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Chapter 2
Introduction and research summary

Confidentiality of communication is generally achieved by ciphering plaintexts with a secret
key. Classic cryptographic schemes consist either in a permutation of the plaintext letters, or
in a substitution of plain letters by cipher letters or in a modular addition of a key as it is
done in the Vigenère cipher [34]. Modern block ciphers combine these three operations through
a substitution permutation network repeated a number of rounds to encrypt a plaintext block.
This is for example the case in the two block-ciphers DES and AES used as standards [35]
during the past three decades. Such secret-key approach necessitates that the two persons
communicating confidentially have to agree beforehand on a secret key.

After the second world war, due to a growing flow of encrypted data, the need of fast and
secure remote key exchange became crucial. In 1976 Diffie and Hellman proposed a key-exchange
protocol based on the intractability of the discrete logarithm problem in a cyclic multiplicative
group. Moreover Diffie and Hellman gave also a generic construction of public key encryption
based on trapdoor function [36]. This idea was realized by Rivest, Adleman and Shamir in [37]
with the design of the RSA public key encryption scheme. The Diffie-Hellman key exchange and
RSA encryption were the two game-changing algorithms in modern cryptography. Furthermore,
after more than 30 years of cryptanalysis, RSA and Diffie-Hellman cryptosystems still remain
unbroken and intensively used in practice.

In the mid 1980’s Miller [38] and Koblitz [39] independently proposed the use of the group
of elliptic curve for implementing protocols based on discrete logarithm. This group is the set of
points on a degree 3 smooth curve of the affine plane. The group law is given by the chord and
tangent rules (cf. Figure 2.1): P +Q is the symmetric of the point at the intersection of the line
(PQ) and the elliptic curve, 2P is obtained as the symmetric of the point at the intersection of
the tangent at P and the curve.

The discrete logarithm problem over an elliptic curve (E(Fq),+) defined over a finite field Fq
is more difficult than in the group (F?q ,×) initially proposed by Diffie and Hellman. Indeed the
best attacks on E(Fq) are the generic attacks: the pollard ρ and kangaroo approaches [40] require√
ord(P ) group operations while the discrete logarithm on F?q can be solved in subexponential

for large characteristic and quasi-polynomial time for small characteristic [41, 42].
The recent revelation of Edward Snowden showed that the Diffie-Hellman key exchange is

one of the recommended approaches for key exchange. Indeed, the generated data are ephemeral.
On the other hands the keys exchanged with the protocol based on RSA can all be recovered if
the RSA secret key is leaked. This is not the case for the Diffie-Hellman scheme.

The core operations in cryptographic protocols are either an exponentiation in a finite field
Fq with q ∈ [22024, 24048] or an exponentiation modulo an integer N of size [22048, 24096] or a
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Figure 2.1: Chord and tangent rules
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scalar multiplication k ·P in an elliptic curves. Such exponentiation (resp. scalar multiplication)
are implemented as a sequence of multiplications in Fq or Z/NZ (resp. additions in E(Fq)).

Since the mid 90s new threats appeared on devices performing sensitive cryptographic com-
putations. Indeed, Kocher et al. [43] showed that secret data can be recovered from the timings
of several executions or by monitoring the power consumption [44] or electromagnetic emana-
tion [45]. For example, the simple power analysis (SPA) uses the fact that the power trace of a
multiplication and a squaring (resp. an addition and a doubling) are different. It is thus possi-
ble to recover from a single trace the exact sequence of operations performed by an embedded
device. When this sequence of operations is correlated to the secret key, this key is leaked to the
attacker. Consequently the cryptographic protocols must be implemented with an algorithm
resistant to such attacks.

Summary of results. This manuscript presents our research results elaborated since 2004 in
the DALI Team at the University of Perpignan in France and also during a stay of two years
2010-2012 at the ECE department of the University of Waterloo, ON, Canada.

We focused on improving multiplication in finite fields since it is the most used and the
most costly operations in the considered cryptosystems. Our results first concerned the design
of efficient parallel and sequential multipliers of binary field F2n . We also tried to improve
algorithms for multiplication in field or ring Z/NZ and in prime field extension crafted for
cryptographic protocols.

Our recent research effort was to include in these efficient multiplication algorithms some
counter-measures preventing side channel attacks. Specifically, during the past three years,
we have been part of the ANR project Pavois. Our task was to provide new approaches for
cryptographic implementation which are resistant against side channel analyses, while remaining
efficient.

We also provided new formulas for elliptic curve operation in E(F3n) and studied parallel
approaches for scalar multiplications in E(F2n) and E(F3n).

Our main results are:

• Subquadratic binary field multipliers based on Toeplitz matrix vector product. Fan and
Hasan in [46] showed that a multiplication in a binary field can be expressed as a Toeplitz
matrix vector product (TMVP). They could design a subquadratic space complexity mul-
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tiplier using the subquadratic formula for TMVP of Winograd [47]. This construction is
advantageous since it results in a multiplier with a reduced space and delay compared to
subquadratic approach based on polynomial multiplication. We extended the approach
of Fan and Hasan to the two following cases: polynomial multiplication modulo an irre-
ducible nearly all one polynomial [1] and multiplication in Dickson polynomial basis [2].
We also introduced a block recombination approach in [3] and used it to improve TMVP
approach for multiplication in type II optimal normal basis [4].

Part of these results are reviewed in Chapter 3, Section 3.2.

• Subquadratic binary field multiplier based on polynomial multiplication. In [48] Bernstein
initiated an optimization of two recursions of Karatsuba formula for polynomial multi-
plication in F2[x]. In [5], we extended the idea of Bernstein to an arbitrary number of
recursions. This lead to an improved parallel multiplier for F2n .

We present this approach in Chapter 3, Section 3.3.

• Hardware architecture for GHASH computation. Galois counter mode [49] is a ciphering
mode for encryption and authentication. It is based on counter-mode for ciphering and
on GHASH function for the generation of the authentication tag. The GHASH function
consists in an evaluation of a polynomial in F2n [T ] in a hash-key element H ∈ F2n . We
made several proposals for hardware architecture for GHASH computation. The first
one uses a block recombination strategy [3] to reduce the space requirement of parallel
implementation of the GHASH function. The second proposal uses the characteristic
polynomial of H in order to reduce the critical path delay of one iteration in a GHASH
computation.

These results are reviewed Chapter 4.

• Multiplication in prime field and prime field extension. In [50] Bajard et al. introduced a
novel system of representation of Fp called AMNS which models a multiplication in Fp as
polynomial multiplication and lattice reduction. In [16] we introduced a Montgomery-like
multiplication in the AMNS system and we also investigated an approach based on multi-
point evaluation by using the polynomial form of a multiplication in AMNS. In another
work [17] we took advantage of the AMNS to represent prime field element as polynomial
U =

∑
i=0,...,n−1 uiγ

i where γ is a root of unity in Fp. This lead us to a simplified

multiplication by γi in Fp and then to an improved DFT approach for multiplication in
Fpk .

We present these results in Chapter 5, Section 5.1.

• Regular exponentiation. In a recent work [18] we proposed a modified word-level form
of two modular Montgomery multiplications [51, 52] by a common operand AB,AC.
These modified Montgomery multiplications share the common computations in AB and
AC which reduces the word-level complexity. We used this approach to improve regular
exponentiation algorithms like the Montgomery-ladder [53] or the left-to-right and right-
to-left 2w-ary exponentiation [54].

• Randomized modular multiplication. In [19], we considered the Montgomery multiplication
in Residue Number System [55, 56]. We proposed in [19] a trade off approach of the leak
resistant arithmetic [57] by randomly exchanging only one or a few moduli of the RNS
bases. We could thus reduce the cost of this randomized modular multiplication.

This approach is reviewed in Chapter 5, Section 5.2.
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• Scalar multiplication over elliptic curves. This concerns elliptic curves defined over fields
F2n and F3n . First, in [20, 6], we proposed some new formulas for point tripling and
thirding over E(F3m). In [6] we proposed new parallel approach for scalar multiplication:
a parallelized version of the Montgomery-ladder in E(F2n), and a parallel (third,triple)-
and-add approach for scalar multiplication in E(F3n).

We review these results in Chapter 6.

Overview of Career. This HDR thesis present works done since 2004, which is the year the
defense of our Phd thesis. These works where conducted while working at the Univeristé de
Perpignan and at the University of Waterloo as detailed below. An overview is given in Fig. 2.2.

Figure 2.2: Career since 2001

Universite Montpellier 2

Phd Student
Temporary associate

professor

Universite de Perpignan

2001 2004 2006

Associate professor

Universite de Perpignan

2010

Research associate

University of Waterloo

2012

Associate professor

Universite de Perpignan

2015

• 2001-2004. PhD Student and teaching assistant at the Université Montpellier 2 in France.
The subject of the thesis was the design of arithmetic operators for cryptographic protocols
based on elliptic curves. This work was supervized by J.-C. Bajard and P. Elbaz-Vincent.

• 2004-2006. Temporary associate Professor in computer science at the Université de Per-
pignan in France, in the team DALI.

• 2006-2010. Associate Professor in the team DALI of the Université de Perpignan.

• 2010-2012. Researcher associate at the University of Waterloo in Canada (two year leave
from the position at the Université de Perpignan). During this time we worked with the
team of Anwar Hasan which is Professor in the electrical engineering department of the
University of Waterloo.

• Associate Professor in the team DALI of the Université de Perpignan and the LIRMM
(CNRS and Université de Montpellier). During this period the work done was part of the
ANR project called Pavois concerning the protection of embedded cryptographic proces-
sors from side channel attacks. With B. Goossens we jointly supervized the preparation
of the Phd thesis of Jean-Marc Robert which was founded by this ANR project.
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Chapter 3
Binary field multiplier

In this chapter we focus on parallel multiplier for extended binary field. We first review
quadratic approaches based on polynomial multiplication and matrix vector formulation of
a multiplication in F2n . We then recall the approach of Fan and Hasan [46] which sets a
multiplication in F2n as a Toeplitz matrix vector product (TMVP) and uses the subquadratic
approach of [47] to design a subquadratic space complexity parallel multiplier.

We then present two works which extend the approach of Fan and Hasan: the first one sets a
multiplication modulo a nearly all one polynomial as a TMVP and the second one improves the
normal basis multiplier based on TMVP of [58]. We also review a multiplier based on Karatsuba
formula for polynomial multiplication: in this work we optimize the space and time complexity
by reorganizing the computations in the recursive reconstruction of the Karatsuba approach.

3.1 Review of field representation and multiplication

The most usual approach to construct a binary field F2n consists in choosing a sparse irre-
ducible polynomial f(x) of degree n and set F2n = F2[x]/(f(x)). The elements of F2n are the
polynomials of degree less than n and basic operations like addition and multiplication in F2n

consists in multiplication and addition modulo f(x) :

W (x) = U(x)× V (x) mod f(x) and W (x) = U(x) + V (x) mod f(x).

The addition is a simple bitwise XOR of the coefficients of U and V while the multiplication
consists in a polynomial multiplication followed by a reduction modulo f(x). The simplicity
of this arithmetic makes binary fields really attractive for hardware implementation since basic
arithmetic operations in F2n are simpler than the ones in prime field Fp which involves costly
and tedious carry propagations.

3.1.1 Quadratic multipliers

The basic approach to perform a polynomial multiplication is the schoolbook method which
expands the product relatively to one operand, e.g. U(x),

W (x) = U(x)× V (x) =
n−1∑
i=0

uiV × xi. (3.1)

Such operation can either be done sequentially by accumulating uiV x
i in W stored in an 2n-bit

register and the result is output after n clock cycles. It can also be done in parallel fashion
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with no reuse of circuit: the basic approach to perform this computation in parallel consists in
n2 AND gates computing all the products uivj for i, j = 0, . . . , n − 1 and then adding the n
polynomials uiV × xi through a binary tree of adders requiring (n − 1)2 XORs. The delay of
the computation is dlog2(n)eDX +DA where DX and DA denote the delay of an XOR and an
AND gate, respectively. An example of such circuit which computes the multiplication of two
degree 3 polynomials is shown in Figure 3.1.

Figure 3.1: Parallel circuit for degree 2 polynomial multiplication
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v1

v2

.
..

.

.
.

. .
..

.

. .
.

.
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. .......
.

.

.

w0 w1 w2
w3 w4

The product W (x) = U(x) × V (x) have to be reduced modulo the irreducible polynomial
f(x). This polynomial f(x) is generally chosen with a trinomial or a pentanomial form. Such
irreducible polynomials exist for every cryptographic size, i.e., with n ∈ [160, 512]. The reduction
modulo a trinomial or a pentanomial is quite simple: this can be performed with O(n) XOR
gates and a delay of O(1)DX .

Another approach for the computation of binary field multiplication consists of computing
simultaneously the multiplication and the reduction. This was used by Mastrovito [59] which
rewrote the operation U(x) × V (x) mod f(x) as a matrix vector product. Here, we review a
more general setting of this approach where we represent the field elements through a general
basis. Indeed, a finite field F2n has an underlying structure of vector space over F2. If we fix
an F2-basis B = (e0, . . . , en−1) for the representation of the field elements, the multiplication of
U =

∑n−1
i=0 uiei and V =

∑n−1
i=0 viei can be performed as follows

UV = U

(
n−1∑
i=0

viei

)
=

∑
i=0,...,n−1

U (i)vi,

where U (i) = Uei. We can then rewrite the product as a matrix-vector product W = MU · V
where MU is the matrix formed by the n columns U (i)

MU =
[
U (0), U (1), · · · , U (n−1)

]
.

The computation of a product based on this approach consists in first computing the entries of
MU and then performing a matrix-vector product MU · V . The computation of the entries of
the matrix MU is related to the basis B. The bases yielding the most efficient multipliers are
the following:

10



• Polynomial bases. These bases are B = {1, x, . . . , xn−1} where, for efficiency reason, x is
the root of an irreducible trinomial or pentanomial. This case corresponds to Mastrovito’s
multiplier [59]. For example, for f(x) = x2 + x+ 1 the matrix MU is as follows

MU =

 u0 u2 u1

u1 u0 + u2 u2 + u1

u2 u1 u0 + u2


and the corresponding parallel multiplier is described in Figure 3.2

Figure 3.2: Parallel multiplier for F23 based on matrix-vector formulation in polynomial basis
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A variant of the polynomial basis is the shifted polynomial basis (SPB)

{x−v, x−v+1, . . . , xn−v}

introduced in [60]. This basis was proposed to reduce the cost of the computation of
the coefficients of MU . In [60] the authors showed that the delay of the computation
of MU is reduced when computing modulo a trinomial xn + xk + 1 where k > 1 and
the delay and space complexities are reduced when computing modulo a pentanomial
xn + xk+1 + xk + xk−1 + 1.

For example, for a multiplication modulo f(x) = x2 + x+ 1, the shifted polynomial basis
B = {x−2, x−1, 1, x, x2} provides the following matrix-vector product:

MU =


u0 + u−2 u−1 u−2 u2 u1

u1 + u−1 u0 + u−2 u−1 u−2 u2

u2 u1 u0 u−1 + u2 u−2 + u1

u−2 u2 u1 u0 u−1 + u2

u−1 u−2 u2 u1 u0

 ·

v−2

v−1

v0

v1

v2

 .

• Low complexity normal basis. A normal basis has the following form

N = {α, α2, . . . , α2n−1}

where α is an element in F2n . Such bases are really interesting since they induce a
squaring in F2n which is almost free of computations: the squaring is just a cyclic shift of
the coordinates.
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Among all normal bases, those which provide efficient multiplication in F2n are such that
the n2 products α2i × α2j , i, j = 0, . . . , n − 1 have a sparse representation in N [61].
Specifically, the optimal normal bases (ONB) considered in [61] are the one which have
the sparsest basis products α2i × α2j . Gao and Lenstra in [62] showed that there are two
types of ONB: type I and type II.

Theorem 1 (ONB-I). Suppose n+1 is a prime and 2 is a primitive element in Z/(n+1)Z.
Then the n non-unit (n+ 1)-th roots of unity form a type I ONB of F2n over F2.

Let α ∈ F2n be a primitive (n + 1)-root of unity, the ONB-I N = {α, α2, . . . , α2n−1} can
be re-ordered as N ′ = {α, α2, α3 . . . , αn} after reducing the exponent 2i modulo n + 1.
In [63, 64] the authors noticed that a multiplication in the re-ordered basis N ′ can be set
in the following matrix vector products:



w1

w2

w3

...
wn−2

wn−1

wn


=



0 vn vn−1 . . . v4 v3 v2
v1 0 vn . . . v5 v4 v3
v2 v1 0 . . . v6 v5 v4
...

...
...

. . .
...

...
...

vn−3 vn−4 vn−5 . . . 0 vn vn−1

vn−2 vn−3 vn−4 . . . v1 0 vn
vn−1 vn−2 vn−3 . . . v2 v1 0


·



u1
u2
u3
...

un−2

un−1

un



+



vn vn−1 . . . v2 v1
vn vn−1 . . . v2 v1
vn vn−1 . . . v2 v1
...

...
. . .

...
...

vn vn−1 . . . v2 v1
vn vn−1 . . . v2 v1
vn vn−1 . . . v2 v1


·


u1
u2
...

un−1

un

 .
(3.2)

Theorem 2 (ONB-II). Let 2n+ 1 be a prime and assume that either

i) 2 is primitive in Z/(2n+ 1)Z, or

ii) 2n+ 1 ≡ 3 mod 4 and 2 generates the quadratic residues in Z/(2n+ 1)Z.

Then α = β + β−1 generates a type II ONB of F2n over F2, where β is a primitive
(2n+ 1)-th root of unity in F22n.

The authors in [65] noticed that the normal basis N = {α = β + β−1, α2 = β2 +
β−2, . . . , α2n−1

= β2n−1
+ β−2n−1} can be re-ordered by reducing modulo 2n + 1 the

exponent of β in α2i , this leads to the following permuted basis

N ′ =
{
α1 = α+ α−1, α2 = α2 + α−2, α3 = α3 + α−3, . . . , αn = αn + α−n

}
.

The authors in [65] could set the multiplication in N ′ as a sum of two matrix-vector
products:

W=




vn vn vn−1 . . . v3 v2
vn−1 vn vn . . . v4 v3
vn−2 vn−1 vn . . . v5 v4

...
...

...
. . .

...
...

v2 v3 v4 . . . vn vn
v1 v2 v3 . . . vn−1 vn

+


vn−1 vn−2 vn−3 . . . v1 0
vn−2 vn−3 vn−4 . . . 0 v1

...
...

...
. . .

...
...

v2 v1 0 . . . vn−4 vn−3

v1 0 v1 . . . vn−3 vn−2

0 v1 v2 . . . vn−2 vn−1


 ·


un
un−1

un−2

...
u2
u1

 .
(3.3)
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• Dual basis multiplier. Let B = {e0, . . . , en−1} be a basis of F2n and let ϕ : F2n → F2 be a
non-zero linear form over F2. The weakly-dual basis B∗ = {e∗0, . . . , e∗n−1} of B relatively
to ϕ is the unique basis satisfying

ϕ(eie
∗
j ) =

{
1 if i = j,
0 if i 6= j.

The conversion from a representation in B of an element U ∈ F2n to its representation in
the dual basis B∗ is done as follows

U =

n−1∑
i=0

ϕ(Uei)e
∗
i ,

which can be computed efficiently if the n terms ϕ(Uei), i = 0, . . . , n − 1 involve only a
small number of additions.

For the special case of a polynomial basis B = {1, x, . . . , xn−1}, the multiplication of two
elements U and V can be expressed as matrix-vector product:

ϕ(U) ϕ(Ux) · · · ϕ(Uxn−1)
ϕ(Ux) ϕ(Ux2) · · · ϕ(Uxn)

...
...

ϕ(Uxn−1) ϕ(Uxn) · · · ϕ(Ux2n−2)

 ·


v0

v1
...

vn−1

 =


ϕ(W )
ϕ(Wx)

...
ϕ(Wxn−1)

 (3.4)

The computation of the matrix is efficient if the computation of ϕ(Uxi) is efficient for
i = 0, . . . , 2n − 2. In order to have a multiplication with U, V and W given in the same
basis, the above scheme (3.4) also requires efficient conversion from B? to B. Several
strategies were proposed in the literature [66, 67] to reach this goal.

3.2 Subquadratic multipliers based on TMVP

During the past decade the design of subquadratic space complexity parallel multiplier have
drawn the attention of researchers. These multipliers reduce significantly the size of the circuit,
specifically for cryptographic size. In counter parts, they have a critical path which is twice
longer than the critical path of a quadratic multiplier, but it is still logarithmic.

Such multipliers are based on recursive subquadratic methods for polynomial multiplica-
tion and matrix vector product. We first review the methods based on Toeplitz-matrix vector
product and present a few contributions on this matter. We will discuss subquadratic multi-
plier based on Karatsuba formulas for polynomial multiplication and a related contribution in
Section 3.3.

Let us first remind that a Toeplitz matrix is an n× n matrix T = [ti,j ; i, j = 0, 1, · · · , n− 1]
such that ti,j = ti−1,j−1 for i, j > 0. Fan and Hasan showed in [46] that the matrix MU of the
multiplication in shifted polynomial basis B = {x−v, . . . , xn−v} can be set in a Toeplitz form in
the following cases:

• Multiplication modulo a trinomial xn + xk + 1. Fan and Hasan showed in [46] that when
v = k exchanging the first k rows with the last n − k rows of the matrix MU leads to a
Toeplitz structure. In other words the following matrix TU is Toeplitz

TU = S ·MU where S =

[
0 Ik,k

In−k,n−k 0

]
.
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• Multiplication modulo a pentanomial xn + xk+1 + xk + xk−1 + 1. Fan and Hasan showed
in [46] that, when v = k, the matrix MU can be set in a Toeplitz form as follows

TU = S ·MU where S =

[
0 In−k,n−k + Jn−k,n−k

Ik,k + Jk,k 0

]
,

where Jk,k is the k × k matrix with the single entry at (0, k − 1) being 1 and the others
being 0.

When 2 divide n, Fan and Hasan proposed to use the two-way split formula of Winograd [47]
shown in (3.5) to compute a Toeplitz matrix vector product (TMVP). This models a Toeplitz
matrix-vector product of size n by three Toeplitz matrix-vector products of size n/2 [47, 46] as
follows

[
T1 T0

T2 T1

] [
V0

V1

]
=

[
P0 + P2

P1 + P2

]
where


P0=(T1 + T0) · V1,
P1=(T2 + T1) · V0,
P2=T1 · (V0 + V1).

(3.5)

If n = 2s and if the above formula is performed recursively, the computation can be separated
into three independent operations:

• The component vector formation (CVF) which recursively splits V into two parts V0, V1

and computes V0, V0 + V1, V1.

• The component matrix formation (CMF) which recursively splits T into three Toeplitz
matrices T0, T1, T2 and generates T1 + T0, T2 + T1, T1.

• If V̂ and T̂ are the nlog2(3) bits output by the CVF and the CMF (the component rep-
resentation of T and V ), the component multiplication (CM) performs a bitwise AND
Ŵ = T̂ · V̂ .

• The reconstruction (R) recursively reconstructs W = T · V as W = [R(Ŵ0) +R(Ŵ1)
R(Ŵ1) +R(Ŵ2)] given the splitting into three parts Ŵ = [Ŵ0, Ŵ1, Ŵ2].

In Subfigure 3.3(a) we provide the block decomposition of a subquadratic two-way split
multiplier for TMVP. In Subfigure 3.3(b) we provide the multiplier for the product of a 4 × 4
Toeplitz matrix and a vector of size 4. This multiplier is decomposed into the four blocks: CMF,
CVF, CM and R.

The complexity of a subquadratic space complexity TMVP multiplier is as follows for n = 2s:
SX(n) = 5.5nlog2(n) − 6n+ 0.5,

SA(n) = nlog2(3),
D(n) = 2 log2(n)DX +DA.

(3.6)

Note that SX corresponds to the number of XOR gates, SA to the number of AND gates and
D represents the delay of the critical path of the circuit.

Remark 1. In a similar fashion, if 3|n one can use the three-way split of Winograd [47] which
expresses a Toeplitz matrix-vector product of size n as six Toeplitz matrix-vector products of
size n/3 each [46].
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Figure 3.3: Block decomposition of the subquadratic space complexity TMVP multiplier
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(b) TMVP multiplier for matrix and vector of size 4

3.2.1 Parallel multiplier modulo a nearly all one polynomial

We present in this subsection a work done with Anwar Hasan and Ashkan Namin in [1,
21] while Ashkan Namin was a postdoctoral fellow at the University of Waterloo in 2009-2010.
Our goal was to design a subquadratic multiplier based on TMVP for multiplication modulo a
nearly all one polynomials. Nearly all one polynomials (NAOPs) [68] have the following form

P =

k2−1∑
i=0

xi +

m∑
i=k1

xi with k2 < k1.

In other words, for a NAOP, all the coefficients are equal to 1 unless they are in an interval
[k2, k1−1]. If such a NAOP P is irreducible, we can define F2m as F2[x]/(P ). As noticed in [68],
a multiplication in such a field can be done efficiently modulo Q = (x + 1) × P since Q is a
quadrinomial

Q = 1 + xk2 + xk1 + xn with n = m+ 1.

In the sequel we will consider a generalization of the NAOPs, i.e., quadrinomials such that
Q = xn + xk1 + xk2 + 1 of degree n = m+ γ where γ is small relative to m and Q splits as

Q = R(x)× P (x) where degR = γ and degP = m, (3.7)

and P is irreducible. This enlarges the set of possible quadrinomials in F2m that can be used
for a multiplication.

We now present our contribution [1, 21] on multiplication modulo Q = 1 + xk2 + xk1 + xn

which is a quadrinomial with 0 < k2 < k1 < n in F2[x]. Our aim was to get a subquadratic
complexity multiplier modulo such a quadrinomial. To reach this goal, we attempted to express
the product of two elements modulo Q as a Toeplitz matrix vector product.

We used a double basis approach: the elements of F2[x]/(Q) are represented in the basis
B = {e0, e1, . . . , en−1} given in (3.8) where l1 = n − k1 and l2 = n − k2 and a second basis B′
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given in (3.8). In the literature [69, 70] the basis B is called a triangular basis, and we will call
B′ a modified triangular basis.

B B′ index
ei = xi e′i = xi for i ∈ [0, l1[
ei = xi + xi−l1 e′i = xi for i ∈ [l1, l2[,
ei = xi + xi−l1 + xi−l2 e′i = ei for i ∈ [l2, n[

(3.8)

Below we give the construction of such a double basis multiplier: let U =
∑n−1

i=0 uiei be
expressed relatively to B and V =

∑n−1
j=0 v

′
je
′
j be expressed relatively to B′. The product

W = UV can be written as

W = U
(∑n−1

j=0 v
′
je
′
j

)
=
∑n−1

j=0 v
′
j

(
Ue′j

)
=
∑n−1

j=0 v
′
jU

(j)

=
[
U (0), U (1), · · · , U (n−1)

]
︸ ︷︷ ︸

MU

·V = MU · V (3.9)

where U (j) = Ue′j are the column vectors consisting of the coefficients of U (j) in B and V is the
column vector of the coefficients of V in B′. In [1, 21] we showed that the n×n matrix MU can
be generated column by column as follows.

• Generating the first l2 columns of MU . First, note that U (0) = U and for 1 ≤ i ≤ l2−1
one can write

U (i) = Ue′i = Uxi = Uxi−1x = U (i−1)x mod Q.

In [1, 21] we showed that the coordinates of U (i) =
∑n−1

j=0 u
(i)
j ej in B are given in terms of

the coordinates u
(i−1)
j of U (i−1) as follows

U (i) =
(∑n−2

j=0 u
(i−1)
j ej+1

)
+ u

(i−1)
n−1 e0 + u

(i−1)
l1−1 e0 + u

(i−1)
l2−1 e0.

This previous expression enables us to compute U (i) as illustrated below:

U (0) U (1) U (2) · · ·
↓ ↓ ↓
u0 un−1 + ul1−1 + ul2−1 un−2 + ul1−2 + ul2−2 · · ·
u1 u0 un−1 + ul1−1 + ul2−1 · · ·
u2 u1 u0 · · ·
...

...
...

un−1 un−2 un−3 · · ·

This gives the column U (i) of MU for i < l2.

• Generating the last k2 columns of MU . We noticed in [1, 21] that U (i) = U(xi +
xi−l1 + xi−l2) for i = l2, l2 + 1, . . . , n − 1. Thus, if we factorize x out we obtain for
i = l2, l2 + 1, . . . , n− 1

U (i) = U(xi−1 + xi−1−l1 + xi−1−l2)x = U (i−1)x =⇒ U (i−1) = U (i)x−1.

In [1, 21], we could express U (i−1) in terms of U (i) as follows

U (i−1) =
∑n−2

j=1 u
(i)
j ej−1 + u

(i)
0 en−1 + u

(i)
l2
en−1 + u

(i)
l1
en−1.
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We then use the fact that U (n) = U × (xn + xn−l1 + xn−l2) = U to generate the columns
U (n−1), U (n−2), . . . as follows:

· · · U (n−2) U (n−1) U (n) = U
↓ ↓ ↓

· · · u2 u1 u0

· · · u3 u2 u1

· · · u4 u3 u2
...

...
...

· · · u0 + ul1 + ul2 un−1 un−2

· · · u1 + ul1+1 + ul2+1 u0 + ul1 + ul2 un−1

Finally, we could note that the matrix

TU = [U (l2), U (l2+1), . . . , U (n−1), U (0), U (1), . . . , U (l2−1)] (3.10)

is a Toeplitz matrix and that the first k2 columns (resp. the last l2 = n−k2 columns) of TU are
the last k2 columns (resp. the first n− k2 columns) of MU = [U (0), U (1), . . . , U (n−1)]. We then
could use a subquadratic approach based on TMVP to compute a multiplication modulo Q.

3.2.2 Block recombination of ONB-II Fan-Hasan multiplier

In this subsection, we present a work done with Jithra Adikari, Ayad Barsoum, Anwar
Hasan and Ashkan Namin in 2010-2011. The goal was to improve the space requirement of the
subquadratic space complexity multiplier of Fan and Hasan in [58] for ONB-II. We consider
two elements U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) in F2n expressed in the permuted
ONB-II B′ = {βi + β−i, i = 1, . . . , n}. From (3.3) we know that the product of U and V
can be formulated as a sum of a Hankel matrix-vector and a Toeplitz matrix-vector products.
Writing the columns of the Hankel matrix in the reverse order, Fan and Hasan could express a
multiplication in an ONB-II as the sum of two Toeplitz matrix-vector products:



w1

w2

w3

...
wn−2

wn−1

wn


=



vn vn vn−1 . . . v3 v2
vn−1 vn vn . . . v4 v3
vn−2 vn−1 vn . . . v5 v4

...
...

...
. . .

...
...

v2 v3 v4 . . . vn vn
v1 v2 v3 . . . vn−1 vn


·



un
un−1

un−2

...
u2
u1



+



0 v1 v2 . . . vn−2 vn−1

v1 0 v1 . . . vn−3 vn−2

v2 v1 0 . . . vn−4 vn−3

..

.
..
.

...
. . .

...
...

vn−2 vn−3 vn−4 . . . 0 v1
vn−1 vn−2 vn−3 . . . v1 0


·



u1
u2
u3
...

un−1

un


.

(3.11)

Fan and Hasan in [58] proposed to use this formulation to compute the product in an ONB-II
through two parallel subquadratic space complexity TMVP multipliers combined with a final
adder. This approach is shown in the left side of Figure 3.4. In this figure there is the vector V
and the same vector in the reverse order ρ(V ). In the sequel we will denote ρ(U) the operator
which reverses the order of the entries of a vector U .

In [4] we evaluated the repartition of the space complexity of the different blocks of a
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Figure 3.4: Block recombination of ONB-II multiplier
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subquadratic space complexity TMVP multiplier. When n = 2s, we found that

CMF : 5
2n

log2(3) XOR gates,

CVF : nlog2(3) − n XOR gates,

CM : nlog2(3) AND gates,

R : 2nlog2(3) − 2n XOR gates.

In [4] we proposed some optimizations of the ONB-II multiplier of Fan and Hasan. Our
strategy was to recombine the computations (CMF,CVF,...) in order to replace big blocks by
smaller ones. The recombinations proposed in [4] are the following:

• Replacing a block R by a component addition (CA). We first used the linearity of the
reconstruction R in the subquadratic formula for TMVP, i.e., R(Ŵ + Ŵ ′) = R(Ŵ ) +
R(Ŵ ′). In other words, we can perform the addition before the reconstruction. We save
one reconstruction block and in counter part we have an addition which is more costly,
i.e., nlog2(3) XOR gates, since it is done in component representation. This recombination
applied to the Fan-Hasan ONB-II multiplier results in the multiplier shown in the middle
of Figure 3.4.

• Removing a block CVF using a symmetry of the vectors. We noticed the following fact:
in (3.11) the two vectors are the reverse of each other. We proved in [4] that the CVF
applied to ρ(V ) (i.e., V in the reverse order) produces the same coefficients as CVF(V )
but in reverse order:

CVF(ρ(V )) = ρ(CVF(V ))

This property was used in [4] to remove one of the CVF block of the Fan-Hasan ONB-II
multiplier. The recombined multiplier is shown on the right side of Figure 3.4.

• Removing CMF blocks using matrix symmetries. The third recombination is based on the
symmetry of the matrices. In order to extract this symmetry we decomposed each matrix
of (3.11) in four sub-matrices and each vector of (3.11) into two sub-vectors. We then
could rewrite (3.11) as follows:

W =

[
T1 · ρ(U1) + un/2V1 + T ′2 · V ′0

(T ′2)t · ρ(V1) + T1 · ρ(V0)

]
+

[
T ′1 · V0 + (T ′2)t · V1
T ′2 · V0 + T ′1 · V1

]
. (3.12)

In the above equation we have an n/2×n/2 matrix T ′2 which appears a multiple of time as
sub-matrix of the two initial n× n matrices T, T ′. Consequently we can share the related
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computations of the CMF of T and T ′ corresponding to T ′2. Furthermore we have also T ′2
t

which appears in (3.12). We showed in [4] that the CMF of a transposed matrix T t has
the same entries as CMF(T ) but in the reverse order:

CMF(T t) = ρ(CMF(T )).

This reduces the computations of the CMF of T and T ′ to the CMF computation of the
three matrices T1, T

′
1 and T ′2. In counter part we have an additional CVF computation

since a new term V ′0 appeared in (3.12). The resulting multiplier architecture based on
this recombination is shown in Figure 3.5 where SCM stands for a multiplication by a
scalar.

Figure 3.5: Recombined ONB multiplier based on matrix symmetries
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At the end we obtained in [4] a multiplier with the complexity reported in Table 3.1. We
notice that compared to the multiplier of Fan and Hasan based on TMVP the total number of
gates is reduced by 25% while having the same delay. We provide also the complexity of ONB-
II multipliers based on polynomial multiplication: this approach was initiated by Shokrollahi,
Shokrollahi and von zur Gathen in [71] and later improved by Bernstein and Lange in [72]. Our
proposed multiplier have a total number of gate larger by 18% but it is at least two times faster.

Table 3.1: Space and time complexities of ONB II multipliers

Method # AND # XOR Delay

Pol. with [72] and [48] nlog2(3) 5.5nlog2(3) − 7n+ 2.5 + 2n log2(n) DA + (5 log2(n) + 2)DX

Pol. with [72] and [73] nlog2(3) 6nlog2(3) − 8n+ 3 + 2n log2(n) DA + (4 log2(n) + 2)DX

Fan-Hasan [58]
2nlog2(3) 11nlog2(3) − 12n+ 1 DA + (2 log2(n) + 1)DXbased on TMVP

Proposed recombined 2.66nlog2(3)

6.83nlog2(3) − 7.5n+ 1.5 DA + (2 log2(n) + 1)DXTMVP [4] +0.5n

We present in Table 3.2 hardware implementation results (FPGA and ASIC) provided in [4].
Our implementations are for the field F2233 , the only binary field with an ONB-II in the NIST
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recommendations for ECC applications. We implemented the multiplier based on the Bernstein-
Lange approach [72], for this we used the two-way formulas given in [48] and [73] for binary
polynomial multiplication. We also implemented the method based on TMVP given in [58] and
the proposed block recombination of Fan and Hasan multiplier. The implementation results are
given in Table 3.2.

Table 3.2: FPGA Place & Route, ASIC Synthesis Results for ONB-II Multiplier in F2233

Design
FPGA ASIC

Slice LUT Max. Freq. FPGA Area Gate Max. Freq. ASIC
(MHz) Eff.† (µm2) Count (MHz) Eff. ‡

Pol. with [72] and [48] 6,624 20,867 130.575 6,257 151,857 140,608 396.83 2,822
Pol. with [72] and [73] 7,030 22,817 134.809 5,908 158,302 146,575 403.23 2,751

TMVP [58] 10,007 32,116 192.340 5,989 219,127 202,896 568.18 2,800
Proposed recomb.

TMVP
7,332 23,418 198.067 8,415 178,083 164,892 543.47 3,296

According to Table 3.2, ONB-II multipliers based on [72]-[48] combined have the smallest
area in both FPGA and ASIC implementations. The proposed recombined TMVP multiplier
are better than the original approach of Fan and Hasan in terms of area and speed for FPGA
implementations. In ASIC implementations, ONB-II multipliers based on TMVP ([58] and the
proposed recombined variants) have the highest maximum operating frequencies. With regard
to hardware efficiency, the proposed method always has the best results.

3.3 Parallel multiplier based on Karatsuba formula

In this section we consider polynomial approach for the design of subquadratic space com-
plexity multiplier in F2n . Specifically, we will focus on parallel multiplier derived from Karat-
suba formula for polynomial multiplication. We consider two degree n− 1 polynomials U(x) =∑n−1

i=0 uix
i and V (x) =

∑n−1
i=0 vix

i in F2[x] with, for the sake of simplicity, n = 2s. The method
of Karatsuba for polynomial multiplication consists in expressing the product W = U × V in
terms of three multiplications of half-size polynomials. The detailed computations are given
below:

• Component polynomial formation (CPF). The component polynomial formation is achieved
by splitting U into two halves

U(X) =

n/2−1∑
i=0

uix
i

︸ ︷︷ ︸
UL

+xn/2
n/2−1∑
i=0

ui+n/2x
i

︸ ︷︷ ︸
UH

and then generating three polynomials of half the size of U : U ′0 = UL, U
′
1 = UL +UH and

U ′2 = UH . The same is done for V = VL + VHx
n/2: we generate V ′0 = VL, V

′
1 = VL + VH

and V ′2 = VH .

• Recursive products. We perform the pairwise products of the CPF of U and V

W ′0 = U ′0V
′

0 = ULVL,
W ′1 = U ′1V

′
1 = (UL + UH)(VL + VH),

W ′2 = U ′2V
′

2 = UHVH .
(3.13)
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• Reconstruction. We then reconstruct W = U × V as

W = W ′0(1 + xn/2) +W ′1x
n/2 +W ′2x

n/2(1 + xn/2),

= W ′0 + (W ′0 +W ′1 +W ′2)xn/2 +W ′2x
n.

(3.14)

This reconstruction can be optimized as follows:

Step 1. R0 = W ′0 + xn/2W ′1,

Step 2. R1 = R0(1 + xn/2),

Step 3. C = R1 +W ′2x
n/2.

(3.15)

In the sequel we will call the reconstruction formula (3.15) as the Bernstein’s Reconstruc-
tion (BR1) of one recursion of the Karatsuba formula.1

The three half-size products W ′0,W
′
1 and W ′2 of (3.13) are computed by applying the same

method recursively. If the recursive computations are performed in parallel we get a parallel
multiplier with a subquadratic space complexity and a logarithmic delay. Specifically, the
number of XOR gates (SX(n)), AND gates (SA(n)) and the delay D(n) of the Karatsuba
approach involving the reconstruction of (3.15) are given in (3.16) for a recursion of depth
log2(n). 

SX(n) = 5.5nlog2(n) − 7n+ 1.5,

SA(n) = nlog2(3),
D(n) = 3 log2(n)DX +DA.

(3.16)

The above complexity shows that parallel multipliers based on Karatsuba formula are not
competitive with the two-way split TMVP approach: the space complexity is roughly the same
but the delay is 50% larger. In [73] the authors propose an overlap-free variant of the Karatsuba
formula which reduces the delay to 2 log2(n)DX +DA but increases the space complexity up to
6nlog2(n) +O(n) XOR gates.

To illustrate the kind of multiplier obtained with Karatsuba formula we provide in Fig-
ure 3.6 the subquadratic space complexity multiplier for degree four polynomials U and V .
This multiplier is decomposed into the three blocks CPF, CM and R.

3.3.1 Bernstein’s optimization of two recursions of Karatsuba formula

In [48] Bernstein proposes an optimization on two recursions of Karatsuba formula. Here, we
review this approach in a slightly different manner. We consider two degree n− 1 polynomials
U(x) =

∑n−1
i=0 uix

i and V (x) =
∑n−1

i=0 vix
i in F2[x] with n = 2s.

Component formation and recursive products. The component formation is recursively
applied twice resulting in nine terms of size n/4. The polynomial U is split in four parts
U = ULL + ULHx

n/4 + UHLx
2n/4 + UHHx

3n/4 and the nine terms of size n/4 generated by the
two recursions of the CPF are as follows

U
(2)
0 = ULL, U

(2)
1 = (ULL + ULH), U

(2)
2 = ULH ,

U
(2)
3 = (ULL + UHL), U

(2)
4 = (ULL + ULH + UHL + UHH) ,

U
(2)
5 = (ULH + UHH), U

(2)
6 = UHL, U

(2)
7 = (UHL + UHH),

U
(2)
8 = UHH .

The same formula is applied to V which results in nine terms V
(2)
i , i = 0, 1, . . . , 8 of size n/4.

The nine recursive products are W
(2)
i = U

(2)
i × V

(2)
i , i = 0, 1 . . . , 8 and have degree 2n/4− 2.

1The reconstruction (3.15) was known for some times: it can be found in [48, 74, 75].
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Figure 3.6: Karatsuba multiplier for degree four polynomials
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Reconstruction. The first recursion in the reconstruction process produces W
(1)
i , i = 0, 1, 2

in terms of W
(2)
i , i = 0, 1, . . . , 8. Specifically, W

(1)
0 is expressed in terms of W

(2)
i , i = 0, 1, 2, and

W
(1)
1 is expressed in terms of W

(2)
i , i = 3, 4, 5, and W

(1)
2 is expressed in terms of W

(2)
i , i = 6, 7, 8,

as follows:
W

(1)
0 = (1 + xn/4)W

(2)
0 + xn/4W

(2)
1 + xn/4(1 + xn/4)W

(2)
2 ,

W
(1)
1 = (1 + xn/4)W

(2)
3 + xn/4W

(2)
4 + xn/4(1 + xn/4)W

(2)
5 ,

W
(1)
2 = (1 + xn/4)W

(2)
6 + xn/4W

(2)
7 + xn/4(1 + xn/4)W

(2)
8 .

(3.17)

The second recursion of the reconstruction produces C = W (0) in terms of W
(1)
0 ,W

(1)
1 ,W

(1)
2 as

W = (1 + xn/2)W
(1)
0 + xn/2W

(1)
1 + xn/2(1 + xn/2)W

(1)
2 . (3.18)

Note that the superscript (i) of U (i), V (i) and W (i) indicates the depth of the data in the
recursion.

The operations of (3.17) and (3.18) can be organized in a tree structure: starting from

the root W = W
(0)
0 which is linked to the three children W

(1)
0 ,W

(1)
1 and W

(1)
2 . The links are

labeled by the respective factors (1+xn/2), xn/2 and xn/2(1+xn/2) of W
(1)
i , i = 0, 1, 2, appearing

in (3.18). This process is repeated for each W
(1)
i , i = 0, 1, 2, the resulting reconstruction tree is

shown in Subfigure 3.7(a).
The optimization of Bernstein can be formulated by the following changes on the recon-

struction tree:

• The sub-tree below W
(1)
1 is replaced by a block representing the reconstruction formula

BR1 given in (3.15) in terms of W
(2)
3 ,W

(2)
4 ,W

(2)
5 .

• The middle terms W
(2)
1 and W

(2)
7 are also replaced by a block BR0 representing a recon-

struction of depth 0: by convention BR0(U) = U for any U .
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Figure 3.7: Original and modified trees of two recursions of the Karatsuba formula
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• Finally, the factor xn/2, which appears in the label of the link between W
(0)
0 and W

(1)
2 , is

moved down to the three links below W
(1)
2 .

The resulting modified tree is shown in Subfigure 3.7(b). This tree provides the reconstruction of
Bernstein for two recursions of the Karatsuba formula. The operations labeled on the different
links are performed in the following order: by starting from the bottom of the modified tree
and climbing up to the root. At each level we accumulate the middle terms and multiply by
the level factor. The resulting sequence of operations of Bernstein’s reconstruction is given in
Algorithm 1.

Algorithm 1 BR2

Require: W
(2)
0 ,W

(2)
1 , . . . ,W

(2)
8 , such that W

(2)
i = U

(2)
i × V (2)

i where U
(2)
i and V

(2)
i are generated by

two recursions of the CPF applied to two degree n = 4n′ polynomials A and B.
Ensure: W = U(x)× V (x)

// Initialization: accumulation of the leaf-coefficients W
(2)
0 ,W

(2)
2 W

(2)
6 ,W

(2)
8

W ←W
(2)
0 +W

(2)
2 xn/4 +W

(2)
6 x2n/4 +W

(2)
8 x3n/4

// Multiplication by the common factor (1 + xn/4)
W ←W × (1 + xn/4)

// Recursive reconstruction of the middle terms W
(2)
1 and W

(2)
1 of depth 2

Z0 ← BR0(W
(2)
1 ), Z1 ← BR0(W

(2)
7 )

// Accumulation of the reconstructed middle terms of depth 2
W ←W + xn/4Z0 + x3n/4Z1

// Multiplication by the common factor (1 + xn/2)
W ←W × (1 + xn/2)
// Reconstruction of the middle term of depth 1

Z0 ← BR1(W
(2)
3 ,W

(2)
4 ,W

(2)
5 )

// Accumulation of the middle term of depth 1 multiplied by its factor xn/2

W ←W + xn/2Z0
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3.3.2 Generalization of Bernstein’s reconstruction

In [5] we proposed a generalization of the optimization of Bernstein on two recursions of
Karatsuba reconstruction. Let us review this approach considering s recursions of Karatsuba
formula:

Component polynomial formations and recursive products. The component polynomial
formation (CPF) consists in recursively splitting into two halves and then generating three half-
size polynomials: the two halves and their sum. The application of the recursive CPF of depth

s to the polynomial U of size n results in 3s polynomials U
(s)
i , i = 0, 1, . . . , 3s − 1 of size n/2s.

Similarly, if we also apply a recursive CPF of depth s to the polynomial V we obtain 3s terms

V
(s)
i , i = 0, 1, . . . , 3s − 1. Then, there are 3s products W

(s)
i = U

(s)
i × V

(s)
i , i = 0, . . . , 3s − 1, and

the resulting polynomials W
(s)
i are of degree 2n/2s − 2.

Reconstruction tree. The reconstruction consists in applying the formula (3.14) to each

group of three consecutive W
(s)
i

W
(s−1)
i = W

(s)
3i (1 + xn/2

s
) +W

(s)
3i+1x

n/2s +W
(s)
3i+2x

n/2s(1 + xn/2
s
), (3.19)

where 0 ≤ i ≤ 3s−1 − 1. Then we repeat this process for the depths s − 1, s − 2, . . . , 1, 0 until

we obtain W = W
(0)
0 . This recursive reconstruction can be arranged through a reconstruction

tree of depth s which has the following properties:

• The root node is labeled asW
(0)
0 and corresponds to the reconstructed productW = U×V .

• The intermediate nodes of depth h are labeled as W
(h)
i where 0 ≤ i < 3h. We measure

the depth h relatively to the root W
(0)
0 of the reconstruction tree.

• Each node W
(h)
i of depth h < s has three children W

(h+1)
3i ,W

(h+1)
3i+1 and W

(h+1)
3i+2 of depth

h+ 1, and three links which are labeled by (1 +xn/2
h+1

), xn/2
h+1

and xn/2
h+1

(1 +xn/2
h+1

)
respectively. This corresponds to one application of the reconstruction formula (3.14). In

the sequel, the link joining W
(h)
i to W

(h+1)
3i will be called the left (L) link, the link joining

W
(h)
i to W

(h+1)
3i+2 will be called the right (R) link and the link W

(h)
i to W

(h+1)
3i+1 will be called

the middle (M) link.

In [5], in order to generalize Bernstein reconstruction we extended the modifications done
on the reconstruction three of depth 2 (cf. Subsection 3.3.1). We first defined the L/R-then-M
nodes: such a node N is connected from the root to N with only left or right links and ends by
a middle link. We replaced the sub-tree below each L/R-then-M node by a box representing

a recursive reconstruction. We also moved the factors xn/2
h

of the links down to the lowest
possible links. This modified reconstruction tree is depicted in Figure 3.8.

The GBRs algorithm. We used this modification of the reconstruction tree to derive a gener-
alized Bernstein’s reconstruction (GBRs) of depth s. The values of the modified reconstruction
tree are accumulated depth by depth, starting from the leaves and climbing up to the root. In
order to go over the L/R-then-M nodes of depth h we needed the function σ : N → N defined
as follows: for an integer i with binary representation i =

∑`
k=0 ik2

k with ik ∈ {0, 1} the image
of i by σ is

σ(i) =
∑̀
k=0

2ik3
k.

We then proposed in [5] to reconstruct the product W based on the modified reconstruction
tree as follows:
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Figure 3.8: Modified reconstruction tree of depth s
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• Step 1: Initialization. We accumulate, in an intermediate value Y, the values of the L/R

leaves W
(s)
σ(i), i = 0, . . . , 2s − 1, multiplied by their respective factors x

in
2s .

• A loop on the depth h starting from s and going down to 1, where we perform the three
following operations:

– Step 2: Multiplication by the depth factor: we multiply Y by (1 + x2h).

– Step 3: Reconstruction of the L/R-then-M terms of depth h. We reconstruct the

L/R-then-M terms W
(h)
3σ(i)+1, i = 0, . . . , 2h−1 − 1, of depth h by applying GBRs−h to

the leaves of each sub-tree with root W
(h)
3σ(i)+1.

– Step 4: Accumulation of the reconstructed L/R-then-M terms. We accumulate into

Y the values of the reconstructed L/R-then-M nodes W
(h)
3σ(i)+1 multiplied by their

respective factors x
in

2h−1 + n

2h .

The above method is specified in Algorithm 2. We proved its validity in [5].
In Table 3.3 we review the complexities of the best known approaches to multiply two

polynomials of size n = 2s. We report the complexities of the optimized Karatsuba formulas
with BR1 and BR2. We also report the complexity results of Fan et al. [73] which has the
best delay among such subquadratic multipliers. We also report complexity results for TMVP
multiplier, since the best known subquadratic multipliers for extended binary fields use Toeplitz-
matrix vector product (TMVP) approach [46].

The results of Table 3.3 show that the generalization of Bernstein’s approach provides multi-
pliers with improved space complexities. This was the initial goal of Bernstein. But surprisingly
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Algorithm 2 GBRs

Require: W
(s)
0 , . . . ,W

(s)
3s−1

Ensure: Y = GBRs(W
(s)
0 , . . . ,W

(s)
3s−1)

Y ← (
∑2s−1
i=0 W

(s)
σ(i)x

in
2s ) //Step 1: Initialization

for h = s to 1

Y ← Y × (1 + x
n

2h ) //Step 2: Multiplication of depth h

for i = 0 to 2h−1 − 1
//Step 3 : Reconstruction of the L/R-then-M terms

j ← 3σ(i) + 1

Zi ← GBRs−h(W
(s)

3s−hj
, . . . ,W

(s)

3s−hj+3s−h−1)

end for

Y ← Y + x
n

2h

(∑2h−1−1
i=0 Zix

in

2h−1

)
//Step 4 : Accumulation of the L/R-then-M terms

end for
return(U)

Table 3.3: Space and time complexities of Karatsuba multipliers

Operat. Method
Form
of n

# AND # XOR Delay

TMVP Fan-Hasan [46] 2k nlog2(3) 5.5nlog2(3) − 6n+ 0.5 DA + 2 log2(n)DX

Poly.
Mult.

Original
Karatsuba [76]

2k nlog2(3) 6nlog2(3) − 8n+ 2 DA + 3 log2(n)DX

Fan et al. [73] 2k nlog2(3) 6nlog2(3) − 8n+ 2 DA + 2 log2(n)DX

Karatsuba
with BR1 [48, 75, 74]

2k nlog2(3) 5.5nlog2(3) − 7n+ 1.5 DA + 3 log2(n)DX

Karatsuba
with BR2 [48]

22k nlog2(3) 5.43nlog2(3) − 6.8n+ 1.375 DA + 2.5 log2(n)DX

Proposed
23k nlog2(3) 5.37nlog2(3) − 6.68n+ 1.30 DA + 2.33 log2(n)DXwith s = 3

Proposed
24k nlog2(3) 5.34nlog2(3) − 6.61n+ 1.27 DA + 2.25 log2(n)DXwith s = 4

Proposed
2k nlog2(3)

5.25nlog2(3) − 6n+ 0.75
DA + (2 log2(n) + 1)DXwith s = log2(n) −0.5 log2(n)

this also reduces the delay of the resulting multiplier. The results in Table 3.3 even show that,
as s increases, the leading terms of the complexities (space and time) slowly approach the
leading term of the complexity of the multiplier obtained with a GBR applied to a recursive
reconstruction of depth s = log2(n). For example the leading term of the total number of gates
evolves as follows when s increases:

BR1

6.5nlog2(3)

+O(n)
→

BR2

6.43nlog2(3)

+O(n)
→

GBR with s = 3

6.37nlog2(3)

+O(n)
→

GBR with s = 4

6.34nlog2(3)

+O(n)
· · · →

GBR with s = log2(n)

6.25nlog2(3)

+O(n)

We also notice that the improvements provided by the generalized Bernstein reconstruction
render the polynomial approach better than the two-way split TMVP approach considering
both space and time complexities.

3.4 Conclusion

In this chapter we first briefly introduced the best approach for the design of subquadratic
multiplier in F2n . These multipliers are based either on TMVP approach or on Karatsuba
formula for polynomial multiplication. We presented two results concerning multipliers based
on TMVP: the first one extend the approach of Fan-Hasan [46] to a larger class of fields, while

26



the second reduces significantly the space requirement of the multiplier of Fan-Hasan based
on ONB-II. In this later work we introduced a technique based on block recombination. This
technique consists in re-expressing the full circuit given by the TMVP approach by removing
some redundant computations.

Finally we looked at multipliers based on several recursions of Karatsuba formula and then
we tried to improve the reconstruction of the results by extending the approach of Bernstein.
This approach lead us to a result which makes multipliers based on polynomial multiplier better
than the one based on TMVP.
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Chapter 4
Implementation of the GHASH function of
the Galois counter mode

The Galois counter mode (GCM) [49] is a ciphering mode for symmetric key encryption
associated to a block-cipher EK : {0, 1}n → {0, 1}n. This mode encrypts `− 1 plaintext blocks
M1, . . . ,M`−1 by initializing a counter counter0 = IV with a random initial vector IV . Each
block Mi is then encrypted as

Ci = Mi ⊕ EK(counter0 + i) for i = 1, . . . , `− 1. (4.1)

The authentication tag depends on all Mi and the key K and is generated from the hash-key
H = EK(0) and the ` blocks X1 = M1, . . . , X`−1 = M`−1, X` = len(C) as follows:

GHASH(X1, . . . , X`, H)⊕ EK(IV ) =
(
X1H

` ⊕X2H
`−1 ⊕ · · · ⊕X`−1H

2 ⊕X`H
)

︸ ︷︷ ︸
(∗)

⊕EK(IV )

where the blocks Xi, i = 1 . . . , ` and H in (∗) are considered as elements of F2n . Figure 4.1
describes the overall processing of GCM.

In the remaining of this section we will focus on efficient computation of the GHASH func-
tion. The basic approach for computing the GHASH function consists in a sequence of `
multiply-and-add operations (cf. Algorithm 3).

Algorithm 3 GHASH function

Require: X1, X2, . . . , X`, H in F2n

Ensure: GHASHH(X)
Y ← 0
for i = 1 to ` do
Y ← (Y +Xi)×H

end for
return Y

Note that Algorithm 3 involves ` multiplications and ` additions in the field F2n . For
hardware implementation, where we have only one multiplier and one adder, these operations
are performed in sequence and the total computation time for GHASH is approximately `
times the combined delay of a multiplication and an addition. In binary fields, the delay of an
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Figure 4.1: Galois counter mode of operation

n

n

n

addition is exactly that of a bitwise XOR operation. In Table 4.1, we summarize various bit-
parallel multiplication methods and their space and time complexities in terms of gate counts
and gate delays.

Multiplier #AND #XOR Gate delay (DM )

Karatsuba with GBR [5] O(n1.58) O(n1.58) (2 log2(n) + δ)DX +DA

Fan-Hasan [46] O(n1.58) O(n1.58) (2 log2(n) + δ)DX +DA

Mastrovito [59] O(n2) O(n2) (log2(n) + δ)DX +DA

Table 4.1: Complexities of various multipliers over F2n where DX (resp. DA) is the delay of a
two-input XOR (resp. AND) gate (δ is a small constant).

4.1 Improvement of parallel implementation of GHASH

The main attractive property of GCM is that it is highly parallelizable. Indeed, in counter
mode the encryption of the different blocks (4.1) are independent and can be thus processed
in parallel. It was also noticed in [49, 77] that the GHASH function can be parallelized. For
example, if `, the number of blocks Xi, is even we can process even and odd blocks X2i and
X2i+1 in two parallel GHASH computations as follows:

GHASH(X1, X2, . . . , X`−1, X`, H) = GHASH(X1, X3, . . . , X`−3, X`−1, H
2)×H

+GHASH(X2, X4, . . . , X`−2, X`, H
2).

Such approach leads to the architecture shown in Figure 4.2 for a two-level parallelization of
GHASH: we have two parallel multipliers and two adders. With `/2 clock cycles this architec-
ture computes GHASH(X1, X3, . . . , X`−3, X`−1, H

2) through one multiplier and one adder and
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concurrently computes GHASH(X2, X4, . . . , X`−2, X`, H
2) with the second multiplier and the

second adder. At the very end an addition is performed before outputting the result.

Figure 4.2: Even-odd GHASH architecture [77, 78]

Addition

Addition Addition

h

H2

F2n MultiplierF2n Multiplier

0, X`, X`−2, . . . , X4, X2

H2 then H

0, X`−3, X`−1, . . . , X3, X1

In a joined work with Anwar Hasan, Nicolas Méloni and Ashkan Namin [3] we showed that
one of the block recombination discussed in Subsection 3.2.2 can be advantageously used for
parallel implementation of the GHASH function. Before proceeding to the block recombination
of the parallel GHASH architecture, we need to rewrite the GHASH computation as a sequence
of two-multiplication-and-add as described in Algorithm 4.

Algorithm 4 GHASH by two multiplications and add

Require: C = (X1, . . . , X`) where Xi ∈ F2n and H ∈ F2n

Ensure: h = GHASH(C)
H ′ ← H2

h← 0
for i = `/2− 1 to 0 do
h← h×H ′ +X2i+2H +X2i+1

end for
h← h×H
return h

A direct architecture based on Algorithm 4 is shown in Subfigure 4.3a: it consists of two
multipliers performing in parallel h × H2 and X2i+2H, these two products are then added to
X2i+1 to produce the intermediate value of h.

In [3] we assumed that the multipliers of Subfigure 4.3a are subquadratic space complexity
multipliers based on TMVP with CMF (H) and CMF (H2) precomputed. In [3] we proposed
to recombine the multiplier by performing the addition (h × H2) + (X2i+2H) in component
formation and then apply only one reconstruction to get h×H2 +X2i+2H. The corresponding
recombined hardware architecture using this approach is shown in the right side of Subfig-
ure 4.3b.
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Figure 4.3: Two-multiply-and-add GHASH architecture
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Comparison of the two approaches. The gain in terms of space complexity is as follows:
we replace one reconstruction block by a component addition. The proposed architecture get
a slight penalty in the delay of computation: one additional XOR appears on the critical path
of the architecture compared to Figure 4.2. The complexities of the recombined and non-
recombined architectures based on TMVP are reported in Table 4.2.

Table 4.2: Complexity comparison of GHASH architectures based on TMVP multiplier

Archi. Space complexity Time complexity
#XOR #AND

Figure 4.3(a) 6nlog2(3) − 4n 2nlog2(3) (2 log2(n) + 2)DX +DA

Figure 4.3(b) 5nlog2(3) − 3n 2nlog2(3) (2 log2(n) + 2)DX +DA

This approach can be generalized to a larger level r of parallelization. Without going into
details the gain in space is roughly r− 1 times the gain for r = 2. The penalty on delay is more
important since it adds dlog2(r)eDX to the critical path delay.

4.2 Computing GHASH using a characteristic polynomial

In the previous section we reviewed a technique which leads to a saving in the space com-
plexity of the parallel implementation of a GHASH computation. In this section we present the
strategy of [7, 22] which reduces the critical path delay of one iteration in the GHASH computa-
tion. This work was done in 2009-2010 in collaboration with Nicolas Méloni and Anwar Hasan
during the time when Nicolas Méloni was a post-doctoral fellow at the University of Waterloo.

Let H ∈ F2n be the hash-key used in GHASH computation. There exists a degree n
polynomial χH(T ) =

∑n
i=0 ciT

i ∈ F2[T ], i.e., with coefficients ci ∈ F2, such that χH(H) = 0
and it is called the characteristic polynomial of H over F2. Furthermore, it can be shown for
H 6= 0 that cn = c0 = 1. Let us see how to use such a polynomial to speed-up the computation
for long GHASH computation.

Using the fact that χH(H) = 0 and since cn = 1 we deduce that Hn =
∑n−1

i=0 ciH
i. Using

this expression of Hn, we can reduce a polynomial in H of degree n to a polynomial of degree
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Figure 4.4: Implementation of the GHASH function using a PRU

n− 1. Indeed, let P = X1H
n +X2H

n−1 + · · ·+XnH with Xi ∈ F2n , then

P mod χH = (X2 + cn−1X1)Hn−1 + (X3 + cn−2X1)Hn−2 + · · ·+ (Xn + c1X1)H + c0X1.

It is important to note that all the cis are in F2, which means that computing (Xn−i+1 + ciXi)
is just an addition over F2n when ci = 1. This reduction modulo χH of a polynomial in H of
degree n can be performed with the polynomial reduction unit (PRU) of the architecture shown
in Figure 4.4.

If we now consider a polynomial P = X1H
` + X2H

`−1 + · · · + X`H in H of degree `, this
polynomial can be decomposed as follows

P = ((· · · ((X1H
n +X2H

n−1 + · · ·+Xn+1)H +Xn+2)H + · · ·+X`−1)H +X`)H.

We can reduce P modulo χH by sequentially performing ` − n reductions of a degree n
polynomial as follows

P = ((· · · ((X1H
n +X2H

n−1 + · · ·+Xn+1 mod χH)H

+Xn+2 mod χH)H + · · ·+X`−1 mod χH)H

+X` mod χH)H mod χH .

Each reduction modulo χH can be done through the PRU of Figure 4.4. The PRU is originally
loaded with X1, . . . , Xn and then it is sequentially updated and fed with Xn+1, . . . , X`. The
output of the polynomial reduction unit (PRU) is a polynomial of degree n − 1 in H. The
output of the PRU can then be sent to a multiply-and-add unit in order to compute the desired
GHASH value, which is an element of F2n . This is the approach used in the architecture shown
in Figure 4.4. Specifically, in this architecture, the PRU is updated ` − n times through the
feedback connection. Then, during the next n clock cycles, the feedback connections are not
active; rather the contents of the PRU registers (i.e., Yi, i = n − 1, n − 2, · · · , 0) sequentially
enter the multiply-and-add unit of the architecture.

In Algorithm 5 below, we give the operations performed in the circuit shown in Figure 4.4.

Complexity. The architecture in Figure 4.4 has a space complexity

S = (n2 + n)SX + n2SA + SM .

where SX and SA represents the space requirement of an XOR and an AND gates and SM the
complexity of a multiplier. Since the critical path of the PRU is equal to DX + DA and the
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Algorithm 5 GHASHH(X) using χH

Require: X = X1X2 . . . X` and χH(T ) =
∑n

i=0 ciT
i

Ensure: GHASHH(X) = X1H
` +X2H

`−1 + · · ·+X`H
Y`−1 . . . Y0 ← X1 . . . Xn

temp← 0
for j = n to `− 1 do
C ← Yn−1

Yi ← Yi−1 + ciC, 1 ≤ i ≤ n− 1
Y0 ← Xj+1 + c0C

end for
for i = n− 1 down to 1 do
temp← (temp+ Yi)×H

end for
return (temp+ Y0)

critical path of the multiplier is DM , the total time delay of the architecture shown in Figure 4.4
is equal to

D = (`− n)(DX +DA) + (n− 1)(DM +DX).

For long messages, the value of ` is expected to be much longer than that of n, e.g., if the
size of X is 1MBytes, then n ∼= 216 and the reduction modulo χH dominates the computa-
tion time. The overall computation time is better than the one of multiply-and-add approach
(Algorithm 3).

The characteristic polynomial χH can be precomputed and used during a full GCM ses-
sion. Consequently, the corresponding complexity can be treated separately in the GHASH
computation.

Computation of the characteristic polynomial χH . We focus on the computation of the
characteristic polynomial χH [T ] ∈ F2[T ] of the hash-key H. We first recall the method of
Gordon [79] that determines the characteristic polynomial of an element of a finite field and
then we propose a method which takes advantage of the tower structure of F2n when n = 2s

that can be faster than the method of Gordon depending on the representation of the finite
field.

Gordon’s method works as follows: let H ∈ F2n , the characteristic polynomial of H is given
by

χH(T ) =

n−1∏
i=0

(T +H2i).

Gordon evaluates the above product by initializing χH ← 1 and then sequentially performing
χH ← χH × (T + H2i) for i = 0, . . . , n − 1. This method requires n(n + 1)/2 multiplications
and n squarings in F2n .

Gordon’s method is quite general and can be applied to any binary extension field F2n . We
now propose a method that takes into account that the field used in practice in GCM, i.e., F2128 ,
has a very special structure since the degree 128 = 27.

In [7, 22] we used the following lemma which states the basic property for the proposed
computation of the polynomial χH . Let P =

∑d
i=0 piT

i be a polynomial in F2n [T ] and k be an
integer. We denote

σk(P ) =
d∑
i=0

p2k

i T
i.
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Lemma 1. Let F2n be a binary field, and let F22n be a degree 2 field extension of F2n. The
following assertions hold

(i) If P,Q ∈ F2n [T ] and k an is integer then

σk(PQ) = σk(P )σk(Q).

(ii) If P ∈ F22n [T ] satisfies P (H) = 0 for a given element H ∈ F22n, then the polynomial
Q = P × σn(P ) satisfies

Q(H) = 0 and Q ∈ F2n [T ].

This lemma leads to the computation of a characteristic polynomial for H ∈ F2n where
n = 2s. Starting from P = T + H and applying iteratively the point (ii) of Lemma 1 we

generate χ
(k)
H (T ) the characteristic polynomial of H over F

22k
for k = s − 1, s − 2, . . . , 0. This

method is detailed in Algorithm 6.

Algorithm 6 Computing the characteristic polynomial of H

Require: H ∈ F22s

Ensure: PH (the characteristic polynomial of H)
P ← T +H
for k = s− 1 downto 0 do
P ← P × σ2k(P )

end for
return (P )

In [22] we evaluated the complexity of Algorithm 6. We found that the overall cost in
computing the characteristic polynomial of H ∈ F22s over F2 is 3sM2s + 2s+1S2s where M2s

and S2s represent a multiplication and a squaring in F22s , respectively. In the case of GCM,
s = 7 and thus the number of field operations is 21 multiplications and 256 squarings over F2128

which is more efficient than the method of Gordon.

4.3 Conclusion

In this chapter we reviewed the Galois counter mode which encrypts a message through
counter-mode of a given block-cipher and also generates an authentication tag. This authenti-
cation tag is computed through a sequence of multiplications and additions in F2n . We showed
that we could use a block recombination strategy presented in the Chapter 3 to reduce the space
requirement of the parallel architecture computing the authentication tag. We also presented a
strategy using the characteristic polynomial of the hash-key which speeds up the computation
of the hash-tag. For this later strategy the simulations for FPGA done by Jithra Adikari showed
that unfortunately the proposed approach was not competitive in practice. This was due to the
large fan-out of the circuit. This approach might be further analyzed and modified in order to
correct this drawback.
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Chapter 5
Multiplication in Fp and Fpk

We consider in this section efficient multiplication in prime field Fp and prime field extension
Fpk . Multiplication in Fp consists in integer multiplication followed by a reduction modulo a
prime integer p. We will present in Section 5.1 some contributions related to the modular
number system (MNS) [50] for the representation of the elements of Fp. Then in Section 5.2 we
will review some results concerning randomized arithmetic in residue number system (RNS) [80].
We first review classical methods for integer multiplication and reduction modulo p.

Integer multiplication. The following approaches are commonly used to compute efficiently
an integer multiplication:

• Schoolbook multiplication. This method is the one taught in elementary school. Suppose
we have u =

∑n−1
i=0 uiβ

i and v =
∑n−1

i=0 viβ
i expressed in base β (for us β = 2t with t =

1, 8, 16, 32 or 64). The multiplication w = u×v is done by expanding the product relatively
to u =

∑n−1
i=0 uiβ

i and this results in n multiplications ui × v which are accumulated to
get w.

• Karatsuba multiplication. The principle is the same as the one reviewed in Section 3.3 for
binary polynomial. Indeed, we split into two parts u = u0 +βdn/2eu1 and v = v0 +βdn/2ev1

and we re-express w = u× v in terms of three products of half-size integers:

w = u0v0 + ((u0 + u1)(v0 + v1)− u0v0 − u1v1)βdn/2e + u1v1β
2dn/2e.

This approach is generally performed recursively until we reach an integer size where
schoolbook multiplication is efficient.

• Lagrange and DFT approaches. One can transpose the expression of an integer u =∑n−1
i=0 uiβ

i in base β to a polynomial u(x) =
∑n−1

i=0 uix
i. We get back to the integer u by

evaluating u(x) in β. We can then transform the integer multiplication u×v into a product
of polynomials u(x)×v(x) where u(x) =

∑n−1
i=0 uix

i and v(x) =
∑n−1

i=0 vix
i. Furthermore

if the polynomials are considered as elements of Z/mZ[x] one can take advantage of
the Chinese remainder theorem (CRT) which asserts that the following application is an
isomorphism:

Z/mZ[x]/(
∏d
i=1(x− αi)) −→ Z/mZ[x]/(x− α1)× · · · × Z/mZ[x]/(x− αd)

u(x) 7−→ (u(x) mod (x− α1), . . . ,u(x) mod (x− αd)) .
(5.1)

This isomorphism (5.1) re-expresses a polynomial u(x) by its evaluation at αi for i =
1, . . . , d often called the Lagrange representation of u(x). Indeed, the computation of
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u mod (x − αi) is equal to u(αi). If the multiplication w(x) = u(x) × v(x) is done in
Lagrange representation it consists in d pairwise multiplication modulo m. If the product
w = u(x)× v(x) has degree < d and coefficients wi < m then the Lagrange interpolation
applied to w(αi), i = 1, . . . , d correctly reconstruct w(x) and leads to the correct product
w(x) = u(x)× v(x) and then to w = u× v.

A particular case, widely used in practice, is when αis are the n-th of unity. In this case,
the multi-point evaluation is referred to as the discrete Fourier transform (DFT). This
particular case is interesting since the interpolation can also be expressed as a multi-point
evaluation, and performed efficiently with the fast Fourier transform (FFT) algorithm
when n = 2s. This approach is used for example in the Schönhage-Strassen [81] algorithm
for integer multiplication.

Integer reduction. We have to reduce modulo p the product w = u × v which is in [0, p2[.
This reduction modulo p consists of the computation of r the remainder of the division of w by
p:

r = w − bw/pc × p.

In practice two cases arise: if p has a sparse form and if p has not a sparse form. These two
cases are discussed below:

• p has a sparse form. Such primes p are often used in elliptic curve cryptography: in
particular, NIST standard [35] recommends the primes listed in Table 5.1. One can
perform the reduction with a few additions or subtractions: for example a reduction
of w ∈ [0, 21042] modulo the NIST prime p521 consists in splitting w into two parts:
w = w0 + 2521w1 with w0 < 2521 and since 2521 ≡ 1 mod p521 we get w0 + w1 ≡ w
mod p.

Table 5.1: NIST recommended primes for elliptic curve cryptography

p192 2192 − 264 − 1

p224 2224 − 264 − 1

p256 2256 − 264 − 1

p384 2384 − 2128 − 296 + 232 − 1

p521 2521 − 1

• p has not a sparse form. If p is not sparse the two main approaches are the following: the
approach of Barrett [82] which clears the upper half part of w and the method of Mont-
gomery [51] which clears the lower half part of w. The approach of Barrett approximates
the quotient bw/pc as follows:

q̃ =

⌈
dw/βn−1e × dβ2n/pe

βn+1

⌉
The above computations of q̃ consists in right shiftings for the division by βn−1 and βn+1

and a multiplication by a constant µ = dβ2n/pe. This results in an approximated r̃

r̃ = w − q̃p

which from [82] satisfies r̃ ≤ 3p.
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The approach of Montgomery clears the least significant bits of w by first computing

q = w × (−p−1) mod βn

which then implies that w+ qp ≡ 0 mod βn which can be divided by βn. This method is
detailed in Algorithm 7.

Algorithm 7 Montgomery multiplication

Require: A modulus p, two integers u, v ∈ [0, p−1], M = βn such that M > p and gcd(M,p) =
1 and the precomputed integer p′ = −p−1 mod M

Ensure: r = (u× v ×M−1) mod p and r ∈ [0, p− 1]
w ← u× v
q ← w × p′ mod M
r ← (w + p× q)/M
if r ≥ p then
r ← r − p

end if
return r

5.1 Modular Number System

Efficient arithmetic modulo a prime integer p is generally related to the system of representa-
tion. Here we are interested in integer multiplication modulo a prime integer p of cryptographic
size p ∈ [2160, 24048] like the one used in elliptic curve cryptography or digital signature algorithm
(DSA) [35]. The authors in [50] introduced a variant of the base β for integer representation:
the Modular Number System.

Definition 1 (MNS [50]). A Modular Number System (MNS) B, is a quadruple (p, n, γ, ρ),
such that for all positive integers 0 ≤ u < p there exists a polynomial u(x) =

∑n−1
i=0 uix

i such
that

u(γ) = u mod p,
deg(u(x)) < n,
‖u‖∞ < ρ.

(5.2)

The polynomial u(x) is a representation of u in B.

In practice an MNS has a base γ ∼= p and a coefficient bound ρ ∼= p1/n. In other words,
compared to the usual β representation, MNS enlarge the possible values for the base element
γ and makes it possible to find γ yielding a more efficient arithmetic modulo p.

Example 1. In Table 5.2, we list the representation of the integer modulo p = 17 and this
proves that the quadruple (17, 3, 7, 2) is an MNS for p = 17.

Table 5.2: The elements of Z17 in B = MNS(17, 3, 7, 2)

0 1 2 3 4 5 6 7 8 9

0 1 −x2 1− x2 −1 + x+ x2 x+ x2 −1 + x x 1 + x −x− 1

10 11 12 13 14 15 16
−x −x+ 1 −x− x2 1− x− x2 −1 + x2 x2 −1

We can check that if we evaluate (−1 + x+ x2) in γ, we have −1 + γ + γ2 = −1 + 7 + 49 =
55 ≡ 4 mod 17. We have also deg(−1 + x+ x2) = 2 < 3 and ‖ − 1 + x+ x2‖∞ = 1 < 2.
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The second definition of this section corresponds to a sub-family of the Modular Number
System. The authors in [50] used the possibility to choose freely the base γ to focus on MNS
yielding an efficient modular multiplication. The authors in [50] said that these systems are
adapted to the modular arithmetic: they are Adapted Modular Number System.

Definition 2 (AMNS [50]). A Modular Number System B = (p, n, γ, ρ) is said to be Adapted
(AMNS) if there exists a small integer λ such that

γn = λ mod p. (5.3)

This means that the polynomial E = xn − λ has γ as root in Z/pZ:

E(γ) ≡ 0 mod p. (5.4)

We also denote (p, n, γ, ρ)E the Modular Number System (p, n, γ, ρ) which is adapted to the
polynomial E.

The difficulty in the construction of an AMNS is to find an n-th root modulo p of a fixed
small element λ ∈ Z/pZ. Since p is a prime, when such root exists the problem can be easily
solved [83]. Since in this chapter we focus on arithmetic modulo a prime p, we assume that we
can efficiently compute such γ.

As proposed by the authors in [50] the multiplication of two elements u(x) and v(x) in an
AMNS is done in three steps: polynomial multiplication, polynomial reduction modulo E(x)
and coefficient reduction (cf. Algorithm 8). For the reduction of the coefficients of w′ which lie
in ] − nρ2λ, nρ2λ[ we have to modify w′ in order to get r = CoeffRed(w′) with coefficients in
the range ]− ρ, ρ[, i.e., r expressed in the AMNS (p, n, γ, ρ)E .

Algorithm 8 Modular multiplication in AMNS

Require: u(x) and v(x) the AMNS representation of two integers modulo p
Ensure: r(x) such that r(γ) = u(γ)v(γ) mod p and deg r(x) < n and ||r||∞ < ρ
1: w(x)← u(x)× v(x) // Polynomial multiplication
2: w′(x)← w(x) mod E(x) // Polynomial reduction
3: r← CoeffRed(w′) // Coefficient reduction

The first step can be done with usual methods for polynomial multiplication: school-book,
Karatsuba, or DFT/FFT methods. The second step is quite easy: thanks to the form of E
we have only to add the lower part of w with λ times the higher part of w to get w′. The
reduction of the coefficients, is for now the most complicated part. In [50] Bajard, Imbert and
Plantard focused on AMNS (p, n, γ, ρ)E such that 2k ∼= ρ has a sparse AMNS representation
2k =

∑n−1
i=0 ξiγ

i with all ξi small relatively to ρ. They could reduce the coefficient of w by
splitting it as w = w0 + 2kw1 with ‖w0‖∞ < 2k and then replacing 2k by

∑n−1
i=0 ξix

i as follows

w = w0 + (

n−1∑
i=0

ξix
i)w1.

This operation is repeated until one gets ‖w‖∞ < ρ. But AMNS (p, n, γ, ρ)E providing 2k with
a sparse AMNS representation are not the general case. To deal with general AMNS Bajard et
al. provide in [84] a method for coefficient reduction based on table look-up. For practical
application some alternative method needed to be developed avoiding look-up table approach.
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5.1.1 Montgomery multiplication in AMNS

In a joined work with Thomas Plantard [16] we instigated several strategies for arithmetic in
AMNS. We first introduced a variant of the Montgomery reduction [51] for coefficient reduction
in AMNS. Let us fix an AMNS B = (p, n, γ, ρ)E and M(x) a polynomial of degree n − 1 such
that

M(γ) = 0 mod p, and gcd(M,E) = 1.

As we will see later, M(x) must be chosen with small coefficients.
We first compute a product w(x) = u(x)×v(x) mod E where u and v are expressed in the

AMNS B = (p, n, γ, ρ)E . We adapt the Montgomery reduction [51] to our context as follows: we
fix a modulus m which in practice has a size close to ρ and such that M ′ = −M−1 mod (E,m)
exists. We then compute q = w×M ′ mod (E,m) and then if we set r′ = w + q×M mod E
we can check that

r′(γ) = u(γ)× v(γ) mod p and r′ mod m = 0.

This means that r′ can be divided by m yielding the required reduction of the coefficients
r = r′/m. This leads to Algorithm 9.

Algorithm 9 AMNS Multiplication

Require: u(x),v(x) ∈ B = AMNS(p, n, γ, ρ)E with E = xn − λ with precomputed M such
that M(γ) ≡ 0 (mod p) an integer m and M ′ = −M−1 mod (E,m)

Ensure: r such that r(γ) = u(γ)v(γ)m−1 mod p
w← u× v mod E
q← w ×M ′ mod (E,m)
r← (w + q×M mod E)/m // can be performed modulo m′ larger than ‖r‖∞

The resulting polynomial r of Algorithm 9 satisfies r(γ) = u(γ)v(γ)m−1 mod p. But we do
not know whether it is correctly expressed in the AMNS, i.e., if the coefficients of r are smaller
than ρ. This is the purpose of the following theorem which provides the parameters ρ and n
such that

||u||∞ < ρ and ||v||∞ < ρ =⇒ ||r||∞ < ρ.

Theorem 3. Let B = AMNS(p, n, γ, ρ)E be an Adapted Modular Number System, M be a
polynomial of B be such that M(γ) ≡ 0 (mod p) and σ = ‖M‖∞, and u(x),v(x) be two elements
of B. If we have ρ and m such that

ρ > 2|λ|nσ and m > 2|λ|nρ (5.5)

then the polynomial r, output by Algorithm 9 with input B,M ,m,u and v, is in the Adapted
Modular Number System B.

An important remark on Theorem 3 is that the size of ρ depends on σ = ‖M‖∞. Specifically,
if σ is small then ρ can also be taken small, i.e., ideally, close to p1/n.

To construct such polynomial M with small σ we used a technique provided by lattice theory.
We considered the lattice L( ~B) generated by the following row vectors

~B =



p 0 0 0 . . . 0
−γ 1 0 0 . . . 0
−γ2 0 1 0 . . . 0

...
. . .

...
−γn−2 0 0 . . . 1 0
−γn−1 0 0 . . . 0 1



← p
← x− γ
← x2 − γ2

...
← xn−2 − γn−2

← xn−1 − γn−1

.
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Such lattice L( ~B) forms a sub-lattice of Ln = {q ∈ Z[x] with deg q ≤ n − 1} ∼= Zn. We are
looking for a polynomial M(x) such that M(γ) = 0 mod p and σ = ‖M‖∞ is small, i.e., it is a
short vector of L( ~B). In 1896 [85], Minkowski gave a bound on the norm of the shortest vector
of a lattice L for any fixed norm. In particular, in the case of the norm ‖ · ‖∞ the shortest

vector v satisfies ‖v‖∞ ≤ |detL|1/d if d = dimL. In our case this means that

‖v‖∞ ≤
∣∣∣detL( ~B)

∣∣∣1/n = p1/n.

In practice we can use the LLL algorithm [86] to compute a short polynomial M(x), which has
σ = ‖M‖∞ close to p1/n, even if σ is not optimal.

5.1.2 AMNS multiplication with Lagrange approach

We review in this section the modified version of Algorithm 9 based on Lagrange repre-
sentation of the polynomials. These results are also part of [16]. Our method performs the
polynomial multiplication and the reduction modulo E at the same time. In order to use La-
grange representation for polynomial multiplication in Algorithm 9, we select two integers m
and m′ such that the polynomial E = (xn − λ) splits entirely in Z/mZ[x] and Z/m′Z[x]

E =
n∏
i=1

(x− αi) mod m, E =

n∏
i=1

(x− α′i) mod m′.

We can then represent the polynomials u and v in Algorithm 9 in Lagrange representation
relatively to the roots of E modulo m and E modulo m′.

Notation 1. We will use in the sequel the following notation : for a polynomial u of degree n−1
we will denote ū the Lagrange representation in αi modulo m and ¯̄u the Lagrange representation
in α′i modulo m′.

We modify Algorithm 9 in order to perform the polynomial multiplication modulo E in
Lagrange representation. This approach is shown in Algorithm 10.

Algorithm 10 Lagrange-AMNS Multiplication

Require: ū, ¯̄u, v̄, ¯̄v the Lagrange representation modulo m and m′ of u(x) and v(x), ¯̄M the
Lagrange representation of the shortest polynomial M(x), M̄ ′ the Lagrange representation
of M ′ = −M−1 mod (E,m).

Ensure: r̄, ¯̄r such that r ∈ B and r(γ) = u(γ)v(γ)m−1 mod p
1: q̄← ū× v̄ × M̄ ′
2: ¯̄q← ChangeLRm→m′(q̄))
3: ¯̄r← (¯̄u× ¯̄v) + ¯̄q× ¯̄M)×m−1

4: r̄← ChangeLRm′→m(¯̄r)

We have to deal with some troubleshooting provided by this strategy. Indeed, at the end
of the first step we only know q̄, but we do not know ¯̄q which is required in the modified step
3 of the AMNS multiplication. So we must perform a change of Lagrange representation to
compute ¯̄q from q̄. Similarly, to get a complete multiplication algorithm, we need to know r̄ at
the end of the AMNS multiplication to get the Lagrange representation of r modulo m and m′.

In [16] we noticed that due to the specific form of E = xn− λ the roots αi modulo m (resp.
α′i modulo m′) of E are of the form

αi = µωj (resp. α′i = µ′ω′j)
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where µ and µ′ are arbitrary roots of E and ω, ω′ are primitive n-th roots of unity modulo m and
m′, respectively. This implies that the ChangeLR can be performed through two consecutive
DFT (or FFT if n = 2k) as given in Algorithm 11.

Algorithm 11 ChangeLRm→m′

Require: ū
Ensure: ¯̄u

ũ(x)← DFT−1(n, ω, ū) mod m
u(x)← u(µ−1x) mod m
ũ(x)← u(µ′x) mod m′

¯̄u← DFT (n, ω′, ũ(x)) mod m′

In [16] we evaluated the cost of an AMNS multiplication in Lagrange representation in terms
of the number of additions and multiplications modulo m and m′. For the sake of simplicity,
we assumed that that m and m′ have the same size (generally m is bigger since m ≥ 2λρ and
m′ ≥ 2ρ) and operations modulo m and m′ are assumed to have the same cost. In Table 5.3
below we give the cost of each step of the Lagrange AMNS multiplication and the cost of the
overall algorithm: we assumed that n is a power of 2 and that FFT is used in the ChangeLR
routine.

Table 5.3: Complexity of basic operations

Computation # Multiplications # Additions

Ū V̄ M̄ ′ 2n 0
ChangeLRm→m′(Q̄) n log2(n) + 2(n− 1) 2n log2(n)

(Ū V̄ + ¯̄Q ¯̄M)m−1
1 3n n

ChangeLRm′→m(Q̄) n log2(n) + 2(n− 1) 2n log2(n)

Total 2n log2(n) + 9n− 4 4n log2(n) + n

Let us briefly compare our scheme with a strategy involving Montgomery Multiplication using
Schönhage-Strassen for integer multiplication, which seems to be the best strategy comparable to
the proposed scheme. Recall that Montgomery algorithm has a cost of 3 integer multiplications
of size ∼= p.

In Schönhage-Strassen [81] in the first recursion, FFT is done modulo an integer m ∼=
p2/n and correspond to Lagrange approach modulo E = x2n − 1. Each integer multiplication
requires 3FFT (counting only the first recursion) at 2n points with a modulo m with size
p2/n. Consequently, for the overall Montgomery multiplication, we have 9FFT in 2n points
computations with coefficients size p2/n in FFT compared to 4FFT in n points with coefficients
of size p1/n for the proposed approach in AMNS.

Further study might be pursued since in Schönhage-Strassen [81] the multiplications by the
roots of unity have a cost of one addition and this is not the case of the proposed approach.

5.1.3 Multiplication in Fpk with improved DFT

We focus now on arithmetic over prime field extension Fpk used in pairing computation: the
prime p is not sparse and the degree k is in the range [6, 30]. Such field is generally constructed as
Fp[T ]/(f(T )) where f(T ) is a sparse polynomial, i.e., a binomial or a trinomial. Multiplication
in the prime field Fp is usually performed with the Montgomery approach and a multiplication
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in the extended field Fpk consists in a polynomial multiplication computed with Karatsuba
and Toom-Cook formulas [87, 88]. The reduction modulo f(T ) consists in O(k) additions and
multiplications by small constants in Fp.

We present an alternative approach [17] for the implementation in prime field extension Fpk
used in pairing cryptography. This work was done in collaboration with Nadia El Mrabet while
she was preparing her PhD thesis in Montpellier. The proposed approach takes advantage of
the AMNS for prime field representation.

For the multiplication in Fpk we use the DFT approach: given U(T ), U(T ) ∈ Fp[T ] we

compute Û = DFT (U) and V̂ = DFT (V ), then multiply terms by terms Ŵ = Û × V̂ and then
we reconstruct W = DFT−1(Ĉ). In [17] we proposed to focus on fields Fp with `-th roots of
unity such that ` ∈ {2k − 1, 2k − 2, 2k − 3} and such that the multiplication by these roots of
unity are almost free of computation for well chosen AMNS representation of Fp. Specifically,
we proposed to consider fields Fpk satisfying the following definition.

Definition 3 (DFT friendly field). We call a DFT friendly field an extension field Fpk such that
Fp admits an AMNS B = (p, n, γ, ρ)E of length n and such that one of the following conditions
holds

1. λ = 1 and n ∈ {2k− 1, 2k− 2, 2k− 4} and γ is a primitive `-th root of unity where ` = n.

2. λ = −1 and n ∈ {k − 1, k − 2} and γ is a primitive `-th root of unity where ` = 2n.

The most important property of a DFT friendly field is that the `-th roots of unity are the
elements ±γi. The multiplication by these roots is computed with the formula stated in the
following Lemma.

Lemma 2. Let an AMNS B = (p, `, γ, ρ)E and u =
∑n−1

i=0 uix
i be expressed in B. The multi-

plication of u(x) by the power γi of γ is given by

uγi = λan−i + λan−i+1x+ · · ·+ λan−1x
i−1 + a0x

i + · · ·+ an−i−1x
n−1

In other words a multiplication by γi is almost free of computations since λ = ±1. This
leads to a simplified DFT computation which essentially consists in O(`2) additions. When `
is power of 2, this leads also to a simplified FFT computation which consists in O(` log2(`))
additions in Fp.

In practice it is not easy to have ` being equal to 2k− 1: we have to relax this constraint to
` = 2k − 2 and ` = 2k − 3 and slightly adapt polynomial multiplication based on DFT to this
special case. In [17] we discussed how to compute some missing coefficients output by the DFT
when ` < 2k − 1. For example, we provided Lemma 3 for ` = 2k − 2.

Lemma 3. Let Fp be a prime field, ω be a primitive `-th root of unity and Ω and Ω−1 be the

matrices for DFTω and DFT−1
ω computation. We consider U =

∑k−1
i=0 uiT

i, V =
∑k−1

i=0 viT
i

and W = U × V and we assume that ` = 2k − 2. Then W can be computed as follows.

1. Û = DFTω(U), V̂ = DFTω(V )

2. w2k−2 = uk−1 × vk−1

3. The coefficients wi for i = 0, . . . , 2k − 3 are computed as
w0

w1
...

w2k−3

 = Ω−1 ·


v̂0 × v̂0 −w2k−2

û1 × v̂1 −w2k−2
...

v̂2k−3 × v̂2k−3 −w2k−2

 . (5.6)
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We present in Table 5.4 the complexities for a multiplication in DFT friendly fields Fpk for
the sizes of k used in pairing cryptography. For comparison purpose, we also provide in Table 5.4
the complexity of the multiplication when using Karatsuba and Toom Cook formulas [88].

Table 5.4: Complexity comparison for practical extension degree k

Method k Cost of MultF
pk

# Add. in Fp # Mult. in Fp
Karatsuba/Toom-Cook [87, 88] 6 60 15

Karatsuba/Toom-Cook [87, 88] 8 72 27

Proposed with FFT and E = t8 + 1 8 192 16

Karatsuba/Toom-Cook [87, 88] 9 160 25

Proposed with FFT and E = t8 + 1 9 208 18

Proposed with FFT and E = t8 + 1 10 240 23

Proposed with E =
∑10

i=0(−t)i 11 902 22

Karatsuba/Toom-Cook [87, 88] 12 180 45

Proposed with E =
∑10

i=0(−t)i 12 1408 24

Proposed with E =
∑10

i=0(−t)i 13 1430 28

Karatsuba/Toom-Cook [87, 88] 16 248 81

Proposed with FFT and E = t16 + 1 16 480 32

Proposed with FFT and E = t16 + 1 17 512 34

Proposed with FFT and E = t16 + 1 18 576 39

Karatsuba/Toom-Cook [87, 88] 24 588 135

We remark that even for small values of k, DFT approach seems competitive regarding to
the number of multiplications. When no FFT can be used, the number of additions increases
significantly and might render inefficient the proposed approach in these special cases.

5.2 Trade-off approach in leak resistant arithmetic in residue
number system

We present in this section a work done with Guilherme Perin [19] on randomized modular
arithmetic in residue number system. The residue number system (RNS) is a system which uses
t coprime integers a1, . . . , at. An integer u such that 0 ≤ u < A =

∏t
i=1 ai is represented in

RNS by the t residues
ui = u mod ai for i = 1, . . . , t.

Moreover, u can be recovered from its RNS expression using the Chinese remainder theorem
(CRT) as follows

u =

(
t∑
i=1

[
ui ×A−1

i

]
ai
×Ai

)
mod A (5.7)

where Ai =
∏t
j=1,j 6=i ai and the brackets [ · ]ai denote a reduction modulo ai. The set A =

{a1, . . . , at} is generally called an RNS basis.
Let u = (u1, . . . , ut)A and v = (v1, . . . , vt)A be two integers given in an RNS basis A. Then,

the CRT provides that an integer addition u+v or multiplication u×v mod A in RNS consists
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in t independent additions/multiplications modulo ai

u+ v = ([u1 + v1]a1 , . . . , [ut + vt]at),
u× v = ([u1 × v1]a1 , . . . , [ut × vt]at).

The main advantage is that these operations can be implemented in parallel since each operation
modulo ai are independent from the others. Only comparisons and Euclidean divisions are not
easy to perform in RNS and require partial reconstruction of the integers u and v.

Montgomery multiplication in RNS. In [55] Posch and Posch noticed that the Montgomery
multiplication can be efficiently implemented in RNS: they use the fact that we can modify the
Montgomery multiplication (Algorithm 7) as

q ← −u× v × p−1 mod A
w ← (uv + qp)A−1 mod B

where B is an integer coprime with A and p and greater than 2p. Furthermore, Posch and Posch
propose to perform this modified version of the Montgomery multiplication in RNS. Specifically,
they choose two RNS bases A = {a1, . . . , at} and B = {b1, . . . , bt} such that gcd(ai, bj) = 1 for
all i, j. They compute w = uvA−1 mod p as it is shown in Algorithm 12: the multiplications
modulo A are done in the RNS basis A and the operations modulo B are done in B.

Algorithm 12 RNS-MontMul(u, v,A,B)

Require: u, v in A ∪ B
Ensure: uvA−1 mod p in A ∪ B
1: [q]A ← [−uvp−1]A
2: BEA→B([q]A)
3: [w]B ← [(uv + qp)A−1]B
4: BEB→A([w]B)
5: return (wA∪B)

The second and fourth steps are necessary since if we want to compute w ← (uv + qp)A−1

mod B in B we need to convert the RNS representation of q from the basis A to the basis B:
the base extension (BE) performs this conversion. The fourth step is also necessary to have z
represented in both bases A and B.

Leak resistant arithmetic in RNS. The authors in [57] notice that the use of RNS facilitates
the randomization of the representation of an integer and consequently the randomization of a
modular multiplication. Indeed, if a modular exponentiation ue mod p is computed using the
RNS-MontMul algorithm the element u is first set in Montgomery representation

ũ = u×A mod N

and in the RNS bases A and B, i.e., [ũ]A∪B. The Montgomery representation induces a mul-
tiplicative masking of the data u by the factor A. The authors in [57] propose to randomly
construct the basis A to get a random multiplicative mask A on the data.

Specifically, the authors in [57] propose two levels of such randomization: random initial-
ization of the bases A and B at the very beginning of a modular exponentiation and random
permutations of the RNS bases A and B all along the modular exponentiation. They also pro-
vide a method to perform the conversion of ũ into the new set of RNS base A and B at a cost
of two Montgomery multiplications in RNS each time A and B are modified.
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Proposed trade-off randomization approach for leak resistant arithmetic in RNS.
We present the strategy of [19] elaborated with G. Perin which modifies only one modulus in A
while keeping B unchanged during each update of the RNS bases. This requires an additional
set A′ of spare moduli where we randomly pick the new modulus for A. We have three sets of
moduli:

• The first RNS basis A = {a1, . . . , at+1} which is modified after each loop iteration.

• The set A′ = {a′1, . . . , a′t+1} of spare moduli.

• The second RNS basis B = {b1, . . . , bt+1} which is fixed at the beginning of the exponen-
tiation.

The integers ai, bi and a′i are all pairwise co-prime. The proposed update of the RNS bases and
RNS representation of u are the following:

• Update of the basis A. Updating the basis A is quite simple: we just swap one element of
A with one element of A′ as follows

r ← random in {1, . . . , t, t+ 1},
r′ ← random in {1, . . . , t, t+ 1},
ar,new ← a′r′,old,

ar′,new ← ar,old.

In the sequel we will denote Aold and Anew the base A before and after the update, we
will use similar notation for other updated data.

• Update of the Montgomery-RNS representation. The modification of the basis requires at
the same time the corresponding update of the Montgomery representation of u. Indeed we
need to compute ũnew = [(uAnew mod p)]Anew∪B from its old Montgomery representation
ũold = [(uAold mod p)]Aold∪B. In [19] we showed that this update of ũ can be computed
as follows:

λ = [−ũar,old × p−1]ar,old ,

ũnew = [(ũold + λ× p)× a−1
r,old × ar,new]Anew∪B.

(5.8)

In [19] we presented a variant of the above randomization which avoids the use of the set of
spare moduli A′: the modified modulus in A is randomly picked in B. The complexities of the
update of the RNS bases A,B and the update of the Montgomery representation are sightly
larger compared to the first approach but the memory requirement is reduced and the number
of required moduli is also reduced.

In Table 5.5 we report the complexity of the randomization by either changing only one
modulus in the basis A or by modifying s moduli in A at each loop turn.

These complexities show that we get a cheaper randomization by changing only one modulus,
at a cost of a lower level of randomization. When we increase this level of randomization by
changing more than one modulus at each loop turn, we obtain a trade-off between randomization
and complexity. For the average randomization of s = t/2 moduli changed per loop turn of
the algorithm for exponentiation, our method requires 6t2 + O(t) multiplications and 2t2 + 3t
additions: this is better than the complexity of [57]. Another advantage of our technique is
that it works in the cox-rower architecture [56] which is the most popular architecture for RNS
implementation.
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Table 5.5: Cost of the randomization in one loop iteration of randomized Montgomery-ladder

Randomization Method # Mul. # Add. Memory

1 modulus
per loop

Proposed with a set
of spare moduli

18t+ 10 4t+ 2 8t2 + 24t+ 18

1 modulus
per loop

Proposed without a set
of spare moduli

24t+ 26 4t+ 4 8t2 + 19t+ 20

s moduli
per loop

s× proposed with
a set of spare moduli

s(12t+ 20) + 6t+ 8 s(4t+ 6) 8t2 + 42t+ 52

t/2 moduli
per loop LRA of Bajard et al. [57] 8t2 + 32t 8t2 + 12t− 4 8t2

(in average)

5.3 Conclusion

In this chapter, we considered arithmetic in prime field Fp and prime field extension Fpk .
In the non-conventional AMNS representation of elements of Fp, we proposed a Montgomery
like approach for multiplication modulo p when p has no special structure. We also adapted
this approach in order to use a multi-evaluation strategy for modular multiplication. We then
considered polynomial multiplication in Fp[T ] using DFT: we showed that using an AMNS with
a generator which is a root of unity leads to a faster DFT. This idea was later implemented by
N. El Mrabet and N. Gamma in [89] which showed that, when FFT can be used, the proposed
approach is competitive compared to conventional approach.

We considered at the end of this chapter modular arithmetic in Residue Number System.
Specifically, we looked at the leak resistant strategy for randomizing arithmetic and data encod-
ing presented in [57]. We investigated a trade-off variant of the approach of [57] which reduces
the level of randomization but has a smaller complexity.
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Chapter 6
Parallel scalar multiplication over E(F2n)
and E(F3n)

In this chapter we consider scalar multiplication over an elliptic curve: given a point P on
the curve, the goal is to compute

kP = P + · · ·+ P︸ ︷︷ ︸
k times

using the group law given by the chord and tangent rules. Specifically, we focus on parallel
scalar multiplication of elliptic curve defined over F2n and F3n . Recent processors include a
number of cores, it is thus interesting to adapt the implementation of a scalar multiplication in
order to execute it in parallel on these multiple cores. Usual algorithms for scalar multiplication,
i.e., variants of the double-and-add approach, cannot be easily parallelized: they involve a long
chain of dependent doublings and additions. In the literature only two approaches makes it
possible to break this chain of dependent operations:

• Parallel approach based on GVL [90]. The GLV approach [90] uses an endomorphism φ to
rewrite kP = k1P + k2φ(P ) where k1 and k2 have a bit length ∼= log2(k)/2. If φ(P ) can
be easily computed, the two scalar multiplications k1P and k2φ(P ) can be concurrently
evaluated and then added.

• (Double,halve)-and-add parallelization. This approach rewrites

k =
∑̀
i=0

k′i2
i

︸ ︷︷ ︸
k′

+
∑̀
i=0

k′′i 2−i︸ ︷︷ ︸
k′′

and concurrently performs k′P through a double-and-add scalar multiplication, and k′′P
through a halve-and-add scalar multiplication and then add them to get kP . This ap-
proach is effective only on F2n [91, 92, 93].

In the remainder of this chapter we present two approaches extending the parallel (double,halve)-
and-add parallelization. These results [6] were done in collaboration with Jean-Marc Robert
while he was preparing his PhD thesis in the team DALI (2012-2015). In Section 6.1 we present a
parallel version of the Montgomery-ladder extending the (double,halve)-and-add parallelization
but ensuring security against simple side channel attacks (SPA [44], SEMA [45] and timing
attacks [43]). In Section 6.2 we present a thirding operation over E(F3n) and we use it in a
parallel (triple,third)-and-add scalar multiplication.
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6.1 Parallel Montgomery-ladder over binary elliptic curves

In this section, we consider an extended binary field F2n = F2[t]/(f(t)), where f(t) ∈ F2[t]
is an irreducible polynomial of degree n, and an elliptic curve E(F2n) defined by the following
Weierstrass equation:

E : y2 + xy = x3 + ax2 + b with a, b ∈ F2n . (6.1)

There is on such curve an underlying group law provided by the chord and tangent rules. Let
P1 = (x1, y1) and P2 = (x2, y2) be two points on E(F2n), this group law can be expressed as an
algebraic expression in terms of the coordinates of the points. Specifically, addition, doubling
and halving on E(F2n) are performed as follows:

• Addition. The coordinates (x3, y3) of P3 = P1 + P2 are computed as follows:{
x3 = λ2 + λ+ x1 + x2 + a,
y3 = (x1 + x3)λ+ x3 + y1,

where λ =

{ y1+y2
x1+x2

if P1 6= P2,
y1
x1

+ x1 if P1 = P2.
(6.2)

• Doubling. The coordinates (u, v) of P = 2 ·Q are expressed in terms of the coordinates of
Q = (x, y) as follows

λ = x+ y/x, (6.3)

u = λ2 + λ+ a, (6.4)

v = x2 + u(λ+ 1). (6.5)

• Halving. The halving formula is derived from the doubling formula: let P = (x, y) and
Q = (u, v) be two points on E(F2n) of odd order such that Q = 2 ·P which gives P = 1

2Q.

Following [91, 92] we recover the coordinates (x, y) in terms of u and v as follows:

1. We first solve the quadratic equation (6.4) to get λ, with a half-trace (HT) compu-
tation

HT (u+ x) =

n−1
2∑
i=0

(u+ x)22i .

2. Then using (6.5) we compute x =
√
v + u(λ+ 1)

3. Finally, we compute y with (6.3) as y = (λ+ x)x.

The most widely used method to implement scalar multiplication is the classical double-and-add
approach which computes k ·P as a sequence of doubling followed by an addition if the scanned
bit ki is equal to 1. Optimized variants of this approach rewrite the scalar k with non-adjacent
form (NAF or NAFw) in order to reduce the number of additions.

Knudsen in [91] proposed to perform the scalar multiplication as a sequence of halvings and
additions to take advantage of the efficiency of the halving on E(F2n). Moreover, as mentioned
in [94, 93], double-and-add and halve-and-add approaches can be combined in order to parallelize
the scalar multiplication in a (double,halve)-and-add approach.

All these previously mentioned approaches are sensitive to side channel attack like timing
attack and simple power analysis. Indeed these attacks analyze either the computation time or
the power consumption to recover the sequence of additions and doublings performed during
the computation of k · P . This leaks some information of the coefficients of k since when an
addition is performed this means that ki 6= 0 otherwise ki = 0.
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It is thus recommended to implement scalar multiplication with an algorithm which is regular
and has a constant time. One popular algorithm which achieves this goal is the Montgomery-
ladder: this approach compute the scalar multiplication through a regular sequence of doublings
always followed by an addition as shown in Algorithm 13.

Algorithm 13 Montgomery-ladder scalar multiplication

Require: P ∈ E(F2n) and a scalar k ∈ [0, 2`[
Ensure: Q = k · P
1: Q0 ← O
2: Q1 ← P
3: for i from `− 1 downto 0 do
4: if (ki = 0) then
5: T ← Q0, Q0 ← 2T,Q1 ← T +Q1

6: else
7: T ← Q1, Q1 ← 2T,Q0 ← Q0 + T,
8: end if
9: end for

10: return Q0

In [6], we proposed a parallelized variant of the Montgomery ladder. To reach this goal we
first proposed a Montgomery-halving scalar multiplication which performs a regular sequence
of halvings and additions to compute k · P . This approach is depicted in Algorithm 14.

Algorithm 14 Montgomery-halving

Require: P ∈ E(F2n) of odd order N and a scalar k ∈ [0, N − 1]
Ensure: Q = k · P .
1: Compute k′ = 2`−1 · k mod N =

∑`−1
i=0 k

′
i2
i with ` = blog2(N)c+ 1

2: Q0 ← k′0 · P,Q1 ← k′0 · P − 2 · P
3: for i from 1 to `− 1 do
4: if (k′i = 1) then
5: T ← Q0/2, Q0 ← T,Q1 ← Q1 − T
6: else
7: T ← Q1/2, Q1 ← T,Q0 ← Q0 − T
8: end if
9: end for

10: return (Q0)

The method to parallelize the computations is similar to the technique used in the (double,halve)-
and-add approach. The scalar k is recoded as follows:

k = k′ × 2−s mod N = (k′`−12`−1−s + . . .+ k′s)︸ ︷︷ ︸
k1

+ (k′s−12−1 + . . .+ k′02−s)︸ ︷︷ ︸
k2

mod N

where N is the order of P and is of bit length `. Then the scalar multiplication k1 · P is
computed with the original Montgomery-ladder and the second part k2 · P is performed in
parallel through a Montgomery-halving approach. The final result is obtained with a final
addition k · P = (k1 · P ) + (k2 · P ).

Implementation results. We have implemented the proposed approach on a DELL Optiplex
990 equipped with an Intel Core i7-2600 processor and a Nexus 7 tablet with a Qualcomm
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Snapdragon processor (ARM-v7 architecture). On the Intel Core i7 processor we implemented
the underlying finite field operations using mostly the strategies used in the work of Taverne et
al. [94, 93]. Specifically, multiplications were computed by combining a few Karatsuba recur-
sions and PCLMUL instruction and squarings and square roots were implemented with a few
PSHUFB instructions. The half-trace was implemented with a sequence of look-up table.

For the implementation over the Qualcomm Snapdragon we used the strategy of [95]. We
used the algorithm of Lopez-Dahab [96] for polynomial multiplication which consists of a se-
quence of shifts, bitwise XORs and look-up table. Half-trace, squaring and square-root were
implemented with a sequence of look-up table.

The timings obtained are reported in Table 6.1. We provide timings for Mongomery-ladder,
Mongomery-halving and its parallel version.

Table 6.1: Timings of scalar multiplication on an Intel Core i7 and a Qualcomm SnapDragon
processors

Algorithm #Core
Intel Core i7 Qualcomm SnapDragon

B233 B409 B233 B409
#CC/103 split #CC/103 split #CC/103 split #CC/103 split

Montgomery-Ladder 1 149 - 694 - 3407 - 16311 -
Montgomery-Halving 1 689 - 3826 - 11337 - 59810 -
Montgomery-Parallel 2 143 39 624 59 2756 56 13155 86

Relative speed-up
Mont-Par./Mont-Ladder

5.09 % 10.5 % 19 % 19 %

One drawback of the proposed approach is that the Montgomery-halving algorithm have
to be computed in affine coordinates which involve costly field inversions. We can notice that
our proposed parallelized version of the Montgomery-ladder provides a speed-up of 5% to 10%
compared to the Montgomery-ladder approach on an Intel Core i7 processor and a speed-up
of 19% on a Snapdragon processor. The parallelization on the Snapdragon processor is better,
which can be partly explained by the fact that the ratio I/M is smaller over the Snapdragon
processor.

6.2 Parallel Montgomery-ladder over E(F3n)

In this section, we present the results obtained in [6] for parallel scalar multiplication over
E(F3n). We focus on elliptic curves defined over characteristic three fields F3n . Such elliptic
curves are generally separated into two kinds of curves: supersingular elliptic curves and ordi-
nary elliptic curves. Here we will focus on ordinary elliptic curves. Such curves can be defined
by a Weierstrass equation:

y2 = x3 + ax2 + b

where a, b ∈ F3n and a, b 6= 0 since the curve equation must be non-singular. Let P1 = (x1, y1)
and P2 = (x2, y2) be two points on E(F3n). The addition, doubling and tripling formulas on
this curve are as follows:

Addition and doubling. The coordinates (x3, y3) of the point P3 = P1 + P2 are:{
x3 = λ2 − a− x1 − x2,
y3 = λ(x1 − x3)− y1,

where

{
λ = y2−y1

x2−x1 if P1 6= P2,

λ = ax1
y1

if P1 = P2.
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Tripling. The coordinates (x3, y3) of P3 = 3 · P1 are computed as follows: x3 =
y61

a2(x31+b)2
− ax31

x31+b
,

y3 =
y91

a3(x31+b)3
− y31

x31+b
.

(6.6)

A common strategy to improve the efficiency of the addition, doubling and tripling op-
erations consists in using a projective coordinate system in order to remove field inversions
which are costly operations. The following set of projective coordinates were proposed in the
context of curves defined over field of characteristic three: Jacobian projective coordinates
where (X,Y, Z) corresponds to the affine points (X/Z2, Y/Z3), ML-projective coordinates [97]
where (X,Y, Z, T ) corresponds to (X/Z2, Y/T ) and the scaled projective coordinates [98] with
(X,Y, T ) corresponding to (X/bT, Y/bT ).

In [6] we extended the halve-and-add scalar multiplication to the context of E(F3n). We
get thirding formulas in similar fashion as the halving was obtained on E(F2n). This thirding
formula leads to a third-and-add scalar multiplication.

6.2.1 Thirding formula

There are two types of ordinary curves E(F3n): one having a = 1 and one having a = −1.
We focus only on the method used to get a thirding formula for a = 1. The case a = −1 is
treated in a similar manner in [6]. We consider two points P = (xP , yP ) and Q = (xQ, yQ) on
an elliptic curve E(F3n) given by an equation y2 = x3 + x2 + b, i.e., with a = 1. The tripling
formula in affine coordinates is as follows: if P = 3 · Q, the expression of (xP , yP ) in terms of
(xQ, yQ) is

xP =
y6Q

(x3Q+b)2
− x3Q

x3Q+b
, yP =

y9Q
(x3Q+b)3

− y3Q
x3Q+b

. (6.7)

If we set

B =
y3
Q

x3
Q + b

and A =
x3
Q

x3
Q + b

, (6.8)

the previous equation (6.7) rewrites as

xP = B2 −A, yP = B3 −B. (6.9)

Computing the thirding of P , i.e., Q =
[

1
3

]
·P , consists of the computation of the coordinates

xQ and yQ in terms of xP and yP . We first have to find A and B from (6.9), then deduce xQ
and yQ from (6.8). We stated in [6] some results concerning the solutions of the equation in the
variable B of the form B3 −B = u where u is a fixed element of F3n satisfying Trace(u) = 0.

Lemma 4 (ThirdTrace). We assume that the field F3n has a degree satisfying n 6= 0 mod 3.
The three solutions of the equation B3 −B = u where u ∈ F3n satisfies Trace(u) = 0 are:

B0 =

 −
∑(n−1)/3−1

i=0 (u3 − u)33i+1
if n ≡ 1 mod 3,∑(n−2)/3

i=0 (u3 − u)33i if n ≡ 2 mod 3,
(6.10)

and B1 = B0 + 1 and B2 = B0 + 2.

In the sequel, for n an odd integer, we will call the third-trace of B ∈ F3n the element

ThirdTrace(B) =

{
−
∑(n−1)/3−1

i=0 B3i if n ≡ 1 mod 3,∑(n−2)/3
i=0 B3i if n ≡ 2 mod 3.
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From the previous lemma, we know how to compute B in terms of yP from (6.9). We then
could extend in [6] this result to get a full thirding formula as stated in Lemma 5.

Lemma 5. We consider an elliptic curve E(F3n) defined by y2 = x3 + x2 + b over F3n such
that n 6≡ 0 mod 3. We assume that the order N of E(F3n) is such that N = 3N ′ and N ′ 6≡ 0
mod 3. Then the two following assertions hold:

i) Let P = (xP , yP ) ∈ E(F3n) satisfying Trace(yP ) = 0 then there are three points Q0 =
(x0, y0), Q1 = (x1, y1) and Q2 = (x2, y2) on the curve such that 3·Qi = P . Their coordinates
can be computed as follows:

B0 ← ThirdTrace(y3
P − yP ), B1 ← B0 + 1, B2 ← B0 + 2.

A0 ← B2
0 − xP , A1 ← A0 + 2B0 + 1, A2 ← A0 + 4B0 + 4.

x0 ← 3

√
bA0

1−A0
, x1 ← 3

√
bA1

1−A1
, x2 ← 3

√
bA2

1−A2
.

y0 ← 3

√
bB0

1−A0
, y1 ← 3

√
bB1

1−A1
, y2 ← 3

√
bB2

1−A2
.

(6.11)

ii) If P = (xP , yP ) ∈ E(F3n) satisfies Trace(yP ) = 0 it has an order N ′, and if P = (xP , yP ) ∈
E(F3n) satisfies Trace(yP ) 6= 0 then it has an order equal to 3N ′.

6.2.2 Parallel scalar multiplication in E(F3n) and implementation results

We consider a curve E(F3n) given by y2 = x3 + ax2 + b where a ∈ {1,−1}. The thirding
formulas presented in [6] provide some new approaches for implementing a scalar multiplication
on E(F3n). Indeed, let k be a scalar and let P be a point on E(F3n) of order N < 3`. If we
denote k′ = 3`−1 × k mod N and if we write k′ =

∑`−1
i=0 k

′
i3
i in base 3, i.e., with k′i ∈ {0, 1, 2}

we obtain the following:
k = 3−(`−1)k′ mod N

=
∑`−1

i=0 k
′
i3
i−`+1 mod N

=
∑−(`−1)

i=0 k′i+`−13i mod N.

Consequently, the scalar multiplication k · P can be performed through a sequence of thirdings
and additions:

k · P =

−(`−1)∑
i=0

k′i+`−13i · P.

In [6] we extended this idea to a third-and-add approach which uses a SWR3,w recoding of k′

which is the equivalent to the NAFw recoding in base 3 (cf. [23] for details). This approach is
depicted in Algorithm 15.

The third-and-add approach is not interesting in practice since the thirding operation ap-
pears to be a bit costly since it involves a field inversion. But we can take advantage of the
third-and-add approach to implement scalar multiplication in parallel fashion. Indeed, we can
split the integer k into two parts k1 and k2 as follows: we set a split value 0 < s < ` = dlog3(N)e
and we compute k′ = k · 3s mod N . Then if we write k′ =

∑`
i=0 k

′
i3
i in base 3 we can rewrite

k as follows:
k = 3−sk′ mod N

=
(∑s−1

i=0 k
′
i3
i−s
)

+
(∑`

i=s k
′
i3
i−s
)

mod N

=

(
s∑
i=1

k′s−i3
−i

)
︸ ︷︷ ︸

k1

+

(
`−s∑
i=0

k′i+s3
i

)
︸ ︷︷ ︸

k2

mod N.
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Algorithm 15 Third-and-add with SWR3,w

Require: A curve E(F3n), a point P ∈ E(F3m) of prime order N < 3` and a scalar k ∈ [1, N ].
Ensure: Q = k · P
k′ ← k · 3` mod N
(k′`, . . . , k

′
0)← SWR3,w(k′).

Precomputations. for i = 0, . . . , 3w−1
2 and i 6≡ 0 mod 3 do T [i]← iP .

Q← O
for i = ` to 0 do
Q←

[
1
3

]
·Q.

Q← Q+ sign(ki)T [ |ki| ]
end for

The computation of a scalar multiplication can be split into two concurrent algorithms:
a triple-and-add or a double-and-add algorithm which performs k2 · P and a third-and-add
algorithm which performs k1 ·P . The result is obtained after a final addition k ·P = k1 ·P+k2 ·P .

Implementation results. The platforms used for our experimentations are the same as in
Subsection 6.1: an Intel Core i7-2400 processor with Ubuntu 12.04 and gcc 4.6.3 and a Qual-
comm Snapdragon processor with Ubuntu touch 14.04 and gcc 4.8.2. The two fields consid-
ered in our implementations are F3127 = F3[t]/(f(t)) with f(t) = (t128 + t77 + 1)/(t − 1) and
F3251 = F3[t]/(t251 + t26 − 1). For the implementation of the finite field operations we followed
the strategy presented in [99]: logical bit-wise operation for addition, shift-and-add approach for
multiplication, look-up table for cubing and cube-root. We implemented the double-and-add,
triple-and-add and third-and-add algorithms for scalar multiplication along with their parallel
counterparts, in E(F3127) and E(F3251). The curves chosen have either a = 1 and order 3N
where N is prime, either a = −1 and a prime order N .

Table 6.2: Timings of scalar multiplication in E(F3127) and E(F3251)

Curve
Algorithm

NAF Nb. Intel Core i7 Qualcomm Snapdragon
type Wind. of n = 127 n = 251 n = 127 n = 251

size core #CC/103 split #CC/103 split #CC/103 split #CC/103 split

a = 1

DnA 4 1 615 - 3478 - 3218 - 24238 -
TnA 2 1 696 - 4128 - 3492 - 27122 -
TnA 3 1 697 - 3876 - 3479 - 25558 -

ThnA 2 1 2774 - 12315 - 15427 - 118092 -
ThnA 3 1 2782 - 12326 - 15679 - 117640 -

Parallel
(TnA,ThnA) (2,2) 2 615 24 3735 34 3131 22 22697 44

Parallel
(TnA,ThnA) (3,3) 2 631 24 3588 32 3226 18 22157 40

Parallel
(DnA,ThnA) (4,3) 2 587 20 3297 28 2957 18 21193 40

a = −1

DnA 1 1 1320 - 8929 - 6936 - 54484 -
TnA 2 1 845 - 5529 - 4331 - 32931 -
TnA 3 1 847 - 5169 - 4347 - 30748 -

ThnA 2 1 3053 - 11728 - 12781 - 94324 -
ThnA 3 1 2751 - 11010 - 13006 - 94255 -

Parallel
(TnA,ThnA) (2,2) 2 728 28 4660 47 3500 30 25254 63

Parallel
(TnA,ThnA) (3,3) 2 727 30 4407 48 3681 25 25101 59
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• For a = 1 the best non-parallelized approach is the double-and-add scalar multiplication
while the triple-and-add approaches are slightly slower. The improvement provided by
the parallelization is of 4.88% for n = 127 and 5.73% for n = 251 on an Intel Core i7
processor and of 8% for n = 127 and 12% for n = 251 on a Snapdragon processor.

• For a = −1 the best non-parallelized approach is the triple-and-add method with w = 2
for n = 127 and w = 3 for n = 251. The parallelization with w = 3 provides a speed-up
of 12.3% for n = 127 and 13.8% for n = 251 on an Intel Core i7 processor and 14%
for n = 127 and 18% for n = 251 on a SnapDragon processor compared to the best
non-parallelized approaches.

6.3 Conclusion

In this chapter we presented some results on the parallelization of elliptic curve scalar multi-
plication. We first presented a Mongtomery-halving approach for scalar multiplication which is
a regular and constant time algorithm. This Montgomery-halving is interesting when it is used
concurrently to the Montgomery-ladder to get a parallelized version of the Montgomery-ladder
scalar multiplication. We then presented a thirding operation in E(F3n). This lead to a parallel
(third,triple)-and-add scalar multiplication in E(F3n). Experimentation done on an Intel Core
i7 and a Qualcomm Snapdragon showed that, since the proposed parallelization involves a large
number of inversion, the speed-up is limited when a field inversion is costly compared to a field
multiplication.
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Chapter 7
Conclusion and future works

7.1 Conclusion

In this HDR thesis we presented some results obtained during the past ten years on efficient
and secure implementation of cryptographic protocols.

We started our research work on improving multiplication in finite fields based on quadratic
complexity methods. This was the topic of our Phd thesis, we proposed new bases for field
representation: the modified polynomial basis [24] and quasi-normal bases [8]. These bases were
chosen in order to reduce the complexity of the computation of the matrix entries involved in
the matrix-vector formulation of finite field multiplication (cf. Section 3.1.1). We also proposed
compact matrix representation in order to reduce the delay of these quadratic space complexity
multipliers [9].

During the years following the end of the Phd thesis, we pursued our research on multi-
pliers in finite fields. At this time we focused on multiplication algorithms with subquadratic
complexity. The first work done in this direction was on arithmetic modulo a prime integer
in the AMNS system (cf. Chapter 5). We introduced a method based on DFT and FFT to
multiply element of Fp represented in an AMNS. We pursued this idea to improve multiplication
in Fpk . We used the fact that an AMNS can be constructed with a base which is a root of unity.
This approach renders efficient the DFT and FFT computation for polynomial multiplication
in Fp[T ] since the multiplication by the considered root unity is really cheap.

We also studied subquadratic methods for multiplication in F2n (cf. Chapter 3). These
works started with the collaboration with Anwar Hasan in two articles extending the TMVP
approach initiated by Fan and Hasan in [46] to multiplication modulo a NAOP [1] and field
represented in a Dickson basis [2]. At this time parallel multipliers based on TMVP were the
best ones among parallel multipliers for field F2n of cryptographic size. Our work extends the
use of this approach to a larger class of fields.

We pursued our collaboration with Anwar Hasan in order to improve subquadratic space
complexity multiplier based on TMVP for field represented in ONB-II. We analyzed the entire
circuitry produced by recursively applying TMVP formula. We identified parts of the circuit
which can be removed or replace by another circuit which is less expensive. We called this
method the block recombination approach. We get an ONB-II multiplier which reduced signif-
icantly the space complexity compared to the original multiplier of [58].

The previous approach was based on the analysis of the entire circuitry of the considered
TMVP subquadratic multiplier. We looked at other subquadratic multipliers: the ones based
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on polynomial multiplication and Karatsuba formula. This lead us to notice that the optimiza-
tion initially proposed by Bernstein on two recursions of Karatsuba formula in [48] could be
generalized to an arbitrary number of recursions. The resulting multiplier get the expected
reduction of the space complexity, but it also get a significant improvement of its critical path
delay. This rendered multipliers based on Karatsuba better than the one based on TMVP.

The last works on finite field arithmetic concerned combined operations AB+AC or AB,AC.
The technique was to rewrite multiplication algorithm for these combined operation in order
to remove some redundant computation involved in two or more multiplication. The specific
pattern of operations lead to redundant computations. We did it in [25] for AB + CD with
algorithm crafted for software implementation of multiplication F2[x]. In a recent work [18]
we could rewrite the word level form of Montgomery modular multiplication applied to the
computation of AB,AC.

Additionally to the works on finite field arithmetic we obtained several results on the im-
provement of scalar multiplication in an elliptic curve. The first works [23, 20] were done during
the preparation of the Phd thesis and during the few years which followed. We provided in these
works some improvements for point tripling and addition in curves E(F3m). Recently we pro-
posed in [6] a thirding formula (division by 3), in order to parallelize part of the computations
of a scalar multiplication. We proposed also a parallel version of the Montgomery-ladder for
the scalar multiplication.

7.2 Future works

We now present some directions we plan to pursue during the next few years.

7.2.1 Toward further recombined algorithms

One of the main direction of our recent works was the analyzis of recursive algorithm in
order to look at the whole recursions and try to identify redundant computations involved in
these computations. These strategies were presented in Chapter 3 and Chapter 4. We would
like to pursue these strategies in the following directions.

A first direction would be to extend the approach of Bernstein for polynomial multiplica-
tion (Section 3.3.1). In this case some computations done in distinct recursions are the same
(multiplication by the level factor). Merging the reconstruction of each recursion leads to some
saving in complexity. But this is specific to polynomials since these redundant computation are
due to the overlap of subsequent products. We plan to look at other algorithms from symbolic
calculus which are recursive and also involve polynomial multiplications at some level and see
if they can lead to similar improvement.

In a second direction we plan to investigate some strategies related to block recombination of
the GHASH multiplier reviewed in Section 3.2.2. We can first notice that when some consecutive
operations (CVF,CMF,R,. . . ) are done separately, the delay of the computation is the sum of
the delay of each operation. We plan to re-express such consecutive computations, when it
is possible, in order to reduce this delay. In counter part this might increase a bit the space
complexity. We plan to look at the following two cases:

• Merging blocks in the multiply-and-add architecture. We consider the multiply-and-add
architecture in the left part of Figure 7.1. This architecture can be used for the im-
plementation of a GHASH function. The temporary results are stored in component
formation in a larger register (nlog2(3) flip-flops). We plan to modify this multiplier by
merging the reconstruction block and the CMF block in order to have a single block with
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a reduced delay. This is shown in the right side of Figure 7.1. The advantage of this
approach is that it will give a multiply-and-add architecture with an expected reduced
delay of log2(n)DX + DA. This will make this architecture competitive with quadratic
approaches, at least theoretically.

Figure 7.1: Merging blocks in multiply-and-add architecture
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• Merged blocks in optimal-polynomial multiplication. The multiplier of Bernstein and
Lange [71, 72] proceeds as follows:

1. the elements U and V expressed in a permuted ONB-II N ′ = (βi+β−i) are converted
into polynomials U ′(α), V ′(α) in α = β + β−1

2. The product of W ′(α) = U ′(α) × V ′(α) is computed with a subquadratic approach
for polynomial multiplication.

3. We convert W ′(α) back to a representation in N ′.

We propose to merge the forward conversion with the component polynomial formation
of the Karatsuba multiplier. We will also try to merge the backward conversion with the
reconstruction. If both mergings are effective we expect a reduction of the delay from
4 log2(n) to 2 log2(n).

7.2.2 Randomization

During the past twenty years an important amount of work was done on side channel analysis.
Some recent results showed that this kind of attacks is an important threat against embedded
devices performing cryptographic computations. Specifically, recent attacks called horizontal
attacks [100, 101, 102] showed that usual counter-measures like the ones proposed by Coron
in [103] (exponent randomization, data blinding) are not efficient. These attacks try to correlate
some portions of a single trace in order to find the sequence of operations and then derive the
key. They use the fact that if a data is used several times and is encoded in the same way
then each time the data is used in a computation this produces a correlated trace. One counter
measure to prevent horizontal analysis is to dynamically randomize data involved in the sensitive
algorithms. But unfortunately these randomizations are costly: the one involved in [57] require
two multiplications per randomization and per data, and the one from [101] require twice the
computational effort compared to a regular multiplication.

We have done a first work in this direction [19] which reduces the cost of the dynamic
randomization in RNS proposed in [57]. We would like to pursue this approach in a different
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way. We can let the multiplicative masking ũ = u×M mod p evolve freely: we randomize the
bases A and B but we do not correct the multiplicative mask. This save the costly update of
the multiplicative mask, but the randomization is kept effective by the random update of the
bases. At the end we will have a multiplicative mask of the form M =

∏n
i=1 a

αi
i ×

∏n
i=1 b

βi
i . So

we need a strategy to keep the exponents αi and βi in a limited range < γ, in order to to be
able to remove the mask with a reasonable computational effort.

We plan to pursue this direction in order to develop other strategies for dynamic random-
ization remaining efficient in practice: for example in usual binary representation or in other
non-conventional representation system like RNS.

A second important concerns related to randomization for the protection of embedded de-
vices is the quality of the randomization. This problem is, for now, not sufficiently understood.
To illustrate this problematic we just remind that the classical blinding of a secret ECC scalar
is done as follows: k′ = k+ r×N where N = #E(Fq) is the order of the group and r is a 20 bit
random integer. But Joye et al. in [104] noticed that since #E(Fq) = q − 2t+ 1 with |t| ≤ √q
then the upper half bits of N are those of q. Then, when q is sparse, these bits are mostly zeros
and no blinding are done on the most significant bits of k′ = k + r ×N .

Another remark to illustrate how tricky is this problematic: we did a quick experiment on
an usual randomization strategy on elliptic curve which is the projective representation. We
have generated all possible representatives of a point and then have evaluated the distribution
of Hamming weight of these representatives. We noticed that there is a small bias in this
distribution. This bias is really small so it cannot be exploited to mount attack but it is present
and this should not be neglected for security purpose.

Consequently, we believe that a theoretic and practical evaluation of some proposed random-
ization strategies have to be conducted in order to have a better evaluation of the robustness
of these randomizations have to be conducted.
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