
HAL Id: tel-01382345
https://hal-lirmm.ccsd.cnrs.fr/tel-01382345

Submitted on 16 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Model Transformation Examples for Easy
Model Transformation Handling (Learning and

Recovery)
Hajer Saada

To cite this version:
Hajer Saada. Exploiting Model Transformation Examples for Easy Model Transformation Handling
(Learning and Recovery). Software Engineering [cs.SE]. Université Monpellier 2, 2013. English.
�NNT : �. �tel-01382345�

https://hal-lirmm.ccsd.cnrs.fr/tel-01382345
https://hal.archives-ouvertes.fr

Académie de Montpellier

Université Montpellier 2
Sciences et Techniques du Languedoc LIRMM

Ph.D Thesis

présentée au Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier pour

obtenir le diplôme de doctorat

par

Hajer Saada

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Information, Structures, Systèmes

Exploiting Model Transformation Examples
for Easy Model Transformation Handling

(Learning and Recovery)

Soutenue le 04/12/2013, devant le jury composé de :

Reviewers
Gertrude Kappel, Professeur University of Technology, Vienne, Autriche
Benoit Baudry, Chargé de Recherches HDR, . . INRIA Rennes Bretagne Atlantique, France

Examinator
Marie-Pierre Gervais, Professeur Université Paris Ouest Nanterre La Défense , France

Supervisor
Marianne Huchard, Professeur . Université Montpellier 2, France

Joint supervisor
Clémentine Nebut , Maitre de Conférences Université Montpellier 2, France
Houari Sahraoui , Professeur . Université de Montréal, Canada

iii

To my family

Acknowledgements

The research work presented in this thesis has been performed in the Laboratoire

d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), University

Montpellier 2. This thesis has been done in collaboration between University Montpellier 2

and University of Montreal. My stay in France for pursuing the doctorate degree has been

financially supported by the Government of Tunisia.

My first and sincere acknowledge goes to my supervisors Marianne Huchard, Clémen-

tine Nebut and Houari Sahraoui for all I have learned from them and for their continuous

help and support in all stages of this thesis. I would like to thank them for encouraging and

helping me to shape my interest and ideas, and especially for letting me wide autonomy

while providing appropriate advice. It was a real pleasure to work with them.

I would like to express my gratitude to the honorable reviewers, Dr. Gertrude Kappel

and Dr. Benoit Baudry for accepting to review my thesis. I am thankful for their valu-

able comments and remarks. I am grateful to Dr. Marie-Pierre Gervais for her thorough

examination of the thesis.

As a member of MaREL team, I got a lot of help and encouragement from all the

members of the group. I forward my extreme appreciations to all MaREL members.

My greatest acknowledge goes to my closest friend Mohamed for the continuous help

and advice, and for his effort in proof reading the thesis drafts and providing valuable

feedback.

Thanks to my supportive friends, Najib, Kaouthar, Nadia, Xavier, Naoufal, Amine, Zak,

Younes, Anas, Seza, Hamzeh, Raafat, Thibaut, Petr, Sarra, Azhar, Adel, Julien, Zakaria, and

others who made the lab a friendly environment for working.

Thanks to my friends in the university of Tunisia, Jamel, Asma, Siwar, Nesma, Nesrine,

Halima, Zeineb, Takwa..

Last but not the least, I would like to thank my mother and my father for always

believing in me, for their continuous love and their supports in my decisions. I am also

very grateful to my brothers, my sisters, my nieces and nephews.

Hajer Saada

December 2013

v

Abstract

Model Driven Engineering (MDE) considers models as first class artifacts. Each model con-
forms to another model, called its metamodel which defines its abstract syntax and its semantics.
Various kinds of models are handled successively in an MDE development cycle. They are ma-
nipulated using, among others, programs called model transformations. A transformation takes as
input a model in a source language and produces a model in a target language. The developers
of a transformation must have a strong knowledge about the source and target metamodels which
are involved and about the model transformation language. This makes the writing of the model
transformation difficult.
In this thesis, we address the problem of assisting the writing of a model transformation and more
generally of understanding how a transformation operates. We adhere to the Model Transformation
By Example (MTBE) approach, which proposes to create a model transformation using examples of
transformation. MTBE allows us to use the concrete syntaxes defined for the metamodels. Hence,
the developers do not need in-depth knowledge about the metamodels. In this context, our thesis
proposes two contributions. As a first contribution, we define a method to generate operational
transformation rules from transformation examples. We extend a previous approach which uses
Relational Concept Analysis as a learning technique for obtaining transformation patterns from 1-
1 mapping between models. We develop a technique for extracting relevant transformation rules
from these transformation patterns and we use the JESS language and engine to make the rules
executable. We also study how we better learn transformation rules from examples, using trans-
formation examples separately or by gathering all the examples. The second contribution consists
in recovering transformation traces from transformation examples. This trace recovery is useful for
several purposes as locating bugs during the execution of transformation programs, or checking
the coverage of all input models by a transformation. In our context, we expect also that this trace
will provide data for a future model transformation learning technique. We first address the trace
recovery problem with examples coming from a transformation program. We propose an approach,
based on a multi-objective meta-heuristic, to generate the many-to-many mapping between model
constructs which correspond to a trace. The fitness functions rely on the lexical and structure simi-
larity between the constructs. We also refine the approach to apply it to the more general problem
of model matching.

Keywords: MDE, model transformation, MTBE, operational rules, model transformation traces, model

matching, FCA, JESS, meta-heuristic, genetic algorithm.

vii

Résumé

L’Ingénierie Dirigée par les Modèles (IDM) est un domaine de recherche en pleine émergence
qui considère les modèles comme des éléments de base. Chaque modèle est conforme à un autre
modèle, appelé son méta-modèle, qui définit sa syntaxe abstraite et ses concepts. Dans un processus
IDM, différents types de modèles sont manipulés par des transformations de modèles. Une trans-
formation génère un modèle dans un langage cible à partir d’un modèle dans un langage source.
Pour concevoir une transformation, les développeurs doivent avoir une bonne connaissance des
méta-modèles concernés ainsi que des langages de transformation, ce qui rend cette tâche difficile.
Dans cette thèse, nous proposons d’assister l’écriture des transformations et plus généralement de
comprendre comment une transformation opère. Nous adhérons à l’approche de transformation de
modèles par l’exemple qui propose de créer une transformation de modèles à partir d’exemples
de transformation. Cela permet d’utiliser la syntaxe concrète définie pour les méta-modèles, et cela
évite donc de requérir que les développeurs aient une bonne maîtrise des méta-modèles utilisés.
Dans ce contexte, nous proposons deux contributions. La première consiste à définir une méthode
pour générer des règles de transformation opérationnelles à partir d’exemples. Nous nous basons
sur une approche qui utilise l’Analyse Relationnelle de Concepts (ARC) comme technique d’ap-
prentissage pour obtenir des patrons de transformation à partir d’un appariement de type 1-1 entre
les modèles. Nous développons une technique pour extraire des règles de transformation opéra-
tionnelles à partir de ces patrons. Ensuite, nous utilisons le langage et le moteur de règles JESS pour
exécuter ces règles. Nous étudions aussi comment mieux apprendre des règles de transformations
à partir d’exemples, en utilisant séparément chaque exemple ou en réunissant tous les exemples.
La deuxième contribution consiste à récupérer les traces de transformation à partir d’exemples de
transformation. Ces traces peuvent être utilisées par exemple pour localiser des erreurs durant l’exé-
cution des programmes de transformation ou vérifier la couverture de tous les modèles d’entrée par
une transformation. Dans notre contexte, nous supposons que ces traces vont servir pour un futur
apprentissage des règles de transformation. Nous traitons tout d’abord le problème de récupéra-
tion des traces avec des exemples provenant d’un programme de transformation. Nous proposons
une approche basée sur une méta-heuristique multi-objectifs pour générer des traces sous forme
d’appariement de type n-m entre des éléments de modèles. La fonction objectif s’appuie sur une
similarité lexicale et structurelle entre ces éléments. Une extension de cette méthode est proposée
pour traiter le problème plus général de l’appariement entre modèles.

Mots clefs : IDM, transformation de modèles, l’approche par exemple, règles opérationelles, traces de trans-

formation, appariement des modèles, AFC, JESS, meta-heuristique, algorithmes génétiques

ix

Contents

Acknowledgements v

Abstract (English/Français) vii

Contents xi

Introduction 3

1 Preliminaries 7

1.1 Formal Concept Analysis and Relational Concept Analysis 7

1.2 Java Expert System Shell . 12

1.3 The NSGA-II Algorithm . 13

2 State Of The Art 17

2.1 Model Driven Engineering . 17

2.2 Model Transformation . 20

2.2.1 Model Transformation Classification . 20

2.2.2 Model Transformation Languages . 23

2.3 Towards Model Transformation Generation . 24

2.3.1 Meta-model Matching for Model Transformation Generation 24

2.3.2 Model Transformation By Example . 26

2.3.2.1 MTBE approaches . 26

2.3.3 Synthesis . 28

2.4 Model Transformation Traceability . 29

2.4.1 Summary . 31

2.5 Search Based Software Engineering . 32

2.6 Conclusion . 33

3 Generation of Operational Transformation Rules from Examples of Model Trans-

formations 35

3.1 Introduction . 36

xi

3.2 Overview of the Rules Generation and Execution 37

3.3 A By-example Approach to Obtain Transformation Patterns 39

3.3.1 Obtaining the Transformation Patterns 39

3.3.2 Patterns Lattice Simplification . 45

3.3.3 Rules Generation . 47

3.3.3.1 Meta-models2Templates . 48

3.3.3.2 Models2Facts . 49

3.3.3.3 TransformationPatterns2JessRules 50

3.3.4 Tool Support and Case study . 51

3.4 Strategies for learning Model Transformations from Examples 54

3.4.1 Discussion . 59

3.4.2 Summary . 59

3.5 Conclusion . 60

4 Model Transformation Traceability and Model Matching:

metaheuristic approaches 61

4.1 Introduction . 62

4.2 Approach Overview . 63

4.2.1 Problem Statement . 63

4.2.2 Approach Overview . 65

4.3 Adapting NSGA-II to the Transformation Trace Recovery Problem 68

4.3.1 Solutions Representation . 68

4.3.2 Solutions Evaluation . 69

4.3.3 Operators Definition . 71

4.4 Evaluation . 73

4.4.1 Experimental Setting . 73

4.4.1.1 Experimental data . 73

4.4.1.2 Experimental protocol . 74

4.4.2 Results and Discussion . 76

4.4.2.1 Results for the six examples 76

4.4.2.2 Detailed results for the Cl2Rs example 78

4.4.2.3 Performance . 79

4.4.3 Threats to Validity . 80

4.5 The Model Matching Problem . 81

4.5.1 Evaluation . 82

xii

4.6 Conclusion . 84

Conclusions and perspectives 87

Bibliography 93

List of Figures 103

List of Tables 105

xiii

Contents 1

Acronyms

MDE: Model Driven Engineering

UML: Unified Modeling Language

MDA: Model Driven Architecture

MT: Model Transformation

MTBE: Model Transformation By Example

OMG: Object Management Group

MOF: Meta-Object Facility

CIM: Computation Independent Model

PIM: Platform Independent Model

PSM: Platform Specific Model

MT: Model Transformation

RS: Relational Schema

CD: Class Diagram

API: Application Programming Interface

VB: Visual Basic

LHS: Left-Hand Side

RHS: Right-Hand Side

OCL: Object Constraint Language

MTBE: Model Transformation By Example

ILP: Inductive Logic Programming

RCA: Relational Concept Analysis

MTBD: Model Transformation By Demonstration

SBSE: Search Based Software Engineering

GA: Genetic Algorithms

SA: Simulated Annealing

PbE: Programming by Example

PSO: Particle Swarm Optimization

SA: Simulated Annealing

EA: Evolutionary Algorithms

Introduction

Research Context

Model Driven Engineering (MDE) [Schmidt, 2006] is a software development method-

ology which focuses on creating and exploiting models. MDE involves different princi-

ples including OMG’s Model Driven Architecture (MDA) [Soley and the OMG Staff Strat-

egy Group, 2000], that is based on the separation of business logic from platforms tech-

nology. One basic principle of MDE is "everything is a model". MDE provides supports for

creating and editing models, transforming models to other models or programs, model-

based testing, etc. The use of models helps to improve the productivity by maximizing

compatibility between systems (via model reuse), the simplification of the process design

and the communication between developers (via standardization) [Schmidt, 2006]. Each

model conforms to another model, called its metamodel, which defines the structure, i.e.,

concepts and their relationships that can be used to compose a model.

Besides models, model transformations represent another crucial element of MDE. They

allow the definition of mapping between models. Transformations aim to automate the

translation within and between different modeling languages, e.g., the transformation of

a design model to a program in C#. Transformations are defined at the metamodel level,

and are applied at the model level. They transform a model in a source language to a

model in a target language. For this end, models must be written in a modeling language

(e.g., the Unified Modeling Language - UML). A modeling language corresponds also to

a metamodel (e.g., UML metamodel) which defines the language concepts. Based on the

modeling language, we can distinguish between two types of transformation: exogenous

transformation and endogenous transformation [Mens and Gorp, 2006].

An exogenous transformation is a transformation between source and target models

expressed using different languages, e.g., the transformation of a UML class diagram to

a Java code. Endogenous transformation is a transformation between source and target

models expressed in the same language, e.g., for maintenance activities (refactoring or

optimization). It rewrites the input model to produce the output model for renaming,

3

4 Introduction

adding or deleting some of its constructs. An endogenous transformation serves to change

the structure of software without changing its behavior.

Thesis Problem

Several languages have been proposed to write model transformations. Although most

of these languages are able to implement complex transformation problems, it may be dif-

ficult to use them for individuals who are not expert on specific transformation languages.

In addition, the solution domain of a model transformation (abstract syntax of modeling

languages) can be different from the problem domain (concrete syntax). Domain experts

often give more easily transformation examples than complete and consistent transforma-

tion rules [Kessentini, 2010].

In this thesis, we stand for the idea that the high quality and the multiplicity of transfor-

mation examples may be exploited to assist the designers to write model transformation.

Moreover, we believe that this assistance must be based on two main focuses:

1. An assistance for the definition of operational transformation rules which constitute

the body of the transformation.

2. An assistance for the extraction of mapping links between source and target model

of the transformation to infer a trace of the transformation.

Contributions

Our contribution deals with the assistance of model transformation by example design.

More specifically, we provided solutions for two specific problems: 1) the definition of

operational rules which constitute the transformation and 2) the extraction of links between

the source and target models of the transformation.

Generation of operational transformation rules: We propose an approach to generate

model transformation rules from transformation examples. Examples are given by experts.

An example consists of a source model, a target model and the mapping between the two

models. Our work is a continuation of the approach of Dolques et al. [Dolques et al., 2009],

that uses Relational Concept Analysis [Huchard et al., 2007], as a learning technique, to

derive transformation patterns organized in a lattice. Those patterns are abstract and they

cannot be executed. Moreover, some of them are not relevant. Thus, we define in this

first contribution an approach to analyze those patterns and select the most pertinent ones.

Introduction 5

Furthermore, we propose a method to transform them into operational transformation

rules written for the Java Expert System Shell (Jess) rule engine [Hill, 2003].

We also study how we better learn transformation rules using transformation examples.

Thus, we perform experimentations to compare two learning strategies. While the first

strategy uses examples separately to generate rules, the second one gathers all examples

together and generates rules.

Recovering model transformation traces: As a second contribution of this thesis, we

propose to generate fine-grained mappings from examples issued from a transformation.

The transformation may be done or edited manually by experts. Thus recovering traces

between models may be very essential in a development cycle to track their changes. For

this end, we define an approach to derive many-to-many mapping between model elements.

Our approach takes as input a source model in the form of a set of fragments (fragments are

defined using the source metamodel cardinalities and Object Constraint Language (OCL)

constraints), and a target model. It searches for each source a set of target elements by

maximizing the lexical and structural similarities between them. Hence, it may lead to a

huge number of possible combinations. Thus, NSGA-II, a metaheuristic method , is used

to solve this problem.

The problem of transformation traces recovery may be similar to the model matching one.

In the first context, source and target models are issued from a transformation program.

Hence, it is easy to discover lexical similarities between the models constructs. However,

if the transformation between source and target models is done manually, this may cause

lexical and structural variations between the two models. Thus, the problem may be ad-

dressed in a model matching context.

We have consequently defined a variant of the model transformation recovery approach

to deal with the model matching problem. The lexical similarity function is performed

using a natural language process. Our approach produces matchings of type many-to-many

between models.

Thesis Outline

This dissertation is organized as follows:

Chapter 1 introduces the techniques and tools used in this work. Definitions about

Formal Concept Analysis and Relational Concept Analysis are given. Then, we present the

6 Introduction

JESS rule engine. Finally, an overview on metaheuristic methods is presented and more

details are given about NSGA-II, which is used in our second contribution.

Chapter 2 provides a literature review of the state of the art in model driven engineer-

ing, model transformation, model transformation traceability and search-based software

engineering.

Chapter 3 reports our contribution for generating operational transformation rules from

examples. An overview of the approach is given including the application of RCA to ob-

tain the patterns, the selection of relevant patterns and the transformation of patterns into

operational rules. Then, we explain how to write and execute model transformations with

the Jess rule engine. Experimental evaluations are also presented to compare two strategies

of model transformation learning. The first strategy consists in learning model transforma-

tions separately from different examples and the second one consists in gathering examples

to learn transformation rules.

Chapter 4 presents our approach, which is based on metaheuristic methods, to address

the transformation trace recovery problem as an optimization problem. After the problem

definition, we describe how to adapt, a chosen meta-heuristic, NSGA-II to the recovery

of traces from transformation examples. Then, we extend this approach to the model

matching problem. Experimental evaluations are presented to validate our approaches.

Finally, we conclude this dissertation and we highlight some future directions of re-

search.

1Preliminaries

In this chapter, we introduce the techniques and tools used in this work. We introduce

the definitions needed to understand Formal Concept Analysis and Relational Concept

Analysis which will be used for transformation pattern learning. Then, we present the Java

Expert System Shell rule engine which helps us making operational the transformation

rules. Finally, a summary of the existing meta-heuristic methods is presented and more

details are given about NSGA-II, the meta-heuristic we have chosen for addressing the

problem of model transformation trace recovery.

1.1 Formal Concept Analysis and Relational Concept Analysis

Formal Concept Analysis (FCA) [Ganter and Wille, 1999] is a mathematical theory,

based on lattice theory, which is used for machine learning, data mining, or knowledge

structuring, as it groups entities described by characteristics into concepts, ordered in a

lattice structure. Relational Concept Analysis (RCA) [Huchard et al., 2007] is an extension of

FCA to relational data. While FCA produces a single classification, using a formal context,

RCA computes several connected classifications (lattices), using a relational context family.

Definition 1.1 (Formal context): A formal context is a triple K = (O, A, R) where O and A are

sets (objects and attributes, respectively) and R is a binary relation, i.e., R ⊆ O× A.

Table 1.1 presents a formal context where several animals are described by their char-

acteristics. A formal concept is a pair (E, I) composed of an object set E ⊆ O and their

shared attribute set I ⊆ A.

E = {o ∈ O|∀a ∈ I, (o, a) ∈ R} is the extent of the concept, while I =

{a ∈ A|∀o ∈ E, (o, a) ∈ R} is the intent of the concept. For example,

({ f lamingo, chicken}{ f lying, f eathered}) is a concept of our example.

7

8 Chapter 1. Preliminaries

flying nocturnal feathered migratory with_crest with_membrane
flying squirrel × ×
bat × × ×
ostrich ×
flamingo × × ×
chicken × × ×

Table 1.1 – A formal context for describing animals

Given a formal context K = (O, A, R), and two formal concepts C1 = (E1, I1) and

C2 = (E2, I2) of K, the concept specialization order ≤s is defined as follows: C1 ≤s C2 if

and only if E1 ⊆ E2 (and equivalently I2 ⊆ I1). C1 is called a sub-concept of C2. C2 is

called a super-concept of C1. For example, ({ f lamingo, chicken}{ f lying, f eathered}) is a

sub-concept of ({ f lamingo, chicken, ostrich}{ f eathered}).

Let CK be the set of all concepts of a formal context K. This set of concepts provided with

the specialization order (CK, ≤s) has a lattice structure, and is called the concept lattice as-

sociated with K. Figure 1.1 shows the Hasse diagram of the concept lattice structuring our

animals. In this diagram, extents and intents are presented in a simplified form: removing

up-down inherited attributes and down-up inherited objects. It describe several concepts,

e.g., Concept_4, which groups the flying and feathered animals (flamingo, chicken) or Con-

cept_5 which groups the feathered animals (flamingo, chicken and ostrich). The lattice

highlights the structure of data: e.g. the group of flying animals is distinct of the group of

feathered animals, implication rules can be extracted, like being with-crest implies being

feathered (because Concept_7 is a subconcept of Concept_5).

While FCA builds upon a formal context, with a unique object set and a unique attribute

set, RCA elaborates upon a relational context family, close to an entity-relationship model.

Definition 1.2 (Relational Context Family): A Relational Context Family F is a pair (K, R) with:

• K is a set of object-attribute contexts Ki = (Oi, Ai, Ii), i ∈ 1..n where Oi is a set of objects,

Ai is a set of attributes and Ii ⊆ Oi × Ai.

• R is a set of object-object contexts Rj = (Ok, Ol , Ij), where (Ok, Ol) are the object sets of

formal contexts (Kk, Kl) ∈ K2, Ij ⊆ Ok ×Ol and Kk is the source/domain context, Kl is

the target/range context.

One main principle of RCA consists in integrating the relations between objects as

relational attributes that link objects of an object-attribute context to concepts formed on

another object-attribute context. Given an object-object context Rj = (Ok, Ol , Ij), there are

different notable schemas between an object of domain Ok and concepts formed on Ol

1.1. Formal Concept Analysis and Relational Concept Analysis 9

Figure 1.1 – The concept lattice for the formal context of Table 1.1

to obtain a relational attribute. Relational scaling is the process by which these links are

established between objects and concepts.

There are several scaling operators, the most used are:

• Existential (∃): an object is linked (by Rj) to at least one object of the extent of a

concept: ∃(Rj(o), Extent(C)) is true iff Rj(o) ∩ Extent(C) 6= ∅.

• Universal strict (∀∃): an object is linked (by Rj) only to objects of the extent of a con-

cept: ∀∃(Rj(o), Extent(C)) is true iff Rj(o) ⊆ Extent(C) ∧ ∃x ∈ Rj(o), x ∈ Extent(C)

The RCA process is an iterative process which is sketched below.

RCA initialization step: Build, for i in 1..n, L0[i] the concept lattice of the context Ki.

RCA Step p:

• apply the relational scaling to all object-object contexts using the lattices of step p− 1

and the chosen scaling operators.

For Rj = (Ok, Ol , Ij), and the scaling operator S, this produces the scaled context

R∗j = (Ok, A, Ij) where:

10 Chapter 1. Preliminaries

Pizza th
in

th
ic

k

ca
lz

on
e

okonomi ×
alberginia ×
margherita ×
languedoc ×
four-cheeses ×
three-cheeses ×
frutti-di-mare ×
quebec ×
regina ×
hawai ×
lorraine ×
kebab ×

Ingredient fr
ui

t-
ve

ge
ta

bl
e

m
ea

t

fis
h

da
ir

y

ce
re

al
-l

eg
um

in
ou

s

ve
g-

oi
l

tomato-sauce ×
cream ×
tomato ×
basilic ×
olive ×
olive oil ×
soy ×
mushroom ×
eggplant ×
onion ×
pepper ×
ananas ×
mozza ×
goat-cheese ×
emmental ×
fourme-ambert ×
squid ×
shrimp ×
mussels ×
ham ×
bacon ×
chicken ×
maple-sirup ×
corn ×

Table 1.2 – Relational Context Family (RCF) / object-attributes contexts

has-topping to
m

at
o-

sa
uc

e

cr
ea

m

to
m

at
o

ba
si

li
c

ol
iv

e

ol
iv

e
oi

l

so
y

m
us

hr
oo

m

eg
gp

la
nt

on
io

n

pe
pp

er

an
an

as

okonomi × × × ×
alberginia × × × × ×
margherita × × × × ×
languedoc × × × × × × ×
four-cheeses ×
three-cheeses ×
frutti-di-mare × × ×
quebec ×
regina × ×
hawai × ×
lorraine × ×
kebab × × × ×

Table 1.3 – Relational Context Family (RCF) / object-object context / part 1

– A is a set of relational attributes S Rj.C, where C is one concept of Lp−1[l], the

lattice built on objects of Ol at step p− 1

– Ij contains (o, S Rj.C) iff S(Rj(o), Extent(C)) is true.

• concatenate Ki with all the scaled relations R∗j whose domain is Oi, this gives an

extended context K∗i
• update lattices of step p− 1 to build, for i in 1..n, the lattice Lp[i] associated with the

context K∗i
The process stops when an iteration does not add any new concept and we consider

the last lattice family obtained as the output of the process.

Table 1.2, Table 1.3 and Table 1.4 present a relational context family. In Table 1.2, the left-

1.1. Formal Concept Analysis and Relational Concept Analysis 11

has-topping m
oz

za

go
at

-c
he

es
e

em
m

en
ta

l

fo
ur

m
e-

am
be

rt

sq
ui

d

sh
ri

m
p

m
us

se
ls

ha
m

ba
co

n

ch
ic

ke
n

m
ap

le
-s

ir
up

co
rn

okonomi
alberginia
margherita ×
languedoc ×
four-cheeses × × × ×
three-cheeses × × ×
frutti-di-mare × × × ×
quebec × × × ×
regina × ×
hawai × ×
lorraine × ×
kebab × ×

Table 1.4 – Relational Context Family (RCF) / object-object context / part 2

Pizza th
in

th
ic

k

ca
lz

on
e

okonomi ×
alberginia ×
margherita ×
languedoc ×
four-cheeses ×
three-cheeses ×
frutti-di-mare ×
quebec ×
regina ×
hawai ×
lorraine ×
kebab ×

has-topping ∃h
as

-t
op

pi
ng

.C
on

ce
pt

_7

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_5

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_6

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_8

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_9

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_1
0

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_1
1

∃h
as

-t
op

pi
ng

.C
on

ce
pt

_1
2

okonomi x x x
alberginia x x x
margherita x x x x
languedoc x x x x
four-cheeses x x
three-cheeses x x
frutti-di-mare x x x x x
quebec x x x x x
regina x x x x
hawai x x x x
lorraine x x x x
kebab x x x x

Table 1.5 – Existential relational attributes

hand table presents an object-attribute context describing pizzas and the right-hand table

presents an object-attribute context describing ingredients. Table 1.3 and Table 1.4 present

an object-object context where the pizzas are described by their toppings (ingredients).

After the existential scaling, we obtain the table, in the right hand of Table 1.5, in which

for example okonomi is associated to ∃ has− topping.Concept6. They are associated because

in the relation has-topping, okonomi is associated with mushroom, which belongs to the extent

of Concept6 (Figure 1.2). Thus okonomi is associated with at least one element of the extent

of Concept6. This table is concatenated to the Pizza table, recalled in the left hand of

Table 1.5, to obtain the new Pizza lattice of Figure 1.2. For example, Concept_21 groups

pizzas with at least one dairy topping (dairy ingredients are grouped in Concept_10). This

is represented by the relational attribute ∃ has− topping : Concept_10 which is owned by

pizzas from the extent of Concept_21. Concept_18 contains pizzas with at least one meat

topping (relational attribute has − topping : Concept_8). Implication rules may also be

12 Chapter 1. Preliminaries

mined from this set of lattices. As Concept_18 is a sub-concept of Concept_21, we have

∃ has− topping : Concept_8 implies ∃ has− topping : Concept_10. This is interpreted by:

having at least one meat topping implies having at least one dairy topping.

To conclude, while FCA is able to reveal structures in a single context, by building

classifications and extracting implications rules from a single object set, RCA is able to build

classifications and extracting implication rules from several object sets and links between

these objects. Here we gave a simple example composed of only one relation, but RCA

is able to deal with complex relational schemas, with several relations, and even cyclic

relational schemas. The whole theoretical framework, with an analytical definition and a

discussion about the convergence of the process are described in [Hacene et al., 2013].

Figure 1.2 – The obtained lattices for the pizza example

1.2 Java Expert System Shell

Java Expert System Shell (Jess) [Hill, 2003] is a rule engine integrated in the Java plat-

form. Java code can be referred by Jess code [Daniele, 2006]. With Jess, we can create Java

1.3. The NSGA-II Algorithm 13

objects, implement Java interfaces, and call Java objects from its Java scripting environment.

Despite this, Jess is mainly a declarative language.

A Jess program is usually composed of facts and rules. Facts encode data, while rules,

activated by pattern matching, encode behavior [Hill, 2003]. A rule contains conditions,

called left-hand-side (LHS), and actions, called right-hand-side (RHS). When the condition

part is satisfied, the action part is executed. Conditions mainly test the presence of facts,

whereas actions produce facts. Syntactically, a Jess rule is written as follows:

IF< (fact1)(fact2)...(factN) > THEN <(action1)(action2)...(actionM)>

The following example describes a very simple Jess rule which displays the name of

each person who has a name.

1 (defrule welcome

2 (Person (firstname ?name))

3 =>

4 (printout t "Hello" ?name "!!!" crlf)

5)

The conditions in LHS and facts conform to a template. A template in Jess is similar to

a class in Java. It defines a fact type. A template has a name and a set of slots. A fact,

i.e. a template instance, has specific values for these slots. The example below shows the

declaration of Person template:

1 (deftemplate Person (slot firstname))

This example declares a template named Person with a property firstname. To instantiate a

person fact, we use the command assert:

1 (assert (Person (firstname Peter)))

Figure 1.3 presents a simplified Jess metamodel. As mentioned above, a Jess model

is composed of templates, facts and rules. A rule is composed of two expressions which

present respectively the premise (LHS) and the conclusion (RHS). An expression contains

a list of facts with conditions and tests defined on the facts themselves.

1.3 The NSGA-II Algorithm

During the past two decades, evolutionary algorithms (EAs) have gained popularity

in dealing with software engineering tasks that could be modeled as optimization prob-

lems. These problems are generally too complex to be solved using deterministic methods.

14 Chapter 1. Preliminaries

Figure 1.3 – Jess metamodel

EAs popularity could be explained by many reasons such as their simplicity, their appli-

cability to a wide range of problems, as well as their ability to handle single and multiple

objectives [Harman, 2011].

For problems with multiple (possibly conflicting) objectives, like the one studied in this

1.3. The NSGA-II Algorithm 15

chapter, it is usually difficult to find a single optimal solution. Such kind of problems gives

rise to a whole set of solutions, known as Pareto-optimal solutions [Deb et al., 2002].

In this context, a number of multi-objective EAs have been proposed ([Horn et al., 1994;

Zitzler and Thiele, 1999; Knowles and Corne, 1999; Deb et al., 2002]). Among those algo-

rithms, the non-dominated sorting genetic algorithm (NSGA-ii), proposed in [Deb et al.,

2002], is the one that is the most applied in the Search Based Software Engineering (SBSE)

community [Harman et al., 2012]. We decided to use it in this work as it allows to easily

model the trace recovery as a multiobjective optimization problem.

NSGA-II procedure. The evolution of the population during an iteration of the NSGA-

ii procedure is presented in Figure 1.4 which is taken from the original paper. First, an

initial population P0 of N solutions is created. The individuals of P0 are sorted based

on the non-domination. Non-dominated individuals, corresponding to the best known

solutions (with regard to at least one objective) at the current step, are grouped in the first

non-dominated front (rank 1). Discarding the individuals of the first front, the current non-

dominated individuals form the second non-dominated front (rank 2), and so on. Diversity

is preserved thanks to a crowding distance which is calculated for each solution [Laumanns

et al., 2002]. Finally, a binary tournament selection operator, which is based on the crowding

distance, selects the best solutions. At step t, an offspring population Qt of size N is created

using selection, crossover and mutation operators. Populations Pt and Qt are combined to

form the population Rt. From Rt, the best individuals in terms of non-dominance and

diversity are kept to form Pt+1. Then those steps are repeated till some termination criteria

are satisfied.

Fast non-dominated sorting principle. In order to identify solutions of the first non-

dominated front in a population of size N, NSGA-ii calculates first, for each solution p: 1)

the domination count np, i.e. the number of solutions which dominate the solution p, and

2) Sp, a set of solutions that the solution p dominates. A solution s1 dominates another

solution s2 if: (i) s1 is no worse than s2 in all objectives, and (ii) s1 is strictly better than s2

in at least one objective.

In the first non-dominated front, there are the solutions which have their domination

count equal to zero. For each solution p with np = 0, each member q ∈ Sp is visited,

and its domination count is reduced by one. Then, if the domination count of a member

q becomes zero, q is put in a separate list Q. These members belong to the second non-

dominated front. Then, this procedure is continued with the members of Q to identify the

third front.

16 Chapter 1. Preliminaries

Pt

Qt

F1

F2

F3

Non-dominated sorting Crowding distance sorting

Rejected

Rt

Pt+1

Figure 1.4 – NSGA-ii main (Deb et Al, 2002).

If Nobj is the number of objectives and N is the size of the population, this algorithm has

a low time complexity of O(NobjN2) compared to the previous algorithms, which require

O(NobjN3).

Diversity preservation. The parent and offspring populations (each of size N) are com-

bined and evaluated to choose the best solutions. Then, the N best solutions are selected to

form the next populations. As mentioned earlier, the solutions of the first front are selected

and if there is a room, those of the second front are included, and so on. When the number

of solutions in the already selected fronts is less than N, and including the next front results

in exceeding N, the solutions of this last front have to be ranked, and only part of them is

selected to complete the count. This is done by selecting solutions that are maximally apart

from their neighbors according to the crowding distance. This is measured as the distance

of the biggest cuboid containing the two neighboring solutions of the same non-dominating

front in the objective space. The goal of the crowding-distance-based ranking is to increase

the diversity of solutions that are injected into the next population. In Chapter 4, we will

give more details about implementation of this algorithm for our problem.

2State Of The Art

Contents

1.1 Formal Concept Analysis and Relational Concept Analysis 7

1.2 Java Expert System Shell . 12

1.3 The NSGA-II Algorithm . 13

This chapter provides an overview of research work related to this thesis. The ap-

proaches proposed in this thesis focus on six connected research areas: (1) model

driven engineering, (2) model transformation, (3) generation of model transformation, (4)

generation of model transformation by example, (5) model transformation traceability and

(6) search-based software engineering. In this chapter, we give a survey on the existing

work in these areas to present their principles and identify their limitations addressed by

our work.

The remainder of this chapter is structured as follows: Section 2.1 presents the con-

text of model driven engineering (MDE) with some definitions. Section 2.2 defines model

transformation (MT) and Section 2.3 presents how to generate MT using the meta-model

matching and the by-example approaches. Section 2.4 summarizes the existing work in

the field of model transformation traceability and finally Section 2.5 positions our research

work in search-based software engineering (SBSE).

2.1 Model Driven Engineering

MDE is a technique which aims to reduce the complexity of development and manage-

ment of modern software applications through the exploitation of models. Despite it is a

quite methodology, it gains more and more interest from the industry, which considers it

17

18 Chapter 2. State Of The Art

as a possible solution for the ever growing quality factors, performances, and maintain-

ability. It allows models to be considered as data and then used as first class entities of

development process.

According to Rothenberg [Rothenberg, 1989]: "Modeling in its broadest sense is the cost-

effective use of something in place of something else for some cognitive purpose. It allows

us to use something that is simpler, safer, or cheaper than reality instead of reality for some

purpose. A model represents reality for the given purpose; the model is an abstraction of

reality in the sense that it cannot represent all aspects of reality. This allows us to deal with

the world in a simplified manner, avoiding the complexity, danger, and irreversibility of

reality".

Although it was written several years before the creation of MDE, this definition perfectly

describes the principals and the utility of modeling. A model is an abstraction. It is a

simplification of a system that is sufficient to understand the modeled system. Models

simplify the management of systems by presenting the requirements and the problems on

different views. For instance, a class diagram facilitates the comprehension of an applica-

tion independently from its platform.

Through this definition, we can have a general idea about the principals and the utility of

models. In the following, we will focus on the meanings of models in the context of MDE.

Definition 2.1: "A model is a description of (part of) a system written in a well-defined language"

[Kleppe et al., 2003]. For example, a legend of a map provides a model for this map. The map can

also be seen as a model of a region.

According to the definition, the notion of model explicitly makes reference to the notion of well-

defined language which defines the language concepts of a model: such a language is defined by a

meta-model.

Definition 2.2: "A meta-model is a model that defines the language for expressing a model" [Kleppe

et al., 2003]. To handle a model, which is the goal of MDE, the language of the model must be

defined. The models written with this language are said to conform to a meta-model. A meta-model

is also considered as a model. It conforms to a meta-model: the meta-meta-model.

Definition 2.3 (A meta-meta-model): A meta-meta-model is a model that defines the language for ex-

pressing the meta-modeling languages. A meta-meta-model may conform to itself. Thus, each mod-

eling platform has a meta-meta-model, e.g, Ecore [Frank, 2004] is the meta-meta-model of Eclipse, or

the meta-object family (MOF) [OMG, 2006] is the meta-model defined by the Object Management

Group (OMG), etc.

2.1. Model Driven Engineering 19

Class

Table Attribute

Person

+ name: String

instanceOf

instanceOf instanceOf

instanceOf instanceOf

instanceOf

Level M3:
Meta-meta-model

Level M2:
Meta-model

Level M1:
Model

Level M0:
Real objects

Figure 2.1 – Modeling in MDE

Figure 2.1 shows an example of modeling. Level M0 consists on the real objects (a

person). Level M1 contains the representation which describes the concept of Person with

its attribute name. The meta-model of this representation is shown at level M2. It describes

the concepts used in M1 (Table, Attribute). These concepts are in turn defined at level M3

which presents the meta-meta-model.

MDE gives models a predominating role in the software development process. Models

are written in conformity with meta-models which capture the concepts of the modeling

language. For example, the UML class diagrams define the concepts of class and attribute,

the relational schema models define the concepts of table and column, etc.

Model Driven Architecture (MDA) [Soley and the OMG Staff Strategy Group, 2000] is

the well known initiative of the OMG in this domain. It is sometimes viewed as a restric-

tion of MDE to the languages introduced by the OMG. It also comes with a development

methodology. Indeed, MDA advocates the construction of three models of a system:

1. Computation Independent Model (CIM): The goal of the analysis phase is to produce

20 Chapter 2. State Of The Art

the CIM. It presents what the system is expected to do. It hides all information related

to the technology used for the system implementation.

2. Platform Independent Model (PIM): The goal of the design phase is to produce the

PIM. It presents the operational view of the system independently from the platform.

It defines a set of services to abstract all technical details. A PIM can be mapped to

one or more platforms.

3. Platform Specific Model (PSM): The goal of the implementation phase is to produce

the PSM. It combines the PIM with the specific details of the platform.

In an MDE process, models play an important role. To ensure the productivity of

those models, model transformation (MT) is considered as a central concept. It provides

mechanism for automating the manipulation of models.

2.2 Model Transformation

In [Kleppe et al., 2003], the authors provide the following definitions of MT:

Definition 2.4: "A transformation is the automatic generation of a target model from a source model

according to a transformation definition".

Definition 2.5: "A transformation definition is a set of transformation rules that together describe

how a model in a source language can be transformed into a model in a target language".

Definition 2.6: "A transformation rule is a description of how one or more constructs in a source

language can be transformed into one or more constructs in a target language".

The basic idea of MT is presented in Figure 2.2 where a model transformation program

MTp takes as input a source model Ms and produces a target model Mt. Being models, Ms

and Mt conform to meta-models MMs and MMs. MTp is composed of a set of rules which

have a complete knowledge about MMs and MMs. It has a meta-meta-model MMTp that

defines the used transformation language.

2.2.1 Model Transformation Classification

Mens and Gorp [Mens and Gorp, 2006] extend the definition of MT by allowing several

models as input and/or output: "Model transformation is the automatic generation of one

or multiple target models from one or multiple source models according to a transforma-

2.2. Model Transformation 21

Ms Mt

MMt MMs

MTp

MMTp

conformsTo conformsTo conformsTo

Figure 2.2 – Model Transformation process

tion definition". They give the example of a transformation that takes a PIM and transforms

it into a number of PSMs. They classify MTs according to different criteria:

• Exogenous versus endogenous transformations: We distinguish between two MT cat-

egories: (1) exogenous transformations in which the source and target models are ex-

pressed using different languages, and (2) endogenous transformations in which the

source and target models are expressed in the same language. In exogenous transfor-

mations, the entire source model elements must be transformed to their equivalents

in the target model, e.g., the transformation of a relational schema (RS) model into an

UML class diagram (CD). However, there are just a few endogenous transformations,

e.g., for refactoring or improving performance of a code.

• Horizontal versus vertical transformations: An horizontal transformation is a trans-

formation where the source and target models are at the same abstraction level.

For instance, refactoring (endogenous transformation) is considered as an horizontal

transformation. A refinement of models (endogenous transformation) is considered

as a vertical transformation because the source and target models reside at different

abstraction levels.

• Syntactical versus semantical transformations: A syntactical transformation trans-

forms the syntax of the model, e.g., the transformation of a concrete syntax into an

abstract syntax. A more complex transformation, such as a refactoring, is considered

as a semantical transformation.

• Technical space: The technical space contains the concepts associated to a technology.

It corresponds to the language used to present models. A technical space is deter-

22 Chapter 2. State Of The Art

mined in the meta-meta-model level. As an example, we note the MDA technical

space defined by the OMG.

Several MT approaches have been proposed in the literature. Czarnecki and Helsen

[Czarnecki and Helsen, 2006] classify these approaches as described in the following:

• Direct-Manipulation Approach: It offers an internal model and users can manipulate

the representation using any Application Programming Interface (API). It is usually

manipulated as an object-oriented framework, which may also provide some minimal

infrastructures. Users must implement transformation rules, tracing and scheduling

in a programming language such as Java or Visual basic (VB). Examples of used tools

in direct manipulation approaches are: Rational Rose, Rational XDE and Builder

Object Network.

• Operational Approach: This approach is similar to direct manipulation, but it offers

more dedicated support for MT. A typical solution in this category is to extend the

utilized meta-modeling formalism with facilities for expressing computations. An

example would be to extend a query language such as OCL with imperative con-

structs. Kermeta [Muller et al., 2005], QVT Operational mappings [OMG, 2002], MTL

[Vojtisek and Jezequel, 2004] and XMF-mosaic [Clark et al., 2004] belong to the oper-

ational category.

• Structural Approach: In this category of approaches, a first phase consists in creating

a hierarchal structure for the target model. Then, the second phase generates target

elements for each source element and sets the attributes and the references in the

target model. OptimalJ is an example that supports this approach.

• Template-Based Approach: This approach uses template to generate code. A template

consists of rules which are mapped on source model. Templates are expressed in the

concrete syntax of the target model. They contain embedded metacode which have

the form of annotations on model elements. In [Czarnecki, 2005], an example of

template approach is given by Czarnecki and Antkiewicz. In this example, a template

of an UML model is creating by using conditions and expressions to annotate model

elements.

• Relational Approach: It is a declarative approach. It focuses on mathematical re-

lations and on source and target models relationships [Akehurst and Kent, 2002].

Relationships are specified using predicates and constraints. Operational approaches

are bidirectional due to their mathematical foundation. They provide also backtrack-

ing. Most of them require a strict separation between source and target models.

2.2. Model Transformation 23

Examples of relational approaches are ATL [Jouault et al., 2008] and QVT Relations

[OMG, 2005].

• Graph-Transformation-Based Approach: This category is based on the theoretical

work on graph transformations. The transformation rules consist of LHS (Left-Hand

Side) and RHS (Right-Hand Side) graph patterns. The LHS pattern contains the pre-

conditions of the rule and the RHS pattern represents the post-conditions of the rule.

The LHS pattern is matched in the model being transformed and replaced by the

RHS pattern in place. LHS
⋂

RHS defines a graph part which must exist to apply the

rule. Examples of graph-transformation-based approaches include VIATRA [Csertán

et al., 2002], AGG [Taentzer, 2000] and GReAT [Agrawal et al., 2006] .

The difference between the two classifications is that Czarnecki and Helsen propose a hierar-

chical classification based on feature diagrams. In addition, they classify the specification

of MTs. By contrast, the classification of Mens and Gorp is essentially multi-dimensional.

They propose a taxonomy more targeted towards tools and techniques which support the

activity of MT.

2.2.2 Model Transformation Languages

Since the introduction of MDE [Schmidt, 2006] and MDA [Soley and the OMG Staff

Strategy Group, 2000], two kinds of languages are proposed to write MT:

• General purpose languages, in which we can add libraries or frameworks to manip-

ulate models. For example EMF [Frank, 2004] and Java.

• Specific Language that are dedicated to model transformations, such as:

ATL (Atlas Transformation Language) is a hybrid transformation language which

supports declarative and imperative constructs. Thanks to its declarative style, ATL

can simplify complex transformations algorithms. However, it is sometimes difficult

to provide a complete declarative solution for complex transformation problem. In

this case developers may resort to the imperative features of the language [Jouault et

al., 2008].

Kermeta: is a meta-modeling, object-oriented and imperative programming lan-

guage. It uses EMF tools to manipulate models. It offers constraints, checking and

transformation. It does not support incremental model transformation.

QVT (Query/View/Transformation) is the OMG standard language for specifying

MT. It uses the Object Constraint Language (OCL). QVT defines three transformation

24 Chapter 2. State Of The Art

languages [Biehl, 2010] : (1) QVT Relational which is a high-level declarative transfor-

mation language which supports the specifications of bidirectional transformations,

(2) QVT Core which is a low-level MT language which supports pattern matching

and (3) QVT Operational which is an imperative MT language. The specified trans-

formations are unidirectional.

GReAT (Graph Rewriting and Transformation) is a meta-model based MT language

which uses meta-models to specify the abstract syntax of the source and the target

models and the sequenced graph rewriting rules for specifying the transformation.

ETL (Epsilon Transformation Language) [Kolovos et al., 2008] is a hybrid and rule-

based transformation language. It can transform many source to many target models.

Thanks to its rule inheritance, rules can be reused and extended.

2.3 Towards Model Transformation Generation

The evolution of model transformation languages consists in increasing the abstraction

level of languages. Although most of these languages are able to implement complex model

transformation problems, they may be difficult to use for users who are not experts on spe-

cific transformation languages. In addition, the solution domain of a model transformation

(i.e., the transformation language) can be largely different from the problem domain (i.e.,

the source and the target model languages themselves) [Varró, 2006].

To address these challenges, several approaches are proposed to assist the specification and

the design of MT.

2.3.1 Meta-model Matching for Model Transformation Generation

This approach is based on meta-models to generate MTs. Source and target models have

to be similar, which is the case for example of model migration where the meta-models have

two similar languages. This approach is inspired from the matching technique that is well

known in the semantic web, schema, ontology and data warehouse domains [Rahm and

Bernstein, 2001] [Shvaiko and Euzenat, 2005]. It takes as input a source schema and a target

schema and generates a set of relations between them.

A first contribution proposed by [Lopes et al., 2005] [Lopes et al., 2006b] consists on

defining an algorithm, called SAMT4MDE, that operates at the meta-model level to gener-

ate an alignment between source and target meta-models. It assumes that source and target

models are similar in their structure and their terminology. String values of attributes are

2.3. Towards Model Transformation Generation 25

used to find correspondences between source and target elements. Then they define a tool,

called MT4MDE, that uses this alignment to generate MTs written in ATL.

In [Lopes et al., 2009], SAMT4MDE is improved by using the structure similarity of the

elements to find the correspondences between models.

In [Del Fabro and Valduriez, 2007], a similar approach is proposed to semi-automate

the production of MTs. A first phase consists on discovering the relationships between the

source and target models to create a weaving model. This latter is obtained by measuring

the similarity between the attributes values (of type String) of the input models’ elements.

The similarity flooding algorithm [Melnik et al., 2002] is also used to construct the adequate

propagation models that capture the semantics of the relationships. The weaving model is

then refined by an expert.

The contribution of Falleri [Falleri et al., 2008] is inspired from the work of Del Fabro and

Valduriez. They transform the source and target meta-models into directed labeled graphs.

Those graphs are then exploited by the Similarity Flooding algorithm to compute the map-

ping between the meta-models elements and generate an Ecore alignment model from

which MT is derived. They study several configurations for applying Similarity Flooding

algorithm in the context of meta-model alignment with the aim of determining the best

configurations.

In [Kappel et al., 2006], the authors consider the mapping between two meta-models

difficult because the meta-models represent an abstract syntax of the corresponding mod-

eling language and a data structure for storing models. As a consequence, they do not

make explicit certain language concepts. Thus, they propose to lift meta-models into on-

tologies to make the implicit concepts in the meta-model explicit in the ontology. Then,

COMA++, an ontology alignment technique, is applied to compute the mapping between

the source and target ontologies. Finally, alignments on ontologies are brought back to the

meta-models.

Meta-model alignment is especially relevant when the source and target meta-models

are semantically and structurally closed, e.g. when the transformation aims at migrating

models from one meta-model version to another, but is inefficient on complex cases. When

it can be applied, meta-model alignment reduces significantly the time of the development.

Other approaches (MTBE for Model Transformation Based Example) take advantage of

transformation examples to learn transformations in more complex cases. One of their

strengths is that transformation examples, written in the concrete syntax, are easier to

26 Chapter 2. State Of The Art

manipulate than meta-models and their creation can be deferred to domain experts who

do not need any programming skill.

2.3.2 Model Transformation By Example

Model Transformation by example (MTBE) [Kappel et al., 2012] is a novel approach

based on other by-example approaches like programming by example (pbE) [Lieberman,

1993], also known as programming by demonstration, which teaches a computer new be-

haviors by demonstrating actions or concrete examples.

Based on the by-example approaches, MTBE derives model transformation rules from

a set of source and target models which describe the model transformation problem in

a declarative way. The input models have to be established by the user. A matching

between models is created to help the learning of rules. The advantage of this approach

is that the concepts of the source and target models are used for the specification of the

transformation.

2.3.2.1 MTBE approaches

The MTBE approach has been initiated by Varró [Varró, 2006]. An alignment between

representative source and target example models is manually created. Transformation links

are annotated by the transformation rule they illustrate (e.g. ClassToEntity). Transformation

rules are derived from the transformation links and refined by the developer. Rules are

validated on new source and target example models. If they are not satisfactory, the process

iterates. The limitation of this approach is that it is not scalable for large industrial model

transformation problems. In addition, it requires a manual intervention.

The proposal of [Varró, 2006] was extended in [Balogh and Varro, 2009], by using in-

ductive logics programming (ILP [Muggleton and De Raedt, 1994]) to derive the trans-

formation rules. ILP is a machine learning technique which derives a logic program from

existing knowledge (source and target models), positive examples (pairs of model elements

connected by transformation links) and negative examples (pairs of model elements that

are not connected by transformation links). Considering only the immediate neighbors of

each transformation-link end, the ILP engine infers an hypothesis for each transformation

rule.

For the automation of this approach, a model transformation tool is implemented with an

ILP engine. Small prototype mapping models are used to train the rules derivation.

2.3. Towards Model Transformation Generation 27

Wimmer et al. [Wimmer et al., 2007] propose a similar work which derive ATL trans-

formation rules from examples. Both contributions use semantic correspondences between

examples to derive rules. Examples are written in concrete syntax by taking advantage

of the constraints explicitly applied by the transformation from the concrete syntax of a

language to its abstract syntax. The main advantage of this solution is to be able to use the

concrete syntax to define models and transformation links. However, model editors need

to be written in a way that permits to extract constraints and to edit transformation links.

This approach is applied on examples of business process models.

The work of Garcia-Magarino et al. [García-Magariño et al., 2009] is also considered as

a variant of MTBE approaches. In their approach, the authors generate many-to-many

transformation rules from meta-models which satisfy some developer constraints for the

simulation of input patterns of several elements.

Another MTBE approach [Dolques et al., 2011; Dolques et al., 2009] uses an extension

of the anchorPrompt approach [Noy and Musen, 2001] to assist the transformation link

discovery, and Relational Concept Analysis (RCA) [Huchard et al., 2007] to derive com-

monalities between the source and target meta-models, models and transformation links.

Compared to the ILP-based proposal, the RCA-based approach does not use annotations

on transformation links and proposes a set of transformation patterns organized in a lattice.

Model Transformation By Demonstration (MTBD) [Langer et al., 2010; Sun et al., 2009;

Brosch et al., 2009], is a similar approach to MTBE. Through direct editing (e.g. add, delete,

connect, update) of the source model, users are asked to demonstrate how the model trans-

formation should be done. A recording engine was developed to capture user operations

during a MT. The recorded fragments are then generalized to produce transformation pat-

terns. However, this approach requires a high level of user intervention. The difference

between the two cited works is that Sun et al. use the recorded fragments directly, however

Langer et al. use differencing engine to generate ATL rules. In addition, the approach of

Sun is applied to endogenous transformations while the approach of Langer is applied to

both endogenous and exogenous ones.

Another track in MTBE consists in using the analogy to perform transformations using

examples [Kessentini et al., 2008; Kessentini et al., 2009] [Kessentini et al., 2010a]. The pro-

vided examples are manually decomposed into transformation blocks linking fragments of

source models to fragments of target models. When a new source model has to be trans-

formed, its constructs are compared to those in the example source fragments to select

the similar ones. Blocks corresponding to the selected fragments, coming from differ-

28 Chapter 2. State Of The Art

Model transformation approaches Model Transformation
By metamodels matching By Example

[Lopes et al., 2005] ×
[Del Fabro and Valduriez, 2007] ×
[Falleri et al., 2008] ×
[Wimmer et al., 2007] ×
[Balogh and Varro, 2009] ×
[Kessentini et al., 2008] ×
[Dolques et al., 2010] ×
[Sun et al., 2009] ×
[Langer et al., 2010] ×
Our approach ×

Table 2.1 – Model Transformation approaches.

ent examples, are composed to propose a suitable transformation. Fragment selection and

composition are performed through meta-heuristic algorithms. Thus, MT can be seen as an

optimization problem where the transformation of a source model is obtained by finding,

for each of its constructs, a similar transformation in the others examples. Particle Swarm

Optimization (PSO) [Kennedy and Eberhart, 1995] and Simulated Annealing (SA) [Kirk-

patrick et al., 1983] heuristics are combined to automate MT . In [Kessentini et al., 2010a],

the approach is applied to Sequence Diagrams to Colored Petri Nets transformation.

Compared to the above-mentioned approaches, the analogy-based MTBE does not pro-

duce rules. This could be considered as a limitation if the goal is to infer reusable knowl-

edge about transformations.

2.3.3 Synthesis

This section has introduced the existing work in the domain of generating model trans-

formation. Table 2.1 summarizes the proposed approaches to generate model transforma-

tion. Diverse MTs have been identified and a number of techniques and tools have been

developed to automate their generation and put them into practice. The context of our

approach is model transformation by example (MTBE). The user has to create model trans-

formation examples. An example consists of a source model and its corresponding model

in the target language. Then several techniques can be used, such as relational concept

analysis or inductive logic, to derive model transformation rules from the examples. These

rules are abstract and not operational. They represent fragments of knowledge and must

be arranged in a non-trivial way to perform the actual transformation. The approach of

Kessentini consists in using search-based optimization techniques to directly generate the

2.4. Model Transformation Traceability 29

By_Example Approaches Exogenous
transforma-
tion

Endogenous
transforma-
tion

Matching Rules
generation

Rules
execution

Techniques
& Tools

[Wimmer et al., 2007] × × × ad hoc
method

[Kessentini et al., 2008] × × metaheuristic
methods

[Sun et al., 2009] × × recording
engine

[Balogh and Varro, 2009] × × × ILP
[Langer et al., 2010; Brosch et al., 2009] × × × × differencing

engine
[Dolques et al., 2011] × × × FCA, RCA
Our approach × × × × FCA, RCA,

JESS

Table 2.2 – Model transformation by Examples approaches.

target model from the source model without the rules generation. This could be considered

as a limitation if the goal is to infer reusable knowledge about transformations. In this con-

text, the generation of operational rules from the existing examples can be preferable since

it allows those rules to be executed on other source models to directly obtain the target

models. Table 2.2 summarizes the proposed MTBE approaches. Most of them are specific

to exogenous transformation and use matching techniques to derive transformation rules.

The approach we propose is based on the work of Dolques et al. that uses RCA and FCA as

learning techniques to derive transformation patterns. Those patterns are not operational.

Thus, we propose to use the rule engine Jess to facilitate their manipulation and execution.

2.4 Model Transformation Traceability

In model-driven engineering, there is a concern on tracing model transformations dur-

ing a software development. Some model transformation tools provide an integrated sup-

port for traceability such as QVT [OMG, 2005] and MOFScript [OMG, 2006]. With ATL

[Bézivin et al., 2003], developers can encode a trace as an output model. In [Jouault, 2005],

Jouault proposes to attach traceability generation code to ATL program. Grammel et Al.

[Grammel and Kastenholz, 2010] propose a generic framework for augmenting arbitrary

model transformation approaches with a traceability mechanism. This framework is based

on a domain-specific language for traceability. In [Kurtev et al., 2007], the authors focus on

generated trace relations as part of QVT transformations. In the same context, Amar et al.

[Amar et al., 2010] present an approach to automatically trace imperative model transfor-

mation in a Java/EMF environment. Finally, a recent work [van Amstel et al., 2012] consists

30 Chapter 2. State Of The Art

in visualizing traceability in model transformations after adding a trace generator to the

transformation engine of ATL. All those solutions generate trace links in parallel with the

transformations. They depend on the existence of a transformation engine and could not

be applied for trace recovery.

Another category consists in generating transformation trace independently from the

transformations. This allows to handle cases where only source and target models are

present without a knowledge on how the transformation was performed. In [Cysneiros et

al., 2003], the authors present an approach to support generation of bi-directional traceabil-

ity relations between organizational requirements modeled in i*, and UML use cases and

class diagrams. This approach is based on the use of rules, which express the different

types of relations between model elements. It is applied to a specific type of transforma-

tion. The work in [Grammel et al., 2012] consists in using graph-based model matching

techniques to generate trace links. The mapping results are arranged into a cube to be an-

alyzed and to extract trace links. This approach may have a higher complexity, especially

when manipulating large-size models. In addition, it produces one-to-one matching links.

In a related field, refactoring could be seen as an endogenous transformation. Recov-

ering refactorings from two versions of the same model is very similar to the traceability

problem. In this context, an approach is proposed in [Xing and Stroulia, 2006] which is

based on the design-level changes reported by the UMLDIFF algorithm [Xing and Stroulia,

2005] to detect and classify refactorings in evolving software models. We also mention the

work of [Vermolen et al., 2011], in which the authors provide an approach to detect com-

plex evolution traces between two meta-model versions, using a matching result as input,

to allow model migration. In [Kehrer et al., 2011], Kehrer et al. address the problem of

how to semantically lift low-level differences on models. They use a model transformer

for finding instances of editing operations and annotating a low-level difference. In [ben

Fadhel et al., 2012], a very recent heuristic-based approach for detecting refactorings is pro-

posed. It takes as input a list of possible refactorings, the initial model and the revised one,

and generates as output a list of detected changes in terms of refactorings. Although the

above-mentioned approaches produce very good results, they are specific to the particular

case of refactoring and cannot be generalized easily to other transformation problems.

In the field of ontology engineering, [Hartung et al., 2010] presents a rule-based ap-

proach to determine different evolution mappings between two versions of an ontology.

The goal is to produce a minimal evolution mapping model using a rule-based system that

finds the basic change operations.

2.4. Model Transformation Traceability 31

Model matching technique can also produce correspondences between source and tar-

get models on the same abstraction level. It is related to the field of schema matching and

ontology matching. The basic idea of the main approaches [Rahm and Bernstein, 2001;

Choi et al., 2006; Shvaiko and Euzenat, 2005], is to find semantic correspondences between

elements of two schemas. They make the assumption that the relations between the two

models being compared are identical. They compute a similarity between the elements

using their names. They also compute a structural similarity between the elements. For

this, they assume that there is the same kind of relations between the elements in the two

compared models.

For model transformation, as mentioned in Section 2.3, Fabro and Valduriez [Fabro and

Valduriez, 2009] create links between source and target metamodels by using the similarity

flooding technique to construct propagation models which capture the semantics of the

relationships between the two models. Then, links are designed by an expert and are

used to produce transformation. Dolques [Dolques et al., 2011] propose a semi-automatic

matching approach for discovering links between source and target models. They assume

that the target model results from a transformation from the source model. The approach

uses and extends the Anchor-Prompt approach to discover the pairs of elements for which

there is a strong assumption of matching. In [Lopes et al., 2006a; Lopes et al., 2009], the

authors define an algorithm (SAMT4MDE) that assumes that source and target metamodels

are similar in their structure. It finds correspondences between them using string values

of attributes and structure similarity. The contribution of [Falleri et al., 2008] consists in

transforming the source and target metamodels to directed labeled graphs. Then they

evaluate different parameterizations of the similarity flooding algorithm to compute the

mapping between the two graphs.

2.4.1 Summary

This section has introduced the existing work in the domain of model transformation

traceability. Table 2.3 summarizes the proposed approaches to recover model transfor-

mation. There exist two categories for model transformation traceability. The first one

generates trace links in parallel with the transformation. It depends on the existence of

transformation engine. The second one consists in generating transformation traces inde-

pendently from the transformation. The approach proposed in [Cysneiros et al., 2003] is

not generalized and specific to two metamodels. The approach of Grammel [Grammel et al.,

2012] generates transformation links but it is not scalable for large models. Furthermore,

32 Chapter 2. State Of The Art

Traceability approaches Transformation
dependence

Automatisation Many-to-many
matching

[OMG, 2005] × ×
[OMG, 2006] × ×
[Jouault, 2005] × ×
[Kurtev et al., 2007] × ×
[Grammel and Kastenholz, 2010] × ×
[Amar et al., 2010] × ×
[van Amstel et al., 2012] ×
[Cysneiros et al., 2003] ×
[Grammel et al., 2012] ×
Our approach × ×

Table 2.3 – Recovering model transformation traces approaches.

it produces one-to-one trace links. Thus, we propose to recover transformation links in-

dependently from the transformation. The goal is to find m-to-n matching links between

arbitrary source and target models. Thus, we propose to use a meta heuristic method to

associate for each m source elements their corresponding n target elements.

2.5 Search Based Software Engineering

Search based software engineering (SBSE) is the application of search based optimiza-

tion in software engineering. It seeks to reformulate software engineering problems as

search problems [Harman et al., 2001]. It is inspired by the observation that many prob-

lems in software engineering can be formulated as optimization problems. Thus, several

meta-heuristics algorithms such as genetic algorithms (GA) [Goldberg, 1989], simulated

annealing (SA) [Laarhoven and Aarts, 1987] have been successfully applied to solve those

problems, for example in cost estimation, testing and automated maintenance [Harman,

2007]. Model verification and module clustering have also been addressed using search-

based techniques. In [Shousha et al., 2008], Shousa et al. present an approach based on GA

to detect deadlocks in UML models. In the context of MT, Kessentini [Kessentini, 2010] deals

MT as a combinatorial optimization problem. He presents a search based approach that

uses source and target models to learn MT. PSO and SA are applied to solve the problem.

In this work, we model the software engineering problem of recovering model transforma-

tion traces as a search problem, thus the use of search techniques.

2.6. Conclusion 33

2.6 Conclusion

In this chapter, we survey the different approaches related to the MDE field and our

observations which will be useful to introduce our contributions.

MT is one of the pillars of MDE [Guerra et al., 2013]. Many approaches have been proposed

to generate MT. MTBE is the closest work of our proposal. It consists on learning transfor-

mations rules from a set of examples. An example contains source and target models with

matching links between the two models. Many learning methods are used to derive trans-

formation rules, i.e, ad hoc methods, inductive logic programming, metaheuristic methods

or relational concept analysis. We observe, from the study of the existing works on MTBE,

that there does not exist operational transformation rules which can be apply to all kinds

of source models to generate their corresponding models. All generated rules are abstract.

In this context, we propose in this work to generate operational transformation rules from

examples given by the users. The base of our work is the approach of Dolques, et al. which

consists in using RCA to derive transformation patterns.

In MDE, there is also a concern on tracing model transformations. Model transforma-

tions traces can be obtained during a program transformation or independently from the

transformation program. The first category depends on the existence of a transformation

program while the second strategy is independent from any transformation program. This

latter is specific to the cases where only source and target models are present without a

knowledge about the transformation, e.g. when the transformation is done manually by

an expert or when the program transformation is lost. Several approaches have been also

proposed to recover model transformation traces independently from the transformation

program. Some of them are related to specific metamodels and they are not generalized.

The others have a higher complexity with large-size models. Furthermore, all proposed

approaches produce one-to-one matching links between models. For this, we propose in

this work an approach to recover model transformation traces from examples indepen-

dently from their transformation program. The proposed approach is generic and does not

depend on a specific metamodels. In addition, it produces many-to-many matching links

between models. The scalability of this approach is ensured by the use of a multi-objective

optimization method.

Model matching is a very important task, it is an essential part of different proposed

approaches in the field of MDE (MTBE, recovering model transformation, etc) and other

domains (data base, ontology, etc). For model transformation, different techniques have

been used to create links between models, i.e. the similarity flooding, the anchor prompt,

34 Chapter 2. State Of The Art

etc. From the study of the proposed approaches, an observation consists on the generation

of one-to-one matching links between models. This observation can be considered as a

limitation of these approaches. This can be justified by the type of relationship between

constructs in the models. For example, in a UML class diagram, we cannot separate an

association or a generalization from their two classes. It may lose the semantic of the class

diagram. Thus, we propose to produce matching links between n source elements and

m target elements from source and target models. Due to the large number of possible

combinations between source and target model elements, a metaheuristic method is used.

3Generation of Operational

Transformation Rules from

Examples of Model

Transformations

Contents

2.1 Model Driven Engineering . 17

2.2 Model Transformation . 20

2.2.1 Model Transformation Classification . 20

2.2.2 Model Transformation Languages . 23

2.3 Towards Model Transformation Generation . 24

2.3.1 Meta-model Matching for Model Transformation Generation 24

2.3.2 Model Transformation By Example . 26

2.3.3 Synthesis . 28

2.4 Model Transformation Traceability . 29

2.4.1 Summary . 31

2.5 Search Based Software Engineering . 32

2.6 Conclusion . 33

This chapter introduces our first contribution, which consists of the generation of oper-

ational transformation rules from examples of model transformations. We propose a

two-step approach to generate the transformation rules. In a first step, transformation pat-

terns are learned from the examples through a classification of the elements of the model

35

36 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

examples, and a classification of transformation links (expressing part of the transforma-

tion trace) using Formal Concept Analysis. In a second step, those transformation patterns

are analyzed in order to select the more pertinent ones and to transform them into oper-

ational transformation rules written for the Jess rule engine. The generated rules are then

executed on examples to evaluate their relevance through classical precision/recall mea-

sures. We also study how we better learn transformation rules from examples, using each

example separately or by gathering all the examples.

This chapter is structured as follows. Section 3.1 recall the key concepts of Model Trans-

formation (MT) and Model Transformation Based Examples (MTBE). Then, we introduce

the problem and describe our two-step approach in Section 3.2. In Section 3.3, we briefly

explain how RCA is used to extract information from examples and to generate transfor-

mation patterns. In this section, details are also given on how the obtained transformation

patterns are filtered and refined. Section 3.3.3 describes the mapping of the transformation

patterns into Jess rules. We present an evaluation of the approach and a discussion about

the obtained results in Section 3.3.4. In Section 3.4, we analyze and compare two strategies

for learning the transformation patterns. Section 3.5 concludes the chapter and describes

future work.

3.1 Introduction

As we explained in the State-of-the-art section, Model Transformation is a key com-

ponent of Model Driven Engineering (MDE). In model-driven development, the involved

models are processed by programs as a matter of priority (rather than by hand). To ease

the development of such programs handling models, several languages were introduced,

e.g. graph transformation languages such as VIATRA [Csertán et al., 2002], declarative or

semi-declarative languages like ATL, or object-oriented and imperative languages such as

Kermeta.

Implementing a model transformation requires two distinct skills: model-driven engi-

neering skills (in particular, metamodeling and model-transformation environments), and

domain-specific skills, i.e., good knowledge about the specification of the transformation:

the input domain, the output domain, and the transformation rules by themselves. While

the first skills are possessed by model-driven engineering experts, the second ones are

specific to domain experts. Experience shows that domain experts more easily give trans-

formation examples than complete and consistent transformation rules [Kessentini, 2010].

3.2. Overview of the Rules Generation and Execution 37

In this context, MTBE [Varró, 2006] has emerged as a convenient way to let domain experts

design transformations by giving an initial set of examples. An example consists of an in-

put model, the corresponding transformed model, and fine-grained mappings between the

constructs of both models. From those examples, an MTBE approach learns transformation

rules. When those rules are operational, i.e., they are written in a rule language disposing

of a rule engine, they form the model transformation.

As part of our thesis, we present a Model Transformation By Example approach that

goes from examples down to operational transformation rules. The learning mechanism

used is based on RCA, a variant of Formal Concept Analysis [Ganter and Wille, 1999]. It

results in a hierarchy of non-operational rules called transformation patterns. Such trans-

formation patterns are analyzed and filtered to derive the more relevant ones. The selected

transformation patterns are then transformed into concrete and operational transformation

rules that can be processed by the Jess rule engine [Daniele, 2006]. The learning of the

transformation patterns has been proposed in [Dolques et al., 2009], in the current work

we introduce the filtering of the obtained transformation patterns, and we explain how to

obtain operational rules from the transformation patterns. Finally, since the obtained rules

are operational, experiments have been carried out on a case study in order to measure the

relevance of the generated rules.

3.2 Overview of the Rules Generation and Execution

Model-Transformation By Example (MTBE) consists in learning transformation pro-

grams/rules from examples. Usually, an example is composed of a source model, the

corresponding transformed model, and transformation links between those two models.

To illustrate MTBE, let us consider the well-known case of transforming UML class dia-

grams into relational schema, used, among others, in [Kessentini et al., 2010b]. For this

transformation, examples are given in the form of: an input UML model (such as the one

given in Figure 3.1), the corresponding transformed relational model (such as the one given

in Figure 3.2), and transformation links making explicit from which elements of the UML

model, the elements of the relational model stem from. For instance, a transformation link

is given to specify that class Client is mapped into table Client. A transformation link

is equivalent to a link of an execution trace of the expected transformation, i.e two ele-

ments are related by a transformation link if the information contained in the first element

is necessary to build the second one.

38 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Figure 3.1 – Example for the UML2R transformation: input model

Figure 3.2 – Example for the UML2R transformation: transformed model

An MTBE process analyzes the examples and learns from them transformation rules

such as a class is transformed into a table, or a UML property linked to a class and which

is not a member of an association (i.e., an attribute and not a role) is transformed into

a column of a table. This process should produce operational rules, i.e., rules that can

be directly executed by a rule engine to transform any source model into a target model.

We propose to generate the operational rules in a two-step approach, as illustrated in

Examples for
a transformation T
i.e. sets of triples
(input model,
output model,

transformations links)

BERCAMOTE

Learning tool

Transformation
patterns for T Patterns2Rules

Transformation rules
for T

(written in Jess)

Figure 3.3 – A two-step approach for MTBE

Figure 3.3. The first step is the analysis of examples, that learns transformation patterns

using Relational Concept Analysis. This step is supported by the Bercamote tool, that has

been introduced in [Dolques et al., 2009]. Each obtained transformation pattern describes

a premise in the form of an input model pattern (based on the input metamodel), and a

conclusion, in the form of the output model pattern (based on the output metamodel) that

should be obtained after the execution of the transformation. The transformation patterns

are ordered in a hierarchy. This hierarchy is analyzed to select the more relevant patterns,

and sometimes to select in a transformation pattern the more pertinent fragment. We

here target model-to-model transformations in which both models represent the same data

but in different languages or using different structural constraints e.g. a transformation

applying design patterns to enforce good structural modeling practices in a language. On

3.3. A By-example Approach to Obtain Transformation Patterns 39

the contrary, our MTBE approach is not well-suited to learn transformations in which new

values are computed, e.g.; we cannot learn a renaming policy that forces to use lowercase for

attribute names. Widening the scope of the transformations that can be learned is possible

but would impact on the complexity of the results and the efficiency of the approach.

The main contribution of this chapter deals with the second step, that makes the pat-

terns operational. This is done by transforming them into rules that can be executed by a

rule engine. To make the transformation patterns operational, we have transformed them

into Jess rules and executed them using the Jess Rule engine. This step is detailed in

Section 3.3.3.

3.3 A By-example Approach to Obtain Transformation Patterns

As stated in Section 3.2, a key step in our MTBE approach consists in generating trans-

formation patterns. Such patterns describe how a source model element is transformed

into a target model element, within a given source context and a given target context. This

step has been presented in [Dolques et al., 2009], and is summarized in the beginning of

this section, whereas the end of this section is dedicated to the filtering of the obtained

transformation patterns.

3.3.1 Obtaining the Transformation Patterns

To derive patterns from examples, a data analysis method is used, namely Formal Con-

cept Analysis (FCA) and its extension to relational data, the Relational Concept Analysis

(RCA) (introduced in Chapter 1).

We use RCA to classify: the source model elements, the target model elements and

the transformation links. Which means that every one of them will be modeled as an

Object-Attribute context in RCA. Those contexts will be linked by Object-Object contexts

modeled after the following relations. Source and target model elements are classified

using their metaclasses and relations. The transformation link classification relies on model

element classifications and groups links that have similarities in their source and target

ends: similar elements in similar contexts. From the transformation link classification,

we derive a transformation pattern hierarchy, i.e., a lattice of patterns, where patterns are

organized by inclusion.

To illustrate the use of RCA to generate a transformation patterns hierarchy, we use a

simple UML model (Figure 3.5) that is conform to the UML metamodel of Figure 3.4, its

40 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Figure 3.4 – A simplified UML metamodel

Novel

Author

firstName

lastName

Text

title

Poetry

Style

writes foreword for

has a

1*

style

work

*

author

1..*

text

forewordWritten
*0..1

forewordAuthor

Writes

year

Figure 3.5 – A UML Model

corresponding entity relationship model (Figure 3.7) that conforms to the entity relation-

ship metamodel of Figure 3.6 and the mapping links between the two models 1. Figure 3.8

shows an excerpt of mappings between the two models. Data from this transformation

example is encoded into five formal contexts (UML metamodel context, entity relationship

metamodel context, UML model context, entity relationship model context and mapping

link context). Then, RCA applied to these data leads to the corresponding five lattices. We

present three of these lattices: the UML model lattice (Figure 3.9), the entity relationship

model lattice (Figure 3.10) and the mapping link lattice (Figure 3.11). In this latter, a map-

1. Borrowed from Xavier Dolques

3.3. A By-example Approach to Obtain Transformation Patterns 41

Figure 3.6 – An entity relationship metamodel

Author

firstName lastName

writes foreword for

writes Text

year

Style

Novel Poetry

title

(1,N)

(1,N)

(1,1)

(1,1)

(0,1) (0,1)

(1,1) (1,1)

(1,1) (0,N)

work

author

is a is a

has a

Figure 3.7 – An entity relationship model

ping link is described by two elements: 1) traceA, the source model element which is the

source of the link and 2) traceB, the target model element which is the end of the link.

For example, Concept_49 in lattice of Figure 3.9 groups the instances of the UML

source metaclass Property which have a type which is a class (classes are grouped in

Concept_41). Concept_55 in Figure 3.10 groups the instances of ER metaclass Role

which refer to an Entity and have a Cardinality. Concept_82 in Figure 3.11 groups

42 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Style:Entity

name="Style"

Text:Entity

name="Text"

has a:Relationship

name="has a"

style:Role

name="work"

text:Role

name="text"

textC:Cardinality

min=0
max=-1

styleC:Cardinality

min=1
max=1

Text Style

title

(1,1) (0,N)
has a

title:Attribute

name="title"

Style:Class

name="Style"

title:Property

name="title"
lowerBound=1
upperBound=1

Text:Class

name="Text"

has a:Association

name="has a"

style:Property

name="work"
lowerBound=1
upperBound=1

text:Property

name="text"
lowerBound=0
upperBound=-1

Text

title

Stylehas a

1*

styletext

Figure 3.8 – An example of mapping between two excerpts of models of Figures 3.5 and
3.7

links going from Concept_49 which groups UML properties connected to a class, to

Concept_55 which groups ER roles which refer to an Entity and have a Cardinality. The

mapping link lattice is then automatically analyzed to generate a hierarchy of transforma-

tion patterns. An excerpt of this latter is presented in Figure 3.12. It contains six trans-

formation patterns (in the six inner boxes). The transformation patterns in the bottom are

always more specific than the ones in the top boxes. For example, the transformation pat-

tern of Concept TPatt_12-Concept_92 is more specific than the transformation pattern

of Concept TPatt_11-Concept_81, which is indicated by the inclusion edge between the

two boxes. The patterns are automatically named by the tool, they have a prefix beginning

by TPatt for transformation pattern, then we find the number of the pattern, and finally the

number of the concept representing the pattern, as generated by RCA/FCA algorithms.

3.3. A By-example Approach to Obtain Transformation Patterns 43

Concept_11 (S: 0)

metaClassA : TOP

Concept_39 (S: 1)

metaClassA : Model

packagedElements : Concept_43

packagedElements : Concept_44

packagedElements : Concept_46

packagedElements : Concept_48

elementA_0

Concept_40 (S: 1)

Concept_43 (S: 1)

metaClassA : Association

elementA_15

elementA_18

Concept_44 (S: 1)

metaClassA : AssociationClass

elementA_11

Concept_45 (S: 1)

metaClassA : Generalization

specific : Concept_48

general : Concept_46

elementA_7

elementA_9

Concept_46 (S: 1)

elementA_1

elementA_4

Concept_48 (S: 1)

generalization : Concept_45

elementA_6

elementA_8

Concept_66 (S: 2)

type : Concept_46

elementA_12

elementA_13

elementA_17

elementA_19

elementA_20

Concept_41 (S: 1)

metaClassA : Class

elementA_10

Concept_42 (S: 1)

metaClassA : Property

elementA_2

elementA_3

elementA_5

elementA_14

Concept_50 (S: 1)

ownedEnd : Concept_66

memberEnd : Concept_66

Concept_47 (S: 1)

ownedAttribute : Concept_42

Concept_49 (S: 1)

type : Concept_41

elementA_16

Figure 3.9 – The lattice obtained from the UML model of Figure 3.5

In each concept representing a transformation pattern, we have two types in two ellipses

connected by a bold edge. The source ellipse of the bold edge represents the type Ts of the

element to transform by the pattern. It can be seen as the main type of the premise. For

instance, in Concept TPatt_3-Concept_82, we see that the pattern aims at transforming

properties. This main type of the premise is linked, with non-bold edges, to the environ-

ment that an element of type Ts must have in order to be transformed by the pattern. Those

edges are named according to the relation-role names between the type Ts and its environ-

ment in the metamodel. Those edges also have a cardinality defining the cardinality of the

environment. Such an environment corresponds to the rest of the premise. For instance,

in Concept TPatt_3-Concept_82, Property is linked to a Class with an edge named

type. This means that the premise corresponds to a property, and that this property is

linked to a class. The target ellipse of the bold edge represents the main type Tt of the

conclusion of the pattern, i.e., a Ts will be transformed into a Tt (with a specific environ-

ment). For example, in the transformation pattern TPatt_3-Concept_82, the conclusion

44 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Concept_22 (S: 0)

metaClassB : TOP

Concept_51 (S: 1)

metaClassB : Model

modelElements : Concept_59

modelElements : Concept_60

elementB_0

Concept_52 (S: 1)

Concept_59 (S: 1)

attribute : Concept_62

elementB_1

elementB_4

Concept_60 (S: 1)

attribute : Concept_63

elementB_9

Concept_62 (S: 1)

entity : Concept_59

elementB_2

elementB_3

elementB_5

Concept_63 (S: 1)

elementB_14

Concept_67 (S: 2)

cardinality : Concept_101

elementB_10

elementB_12

Concept_101 (S: 3)

elementB_11

elementB_13

Concept_53 (S: 1)

metaClassB : Entity

elementB_6

elementB_7

elementB_8

Concept_58 (S: 1)

role : Concept_55

Concept_54 (S: 1)

metaClassB : Attribute

Concept_55 (S: 1)

metaClassB : Role

refersTo : Concept_53

cardinality : Concept_57

elementB_18

elementB_23

elementB_33

Concept_64 (S: 1)

relationship : Concept_56

Concept_56 (S: 1)

metaClassB : Relationship

elementB_15

elementB_20

elementB_25

elementB_30

Concept_104 (S: 3)

role : Concept_69

Concept_57 (S: 1)

metaClassB : Cardinality

elementB_19

elementB_24

elementB_34

Concept_61 (S: 1)

attribute : Concept_54

Concept_102 (S: 3)

role : Concept_67

Concept_68 (S: 2)

relationship : Concept_60

Concept_69 (S: 2)

refersTo : Concept_59

cardinality : Concept_103

elementB_16

elementB_21

elementB_26

elementB_28

elementB_31

Concept_103 (S: 3)

elementB_17

elementB_22

elementB_27

elementB_29

elementB_32

Figure 3.10 – The lattice obtained from the entity relationship model of Figure 3.7

corresponds to a role which refers to an entity, has a cardinality and has a relationship with

another role. This role is in turn linked to other elements.

The transformation pattern TPatt_3-Concept_82 has thus been deduced from a set

of transformation links that were grouped together because they link a property (connected

to a class) to a role (connected to a role, a cardinality and a relationship). This pattern is

included in the pattern of sub-concept which is located below it (there is just an excerpt of

this concept in the figure). This latter is more specialized because in addition to link the

property to a class, it also links the class to a relationship. It also links the entity to other

elements which are not presented in the figure.

3.3. A By-example Approach to Obtain Transformation Patterns 45

Concept_23 (S: 0)

traceA : Concept_11

traceB : Concept_22

Concept_70 (S: 2)

traceA : Concept_41

traceB : Concept_53

TraceLink_7

Concept_91 (S: 2)

traceB : Concept_58

Concept_71 (S: 2)

Concept_73 (S: 2)

traceA : Concept_43

TraceLink_4

TraceLink_5

Concept_74 (S: 2)

traceA : Concept_44

traceB : Concept_60

TraceLink_6

Concept_76 (S: 2)

traceA : Concept_46

traceB : Concept_59

TraceLink_0

TraceLink_1

Concept_78 (S: 2)

traceA : Concept_48

TraceLink_2

TraceLink_3

Concept_85 (S: 2)

TraceLink_18

TraceLink_19

Concept_92 (S: 2)

traceB : Concept_62

TraceLink_8

TraceLink_9

TraceLink_10

Concept_93 (S: 2)

traceB : Concept_63

TraceLink_11

Concept_108 (S: 3)

traceB : Concept_67

TraceLink_16

TraceLink_17

Concept_110 (S: 3)

TraceLink_24

TraceLink_28

Concept_243 (S: 4)

traceB : Concept_101

TraceLink_32

TraceLink_33

Concept_245 (S: 4)

TraceLink_25

TraceLink_29

Concept_72 (S: 2)

traceA : Concept_42

Concept_80 (S: 2)

traceA : Concept_50

Concept_77 (S: 2)

traceA : Concept_47

traceB : Concept_61

Concept_75 (S: 2)

traceA : Concept_45

Concept_244 (S: 4)

traceB : Concept_102

Concept_79 (S: 2)

traceA : Concept_49

Concept_86 (S: 2)

traceB : Concept_56

Concept_81 (S: 2)

traceB : Concept_54

Concept_82 (S: 2)

TraceLink_15

Concept_84 (S: 2)

traceB : Concept_55

Concept_94 (S: 2)

Concept_83 (S: 2)

TraceLink_26

TraceLink_30

Concept_95 (S: 2)

traceB : Concept_64

Concept_247 (S: 4)

Concept_248 (S: 4)

traceB : Concept_104

Concept_87 (S: 2)

TraceLink_21

Concept_89 (S: 2)

traceB : Concept_57

Concept_88 (S: 2)

TraceLink_27

TraceLink_31

Concept_90 (S: 2)

Concept_109 (S: 3)

traceB : Concept_68

Concept_105 (S: 3)

TraceLink_12

TraceLink_13

TraceLink_14

Concept_107 (S: 3)

traceA : Concept_66

Concept_111 (S: 3)

traceB : Concept_69

Concept_106 (S: 3)

TraceLink_20

TraceLink_22

TraceLink_23

Concept_246 (S: 4)

traceB : Concept_103

Figure 3.11 – The lattice obtained from mapping between the models of Figures 3.5 and 3.7

3.3.2 Patterns Lattice Simplification

After obtaining the lattice of transformation patterns, we select in this lattice the use-

ful/relevant patterns or pattern fragments. In the lattice of Figure 3.12, for instance, con-

cepts TPatt_15-Concept_109 and TPatt_14-Concept_94 are empty. They do not

contain information about the transformation. They are present in the lattice to link other

concepts (representing patterns) not shown in this excerpt. In the final transformation,

those empty patterns are automatically removed from the lattice. When an empty concept

is removed, we connect all its children with all its parents to keep the order structure of the

lattice.

After the lattice pruning, the remaining patterns are analyzed for simplification pur-

46 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Figure 3.12 – An excerpt of the obtained hierarchy of transformation patterns

pose. We noticed that some patterns contain a deep premise or conclusion, i.e., a long

chain of linked objects. After observing many patterns of this type for many transforma-

tion problems, we found that after a certain depth, the linked elements are not useful. For

instance, if we look again at the pattern TPatt_3-Concept_82 in Figure 3.12, the im-

portant information is that a property linked to a class must be transformed into a role

linked to an entity, a cardinality and a relationship. The other elements are redundant or

details specific to some examples, that are not relevant to the transformation. Starting from

this observation, we implemented a simplification heuristic that prunes the premises and

conclusions after the first level (key element and its immediate neighbors).

After pruning the patterns according to the depth heuristic, some patterns could be-

come identical. For redundant patterns, just the top ranked in the lattice is preserved, and

all other are automatically removed. For removed concepts, their children are linked to

their parents.

Figure Figure 3.13 shows an excerpt of the obtained hierarchy of the previous example (Sec-

3.3. A By-example Approach to Obtain Transformation Patterns 47

tion 3.3.1) after simplification. For instance, the TPatt_3-Concept_82 is transformed to

the simplified TPatt_1-Concept_66.

Figure 3.13 – An except of the obtained hierarchy of transformation patterns after simplifi-
cation

3.3.3 Rules Generation

This section describes the mapping of transformation patterns into operational rules

that can be executed using a rule engine. The rule engine used in our proposal is the Java

Expert System Shell (Jess) introduced in Chapter 1.

In our context of model transformation, facts are model elements and templates are

element types defined in the metamodel. A UML class diagram metamodel defines a set of

templates such as Class, Attribute, and Association. A specific UML class diagram

is described using facts that are instances of these templates such as, Class Employee,

Class Position, and Association has_position. Fact Class Employee means

that the model contains an element "Employee" which is an instance of the type "Class" in

the metamodel.

Figure 3.14 illustrates the steps to follow in order to obtain operational rules from

transformation patterns. The transformation process consists of three steps: Meta-

model2Templates, Model2Fact, and TransformationPatterns2JessRules.

48 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Figure 3.14 – Transformation Process

3.3.3.1 Meta-models2Templates

Step 1 consists in generating templates from the meta-models. Each metaclass of the

metamodel is transformed into a template with the same name. Each meta-attribute is

also transformed into a slot keeping the same name. The type of the slot is the type of the

meta-attribute. To facilitate the description of relations between the metaclasses, each meta-

reference is also transformed into a template. Such a template has two slots respectively

containing the name of the source element and the target element of the meta-reference.

We suppose that the name of each element is its identifier.

Concretely, since we work with the EMF framework, this step corresponds to the fol-

lowing transformations:

• each EClass is transformed into a template with the same name,

• each EAttribute is transformed into a slot with the same name and whose type is the

EDataType of the EAttribute,

• each EReference is transformed into a template.

3.3. A By-example Approach to Obtain Transformation Patterns 49

Figure 3.15 – Transformation of an extract of relational meta-model to Jess

In this section we work on a new model transformation which is the transformation of

a UML model to relational schema model.

Figure 3.15 shows the transformation of a partial view of the relational schema meta-model.

As indicated by the arrows, the EClasses table and column are transformed into templates.

The EAttribute name is also converted to slot in each template. The EReference between table

and column is transformed to a template which contains two slots containing the names of

source and target elements of the Ereference.

3.3.3.2 Models2Facts

Step 2 aims at transformaing models into facts. A model is an instantiation of its meta-

model. Accordingly, each instance of a meta-class present in the model is transformed into

a fact with the same name. The instances of meta-attributes are transformed into slot values

of the corresponding template. Each instance of meta-reference between two instances of

meta-classes is also transformed into a fact which contains the names of relation elements.

A simple transformation example is presented in Figure 3.16. The three instances of

metaclasses (the table and the two columns) are transformed into three facts. The two

instances of meta-relations (from table to column) are transformed into the two facts in-

stanciating the template RelTabCol.

50 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Figure 3.16 – Transformation of a partial view of relational schema model to Jess

3.3.3.3 TransformationPatterns2JessRules

Step 3 consists in the actual rule generation from transformation patterns. As it can

be seen in Figure 3.17, there is a similarity between transformation-pattern structure and

Jess-rule structure. Both of them are composed of two main parts. The premise of a pattern

is equivalent to the LHS of a rule. Both describe the situation to find to fire the rule or to

apply the transformation pattern. Similarly, the conclusion is equivalent to the RHS. Both

are the action to perform or the conclusion to reach when the first part is satisfied.

The premise is a description of a set of source elements. These elements are linked

together. Consequently, each element in the premise is transformed into a Jess condition

corresponding to the test of the presence of a fact. As the premise elements are not named,

we generate a slot name for each element. When more than one element is involved,

conditions corresponding to relations are also generated. As relations do not have names,

we named it by concatenating the three first letters of the relation elements names.

The conclusion of a transformation pattern is a description of a set of target elements

together with their relations. It it similar to the premise. Consequently, each element in the

conclusion is transformed into a Jess fact assertion. Names and relations between facts are

also generated.

3.3. A By-example Approach to Obtain Transformation Patterns 51

Class
Propertyproperty [1..*]

Table Column
column [1..*]

premise

conclusion

LHS

RHS

(defrule R1
(Class (name ?i))
(Property (name ?j))
(Rel_ClaPro (sourceElement ?ref1) (targetElement ?ref2))
(test(or(and(eq ?i ?ref1) (eq ?j ?ref2)) (and(eq ?i ?ref2) (eq ?j ?ref1))))
=>
(assert (Table ?i))
(assert (Column ?j))
(assert (Rel_TabCol (sourceElement ?i) (targetElement ?j)))
)

Figure 3.17 – Example of the transformation of a pattern into Jess

Figure 3.17 shows the transformation into a Jess rule of an example of transformation

pattern (from UML class diagram to relational schema model). The premise of the transfor-

mation pattern is a class linked to a property. The corresponding Jess rule has for LHS four

conditions, respectively checking: the existence of a class i, the existence of a property j, the

existence of a relation from class to property, and that the existing relation links i to j. The

conclusion of the transformation pattern is a table linked to a column. The corresponding

RHS of the generated Jess rule contains three fact assertions, respectively stating: a table i,

a column j, and a relation from i to j.

3.3.4 Tool Support and Case study

This section illustrates the rule generation process using a case study. It also reports

on the efficiency of our approach through classical precision/recall measures. Like for

testing, we compare the target models produced by our executable rules with the expected

models. Precision and recall show to what extent the inferred rules perform the correct

transformations.

Our case study concerns the transformation of class diagrams into relational schema.

The rule generation is performed starting from a set of 30 examples of class diagrams and

52 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

their corresponding relational schema. Some of them were taken from [Kessentini, 2010],

the others were collected from different sources on the Internet. We ensured by manual

inspection that all the examples conform to valid transformations.

To take the best from the examples, a 3-fold cross validation was performed, i.e., 30 ex-

amples divided into three groups of 10. For each fold, two groups (20 examples) were used

for generating the rules, and the remaining third group was used for testing them. Each

fold used a different group for testing. Testing consists in executing the generated rules

on the source models of the testing examples and in comparing the obtained target models

with those provided in the examples. This comparison allows calculating the precision

(Equation 1) and the recall (Equation 2) measures.

We calculate precision and recall separately for each type T of fact (table, column, etc.).

P(T) =
number o f T with correct trans f ormation

total number o f initial T
(3.1)

R(T) =
number o f T with correct trans f ormation

total number o f generated T
(3.2)

Table 3.1, Table 3.2 and Table 3.3 show precision and recall averages (on all fact types)

of the 10 generated transformations for the 3-folds. The precision and recall averages are

higher than 0,70 in all cases. Some models were perfectly transformed (precision=1 and

recall=1). For the others, the precision and recall could be better than the ones calculated

automatically. This is due to the case of elements which have more than one transfor-

mation possibility. For example, if we have a generalization between two classes, we can

transform it into a simple table which contains the attributes of general and specific classes.

The second transformation method is to transform it into two tables. So, in the case of

generalization, two rules are applied and this decreases the precision and the recall. The

same problem exists for the aggregation which has also two transformation possibilities (1

or 2 tables).

Discussion

The study presented in this section is a first evaluation of our approach. This evaluation

is a proof-of-concept to check if RCA-based derivation and pattern-to-rule mapping are

effective. In this context, the obtained results are very satisfactory. They show that the

3.3. A By-example Approach to Obtain Transformation Patterns 53

Examples
Fold1

Precision Average Recall Average
1 1 1

2 0.77 0.75

3 0.70 0.75

4 0.94 0.75

5 1 1

6 1 0.77

7 0.88 0.77

8 1 0.77

9 0.90 0.77

10 0.90 0.85

Table 3.1 – Result of the first fold cross validation

Examples
Fold2

Precision Average Recall Average
1 0.78 0.79

2 0.90 0.75

3 0.85 0.77

4 0.77 0.79

5 1 0.80

6 1 0.77

7 0.85 0.77

8 0.85 0.80

9 1 0.75

10 1 0.80

Table 3.2 – Result of the second fold cross validation

Examples
Fold3

Precision Average Recall Average
1 0.80 0.75

2 1 1

3 1 0.85

4 1 0.80

5 0.77 0.75

6 1 0.77

7 1 1

8 1 0.80

9 0.85 0.77

10 0.88 0.80

Table 3.3 – Result of the third fold cross validation

54 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

proposed approach allows to find most of the expected transformation rules and that these

rules are executable on actual models.

To help us improving the rule generation process, additional experiments have to be

conducted, in particular to study the two following issues:

• First, we used a small number of examples, based on small meta-models. Larger

meta-models and more numerous examples have to be considered in the future to

draw a better portrait on the strengths and weaknesses of the approach.

• Second, we measured the correctness of the obtained model transformation by com-

paring elements of the produced and expected models without considering their re-

lations. A better and comprehensive correctness measure should be defined in the

future.

3.4 Strategies for learning Model Transformations from Examples

In this section, we analyze and compare two strategies for learning the transformation

patterns with RCA. In the first one, each example is used alone to learn transformation

patterns, and the transformation patterns obtained from all the examples are then gathered.

In the second strategy, the examples are first gathered into a single large example, that is

then used to learn the transformation patterns. The obtained transformation patterns are

inspected and applied to test examples.

Our case study concerns the transformation of class diagrams into relational schema.

The rule generation is performed starting from a set of 30 examples of class diagrams

and their corresponding relational models. Some of them were taken from [Kessentini,

2010], the others were collected from different sources on the Internet. We ensured by

manual inspection that all the examples conform to valid transformations. To take the

best from the examples, a 3-fold cross validation was performed. We divide the j (j ∈ 1..30)

examples into three groups of 10. For each fold i (i ∈ 1..3), we use two strategies to produce

transformation rules:

• In the first one, we use the experimentation of section 3.3.4 which consists of using

two groups (20 examples) separately for generating 20 pattern lattices (denoted lij).

The lij lattices are analyzed and simplified, as explained in Section 3.3.2, to select

automatically the relevant transformation patterns. Then, we transform them into

operational rules written for Jess. The remaining third group is used for testing

3.4. Strategies for learning Model Transformations from Examples 55

them. Testing consists in executing the generated rules on the source models of the

testing examples and in comparing the obtained target models with those provided

in the examples.

• In the second one, we gather two groups (20 examples) for generating only one lattice

of patterns (denoted Li). Li is analyzed and simplified to select automatically the

relevant patterns. Those patterns are then transformed into operational rules. The

remaining third group is used for testing them.

The goal is to compare in each fold i the results obtained from the two strategies. First,

we compare the lattices generated from examples (lij), and the lattice generated from the

union of those examples (Li). Then, we compare the results of executing the rules obtained

from each strategy on the source models provided in the testing examples.

lij vs Li

Compared to the first strategy, which produces small size lattices (from each lij we

have about 9 patterns before simplification and 4 patterns after simplification), the second

one produces large ones (from each Li we have about 100 patterns before simplification

and 50 patterns after simplification). Although the lattices Li are larger and more difficult

to analyze, they have more specific and complete transformation patterns compared to lij

which are simple to analyze but contain transformation patterns that are proper to their

examples. A single pattern of Li can combine several patterns that exist in lij.

Figure 3.18 shows examples of different patterns obtained from l1j. For instance, in the

pattern of Figure 3.18(a), a transformation link is given to specify that a class linked to an

aggregation is mapped into a table linked to primary foreign key. Pattern of Figure 3.18(b)

shows that a class linked to a property is transformed into a table linked to a column. In the

last pattern of Figure 3.18(c), the transformation specifies that a class linked to a property

and a generalization is transformed into a table linked to a column and a foreign key.

If we compare these patterns with the pattern of lattice L1 in Figure 3.19, we note

that the information contained in the three patterns exists in the pattern of Figure 3.19. It is

more complete. It combines all the information of transformation existing in Figure 3.18(a),

Figure 3.18(b) and Figure 3.18(c).

So, if we combine various examples together, the generated lattice contains patterns

which are more specific and combine different information. But, if we test each example

separately, the obtained lattice contains less information. In addition, Li contains all the

patterns needed to transform a class diagram to a relational schema. The lattices lij contain

56 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

TPatt_8 - Concept_87

Class
Aggregation

aggregation [1..*]

Table PFKey
pfkey [1..*]

(a)

TPatt_3 - Concept_83

Class
Property

property [1..*]

Table Column
column [1..*]

(b)

TPatt_4 - Concept_88

Class

Generalization
generalization [1..*]

Property
property [1..*]

Table

Column
column [1..*]

FKey

fkey [1..*]

(c)

Figure 3.18 – Examples of transformation patterns extracted from lattices Ll1

TPatt_1 - Concept_77

Class

Property

property [1..*]

Generalization
generalization [1..*]

Aggregation

aggregation [1..*]

Table

Columncolumn [1..*]

FKey
fkey [1..*]

PFKey

pfkey [1..*]

Figure 3.19 – Example of transformation pattern extracted from lattice L1

just the transformation pattern proper to the transformation examples used. So, we need to

merge several transformation examples to obtain all transformation rules of a class diagram

into a relational schema.

Furthermore, in each fold, a Li lattice contains about 50 transformation patterns and

the union of lij produces about 40 ones (4 transformation patterns * 20 minus the redun-

dant ones which exist). If we examine the patterns as an expert, we note that Li contains

about 12 relevant transformation patterns which are useful to the transformation. But they

3.4. Strategies for learning Model Transformations from Examples 57

Examples Fold1

Recall Average Precision Average
First Strategy Second Strategy First Strategy Second Strategy

1 1 0.5 1 0.5
2 0.77 0.45 0.75 0.43

3 0.70 0.5 0.75 0.43

4 0.94 0.43 0.75 0.32

5 1 0.45 1 0.43

6 1 0.5 0.77 0.23

7 0.88 0.43 0.77 0.40

8 1 0.6 0.77 0.43

9 0.90 0.5 0.77 0.44

10 0.90 0.5 0.85 0.45

Table 3.4 – Result of the first fold cross validation

are less detailed and not applicable for all example types. On the other side, the union of

lij contains about 10 relevant transformation patterns. Those patterns are easy to read and

to apply because each one contains a piece of information of the transformation compared

to Li’rules which combine several pieces of information in the same pattern.

lij’s rules execution vs Li’s rules execution

In this section, we compare the result of executing the rules obtained from the two

strategies, which are transformed into Jess rules, on the source models provided in the

testing examples. This comparison allows calculating the recall (Equation 1) and the pre-

cision (Equation 2) measures for each T. T represents the type of elements in the target

meta-model (table, column, foreign key...)

R(T) =
number o f T with correct trans f ormation

total number o f initial T
(3.3)

P(T) =
number o f T with correct trans f ormation

total number o f generated T
(3.4)

Table 3.4, Table 3.5 and Table 3.6 show precision and recall averages on all element

types of the 10 generated transformations for the 3-folds. As mentioned in Section 3.3.4,

the precision and recall averages are higher than 0.7 in the first strategy. Some models were

perfectly transformed (precision=1 and recall=1). Precision and recall decrease in the case

of elements which have more than one transformation possibility. For example, if we have

58 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

Examples Fold2

Recall Average Precision Average
First Strategy Second Strategy First Strategy Second Strategy

1 0.78 0.5 0.79 0.4
2 0.90 0.45 0.75 0.31

3 0.85 0.45 0.77 0.43

4 0.77 0.43 0.79 0.40

5 1 0.5 0.80 0.34

6 1 0.43 0.77 0.47

7 0.85 0.4 0.77 0.37

8 0.85 0.45 0.80 0.43

9 1 0.5 0.75 0.34

10 1 0.5 0.80 0.33

Table 3.5 – Result of the second fold cross validation

Examples Fold3

Recall Average Precision Average
First Strategy Second Strategy First Strategy Second Strategy

1 0.80 0.49 0.75 0.33

2 1 0.44 1 0.34

3 1 0.5 0.85 0.44

4 1 0.45 0.80 0.44

5 0.77 0.40 0.75 0.35

6 1 0.5 0.77 0.40

7 1 0.4 1 0.33

8 1 0.33 0.80 0.23

9 0.85 0.35 0.77 0.3
10 0.88 0.4 0.80 0.39

Table 3.6 – Result of the third fold cross validation

a generalization between two classes, we can transform it into two tables or into a simple

table which contains the attributes of general and specific classes. In this case, two rules

are applied on the same example and this affects the performance results.

In the second strategy, precision and recall averages are low (less than 0.5) in the 3-

folds. This is due to the fact that the generated rules are very large and contain different

informations from different examples. Thus, the premises of the rules can not be matched

for most of the examples because the examples are simple and do not contain all the

transformation cases that have been learned. So, the Jess rule engine does not apply a part

3.4. Strategies for learning Model Transformations from Examples 59

of the rule premise when it is executed on an example, it searches for each example its

corresponding rule and this decreases the precision and the recall.

3.4.1 Discussion

The study presented in this section is a comparison of two strategies for generating

transformation rules using RCA. The first consists to generate from each example its rule

lattice and the second consists to gather all the examples and generate only one rule lattice.

Each one has its advantages and disadvantages:

• The first strategy produces simple and small transformation patterns which are easy

to analyze and to manipulate, but they are proper to their examples. On the other

side, the second one produces larger patterns but they are more specific and more

complete. They combine different information about the transformation. An analysis

on those patterns shows that the two strategies have the same number of relevant

patterns (about 12 transformation patterns). The relevant ones of the first strategy

are simple and applicable for each example. On the contrary, the relevant patterns of

the second strategy are larger and mainly applicable for larger examples.

• The execution of the rules of the first strategy gives good results in our experiment.

The rule engine searches and finds for each example the set of rules to apply. On the

contrary the rules of the second strategy are more large and contain more informa-

tion. Thus the rule engine does not find a rule to apply for the simple examples. We

can work again on the obtained rules of Li to execute them on all types of examples

(for example by separating into smaller pieces), but as we found good results with

the union of lij, it is not a promising track. We obtained a non-intuitive result: before

the experimentation, we thought the best rules would be obtained with the second

strategy.

Although the example used is a classical one, it is a good example of typical model

transformations that we aim to learn. To confirm what is the best strategy to produce

transformation rules, additional experiments have to be conducted with other model trans-

formation kinds. Besides, the obtained result depends on the models on which we execute

the rules. If we use larger models, the second strategy may have better results.

3.4.2 Summary

In this section, we studied an approach for inferring model transformations (composed

of transformation rules) from transformation examples. We compare two strategies for ap-

60 Chapter 3. Generation of Operational Transformation Rules from Examples of Model Transformations

plying this approach: inferring the rules from the example taken separately (then gathering

the rules), or inferring the rules from the gathering of the examples. Although we thought

the second strategy would produce better rules (more detailed), it appeared that the rules

(less detailed) produced by the first approach execute better.

3.5 Conclusion

In this chapter, we presented an approach that aims at deriving model transformation

rules from a set of model transformation examples.

A first step of the approach uses a data analysis method, RCA, to learn recurrent trans-

formation patterns. In the second step, the transformation patterns are filtered, refined, and

automatically transformed into Jess rules. Those rules constitute the expected transforma-

tion. Provided that meta-models and models are written as Jess facts (which is done by

automatic transformation), the rules can be executed by the Jess engine to actually trans-

form models. The approach is successfully evaluated on a case study used in previous

research work.

An experimentation is also done to compare two strategies for generating transforma-

tion rules. The first strategy consists of generating from each example its rule lattice and

then its transformation rules and the second strategy consists of gathering all the examples

and generating only one lattice and their transformation rules. Results show that the first

strategy produces better rules.

As future work, we plan to transform the obtained Jess facts (after rule application)

to produce models conforming to the initial meta-models. Furthermore, future work in-

cludes learning rules whose premise and conclusion have several main elements and design

heuristics to determine the best rule to apply when several rules are candidate for the same

model element.

4Model Transformation Traceability

and Model Matching:

metaheuristic approaches

Contents

3.1 Introduction . 36

3.2 Overview of the Rules Generation and Execution 37

3.3 A By-example Approach to Obtain Transformation Patterns 39

3.3.1 Obtaining the Transformation Patterns . 39

3.3.2 Patterns Lattice Simplification . 45

3.3.3 Rules Generation . 47

3.3.4 Tool Support and Case study . 51

3.4 Strategies for learning Model Transformations from Examples 54

3.4.1 Discussion . 59

3.4.2 Summary . 59

3.5 Conclusion . 60

We presented in Chapter 3 how to generate operational transformation rules from

examples of model transformations. Our approach is successfully applied and

evaluated on different examples.

In this chapter, we focus in recovering transformation traces from transformation ex-

amples. This trace recovery is useful for several purposes as locating bugs during the

execution of transformation programs, or checking the coverage of all input models by a

61

62

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

transformation. As our goal in this thesis is to learn model transformations, we expect

also that this trace will provide data for a future model transformation learning technique.

We first address the trace recovery problem with examples coming from a transforma-

tion program. Our approach is based on multi-objective meta-heuristics. It takes as input

source and target models. The recovered transformation traces take the form of many-to-

many mappings between model elements from the source and the target models. Then this

approach is refined to apply it to the more general problem of model matching.

This chapter is organized as follows. Section 4.1 introduces model transformations

recovering traces. Section 4.2 is dedicated to the problem statement and the overview of

our approach. While Section 4.3 describes our approach in detail, Section 4.4 explains

the experimental evaluation of recovering traces approach on different examples and the

obtained results. In Section 4.5, we present how to extend and apply our approach on the

model matching problem and we conclude the chapter in Section 4.6.

4.1 Introduction

MDE involves the construction and manipulation of many models of different kinds

in an engineering process [Paige et al., 2011]. These models cover the whole software-

development cycle, e.g., requirement, design, implementation, maintenance, etc. They can

be manipulated manually or automatically using model transformations. To ensure those

transformation models’ consistency and maintenance, recovering transformation trace can

be essential in an MDE process.

Recovering transformation traces can be useful for different tasks [Grammel et al., 2012]:

(1) understanding the system complexity by the navigation on trace links on all the model

transformation chains, (2) locating bugs during the execution of transformation programs,

and (3) checking the coverage of all input models by a transformation. We can distinguish

between two categories of strategies to generate transformation links: the first category

[OMG, 2005], [OMG, 2006], [Bézivin et al., 2003], [Jouault, 2005], [Grammel and Kasten-

holz, 2010], [Kurtev et al., 2007], [Amar et al., 2010], [van Amstel et al., 2012] depends on

the transformation program or engine. The corresponding approaches generate trace links

through the execution of a model transformation. The second category consists in gen-

erating a transformation trace independently from a transformation program. Reference

[Cysneiros et al., 2003] proposes a mechanism to generate traces for a transformation from a

requirement model conform to the meta-model i* towards the metamodel UML (use cases

4.2. Approach Overview 63

plus class diagram), thus this approach is specific to two metamodels and cannot be gener-

alized. [Grammel et al., 2012] proposes an approach based on matching techniques to trace

links between models. However this approach is not applied on large size models and only

generates one-to-one matching links between models.

In this chapter, we are interested in the second category. We propose to recover a

transformation trace independently from a transformation program. We consider that the

transformation program is missing or the transformation was done manually. Our ap-

proach takes as input a source model and its corresponding target model. The aim is to

find the many-to-many trace links between the two models, thus associating a group of

m source elements to a group of n target elements. To this end, the source model is frag-

mented using the minimal cardinalities of its meta-model and the defined OCL constraints.

Then, we search for each source fragment, the list of potential transformed fragments in

the target model. A solution to our problem is a set of pairs of source and target fragments

that maximize the lexical and structural similarities between them. A solution must also

cover all the target model to ensure its transformation completeness. Due to the very large

number of possible solutions, a multi-objective metaheuristic method (NSGA-ii) is used to

solve our problem.

4.2 Approach Overview

This section shows how recovering a transformation trace between a source model and

a target model can be defined as an optimization problem. We also show the importance

of heuristic search to explore the large space of possible transformation traces between the

two models. Then, we present the main principles of our approach.

4.2.1 Problem Statement

Before describing the problem, let us start by defining key concepts involved in our

work.

Definition 4.1: In our context, a metamodel MM is an instance of the Ecore [Frank, 2004] meta-

metamodel.

Definition 4.2: A model M is an instance of a metamodel MM.

Our approach is based on a fragmentation of the source and target models.

64

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

Definition 4.3: A fragment F is a set of connected constructs of a model M. A construct e ∈ M is

an instance of a meta-class C ∈ MM (e : C).

We denote by Frag(M) the set of all fragments that can be built from M.

We denote by R〈C1 : R, R : C2〉, an e-reference of C1, which has C2 as a type, and such

that R (resp. R) is the minimal (resp. maximal) cardinality of R. For R〈C1 : R, R : C2〉, eRe′

means that we have e : C1, e′ : C2 and e is connected to e′ by R.

Definition 4.4: A meaningful fragment M f F of a model M is a fragment that respects the minimum

cardinalities of the references defined on the metamodel and the OCL constraints.

Consequently, a fragment F of a model M which conforms to a metamodel MM (which

is provided with a set of OCL constraints) is a M f F iff:

∀e : C1 ∈ F, (∃C2|R〈C1 : R, R : C2〉 ∈ MM)⇒ |{e′ : C2 ∈ F|eRe′}|≥ R and the OCL

constraints about minimum cardinalities are satisfied.

We denote by MeanFrag(M) the set of all meaningful fragments that can be built from

M.

Let us consider the instance diagram of Figure 4.2 that conforms to the simplified UML

class diagram metamodel CDMM of Figure 4.1. Three fragments are circled, F1, F2, and

F3. F1 (resp. F2) is a meaningful fragment because it satisfies the minimal cardinalities

defined on association (resp. generalization) meta-class in CDMM. An association must

have two properties of type class. So, association Reservation, property client of type Client

class and property sRoom of type SimpleRoom class form a meaningful fragment (F1). A

generalization consists of a relation between a general class and a specific class. Thus, the

generalization between the Class Room and the class SimpleRoom constitutes a meaningful

fragment (F2). F3 is composed of two connected constructs in the instance diagram (the

association Reservation and its property named client). But in the metamodel CDMM, an

association must have two properties, each one having a type class (according to the OCL

constraint shown in CDMM). Thus, although F3 conforms with the definition of fragment,

it is not a meaningful fragment, because it violates the cardinality and OCL constraints in

CDMM.

Definition 4.5: A transformation trace between a source model Ms and a target model Mt is a set of

pairs connecting a source meaningful fragment to a target fragment. A specific transformation trace

of n pairs takes the following form {(M f Fsi , Fti) | i ∈ {1..n}} ⊆ MeanFrag(MS)× Frag(MT).

4.2. Approach Overview 65

11

1

0..1

specific

association
0..1

<<invariant>>
self.association --> notEmpty()

implies
self.type --> notEmpty()

Figure 4.1 – A meta model for UML class diagrams

The size of the set of possible transformation traces is 2MeanFrag(Ms)×Frag(Mt). Searching

this space, i.e., finding the best match between each M f F in Ms with an F in Mt, is hard

to perform with an exhaustive search method. This led us to use a metaheuristic search to

solve the trace recovery problem.

4.2.2 Approach Overview

Our goal is to generate a transformation trace from two given source and target models.

Figure 4.3 shows an overview of our approach. A first step consists in the decompo-

sition of the source model into meaningful fragments according to the constraints of the

metamodel. Then, a metaheuristic method is used to search for the best match between the

identified source meaningful fragments and all the possible target fragments. To evaluate

the quality of a match (candidate trace) two factors are considered:

• Lexical similarity between fragments in each pair, i.e., both source and target fragment

use similar identifiers.

66

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

Reservation: Association

type

Client: Class

name = "sRoom"
property: Property

type

SimpleRoom: Class

name="client"
property:Property

F1

F2

RoomType: Generalization

Room: Class

specific general

F3

Figure 4.2 – An instance diagram of the class diagram metamodel of Figure 4.1

Meta-heuristic Search

{MfF1, MfF2, …, MfFn}

Target Model

Source Model

{(MfF1,F1), (MfF2,F2), …, (MfFn,Fn)}

Transformation Trace

 Meta-model
Coherence Constraints

Fragmentation

Coherence Constraints

Figure 4.3 – Approach overview

• Structural consistency in the mapping of similar source fragments, i.e., similar source

fragments should be associated to similar target fragments.

In addition to the lexical and structural factors, to be acceptable, a candidate trace:

Trace = {(M f Fsi , Fti) | i ∈ {1..nTrace}} ⊆ MeanFrag(Ms)× Frag(Mt)

should satisfy the completeness constraints that could be formalized as follows:

4.2. Approach Overview 67

(
⋃nTrace

i=1 M f Fsi = Ms) ∧ (
⋃nTrace

i=1 Fti = Mt)

Figure 4.4 illustrates an example of transformation trace between a simplified UML

class diagram and its corresponding entity-relationship model. Note that the choice of this

example is only motivated by clarity consideration, our approach does not depend from

specific source and target metamodels. The shown trace can be described as follows:

• The class diagram is decomposed into three meaningful fragments according to the

constraints of the metamodel of Figure 4.1.

• In terms of lexical similarity, M f F1 matches well F1 as they both contain the identi-

fiers (Text, title, Poem and Novel). Comparable lexical similarities could be observed

respectively between M f F2 and F2, and between M f F3 and F3.

• In terms of structural consistency, M f F2 and M f F3, which are fragments of the same

type (a one-to-many association between two classes) are consistently matched to two

fragments F2 and F3, which are also of the same type (a relation between two entities).

Title
Text Genre

Novel Poem

1*
text

Genre

MfF1

MfF2

Text has a

Novel Poem

is a is a

(0,N) (1,1)

(0,1)

(1,1)

(0,1)

(1,1)

title

F2

F1

genre

Form

poem

form

MfF3

has a Form
(0,N)(1,1)

F3

1

*

Figure 4.4 – An example of transformation links between a class diagram and an entity-
relationship model

68

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

To find the good transformation trace between a pair of source and target models, we

perform a heuristic search guided by the lexical and structural factors as well as by the

completeness constraints. Thus, the trace recovery can be seen as a multi-objective opti-

mization problem. To implement our approach, we select NSGA-ii algorithm (introduced

in Chapter 1) and adapt it to our specific problem (see details in Section 4.3).

4.3 Adapting NSGA-II to the Transformation Trace Recovery

Problem

In this section, we describe the adaptation of NSGA-ii to recover a transformation trace

from a pair of source and target models. Applying this type of algorithm to a specific prob-

lem requires to specify the encoding of a solution, the fitness functions (one per objective),

to guide the search process, and the operators to derive new solutions from existing ones.

These elements are respectively detailed in subsections 4.3.1, 4.3.2 and 4.3.3.

4.3.1 Solutions Representation

A crucial element in our approach is the encoding of a transformation trace between

the source and target models for each candidate solution. The solution encoding impacts

both the fitness evaluation and the derivation operators. In our case, a solution s, is a set

of fragment pairs, s = { f pi, i ∈ {1, 2, ...ns}}. Each fragment pair f pi is, in turn, encoded as

a pair f pi = (M f Fi, Fi) where M f Fi is a source meaningful fragment in the source model

and Fi is its corresponding fragment in the target model.

As stated in Section 4.2, the source model is divided into fragments according to three

criteria: 1) compliance with the minimum cardinalities for the references defined in the

source meta-model, 2) compliance with the OCL constraints specified in the source meta-

model and 3) source model coverage, i.e., each construct in the source model must belong

to at least one fragment. The target model is randomly divided to associate a fragment

with each source meaningful fragment. We conjecture that:

• Dependent constructs (with cardinality constraints) in the source model have to be

transformed together and the corresponding constructs in the target model do not

necessarily need to form a meaningful fragment.

• When transforming a source model, some constructs may not have corresponding

constructs in the target model. Furthermore, some new constructs in the target model

may be created independently from the source ones.

4.3. Adapting NSGA-II to the Transformation Trace Recovery Problem 69

Thus, after obtaining the ns source meaningful fragments, an integer x is generated ran-

domly such that −y < x < y. y is a parameter of our algorithm which is the maximum

variation of the number of target fragments with respect to the source ones. Then, the

target model is divided into ns + x fragments.

More concretely, for each target-model fragment f , we start by randomly choose an

integer 1 6 t 6 4 such as t corresponds to the size of f (thus we have a maximum of

4 constructs in a fragment). i.e., if t = 3, we select randomly a construct, call it c, from

the target model. Then, if c is connected to other constructs, we extend the fragment by

randomly selecting two of them. If c is connected to just one construct c1, we can extend

the fragment by one of the constructs connected to c1. Then, c is removed from the set of

potential starting constructs for the next fragments. Nevertheless, c can still be included in

other fragments thanks to its connections with other constructs.

When both source and target fragment sets are created, each source MfF is randomly

associated with a target model fragment F. A solution is then a vector whose dimensions are

the MfFs and values are the Fs. Figure 4.5 shows another transformation trace candidate

s randomly generated by our algorithm in addition to the one proposed in Figure 4.4.

s = {(M f F1, F3), (M f F2, F2), (M f F3, F1)}.

To create the initial population of N solutions, our algorithm randomly generates a set

of solutions si, i ∈ {1, 2, ..N}. Each si represents a possibility of target-model fragmentation

and association of the resulting fragments to the meaningful ones of the source model.

4.3.2 Solutions Evaluation

The fitness functions evaluate a candidate trace solution. We defined three fitness func-

tions corresponding to three objectives:

1. An MfF in a source model corresponds to a F in a target model when MfF and F use

similar vocabulary, i.e., are similar in terms of properties values of type string.

2. In a solution s, a set of MfF which have the same type, i.e., same construct types with

the same connections, must be matched to a set of F in the target model which have

the same type.

3. In a solution s, the obtained fragments must cover the target model.

The two first objectives approximate the semantic equivalence between model frag-

ments belonging to two different metamodels. The third objective ensures that a solution

70

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

Title
Text Genre

Novel Poem

1*
text

Genre

MfF1

MfF2

Text has a

Novel Poem

is a is a

(0,N) (1,1)

(0,1)

(1,1)

(0,1)

(1,1)

title

F2

F1

genre

Form

poem

form

MfF3

has a Form
(0,N)(1,1)

F3

1

*

Figure 4.5 – A trace randomly generated for the models of Figure 4.4

is complete as it recovers all the transformation trace. The three objectives should be max-

imized.

Lexical similarity. For this fitness function, we take our inspiration from information

retrieval methods, which sort documents according to queries by extracting information

about the terms’ occurrences within documents. The extracted information is used to

find the similarity between queries and documents. In our case, the similarity is used to

compare the property values of M f Fi and Fi in each f pi in a solution s. All the terms

(distinct property values) in s are extracted in a list l. l defines the dimensions of vectors

associated to each source or target fragment in s. For each fragment and each term, the

corresponding dimension is set to 1 if the term exists in the fragment or to 0 otherwise.

Then, the similarity is calculated between each pair M f Fi and Fi using the cosine similarity

between the two concerned vectors. The resulting similarity ranges from −1, meaning

that M f Fi and Fi do not share any term, to 1, meaning that M f Fi and Fi use exactly the

same terms. The lexical similarity LexSim(s) of a solution s is equal to the average of the

contained pairs’ lexical similarities.

4.3. Adapting NSGA-II to the Transformation Trace Recovery Problem 71

Structure similarity. In order to measure the structure similarity in a solution s, we

start by classifying the set of its fragment pairs per type of their respective meaningful

fragments M f Fi.

After classifying the solutions per type of their MfF, we measure for each two pairs

of fragments, which have the same type of MfF, the structural similarity of the matched

target models. To this end, we use also the cosine similarity, but between vectors whose

dimensions are the construct types in the metamodel. Indeed, for each construct type

instantiated in the target model, a term is created. Then for each target model fragment,

the dimension is set to 1 if it contains a construct of the corresponding type, and to 0

otherwise. The structural similarity StrSim(s) of a solution s is the average of the target-

fragment similarities of the pairs having the same MfF type.

Target model coverage The coverage of the target model is the most important objective

because it ensures that the fragments obtained in the solution cover all the target model.

The coverage Cov(s) of a solution s is measured by the number of distinct constructs in the

matched target fragments divided by the number of constructs in the target model.

4.3.3 Operators Definition

In NSGA-ii, in each iteration, the N solutions selected from the previous generation

are used to create N new solutions to complete the population using genetic operators.

This is done to improve the existing solutions by mixing their genetic material (crossover)

and/or by creating new material (mutation). Before applying the operators, the solutions

are selected according to their fitness values.

Binary Tournament selection. In our work, binary tournament selection is used. It

consists in randomly choosing some solutions in the population, and selecting the fittest

two for reproduction. The selection criteria are the rank of the containing front and the

crowding distance for solutions within the same front. Several tournaments are ran to

produce the N needed solutions.

Crossover operator. The crossover consists in producing new solutions from the ex-

isting ones. When two solutions are selected using the binary tournament method, two

offspring solutions are created, with a given crossover probability, by exchanging parts of

the parent solutions. This consists in randomly deciding for a cut point in the solution

vector, and all the target fragments beyond that point in either parent is swapped between

the two parents. For instance, Figure 4.6 shows an example, where two offspring solutions

72

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

(sk and sl) are obtained after exchanging the target fragments between the traces si and sj

beyond the point cut x=1.

si= sj=

MfF1 MfF2 MfF3 MfF4

Fi1 Fi3 Fi4 Fi2

MfF1 MfF2 MfF3 MfF4

Fj2 Fj3 Fj1 Fj4

 x=1

MfF1 MfF2 MfF3 MfF4

Fi1 Fj3 Fj1 Fj4 sk=

MfF1 MfF2 MfF3 MfF4

Fj2 Fi3 Fi4 Fi2 sl=

Figure 4.6 – An example of crossover

Mutation operator. After performing the crossover, the obtained solutions could be

mutated with a given mutation probability. Mutation allows the introduction of new ge-

netic material while the population evolves. For our problem, we define two mutation

strategies: extending a target fragment with a new construct or deleting a construct from

a target fragment. We recall that a transformation-trace solution is a set of fragment pairs;

each one contains a source and a target fragment (MfF and F). Like a MfF, a target frag-

ment contains constructs connected with references. For the first mutation strategy, a pair

f pi = (M f Fi, Fi) is randomly chosen. Two kinds of construct can be added to f pi: a ran-

domly chosen construct, not already included in Fi, or a construct which has a reference to

another one in Fi. For instance, in the second case, a construct c1 is selected randomly in

Fi. If c1 has references to several constructs, we randomly choose a connected construct c2

in the target model Mt which is not already included in Fi, and we add c2 to Fi.

The second mutation strategy consists in deleting a construct from a target fragment

Fi in a pair f pi = (M f Fi, Fi) also randomly chosen from a solution. We randomly select a

construct c from Fi. Then, we check if c is connected at least to one construct in Fi. If we

find that c is not linked to any construct in Fi, it will be deleted.

The two mutation strategies can be randomly combined to produce more variations.

For each offspring solution, one of the following strategies can be applied: (i) adding a

construct, (ii) deleting a construct, (iii) adding a construct and deleting a construct and (iv)

adding two constructs and deleting one construct. For instance, let us come back to the

obtained solution s of Figure 4.5. s = {(M f F1, F3), (M f F2, F2), (M f F3, F1)}. Suppose that

4.4. Evaluation 73

the pair (M f F2, F2) is selected for mutation. Then, suppose that the relationship has a is

picked. If the first mutation strategy is applied, the relationship has a has a reference to the

class Text which is not included in F2. Then, the mutation adds this class to the fragment

F2.

4.4 Evaluation

To evaluate the feasibility of our approach for recovering transformation traces, we

conducted an experiment on six model transformations. The obtained transformation links

are compared to ideal transformation links.

4.4.1 Experimental Setting

4.4.1.1 Experimental data

Our case study is composed of existing six model transformations collected from the

literature or written by the authors in previous projects. These six model transformations

are described below.

• UML class-diagram to relational schema (Cl2Rs). We use for this well-known model

transformation the specifications given in [Kessentini, 2010].

• Ecore meta-model to Jess [Hill, 2003] meta-model (Ec2Je). This transformation aims at

encoding an ecore meta-model into Jess templates. This transformation was written

by the authors and published in [Saada et al., 2012a].

• Relational schema to Jess model (Rs2Je). This transformation takes as input a rela-

tional schema and generates Jess facts that encode it. Note that this transformation

was developed in the same context as the previous one, i.e., the generated Jess facts

are instances of the Jess templates generated from a metamodel.

• UML state machine to labeled transition System (St2Lt) [Luong et al., 2008]. This

transformation maps a UML state machine to a labeled transition system, masking

internal behavior of the state machine. This transformation was developed in order

to verify properties on the composition of components described by state machines.

• Abstract syntax examples to graphical syntax examples (As2Gs) [Pfister et al., 2012].

This transformation takes as input a model (which is an annotated meta-model of a

domain, where annotations indicate how the elements will appear in visual notation)

and produces a model that conforms to a metamodel of visual notation.

• Application of the design pattern State to a UML model owning at least one class

74

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

Examples Nbrtrace
Source Fragments Target Fragments
(minF) (maxF) (minF) (maxF)

Cl2Rs 19 2 4 1 4

Ec2Je 22 1 3 1 2

Rs2Je 21 2 4 1 3

St2Lt 22 3 4 2 7

As2Gs 20 2 4 1 4

St2St 25 2 3 3 5

Table 4.1 – The actual traces of our examples

described by a StateMachine (St2St). This transformation was developed by the au-

thors for educational purpose and serves as practical example in a master model-

engineering class.

For each of the above-mentioned model transformations, we wrote a source model. To

have realistic models, we decided to set their size to at least 50 constructs. As the selected

transformations are implemented, we applied them to the source models to generate their

counterpart target models. Afterwards, we used each pair of source/target models as a

case to test the trace recovery approach.

4.4.1.2 Experimental protocol

In order to evaluate the relevance of the transformation trace generated by our ap-

proach, we also defined, for each pair of models, the actual transformation trace. For the

two model transformations Cl2Rs and Rs2Je, we used the transformation rules generated in

our previous work [Saada et al., 2012a] which allow to obtain for each meaningful fragment

its corresponding fragment using the rule engine Jess. For the rest of model transforma-

tions used in this evaluation, a domain expert manually built the actual trace.

Descriptive statistics about the actual (expected) traces are given in Table 4.1. The

number of fragment mappings in each trace is given in column Nbrtrace. This ranges from

19 for the Cl2Rs transformation to 25 for the St2St one. The size of the source fragments

in the actual traces varies in general from 2 (minF) to 4 (maxF). The variation in size for

target fragments is larger with fragments containing up to 7 constructs (for St2Lt), which

makes the mapping recovery more difficult.

For each source and its corresponding target model, we use our algorithm to generate

a transformation trace. As we are dealing with multiobjective optimization, usually, many

4.4. Evaluation 75

solutions are present in the Pareto front. Usually, a user could look at the proposed so-

lutions and select one. In the case of problems for which the user does not have enough

knowledge to choose a solution, a ranking could be necessary to make a recommendation.

For the purpose of this evaluation, as our three objectives are normalized in the interval

[0, 1], it is possible to calculate a distance to the optimal solution so, i.e., the one having

LexSim(so) = 1, StrSim(so) = 1, and Cov(so) = 1. For a candidate solution s, such a

distance d(s) could be calculated as follows:

√
(1− LexSim(s))2 + (1− StrSim(s))2 + (1− Cov(s))2 (4.1)

Distance d gives equal importance to all the objectives. However, we believe that con-

sistency and completeness are very important when selecting the final solution. Indeed,

having incomplete solutions or similar fragments that are transformed differently could

invalidate a solution. Therefore, we propose a variation d2 of the distance d where only the

consistency and completeness objectives are considered. d2(s) of a candidate solution s is

defined as follows:

√
(1− StrSim(s))2 + (1− Cov(s))2 (4.2)

The solution having the minimal d2 distance is then evaluated by computing its pre-

cision and recall. The precision of a solution s is defined as the average precision of its

fragment-pairs. For a pair f pi = (M f Fi, Fi) ∈ s and the expected mapping (M f Fi, EFi) of

M f Fi, the mapping precision of f pi is defined as the number of correctly assigned con-

structs in Fi among the total number of constructs in Fi. Formally:

pr(f pi) =
Fi

⋂
EFi

Fi
(4.3)

Like for the precision, we evaluate also the pairs’ average recall of a solution. For a pair

f pi = (M f Fi, Fi) ∈ s and the expected mapping (M f Fi, EFi) of M f Fi, the mapping recall of

f pi is defined as the number of correctly assigned constructs in Fi among the total number

of constructs in EFi. Formally:

re(f pi) =
Fi

⋂
EFi

EFi
(4.4)

As mentioned in Section 4.3, the trace recovery algorithm uses a set of parameters. For

the case study, these are set as follows:

76

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

• Crossover probability is usually high. It is set to 0.8.

• Mutation probability is set to 0.4. As we are dealing with relatively large models,

the number of possible fragments in the target model could be very large and so is

the number of combinations between the source and target fragments. Usually, the

mutation probability is low in evolutionary algorithms, but we increase it in our case

to compensate for the random generation of the initial population. Indeed, we have

no guarantee that the initially generated target fragments include or are close to the

expected ones.

• In each transformation example, a population of 500 solutions was randomly gen-

erated. Then we kept only those having a score above a threshold for the three

objectives. This was done to start with a decent genetic material.

• We ran the algorithm with a number of iterations equal to twice the size of the pop-

ulation.

• The maximal variation y of the number of target fragments with respect to the source

ones is set to 1. This means that in a solution, we could have a MfF without assigned F

(part of the source model that does not need to be transformed like in the endogenous

transformations) or a F without any MfF (part of the target model that is generated

from the other parts of the target model and not from the source one).

• With meta-heuristic search, we can obtain, for the same source and target models

with the same parameters, different results on different executions. Therefore, we

took the best result from three executions.

4.4.2 Results and Discussion

We first present a summary of the results for the six studied transformations and then,

give the details about one case, namely Cl2Rs.

4.4.2.1 Results for the six examples

Table 4.2 shows the distances best solutions obtained for the six transformation exam-

ples. The distances varies from 0.09 for Cl2Rs to 0.35 for St2Lt. The distance results are

confirmed by the precision and recall scores reported in Figure 4.8.

Except for the case St2Lt, the precision scores are all at least equal to 90% and the

recall scores are greater or equal to 84%. This is very encouraging since the examples

involve different types of transformations. The scores of St2Lt are intriguing although both

precision (75%) and recall (70%) are interesting. In general, many events are generated

4.4. Evaluation 77

Distance d2 from our best solution to the optimal one

SCl2Rs 0.09

SEc2Je 0.13

SRs2Je 0.19

SSt2Lt 0.35

SAs2Gs 0.21

SSt2St 0.23

Table 4.2 – Distance from our best solutions to the optimal ones

(0, i, 1)
(1, USER_INSERTCOIN, 2)

(2, i, 3)
(3, i, 3)
(3, i, 4)

(3, USER_INSERTCOIN, 2)
(3, i, 5)

(4, USER_INSERTCOIN, 2)
(4, i, 5)

(5, USER_SELECTCOFFEE, 6)
(6, USER_GIVECOFFEE, 7)

(7, i, 1)

waitUser

CoffeeIssue

paymentOK

insertCoin

Payment
do / coinCount

DrinkSelection

SelectCoffee/giveCoffee

insertCoin

Figure 4.7 – UML state machine to LTS transformation example

and synthetically labeled "i". Moreover, the different states are indicated by numbers. In

this context, our lexical and structural approximations are limited to capture the semantic

equivalence between some types of fragments. To illustrate this limitation, let us consider

the small example of Figure 4.7. This example shows the transformation of a coffee state

machine to an LTS system. The operation coinCount in the state Payment is repeated as

long as the amount introduced by the user is not sufficient. A set of events named "i" are

generated that correspond to non observable events, for example to represent the internal

78

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

action coinCount. This can hardly be captured by our objectives, because we do not have

neither lexical, nor structural clues to indicate the link between "i" and the internal event.

 0

 0.2

 0.4

 0.6

 0.8

 1

Cl2Rs Ec2Js Rs2Je St2Lt As2Gs St2St

Precision Average
Recall Average

Figure 4.8 – Evaluation results

4.4.2.2 Detailed results for the Cl2Rs example

For the Cl2Rs example, the generated Pareto front contains 15 solutions. They are

almost similar and they are all close to the optimal solution in terms of distance. Since

the source and target models are pretty large, we show, in Figure 4.9, only an excerpt of

the best obtained solution. The partial models in the figure as well as the corresponding

full models are well covered by the solution. The association class Register with its related

classes Student and Module are mapped to the three tables Register, Student and Module.

The association class Intervene with its related classes Teacher and Module are also mapped

to the three tables Intervene, Teacher and Module. Moreover, the general class Person and its

specific classes are well mapped to the three tables Person, Student and Teacher.

Figure 4.10 shows snapshots of the best-solution quality during the successive iterations

of our algorithm for the Cl2Rs example. One can notice that precision and recall scores

increase (quasi linearly) during the first 50 iterations. For illustration purpose, to calculate

the intermediate precision and recall for the different generations during the execution of

our algorithm, we selected for each iteration the best solution in the Pareto front using

the distance d2. Note that in a normal execution, the selection of the best solution using

d2 is done only at the last iteration. The best solution in this example was found on

the 50th iteration with a precision average of 0.9 and a recall average of 0.85. After that,

all the obtained solutions converged towards this solution. We also examined how the

4.4. Evaluation 79

ID_Person
Name
Address
Phone

Person

Grade
Teacher

Year
Diploma

Student

Reg_Date
Register

Inter_Date
Inter_Hour

Intervene

ID_Module
Name_Module

Module
*

*

*

*

ID_Person
Name
Address
Phone

Person

ID_Person
Year
Diploma

Student

ID_Person
Grade

Teacher

ID_Person
ID_Module
RegDate

Register

ID_Person
ID_Module
Inter_Date
Inter_Hour

Intervene

ID_Module
Name_Module

Module

MfF1

MfF2

MfF3

F1

F2

F3

Figure 4.9 – Excerpt of the solution obtained for the Cl2Rs example

mutation strategies help introducing new material to converge towards a good solution. We

noticed, for example, that at the 35th iteration, MfF2 (Figure 4.9) is mapped to a fragment

that contains just the class Intervene and the class Teacher. However, as the class Intervene

contains the primary/foreign key ID _Module which has a reference to the table Module

in the target model, this fragment was extended later with the table Module by the first

mutation strategy.

4.4.2.3 Performance

The execution time is very important since we use a metaheuristic search to explore

a large space. In our experiments, we used a simple MacBook (2.4GHz CPU and 2G of

RAM). The execution time for recovering transformation trace on our examples (about 50

constructs), with a number of iterations up to 1000, is less than 120 seconds. This is very

acceptable since the recovery process is not intended to be executed on a short-period

basis. We tried with models having different sizes and with the same parameter values

80

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Precision Average
Recall Average

Figure 4.10 – Improvement of the solution quality over the iterations for the Cl2Rs example

(population size and number of iterations), the execution time increases quasi linearly with

the models’ size.

4.4.3 Threats to Validity

The experiment is here conducted on six examples of model transformations. The

choice of the transformation examples could be a threat to the validity of our evalua-

tion. To circumvent this threat, we carefully chose examples from different transformations

(structural/behavioral, exogenous/endogenous, different fragment sizes, etc.). The only

possible limitation to the generalizability is the relative fixed size of the examples (about

50 constructs). We plan to try our approach with models having a larger variation in size

in the future.

Another threat concerns the fact that our experimental setting is semi-real as all the

target models are generated using the known transformation mechanisms, and none was

derived manually by an expert. A possible issue is that transformation engines tend to use

the vocabulary of the source model whereas a human expert could use derived vocabulary

(synonyms, abbreviations, etc.). These situations could be handled by a more subtle way

to measure the lexical similarity.

4.5. The Model Matching Problem 81

4.5 The Model Matching Problem

Applying MDE leads to the creation and the manipulation of a large number of mod-

els. Detect mapping between those models is a very complex task. It needs to be manually

checked especially when models are edited manually. This alignment is then used to gen-

erate model transformation when the goal is to learn model transformation from examples.

In the previous sections, we proposed an approach to automatically generate model

transformation traces from source and target models. We used NSGA-ii, a metaheuristic

method, to solve the problem of the huge number of possible combinations between mod-

els elements. Recovering model transformation traces may be similar to the problem of

model matching. Both of them aim to derive mappings between models. The difference

exists in the nature of examples. While traces are derived from examples issued from a

program transformation, model mappings are extracted from examples given without any

knowledge of their transformation.

Question 1 Can our approach for recovering model transformation traces be applied to the model

matching problem?

We propose in this section to apply our approach to the model matching problem. As

the examples are not issued from a program transformation, transformed elements may be

different from the ones of the source model or may use different naming conventions. Thus,

we propose to use natural language processing techniques, which identify the original

forms of the words, to improve the lexical similarity. We extract the property value lemmas

of M f Fi and Fi in each fragment pair f pi in a solution s using TreeTagger [Schmid, 1994;

Schmid, 1995], a tool for annotating text with part-of-speech and lemma information. It is

used to tag various languages including English, French German, etc. Then, all the distinct

lemmas in s are extracted in a list li. li represents the dimensions of vectors associated to

each source or target fragment in s. For each fragment and each term, the corresponding

dimension is set to 1 if the term exists in the fragment or to 0 otherwise. Then, the similar-

ity is calculated between each pair M f Fi and Fi using the cosine similarity between the two

concerned vectors. The resulting lexical similarity ranges from −1, meaning that M f Fi and

Fi do not share any term, to 1, meaning that M f Fi and Fi use exactly the same terms. The

lexical similarity LexSim(s) of a solution s is equal to the average of the contained pairs’

lexical similarities.

82

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

4.5.1 Evaluation

To illustrate the ability of our approach to derive mappings from source and target

models, we conducted an experiment on six source and target models coming from several

sources on the Internet. The size of models varies between 20 and 40 constructs.

• UML class diagram to Relational Schema model (cl2rs).

• EMF metamodel to Kermeta metamodel (em2ker).

• Kermeta metamodel to EMF metamodel (ker2em).

• UML class diagram to Java code model (cl2jc).

• Ecore metamodel to Jess metamodel (ec2je).

• Book model to publication model (bo2pu).

Source and target models are not obtained by a transformation program and they are not

written by the same person. Thus they may have different vocabularies.

As mentioned before, our algorithm uses a set of parameters. For these examples, there

are set as follows:

• Crossover probability is set to 0.8.

• Mutation probability is set to 0.35

• The initial population is set to 400 solutions for each example.

• We ran the algorithm with a number of iterations equal to twice the size of the pop-

ulation.

• The maximum variation y of the number of target fragments with respect to the

source ones is set to 1. This means that in a solution, we can have a MfF without a

corresponding fragment, or an F without an assigned MfF.

• With a metaheuristic method, we can obtain, for the same example, with the same

parameters, different results on different executions. Thus, we took the best result

from four executions.

Testing the examples consists in generating the mapping from each source and target

models and comparing the obtained mapping with those provided by an expert. This

comparison allows calculating the precision and the recall for each pair f pi = (M f Fi, Fi) in

the obtained solutions.

The precision of a pair is defined as the number of correctly assigned constructs (Ccorrect)

among the total number of constructs (CtotalNbr) (Equation 4.5).

The recall of a pair is defined as the number of correctly assigned constructs among the

number of expected constructs (Cexpert) (Equation 4.6).

4.5. The Model Matching Problem 83

Precision(f pi) =
Ccorrect

CtotalNbr
(4.5)

Recall(f pi) =
Ccorrect

Cexpert
(4.6)

The precision (resp. the recall) of a solution is defined as the average precision (resp. recall)

of its fragment pairs.

Results and Discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

cl2rs em2ker ker2em cl2jc ec2je bo2Pu

Precision Average

Figure 4.11 – Precision average measured on the six examples

 0

 0.2

 0.4

 0.6

 0.8

 1

cl2rs em2ker ker2em cl2jc ec2je bo2Pu

Recall Average

Figure 4.12 – Recall average measured on the six examples

During our experiments, we obtained good results confirmed by the precision and recall

averages shown in Figure 4.11 and Figure 4.12. The precision scores are all between 0.87

and 0.92 and the recall scores are higher than 0.76 in all cases. The scores of UML class

diagram to relational schema model are interesting (0.92 precision and 0.86 recall). This is

very encouraging since we used different types of examples.

84

Chapter 4. Model Transformation Traceability and Model Matching:
metaheuristic approaches

Results and Discussion

The execution time is very important since we use a metaheuristic method. In our experi-

ments, we used a simple macBook (2.4 GHz CPU and 2G of RAM). The execution time for

generating a mapping between source and target models with a number of iterations up to

800, is less than 90 seconds. We note also that the execution time increases quasi linearly

with the models’ size.

Threats to validity

The experiment is here conducted on six source and target models. Those models have dif-

ferent size, vocabulary and structure. To help us improving the model matching algorithm,

additional experiments have to be conducted, especially to study the two following issues:

• The relatively fixed size of the used examples. Larger models and more examples

have to be considered in the future.

• The correctness of the obtained mapping is manually measured by an expert and this

may be a hard task especially when using larger models. An automatic measure may

be defined in the future.

4.6 Conclusion

In this chapter, we proposed a novel approach for the recovery of transformation trace

for two arbitrary source and target models. Our approach does not require any knowledge

of the transformation. To implement this approach, we adapted the NSGA-ii algorithm

to explore the space of mapping possibilities between the two models. We evaluated our

approach on six different cases corresponding to six distinct transformation problems. The

obtained results indicate that recovered traces are very similar to the expected ones. For

five of them, the precision is higher than 90% and the recall higher than 84%.

We also tested this approach on the model matching problem. Furthermore, we im-

proved the lexical similarity function by using a natural language processing technique

to annotate text. In order to validate this proposal, we performed experiments on six

source and targets models and compared, using retrieval information metrics, the obtained

matchings to the expected ones. The results are promising. For all the examples, precision

average is higher than 0.8 and recall average is higher than 0.76.

Despite these encouraging results, there is still a room for improvement. First, we

plan to conduct more experiments to test our approach on other transformation types and

compare our results with the ones of the other approaches. From the algorithmic perspec-

4.6. Conclusion 85

tive, we will explore other functions to approximate the semantic equivalence between the

source and target model. This can be done, for example, by more sophisticated lexical sim-

ilarity techniques such as word dictionary. Another direction worth to explore is the use of

examples of past traces to recover a trace for a newly seen pair of models. In addition, the

constraint of meaningfulness of the source fragments could be relaxed to handle a wider

spectrum of transformation problems.

As the principal goal of this thesis is to learn model transformation from examples, we

plan to use the generated many-to-many mapping links as an input to our first contribution

(Chapter 3) to derive transformation rules.

Conclusions and perspectives

In this Chapter, we summarize the results and conclusions of the dissertation. We also

discuss opportunities for extending our work.

Main Contributions

The main objective of this thesis was to assist the writing of a model transformation

and understand how a transformation operates. This problem is crucial and one of the

most studied issues in the field of Model Driven Engineering. Our main contributions are

as follows.

Generation of operational transformation rules from examples. We proposed in

Chapter 3 an approach to generate operational transformation rules from transformation

examples. We extended a previous work which uses the Relational Concept Analysis as a

learning technique to generate transformation patterns. These patterns are not all relevant.

Thus, we developed a technique to extract the pertinent ones. Then, we used the language

and the rule engine JESS to transform them into executable rules. Through an experimen-

tation on different model transformations, we showed the effectiveness of our approach.

This work was published in [Saada et al., 2012a].

Comparison of strategies to better learn model transformations. To learn transforma-

tion rules from examples, it is important to know how we better use examples to obtain

pertinent rules. Thus, we performed an experimentation to compare two strategies for

learning model transformations from examples. The first one consists in using each exam-

ple separately to derive transformation rules and then gathering the rules, or gathering all

the examples and derive transformation rules. The execution of the obtained rules of the

first strategy gave good results in our experiment. The rule engine searches and finds for

each example the set of rules to apply. On the contrary, the rules of the second strategy are

larger and contain more information. Thus the rule engine does not find a rule to apply

for the simple examples.

This work was published in [Saada et al., 2012b].

87

88 Conclusions and perspectives

Recovering transformation traces from transformation examples. In Chapter 4, we fo-

cused on recovering transformation traces from transformation examples. These traces be-

tween models are essential in an MDE process where the models are handled successively

using model transformations. They can be useful for different problems, e.g., locating bugs

during the execution of a transformation. Our underlying purpose is to use in future work

those traces to learn model transformations. We proposed an approach based on a multi-

objective meta-heuristic to derive a many-to-many matching between models coming from

a transformation program. Thus, we searched to associate a group of m source elements

to a group of n target elements according to the lexical and structural similarities between

them. Our approach is evaluated through different model transformations examples.

This work was published in [Saada et al., 2013b].

An approach to the model matching problem. The problem of transformation traces

recovery is similar to the model matching problem. In the first problem, examples are

issued from a transformation program. Thus, it is easy to find lexical and structural simi-

larity between models. However, in the second context, the transformation between source

and target models may be manually done , or the models may not come from a transfor-

mation at all and this may cause more lexical and structural variations between models.

Hence, we defined a variant of our previous approach to deal with the model matching

problem. We used a natural language processing technique to improve the lexical similar-

ity. Our approach produces matchings of type many-to-many between models.

This work was published in [Saada et al., 2013a].

Ongoing work and open issues

This section covers the issues not handled by our proposed approaches and discusses

some possible extensions of our current work.

First, the performance of our contributions depends on the availability of good quality

examples, which could be difficult to collect. Second, since we used an optimization tech-

nique, the process may spend more time with large size models. Thus, we plan to conduct

more experiments to better test our approaches.

For the generation of transformation rules, we plan to transform the obtained JESS facts

(after the rule application) to produce models conforming to the initial meta-models. Fur-

thermore, we plan to learn rules whose premise and conclusion have several main elements

Conclusions and perspectives 89

!"#$%&'(")&*

!"#$%&'(&+,(")&*

+,$-&+'(")&*

+,$-&+'(&+,(")&*

+$,%&'$&%".&$/

'''''''''''*&,$010-'
+$,0!2"$(,+1"0'3,++&$0!(")&*!'(,3310-

+$,0!2"$(,+1"0'3,++&$0!

!"#

!$#

!%#

''''''''''%$&,+10-'
+$,0!2"$(,+1"0'$#*&!

'''''&&'()*+,-'.+/&
,*+.01'*2+,-'.&*3/)0

Figure 4.13 – Learning transformation rules process

and design heuristics to select the best rule to apply when several rules are candidate for

the same model element.

Recovering traces from model transformations needs other functions to approximate

the semantic equivalence between the source and target models. Thus, we plan to enhance

our lexical similarity techniques using for example a word dictionary. In addition, the con-

straint of meaningfulness of the source fragments used could be relaxed to handle a wider

spectrum of transformation problems. We are looking also to use another metaheuristic to

compare it with NSGA-ii.

In this thesis, we based our proposed work on a previous work which learns transfor-

mation patterns from mappings of type 1-1 between the model constructs. As future work,

we plan to use our contributions and restart the process to generate operational rules as

mentioned in Figure 4.13:

1. Extract mappings from examples is very important in a learning process. Thus, we

plan to use our recovering traces approach to generate many-to-many mappings be-

tween models constructs.

90 Conclusions and perspectives

2. As a learning technique, we plan to test RCA with the obtained many-to-many map-

pings to obtain transformation patterns. However, the current learning process with

RCA deals with 1-1 mapping. A first idea to deal with n-m matchings is to propose

a new encoding, such that a matching has not one source and one target elements

but several ones. The current encoding does not allow us to express that a group of

source elements is transformed into a group of target elements. Thus, the notion of

group has to be reified in the encoding of mappings.

Our studied learning strategies will help us also to better use transformation exam-

ples (separately or gathered).

3. The operationalization of transformation patterns is very important. It helps to test

the rules and execute them on different examples. Thus, we plan to use our approach

to generate operational rules from the new obtained patterns.

Finally, we can extend our work by applying our approaches on the metamodel level. In

this thesis, we focused our work on the model level. We plan to extract mapping between

metamodels and then generate transformation rules. In this level, a considerable lexical

and structural variation may exist between two given metamodels that are written in an

independent way. Concerning the lexical variation, the lexical similarity may be modified

so as to use dictionaries that may contain information or synonyms for example. However

metamodels deal with very specific domains, and thus technical vocabulary, such that the

used vocabulary may not be present in several purpose dictionaries, e.g., WordNet [Miller,

1980]. It will be better to use specific and technical dictionaries, but such dictionaries are not

likely to exist for all the metamodels. An alternative way is to build such a dictionary, for

example using the dedicated game JeuxDeMots [Lafoucarde, 2011]. However, this requires

the interaction of experts for each involved metamodel to build the dictionary.

Related Publications

I have started my PhD in January 2011. In the following, we give our publications

during this thesis.

• International Conferences and workshops

– Hajer Saada, Marianne Huchard, Clémentine Nebut, Houari Sahraoui. «Model

Matching for Model Transformation: A meta-heuristic Approach», 2nd Inter-

national Conference on Model Driven Engineering and Software Development

(MODELSWARD), 2013.

– Hajer Saada, Marianne Huchard, Clémentine Nebut, Houari Sahraoui. «Recov-

ering Model Transformation Traces using Multi-Objective Optimization», 28th

IEEE/ACM International Conference on Automated Software Engineering (new

ideas paper) (ASE), 2013.

– Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, Houari

Sahraoui. «Generation of operational transformation rules from examples of model

transformations», 15th IEEE/ACM International Conference on Model Driven En-

gineering Languages and Systems (MODELS), 2012.

– Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, Houari

Sahraoui. «Learning Model Transformations from Examples using FCA: One for

All or All for One ?», 9th International Conference on Concept Lattices and Their

Applications (CLA), 2012.

– Xavier Dolques, Marianne Huchard, Clémentine Nebut, Hajer Saada. «Formal and

Relational Concept Analysis approaches in Software Engineering: an overview and

an application to learn model transformation patterns in examples». ICESE’11:

First ICESE Virtual Workshop, Search-based Model-Driven Engineering, Qatar

(2011).

• National Conferences

– Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, Houari

Sahraoui. «Generation of operational transformation rules from examples», actes

des 4èmes journées nationales du GDR GPL, 2012.

91

Bibliography

[Agrawal et al., 2006] Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi, and Attila

Vizhanyo. The design of a language for model transformations. Software and System

Modeling, 5(3):261–288, 2006. (Cited on page 23.)

[Akehurst and Kent, 2002] David Akehurst and Stuart Kent. A relational approach to

defining transformations in a metamodel. pages 243–258. Springer, 2002. (Cited on

page 22.)

[Amar et al., 2010] Bastien Amar, Herve Leblanc, Bernard Coulette, and Clementine Nebut.

Using aspect-oriented programming to trace imperative transformations. In Proceedings

of the 2010 14th IEEE International Enterprise Distributed Object Computing Conference, pages

143–152, 2010. (Cited on pages 29, 32, and 62.)

[Balogh and Varro, 2009] Zoltan Balogh and Daniel Varro. Model transformation by ex-

ample using inductive logic programming. Software and Systems Modeling, 8(3):347–364,

2009. (Cited on pages 26, 28, and 29.)

[ben Fadhel et al., 2012] Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and

Manuel Wimmer. Search-based detection of high-level model changes. In ICSM, pages

212–221, 2012. (Cited on page 30.)

[Biehl, 2010] Matthias Biehl. Literature study on model transformations. Technical Report

ISRN/KTH/MMK/R-10/07-SE, Royal Institute of Technology, 2010. (Cited on page 24.)

[Brosch et al., 2009] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel

Wimmer, Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger. An example is

worth a thousand words: Composite operation modeling by-example. In Proceedings of

the 12th International Conference on Model Driven Engineering Languages and Systems, MOD-

ELS ’09, pages 271–285, Berlin, Heidelberg, 2009. Springer-Verlag. (Cited on pages 27

and 29.)

[Bézivin et al., 2003] Jean Bézivin, Grégoire Dupé, Fredéric Jouault, Gilles Pitette, and Ja-

mal Eddine Rougui. First experiments with the atl model transformation language:

Transforming xslt into xquery. In OOPSLA 2003 Workshop, 2003. (Cited on pages 29

and 62.)

93

94 Bibliography

[Choi et al., 2006] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology

mapping. SIGMOD Rec., 35(3):34–41, 2006. (Cited on page 31.)

[Clark et al., 2004] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied

metamodelling, a foundation for language driven development. Technical report, 2004.

(Cited on page 22.)

[Csertán et al., 2002] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, An-

drás Pataricza, and Dániel Varró. Viatra: Visual automated transformations for formal

verification and validation of uml models. In Proceedings of the 17th IEEE international

conference on Automated software engineering. IEEE Computer Society, 2002. (Cited on

pages 23 and 36.)

[Cysneiros et al., 2003] Gilberto A. A. Cysneiros, Filho Andrea, and Zisman George

Spanoudakis. Traceability approach for i* and uml models. In in Proceedings of 2nd

International Workshop on Software Engineering for Large-Scale Multi-Agent Systems (SEL-

MAS’03, 2003. (Cited on pages 30, 31, 32, and 62.)

[Czarnecki and Helsen, 2006] Krzysztof Czarnecki and Simon Helsen. Feature-based sur-

vey of model transformation approaches. IBM SYSTEMS JOURNAL, 45(3):621–645, 2006.

(Cited on page 22.)

[Czarnecki, 2005] Krzysztof Czarnecki. Mapping features to models: A template approach

based on superimposed variants. In GPCE 2005 - Generative Programming and Component

Enginering. 4th International Conference, pages 422–437. Springer, 2005. (Cited on page 22.)

[Daniele, 2006] Laura Maria Daniele. Towards a Rule-based Approach for Context-Aware Appli-

cations. PhD thesis, University of Twente The Netherlands, May 2006. (Cited on pages 12

and 37.)

[Deb et al., 2002] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast

and elist multiobjective genetic algorithm: Nsga-II. IEEE Trans, Evolutionary Computation,

6(2):182–197, 2002. (Cited on page 15.)

[Del Fabro and Valduriez, 2007] Marcos Didonet Del Fabro and Patrick Valduriez. Semi-

automatic model integration using matching transformation and weaving models. In

International Conference SAC’07, pages 963–970. ACM, 2007. (Cited on pages 25 and 28.)

[Dolques et al., 2009] Xavier Dolques, Marianne Huchard, and Clémentine Nebut. From

transformation traces to transformation rules: Assisting model driven engineering ap-

proach with formal concept analysis. In Supplementary Proceedings of ICCS’09, pages

15–29, 2009. (Cited on pages 4, 27, 37, 38, and 39.)

Bibliography 95

[Dolques et al., 2010] Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe

Reitz. Learning transformation rules from transformation examples: An approach based

on relational concept analysis. In Companion proceedings of EDOC’10. IEEE Computer

Society Press, 2010. à paraître. (Cited on page 28.)

[Dolques et al., 2011] Xavier Dolques, Aymen Dogui, Jean-Rémy Falleri, Marianne

Huchard, Clémentine Nebut, and François Pfister. Easing model transformation learn-

ing with automatically aligned examples. In 7th European Conference, ECMFA 2011, pages

189–204, 2011. (Cited on pages 27, 29, and 31.)

[Fabro and Valduriez, 2009] Marcos Didonet Del Fabro and Patrick Valduriez. Towards

the efficient development of model transformations using model weaving and matching

transformations. Software and System Modeling, 8(3):305–324, 2009. (Cited on page 31.)

[Falleri et al., 2008] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, and Clé-

mentine Nebut. Meta-model matching for automatic model transformation generation.

In MODELS’08, LNCS 5301, pages 326–340. Springer, 2008. (Cited on pages 25, 28,

and 31.)

[Frank, 2004] Budinsky Frank. Eclipse Modeling Framework (Eclipse Series). Addison-Wesley

Professional, 2004. (Cited on pages 18, 23, and 63.)

[Ganter and Wille, 1999] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis, Math-

ematical Foundations. Springer, 1999. (Cited on pages 7 and 37.)

[García-Magariño et al., 2009] Iván García-Magariño, Jorge J. Gómez-Sanz, and Rubén

Fuentes-Fernández. Model transformation by-example: An algorithm for generating

many-to-many transformation rules in several model transformation languages. In

ICMT, pages 52–66, 2009. (Cited on page 27.)

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,

1989. (Cited on page 32.)

[Grammel and Kastenholz, 2010] Birgit Grammel and Stefan Kastenholz. A generic trace-

ability framework for facet-based traceability data extraction in model-driven software

development. In Proceedings of the 6th ECMFA Traceability Workshop, ECMFA-TW ’10,

pages 7–14. ACM, 2010. (Cited on pages 29, 32, and 62.)

[Grammel et al., 2012] Birgit Grammel, Stefan Kastenholz, and Konrad Voigt. Model

matching for trace link generation in model-driven software development. In Proceed-

96 Bibliography

ings of the 15th international conference on Model Driven Engineering Languages and Systems,

MODELS’12, pages 609–625, 2012. (Cited on pages 30, 31, 32, 62, and 63.)

[Guerra et al., 2013] Esther Guerra, Juan Lara, Dimitrios S. Kolovos, Richard F. Paige, and

Osmar Marchi Santos. Engineering model transformations with transML. Softw. Syst.

Model., 12(3):555–577, July 2013. (Cited on page 33.)

[Hacene et al., 2013] Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, and

Petko Valtchev. Relational concept analysis: mining concept lattices from multi-relational

data. Ann. Math. Artif. Intell., 67(1):81–108, 2013. (Cited on page 12.)

[Harman et al., 2001] Mark Harman, Ub Ph, and Bryan F. Jones. Search-based software

engineering. Information and Software Technology, 43:833–839, 2001. (Cited on page 32.)

[Harman et al., 2012] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-

based software engineering: Trends, techniques and applications. ACM Comput. Surv.,

45(1):11:1–11:61, 2012. (Cited on page 15.)

[Harman, 2007] Mark Harman. The current state and future of search based software

engineering. In 2007 Future of Software Engineering, FOSE ’07, pages 342–357, Washington,

DC, USA, 2007. IEEE Computer Society. (Cited on page 32.)

[Harman, 2011] M. Harman. Software engineering meets evolutionary computation. IEEE

Computer, 44(10):31–39, 2011. (Cited on page 14.)

[Hartung et al., 2010] Michael Hartung, Anika Gross, and Erhard Rahm. Rule-based gen-

eration of diff evolution mappings between ontology versions. CoRR, 2010. (Cited on

page 30.)

[Hill, 2003] Ernest Friedman Hill. Jess in Action: Java Rule-Based Systems. Manning Publica-

tions Co., Greenwich, CT, USA, 2003. (Cited on pages 5, 12, 13, and 73.)

[Horn et al., 1994] J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched pareto genetic

algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on

Evolutionary Computation, pages 82–87. IEEE, 1994. (Cited on page 15.)

[Huchard et al., 2007] Marianne Huchard, Mohamed Rouane Hacène, Cyril Roume, and

Petko Valtchev. Relational concept discovery in structured datasets. Ann. Math. Artif.

Intell., 49(1-4):39–76, 2007. (Cited on pages 4, 7, and 27.)

[Jouault et al., 2008] Frederic Jouault, Freddy Allilaire, Jean Bezivin, and Ivan Kurtev. Atl:

A model transformation tool. Sci. Comput. Program., 72(1-2):31–39, June 2008. (Cited on

page 23.)

Bibliography 97

[Jouault, 2005] Frédéric Jouault. Loosely coupled traceability for atl. In In Proceedings of the

European Conference on Model Driven Architecture (ECMDA) workshop on traceability, pages

29–37, 2005. (Cited on pages 29, 32, and 62.)

[Kappel et al., 2006] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler,

Thomas Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting

metamodels to ontologies : A step to the semantic integration of modeling languages.

In Proceedings of MoDELS 2006, pages 528–542, 2006. (Cited on page 25.)

[Kappel et al., 2012] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland

Schwinger, and Manuel Wimmer. Conceptual modelling and its theoretical foundations.

chapter Model transformation by-example: a survey of the first wave, pages 197–215.

Springer-Verlag, Berlin, Heidelberg, 2012. (Cited on page 26.)

[Kehrer et al., 2011] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based ap-

proach to the semantic lifting of model differences in the context of model versioning.

In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’11, pages 163–172, 2011. (Cited on page 30.)

[Kennedy and Eberhart, 1995] James Kennedy and Russel C. Eberhart. Particle swarm op-

timization. In Proceedings IEEE International Conference on Neural Networks, pages 1942–

1948, 1995. (Cited on page 28.)

[Kessentini et al., 2008] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum.

Model transformation as an optimization problem. In MODELS’08, LNCS 5301, pages

159–173. Springer, 2008. (Cited on pages 27, 28, and 29.)

[Kessentini et al., 2009] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum.

Méta-modélisation de la transformation de modèles par l’exemple : approche méta-

heuristiques. In Bernard Carré and Olivier Zendra, editors, LMO’09: Langages et Modèles

à Objets, pages 75–90, Nancy, mars 2009. Cepaduès. (Cited on page 27.)

[Kessentini et al., 2010a] Marouane Kessentini, Arbi Bouchoucha, Houari Sahraoui, and

Mounir Boukadoum. Example-based sequence diagrams to colored petri nets transfor-

mation using heuristic search. In Modelling Foundations and Applications, pages 156–172.

Springer, 2010. (Cited on pages 27 and 28.)

[Kessentini et al., 2010b] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and

Omar Ben Omar. Model transformation by example : a search-based approach. Software

and Systems Modeling Journal, 2010. (Cited on page 37.)

98 Bibliography

[Kessentini, 2010] Marouane Kessentini. Transformation by Example. PhD thesis, University

of Montreal, 2010. (Cited on pages 4, 32, 36, 52, 54, and 73.)

[Kirkpatrick et al., 1983] Scott Kirkpatrick, Charles Daniel Gelatt, and Mario P. Vecchi. Op-

timization by simulated annealing. Science, 220:671–680, 1983. (Cited on page 28.)

[Kleppe et al., 2003] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. The Model

Driven Architecture: Practice and Promise. Addison-Wesley, 2003. (Cited on pages 18

and 20.)

[Knowles and Corne, 1999] J. Knowles and D. Corne. The pareto archived evolution strat-

egy: A new baseline algorithm for pareto multiobjective optimisation. In Proceedings of

the Congress on Evolutionary Computation, volume 1, pages 98–105. IEEE, 1999. (Cited on

page 15.)

[Kolovos et al., 2008] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. Polack. The

epsilon transformation language. In Proceedings of the 1st international conference on Theory

and Practice of Model Transformations, ICMT ’08, pages 46–60, 2008. (Cited on page 24.)

[Kurtev et al., 2007] I. Kurtev, M. Dee, A. Göknil, and K.G. Berg van den. Traceability-

based change management in operational mappings. In ECMDA Traceability Workshop

2007, pages 57–67, 2007. (Cited on pages 29, 32, and 62.)

[Laarhoven and Aarts, 1987] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated an-

nealing: theory and applications. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

(Cited on page 32.)

[Lafoucarde, 2011] Mathieu Lafoucarde. Jeuxdemots, 2011.

http://www.jeuxdemots.org/jdm-accueil.php. (Cited on page 90.)

[Langer et al., 2010] Philip Langer, Manuel Wimmer, and Gerti Kappel. Model-to-model

transformations by demonstration. In ICMT, pages 153–167, 2010. (Cited on pages 27,

28, and 29.)

[Laumanns et al., 2002] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining con-

vergence and diversity in evolutionary multiobjective optimization. Evolutionary compu-

tation, 10(3):263–282, 2002. (Cited on page 15.)

[Lieberman, 1993] Henry Lieberman. Programming by example, 1993.

http://web.media.mit.edu/ lieber/PBE/index.html. (Cited on page 26.)

[Lopes et al., 2005] Denivaldo Lopes, Slimane Hammoudi, Jean Bezivin, and Frederic

Jouault. Generating transformation definition from mapping specification: Applica-

Bibliography 99

tion to web service platform. In CAiSE’05, LNCS 3520, pages 309–325, 2005. (Cited

on pages 24 and 28.)

[Lopes et al., 2006a] D. Lopes, S. Hammoudi, and Z. Abdelouahab. Schema matching in the

context of model driven engineering: From theory to practice. In Advances in Systems,

Computing Sciences and Software Engineering, pages 219–227. Springer, 2006. (Cited on

page 31.)

[Lopes et al., 2006b] Denivaldo Lopes, Slimane Hammoudi, and Zair Abdelouahab.

Schema matching in the context of model driven engineering: From theory to prac-

tice. In Tarek Sobh and Khaled Elleithy, editors, Advances in Systems, Computing Sciences

and Software Engineering, pages 219–227. Springer, 2006. (Cited on page 24.)

[Lopes et al., 2009] Denivaldo Lopes, Slimane Hammoudi, and Zair Abdelouahab. A step

forward in semi-automatic metamodel matching: Algorithms and tool. In Joaquim Filipe

and José Cordeiro, editors, Proceeding of ICEIS 2009, pages 137–148. Springer, 2009. (Cited

on pages 25 and 31.)

[Luong et al., 2008] Hong-Viet Luong, Thomas Lambolais, and Anne-Lise Courbis. Im-

plementation of the conformance relation for incremental development of behavioural

models. In MoDELS, pages 356–370, 2008. (Cited on page 73.)

[Melnik et al., 2002] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity

flooding : A versatile graph matching algorithm and its application to schema matching.

In ICDE, pages 117–128. IEEE Computer Society, 2002. (Cited on page 25.)

[Mens and Gorp, 2006] Tom Mens and Pieter Van Gorp. A taxonomy of model transfor-

mation. Electr. Notes Theor. Comput. Sci., 152:125–142, 2006. (Cited on pages 3 and 20.)

[Miller, 1980] George A. Miller. Wordnet, a lexical database for english, 1980.

http://wordnet.princeton.edu/. (Cited on page 90.)

[Muggleton and De Raedt, 1994] Stephen Muggleton and Luc De Raedt. Inductive logic

programming: Theory and methods. Journal of Logic Programming, 19/20:629–679, 1994.

(Cited on page 26.)

[Muller et al., 2005] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving

executability into object-oriented meta-languages. In L. Briand and S. Kent, editors,

Proceedings of MODELS/UML’2005, 2005. (Cited on page 22.)

[Noy and Musen, 2001] Natalya F. Noy and Mark A. Musen. Anchor-prompt: Using non-

local context for semantic matching. In Proc. of the Workshop on Ontologies and Information

Sharing at IJCAI-2001, pages 63–70, Seattle (USA), 2001. (Cited on page 27.)

100 Bibliography

[OMG, 2002] OMG. Object management group: Mof 2.0 query view transformation rfp,

2002. (Cited on page 22.)

[OMG, 2005] OMG. Object management group: Mof 2.0 query view transformation, 2005.

(Cited on pages 23, 29, 32, and 62.)

[OMG, 2006] OMG. Meta object facility core specification. Technical report, Object Man-

agement Group, 2006. (Cited on pages 18, 29, 32, and 62.)

[Paige et al., 2011] Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos, Kiran J. Fer-

nandes, Christopher Power, Goran K. Olsen, and Steffen Zschaler. Rigorous identi-

fication and encoding of trace-links in model-driven engineering. Softw. Syst. Model.,

10(4):469–487, October 2011. (Cited on page 62.)

[Pfister et al., 2012] Francois Pfister, Vincent Chapurlat, Marianne Huchard Huchard, and

Clementine Nebut. A proposed tool and process to design domain specific modeling

languages. Technical report, LGI2P, Ecole Des Mines, 2012. (Cited on page 73.)

[Rahm and Bernstein, 2001] Erhard Rahm and Philip A. Bernstein. A survey of approaches

to automatic schema matching. The VLDB Journal, 10(4):334–350, 2001. (Cited on pages 24

and 31.)

[Rothenberg, 1989] Jeff Rothenberg. AI, Simulation & Modeling, chapter The Nature of Mod-

eling, pages 75–92. John Wiley & Sons, Inc., 1989. (Cited on page 18.)

[Saada et al., 2012a] Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut,

and Houari Sahraoui. Generation of operational transformation rules from examples

of model transformations. In MoDELS, pages 546–561, 2012. (Cited on pages 73, 74,

and 87.)

[Saada et al., 2012b] Hajer Saada, Xavier Dolques, Marianne Huchard, Clementine Nebut,

and Houari A. Sahraoui. Learning model transformations from examples using fca: One

for all or all for one? In CLA, pages 45–56, 2012. (Cited on page 87.)

[Saada et al., 2013a] Hajer Saada, Marianne Huchard, Clementine Nebut, and Houari A.

Sahraoui. Model matching for model transformation: A meta-heuristic approach. will

be published in the Model-Driven Engineering and Software Development proceeding,

2013. (Cited on page 88.)

[Saada et al., 2013b] Hajer Saada, Marianne Huchard, Clementine Nebut, and Houari A.

Sahraoui. Recovering model transformation traces using multi-objective optimization.

will be published in the Automated Software Engineering proceeding, 2013. (Cited on

page 88.)

Bibliography 101

[Schmid, 1994] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees,

1994. (Cited on page 81.)

[Schmid, 1995] Helmut Schmid. Improvements in part-of-speech tagging with an applica-

tion to german. In In Proceedings of the ACL SIGDAT-Workshop, pages 47–50, 1995. (Cited

on page 81.)

[Schmidt, 2006] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2),

February 2006. (Cited on pages 3 and 23.)

[Shousha et al., 2008] Marwa Shousha, Lionel Briand, and Yvan Labiche. A uml/spt model

analysis methodology for concurrent systems based on genetic algorithms. In Proceed-

ings of the 11th international conference on Model Driven Engineering Languages and Sys-

tems, MoDELS ’08, pages 475–489, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on

page 32.)

[Shvaiko and Euzenat, 2005] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-

based matching approaches. pages 146–171, 2005. (Cited on pages 24 and 31.)

[Soley and the OMG Staff Strategy Group, 2000] Richard Soley and the OMG Staff Strat-

egy Group. Model driven architecture. Technical report, Object Management Group,

2000. (Cited on pages 3, 19, and 23.)

[Sun et al., 2009] Yu Sun, Jules White, and Jeff Gray. Model transformation by demonstra-

tion. In MoDELS, pages 712–726, 2009. (Cited on pages 27, 28, and 29.)

[Taentzer, 2000] Gabriele Taentzer. Agg: A tool environment for algebraic graph transfor-

mation. In in AGTIVE, ser. Lecture Notes in Computer Science, pages 481–488. Springer,

2000. (Cited on page 23.)

[van Amstel et al., 2012] Marcel van Amstel, Mark G. J. van den Brand, and Alexander

Serebrenik. Traceability visualization in model transformations with trace vis. In ICMT,

pages 152–159, 2012. (Cited on pages 29, 32, and 62.)

[Varró, 2006] Dániel Varró. Model transformation by example. In Proc. MODELS 2006,

LNCS 4199, pages 410–424. Springer, 2006. (Cited on pages 24, 26, and 37.)

[Vermolen et al., 2011] Sander Vermolen, Guido Wachsmuth, and Eelco Visser. Recon-

structing complex metamodel evolution. In SLE, pages 201–221, 2011. (Cited on page 30.)

[Vojtisek and Jezequel, 2004] Didier Vojtisek and Jean-Marc Jezequel. Mtl and umlaut ng -

engine and framework for model transformation. Technical report, IRISA, INRIA France,

2004. (Cited on page 22.)

102 Bibliography

[Wimmer et al., 2007] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard

Kramler. Towards model transformation generation by-example. In HICSS ’07: Proc. of

the 40th Annual Hawaii International Conf. on System Sciences, page 285b. IEEE Computer

Society, 2007. (Cited on pages 27, 28, and 29.)

[Xing and Stroulia, 2005] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for

object-oriented design differencing. In ASE, pages 54–65, 2005. (Cited on page 30.)

[Xing and Stroulia, 2006] Zhenchang Xing and Eleni Stroulia. Refactoring detection based

on umldiff change-facts queries. In WCRE, pages 263–274, 2006. (Cited on page 30.)

[Zitzler and Thiele, 1999] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary

algorithms: a comparative case study and the strength pareto approach. IEEE Trans.

Evolutionary Computation, 3(4):257–271, 1999. (Cited on page 15.)

List of Figures

1.1 The concept lattice for the formal context of Table 1.1 9

1.2 The obtained lattices for the pizza example . 12

1.3 Jess metamodel . 14

1.4 NSGA-ii main (Deb et Al, 2002). 16

2.1 Modeling in MDE . 19

2.2 Model Transformation process . 21

3.1 Example for the UML2R transformation: input model 38

3.2 Example for the UML2R transformation: transformed model 38

3.3 A two-step approach for MTBE . 38

3.4 A simplified UML metamodel . 40

3.5 A UML Model . 40

3.6 An entity relationship metamodel . 41

3.7 An entity relationship model . 41

3.8 An example of mapping between two excerpts of models of Figures 3.5 and

3.7 . 42

3.9 The lattice obtained from the UML model of Figure 3.5 43

3.10 The lattice obtained from the entity relationship model of Figure 3.7 44

3.11 The lattice obtained from mapping between the models of Figures 3.5 and 3.7 45

3.12 An excerpt of the obtained hierarchy of transformation patterns 46

3.13 An except of the obtained hierarchy of transformation patterns after simpli-

fication . 47

3.14 Transformation Process . 48

3.15 Transformation of an extract of relational meta-model to Jess 49

3.16 Transformation of a partial view of relational schema model to Jess 50

3.17 Example of the transformation of a pattern into Jess 51

3.18 Examples of transformation patterns extracted from lattices Ll1 56

3.19 Example of transformation pattern extracted from lattice L1 56

103

104 List of Figures

4.1 A meta model for UML class diagrams . 65

4.2 An instance diagram of the class diagram metamodel of Figure 4.1 66

4.3 Approach overview . 66

4.4 An example of transformation links between a class diagram and an entity-

relationship model . 67

4.5 A trace randomly generated for the models of Figure 4.4 70

4.6 An example of crossover . 72

4.7 UML state machine to LTS transformation example 77

4.8 Evaluation results . 78

4.9 Excerpt of the solution obtained for the Cl2Rs example 79

4.10 Improvement of the solution quality over the iterations for the Cl2Rs example 80

4.11 Precision average measured on the six examples 83

4.12 Recall average measured on the six examples 83

4.13 Learning transformation rules process . 89

List of Tables

1.1 A formal context for describing animals . 8

1.2 Relational Context Family (RCF) / object-attributes contexts 10

1.3 Relational Context Family (RCF) / object-object context / part 1 10

1.4 Relational Context Family (RCF) / object-object context / part 2 11

1.5 Existential relational attributes . 11

2.1 Model Transformation approaches. 28

2.2 Model transformation by Examples approaches. 29

2.3 Recovering model transformation traces approaches. 32

3.1 Result of the first fold cross validation . 53

3.2 Result of the second fold cross validation . 53

3.3 Result of the third fold cross validation . 53

3.4 Result of the first fold cross validation . 57

3.5 Result of the second fold cross validation . 58

3.6 Result of the third fold cross validation . 58

4.1 The actual traces of our examples . 74

4.2 Distance from our best solutions to the optimal ones 77

105

Vers une assistance à la manipulation de transformations de modèles par l’exploitation d’exemples de transformation

L’Ingénierie Dirigée par les Modèles (IDM) est un domaine de recherche en pleine émergence qui considère les modèles
comme des éléments de base. Chaque modèle est conforme à un autre modèle, appelé son méta-modèle, qui définit sa syn-
taxe abstraite et ses concepts. Dans un processus IDM, différents types de modèles sont manipulés par des transformations
de modèles. Une transformation génère un modèle dans un langage cible à partir d’un modèle dans un langage source.
Pour concevoir une transformation, les développeurs doivent avoir une bonne connaissance des méta-modèles concernés
ainsi que des langages de transformation, ce qui rend cette tâche difficile.
Dans cette thèse, nous proposons d’assister l’écriture des transformations et plus généralement de comprendre comment une
transformation opère. Nous adhérons à l’approche de transformation de modèles par l’exemple qui propose de créer une
transformation de modèles à partir d’exemples de transformation. Cela permet d’utiliser la syntaxe concrète définie pour les
méta-modèles, et cela évite donc de requérir que les développeurs aient une bonne maîtrise des méta-modèles utilisés. Dans
ce contexte, nous proposons deux contributions. La première consiste à définir une méthode pour générer des règles de
transformation opérationnelles à partir d’exemples. Nous nous basons sur une approche qui utilise l’Analyse Relationnelle
de Concepts (ARC) comme technique d’apprentissage pour obtenir des patrons de transformation à partir d’un appariement
de type 1-1 entre les modèles. Nous développons une technique pour extraire des règles de transformation opérationnelles à
partir de ces patrons. Ensuite, nous utilisons le langage et le moteur de règles JESS pour exécuter ces règles. Nous étudions
aussi comment mieux apprendre des règles de transformations à partir d’exemples, en utilisant séparément chaque exemple
ou en réunissant tous les exemples. La deuxième contribution consiste à récupérer les traces de transformation à partir
d’exemples de transformation. Ces traces peuvent être utilisées par exemple pour localiser des erreurs durant l’exécution
des programmes de transformation ou vérifier la couverture de tous les modèles d’entrée par une transformation. Dans notre
contexte, nous supposons que ces traces vont servir pour un futur apprentissage des règles de transformation. Nous traitons
tout d’abord le problème de récupération des traces avec des exemples provenant d’un programme de transformation. Nous
proposons une approche basée sur une méta-heuristique multi-objectifs pour générer des traces sous forme d’appariement
de type n-m entre des éléments de modèles. La fonction objectif s’appuie sur une similarité lexicale et structurelle entre
ces éléments. Une extension de cette méthode est proposée pour traiter le problème plus général de l’appariement entre
modèles.

Mots-clés IDM, transformation de modèles, l’approche par exemple, règles opérationelles, traces de transformation, appariement des
modèles, AFC, JESS, meta-heuristique, algorithmes génétiques

Exploiting Model Transformation Examples for Easy Model Transformation Handling (Learning and Recovery)

Model Driven Engineering (MDE) considers models as first class artifacts. Each model conforms to another model, called its
metamodel which defines its abstract syntax and its semantics. Various kinds of models are handled successively in an MDE
development cycle. They are manipulated using, among others, programs called model transformations. A transformation
takes as input a model in a source language and produces a model in a target language. The developers of a transformation
must have a strong knowledge about the source and target metamodels which are involved and about the model transfor-
mation language. This makes the writing of the model transformation difficult.
In this thesis, we address the problem of assisting the writing of a model transformation and more generally of understand-
ing how a transformation operates. We adhere to the Model Transformation By Example (MTBE) approach, which proposes
to create a model transformation using examples of transformation. MTBE allows us to use the concrete syntaxes defined for
the metamodels. Hence, the developers do not need in-depth knowledge about the metamodels. In this context, our thesis
proposes two contributions. As a first contribution, we define a method to generate operational transformation rules from
transformation examples. We extend a previous approach which uses Relational Concept Analysis as a learning technique
for obtaining transformation patterns from 1-1 mapping between models. We develop a technique for extracting relevant
transformation rules from these transformation patterns and we use the JESS language and engine to make the rules exe-
cutable. We also study how we better learn transformation rules from examples, using transformation examples separately
or by gathering all the examples. The second contribution consists in recovering transformation traces from transforma-
tion examples. This trace recovery is useful for several purposes as locating bugs during the execution of transformation
programs, or checking the coverage of all input models by a transformation. In our context, we expect also that this trace
will provide data for a future model transformation learning technique. We first address the trace recovery problem with
examples coming from a transformation program. We propose an approach, based on a multi-objective meta-heuristic, to
generate the many-to-many mapping between model constructs which correspond to a trace. The fitness functions rely on the
lexical and structure similarity between the constructs. We also refine the approach to apply it to the more general problem
of model matching.

Keywords MDE, model transformation, MTBE, operational rules, model transformation traces, model matching, FCA, JESS, meta-

heuristic, genetic algorithm.

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Preliminaries
	Formal Concept Analysis and Relational Concept Analysis
	Java Expert System Shell
	The NSGA-II Algorithm

	State Of The Art
	Model Driven Engineering
	Model Transformation
	Model Transformation Classification
	Model Transformation Languages

	Towards Model Transformation Generation
	Meta-model Matching for Model Transformation Generation
	Model Transformation By Example
	Synthesis

	Model Transformation Traceability
	Summary

	Search Based Software Engineering
	Conclusion

	Generation of Operational Transformation Rules from Examples of Model Transformations
	Introduction
	Overview of the Rules Generation and Execution
	A By-example Approach to Obtain Transformation Patterns
	Obtaining the Transformation Patterns
	Patterns Lattice Simplification
	Rules Generation
	Tool Support and Case study

	Strategies for learning Model Transformations from Examples
	Discussion
	Summary

	Conclusion

	Model Transformation Traceability and Model Matching: metaheuristic approaches
	Introduction
	Approach Overview
	Problem Statement
	Approach Overview

	Adapting NSGA-II to the Transformation Trace Recovery Problem
	Solutions Representation
	Solutions Evaluation
	Operators Definition

	Evaluation
	Experimental Setting
	Results and Discussion
	Threats to Validity

	The Model Matching Problem
	Evaluation

	Conclusion

	Conclusions and perspectives
	Bibliography
	List of Figures
	List of Tables

