrivant une même architecture aux différents niveaux d’abstraction. Ces relations permet-

tent la définition des propriétés de consistance et de cohérence servant à vérifier la correction

d’une architecture. Le processus d’évolution est ainsi décomposé en trois phases : initier

le changement de la définition de l’architecture à un niveau d’abstraction donné ; vérifier

et rétablir la consistance de cette définition en induisant des changements complémentaires
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; vérifier et rétablir la cohérence globale de la définition de l’architecture en propageant

éventuellement les changements aux autres niveaux d’abstraction. Ces relations et propriétés

sont décrites en B, un langage de modélisation formel basé sur la théorie des ensembles et la

logique du premier ordre. Elles s’appliquent à des architectures définies avec un Adl formel

écrit en B dont le méta-modèle, aligné avec celui de Dedal, permet d’outiller la transformation

de modèles entre les deux langages. Cette intégration permet de proposer un environnement

de développement conjuguant les avantages des approches IDM et formelle : la conception

d’architectures avec l’outillage de Dedal (modeleur graphique); la vérification des architec-

tures et la gestion de l’évolution avec l’outillage de B (animateur, model-checker, solver).

Nous proposons en particulier d’utiliser un solver B pour calculer automatiquement des plans

d’évolution conformes à notre proposition et avons ainsi défini l’ensemble des règles d’évolution

décrivant les opérations de modification applicables à la définition d’une architecture. Le solver

recherche alors automatiquement une séquence de modifications permettant la réalisation

d’un changement cible tout en préservant les propriétés de consistance et de cohérence de

l’architecture. Nous avons validé la faisabilité de cette gestion de l’évolution par une implémentation

mêlant optimisation et génie logiciel (searchbased software engineering), intégrant notre propre

solver pourvu d’heuristiques spécifiques qui améliorent significativement les temps de calcul,

pour expérimenter trois scénarios d’évolution permettant de tester la réalisation d’un change-

ment à chacun des trois niveaux d’abstraction.

Mot-clés : architecture logicielle, évolution, composant, niveaux d’abstraction, méthode B,

consistance, cohérence
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