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Abstract

Big Data for the biomedical domain involves a major issue: the analysis of large
volumes of heterogeneous data (e.g. video, audio, text, image). Ontology, i.e.
conceptual models of the reality, can play a crucial role in biomedical fields for
automating data processing, querying, and matching heterogeneous data. Various
English resources exist, but considerably fewer are available in French and there is
a substantial lack of related tools and services to exploit them. Ontologies were
initially built manually. A few semi-automatic methodologies have been proposed
in recent years. Semi-automatic construction/enrichment of ontologies are mostly
achieved using natural language processing (NLP) techniques to assess texts. NLP
methods have to take the lexical and semantic complexity of biomedical data into
account: (1) lexical refers to complex phrases to take into account, (2) semantic
refers to sense and context induction of the terminology.

In this thesis, we address the above-mentioned challenges by proposing method-
ologies for construction/enrichment of biomedical ontologies based on two main
contributions. The first contribution concerns the automatic extraction of special-
ized biomedical terms (lexical complexity) from corpora. New ranking measures
for single- and multi-word term extraction methods are proposed and evaluated. In
addition, we present BioTex web and desktop application that implements the pro-
posed measures. The second contribution concerns concept extraction and semantic
linkage of extracted terminology (semantic complexity). This work seeks to induce
semantic concepts of new candidate terms, and to find semantic links, i.e. relevant
locations of new candidate terms, in an existing biomedical ontology. We propose
a methodology that extracts new terms in MeSH ontology. Quantitative and quali-
tative assessments conducted by experts and non-experts on real data highlight the
relevance of the contributions.
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Résumé

En biomedicine, le domaine du “Big Data” (l’infobésité) pose le problème de l’analyse
de gros volumes de données hétérogènes (i.e. vidéo, audio, texte, image). Les ontolo-
gies biomédicales, modèle conceptuel de la réalité, peuvent jouer un rôle important
afin d’automatiser le traitement des données, les requêtes et la mise en correspon-
dance des données hétérogènes. Il existe plusieurs ressources en anglais mais elles
sont moins riches pour le français. Le manque d’outils et de services connexes
pour les exploiter accentue ces lacunes. Dans un premier temps, les ontologies ont
été construites manuellement. Au cours de ces dernières années, quelques méth-
odes semi-automatiques ont été proposées. Ces techniques semi-automatiques de
construction/enrichissement d’ontologies sont principalement induites à partir de
textes en utilisant des techniques du traitement automatique du langage naturel
(TALN). Les méthodes de TALN permettent de prendre en compte la complexité
lexicale et sémantique des données biomédicales : (1) lexicale pour faire référence
aux syntagmes biomédicaux complexes à considérer et (2) sémantique pour traiter
l’induction du concept et du contexte de la terminologie.

Dans cette thèse, afin de relever les défis mentionnés précédemment, nous pro-
posons des méthodologies pour l’enrichissement/la construction d’ontologies biomédi-
cales fondées sur deux principales contributions. La première contribution est liée à
l’extraction automatique de termes biomédicaux spécialisés (complexité lexicale) à
partir de corpus. De nouvelles mesures d’extraction et de classement de termes com-
posés d’un ou plusieurs mots ont été proposées et évaluées. L’application BioTex
implémente les mesures définies. La seconde contribution concerne l’extraction de
concepts et le lien sémantique de la terminologie extraite (complexité sémantique).
Ce travail vise à induire des concepts pour les nouveaux termes candidats et de
déterminer leurs liens sémantiques, c’est-à-dire les positions les plus pertinentes au
sein d’une ontologie biomédicale existante. Nous avons ainsi proposé une approche
d’extraction de concepts qui intègre de nouveaux termes dans l’ontologie MeSH. Les
évaluations, quantitatives et qualitatives, menées par des experts et non experts sur
des données réelles, soulignent l’intérêt de ces contributions.
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Chapter

1

INTRODUCTION

Big Data is a popular term used to describe the exponential growth and availabil-
ity of both structured and unstructured data. This has taken place over the last
20 years. For instance, social networks such as Facebook, Twitter and Linkedin
generate masses of data, which is available to be accessed by other applications.
Several domains, including biomedicine, life sciences and scientific research, have
been affected by Big Data1. Therefore there is a need to understand and exploit
this data. This process is called “Big Data Analytics”, which allows us to gain new
insight through data-driven research [Madden, 2012, Embley and Liddle, 2013]. For
instance, the combination of genomics and clinical health data together with Big
Data Analytics will leverage personalized medicine, which will significantly improve
patient care. A major problem hampering Big Data Analytics development is the
need to process several types of data, such as structured, numeric and unstructured
data (e.g. video, audio, text, image, etc)2.

Semantic knowledge could be integrated to solve this problem. Semantic knowledge
is generally represented by ontologies. In the context of computer and information
sciences, an ontology is a description of the concepts and relationships that really
or fundamentally exist for a particular domain [Gruber, 1993]. The representations
are typically classes (or concepts), attributes (or properties), and relationships (or
relations among concept members).

1By 2015 the average of data annually generated in hospitals is 665TB : http://ihealthtran.
com/wordpress/2013/03/infographic-friday-the-body-as-a-source-of-big-data/.

2Today, 80% of data is unstructured such as images, video, and notes

1

http://ihealthtran.com/wordpress/2013/03/infographic-friday-the-body-as-a-source-of-big-data/
http://ihealthtran.com/wordpress/2013/03/infographic-friday-the-body-as-a-source-of-big-data/


2 CHAPTER 1. INTRODUCTION

Therefore, ontologies, as conceptual models of reality, can play a role in Big Data
applications for data processing automation, querying, and reconciling data hetero-
geneity. In this context, ontologies can: (i) provide semantics to add raw data, (ii)
build bridges across domains, (iii) connect data at various concept levels across do-
mains, via their generalized concepts, and (iv) be used as authorized knowledge to
analyze Big Data. The ontologies are used in information retrieval systems (e.g. in
Google with the knowledge graph introduced in 2012) or decision support in several
domains, for instance, life science [Sy et al., 2012], medicine [Aimé et al., 2012],
low [Casellas, 2011], learning [Lundqvist et al., 2011].

In the biomedical domain, as we have already mentioned, the increasing capability
and sophistication of biomedical instruments has led to the build-up of large volumes
of heterogeneous data (e.g. the use of electronic health records “EHR” for storing
patient information). Analysis of this biomedical data (“biomedical Big Data”) is
opening new avenues for developing biomedical research, but it could be hard to
efficiently manage data without ontologies, support storage, query, and to perform
analytic functions.

Biomedical ontologies can be integrated to manage heterogeneous data in emerg-
ing bioinformatics projects. Two ways for integrating ontology in biomedical Big
Data are: (i) ontology to database mapping: mapping ontology to database classes
(concepts)/instances; and (ii) adding metadata on data using the terms of an on-
tology. For instance, we may find a part of text like “blood pressure 200 mmHg”
in a document, which could be mapped to “hyperglycemia”. Some related works
integrate biomedical ontologies in both ways, for instance, in the neurology disease
domain [Jayapandian et al., 2014], BRAIN Project3,etc.

In addition to the importance of ontology as previously described, biomedical ontolo-
gies are useful, for instance in: (i) medicine, by facilitating the continuity of health
care; and (ii) biological research, by facilitating the sharing of experimental data
among researchers [Bodenreider, 2008]. Biomedical ontologies serve to standardize
the terminology, enable access to domain knowledge, verify data and facilitate inte-
grative analysis of heterogeneous data.

Initially, ontologies were built manually. That has changed in recent years, and a
few semi-automatic methodologies have been proposed. The semi-automatic con-
struction/enrichment of ontologies are mostly induced through textual data. For
instance, Text2Onto [Cimiano and Völker, 2005], OntoLearn [Velardi et al., 2007],
Sprat [Maynard et al., 2009] were developed to construct/enrich ontologies from tex-
tual corpus, among other studies [Blomqvist, 2009, Deborah et al., 2011, Dixit et al.,
2012, Mondary, 2011, Sánchez and Moreno, 2008]. These related works have usu-

3http://braininitiative.nih.gov/

http://braininitiative.nih.gov/
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ally been proposed in general domains, with different techniques to automate tasks.
These studies have generated interesting results, but experts are always needed
for the construction/enrichment methodology, as recently described in [Gherasim,
2013]. The main reason for the expert intervention is because the ontology con-
struction/enrichment task requires a considerable amount of domain knowledge. We
briefly describe studies related to ontology construction/enrichment in next chap-
ter. For instance, in the biomedical domain, ontologies can have millions of concepts
and they are always based on considerable expert help. However, because of current
large-scale changes, ontology enrichment/construction requires an automatic pro-
cess to reduce the participation time of experts.

Biomedical ontologies have recently started to emerge that are built on the basis
of theories and methods from diverse disciplines such as information management,
knowledge representation, and natural language processing (NLP) to perform or im-
prove biomedical applications. Automatic biomedical ontology construction/enrich-
ment from textual data requires strict in-depth studies of the linguistic structures,
concepts, and relations present in the text. This study is part of Natural Language
Processing (NLP), which involves methods to communicate to people and machines
through natural language.

NLP for biomedical ontology enrichment/construction is faced with several chal-
lenges. First, the complexity and specialization of texts to be evaluated, i.e. bio-
logical data differs from EHR (electronic health record) data, which in turn differs
from data of other domains. Second, the complexity of extracting new terminology
according the specific already existing resources, for instance biomedical terms often
contain numbers, e.g. “epididymal protein 9”, “pargyline 10 mg”. Third, the con-
cept induction of newly found terms, by using associated biomedical complex texts.
Fourth, unifying several disciplines to set up a general workflow. Fifth, to make this
multidisciplinary aspect“user friendly” and “multilingual”.

To the best of our knowledge, no studies have been carried out to address all of these
challenges. As mentioned before, the proposed methodologies (see Chapter 2 for a
brief description): (i) need expert intervention during their workflow to obtain good
results, (ii) are not applied for different languages, (iii) are in most cases applied for
general domains.

1.1 Motivation

As described previously, the volume of biomedical data is constantly increasing. De-
spite the widespread adoption of English in Science, a significant quantity of these
data are in French. Usually, the content of resources is indexed to enable querying
with keywords. However, there are obvious limits to keyword-based indexing, e.g.
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use of synonyms, polysemy, lack of domain knowledge.

Biomedical data integration and semantic interoperability is necessary to enable
new scientific discoveries that could be achieved by merging different available data
(i.e. translational research). A key aspect in addressing semantic interoperability
for life sciences is the use of terminologies and ontologies as a common denominator
to structure biomedical data and make them interoperable. The community has
turned especially toward ontologies to design semantic indexes of data that leverage
medical knowledge for better information mining and retrieval.

However, besides the existence of various English tools, there are considerably fewer
ontologies available in French [Névéol et al., 2014] and there is a marked lack of
related tools and services to exploit them. This shortcoming is out of line with the
huge amount of biomedical data produced in French, especially in the clinical world
(e.g. electronic health records).

The SIFR project was proposed to overcome this problem. It seeks to annotate
biomedical resources and enrich/build new biomedical ontologies. This project is
described in next section.

1.2 Context

The Semantic Indexing of French Biomedical Data Resources (SIFR)4 project pro-
poses to investigate scientific and technical challenges in building ontology-based
services to leverage biomedical ontologies and terminologies in indexing, mining and
retrieval of French biomedical data. The main goal of SIFR is to semantically in-
dex all possible French biomedical resources in order to enable straightforward use
of ontologies, thus enabling health researchers to deal with knowledge engineering
issues and to concentrate on the biological and medical challenges.

The SIFR project involves a cyclic process to address this situation. The process con-
sists of indexing the resources and automatically enriching the terminologies/ontolo-
gies used for the indexation. We show a simple lifecycle of an SIFR project, where
we included only two major processes: A) Annotation, and B) Enrichment. The
Annotation process involves semantically annotating all possible French biomedical
resources, such as scientific articles, electronic health records, doctor’s notes, etc., us-
ing existing biomedical ontologies/terminologies. SIFR has thus created the French
BioPortal Annotator5, which processes text submitted by users, recognizes relevant
ontology terms in the text and returns the annotations to the user. The enrich-
ment process involves new data reported by researchers, for instance new scientific

4http://www.lirmm.fr/sifr/
5http://bioportal.lirmm.fr/annotator

http://www.lirmm.fr/sifr/
http://bioportal.lirmm.fr/annotator
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biomedical articles. So the objective is to enrich existing biomedical ontologies with
new terms that appear in the biomedical literature. Hence, these new terms are
added to the ontologies and are reused in the future annotation process. Figure 1.1
illustrates the processes of the SIFR Lyfecicle project.

Figure 1.1: Processes of the SIFR Lyfecicle.

This thesis tackles process B in the SIFR Lyfecicle project, which is named Enrich-
ment in the Figure 1.1. We extended and called this process “Towards the French
Biomedical Ontology Enrichment”, which seeks to enrich biomedical ontologies from
textual data. In the next chapters, we explain the proposed workflow to tackle this
process.

There are approaches to create ontologies and approaches to enrich already exist-
ing ontologies, as explained in [Gherasim, 2013]. Several approaches take different
resources as input, such as textual documents, databases, taxonomies, thesauri,
internet, etc. In this thesis, we focus on ontology enrichment by using textual doc-
uments as resources.

The design and creation of ontologies is initially performed by experts. In the last 10
years, because of the corpora size and the dissemination of ontologies, automatic ap-
proaches have been developed to create ontologies. These automatic approaches are
also called as automatic construction, semi-automatic construction and/or learning-
based construction. To the best of our knowledge, there are no existing studies
that propose a complete automatic ontology enrichment methodology, and expert
intervention is generally needed in the workflow.
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1.3 Objective

As we have already discussed, this thesis seeks to enrich biomedical ontologies
from textual data, especially French biomedical ontologies, to address the above-
mentioned challenges related to ontology enrichment. These challenges are pooled
in two main groups: (i) lexical complexity, and (ii) semantic complexity. The lexical
complexity involves the first and the second challenge. This means extraction of
new complex biomedical terminology from a specialized text corpus. The semantic
complexity is related to the third challenge. This means concept induction and se-
mantic linkage of new terminology. Both implicitly use several disciplines to get to
the final solution, so it is “user friendly” and “multilingual”.

Thesis Contribution

To fulfill our biomedical ontology enrichment objective, we address (i) the lexical
complexity of the terms, and (ii) their semantic complexity. More precisely, these
two aspects will be detailed into two main parts:

1. Automatic Biomedical Term Extraction: (lexical complexity) which
aims at automatically extracting technical biomedical terminology from a spe-
cialized text corpus. In this case, we focus on terms that do not exist in
an ontology/terminology. These are called new biomedical candidate terms.
The approach proposed here is based on linguistic, statistic, graph, and web
features to improve the ranking of new biomedical candidate terms.

2. Concept Extraction and Semantic Linkage: (semantic complexity)
which seeks to extract the concepts and to find the semantic links, i.e. a posi-
tion semantically close to a biomedical ontology, of these new candidate terms
before extraction. We propose to perform this in three steps. First, we believe
that it is important to detect if a new candidate term could be polysemic. Sec-
ond, we propose to identify the possible senses or concepts of terms. Third,
we would like to find the semantic links that can have new candidate terms in
an already defined biomedical ontology, i.e. to find a position in a biomedical
ontology to add new candidate terms.

1.4 Organization

The rest of this thesis is organized as follows.

The first part of this thesis, “Automatic Biomedical Term Extraction”, is composed
of the Chapters 3, 4, 5, 6, 7, 8, in which, first, we study how to extract relevant
new candidate terms from textual data. Second, we present the different term ex-
traction methods and several related existing works. Then, we detail our proposal
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to extract biomedical candidate terms based on linguistic, statistic, graph, and web
features. We present the results of experiments. Then, we conclude and discuss
the results. We finalize by presenting the application called BioTex, in Chapter 8,
which implements the proposed methodology, and the different industrial/research
applications of our approach.

The second part of this thesis, called “Concept Extraction and Semantic Linkage”,
proposes three approaches to fulfil the final biomedical ontology enrichment objec-
tive: (i) Polysemy Detection, (ii) Term Sense Induction, and (iii) Semantic Linkage.
The Chapters 9, 10, 11, 12, 13 are devoted to presenting the acquisition of term
concepts and to adding them to an existing ontology. We first present the moti-
vations and introduce the problems. We study existing work regarding these three
issues. We subsequently present the three approaches. Then we describe the several
experiments we performed, and finally, we present the results of our experiments.

Finally, in Chapter 14, we conclude and summarize the contribution of this thesis,
and we discuss the prospects and propose some future research directions.



8 CHAPTER 1. INTRODUCTION



Chapter

2

STATE-OF-THE-ART

This chapter describes briefly the related methodologies to build and/or enrich on-
tologies, this state-of-the-art is a short resume described in [Gherasim, 2013].

The construction of ontologies manually is a long and complex process. Several
methodologies haven been defined [Fernández-López et al., 1997, Pinto et al., 2004,
Pérez et al., 2008]. We describe briefly the methodologies to create manually ontolo-
gies. The most well-known methodology is called Methontology [Corcho et al.,
2005, Fernández-López et al., 1997, Gómez-Pérez et al., 2007], which is considered
the most complete methodology [Pérez et al., 2008]. It is based in three process: i)
Process of Management, ii) Process of Development, and iii) Process of Maintenance.

On-To-Knowledge [Staab et al., 2001] is another methodology, built to be ap-
plied to a specific domain. This means that the ontologies created following this
methodology are specialized and dependent of a domain. This methodology has five
process: i) Feasibility study, ii) Ontology kickoff, iii) Refinement, iv) Evaluation,
and v) Maintenance.

A methodology proposing a novel principle isDILIGENT [Pinto et al., 2004], which
introduces the term of collaborative construction of ontologies. This means the on-
tology is built by the collaboration of several communities related to the ontology,
for instance user, engineers, editors, etc. This methodology contains five process: i)
Construction, ii) Local adaptation, iii) Analyze, iv) Revision, and iv) Local update.

The most recent methodology, to our knowledge is NeOn [Pérez et al., 2008], this

9
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has a novel paradigm, which is the development of ontologies based on the reuti-
lization, modification, restructure, and the adaptation of already existent ontologies.

As we could in the previous chapter, the conceptualization of a ontology is the cen-
tral activity for the ontology construction. In fact, the ontology construction is a
recent domain, and to our knowledge there no exist a study proposing a complete
automatic methodology to built an ontology.

For instance, there exists Terminae [Aussenac-Gilles et al., 2000, Aussenac-Gilles
et al., 2008], an approach which proposes a tool to assist automatically users to build
ontologies, using functions based on natural language processing to extract relevant
terms for the ontology, then it builds the concept structure. Indeed, the user identi-
fies and structures the ontology, choosing the concepts, relations and instances. For
instance, the user associates the term and the concept.

Text-To-Onto [Maedche and Staab, 2000, Maedche and Volz, 2001] andText2Onto
[Cimiano and Völker, 2005], Text2Onto is the improved version of Text-To-Onto.
Text-To-Onto proposes algorithms to extract concepts, instances, and taxonomic
relations. The relations are extracted according to patterns created by the user
using WordNet. The user also must validate the concepts and relations. Text2Onto
proposed new algorithms and the option of combining the results of using several
algorithms. The last methodology uses the GATE architecture [Cunningham et al.,
2002].

Another approach proposes to add concepts and instances according to a set of pre-
defined patterns by the user is Sprat [Maynard et al., 2009]. A disadvantage of
this approach is that user need a corpus containing the most patterns previously
defined. A close approach called Asium [Faure and Nédellec, 1998, Faure et al.,
1998, Faure and Nedellec, 1999] also exploits patterns to extract terms and relations.
This approach has as output a hierarchy of concepts.

OntoLearn [Navigli et al., 2003, Velardi et al., 2007] is an approach less structured
than the other three before mentioned. It does not offer a tool integrating all the
possible functionalities. In contrast, OntoLearn offers a set of independent tools for
each step, such as term extraction, concept extraction and relation extraction. For
instance, the authors use TermExtractor for extracting terms; GlossExtractor to
associate a definition for the extracted term; and WordNet to validate the relations.

There also exist an approach called OntoGen [Fortuna et al., 2006, Fortuna et al.,
2007], which allows the construction semi-automatic of small ontologies from col-
lections of documents. So, the created ontologies represent the “topic ontologies”,
where each concept of the ontology is related to one topic of the collectionof docu-
ments.
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We have to mention as wellOntoLT [Buitelaar et al., 2004], which precisely is not an
approach to build ontologies. It allows to manually define patterns to rely elements
from the text to elements from the ontology. We mentioned OntoLT because that
is usually cited in the literature as an ontology learning tool.
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Chapter

3

Introduction

The huge amount of biomedical data available today often consists of plain text
fields, e.g. clinical trial descriptions, adverse event reports, electronic health records,
emails or notes expressed by patients within forums [Murdoch and Detsky, 2013].
These texts are often written using a specific language (expressions and terms) of
the associated community. Therefore, there is a need for formalization and cat-
aloging of these technical terms or concepts via the construction of terminologies
and ontologies [Rubin et al., 2008]. These technical terms are also important for
Information Retrieval (IR), for instance when indexing documents or formulating
queries. However, as the task of manually extracting terms of a domain is very long
and cumbersome, researchers have striving to design automatic methods to assist
knowledge experts in the process of cataloging the terms and concepts of a domain
under the form of vocabularies, thesauri, terminologies or ontologies.

Automatic Term Extraction (ATE), or Automatic Term Recognition (ATR), is a
domain which aims to automatically extract technical terminology from a given
text corpus. We define technical terminology as the set of terms used in a do-
main. Term extraction is an essential task in domain knowledge acquisition because
the technical terminology can be used for lexicon updating, domain ontology con-
struction, summarization, named entity recognition or, as previously mentioned, IR.

In the biomedical domain, there is a substantial difference between existing resources
(hereafter called terminologies or ontologies) in English, French, and Spanish. In
English, there are about 9 919 000 terms associated with about 8 864 000 concepts
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such as those in UMLS1 or BioPortal [Noy et al., 2009]. Whereas in French there
are only about 330 000 terms associated with about 160 000 concepts [Névéol et al.,
2014], and in Spanish 1 172 000 terms associated with about 1 140 000 concepts.
Note the strong difference in the number of ontologies and terminologies available
in French or Spanish. This makes ATE even more important for these languages.

In biomedical ontologies, different terms may be linked to the same concept and
are semantically similar with different writing, for instance “neoplasm” and “can-
cer” in MeSH or SNOMED-CT. Ontologies also contain terms with morphosyntaxic
variants, for instance plurals like ‘‘external fistula” and “external fistulas”, and this
group of variants is linked to a preferred term. As one of our goals is to extract new
terms to enrich ontologies, our approach does not normalize variant terms, mainly
because normalization would lead to penalization in extracting new variant terms.
Technical terms are useful to gain further insight into the conceptual structure of
a domain. These may be: (i) single-word terms (simple), or (ii) multi-word terms
(complex). The proposed study focuses on both cases.
Term extraction methods usually involve two main steps. The first step extracts
candidate terms by unithood calculation to qualify a string as a valid term, while
the second step verifies them through termhood measures to validate their domain
specificity. Formally, unithood refers to the degree of strength or stability of syn-
tagmatic combinations and collocations, and termhood is defined as the degree to
which a linguistic unit is related to domain-specific concepts [Kageura and Umino,
1996]. ATE has been applied to several domains, e.g. biomedical [Lossio-Ventura
et al., 2014d, Frantzi et al., 2000, Zhang et al., 2008, Newman et al., 2012], ecological
[Conrado et al., 2013], mathematical, [Stoykova and Petkova, 2012], social networks
[Lossio-Ventura et al., 2012], banking [Dobrov and Loukachevitch, 2011], natural
sciences [Dobrov and Loukachevitch, 2011], information technology [Newman et al.,
2012, Yang et al., 2009], legal [Yang et al., 2009], as well as post-graduate school
websites [Qureshi et al., 2012].

The main issues in ATE are: (i) extraction of non-valid terms (noise) or omission
of terms with low frequency (silence), (ii) extraction of multi-word terms having
various complex various structures, (iii) manual validation efforts of the candidate
terms [Conrado et al., 2013], and (iv) management of large-scale corpora. Inspired
by our previously published results and in response to the above issues, we propose
a cutting edge methodology to extract biomedical terms. We propose new measures
and some modifications of existing baseline measures. Those measures are divided
into: 1) ranking measures, and 2) re-ranking measures. Our ranking measures are
statistical- and linguistic-based and address issues i), ii) and iv). Our two re-ranking
measures – the first one called TeRGraph – is a graph-based measure which deals
with issues i), ii) and iii). The second one, called WAHI, is a web-based measure

1http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/
statistics.html

http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
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which also deals with issues i), ii) and iii). The novelty of the WAHI measure is
that it is web-based which has, to the best of our knowledge, never been applied
within ATE approaches.

The main contributions of the methodology of this first part are: (1) enhanced con-
sideration of the term unithood, by computing a degree of quality for the term unit-
hood, and, (2) consideration of the term dependence in the ATE process. The quality
of the proposed methodology is highlighted by comparing the results obtained with
the most commonly used baseline measures. Our evaluation experiments were con-
ducted despite difficulties in comparing ATE measures, mainly because of the size of
the corpora used and the lack of available libraries associated with previous studies.
Our three measures improve the process of automatic extraction of domain-specific
terms from text collections that do not offer reliable statistical evidence (i.e. low
frequency).

This first part is organized as follows. We first discuss related work in Chapter 4.
Then the methodology to extract biomedical terms is detailed in Chapter 5. The
results are presented in Chapter 6, followed by discussions in Chapter 7.1. Finally,
the conclusions in Chapter 7.2, and the application created with this methodology
in Chapter 8.
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Chapter

4

State-of-the-Art

Recent studies have focused on multi-word (n-grams) and single-word (unigrams)
term extraction. Term extraction techniques can be divided into four broad cate-
gories: (i) Linguistic, (ii) Statistical, (iii) Machine Learning, and (iv) Hybrid. All of
these techniques are encompassed in Text Mining approaches. To our knowledge,
graph-based approaches have not yet been applied to ATE, although they have been
successively adopted in other Information Retrieval fields and could be suitable for
our applications. Existing web techniques have not been applied to ATE but, as we
will see, these techniques can be adapted for such purposes.

In this chapter, we describe the state-of-the-art divided into three types of ap-
proaches: (i) Text Mining approaches, (ii) Graph-based approaches, and (iii) Web
Mining approaches. These techniques are defined and associated studies are reported
in each respective section.

4.1 Text Mining approaches

4.1.1 Linguistic approaches

These techniques attempt to recover terms via linguistic pattern formation. This
involves building rules to describe naming structures for different classes based on or-
thographic, lexical, or morphosyntactic characteristics, e.g. [Gaizauskas et al., 2000].
The main approach is to develop rules (typically manually) describing common nam-
ing structures for certain term classes using orthographic or lexical clues, or more
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complex morpho-syntactic features. Moreover, in many cases, dictionaries of typi-
cal term constituents (e.g. terminological heads, affixes, and specific acronyms) are
used to facilitate term recognition [Krauthammer and Nenadic, 2004].

In the general domain, several systems only use linguistic patterns, such us Ter-
mino [David and Plante, 1990, Faraj et al., 1996], which uses syntactic analysis to
extract nominal terms. It allows extraction of groups of nouns, adjectives, verbs,
and prepositions. These systems are devoted to French applications.

Another well-known application is Lexter [Bourigault, 1993, Bourigault and Jacquemin,
1999, Aussenac-Gilles and Bourigault, 2000], which aims at extracting maximal nom-
inal phrases. Locating noun phrase boundaries is the idea underlying the Lexter
design. Rather than exploiting knowledge on possible grammatical structures of
complex terms, the authors use grammatical configurations that are known not to
be parts of terms. First, the authors split the text by locating these potential bound-
aries (i.e. verbs, pronouns, conjunctions), between which noun phrases likely to be
occurrences of terms are isolated. This process is also used in other related works,
such as [Drouin, 2003, Turenne and Barbier, 2004]. The second process involves
decomposition of maximal nominal groups according heads and arguments. And
the third one is the presentation of terms as a network, taking the head of terms
into account as a criterion to group terms sharing the same head.

There are applications to update terminology, such as Fastr (FAst Syntactic Term
Recognizer) [Jacquemin, 1996, Jacquemin, 1999], which is a rule-based system geared
mainly towards extracting variants of target terms. It takes a list of reference terms
and a corpus as input and then it enriches the reference terms with their variants.

A recent study on biomedical term extraction [Golik et al., 2013] (BioYaTeA sys-
tem) is based on linguistic patterns plus additional context-based rules to extract
candidate terms, which are not scored and the authors leave the term relevance
decision to experts.

In this section, we describe the state-of-the-art of linguistic approaches to extract
terminology, and in the following section we describe the statistical approaches.

4.1.2 Statistical methods

Statistical techniques chiefly rely on external evidence presented through surround-
ing (contextual) information. Such approaches are mainly focused on the recognition
of general terms [Van Eck et al., 2010]. The most basic measures are based on fre-
quency. For instance, term frequency (tf) counts the frequency of a term in the
corpus, document frequency (df) counts the number of documents where a term oc-
curs, and average term frequency (atf), which is tf

df
.
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is Mantex [Sebag, 2002] is a methodology based on the frequency criterion ac-
cording to the number of segment occurrences in the corpus. This system does not
extract single-word terms. There are also studies that use mutual information to
extract terminology, as in [Church and Hanks, 1990], where the authors compute the
dependence between two words composing a term. Another study based on mutual
information measures is focused on cubic mutual information [Daille, 1994], which
gives more importance to the most frequent phrases (i.e. words composing a term).
These methodologies are applied to binary terms.
Mutual information and co-occurrence measures are associative measures. They can
be used for terminology ranking but also for other tasks like the identification of se-
mantic proximity (see Section 4.3).

Another system that only focuses on the statistical aspect is Ana (Automatic Nat-
ural Acquisition) [Enguehard et al., 1993, Enguehard and Pantera, 1995], which is
applied for English and French. This system is inspired by human learning of the
mother tongue. It has two main steps: (i) familiarization, which builds the first
list of words, and (ii) discovery, which incrementally builds the list of domain terms
taking previously provided words into account.

A similar research topic, called Automatic Keyword Extraction (AKE), proposes to
extract the most relevant words or phrases in a document using automatic index-
ation. Keywords, which we define as a sequence of one or more words, provide a
compact representation of a document’s content. Such measures can be adapted to
extract terms from a corpus as well as ATE measures.

We take two popular AKE measures as baselines measures, i.e. Term Frequency In-
verse Document Frequency (TF-IDF) [Salton and Buckley, 1988], and Okapi BM25
(hereafter Okapi) [Robertson et al., 1999], these weight the word frequency according
to their distribution along the corpus. Residual inverse document frequency (RIDF)
compares the document frequency to another chance model where terms with a par-
ticular term frequency are distributed randomly throughout the collection, while
Chi-square [Matsuo and Ishizuka, 2004] assesses how selectively words and phrases
co-occur within the same sentences as a particular subset of frequent terms in the
document text. This is applied to determine the bias of word co-occurrences in the
document text, which is then used to rank words and phrases as keywords of the
document; RAKE [Rose et al., 2010] hypothesises that keywords usually consist of
multiple words and do not contain punctuation or stop words. It uses word co-
occurrence information to determine the keywords.

In next section, we list the few existing studies based on machine learning methods,
which could be considered as part of statistical approaches. A difference is that all
the approaches described in this section are unsupervised methods.
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4.1.3 Machine Learning

Machine Learning (ML) or supervised techniques. These systems are often designed
for specific entity classes and thus integrate term extraction and term classification.
Machine Learning systems use training data to learn features useful for term ex-
traction and classification. But the avaibility of reliable training resources is one
of the main problems. Some proposed ATE approaches use machine learning [Con-
rado et al., 2013, Zhang et al., 2010, Newman et al., 2012]. However, ML may also
generate noise and silence. The main challenge is how to select a set of discriminat-
ing features that can be used for accurate recognition (and classification) of term
instances. Another challenge concerns the detection of term boundaries, which are
the most difficult to learn.

As we mentioned before, there are applications to extract variants of target terms.
For instance, there is a method [Loginova Clouet, 2014, Clouet and Daille, 2014] for
recognizing and splitting to align variants with the original terms through multi-
word term extraction. Combining dependent and independent characteristics of the
language, and using a probabilistic method. It is validated in Germanic, Slavic, and
Romance languages. These studies are more related to building bilingual terminol-
ogy lexicons according to comparable corpora.

4.1.4 Hybrid methods

Most approaches combine several methods (typically linguistic and statistically
based) for the term extraction task.

GlossEx [Kozakov et al., 2007] considers the probability of a word in the domain
corpus divided by the probability of the appearance of the same word in a general
corpus. Moreover, the importance of the word is increased according to its frequency
in the domain corpus.
Weirdness [Ahmad et al., 1999] considers that the distribution of words in a specific
domain corpus differs from that in a general corpus.

Among such approaches, we can mention the studies of [Smadja, 1993], who devel-
oped a set of statistical techniques for retrieving and identifying collocations from
large textual corpora. These techniques have been implemented in a system called
Xtract, which involves three stages. The first stage is based on a statistical tech-
nique for identifying word pairs involved in a syntactic relation. The words can
appear in the text in any order and can be separated by an arbitrary number of
other words. The second stage is based on a technique to extract n-word colloca-
tions (or n-grams). A third stage is then applied to the output of stage one and
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applies parsing techniques to sentences involving a given word pair in order to iden-
tify the proper syntactic relation between the two words.

Several studies combining linguistic and statistic aspects are focused on the Ter-
might system [Dagan and Church, 1997], with the aim of building bilingual glos-
saries. Termight consists of two stages: (a) preparing a monolingual list of all
technical terms in a source-language document, and (b) finding translations for
these terms in parallel source–target documents. As a first step (in each compo-
nent), the tool automatically extracts candidate terms and candidate translations
based on term-extraction and word-alignment algorithms.

Acabit is also a system that combines linguistic and statistic information for French
and English. This system has two main processes: (i) extraction of candidate
terms, which consists of extracting terms according to a syntactic structure [Daille,
1994, Daille, 1996], in most cases a binary structure, and (ii) ranking candidate
terms, where terms are ranked according to a statistic measure [Daille, 1998].

In this section, we describe the Syntex system [Bourigault and Fabre, 2000, Bouri-
gault et al., 2005], which is an extension of the Lexter system. The main difference
is that Syntex takes nominal groups containing verbs, i.e. verb syntagms, into ac-
count. It performs a syntactic analysis of sentences in the corpus, and yields a
dependency network of word and syntagms. This proximity is based on the identi-
fication of shared syntactic contexts.

C/NC-value [Frantzi et al., 2000] combines statistical and linguistic information for
the extraction of multi-word and nested terms. This is the most well-known measure
in the literature. While most studies address specific types of entities, C/NC-value
is a domain-independent method. It has also been used for recognizing terms in the
biomedical literature [Hliaoutakis et al., 2009, Hamon et al., 2014]. In [Zhang et al.,
2008], the authors showed that C-value obtains the best results compared to the
other measures cited above. C-value has been also modified to extract single-word
terms [Nakagawa and Mori, 2002], and in this work the authors extract only terms
composed of nouns.

Moreover, C-value has also been applied to different languages other than English,
e.g. Japanese, Serbian, Slovenian, Polish, Chinese [Ji et al., 2007], Spanish [Barrón-
Cedeño et al., 2009], Arabic, and French. We have thus chosen C-value as one of
our baseline measure. Those baseline measures will be modified and evaluated with
the new proposed measures.
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4.1.5 Terminology Extraction from Parallel and Comparable
Corpora

Another kind of approach suggests that terminology may be extracted from paral-
lel and/or comparable corpora. Parallel corpora contain texts and their translation
into one or more languages, but such corpora are scarce [Bowker and Pearson, 2002].
Thus parallel corpora are scarce for specialized domains. Comparable corpora are
those which select similar texts in more than one language or variety [Déjean and
Gaussier, 2002]. Comparable corpora are built more easily than parallel corpora.
They are often used for machine translation and their approaches are based on
linguistics, statistics, machine learning, and hybrid methods. The main objective
of these approaches is to extract translation pairs from parallel/comparable cor-
pora. Different studies propose translation of biomedical terms for English-French
by alignment techniques [Deléger et al., 2009]. English-Greek and English-Romanian
bilingual medical dictionaries are also constructed with a hybrid approach that com-
bines semantic information and term alignments [Kontonatsios et al., 2014b]. Other
approaches are applied for single- and multi-word terms with English-French com-
parable corpora [Daille and Morin, 2005]. The authors use statistical methods to
align elements by exploiting contextual information. Another study proposes to use
graph-based label propagation [Tamura et al., 2012]. This approach is based on a
graph for each language (English and Japanese) and the application of a similarity
calculus between two words in each graph. Moreover, some machine learning algo-
rithms can be used, e.g. the logistic regression classifier [Kontonatsios et al., 2014a].
There are also approaches that combine both corpora [Morin and Prochasson, 2011]
(i.e. parallel and comparable) in an approach to reinforce extraction. Note that our
corpora are not parallel and are far of being comparable because of the difference in
their size. Therefore these approaches are not evaluated in our study.

4.1.6 Tools and applications for biomedical term extraction

There are several applications implementing some measures previously mentioned,
especially C-value, which is a domain independent measure, but frequently used for
biomedical term extraction. The study of related tools revealed that most existing
systems that especially implement statistical methods are made to extract keywords
and, to a lesser extent, to extract terminology from a text corpus. Indeed, most
systems take a single text document as input, not a set of documents (as corpus),
for which the IDF can be computed. Most systems are available only in English
and the most relevant for the biomedical domain are:

• TerMine1, developed by the authors of the C-value method, only for English
term extraction;

1http://www.nactem.ac.uk/software/termine/

http://www.nactem.ac.uk/software/termine/
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• Java Automatic Term Extraction2 [Zhang et al., 2008], a toolkit which im-
plements several extraction methods including C-value, GlossEx, TermEx and
offer other measures such as frequency, average term frequency, IDF, TF-IDF,
RIDF ;

• FlexiTerm3 [Spasic et al., 2013], a tool explicitly evaluated on biomedical co-
pora and which offer more flexibility than C-value when comparing term can-
didates (treating them as bag of words and ignoring the word order);

• BioYaTeA 4 [Golik et al., 2013], is a version of the YaTeA term extrac-
tor [Aubin and Hamon, 2006], both are available as a Perl module. It is a
biomedical term extractor. The method used is based only on linguistic as-
pects.

There also exist applications for Automatic Term Extraction (ATE) and for Auto-
matic Keyword Extraction (AKE) used in general domains, including the biomedical
domain. The major applications are based on statistic approaches, as well as some
of them integrate the linguistic approaches. For instance, we list some application
in the following paragraphs:

• Maui-indexer 5 [Medelyan et al., 2009], an open-source software program and
a library for identification of main “topics” in text documents. These topics
are tags, keywords, keyphrases, vocabulary terms, descriptors, index terms or
titles of Wikipedia articles. It uses both, linguistic and statistic features. For
statistical features, it uses frequency, occurrence positions ;

• KEA6 [Medelyan and Witten, 2006], (Keyphrase Extraction Algorithm), is an
algorithm for extracting keyphrases from text documents. It can be either used
for free indexing or for indexing with a controlled vocabulary. Some statistic
measure are used, such as: TF-IDF, first occurrence of the phrase, length of
the phrase, number of phrases related to that phrase;

• Exit [Roche et al., 2004], based on maximum likelihood estimation and mutual
information methods, for French and English text;

• TermExtractor [Sclano and Velardi, 2007], which implements two entropy-based
measures, domain consensus (terms which are consensually referred to through-
out the corpus) and domain relevance (terms which are relevant to the domain
of interest);

2https://code.google.com/p/jatetoolkit/
3http://users.cs.cf.ac.uk/I.Spasic/flexiterm/
4http://search.cpan.org/~bibliome/Lingua-BioYaTeA/
5https://code.google.com/p/maui-indexer/
6http://www.nzdl.org/Kea/

https://code.google.com/p/jatetoolkit/
http://users.cs.cf.ac.uk/I.Spasic/flexiterm/
http://search.cpan.org/~bibliome/Lingua-BioYaTeA/
https://code.google.com/p/maui-indexer/
http://www.nzdl.org/Kea/
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• Whatizit7 [Rebholz-Schuhmann et al., 2008], which offers a set of web ser-
vices for biomedical text processing, including recognition of specific terms
and matching to corresponding entries in bioinformatics databases;

• Araya8, a licensed terminology extraction tool, where terms are extracted only
from databases supported by Araya, and also offers bilingual extraction. Based
on a TMX file all possible relevant term pairs are computed. This is based on
a statistical approach which determines the frequency of terms;

• FiveFilters9, a web application available for English term extraction, it allows
to extract just 50 terms. Terms can be returned in a variety of formats as
HTML, JSON, XML. The application is intended to be a simple, free alterna-
tive to Yahoo’s Term Extraction service.

• Yahoo Content Analysis10, a web service API which provides a service that
extracts terms from a piece of content using the Yahoo search index. It de-
tects entities/concepts, categories, and relationships within unstructured con-
tent. It ranks those detected entities/concepts by their overall relevance, using
Wikipedia pages;

• Topia Termextract11, a Python library which uses linguistic and statistical
analysis for English term extraction. This application extracts terms by using
Part-Of-Speech (POS) tagging algorithm.

A shown, most existing systems implementing statistical methods are made to ex-
tract keywords and, to a lesser extent, to extract terminology from a text corpus.
Indeed, most systems take a single text document as input, not a set of documents
(as corpus), for which the IDF can be computed. Finally, most systems are available
only in English.

This section explained the measures based especially on linguistic and statistic fea-
tures. Next section explains the graph-based approaches.

4.2 Graph-based approaches
Graph modeling is an alternative for representing information, which clearly high-
lights relationships of nodes among vertices. It also groups related information in a
specific way, and a centrality algorithm can be applied to enhance their efficiency.
Centrality in a graph is the identification of the most important vertices within a

7http://www.ebi.ac.uk/webservices/whatizit/info.jsf
8http://www.heartsome.de/en/araya.php
9http://fivefilters.org/term-extraction/

10https://developer.yahoo.com/search/content/V2/contentAnalysis.html
11https://pypi.python.org/pypi/topia.termextract/1.1.0

http://www.ebi.ac.uk/webservices/whatizit/info.jsf
http://www.heartsome.de/en/araya.php
http://fivefilters.org/term-extraction/
https://developer.yahoo.com/search/content/V2/contentAnalysis.html
https://pypi.python.org/pypi/topia.termextract/1.1.0
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graph. A host of measures have been proposed to analyze complex networks, espe-
cially in the social network domain [Borgatti, 2005, Borgatti et al., 2009, Banerjee
et al., 2014]. Freeman [Freeman, 1979], formalized three different measures of node
centrality: degree, closeness and betweenness. Degree is the number of neighbors
that a node is connected to. Closeness is the inverse sum of shortest distances to all
other neighbor nodes. Betweenness is the number of shortest paths from all vertices
to all others that pass through that node.

One study proposes to take the number of edges and their weights into account
[Opsahl et al., 2010], since the three last measures do not do this. Another well
known measure is PageRank [Page et al., 1999], which ranks websites. Boldi [Boldi
and Vigna, 2014], evaluated the behavior of ten measures, and associated the cen-
trality to the node with largest degree. Our approach proposes the opposite, i.e. we
focus on nodes with a lower degree. An increasingly popular recent application of
graph approaches to IR concerns social or collaborative networks and recommender
systems [Noh et al., 2009, Banerjee et al., 2014].

Graph representations of text and scoring function definition are two widely ex-
plored research topics, but few studies have focused on graph-based IR in terms of
both document representation and weighting models [Rousseau and Vazirgiannis,
2013]. First, text is modeled as a graph where nodes represent words and edges
represent relations between words, defined on the basis of any meaningful statistical
or linguistic relation [Blanco and Lioma, 2012]. In [Blanco and Lioma, 2012], the
authors developed a graph-based word weighting model that represents each doc-
ument as a graph. The importance of a word within a document is estimated by
the number of related words and their importance, in the same way that PageR-
ank [Page et al., 1999] estimates the importance of a page via the pages that are
linked to it. Another study [Rousseau and Vazirgiannis, 2013] introduces a differ-
ent representation of document that captures relationships between words by using
an unweighted directed graph-of-words with a novel scoring function called tw-idf.
Another recent study [Rousseau and Vazirgiannis, 2015] proposes to apply the k-
degenerate graph on the graph-of-words to extract keywords from a single document.

In the above approaches, graphs are used to measure the influence of words in docu-
ments like automatic keyword extraction methods (AKE), while ranking documents
against queries. These approaches differ from ours as they use graphs focused on the
extraction of relevant words in a document and computing relations between words.
In our proposal, a graph is built such that the vertices are multi-word terms and
the edges are relations between multi-word terms. Moreover, we focus especially
on a scoring function of relevant multi-word terms in a domain rather than in a
document.
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4.3 Web Mining approaches

Different web mining studies focus on semantic similarity, semantic relatedness. This
means quantifying the degree to which some words are related, considering not only
similarity but also any possible semantic relationship among them. The word asso-
ciation measures can be divided into three categories [Chaudhari et al., 2011]: (i)
Co-occurrence measures that rely on co-occurrence frequencies of both words in a
corpus, (ii) Distributional similarity-based measures that characterize a word by the
distribution of other words around it, and (iii) Knowledge-based measures that use
knowledge-sources like thesauri, semantic networks, or taxonomies [Harispe et al.,
2014].

In this section, we focus on co-occurrence measures because our goal is to extract
multi-word terms and we suggest computing a degree of association between words
composing a term. Word association measures are used in several domains like ecol-
ogy, psychology, medicine, and language processing, and were recently studied in
[Pantel et al., 2009, Zadeh and Goel, 2013], such as Dice, Jaccard, Overlap, Cosine.
Another measure to compute the association between words using web search en-
gines results is the Normalized Google Distance [Cilibrasi and Vitanyi, 2007], which
relies on the number of times words co-occur in the document indexed by an in-
formation retrieval system. In this study, experimental results with our web-based
measure will be compared with the basic measures (Dice, Jaccard, Overlap, Cosine).

There are also measures that use the web to extract synonym terms as in [Turney,
2001], the author presents a simple unsupervised learning algorithm for recognizing
synonyms based on statistical data acquired by querying a Web search engine. The
algorithm, called PMI-IR, uses Pointwise Mutual Information (PMI) and Informa-
tion Retrieval (IR) to measure the similarity of pairs of words. Another related task
where the Web is used is in Named Entity Recognition (NER). [Roche and Prince,
2010] addresses a particular case of NER, i.e. acronym expansion when this does
not appear in the document (i.e. expansion). In this paper, nine quality measures
are provided regarding relevant definition prediction based on mutual information
(MI), cubic MI (MI3), and Dice’s coefficient. It is applied in the biomedical domain,
where acronyms are numerous.

These co-occurrence measures are corpus-based association measures. As the Web
is the largest resource of data, therefore, these measures can be applied to the Web.
The Web contains many corpus-based and/or corpus-driven dictionaries of several
domains.

Nowadays is relatively easy to collect a large corpus from the Web using search
engines or web crawlers. A first problem is that we know little about the domains
of texts in the collected corpus [Sharoff, 2011]. Even if we collect domain-specific
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corpora and we are sure that all texts are about this specific domain, i.e. the amount
of research papers, technical texts, newspapers, webpages, tutorials, social media,
etc., is still unknown. A second problem is if this corpus is very big, we might not
be able to access it from a personal computer. Therefore, the use of the Web is
beneficial, it allowd access to all kinds of data and domains. For this, we can use
search engines for querying the Web, thus taking advantage of its indexation and
retrieval algorithms.

As we have seen, this chapter introduced the state-of-the-art of terminology extrac-
tion tasks. This chapter has highlighted the most relevant studies regarding this
task. The most well-known approaches are based on linguistic and statistical fea-
tures. Another important task related to this is Structuring and Grouping of Terms,
which aims to gather terms considered related. For instance, [Habert et al., 1996]
outlines an approach to identify essential concepts and relationships in a corpus.
This approach is based on a symbolic method, it uses parse trees to classify similar
words. A more recent study related to the biomedical domain improves the signal
in pharmacovigilance [Dupuch et al., 2011]. Pharmacovigilance is related to the
collection, analysis and prevention of adverse drug-induced reactions (ADR). In this
study, the authors proposed to use methods designed for term structuring (detection
of synonymous and hierarchical relations) for the generation of these groupings.

There are also systems, such as Camaleon [Séguéla and Aussenac-Gilles, 1999],
Lexiclass [Assadi, 1997], Asium [Faure and Nédellec, 1998]. For instance, the
Lexiclass system is used after the Syntex system to structure similar terms.

4.4 Discussion

We have outlined the most relevant studies related to Automatic Term Extraction.
We have described methodologies applied to the general domain, as well as method-
ologies applied to a more specific domain, i.e. the biomedical domain.

We divided the state-of-the art of Automatic Term Extraction into three kinds of
approach: (I) Text Mining approaches, (II) Graph-based approaches, and (III) Web-
based approaches. Text Mining studies are classified into 4 categories: (i) Linguistic,
(ii) Statistical, (iii) Machine Learning, and (iv) Hybrid. Among these approaches,
we have outlined that the major works are based on unsupervised techniques, while
a few methodologies are also based on supervised techniques due to the lack of an-
notated terminologies to evaluate the results for several languages.

Table 4.1 sums up the most relevant methodologies and the features they take into
account (i.e. linguistic, statistical, graph, web). In this table, the knowledge aspect
is added for terminology extraction. In the state-of-the-art, approaches based on
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knowledge bases are not mentioned because we did not identify studies related to
knowledge-based methods. This table also contains the most relevant AKE methods
that have shown good results in other tasks such as Information Retrieval, etc., and
might be used for our objective. In this thesis, these methods will be adapted for
terminology extraction. Major works have been built for extract terms in general
domain. Few of these have been applied to specific domains such as biomedicine,
implying in few cases a soft change in its methodology.

As noted in previous sections, linguistic and statistical methods are frequently pro-
posed to extract terminology. The linguistic aspect is important because it allows
extraction of complex terms for a specific domain. In [Daille, 1994, Daille, 1996], the
authors use general patterns to extract terminology, while focusing more on 2-gram
terms. These approaches can also extract longer terms according to the extraction
of variations. A complicated variation extraction step involves the identification of
“head” and ‘argument”, so errors obtained during the recognizing task can add more
problems to the extraction process.

As we mentioned in previous sections, to our knowledge, graphs and the Web have
never been applied to terminology extraction. However, graphs have recently been
used for keyword extraction tasks, as shown in [Rousseau and Vazirgiannis, 2013].

In our context, we use all of the previously mentioned aspects to automatically ex-
tract biomedical terms. In our workflow, first we apply a linguistic filter, then we
propose a ranking of terms according to statistical measures. Finally, we propose
a re-ranking of terms via graph- and Web-based measures. The knowledge aspect
appears when knowledge bases are used to generate a list of linguistic patterns. We
hence propose a complete automatic workflow to achieve automatic term extraction,
which has been divided into three steps: (i) Candidate term extraction, (ii) Ranking
of candidate terms, and (iii) Re-ranking. This workflow is applied in particular to
the biomedical domain.

Our objectives for using these five aspects are:

• We take the linguistic aspect into account because we work specifically in
the biomedical domain. For this, we propose biomedicine-oriented linguistic
patterns. A major difference between the linguistic patterns used in [Daille,
1994, Daille, 1996, Frantzi et al., 2000] and our patterns is that the before
mentioned study uses patterns focused on the general domain. In [Daille, 1994,
Daille, 1996], we can observe that patterns are frequently oriented towards
extracting 2-gram terms, in several cases it extracts 3-gram and 4+gram terms
because of the extraction of variants. In [Frantzi et al., 2000], the upper
limit is 7-gram terms. Our linguistic patterns can extract up to 12-gram
terms. Another important difference in comparison to these studies and the
before mentioned studies is that our linguistic patterns are focused on the
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biomedical domain, allowing us to extract specialized terms, for instance terms
containing numbers in its structure. In addition, in our methodology, each
linguistic pattern is associated with a probability. Syntex [Bourigault and
Fabre, 2000, Bourigault et al., 2005] is a system that takes complex linguistic
patterns into account. One difference in comparison to our methodology is
that we do not take verbs into account for term extraction. According the
UMLS and BioPortal statistic over biomedical terms, they do not contain
verbs in their structure. Verbs can be used to extract a kind of relationship
towards the biomedical enrichment. In a recent study related to the biomedical
domain, BioYaTeA [Golik et al., 2013], the authors use biomedical linguistic
patterns proposed by a human specialist and then they apply some rules and
propose a list of terms to experts. A possible inconvenience is that the experts
have to validate the term relevance.

• We use knowledge bases to build linguistic patterns. These knowledge bases
are specialized in the biomedical domain, e.g. UMLS, MeSH, SNOMED, etc.
They allow us to create complex linguistic patterns for the extraction of rare
terms.

• As the linguistic aspect identifies a high number of terms, the statistic aspect
is used to rank them according to a score of importance within the corpus,
thus avoiding potential noise. Without the statistical aspect, term selection
becomes a hard task if done by humans. We take as base C-value and we also
adapt AKE measures that have shown good results in the literature to extract
biomedical terms.

• Graphs allow to visualize important information that is hidden as simple text,
as showed in [Rousseau and Vazirgiannis, 2013]. Therefore, we use graphs to
represent our corpus for improving the term extraction task. In [Rousseau and
Vazirgiannis, 2013], the authors create a graph where each vertex represents a
word, in our case each vertex represents a term (single- or multi- word term).

• The web is the largest resource of data. The main reason of using the web is
that it contains a large vast of domains which might give an idea of the general
use of biomedical terms in similar domains and less related domains.

Therefore, our methodology for Automatic Biomedical Term Extraction involves: (i)
the use of specialized linguistic patterns, (ii) the creation of new ranking measures
based on already existing measures, (iii) the use of graphs, and (iv) the use of the
Web.

In the following chapter, we describe the use of these aspect to achieve the automatic
biomedical terminology extraction.
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Text Mining Graph Web Biomedical ATE AKELinguistic Statistic ML
[Krauthammer and Ne-
nadic, 2004]

3 3

Termino [David and
Plante, 1990, Faraj et al.,
1996]

3 3

Lexter [Bourigault, 1993,
Bourigault and Jacquemin,
1999, Aussenac-Gilles and
Bourigault, 2000]

3 3

[Drouin, 2003] 3 3

[Turenne and Barbier, 2004] 3 3

Fastr [Jacquemin, 1996,
Jacquemin, 1999]

3

BioYaTeA [Golik et al.,
2013]

3 3 3

Mantex [Sebag, 2002] 3 3

Mutual Information
[Church and Hanks, 1990]

3 3

Cubic Mutual Information
[Daille, 1994]

3 3

Ana [Enguehard et al.,
1993, Enguehard and Pan-
tera, 1995]

3 3

TF-IDF [Salton and Buck-
ley, 1988]

3 3

Okapi BM25 [Robertson
et al., 1999]

3 3

RIDF [Sebag, 2002] 3 3

Chi-square [Matsuo and
Ishizuka, 2004]

3 3

RAKE [Rose et al., 2010] 3 3

[Conrado et al., 2013] 3 3

[Newman et al., 2012] 3 3

[Zhang et al., 2010] 3 3

GlossEx [Kozakov et al.,
2007]

3 3 3

Weirdness [Ahmad et al.,
1999]

3 3 3

Xtract [Smadja, 1993] 3 3 3

Termight [Dagan and
Church, 1997]

3 3 3

Acabit [Daille,
1994, Daille, 1996]

3 3 3

Syntex [Bourigault and
Fabre, 2000, Bourigault
et al., 2005]

3 3 3 3

C/NC-value [Frantzi et al.,
2000]

3 3 3 3

[Rousseau and Vazirgiannis,
2013]

3 3 3

[Blanco and Lioma, 2012] 3 3 3

[Roche and Prince, 2010] 3 3 3 3

[Cilibrasi and Vitanyi, 2007] 3 3

[Turney, 2001] 3 3 3

Ranking + Re-ranking
[Lossio-Ventura et al., 2015]

3 3 3 3 3 3 3

Table 4.1: Summarization of Methodologies for Automatic Term Extraction.
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5

Methodology

In the previous chapter we described the state-of-the-art for automatic term extrac-
tion taking into account five aspects, i.e. linguistic, knowledge, statistic, graph and
web. We also positioned our methodology in comparison to those related works. As
well as, we announced the use of baselines measures for this task.

Therefore, this chapter describes the baseline measures, their modifications as well
as new measures that we propose for the biomedical term extraction task. The
principle of our approach is to assign a weight to a term, which represents the ap-
propriateness of being a relevant biomedical term. This allows to give as output a
list ranked by their appropriateness.

We define “relevant biomedical terms” as the set of most important terms that might
belong to the biomedical domain. Terms belonging to the biomedical domain will
form the biomedical technical terminology.

Our methodology for automatic term extraction has three main steps plus an addi-
tional step (a), described in Figure 5.1, and in the sections hereafter:

• (a) Pattern Construction,

• (1) Candidate Term Extraction,

• (2) Ranking of Candidate Terms,

• (3) Re-ranking.

33
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Figure 5.1: Workflow Methodology for Biomedical Term Extraction.

Patterns Construction

As previously cited, we supposed that biomedical terms have a similar syntactic
structure (linguistic aspect). Therefore, we built a list of the most common linguistic
patterns according to the syntactic structure of terms present in the UMLS1 (for
English and Spanish), and the French version of MeSH2, SNOMED International
and the rest of the French content in the UMLS.
Part-of-Speech (POS) tagging is the process of assigning each word in a text to its
grammatical category (e.g. noun, adjective). This process is performed based on
the definition of the word or on the context in which it appears. This is highly
time-consuming, so we conducted automatic part-of-speech tagging.

1http://www.nlm.nih.gov/research/umls
2http://mesh.inserm.fr/mesh/

http://www.nlm.nih.gov/research/umls
http://mesh.inserm.fr/mesh/
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Figure 5.2: Section to Extract Patterns.

We evaluated three tools (TreeTagger3, Stanford Tagger4 and Brill’s rules5). This
evaluation was carried out throughout the entire workflow with the three tools and
we assessed the precision of the extracted terms. We noted that in general Tree-
Tagger gave the best results for Spanish and French. Meanwhile, for English, the
Stanford tagger and TreeTagger gave similar results. We finally chose TreeTagger,
which gave better results and may be used for English, French and Spanish. More-
over, our choice was validated with regard to a recent comparison study [Tian and
Lo, 2015], wherein the authors showed that TreeTagger generally gives the best re-
sults, particularly for nouns and verbs.

Therefore, we carried out automatic part-of-speech tagging of the biomedical terms

3http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
4http://nlp.stanford.edu/software/tagger.shtml
5http://en.wikipedia.org/wiki/Brill_tagger

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://nlp.stanford.edu/software/tagger.shtml
http://en.wikipedia.org/wiki/Brill_tagger
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using TreeTagger, and then computed the frequency of the syntactic structures. Pat-
terns among the 200 highest frequencies were selected to build the list of patterns for
each language. From this list, we also computed the weight (probability) associated
with each pattern, i.e. the frequency of the pattern over the sum of frequencies (see
Algorithm 1). This weight represents the probability to find this pattern among the
existing terms in the used terminology. This weight will be used for two measures.

The number of terms used to build these lists of patterns was 3 000 000 for English,
300 000 for French, and 500 000 for Spanish, taken from the previously mentioned
terminologies. Table 5.2 illustrates the computation of the linguistic patterns and
their weights for English.

Different terminology extraction studies are based on the use of regular expressions
or linguistic patterns to extract candidate terms, for instance [Daille, 1994, Frantzi
et al., 2000]. Generally these regular expressions are manually built for a specific
language and/or domain [Daille et al., 1994]. In our setting, we prefer to (i) con-
struct and (ii) apply patterns in order to extract terms in texts.

These patterns have the advantage of being generic because they are based on de-
fined PoS tags, for instance few linguistic patterns are covered by the linguistic pat-
terns defined in [Daille, 1994, Frantzi et al., 2000]. Moreover, they are very specific
because they are (automatically) built with specialized biomedicine resources. Con-
cerning this last point, we can consider we are close to the use of regular expressions.

There are three main reasons that we use specific linguistic patterns. First, we would
like to restrict the patterns to the biomedical domain. For instance, biomedical
terms often contain numbers in their syntactic structure, and this is very specific
to the biomedical domain, e.g. “epididymal protein 9”, “pargyline 10 mg”. General
patterns do not enable extraction of such terms as those used in the studies before
mentioned. Table 5.1 shows several examples of terms having complex structures
being extracted by our methodology. Note that these terms can not be identified
by classical approaches. Our methodology is based on 200 significant patterns for
English, French, or Spanish, yet different for each language. For instance, there are
55 patterns for English that contain numbers in the linguistic structure.
The second reason is in [Daille, 1994, Daille, 1996] patterns frequently are oriented
to extract 2-gram terms, in several cases 3-gram and 4-gram terms because of the
extraction of variants. In [Frantzi et al., 2000] the upper limit is 7-gram terms. Our
linguistic patterns can extract till 12-gram terms. Thus, this kind of pattern seems
quite relevant for this domain.
The third reason for using lexical patterns is that we assign a probability of oc-
currence to each pattern, which would not be possible with classical patterns and
regular expressions.
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Term
Linguistic Pattern

virus type 1
NN NN CD
class ii genes
NN CD NN

class ii transactivator
NN CD NN

interleukin 2 receptor
NN CD NN

polymerase ii transcription
NN CD NN

virus type 1 tax
NN NN CD NN

type 1 long terminal repeat
NN CD JJ JJ NN
fmol million cells

NN CD NN
class ii antigen
NN CD NN

class ii gene expression
NN CD NN NN

histocompatibility complex class i molecules
NN NN NN CD NN

histocompatibility complex class ii antigens
NN NN NN CD NN histocompatibility complex class ii molecules

NN NN NN CD NN
immunodeficiency virus type 1

NN NN NN CD
enhancer-binding protein 2

JJ NN CD
role for nf-kappab in human cd34 bone

NN IN NN IN JJ NN NN
mononuclear leukocytes of patients with atopic dermatitis

JJ NN IN NN IN JJ NN
leukocytes in patients with chronic pulmonary heart

NN IN NN IN JJ JJ NN
absence in lymphocytes from untreated cml patients

NN IN NN IN JJ NN NN
fresh leukemic cells of adult t-cell leukemia

JJ JJ NN IN JJ NN NN
transcription-dependent surface expression of different endothelial cell

JJ NN NN IN JJ JJ NN

Table 5.1: Example of with complex linguistic pattern (where NN is a noun, IN
a preposition or subordinating conjunction, JJ an adjective, and CD a cardinal
number)
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Algorithm 1: ComputePatterns (Dictionary, np)
Data: Dictionary = dictionary of a domain, np = number of patterns to use
Result: HTpatterns(pattern, probability) = Hashtable of the first np linguistic

patterns with its probability
begin

HTpatterns ←− ∅;
HTaux(tag, freq)←− ∅ // Hashtable of the tag of each term with its
frequency ;
sizeHT ←− number of terms in Dictionary;
freqtotal ←− 0 ;
probability ←− 0.0 ;
Tag of the Dictionary;
for tag of each term ∈ Dictionary do

if tag ∈ HTaux then
update HTaux(tag, freq + 1);

else
add HTaux(tag, 1);

end
end
Rank HTaux(tag, freq) by the freq;
freqtotal ←−

∑np
i=1 freq(HTaux(i));

for i = 1; i ≤ np; i++ do
probability ←− freq(HTaux(i))

freqtotal
;

add HTpatterns(tag(HTaux(i)), probability);
end

end

Pattern Frequency Probability
NN IN JJ NN IN JJ NN 3006 3006/4113 = 0.73
NN CD NN NN NN 1107 1107/4113 = 0.27

4113 1.00

Table 5.2: Example of pattern construction (where NN is a noun, IN a preposition
or subordinating conjunction, JJ an adjective, and CD a cardinal number)

5.1 Candidate Term Extraction (step 1)

The first main step is to extract the candidate terms. So we apply part-of-speech
to the whole corpus using TreeTagger. Then we filter out the content of our input
corpus using previously computed patterns. We select only terms whose syntactic
structure is in the patterns list. The pattern filtering is specifically done on a per-
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Figure 5.3: Section to Extract Candidate Terms.

language basis (i.e. when the text is in French, only the French list of patterns is
used).

5.2 Ranking Measures (step 2)

We need to select the most appropriate terms for the biomedical domain. Candidate
term ranking is therefore essential. For this purpose, several measures are proposed
and Figure 5.4(2) shows the set of available measures.

We propose some modifications of the most known measures in the literature (i.e.,
C-value, TF-IDF, Okapi), and propose new ones (i.e., F-TFIDF-C, F-OCapi, LIDF-
value, L-value). Those measures are linguistic- and statistic- based, they are also
not very time-consuming. In this step, only one measure will be selected to perform
the ranking.
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Figure 5.4: Section Describing the Ranking Measures.

The measures of this section take a list of candidate terms previously filtered by
linguistic patterns as input, which makes it possible to assess less invalid terms
while dealing with the noise problem. In addition to the use of linguistic patterns
to alleviate the problem of the extraction of multi-word terms having various com-
plex structures. Moreover, the frequency decreases the number of invalid terms to
evaluate (noise). The measures mentioned above are effective on large amounts of
data [Lv and Zhai, 2011b, Lv and Zhai, 2011a, Singhal et al., 1996], which overcomes
the problem of large-scale corpora. Hereafter we describe all measures.

5.2.1 C-value

The C-value method combines linguistic and statistical information [Frantzi et al.,
2000]. Linguistic information is the use of a general regular expression as linguistic
patterns, and the statistical information is the value assigned with the C-value mea-
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sure based on the frequency of terms to compute the termhood (i.e. the association
strength of a term to domain concepts). The C-value method aims to improve the
extraction of long terms, and it was specially built for extracting multi-word terms.

The principle of this measure is to privilege the extraction of the longest terms,
penalizing the nested terms, i.e. terms appearing in longer terms. In specialized
domains, it is really important to extract complex terms, C-value works well ex-
tracting complex terminology. For instance, in a ophthalmology corpus, the authors
found “soft contact lens” more relevant than “soft contact” which is not a term of
this domain.

C-value(A) =



w(A)× f(A) if A /∈ nested

w(A)×

(
f(A)− 1

|SA|
×
∑
b∈SA

f(b)

)
otherwise

(5.1)

Where A is the candidate term, w(A) = log2(|A|), |A| the number of words in A,
f(A) the frequency of A in the unique document, SA the set of terms that contain A
and |SA| the number of terms in SA. In a nutshell, C-value uses either the frequency
of the term if the term is not included in other terms (first line), or decreases this
frequency if the term appears in other terms, based on the frequency of those other
terms (second line).

We modified the measure in order to extract all terms (single-word + multi-words
terms), as also suggested in [Barrón-Cedeño et al., 2009], but in a different manner.
The original C-value defines w(A) = log2(|A|), and we modified w(A) = log2(|A|+1)
in order to avoid null values for single-word terms, as illustrated in Table 5.3. Note
that we do not use a stop word list or a frequency threshold as was originally
proposed.

Original C-value Modified C-value
w(A) =
log2(|A|)

w(A) = log2(|A| +
1)

antiphospholipid
antibodies

log2(2) = 1 log2(2 + 1) = 1, 6

white blood log2(2) = 1 log2(2 + 1) = 1, 6
platelet log2(1) = 0 log2(1 + 1) = 1

Table 5.3: Calculation of w(A)
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5.2.2 TF-IDF and Okapi

These measures are used to associate a weight to each term in a document [Salton
and Buckley, 1988]. This weight represents the term relevance for the document. The
output is a ranked list of terms for each document, which is often used in information
retrieval so as to order documents by their importance for a given query [Robertson
et al., 1999]. Okapi can be seen as an improvement of the TF-IDF measure, while
taking the document length into account.

TF -IDF (A, d,D) = tf(A, d)× idf(A, d) (5.2)

tf(A, d) =
f(A, d)

max{f(A, d) : w ∈ d}

idf(A, d) = log
|D|

|{d ∈ D : A ∈ d}|

Okapi(A, d,D) = tfBM25(A, d)× idfBM25(A, d) (5.3)

tfBM25(A, d) =
tf(A, d)× (k1 + 1)

tf(A, d) + k1 × (1− b+ b× dl(d)
dlavg

))

idfBM25(A, d) = log
|D| − dc(A) + 0.5

dc(A) + 0.5

Where A is a term, considering d a document, D the collection of documents, f(A, d)
the frequency of A in d, tf(A, d) the term frequency of A in d, idf(A,D) the inverse
document frequency of A in D, dc(t) the number of documents containing term A,
this means: |{d ∈ D : t ∈ d}|, dl(d) the length of the document d in number of
words, dlavg the average document length of the collection.

As the output is a ranked list of terms per document, we could find the same term in
different documents, with different weights in each document. So we need to merge
the term into a single list. For this, we propose to merge them according to three
functions, which respectively calculate the sum(S), max(M) and average(A) of the
weights of a term. At the end of this task, we have three lists from Okapi and three
lists from TF-IDF. The notation for these lists are OkapiX(A) and TF -IDFX(A),
where A is the term, and X the factor ∈ {M,S,A}. For example, OkapiM(A) is
the value obtained by taking the maximum Okapi value for a term A in the whole
corpus. Figure 5.5 shows the merging process.

With aim of improving the term extraction precision, we designed two new combined
measures, while taking the values obtained in the above steps into account. Both
are based on harmonic means of two values.
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Figure 5.5: Merging lists.

5.2.3 F-OCapi and F-TFIDF-C

Considered as the harmonic mean of the two used values, this method has the ad-
vantage of using all values of the distribution. These measures were inspired by the
F-measure, for this reason they start with the F letter.

The arithmetic mean is closer to the highest of the two values obtained by the two
measures for a term, which is not a good representation of both. On the other
hand, harmonic mean is closer to minimum between two values, which is a better
representation between these two. Therefore, the principle of these measures is to
have two high and close values to get a good ranking for a term.

F -OCapiX(A) = 2× OkapiX(A)× C-value(A)
OkapiX(A) + C-value(A)

(5.4)

F -TFIDF -CX(A) = 2× TFIDFX(A)× C-value(A)
TFIDFX(A) + C-value(A)

(5.5)

5.2.4 C-Okapi and C-TFIDF

Our assumption is that C-value might be more representative if the term frequency
(in equation (5.1)) of the terms is replaced with a more significant value, in this case
the Okapi’s and TF-IDF’s values of the terms over the whole corpus.

C-wm(a) =



w(a)× wmX(a) if a /∈ nested

w(a)×

(
wm(a)− 1

|Sa| ×
∑
b∈Sa

wm(a)

)
otherwise

(5.6)

Where wm(a) is a weighting measure = {OkapiX , TFIDFX}.
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5.2.5 LIDF-value and L-value

In this section we present two new measures. The first one, called LIDF-value
(Linguisitic patterns, IDF, and C-value information). LIDF-value is partially pre-
sented in [Lossio-Ventura et al., 2014d]. This is a new ranking measure based on
linguistic and statistical information.

Our method LIDF-value is aimed at computing the termhood for each term, using
the linguistic information calculated as described below, the idf, and the C-value of
each term. The linguistic information gives greater importance to the term unit-
hood in order to detect low frequency terms. So, we associate the pattern weight
(see Table 5.2) with the candidate term probability. In our hypothesis this weight
represents the probability of a candidate term of being a relevant biomedical term.
The probability is associated only if the syntactic structure of the term appears in
the linguistic pattern list.

The inverse document frequency (idf) is a measure indicating the extent to which
a term is common or rare across all documents. It is obtained by dividing the total
number of documents by the number of documents containing the term, and then
by taking the logarithm of that quotient.

The probability and idf improve low frequency term extraction. The objective of
these two components is to tackle the silence problem, allowing extraction of dis-
criminant terms, for instance, in a biomedical corpus, “virus production” with low
frequency being better ranked than “human monocytic cell”, which has a higher fre-
quency. This means that for a low frequency candidate term, its score can be favored
if its linguistic pattern is associated with a high probability and/or its idf value is
also high. The C-value measure is based on the term frequency. The C-value (see
formula 5.1) measure favors a candidate term that does not often appear in a longer
term. For instance, in a specialized corpus (Ophthalmology), the authors of [Frantzi
et al., 2000] found the irrelevant term “soft contact” while the frequent and longer
term “soft contact lens” is relevant.

As an example, we implement the Algorithm 2, which describes the applied process.
These different statistical information items (i.e. probability of linguisitic patterns,
C-value, idf) are combined to define the global ranking measure LIDF-value (see
formula 5.7); where P(ALP ) is the probability of a term A which has the same lin-
guistic structure pattern LP , i.e. the weight of the linguistic pattern LP computed
in Section Pattern Construction.

LIDF -value(A) = P(ALP )× idf(A)× C-value(A) (5.7)

Note that LIDF-value works only for a set of documents, mainly because the idf
measure can only be computed on a set of documents (see formula 5.2). Therefore,
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Algorithm 2: ComputeLIDF-value (Corpus, Patterns, minfreq, numterms)
Data: Corpus = set of documents of a specific-domain;
Patterns = HTpatterns(pattern, probability) //Hashtable of linguistic patterns
with its probability;
minfreq = frequency threshold for candidate terms;
numterms = number of terms to take as output
Result: Lterms = List of ranked terms
begin

Tag the Corpus;
Take the lemma of each tagged word;
Extract candidate terms A by filtering with Patterns;
Remove candidate terms A below minfreq;
for each candidate term A ∈ Corpus do

LIDF -value(A) = P(ALP )× idf(A)× C-value(A);
add A to Lterms;

end
Rank Lterms by the value obtained with LIDF -value;
Select the first numterms terms of Lterms ;

end

for datasets composed of one document, we propose a new measure, L-value, as
explained in the following paragraphs.

L-value is a variant of LIDF-value, focused on one document with the goal of ben-
efiting from the probability of linguisitic patterns computed for LIDF-value. This
measure does not contain the idf (see formula 5.8). L-value is interesting to highlight
the more representative terms of a single corpus without considering the discrimina-
tive aspects, e.g. idf. This measure gives another point of view and is complementary
to those based on the idf weighting.

A single document can be considered as a free text without delimitation. For in-
stance, a scientist article, a book, a document created with titles/abstracts from a
library database. L-value becomes interesting when it does not exist a considerable
amount of data for a new subject, i.e. an emergent term in the community. For
instance, the “Ataxia Neuropathy Spectrum” term appears only in 4 titles/abstracts
of scientist articles from PubMed6 between 2009 and 2015. PubMed is a free search
engine accessing primarily the MEDLINE database of references and abstracts on
life sciences and biomedical topics.

L-value(A) = P(ALP )× C-value(A) (5.8)

6http://www.ncbi.nlm.nih.gov/pubmed

http://www.ncbi.nlm.nih.gov/pubmed
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5.3 Re-ranking (step 3)

Figure 5.6: Section Describing the Re-ranking Measures.

After the term extraction, we propose new measures to re-rank the candidate terms
in order to increase the top k term precision. The re-ranking measures aim to
improve the term extraction results of ranking measures. This involves position-
ing the most relevant biomedical terms at the top of the list. That provides more
confidence that the terms appearing at the top of this list are true biomedical terms.

These re-ranking functions represent an extension of the measures presented in [Lossio-
Ventura et al., 2014c]. Therefore, as improvements, we propose to take graph-
theoretic information into account to highlight relevant terms, as well as web infor-
mation, as explained in the following subsections. These measures can be executed
separately, but the graph construction is time consuming, and the number of search
engine queries is limited. Therefore, we just apply these measures for a group of
selected terms given by a ranking measure. Because the ranking measures have
proved to be more efficient applied before than TeRGraph and web-based measures.

As these measures are applied to the list of terms obtained with a ranking measure,
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which tackles noise, silence and multi-word term extraction problems, so they also
take into account those problems. As mentioned, the objective of re-raking measures
is to re-rank terms, so the manual validation efforts of the candidate terms decrease
because the relevant biomedical term is allocated at the top of the list.

5.3.1 A new graph-based ranking measure: “TeRGraph” (Ter-
minology Ranking based on Graph information)

This approach aims to improve the ranking (and therefore the precision results)
of extracted terms. As mentioned above, in contrast to the above-cited study, the
graph is built with a list of terms obtained according to a measure described in
Section 5.2, where vertices denote terms linked by their co-occurrence in sentences
in the corpus. Moreover, we make the hypothesis that the term representativeness in
a graph, for a specific-domain, depends on its number of neighbors, and the number
of neighbors of its neighbors. We assume that a term with more neighbors is less
representative of the specific domain. This means that this term is used in the
general domain. Figure 5.7 illustrates our hypothesis.

Figure 5.7: Importance of a term in a domain

The graph-based approach is divided into two steps:

(i) Graph construction: a graph (see Figure 5.9) is built where vertices denote
terms, and edges denote co-occurrence relations between terms, co-occurrences
between terms are measured as the weight of the relation in the initial corpus.
This approach is statistical because it links all co-occurring terms without
considering their meaning or function in the text. This graph is undirected as
the edges imply that terms simply co-occur, without any further distinction
regarding their role. We take the Dice coefficient, a basic measure to compute
the co-occurrence between two terms x and y, as defined by the following
formula:

D(x, y) =
2× P (x, y)
P (x) + P (y)

(5.9)
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In [Rousseau and Vazirgiannis, 2015], the authors build a graph in a similar
way: an undirected graph, only nouns and and adjectives are considered as
vertices, each vertex represents a word, and stemming each word. In our
case vertices can be multi-word terms, which depend directly of the linguistic
patterns and of the used ranking measure. Stemming is not considered in our
work. Another work building [Habert et al., 1996] a co-occurrence graph in a
similar manner is proposed to cluster words of a same class.

(ii) Representativeness computations on the term graph: a principled
graph-based measure to compute term weights (representativeness) is defined.
The aim of this new graph-based ranking measure, TeRGraph, see Equation
5.10, is to derive these weights for each vertex, (i.e. multi-word term weight),
in order to re-rank the list of extracted terms.

TeRGraph(A) = log2

k + 1

1 + |N(A)|+
∑

Ti∈N(A)

|N(Ti)|

 (5.10)

Where A represents a vertex (term), N(A) the neighborhood of A, |N(A)| the num-
ber of neighbors of A, Ti the neighbor i of A, and k a constant. The intuition for
Equation 5.10 is as follows: the more a term A has neighbors (directly with N(A)
or by transitivity with N(Ti)), the more the weight decreases. Indeed, a term A
having a lot of neighbors is considered too general for the domain (i.e. this term is
not salient), so it has to be penalized via the associated score.

The k constant affects the TeRGraph value, i.e. the set of values that TeRGraph
takes when k changes. For instance, when k = 0.5, the set of values for TeRGraph
is between −1 and 0, (i.e., TeRGraph ∈ [−1, 0]), and when k = 1, TeRGraph ∈
[0, 0.6]. As the values taken by TeRGraph are different, then the slope of the curve
is also different. Figure 5.8 shows the behavior of TeRGraph when k changes. Ac-
cording the experiments, we have chosen k = 1.5. The main reason is that the slope
of the curve is low, and the set of values for TeRGraph ranges from 0.6 to 1.

See Algorithm 3 for more details, it describes the entire process: (1) co-occurrence
graph construction, (2) computation of the representativeness of each vertex.

Figure 5.9 shows an example to calculate the value of TeRGraph for a term in dif-
ferent graphs. These graphs are built with different co-occurrence thresholds (i.e.
Dice’s value between two terms). In this example, A1 and A2 represent the term
chloramphenicol acetyltransferase reporter in Graphs 1 and 2, respectively. Note
that the term chloramphenicol acetyltransferase reporter in Graph 1 has a lower
value than in Graph 2, this is due the term in Graph 1 contains more neighbors
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Figure 5.8: TeRGrpah’s value for k = {0.5; 1; 1.5; 2}

than in Graph 2.

Figure 5.9: TeRGraph’s value for chloramphenicol acetyltransferase reporter
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Algorithm 3: ComputeTeRGraph (Lterms, numterms, δ, k)
Data: Lterms = List of ranked terms;
numterms = number of terms to be evaluated;
δ = threshold to create an edge between two terms;
k = constant;
Result: RRLterms = Re-Ranked List of terms
begin

Select all possible pairs of terms of Lterms to compute D(x, y) // in total
C2

numterms
= numterms!

2! (numterms−2)! possibilities ;
Select pairs which D(x, y) ≥ δ for creating an edge ;
Select all terms of Lterms to compute TeRGraph ;
for each term A ∈ Lterms do

N(A)←− neighborhood of A;
|N(A)| ←− number of neighbors of A;

TeRGraph(A) = log2

k + 1

1+|N(A)|+
∑

Ti∈N(A)

|N(Ti)|

;

add A to RRLterms;
end
Rank RRLterms by the value obtained with TeRGraph;

end

5.3.2 WebR

The aim of our web-based measure, to predict with a better confidence if a can-
didate term is a valid biomedical term or not. It is appropriated for multi-word
terms, as it computes the dependence between the words of a term. In our case,
we compute a “strict” dependence, which means the proximity of words of terms
(i.e. neighboring words) is calculated with a strict restriction. In comparison to
other web-based measures [Cilibrasi and Vitanyi, 2007], WebR reduces the number
of pages to consider by taking only web pages containing all words of the terms into
account. In addition, our measure can be easily adopted for all types of multi-word
terms.

WebR(A) =
nb(“A”)
nb(A)

(5.11)

Where A = multi-word term, ai ∈ A and ai = {noun, adjective, foreign word}.

Where A is the candidate term, nb(“A”) the number of hits returned by a web search
engine with exact match only with multi-word term A (query with quotation marks
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“A”), nb(A) the number of documents returned by the search engine, including not
exact matches (query A without quotation marks), i.e. whole documents containing
words of the multi-word term A. For example, the multi-word term treponema pal-
lidum, will generate two queries, the first nb(“treponema pallidum”) which returns
with Yahoo 1 100 000 documents, and the second query nb(treponema pallidum)
which returns 1 300 000 documents, then WebR(treponema pallidum)= 1100000

1300000
=

0.85.

As we mentioned in Section 4.3, our web-based measures can be applied to larger
corpora. The likely inconvenient with this are: (i) the lack of knowledge about the
corpora, and (ii) the inability to access it from a personal computer. Therefore, the
use of web is beneficial, it will allow to access all kind of data of a lot of domains.
For this, we can use search engines for querying the web taking advantage of its
indexation and of its retrieving algorithms. Therefore, in our workflow, we tested
Yahoo and Bing search engines. WebR re-ranks the list of candidate terms returned
by the combined measures.

5.3.3 A new web ranking measure: WAHI (Web Association
based on Hits Information)

Previous studies of web mining approaches query the web via search engines to
measure word associations. This enables measurement of the association of words
composing a term (e.g. soft, contact, and lens that compose the relevant term soft
contact lens). To measure this association, our web-mining approach takes the num-
ber of pages provided by search engines into account (i.e.number of hits).

Our web-based measure re-ranks the list obtained previously with TeRGraph. We
will show that this improves the precision of the k first terms extracted (see Chap-
ter 6) and that it is specially appropriate for multi-word term extraction.

Formula 5.9 leads directly to formula 5.127. The nb function used in formula 5.12
represents the number of pages returned by search engines (i.e. Yahoo and Bing).
With this measure, we compute a strict dependence (i.e. neighboring words by using
the operator ’ " ’ of search engines). For instance, x might represent the word soft
and y the word contact in order to calculate the association measure of the soft
contact term.

Dice(x, y) =
2× nb(“x y”)
nb(x) + nb(y)

(5.12)

7by writing P (x) = nb(x)
nb_total , P (y) = nb(y)

nb_total , P (x, y) = nb(x,y)
nb_total
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Then we extend this formula to n elements as follows:

Dice(a1, ..., an) =
n× nb(“a1 ... an”)
nb(a1) + ...+ nb(an)

=
n× nb(“A”)

n∑
i=1

nb(ai)

(5.13)

This measure enables us to calculate a score for all multi-word terms, such as soft
contact lens.

To obtain WAHI, we propose to associate Dice criteria with WebR (see formula
5.11). This only takes the number of web pages containing all the words of the
terms into account by using operators “ ” and AND.

For example, soft contact lens, the numerator corresponds to the number of web
pages with the query “soft contact lens”, and for the denominator, we consider the
query soft AND contact AND lens.

Finally, the global ranking approach combining Dice and WebR is given by WAHI
measure (Web Association based on Hits Information):

WAHI(A) =
n× nb(“A”)

n∑
i=1

nb(ai)

× nb(“A”)
nb(A)

(5.14)

The main difference between WAHI and WebR is that WebR computes the depen-
dence between the words of a term. WAHI introduces the degree of association
between the words composing a term.

Algorithm 4 details the global web mining process to rank terms. We show in the
next chapter that open-domain (general) resources, such as the web, can be tapped
to support domain-specific term extraction. They can thus be used to compensate
for the unavailability of domain-specific resources.
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Algorithm 4: ComputeWAHI (Lterms, numterms, LC)
Data: Lterms = List of ranked terms;
numterms = number of terms to be evaluated;
LC = {noun, adjective, foreign word} // linguistic categories
Result: RRLterms = Re-Ranked List of terms
begin

Select the first numterms terms of Lterms to compute WAHI;
for each term A ∈ Lterms do

for all words ai of A ∈ LC do
n←− number of words in A;
WAHI(A)←− n× num-hits(“A”)

n∑
i=1

num-hits(ai)
× num-hits(“A”)

num-hits(A)
;

end
add A to RRLterms;

end
Rank RRLterms by the value obtained with WAHI;

end
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Chapter

6

Data and Results

This chapter reports the data set and experiments of our proposal for Automatic
Biomedical Term Extraction. This chapter presents experiments for multilingual
term extraction in Section 6.2, as well a detailed study of the entire process for
multi-word term extraction in Section 6.3.

6.1 Data, Protocol, and Validation

In this section we describe in detail the different data sets and the protocol used for
our experiments, as well as the method to evaluate our results.

6.1.1 Data

We used two corpora for our experiments. The first one is a set of biological lab-
oratory tests, extracted from LabTestsOnline1. This website provides information
in several languages to patients or family caregivers about clinical lab tests. Each
test includes the formal lab test name, some synonyms and possible alternate names
as well as a description of the test. To reduce bias in our results only descriptions
are used in our data set. The LabTestsOnline website was extracted totally for
English, French, and Spanish with a crawler created specifically for this purpose.
These documents are available online2. The choice of this corpus is based mainly in

1http://labtestsonline.org/
2http://www.lirmm.fr/~lossio/labtestsonline.zip
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the multilingualism, it also exists for several other languages. We have also done ex-
periments in other corpus such as PubMed, Medline Plus, Cochrane, etc. Table 6.1
shows the details of LabTestsOnline data set for different languages.

Number of Clinical Tests Number of Words
English 235 377 000 words
French 137 174 000 words
Spanish 238 396 000 words

Table 6.1: Details of LabTestsOnline data set.

The second data set is GENIA3, which is made up of 2 000 titles and abstracts of
journal articles that were culled from the Medline database, with more than 400 000
words in English. The GENIA data set contains linguistic expressions referring to
entities of interest in molecular biology, such as proteins, genes and cells. GENIA is
an annotated data set, in which technical term annotation covers the identification
of physical biological entities as well as other important terms. This is our gold
standard data set.
Whereas the Medline indexes a broad range of academic articles covering the general
or specific domains of life sciences, GENIA is intended to cover a smaller subject
domain: biological reactions concerning transcription factors in human blood cells.

6.1.2 Protocol

As the measures described in step 2 of our workflow (i.e. Ranking the Candidate
Terms) are not very time-consuming, and as they are easily applicable for large
corpora, they were evaluated over the LabTestsOnline data set for English, French,
and Spanish, and over the gold standard data set, GENIA. In contrast, as the
measures described in step 3 (i.e. Re-ranking) are highly time-consuming, and they
are used at the end of the process, to enhance the performance of the results, we
evaluate them only over the GENIA data set.

6.1.3 Validation

In order to automatically validate and cover medical terms, we use UMLS for English
and Spanish, and the French version of MeSH, SNOMED International and the rest
of the French content in the UMLS. For instance, if an extracted candidate term
is found in the UMLS dictionary, this term will be automatically validated. The
results are evaluated in terms of precision obtained over the top k extracted terms
(P@k). The upper limit of k is 20 000, which allows to compensate the absence of
recall value.

3http://www.nactem.ac.uk/genia/genia-corpus/term-corpus

http://www.nactem.ac.uk/genia/genia-corpus/term-corpus
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Biomedical terminologies or ontologies (e.g. UMLS, SNOMED, MeSH), contain
terms composed of signs. Therefore, we cleaned these terminologies by eliminating
all terms containing (; , ? ! : { } [ ]), and we only took terms without signs.
Table 6.2 shows the distribution in n-gram (i.e. n-gram is a term of n words, with
n ≥ 1) of biomedical resources for three languages, as well as the number of terms
that we took after the cleaning task. For instance, the first cell means that 13.73%
of terms are composed of one word (1-gram) in UMLS for English.

1-gram 2-gram 3-gram 4+ gram Number of Terms
English 13.73 % 27.65 % 14.44 % 44.18 % 3 006 946
French 13.17 % 25.82 % 17.08 % 43.93 % 304 644
Spanish 8.39 % 19.31 % 16.33 % 55.97 % 534 110

Table 6.2: Details of Available Resources for Validation.

6.2 Multilingual Comparison (LabTestsOnline)

In this section, we show results obtained only with all the ranking measures, i.e. step
2 (ranking) in Figure 5.1. In addition, we tested the measures for single- plus multi-
word terms, or just for multi-word terms in English, French and Spanish. Table 6.3,
6.4, 6.5 show the results in English, French and Spanish, respectively. At the top
of each table, the single-word + multi-word term extraction results are presented,
while the multi-word term extraction results are presented at the bottom of the table.

These tables show that LIDF-value and L-value obtain the best results for both
extraction cases and for the three languages. The combined measures based on the
harmonic mean, and on the SUM and MAX (i.e. F-TFIDF-CM , F-TFIDF-CS),
also give interesting results.

The single-word + multi-word term extraction results are better than just the multi-
word term extraction results. The main reason for this is that the extraction of
single-word terms is more efficient due to their syntactic structure (linguistic struc-
ture), i.e. usually a noun. In addition, this syntactic structure has fewer variations.
The results are lower as compared to multi-word term extraction, which is more
complicated and involves more variations.

We observe that LIDF-value and L-value obtain very close results. In most cases
LIDF-value performs better than L-value. These two measures show that the prob-
ability associated with the linguistic patterns helps to improve the term extraction
results. Note that the idf influences LIDF-value, for this reason LIDF-value has
better results than L-value.
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Table 6.3: Biomedical Term Extraction for English
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Table 6.4: Biomedical Term Extraction for French
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Table 6.5: Biomedical Term Extraction for Spanish



6.2. MULTILINGUAL COMPARISON (LABTESTSONLINE) 61

As we can see, the TF-IDFS measure obtains high precision values approaching to
those obtained by using LIDF-value. This behavior is repeated for the three lan-
guages, i.e. English, French, and Spanish, and for the extraction of “multi-word
terms” and “multi- and single-word terms”. In several cases the difference between
these two values is small. Therefore, it would be interesting to find out if a a complex
measure as LIDF-value and a simpler measure as TF-IDFS do not have a statisti-
cally significant difference in their results.

In statistics, statistical significance is attained when a p-value is less than the signif-
icance level, in general cases is p-value < 0.05. For this, we use the “Wilcoxon signed
rank”, which is a non-parametric statistical hypothesis test used when comparing
two related samples. Non-parametric statistics are not based on probability distri-
butions, which is ideal to measure the obtained precision with the measures before
mentioned. We considered p-value < 0.05 as statistically significant. All analyzes
were performed with the statistical software “R”. The following is the R code used
in this evaluation:

x <− c ( 0 . 9 70 , 0 . 955 , 0 . 960 , 0 . 960 , 0 . 960 , 0 . 950 , 0 . 943 , 0 . 936 ,
0 . 917 , 0 . 906 , 0 . 822 , 0 . 659 , 0 . 511 , 0 . 370 )
y <− c ( 1 . 0 00 , 0 . 980 , 0 . 970 , 0 . 965 , 0 . 962 , 0 . 955 , 0 . 950 , 0 . 943 ,
0 . 934 , 0 . 925 , 0 . 849 , 0 . 716 , 0 . 597 , 0 . 431 )
wi l cox . t e s t (x , y , pa i r ed = TRUE, a l t e r n a t i v e = "two . s ided " )

We can see the results of the previous code in Figure 6.1.

Figure 6.1: resultats with R

Table 6.6 shows the results of p-value obtained by using the previous code in “R”.
In this table, we can see that in all the cases p-value < 0.05. Therefore, there exists
a statistical significance between the LIDF and TF-IDFS measures.

Single- and Multi- Word Terms Multi-Word Terms
English 0.0010 0.0047
French 0.0016 0.0010
Spanish 0.0118 0.0120

Table 6.6: p-value between LIDF and TF-IDFS.
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6.3 Evaluation of the global process (GENIA)

Since GENIA is the gold standard data set, we conduct a detailed assessment of the
experiments in this section. We evaluated the entire workflow of our methodology,
i.e. steps 2 (ranking) and 3 (re-ranking) in Figure 5.1.

As noted earlier, the multi-word term extraction results are influenced by the syntac-
tic structure and their variations. So, our experimentation in this section is focused
only on multi-word term extraction.

In the following paragraphs, we also narrow down the presented results by keeping
only the first 8 000 extracted terms for the graph-based measure and the first 1000
extracted terms for the web-based measure.

6.3.1 Ranking Results (step 2 in Figure 5.1)

Table 6.7 presents and compares the multi-word term extraction results with the
best ranking measures, as shown earlier, i.e. C-value, F-TFIDF-CS, and LIDF-
value. The best results were obtained with LIDF-value with an 11% improvement
in precision for the first hundred extracted multi-word terms.

These precision results are also shown in Figure 6.2. The precision of LIDF-value
will be further improved with TeRGraph.

C-value F -TFIDF -CS LIDF-value
P@100 0.690 0.715 0.820
P@200 0.690 0.715 0.770
P@300 0.697 0.710 0.750
P@400 0.665 0.690 0.738
P@500 0.642 0.678 0.718
P@600 0.638 0.668 0.723
P@700 0.627 0.669 0.717
P@800 0.611 0.650 0.710
P@900 0.612 0.629 0.714
P@1000 0.605 0.618 0.697
P@2000 0.570 0.557 0.662
P@5000 0.498 0.482 0.575
P@10000 0.428 0.412 0.526
P@20000 0.353 0.314 0.377

Table 6.7: Precision comparison of LIDF-value with baseline measures
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Figure 6.2: Precision comparison with LIDF-value and baseline measures

Results of n-gram Terms

We also evaluated C-value, F-TFIDF-CS, and LIDF-value in a sequence of n-gram
terms (i.e. n-gram term is a multi-word term of n words), for this we require an
index term to be a n-gram terms of length n ≥ 2. We tested the performance
of LIDF-value on the n-gram term extraction taking the first 1 000 n-gram terms
(n ≥ 2).

Table 6.8 shows the precision comparison for the 2-gram, 3-gram and 4+ gram term
extracted with C-value, F-TFIDF-CS, and LIDF-value. We can see that LIDF-value
obtains the best results for all intervals for any n ≥ 2. These precision results are
also shown in Figure 6.3 for the 2-gram terms, Figure 6.4 for the 3-gram terms, and
finally Figure 6.5 for the 4+ gram terms.

Table 6.9 shows the top-20 ranked 2-gram terms extracted with the baseline mea-
sures and LIDF-value. C-value obtained 3 irrelevant terms, F-TFIDF-C obtained
5 irrelevant terms while LIDF-value obtained only 2 irrelevant terms for the top-20
ranked 2-gram terms.

Similarly, Table 6.10 shows top-10 ranked 3-gram terms extracted with the baseline
measures and LIDF-value. Finally, Table 6.11 shows the top-10 ranked 4+ gram
terms extracted with the baseline measures and LIDF-value.

Note that in this context, “irrelevant” means that the terms are not in the above
mentioned resources. These candidate terms might be interesting for ontology ex-
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tension or population, however they must pass through polysemy detection in order
to identify the possible meanings.

2-gram terms
C-value F -TFIDF -C LIDF-value

P@100 0.770 0.760 0.830
P@200 0.755 0.755 0.805
P@300 0.710 0.743 0.790
P@400 0.695 0.725 0.768
P@500 0.692 0.736 0.752
P@600 0.683 0.733 0.763
P@700 0.670 0.714 0.757
P@800 0.669 0.703 0.749
P@900 0.654 0.692 0.749
P@1000 0.648 0.684 0.743

3-gram terms
C-value F -TFIDF -C LIDF-value

P@100 0.670 0.530 0.820
P@200 0.590 0.450 0.795
P@300 0.577 0.430 0.777
P@400 0.560 0.425 0.755
P@500 0.548 0.398 0.744
P@600 0.520 0.378 0.720
P@700 0.499 0.370 0.706
P@800 0.488 0.379 0.691
P@900 0.482 0.399 0.667
P@1000 0.475 0.401 0.660

4+ gram terms
C-value F -TFIDF -C LIDF-value

P@100 0.510 0.370 0.640
P@200 0.455 0.330 0.520
P@300 0.387 0.273 0.477
P@400 0.393 0.270 0.463
P@500 0.378 0.266 0.418
P@600 0.348 0.253 0.419
P@700 0.346 0.249 0.390
P@800 0.323 0.248 0.395
P@900 0.323 0.240 0.364
P@1000 0.312 0.232 0.354

Table 6.8: Precision comparison of 2-gram terms, 3-gram terms, and 4+ gram terms
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Figure 6.3: Precision comparison of 2-gram terms

Figure 6.4: Precision comparison of 3-gram terms

Figure 6.5: Precision comparison of 4+ gram terms



66 CHAPTER 6. DATA AND RESULTS

C-value F -TFIDF -C LIDF-value
1 t cell t cell t cell
2 nf-kappa b nf-kappa b transcription factor
3 transcription factor kappa b nf-kappa b
4 gene expression b cell cell line
5 kappa b class ii b cell
6 cell line glucocorticoid receptor gene expression
7 b cell b activation * kappa b
8 peripheral blood b alpha * t lymphocyte
9 t lymphocyte reporter gene dna binding
10 nuclear factor endothelial cell i kappa *
11 protein kinase cell cycle binding site
12 class ii b lymphocyte protein kinase
13 b activation * nf kappa * glucocorticoid receptor
14 human t nf-kappab activation tumor necrosis
15 tyrosine phosphorylation u937 cell binding activity
16 dna binding mhc class * tyrosine phosphorylation
17 human immunodeficiency * c ebp* shift assay *
18 binding site il-2 promoter immunodeficiency virus
19 necrosis factor * monocytic cell signal transduction
20 mobility shift t-cell leukemia mobility shift

Table 6.9: Comparison of top-20 ranked 2-gram terms (irrelevant terms are italicized
and marked with *).

C-value F -TFIDF -C
1 human immunodeficiency virus kappa b alpha*
2 kappa b alpha* nf kappa b
3 tumor necrosis factor jurkat t cell
4 electrophoretic mobility shift human t cell
5 nf-kappa b activation mhc class ii
6 virus type 1* cd4+ t cell
7 protein kinase c c-fos and c-jun*
8 long terminal repeat peripheral blood monocyte
9 nf kappa b t cell proliferation
10 jurkat t cell transcription factor nf-kappa*

LIDF-value
1 i kappa b
2 human immunodeficiency virus
3 electrophoretic mobility shift
4 human t cell
5 mobility shift assay
6 kappa b alpha*
7 tumor necrosis factor
8 nf-kappa b activation
9 protein kinase c
10 jurkat t cell

Table 6.10: Comparison of the top-10 ranked 3-gram terms (irrelevant terms are
italicized and marked with *).
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C-value F -TFIDF -C
1 human immunodeficiency virus type 1 transcription factor nf-kappa b
2 human immunodeficiency virus type * expression of nf-kappa b *
3 immunodeficiency virus type 1 * tumor necrosis factor alpha
4 activation of nf-kappa b normal human t cell
5 nuclear factor kappa b primary human t cell
6 tumor necrosis factor alpha germline c epsilon transcription
7 human t-cell leukemia viru * gm-csf receptor alpha promoter
8 human t-cell leukemia virus type * il-2 receptor alpha chain
9 t-cell leukemia virus type * transcription from the gm-csf *
10 electrophoretic mobility shift assay translocation of nf-kappa b *

LIDF-value
1 i kappa b alpha
2 electrophoretic mobility shift assay
3 human immunodeficiency virus type *
4 human t-cell leukemia virus
5 nuclear factor kappa b
6 tumor necrosis factor alpha
7 t-cell leukemia virus type *
8 activation of nf-kappa b
9 peripheral blood t cell
10 major histocompatibility complex class

Table 6.11: Comparison of the top-10 ranked 4+ gram terms (irrelevant terms are
italicized and marked with *).

6.3.2 Re-ranking Results (step 3 in Figure 5.1)

In this section, we will evaluate the graph-based and the web)based re-ranking mea-
sures.

6.3.2.1 Graph-based Results

Our graph-based approach is applied to the first 8 000 terms extracted by the best
ranking measure. The objective is to re-rank the 8 000 terms while trying to improve
the precision by intervals.

One parameter is involved in the computation of graph-based term weights, i.e. the
threshold of Dice value which represents the relation when building the term graph.
This involves linking terms whose Dice value of the relation is higher than thresh-
old. We vary threshold (δ) within δ = [0.25, 0.35, 0.50, 0.60, 0.70] and report the
precision performance for each of these values.
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Table 6.12 gives the precision performance obtained by TeRGraph and shows that
it is well adapted for ATE.

TeRGraph
δ ≥ 0.25 δ ≥ 0.35 δ ≥ 0.50 δ ≥ 0.60 δ ≥ 0.70

P@100 0.840 0.860 0.910 0.930 0.900
P@200 0.800 0.790 0.850 0.855 0.855
P@300 0.803 0.773 0.833 0.830 0.820
P@400 0.780 0.732 0.820 0.820 0.815
P@500 0.774 0.712 0.798 0.810 0.806
P@600 0.773 0.675 0.797 0.807 0.792
P@700 0.760 0.647 0.769 0.796 0.787
P@800 0.756 0.619 0.748 0.784 0.779
P@900 0.748 0.584 0.724 0.773 0.777
P@1000 0.751 0.578 0.720 0.766 0.769
P@2000 0.689 0.476 0.601 0.657 0.694
P@3000 0.642 0.522 0.535 0.605 0.644
P@4000 0.612 0.540 0.543 0.559 0.593
P@5000 0.574 0.546 0.544 0.554 0.562
P@6000 0.558 0.539 0.540 0.549 0.561
P@7000 0.556 0.540 0.540 0.545 0.552
P@8000 0.546 0.546 0.546 0.546 0.546

Table 6.12: Precision performance of TeRGraph when varying δ (threshold param-
eter for Dice)

6.3.2.2 Web-based Results

Our web-based approach is applied at the end of the process, with only the first
1 000 terms extracted during the previous linguistic, statistic and graph measures.
For space reasons, we show only the results obtained with WAHI, which are higher
than WebR.

We took the list obtained with TeRGraph and δ ≥ 0.60. The main reason for this
limitation is the limited number of automatic queries possible in search engines. At
this step, the aim is to re-rank the 1 000 terms to try to improve the precision by
intervals. Each measure listed in Table 6.13 and Table 6.14 shows the precision
obtained after re-ranking. We tested WAHI with Yahoo and Bing search engines.

Table 6.13 and Table 6.14 prove that WAHI (either using Yahoo or Bing) is well
adapted for ATE and this measure obtains better precision results than the baselines
measures for word association. So our measures obtain real terms of our dictionary
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with a better ranking.

WAHI Dice Jaccard Cosine Overlap
P@100 0.960 0.720 0.720 0.760 0.730
P@200 0.950 0.785 0.770 0.740 0.765
P@300 0.900 0.783 0.780 0.767 0.753
P@400 0.900 0.770 0.765 0.770 0.740
P@500 0.920 0.764 0.754 0.762 0.738
P@600 0.850 0.748 0.740 0.765 0.748
P@700 0.817 0.747 0.744 0.747 0.757
P@800 0.875 0.752 0.746 0.740 0.760
P@900 0.870 0.749 0.747 0.749 0.747
P@1000 0.766 0.766 0.766 0.766 0.766

Table 6.13: Precision comparison of WAHI with YAHOO and word association
measures

WAHI Dice Jaccard Cosine Overlap
P@100 0.900 0.740 0.730 0.680 0.650
P@200 0.900 0.775 0.775 0.735 0.705
P@300 0.900 0.770 0.763 0.740 0.713
P@400 0.900 0.765 0.765 0.752 0.712
P@500 0.900 0.760 0.762 0.758 0.726
P@600 0.917 0.753 0.752 0.753 0.743
P@700 0.914 0.751 0.751 0.733 0.749
P@800 0.875 0.745 0.747 0.741 0.754
P@900 0.878 0.747 0.748 0.742 0.748
P@1000 0.766 0.766 0.766 0.766 0.766

Table 6.14: Precision comparison of WAHI with BING and word association mea-
sures

As we mentioned in Section 4.3, the web is the largest available corpora. We men-
tioned the benefits by using the web. Such as, the access to all kind of data of a lot
of domains. Search engines are used for querying the web. We evaluate the time in
seconds of their indexation and retrieving algorithms. Table 6.15 presents the time
consumed by Bing and Yahoo search engines. We can see that in general Yahoo
takes double time than Bing for retrieving information. For instance, for the first
10 terms (N@10) Bing takes about 15 seconds to retrieve the number of hits. Due
to the large number of existing domains in the web, and the time taken to evaluate
the terms, we believe it is useful to use Bing.



70 CHAPTER 6. DATA AND RESULTS

Bing Yahoo
N@10 15.40 33.19
N@50 89.31 170.31
N@100 177.54 334.45
N@200 360.35 656.16
N@500 907.26 1703.07
N@1000 1739.99 3345.48

Table 6.15: Time execution comparison between Bing and Yahoo in seconds.

6.3.3 Summary

LIDF-value obtains the best precision results for multi-word term extraction, for
each index term extraction (n-gram) and for intervals.

Table 6.16 presents a precision comparison of LIDF-value and TeRGraph measures.
In terms of overall precision, our experiments produce consistent results from the
GENIA data set. In most cases, TeRGraph obtains better precision with a δ of 0.60
and 0.70 (i.e. better precision in most P@k intervals), which is very good because
it helps alleviate the problem of manual validation of candidate terms. These pre-
cisions are also illustrated in Figure 6.6.

The performance of our graph-based measure somewhat depends on the value of the
co-occurrence relation between terms. Specifically, the value of the co-occurrence
relation affects how the graph is built (whose edges are taken), and hence it is critical
for computation of the graph-based term weight. Another performance factor of our
graph-based measure is the quality of the results obtained with LIDF-value due to
the fact that the list of terms extracted with LIDF-value is required as input to
re-rank TeRGraph in order to construct the graph, where nodes denote terms, and
edges denote co-occurrence relations.

Figure 6.6: Precision comparison of LIDF-value and TeRGraph
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LIDF-value TeRGraph TeRGraph
(δ ≥ 0.60) (δ ≥ 0.70)

P@100 0.820 0.930 0.900
P@200 0.770 0.855 0.855
P@300 0.750 0.830 0.820
P@400 0.738 0.820 0.815
P@500 0.718 0.810 0.806
P@600 0.723 0.807 0.792
P@700 0.717 0.796 0.787
P@800 0.710 0.784 0.779
P@900 0.714 0.773 0.777
P@1000 0.697 0.766 0.769
P@2000 0.662 0.657 0.694
P@3000 0.627 0.605 0.644
P@4000 0.608 0.5585 0.593
P@5000 0.575 0.5538 0.562
P@6000 0.550 0.549 0.561
P@7000 0.547 0.545 0.552
P@8000 0.546 0.546 0.546

Table 6.16: Precision comparison of LIDF-value and TeRGraph

Table 6.17 presents the precision comparison of our three measures.

WAHI based on Yahoo obtains better precision for the first P@100 extracted terms
with 96% precision whereas, in comparison, WAHI based on Bing obtains 90 preci-
sion. For the other interval, Table 6.17 shows that WAHI based on Bing generally
gives the best results. This is very encouraging because it also helps alleviate the
problem of manual validation of candidate terms.

The performance of WAHI depends on the search engine because algorithms de-
signed for searching information on the web are different, so the number of hits
returned will differ in all cases. Another performance factor is the quality of the
re-ranked list obtained with TeRGraph, because this list is required as input.

Moreover, Table 6.17 highlights that re-ranking with WAHI enables us to increase
the precision of TeRGraph. For all cases, our re-ranking methods improve the pre-
cision obtained with LIDF-value. The purpose for which this web-mining measure
was designed has thus been fulfilled.

Note that these measures do not normalize the possible variants. This could be a
limitation for researchers looking for a preferred term for a group of variants.
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LIDF-value TeRGraph WAHI WAHI
(δ ≥ 0.60) (Bing) (Yahoo)

P@100 0.820 0.930 0.900 0.960
P@200 0.770 0.855 0.900 0.950
P@300 0.750 0.830 0.900 0.900
P@400 0.738 0.820 0.900 0.900
P@500 0.718 0.810 0.900 0.920
P@600 0.723 0.807 0.917 0.850
P@700 0.717 0.796 0.914 0.817
P@800 0.710 0.784 0.875 0.875
P@900 0.714 0.773 0.878 0.870
P@1000 0.697 0.766 0.766 0.766

Table 6.17: Precision comparison LIDF-value, TeRGraph, and WAHI

In this chapter we have shown the experiments of the proposed approach to extract
biomedical candidate term. The approach is based on linguistic, statistic, graph,
and web features. This approach obtained the best results in comparison to the
baseline measures.

In next chapter, we discuss the effects of some parameters of our approach. As well
as, we conclude and present the perspectives of the first part of this thesis.
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Discussion and Conclusions

As we mentioned before, this chapter illustrates the effects of some parameters of
our workflow (see Section 7.1) and concludes and presents the perspectives of the
automatic biomedical term extraction approach (see Section 7.2).

7.1 Discussion

This section presents the effects of the impacts of biomedical pattern lists, size of
dictionaries, and the extraction errors.

7.1.1 Impact of Pattern List

In our methodology, we have shown that biomedical patterns directly affect the term
extraction results. For instance, we can see that L-value, which is a combination of
C-value and the probability of pattern lists, gives better results than C-value for the
three languages, and LIDF-value outperforms L-value in major cases. These pattern
lists work specifically for the biomedical domain. If we use these biomedical pat-
terns in another domain instead of using specific patterns of that domain, they will
impact the term extraction results. To prove this, we have extracted terms from an
agronomic corpus for English and French while taking biomedical patterns and agro-
nomic patterns into account. We built the agronomic patterns using AGROVOC1,
which is an agronomic dictionary. AGROVOC contains 39 542 and 37 382 English
and French terms, respectively. Our corpus consists of titles plus abstracts extracted

1http://aims.fao.org/agrovoc
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from the list of Cirad publications (French Agricultural Research Centre for Inter-
national Development). Table 7.1 shows the details of the corpus formed for this
comparison.

Table 7.2 presents a term extraction comparison while taking patterns built from
two different domains into account.
Again we note that LIDF-value obtains the best results. We also see that the re-
sults of terms extracted with agronomic patterns gives better results than when
using biomedical patterns for English and French.

Note that even if the term extraction results obtained using agronomic patterns
are higher than using biomedical patterns, these results are a bit close. The main
reason is that the biomedical and agronomic terms overlap. It means that identical
patterns exist in both domains. The results could be improved by using patterns of
two completely different domains.

Number of Titles/Abstracts Number of Words
English 156 29 740 words
French 84 14 850 words

Table 7.1: Details of Cirad corpus.

7.1.2 Effect of Dictionary Size

Dictionaries play an important role in term extraction, specifically during the con-
struction of pattern lists. Table 7.2 shows that a reduction in dictionary size degrades
the performance of the precision results in comparison to Tables 6.3, 6.4, 6.7. For
instance, for the agronomic and biomedical domain, Table 7.2 and Table 6.3 show
the P@100 of 0.92 and 1.00 respectively, and this difference increases as the number
of extracted terms increases (i.e. P@k).

7.1.3 Term Extraction Errors

As explained in Section 5 (step a), the term extraction results are influenced by the
Part-of-Speech (PoS) tagging tools, which have different results for different lan-
guages. Briefly, the tool “A” can perform very well for English, while for French the
tool “B” gives the best results. For instance, the sentence “Red blood cells increase
with ...” was tagged with the Stanford tool as “adjective noun noun verb preposition
...”, whereas the TreeTagger tool tagged it as “adjective noun noun noun preposi-
tion ...”. Therefore, in order to show the generality of our approach, we choose
a uniform PoS tool, i.e. TreeTagger, as a trade-off for three languages (English,
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English (Single- and Multi- Word Terms)
With Agronomic Patterns With Biomedical Patterns

P@100 P@200 P@1000 P@5000 P@100 P@200 P@1000 P@5000
C-value 0.910 0.825 0.631 0.255 0.870 0.790 0.527 0.223
TF-IDFS 0.900 0.830 0.667 0.335 0.810 0.845 0.587 0.284
OkapiS 0.910 0.865 0.680 0.331 0.870 0.845 0.625 0.281

F-OCapiM 0.640 0.600 0.419 0.273 0.660 0.605 0.403 0.252
F-OCapiS 0.900 0.845 0.672 0.304 0.870 0.840 0.612 0.260

F-TFIDF-CM 0.740 0.610 0.412 0.261 0.760 0.610 0.402 0.270
F-TFIDF-CS 0.900 0.835 0.664 0.323 0.810 0.845 0.600 0.272

L-value 0.700 0.660 0.542 0.338 0.840 0.795 0.688 0.320
LIDF-value 0.920 0.875 0.766 0.340 0.880 0.855 0.682 0.320

French (Single- and Multi- Word Terms)
With Agronomic Patterns With Biomedical Patterns

P@100 P@200 P@1000 P@5000 P@100 P@200 P@1000 P@5000
C-value 0.400 0.360 0.210 0.086 0.450 0.455 0.223 0.084
TF-IDFS 0.430 0.380 0.248 0.114 0.500 0.450 0.293 0.119
OkapiS 0.390 0.360 0.256 0.115 0.490 0.450 0.300 0.120

F-OCapiM 0.310 0.225 0.154 0.100 0.340 0.245 0.167 0.115
F-OCapiS 0.400 0.355 0.248 0.106 0.480 0.465 0.269 0.115

F-TFIDF-CM 0.350 0.240 0.163 0.099 0.380 0.295 0.170 0.118
F-TFIDF-CS 0.350 0.240 0.163 0.099 0.500 0.475 0.268 0.119

L-value 0.550 0.510 0.367 0.135 0.520 0.480 0.333 0.130
LIDF-value 0.560 0.535 0.367 0.135 0.510 0.510 0.336 0.130

Table 7.2: Precision comparison of Term Extraction with Agronomic and Biomedical
Patterns

French, and Spanish), while understanding that it will penalize the results for the
three languages.

7.2 Conclusions and Future Work

This first part of this thesis defines and evaluates several measures for automatic
single-word term, multi-word term extraction. These measures are classified as rank-
ing measures, and re-ranking measures. The measures are based on the linguistic,
statistical, graph and web information. We modified some baseline measures (i.e.
C-value, TF-IDF, Okapi) and we proposed new measures.

All the ranking measures are linguistic- and statistic-based. The best ranking mea-
sure is LIDF-value, which overcomes the lack of frequency information with the
linguistic pattern probability and idf values.
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We experimentally showed that LIDF-value applied in the biomedical domain, over
two corpora (i.e. LabTestsOnline, GENIA), outperformed a state-of-the-art baseline
for extracting terms (i.e. C-value), while obtaining the best precision results in all
intervals (i.e. P@k). And with three languages the LIDF-value trends were similar.

We have shown that multi-word term extraction is more complex than single-word
term extraction. We detailed an evaluation over the GENIA corpus for multi-word
term extraction. Moreover, in that case, LIDF-value improved the automatic term
extraction precision in comparison to the most popular term extraction measure.

We also evaluated the re-ranking measures. The first re-ranking measure, TeR-
Graph, is a graph-based measure. It decreases the human effort required to validate
candidate terms. The graph-based measure has never been applied for automatic
term extraction. TeRGraph takes the neighborhood to compute the term represen-
tativeness in a specific domain into account.

The other re-ranking measures are web-based. The best one, called WAHI, takes
the list of terms obtained with TeRGraph as input. WAHI enables us to further
reduce the huge human effort required for validating candidate terms.

Our experimental evaluations revealed that TeRGraph had better precision than
LIDF-value for all intervals. Moreover, our experimental assessments revealed that
WAHI improved the results given with TeRGraph for all intervals.

As a future extension of this work, we intend to use the relation value within TeR-
Graph. We plan to include the use of other graph ranking computations, e.g. PageR-
ank, adapted for automatic term extraction. Moreover, a future work consists of
using the web to extract more terms than those extracted.

One prospect could be the creation of a regular expression for the biomedical domain
from the linguistic pattern list. We plan to modify our measures in order to nor-
malize the possible variants, looking towards for a preferred term for those variants.

Next chapter presents the BioTex application, which implements the measures
defined in the first part of this thesis.
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BioTex

8.1 Introduction

As we said, term extraction is an essential task in domain knowledge acquisition.
Although hundreds of terminologies and ontologies exist in the biomedical domain,
for other languages there exist a need to enrich currently available terminologies
and ontologies. Automatic term extraction and keyword extraction measures are
widely used in biomedical text mining applications. In this chapter we present Bio-
Tex [Lossio-Ventura et al., 2014b], an application that implements several state-of-
the-art measures and those proposed in Section 5.2, for English, French, and Spanish.

In a corpus, there exist different information to be expressed by a community. For
this purpose, a specific terminology can be used, which does not exist for several
domains. For instance, in the biomedical domain, there is a lack of terminologies.
We thus intend to offer to users an opportunity to automatically extract biomedical
terms and use them for any natural language, indexing, knowledge extraction, or
annotation purpose. Extracted terms can also be used to enrich biomedical ontolo-
gies or terminologies by offering new terms or synonyms to attach to existing defined
classes. Automatic Term Extraction (ATE) methods are designed to automatically
extract relevant terms from a given corpus. Note again that we refer to ATE when
extracted terms are not previously defined in existing standard ontologies or termi-
nologies. We refer to “semantic annotation” when an extracted term can match to
an existing class (URI) such as in [Jonquet et al., 2009].
Relevant terms are useful to gain further insight into the conceptual structure of a
domain. These may be: (i) single-word terms (simple to extract), or (ii) multi-word
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terms (hard). In the biomedical domain, there is a substantial difference between
existing resources (ontologies) in English, French, and Spanish (see Chapter 3). In
general, our project involves two main stages: (i) Biomedical term extraction, and
(ii) Concept extraction and semantic linkage, in order to populate ontologies with
the extracted terms.

In this chapter, we present BioTex, an application to extract biomedical terms.
Given a text corpus, it extracts and ranks biomedical terms according to a selected
extraction measure. In addition, BioTex automatically validates terms that already
exist in UMLS terminology. We have presented different measures in Section 5.2,
and performed comparative assessments in Chapter 6 as well as in other publica-
tions [Lossio-Ventura et al., 2014a, Lossio-Ventura et al., 2014d]. In next sections,
we present the interfaces supported by BioTex; its use-cases (i.e. projects using
the application); as well as, a small comparison of BioTex with other biomedical
applications, such as TerMine, FlexiTerm (see Section 4.1.6.

8.2 Implementation

BioTex is an application for biomedical terminology extraction which offers several
baselines and new measures to rank candidate terms for a given text corpus. BioTex
can be used either as: (i) a Web application taking a text file as input, or (ii) as a
Java library. When used as a Web application, it produces a file with a maximum
of 1200 ranked candidate terms. Used as a Java library, it produces four files with
ranked candidate terms found in the corpus, respectively, unigram, bigram, 3-gram
and all the 4+ gram terms. BioTex has two main interfaces:

8.2.1 Term extraction and ranking measures

As illustrated by the Web application interface, Figure 8.1, BioTex users can cus-
tomize the workflow by changing the following parameters:

• (A) Select a number of patterns to filter out the candidate terms (200 by default
according to our experiments, see Chapter 6). Those reference patterns (e.g.,
noun-noun, noun-prep-noun, etc.) were built with terms taken from UMLS for
English and Spanish, and MeSH for French (see Section 5). They are ranked
by their frequency.

• (B) Select the type of terms to extract: all terms (i.e., single-word and multi-
word terms) or multi-terms, which means the multi-word terms only. In our
work, we also call n-gram terms. Where n ≥ 1 for all terms, n ≥ 2 and
multi-terms.

• (C) Here, the user has to select 3 parameters:
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– Select one of the ranking measure to apply. It is necessary to take into
account the type of data set (single document or a set of documents).
Only the measures, such as C-value and L-value are allowed to work
with both single document and a set of documents. The measures using
idf only with a set of documents.

– Select your file in TXT format.

– Choose the corpus language (i.e., English, French, or Spanish).

Figure 8.1: BioTex Term extraction interface.

8.2.2 Validation of candidate terms

After the extraction process, BioTex automatically validates the extracted terms
by using UMLS (English, Spanish) & MeSH-fr, SNOMED and the rest of UMLS
(French). As illustrated in Figure 8.2, these validated terms are displayed in green,
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specifying the used knowledge source and the others in red. Therefore, BioTex
allows someone to easily distinguish the classes annotating the original corpus (in
green) from the terms that maybe also considered relevant for their data, but need
to be curated (in red). The last ones may be considered candidates for ontology
enrichment. Users can also manually validate/invalidate the remaining red terms for
their own purposes, while potentially enhancing the BioTex validation dictionary.

Figure 8.2: BioTex Term validation interface.

8.3 Use-Cases

In this section, we briefly describe the different use-cases of the BioTex application.
Defined basically for biomedical texts, BioTex has appeared to be efficient for
other context as explained in the following sections. In the following paragraphs we
describe the biomedical and the general usages.
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8.3.1 From the biomedical domain

In this section, we only describe the projects and task where BioTex has been used.
In the major cases, our application has been used to build terminologies.

8.3.1.1 Ontologos use-case

Ontologos1 is a company, which provides innovative products corresponding to cus-
tomers’ needs, facilitating working organization by using relevant software tools
and an adequate methodology. In the biomedical domain, Ontologos works with
VARAPP2 association. VARAPP has as objective to promote the improvement
of professional practices in the health sector and other related sectors. VARAPP
provided us its French health documents through Ontologos. We used these health
document to extract the most relevant terms to propose only those not belonging
to a biomedical terminology. So, we extracted the first 500 French terms3 that are
not present in a terminology. The next step was the validation by the doctors of
VARAPP association. They selected the relevant biomedical terms (i.e. those which
can be added to a biomedical terminology) and the irrelevant biomedical terms. Ta-
ble 8.1 illustrates the results of the validation done by the experts (i.e. doctors).
For instance, the first row shows a precision of 74.6%, this means that 373 out of
500 terms have been found as relevant terms. This means, that these 373 could be
evaluated to be added to a terminology. The other 25.4 % (127 terms) have been
considered as irrelevant in the medical domain.

Precision
True Biomedial Terms 74.6 %
False Biomedial Terms 25.4 %

Table 8.1: Results of validation in percentage.

8.3.1.2 Psychiatric Ontology use-case

The project Covalmo was developed in partnership between the hospital Sainte-Anne
and the Knowledge Engineering Laboratory in e-Health of the University Paris 6.
Covalmo [Richard et al., 2015] is a project of Computer Sciences and Medicine. Its
main objective is to discover all the possible factors of psychiatric illness in order to
help the development of a consensus about the descriptive categories of psychiatric
disorders. All this, through tools and methods of Knowledge Engineering [Aimé,
2015]. Hence, Covalmo aims at developing tools for a: (1) better description of the

1http://www.ontologos-corp.com/corporate/index.php
2http://www.varapp.org/
3The proposed terms are available here: http://tubo.lirmm.fr:8080/ontologos/

http://www.ontologos-corp.com/corporate/index.php
http://www.varapp.org/
http://tubo.lirmm.fr:8080/ontologos/


82 CHAPTER 8. BIOTEX

diagnoses and procedures, as well as a (2) better indexation of patient records. For
this project, they used BioTex to extract relevant terms for ONTOPSYCHIA, an
ontology for psychiatry. We are not able to show results for confidentiality reasons.

8.3.1.3 Patient Vocabulary use-case

This is a joint project between LIRMM and I3M4 laboratories, which seeks to create
a patient vocabulary. The authors describe the construction of a lexical resource that
aligns the patient vocabulary with that of health professionals [Nzali et al., 2015].
The project describes that social media is increasingly used by patients and health
professionals. Patients usually use slang words, abbreviations, and a vocabulary
of their own during their exchanges. To automatically analyze the texts of social
networks, the acquisition of this specific vocabulary is required. This work will allow
to improve the information retrieval in health forums, as well as, to facilitate the
development of statistical studies based on the information extracted from these
forums. To build this vocabulary, the candidate terms have been extracted with
BioTex software. Table 8.2 shows a sample of the alignment between biomedical
terms and patient terms.

Biomedical Term Patient Term
oncologue onco

chimiothérapie chimio
mammographie mammo

Table 8.2: Alignment of Biomedical Terms and Patient Terms.

8.3.2 To more general domain

As before mentioned, basically was developed for biomedical domain. Recently,
this application was applied to other domains; such as agricultural, epidemiological;
showing very good results. The main reason is that BioTex application contains
several identical linguistic patterns also used in other domains. In this section, we
describe the use-cases of our application in other domains.

8.3.2.1 Epidemiological use-case

This application was applied for a work of the CMAEE laboratory5. In recent years
methodologies are proposed for epidemiological surveillance on the web. In this
context, services need tools that could refine the search and detect the relevant
information. In the face of many diseases and even more symptoms, the analysts

4Institut de Mathématiques et de Modélisation de Montpellier
5http://umr-cmaee.cirad.fr/

http://umr-cmaee.cirad.fr/
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tackle a difficult challenge: How to identify appropriate queries for Internet disease
surveillance? In order to address this issue, the work detailed in [Arsevska et al.,
2014] consists of using terms extracted with BioTex in order to propose adapted
queries for surveillance tasks. The selection of query terms is based on the sources
where the terms are extracted (i.e. Google, PubMed). The authors identified 66
terms extracted to characterize Schmallenberg virus (SBV) emergence.

8.3.2.2 Agricultural use-case

To conduct a study with thematic expertise of our approach, two researchers from
CIRAD6, who are members of TETIS laboratory, were solicited. So, in the context of
large amounts of textual data related to agriculture now available, indexing becomes
a crucial issue for research organizations. One way to index documents consists of
extracting terminology. The authors in [Roche and Fortuno, 2014, Roche et al., 2015]
investigates the use and combination of Text Mining methodologies to highlight and
publish in Open Data systems the most appropriate terms extracted with BioTex
(In French and in English). Moreover these terms are used to match heterogeneous
data of agricultural domain.

8.3.2.3 Geographical use-case

This work was carried out during a study by researchers of TETIS laboratory 7.
In recent study, text mining approaches are used to analyze data set in French
related to land-use planning. In this use case, the relevant information concerns
sentiments, spatial information, and everything else related to the territory (i.e.
Land-use Planning). For extracting topics associated with land-use planning, Bio-
Tex is applied [Roche and Teissire, 2015]. The authors classified the extracted terms
in five categories, which convey information associated with the territory triptych
(spatial entities and themes), actors and sentiments.

8.3.2.4 Publicis Groupe

Publicis Groupe8 is a global leader in marketing, communication, and business trans-
formation, it is present in 108 countries. This company accompanies clients through
their business transformation, offering a full range of services and expertise across
digital, technology, consulting, creative, corporate communications and public af-
fairs, media strategy, planning and buying, healthcare communications, and brand
asset production. They have used BioTex as an experiment for one of their real
time marketing projects with Orange9. The application was mainly used to find

6http://www.cirad.fr/
7https://tetis.teledetection.fr/index.php/fr/
8http://www.publicisgroupe.com/
9http://www.orange.com/fr/accueil

http://www.cirad.fr/
https://tetis.teledetection.fr/index.php/fr/
http://www.publicisgroupe.com/
http://www.orange.com/fr/accueil
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insights about communities of games/e-sports specialists. The objective is to un-
derstand what kind of problems do they encounter with respect to their internet
connections. BioTex has also used for topic labelisation. This work is in process,
the qualitatif results should be produced soon. The researchers conclude that the
tool was useful for them to extract insights for their client’s brands and also for
other research purposes.

8.4 Summary

As shown in the detailed study done in Section 4.1.6, most existing systems imple-
menting statistical methods are made to extract keywords and, to a lesser extent,
to extract technical terms from a text corpus. Certainly, most systems take a single
text document as input, not a set of documents (as corpus), for which the IDF can
be computed. Most systems are available only in English. Table 8.3 shows a quick
comparison of the most important characteristics of typical systems. This compar-
ison has been done between BioTex, TerMine10 (C-value), the most commonly
used application, and FlexiTerm11, the most recent one. To know more about these
applications and the used methods see Section 4.1.6.

BioTex TerMine FlexiTerm
Languages en/fr/es en en

Type of Application Desktop/Web Web Desktop
License Open Open Open

Processing Capacity No Limits / < 6 MB < 2 MB No Limits
Possibility to save results XML - CSV

POS tool TreeTagger Genia/TreeTagger Stanford POS
# of Implemented Measures 7 1 1

Table 8.3: Brief comparison of biomedical terminology extraction applications.

In general, Table 8.3 shows that BioTex integrates more characteristics than the
other systems. BioTex allows to be added as a library for any independent appli-
cation. It also allows to validate manually the candidate terms that do not belong
to a terminology. This application has been done for three languages.
In previous sections, we explained in detail BioTex. Next section concludes and list
the most important aspects of our application. As well as, the possible perspectives
to be integrated to become more useful BioTex.

10http://www.nactem.ac.uk/software/termine/
11http://users.cs.cf.ac.uk/I.Spasic/flexiterm/

http://www.nactem.ac.uk/software/termine/
http://users.cs.cf.ac.uk/I.Spasic/flexiterm/
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8.5 Conclusions
In this chapter, we presented the BioTex application for biomedical terminology
extraction, which is the implementation of all the ranking measures detailed in Sec-
tion 5.2. It is available for online testing and evaluation but can also be used in any
program as a Java library (POS tagger not included). In contrast to other existing
systems, our system allows us to analyze French and Spanish corpus, manually val-
idate extracted terms and, export the list of extracted terms.

BioTex starts to be a valuable tool for the biomedical community, as well as for
related domains. It is currently used in other independent projects. In addition, it
is integrated in a couple of test-beds within the SIFR project12. The application
is available at http://tubo.lirmm.fr/biotex/ along with a video demonstration
http://www.youtube.com/watch?v=EBbkZj7HcL8. For our future validations, we
will enrich the validation dictionaries with BioPortal [Noy et al., 2009] terms for
English and CISMeF [Darmoni et al., 2009] terms for French.

To sum up, this first part, “Automatic Term Extraction”, described the lexical com-
plexity to extract new biomedical terms. For this, we proposed several measures that
overcomes the baselines. These measures have been based on linguistic, statistic,
graph, and web features showing good results. Finally this first part is implemented
as an application called BioTex, which is starting to be used for several biomedical
projects.

An interesting perspective is to add the context visualization of each candidate term.
For instance, to show the most relevant sentences containing the candidate term, as
done in [Fischl and Scharl, 2014, Hullman et al., 2015]. It will allow to users to per-
form a better validation of candidate terms. This context may also allow recognize
manually if a candidate term is ambiguous (or polysemic). Likewise, the application
could show the documents in which these candidate terms are relevant, as done in
[Chuang et al., 2012] forassessing topic model quality.

Another perspective is to present a graph of term co-occurrence, showing the re-
latedness between the candidate terms. Note that the candidate terms are terms
presents in a terminology (green terms), as well as new candidate terms (red terms).
Therefore, this will give an appreciation of the possible position for a new biomedical
term in an ontology.

In the future, it would be interesting to offer a disambiguation application using
the context of each term in order to populate biomedical ontologies with the new
extracted terms (red terms), while looking into the possibility of extracting relations
[Abacha and Zweigenbaum, 2011] between new terms and already known terms.

12http://www.lirmm.fr/sifr

http://tubo.lirmm.fr/biotex/
http://www.youtube.com/watch?v=EBbkZj7HcL8
http://www.lirmm.fr/sifr
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As previously mentioned, adding more functionalities to BioTex, users could be
able to recognize “manually” if a candidate term is ambiguous, the possible senses
according to the contexts, and to figure out a good position for new terms in a
biomedical ontology. Note that the objective of this thesis is to automatically en-
rich biomedical ontologies. So, for this, the process to evaluate if a new biomedical
term is ambiguous, and to evaluate its right position in an ontology has to be done
automatically.

Hence, next part called “Concept Extraction and Semantic Linkage”, seeks to induce
the possible sense or senses for new candidate terms, and to propose where these
new candidate terms could be added in an ontology.



Part II

Concept Extraction and Semantic
Linkage
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Chapter

9

Introduction

As a reminder to readers, the Web is by far the largest information archive available
worldwide getting larger every day with the input of new user content. This vast pool
of text expressions and terms contains important information about several domains.
This is the case for biomedicine that, accompanied by recent advances in research,
has accelerated the rate of publishing electronic biomedical documents [El-Rab et al.,
2013]. Such growth makes it difficult to keep track of recent developments [Stevenson
et al., 2008], so the use of automated methods to analyze and process data generated
by users is thus mandatory. Extracting and enriching ontologies/vocabularies with
new terms is challenging because of the ambiguity of natural language.

Therefore, to accomplish the general objective, the first part of this manuscript pro-
posed a methodology to extract new biomedical candidate terms from textual data
derived from several resources. Specifically, a methodology consisting of different
measures based on linguistic, statistic, graph and Web features. At the end of this
part, the new potential candidate terms are identified without further knowledge
about them.

Hence, the second part seeks to achieve ontology/vocabulary enrichment and re-
quires a methodology to figure out the concepts of the new candidate terms. Then,
to seek the relation of new candidate terms with those appearing in an already exist-
ing biomedical ontology, the correct position of new candidate terms in a biomedical
ontology must be determined.

Consequently, this second part, called Concept Extraction and Semantic Linkage,
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as we mentioned, seeks to extract the concepts and find the semantic links (i.e. a
position semantically close) in a biomedical ontology of these new candidate terms,
as mentioned before. Therefore, for this purpose, we believe it is important and
necessary to perform three steps. First, it is essential to determine if a new candidate
term is polysemic. Second, after having predicted the polysemy, we need to identify
the possible senses or concepts of each term, this is the well-known Word Sense
Induction (WSI) domain in which just the detected polysemic candidate terms will
be evaluated by conducting an exhaustive search of their several concepts. Third, we
have to be capable of finding semantic links that could have new candidate terms
in an already defined biomedical ontology, i.e. to find a position in a biomedical
ontology to add new candidate terms. Figure 9.1 illustrates the three steps necessary
to reach the final objective.

Figure 9.1: Workflow for Concept Extraction and Semantic Linkage.

Polysemy Detection aims at identifying, as true or false, when a new candidate term
could have multiple meanings. This is very important because polysemic candidate
terms must be evaluated in a different way than those that are not polysemic. In
fact, polysemy is a major problem in linguistic semantics and it allows more accurate
reading and better language acquisition [Crossley et al., 2010].

Term Sense Induction (TSI) aims to assign possible senses to these new biomedical
candidate terms. In TSI, the time needed to detect the set of senses is an inconve-
nience, including the unnecessary time spent for non-polysemic terms with a single
sense. This disadvantage is affected directly by the major problem in TSI, i.e. deter-
mination of the number of senses (i.e. number of clusters) of a term. This is because
there is no a priori knowledge about the new candidate terms. In several domains,
determining the exact cluster number becomes impossible, so the clustering algo-
rithms often give poor performance results [Dehkordi et al., 2009]. For instance, to
predict the number of senses, the non-parametric Bayesian method [Lau et al., 2012]
uses Hierarchical Dirichlet Processes (HDP). All the approaches tend to induce a
larger number of word senses compared to the gold standard per ambiguous word
on the SEMEVAL-2010 WSI dataset [Lau et al., 2012]. Although many algorithms
have been suggested, there is no convincing acceptable solution to the best number
of clusters problem [Mirkin, 2011].

To achieve Polysemy Detection and Term Sense Induction, many techniques have
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been proposed, mainly based on supervised classification and unsupervised clas-
sification. Using words, the context of words [Navigli, 2012] and the graph of
words [Agirre and Soroa, 2009, Agirre et al., 2010] as representation.

A related field, i.e. meta-learning, which aims to assign a good classifier for a
specific dataset, gives very good classification results. Meta-learning uses several
dataset characterization approaches. Meta-feature extraction is the first step of
meta-learning, which exploits meta-knowledge to select the best method for the clas-
sification task. General techniques are used to extract meta-features, which can be
transformed to extract even more meta-features. This enhances the efficiency of the
classification process. Meta-learning has been applied in different domains but never
for polysemy detection to our knowledge. Therefore, we take advantage of meta-
features to meet the challenge of Polysemy Detection. In this context, we propose
a novel approach to detect if a term is polysemic by defining new meta-features ex-
tracted directly from the textual dataset and from an induced co-occurrence graph.
In turn, these meta-features use two dictionaries from two different domains (i.e.
medical and agronomy), thus allowing us to determine the use of a same term in
different domains. To the best of our knowledge, the properties of a co-occurrence
graph have never been used to define meta-features. The main idea is to capture
the dataset characteristics from the structural shape and size of the graph induced
from the dataset.

To solve the major problem of TSI, we propose new indexes to evaluate the cluster
quality. Moreover, to solve the problem related to TSI, we also use the proposed
meta-features extracted for Polysemy Detection. So only terms detected as poly-
semic have to be evaluated to identify the number of senses. Then we will extract
the set of senses for polysemic terms and the unique sense of the non-polysemic
terms.

Semantic Linkage seeks to find a semantic relation between two entities. This is part
of the well-known Relation Extraction domain. A lot of applications in information
extraction, natural language processing, require an understanding of the semantic
relations between entities. Relation Extraction approaches are generally categorized
in supervised and unsupervised techniques [Bach and Badaskar, 2007]. In the un-
supervised paradigms, contextual features are used. The distributional hypothesis
theory [Harris, 1954] indicates that words that occur in the same context tend to
have similar meanings. Accordingly, it is assumed that pairs of terms that occur in
similar contexts tend to have similar relations. These unsupervised techniques are
what we call Semantic Linkage. Relation extraction can also be divided into two
tasks: (i) To find couples of terms which are semantically close, and (ii) To identify
the kind of relations. The first task is usually tackled with unsupervised techniques,
which aims to find the closest position of a new candidate term in a biomedical on-
tology. In our case, we only tackle the first task: (i) with unsupervised techniques.
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As previously mentioned, this task is called semantic linkage, which in our work is
essentially based on the context of the terms. This is, if two biomedical context of
two terms are close, so they likely have a semantic link between them.

All of these steps are done automatically in our project. Therefore, the final work-
flow of our methodology is shown in Figure 9.2. In this figure, we can see that the
polysemic terms follow a different approach to extract possible concepts in compar-
ison to non-polysemic terms.

Figure 9.2: Final Proposed Workflow for Concept Extraction and Semantic Linkage.

The rest of this part is organized as follows. A detailed study on related works
and their relevance in the ontology enrichment context is discussed in Chapter 10.
Then, in Chapter 11, we present the main phases of our methodology. Results of
experiments are presented in Chapter 12. A discussion and conclusions are addressed
in Chapter 13.



Chapter

10

State-of-the-art

As we mentioned in the previous chapter, we propose a methodology aimed at
enriching biomedical ontologies/terminologies. For this purpose, we split this part
into three steps, as illustrated in Figure 10.1. In this chapter, we will describe the
state-of-the-art for each step: (i) Polysemy Detection, (ii) Term Sense Induction,
and (iii) Semantic Linkage. These domains are defined and the associated studies
are reported in each step respectively.

Figure 10.1: Workflow for Concept Extraction and Semantic Linkage.

10.1 Polysemy Detection
Polysemy detection seeks to detect if a term is polysemic given the context. The
term “polysemy detection” is used in two different contexts. The first one, as in
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major studies, polysemy detection is used to detect the set of senses for a target
word, this is the well-known Word Sense Induction domain. The second context
seeks only to detect if a term is polysemic, i.e. true or false as result. In this section,
we only describe studies belonging to the second context.

A task related to polysemy detection is term ambiguity detection (TAD), as shown
in [Baldwin et al., 2013] which, given a term and a corresponding topic domain,
determines whether the term uniquely references a member of that topic domain.
For instance, given a term such as Brave and a category such as film, the task is to
make a binary decision as to whether all instances of Brave reference a film by that
name. They use a hybrid approach consisting of three modules. The first module is
primarily designed to detect non-referential ambiguity. This means terms appearing
in non-named entity contexts are likely to be non-referential, and terms that can
be non-referential are ambiguous. The authors compute the non-referentiality as a
probability based on the lower-cased form of words composing the term. Their idea
is if the term is in lower form, it does not reference a named entity. The second
module employs ontologies to detect across-domain ambiguity. Two ontologies were
examined. Wiktionary, where terms having multiple senses were labeled as ambigu-
ous. The second ontology used was Wikipedia disambiguation pages. All terms that
had a disambiguation page were marked as ambiguous. The final module attempts
to detect both non-referential and across-domain ambiguity by clustering the con-
texts in which words appear. They utilized the popular Latent Dirichlet Allocation
(LDA) [Blei et al., 2003] topic modeling method. LDA represents a document as a
distribution of topics, and each topic as a distribution of words. In this work, some
terms can be already indexed in Wiktionary and/or Wikipedia ontologies. In such
cases, their framework is nonviable to enrich ontologies.

Another related study proposes a measure to decide if a preposition is polysemous
or not, with the final objective being to determine the preposition senses [Köper
and im Walde, 2014]. The authors propose a rank-based distance measure to ex-
plore the vector-spatial properties of the ambiguous terms, thus solving two issues:
(i) to distinguish polysemous from monosemous prepositions in vector space; and
(ii) to determine salient vector-space features for the classification of preposition
senses. The rank-based measure predicts the polysemy vs. monosemy of preposi-
tions with up to 88% precision, and suggests that noun-based features are better
than verb-based features to predict the sense of prepositions. Their rank-based dis-
tance measure is computed in three parts: (i) For a set of 49 German prepositions,
they compute pair-wise distances for each pair of prepositions, which are represented
by high-dimensional vectors, and they use the standard cosine measure for calculat-
ing vector similarities/distances; (ii) They rank according to the distance values, i.e.
they determine, for each preposition, the most similar preposition, the second most
similar preposition, etc. and; (iii) An overall rank is calculated for each preposition
in order to distinguish the polysemy and monosemy. This rank corresponds to the
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mean position of a specific preposition in the distance-based sorted lists across all
prepositions. In this case, the prepositions are already known.

Polysemy detection is similar to the well studied issues of named entity disambigua-
tion (NED) and word sense disambiguation (WSD). These tasks assume that the
number of senses of a word is given. This makes these tasks inapplicable in enrich-
ing terminology tasks because the number of senses of a new candidate term is not
known. One task that requires polysemy detection (true or false as output) is word
sense induction (WSI), which attempts to both figure out the number of senses of a
word, and what they are (see section 10.2).

In our methodology, we are interested in polysemy detection in order to enrich
terminologies/ontologies with new biomedical candidate terms (i.e. terms that are
not indexed). Therefore, we try to predict when a new candidate biomedical term
might be polysemic (i.e. true or false). Our approach will be detailed in Section 11.1.
In general, the approaches mentioned before characterize the dataset as a vector
of features, with the most well-known being “bag-of-words”, then they use a learn-
ing algorithm (supervised/unsupervised) to capture the polysemy and senses of a
word. An area that involves a similar process is meta-learning, which seeks first to
characterize the dataset, and second, to assign it a highly performant classification
algorithm. Meta-learning has proved to perform weel for classification tasks. An
overview of meta-learning-based methods is proposed hereafter.

10.2 Term Sense Induction

Word Sense Induction is a natural language processing area which aims at the auto-
matic identification of the senses of a word (i.e. meanings). As the output of word
sense induction is a set of senses (i.e. sense inventory) for a word, obtained without
any knowledge resource, so this task is related and really important for enriching
terminologies and ontologies. In our methodology, we talk of technical terms, which
means terms that could be added to a terminology in a domain. In our case, we
extract new biomedical candidate terms and our aim is to use them for increasing
terminologies and ontologies. These are single-word or multi-word terms. For this
reason, we call this task “Term Sense Induction” (TSI) instead of Word Sense In-
duction, which aims, in major cases, to find senses for single-word terms. To our
knowledge, few studies have been conducted related to word sense induction applied
to the biomedical domain. In contrast, several studies are related to word sense
disambiguation related to the biomedical domain.

TSI are always based on clustering algorithms. Two major problems must be ad-
dressed to automatically determine the senses of a term: (i) Determine the number
of senses, i.e. to induce the number of meanings from the dataset, which is usually
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taken as a prior in most clustering algorithms; and (ii) Choose the best clustering
algorithm for our dataset, i.e. in our case a textual dataset.

10.2.1 Word Sense Induction

WSI uses unsupervised techniques to automatically identify the set of senses de-
noted by a word. In general, most WSI research is based on: (a) Distributional
Hypothesis [Harris, 1954], which indicates that words surrounded with similar con-
texts tend to have similar meanings, and (b) Topic Modeling Methods, which can
discover latent topic structures from contexts without involving feature engineering.

More specifically, the main WSI approaches proposed are categorized in four types
[Navigli, 2012, Wang et al., 2015b]: (i) Context clustering, (ii) Word clustering, (iii)
Co-occurrence Graphs, and (iv) Probabilistic. The types (i), (ii), and (iii) are based
on (a). And, the type (iv) is based on (b). Hereafter, we present the main WSI
approaches.

• Context Clustering: The main idea underlying this approach is that the dis-
tributional profile of words implicitly expresses their semantics. This means
that the word sense can be derived from its context. Each occurrence of a
target word in a corpus is represented here as a context vector. These context
vectors are composed of linguistic features and can be extracted i two man-
ners: (i) Direct representation of the context (a context window), or (ii) The
representation of contexts of the target word containing words that co-occur
together. The vectors are then clustered into groups, with each identifying a
sense of the target word [Nasiruddin, 2013].

More specifically, this idea is based on the word space model [Schutze, 1992],
where dimensions are words. A word w in a corpus can be represented as
a vector whose jth component counts the number of times that word wj co-
occurs with w within a fixed context (a sentence or a larger context). The
hypothesis underlying this model is that the distributional profile of words
implicitly expresses their semantics. The similarity between two words can
then be calculated, for example, with the cosine measure between the corre-
sponding vectors of each word.

The set of vectors for each word in the corpus creates a co-occurrence matrix.
This might involve a large number of dimensions. Therefore, latent semantic
analysis (LSA) can be applied to reduce the dimensionality of the resulting
multidimensional space via singular value decomposition (SVD) [Golub and
Van Loan, 1989]. SVD finds the major axes of variation in the word space.
Dimensionality reduction take the set of word vectors in the high-dimensional
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space and represents them in a lower-dimensional space: As a result, dimen-
sions associated with terms that have similar meanings are expected to be
merged. After the reduction, contextual similarity between two words can
also be computed with the cosine measure.

The aim is then to cluster context vectors, i.e. vectors which represent the con-
text of specific occurrences of a target word. A context vector is built as the
centroid (i.e. the normalized average) of vectors of the words occurring in the
target context, which can be seen as an approximation of its semantic context
[Schutze, 1992, Schütze, 1998]. These context vectors are second order vectors
(composed words), in that they do not directly represent the context at hand.
In contrast to this representation, another work [Pedersen and Bruce, 1997]
models the target context directly as a first-order vector of several features.

Finally, sense induction can be performed by grouping the context vectors
of a target word using a clustering algorithm. [Schütze, 1998] proposed an
algorithm, called context-group discrimination, which gathers occurrences of
an ambiguous word into clusters of senses based on the contextual similarity
between occurrences. Contextual similarity is calculated as described above,
whereas clustering is performed with the Expectation Maximization algorithm,
i.e. an iterative maximum likelihood estimation procedure of a probabilistic
model. A different clustering approach consists of agglomerative clustering
[Pedersen and Bruce, 1997]. Initially, each instance constitutes a singleton
cluster. Next, agglomerative clustering merges the most similar pair of clus-
ters, and continues with successively less similar pairs until a stopping thresh-
old is reached. The performance of the agglomerative clustering of context
vectors was assessed in an unconstrained setting and in the biomedical do-
main [Savova and Pedersen, 2005].

There are methods that are based on the previously cited works. For in-
stance, [Purandare and Pedersen, 2004b] makes a systematic comparison of
WSI methods, with the first one being [Pedersen and Bruce, 1997] and the
second one [Schutze, 1992, Schütze, 1998]. They cluster instances of a target
word that occur in raw text using both vector and similarity spaces. The con-
text of each instance is represented as a vector in a high dimensional feature
space. Discrimination is achieved by clustering context vectors directly in the
vector space and also by finding pairwise similarities among the vectors and
then clustering in similarity space. The authors employ two different represen-
tations of the context in which a target word occurs. First order and second
order.

In this context, [Udani et al., 2005] present an approach to noun sense induc-
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tion using an on-the-fly unsupervised clustering algorithm operating on Web
search results. The main idea is that the Web search appears to be a good
indicator of the type of corpora available on the Web.

In [Bordag, 2004], the authors presented the “Triplet-based algorithm”, which
represents an instantiation of the “one sense per collocation” observation [Gale
et al., 1992]. That essentially means that whenever a pair of words co-occurs
significantly often in a corpus (collocation), the concept referenced by that
pair is unambiguous. This approach differs from the others, which use clus-
tering of word co-occurrences, in that it enhances the effect of the one sense
per collocation observation by using triplets of words instead of pairs. The
authors implement a two step clustering process using sentence co-occurrences
as features. Moreover, a novel likewise automatic and unsupervised evaluation
method inspired from [Schutze, 1992] is used.

SenseClusters1 [Purandare and Pedersen, 2004a] is a package of (mostly) Perl
programs that allows a user to cluster similar contexts together using unsuper-
vised knowledge-lean methods. These techniques have been applied to word
sense discrimination, email categorization, and name discrimination. In [Ped-
ersen, 2007, Pedersen, 2010], SenseClusters was configured to construct rep-
resentations of the instances. These instances use second order co–occurrence
vectors. These are constructed by first identifying word co–occurrences, and
then replacing each word in an instance to be clustered with its co-occurrence
vector. Then all the vectors that make up an instance are averaged together
to represent that instance.

A recent work [Van de Cruys and Apidianaki, 2011], presented a unified model
for the automatic induction of senses, and the subsequent disambiguation of
particular word instances using the automatically extracted sense inventory.
The induction step and the disambiguation step are based on the same princi-
ple: words and contexts are mapped to a limited number of topical dimensions
in a latent semantic word space. The intuition is that a particular sense is as-
sociated with a particular topic, so that different senses can be discriminated
through their association with particular topical dimensions; in a similar way,
a particular instance of a word can be disambiguated by determining its most
important topical dimensions.

A related study applied to the biomedical domain is presented in [Savova and
Pedersen, 2005], which aims to find semantic ambiguities in the biomedical
domain. This method uses first and second order representations of context

1http://www.d.umn.edu/~tpederse/senseclusters.html

http://www.d.umn.edu/~tpederse/senseclusters.html
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and it is evaluated on the National Library of Medicine Word Sense Disam-
biguation Corpus. The authors showed that the method of clustering second
order contexts in similarity space is especially effective on such domain-specific
corpora. The goal of this method is to divide contexts that contain a particu-
lar target word into clusters, where each cluster represents a different meaning
of that target word. Each cluster is made up of similar contexts, and they
presume that a target word used in similar contexts will have the same or very
similar meaning.

Multilingual context vectors are also used to determine word senses [Ide and
Erjavec, 2001, Albano et al., 2014, Albano et al., 2015]. In this setting, a word
occurrence in a multilingual corpus is represented as a context vector which
includes all the possible lexical translations of the target word.

• Word Clustering: Before we represented word senses as first- or second-
order context vectors. A different approach to the induction of word senses
consists of word clustering techniques, such approaches seek to cluster words
which are semantically similar and can hence find a specific sense.

A well-known approach to word clustering [Lin, 1998a] consists of identifying
words W = (w1, . . . , wk) similar (possibly synonymous) to a target word w0.
The similarity between w0 and wi is determined based on the information con-
tent of their single features, given by the syntactic dependencies which occur
in a corpus (e.g. subject-verb, verb-object, adjective-noun, etc.). The more
dependencies the two words share, the higher the information content [Salton
and Buckley, 1988]. However, as for context vectors, the words inW will cover
all senses of w0. A word clustering algorithm is applied to discriminate between
the senses. Let W be the list of similar words ordered by degree of similarity
to w0. A similarity tree T is initially created which consists of a single node
w0. Next, for each i ∈ {1, ..., k}, wi ∈ W is added as a child of wj in the
tree T such that wj is the most similar word to wi among {w0, ..., wi−1}. After
a pruning step, each subtree rooted at w0 is considered as a distinct sense of w0.

The clustering by committee (CBC) algorithm [Pantel and Lin, 2002] also uses
syntactic contexts. For each target word, a set of similar words is computed
as above. To calculate the similarity, again, each word is represented as a
feature vector, where each feature is the expression of a syntactic context in
which the word occurs. Given a set of target words (e.g. all those occurring
in a corpus), a similarity matrix S is built such that Sij contains the pairwise
similarity between words wi and wj. As a second step, given a set of words
E, a recursive procedure is applied to determine sets of clusters, called com-
mittees, of the words in E. To this end, a standard clustering technique, i.e.
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average-link clustering, is employed. In each step, residue words not covered
by any committee (i.e. not similar enough to the centroid of each commit-
tee) are identified. Recursive attempts are made to discover more committees
from residue words. Note that, as above, committees conflate senses as each
word belongs to a single committee. Finally, as a sense discrimination step,
each target word w ∈ E, again represented as a feature vector, is iteratively
assigned to its most similar cluster based on its similarity to the centroid of
each committee. After a word w is assigned to a committee c, the intersecting
features between w and elements in c are removed from the representation of
w, so as to allow for the identification of less frequent senses of the same word
at a later iteration.

The authors described the ASIUM system in [Faure and Nédellec, 1998], which
learns subcategorization frames of verbs and ontologies from syntactic parsing
of technical texts. The selection restrictions in the subcategorization frames
are filled by the ontology concepts. ASIUM takes syntactic parsing of texts,
which are subcategorization examples and basic clusters formed by head words
that occur with the same verb after the same preposition (or with the same
syntactical role). ASIUM successively aggregates the clusters to form new
concepts in the form of a generality graph that represents the ontology of the
domain. The ASIUM method is based on conceptual clustering.

Some recent studies take advantage of syntactic relations between words [Chen
et al., 2009, Van de Cruys and Apidianaki, 2011] to conduct context model-
ing. In [Van de Cruys and Apidianaki, 2011], the authors combine two kinds
of approaches: Context and Word clustering. The induction is based on words
and contexts are mapped to a limited number of topical dimensions in a la-
tent semantic word space. The key idea is that the model combines tight,
synonym-like similarity (based on dependency relations) with broad, topical
similarity (based on a large “bag of words” context window).

Another work [Pinto et al., 2007] uses a an information theory based co-
occurrence measure, named pointwise Mutual Information (MI), which is fully
discussed in [Manning and Schütze, 1999], and its applications for finding
collocations are analyzed by determining the co-occurrence degree among two
terms. This may be done by calculating the ratio between the number of times
that both terms appear together (in the same context and not necessarily in
the same order) and the product of the number of times that each term occurs
alone. The objective is to construct a co-occurrence list for performing self-
term expansion in order to improve the usability of limited, narrow-domain
corpora. The self term expansion method consists of replacing terms of a doc-
ument by a set of correlated terms. The goal is to improve natural language
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processing tasks such as clustering narrow-domain short texts.

In [Niu et al., 2007], the authors used three types of features to capture con-
textual information: part-of-speech of neighboring words (no more than three
word distance) with position information, unordered single words in a topical
context (all the contextual sentences), and local collocations (including 11 col-
locations). The feature set used in this work was the feature set used in [Lee
and Ng, 2002], except that they did not use syntactic relations.

• Co-occurrence Graphs: These techniques assume that the semantics of a
word can be reached by building and analyzing a word co-occurrence graph.
This allows identification of the set of senses using graph-based clustering
[Navigli and Crisafulli, 2010]. These techniques are related to word clustering
methods, where co-occurrences between words can be obtained on the basis of
grammatical or collocation relations.

For this, a graph is built, G = (V,E) whose vertices V correspond to words
in a text and edges E connect pairs of words which co-occur in a syntactic
relation, in the same paragraph, or in a larger context. The construction of a
co-occurrence graph based on grammatical relations between words in context
was described in [Widdows and Dorow, 2002]. Given a target ambiguous word
w, a local graph Gw is built around w. By normalizing the adjacency ma-
trix associated with Gw, we can interpret the graph as a Markov chain. The
Markov clustering algorithm [Van Dongen, 2001] is then applied to determine
word senses, based on an expansion and an inflation step, aiming, respectively,
at inspecting new more distant neighbors and supporting more popular nodes.

Another work [Véronis, 2004] proposed an ad hoc approach called HyperLex.
First, a co-occurrence graph is built such that nodes are words occurring in the
paragraphs of a text corpus in which a target word occurs, and an edge between
a pair of words is added to the graph if they co-occur in the same paragraph.
Each edge is assigned a weight according to the relative co-occurrence fre-
quency of the two words connected by the edge. As a second step, an iterative
algorithm is applied to the co-occurrence graph: At each iteration, the node
with the highest relative degree in the graph is selected as a hub (based on the
experimental finding that a node’s degree and its frequency in the original text
are highly correlated). As a result, all its neighbors are no longer eligible as
hub candidates. The algorithm stops when the relative frequency of the word
corresponding to the selected hub is below a fixed threshold. The entire set
of hubs selected is said to represent the senses of the word of interest. Hubs
are then linked to the target word with zero-weight edges and the minimum
spanning tree (MST) of the entire graph is calculated. Finally, MST is used
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to disambiguate specific instances of our target word.

“PageRank”is an alternative graph-based algorithm for inducing word senses
[Brin and Page, 1998]. PageRank is a well-known algorithm developed for com-
puting the ranking of web pages, and is the main component of the Google
search engine. It has been employed in several research areas for determining
the importance of entities whose relations can be represented in terms of a
graph. Further experiments on HyperLex and PageRank have been performed
in [Agirre and Edmonds, 2007], who tuned a number of parameters of the for-
mer algorithm, such as the number of adjacent vertices in a hub, the minimum
frequencies of edges, vertices, hubs, etc.

In [Dorow and Widdows, 2003], they extracted only noun neighbors that ap-
peared in conjunctions or disjunctions with the target word. Additionally,
they extracted second-order co-occurrences. Nouns are represented as vertices,
while edges between vertices are drawn, if their associated nouns co-occur in
conjunctions or disjunctions more than a given number of times. This co-
occurrence frequency is also used to weight the edges. The resulting graph
is then pruned by removing the target word and vertices with a low degree.
Finally, the MCL algorithm [Dongen, 2000] is used to cluster the graph and
produce a set of clusters (senses), each one consisting of a set of contextually
related words.

Another work using a graph model [Agirre and Soroa, 2007b] proposed a sys-
tem for performing two-stage graph based clustering where a co-occurrence
graph is first clustered to compute similarities against contexts. The context
similarity matrix is pruned and the resulting associated graph is clustered
again using a random walk type algorithm.

An alternative method [Klapaftis and Manandhar, 2008] creates a graph,
where each vertex corresponds to a collocation that co-occurs with the tar-
get word, and edges between vertices are weighted based on the co-occurrence
frequency of their associated collocations. A smoothing technique is applied to
identify more edges between vertices and the resulting graph is then clustered.

In [Korkontzelos and Manandhar, 2010], the authors presented a graph-based
approach for word sense induction and disambiguation. This approach repre-
sented an unambiguous unit as a graph vertex: (a) a single word, if it is con-
sidered unambiguous, or (b) a pair of words, otherwise. The co-occurrences
of the content of the vertices that they join were modeled by graph edges.
Then hard-clustering on the graph was done. To disambiguate a test instance,
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the authors assigned it to the induced sense whose vertex contents occurred
mostly in the instance.

A hierarchical structure (binary tree) of a graph was inferred [Klapaftis and
Manandhar, 2010], in which vertices were contexts of a polysemous word and
edges represented the similarity between contexts. The method they used to
infer that hierarchical structure is the Hierarchical Random Graphs (HRGs)
algorithm [Clauset et al., 2007].

These studies of WSI are required for Information Retrieval (IE) as well [Nav-
igli and Crisafulli, 2010, Di Marco and Navigli, 2011, Di Marco and Navigli,
2013, Lau et al., 2013]. In [Di Marco and Navigli, 2011], the authors presented
an approach to Web search result clustering based on the automatic discovery
of word senses. First, the senses are acquired from a query by means of a
graph-based clustering algorithm that exploits cycles (triangles and squares)
in the co-occurrence graph of the query. Then they clustered the search results
based on their semantic similarity to the induced word senses.

In such approaches, few works related to the biomedical domain have been
proposed. For instance, in [Noh et al., 2010] a network representation of
co-occurrence data is first defined to represent both word senses and word
contexts. The representation expresses the textual context observed around
a certain term as a network, where nodes are terms and edges are the num-
ber of co-occurrences between connected terms. A graph kernel is adopted
as a similarity measure between terms and senses represented in networks.
Candidate senses and ambiguous contexts are then compared directly in the
representation space to resolve the word sense. They conducted experiments
in the biomedical domain and found, according to the recall results, that the
method outperformed a baseline vector representation method. No precision,
accuracy, and F-measures were computed.

An additional related work in the biomedical domain [Duan et al., 2009]
presents a an efficient graph-based algorithm to cluster words into groups.
That algorithm follows the principle of finding a maximum margin between
clusters, determining data splits that maximize the minimum distance between
pairs of data points belonging to two different clusters.

• Probabilistic Clustering: Another option is to adopt some probabilistic
approaches. Advanced Bayesian methods have been explored in recent years,
the main reason is that the methods can discover latent topic structures from
contexts without involving feature engineering. First, a distribution of senses
is drawn for each ambiguous word. Then, context words are generated ac-
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cording to this distribution. Different senses can thus be obtained which have
different word distributions. Hence, in this kind of approach, the contexts
of ambiguous instances are regarded as pseudo documents and their induced
topic distributions are considered as sense distributions.

A Bayesian framework [Brody and Lapata, 2009] that uses parametric LDA
[Blei et al., 2003], and formalize WSI in a generative model. They proposed a
topic model that uses a weighted combination of separate LDA models based
on different feature sets (e.g. word tokens, parts of speech, and dependency
relations). They only used smaller units of text surrounding the ambiguous
word, while discarding the global context of each instance.

In [Yao and Van Durme, 2011], the authors proposed a model based on a
hierarchical Dirichlet process (HDP) [Teh et al., 2006] to learn the sense dis-
tributions. The advantage of this method is that it can automatically learn
the number of word senses for each ambiguous word, as compared to LDA
which needs to be pre-assigned a topic number in advance. Experimental re-
sults have shown that the HDP model is superior to the standard LDA model.
[Lau et al., 2012] also showed improvements in supervised F-scores after in-
corporating position features in the HDP model. [Choe and Charniak, 2013]
extended the naive Bayes model based on the idea that the closer a word is to
the target word, the more relevant this word will be in WSI.

As we can see, LDA has been used for WSI tasks in recent years. [Tang et al.,
2014] propose a joint model to automatically induce document topics and word
senses simultaneously. Instead of using some predefined word sense resources,
the word sense information is captured via a latent variable and directly in-
duced in a fully unsupervised manner from the corpora.

Recently, [Wang et al., 2015b] presented a sense-topic model also based on
LDA, which treats sense and topic as two separate latent variables to be in-
ferred jointly. Topics are informed by the entire document, while senses are
informed by the local context surrounding the ambiguous word.

In the biomedical domain, a comparison between graph-based approaches and
topic model approaches was carried out [Chasin et al., 2014]. The objective
of this work was to evaluate the state-of-the-art of approaches for the clinical
domain. In particular, to compare graph-based approaches relying on a clini-
cal knowledge base with bottom-up topic-modeling-based approaches such as
LDA. Topic-modeling methods achieved better accuracy on a subset of Mayo
Clinic data than graph-based methods and than the most-frequent-sense base-
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line. For word sense disambiguation, there are also several approaches that
use probabilistic methods, and topic models [Cai et al., 2007, Boyd-Graber
and Blei, 2007, Boyd-Graber et al., 2007, Agirre et al., 2014]. Other hybrid
approaches [Huang et al., 2015] construct multi-granularity semantic spaces
to learn representations of ambiguous instances, in order to capture richer
semantic knowledge during context modeling. In particular, the authors con-
sider the semantic space of words,the semantic space of word clusters, as well
as topics. To circumvent the difficulty of selecting the number of word senses,
they adapted a rival penalized competitive learning method to determine the
number of word senses automatically via gradually repelling the redundant
sense clusters.

As previously mentioned, there are few studies related to biomedical WSI in com-
parison to the number of studies in biomedical WSD. An overview of studies related
to WSD are proposed in section 10.2.2.

In WSI as in the WSD (see section 10.2.2), the major studies characterize the dataset
with a word vector (bag-of-words) or word graph. A related field of computational
intelligence is meta-learning, where classifications are done using several dataset
characterization strategies. This field has shown very good classification results. An
overview of types of dataset characterization are described in section 10.3.

We also mentioned that a small number of these approaches seek to automatically
detect the number of senses for a target word. That is a major issue, which has a
performance effect on the results of unsupervised algorithms. To detect the number
of senses, several indices have been proposed, which compute the quality, and they
opt for the best solution based to this quality evaluation. An overview of studies
related to the determination of number of clusters are proposed in section 10.2.3.

10.2.2 Word Sense Disambiguation

One domain related to WSI is WSD, which has aims at determining what sense of
a word (i.e. meaning) is used in a sentence, when the word has multiple senses.
For this task, the words are already known and they are also indexed in an ontol-
ogy/terminology. WSD is generally considered to be the first brick on the road to
automated text understanding, as well as for information retrieval. Since our work is
not based on WSD, hereafter we briefly describe some approaches, especially those
related to biomedicine. There are three main approaches to WSD [Navigli, 2009]:

• Supervised Approaches: These approaches use supervised classification al-
gorithms to learn a classifier for a target word from an annotated training
dataset. The training dataset is a set of examples represented as vectors of



106 CHAPTER 10. STATE-OF-THE-ART

features. In this vector there is a special element representing the appro-
priate sense (or class). In this kind of approach, the best have proved to
be Super Vector Machines (SVM) and memory-based learning [Hoste et al.,
2002, Decadt et al., 2004, Mihalcea and Faruque, 2004, Grozea, 2004, Chan
et al., 2007, Zhong and Ng, 2010].

• Knowledge-based Approaches: These approaches aim at inferring the
sense of a word in a context primarily using dictionaries, thesauri, glossaries,
ontologies, and lexical knowledge bases, without using any corpus evidence.
They have the advantage of a wider coverage, thanks to the use of large
amounts of structured knowledge. Generally resources, such as WordNet, Ba-
belNet and UMLS are used in this kind of approach in order to benefit from
the graph structure to assign the correct sense of a word, for instance, De-
gree [Navigli and Lapata, 2010, Ponzetto and Navigli, 2010] or Personalized
PageRank [Agirre and Soroa, 2009]. Other [Agirre et al., 2014].

• Unsupervised Approaches: These methods work directly with raw unan-
notated datasets to discover senses automatically. These methods are also
called Word Sense Induction (see Section 10.2.1).

In biomedical contexts, knowledge-based approaches are generally proposed, with
the most well-known resource used being UMLS2 (Unified Medical Language Sys-
tem) [Bodenreider, 2004]. That is a large multi-purpose and multi-lingual thesaurus
that contains millions of biomedical and health related concepts, their synonymous
names, and their relationships. The Metathesaurus includes over 150 electronic
versions of classifications, code sets, thesauri, and lists of controlled terms in the
biomedical domain. Their uses include: patient care, health services billing; public
health statistics; indexing and cataloging of biomedical literature; basic, clinical, and
health services research. The major studies in this area rely on UMLS, for instance,
[McInnes, 2008, Stevenson et al., 2008, McInnes and Pedersen, 2013, an tSaoir,
2014, McInnes and Stevenson, 2014].

In this context, there are fewer examples of unsupervised than supervised (includ-
ing knowledge-based) approaches. Most unsupervised approaches use UMLS to
some extent [Jimeno Yepes and Aronson, 2012] and Information Content Similarity
[McInnes et al., 2011]. In [Schuemie et al., 2005], the authors believe that combining
unsupervised learning and established knowledge is most effective.

The commonly cited example of a supervised approach that consistently outper-
forms known unsupervised approaches is Naive Bayes [Jimeno Yepes and Aronson,
2012, McInnes et al., 2011]. Several recent approaches to biomedical WSD use
structured knowledge in the form of a graph. Examples range from the use of co-
occurrence data from a domain-specific corpus [Agirre et al., 2006], to variations

2http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html

http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
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of PageRank [Agirre et al., 2010], to the graph representation of an ontology, or
portion of an ontology [El-Rab et al., 2013].

WSD studies in the clinical context is growing, and is also based on UMLS, for
instance [Savova et al., 2008, Moon et al., 2015].

10.2.3 Sense Number Prediction

In WSI, the sense number (cluster number) of ambiguous words cannot be appropri-
ately determined. Specifically, in cluster analysis a major problem is to determine
the best number of clusters, which has a performance effect on the clustering results.

In many practical WSI applications, it becomes impossible to know the exact cluster
number in advance, so these clustering algorithms often result in poor performance
[Dehkordi et al., 2009]. More recently, the non-parametric Bayesian method [Lau
et al., 2012] uses Hierarchical Dirichlet Processes (HDP) [Teh et al., 2006] to learn
the number of word senses automatically. Moreover, in [Klapaftis and Manandhar,
2010], the authors use HDP and one of their objectives is to predict the number of
senses of a target word.

Another related work [Niu et al., 2007], applies a cluster validation method to es-
timate the number of senses of a target word in untagged data, and then grouped
the instances of this target word into the estimated number of clusters. Specifically,
this approach presents an index to predict the sense number of a word. They set
kmin = 2, and kmax = 5 in their system.

However, all these approaches tend to induce larger numbers of word sense compar-
ing to the gold standard per ambiguous word on SEMEVAL-2010 WSI dataset [Lau
et al., 2012]. Hence, exploring a word sense clustering algorithm to learn appropriate
sense numbers for ambiguous words is also crucial for WSI tasks.

In general, many popular clustering methods, such as the k-means algorithm, require
the cluster number to be precisely predefined. A limitation in current applications
is that there is no convincing acceptable solution to the best number of clusters
problem [Mirkin, 2011]. That is due to the high complexity of real datasets.

Many strategies for estimating the optimal number of clusters have been proposed. A
very extensive comparative evaluation was conducted [Milligan and Cooper, 1985],
where they compared 30 proposed methods to estimate the true number of clus-
ters when applying hierarchical clustering algorithms to simulated data with well-
separated clusters. From this work, in [Anderson, 2001], it has been proved that
Calinski and Harabasz’s index is the most effective. This is followed by Duda and
Hart’s method [Javed et al., 2008], and the C -index. Although many algorithms



108 CHAPTER 10. STATE-OF-THE-ART

have been suggested to solve this problem, there does not appear to be one most
reliable method. In addition, several are unknown, consequently never used.

Algorithms to determine the cluster number can be categorized according to the
data set type application, as: (i) Algorithms for numerical datasets, (ii) Algorithms
for categorical datasets, and (iii) Algorithms for mixed datasets [Liang et al., 2012].
They can also be categorized in two categories [Gordon, 1999]: (i) Global methods,
and (ii) Local methods. With global methods, the quality of clustering, given a
specific number of clusters, is measured by a criterion, and the optimal estimate is
obtained by comparing the values of the criterion. Local methods are intended to
test the hypothesis that a pair of clusters should be amalgamated. They are only
suitable for assessing hierarchically-nested partitions.

A method [Kolesnikov et al., 2015] has recently been proposed for determining the
optimal number of clusters in a dataset. The method is based on parametric mod-
eling of the quantification error. The model parameter is treated as the effective
dimensionality of the dataset. This method was applied for numerical datasets and
was tested with artificial and real numerical datasets.

Another study [Yu et al., 2014] proposes an automatic method by extending the
decision-theoretic rough set model to clustering. They also propose a new clustering
validity evaluation function based on the risk calculated by loss functions and pos-
sibilities. Then a hierarchical clustering algorithm is proposed, named ACA-DTRS,
which stops automatically when the function is optimized for predicting the number
of clusters.

In [Liang et al., 2012], to tackle the problem of cluster number prediction, the
authors propose a generalized mechanism by integrating Renyi entropy and com-
plement entropy. The mechanism characterizes within-cluster entropy and between-
cluster entropy to identify the worst cluster in a mixed dataset. An index is also
defined to evaluate the clustering results for mixed data.

MCS (maximum clustering similarity) [Albatineh and Niewiadomska-Bugaj, 2011]
was proposed to solve this problem by studying the behavior of similarity indices
comparing two (of several) clustering methods. The similarity between the two clus-
tering methods is calculated with the same number of clusters. Finally, the number
of clusters at which the index attains its maximum is a candidate for the optimal
number of clusters.
Two methods [Yan, 2005] for estimating the number of clusters are proposed. The
first one uses the weighted within-clusters sum of errors, i.e. a robust measure of
the within-cluster homogeneity. The second one is a “multi-layer” analytic approach,
which is particularly useful in detecting the nested cluster structure of data. The
methods are applicable when the input data contain only continuous measurements
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and are partitioned based on any clustering method. Both are based on the GAP
method.

Currently, there is a package in R named NbClust which was developed for that
purpose. It provides 30 indices which determine the number of clusters in a dataset
and it also offers clustering schemes from different results to the user. In this package,
there are also several indices described in [Milligan and Cooper, 1985], with the
following being the most well-known for clustering evaluation:

• CH [Caliński and Harabasz, 1974]
• CCC [Sarle, 1983]
• Pseudot2 [Duda et al., 1973]
• KL [Krzanowski and Lai, 1988]
• Gamma [Baker and Hubert, 1975]
• Gap [Tibshirani et al., 2001]
• Silhouette [Rousseeuw, 1987]
• Hartigan [Hartigan, 1975]
• Cindex [Hubert and Levin, 1976]
• DB [Davies and Bouldin, 1979]
• Ratkowsky [Ratkowsky and Lance, 1978]
• Scott [Scott and Symons, 1971]
• Marriot [Marriott, 1971]
• Ball [Ball and Hall, 1965]
• Trcovw [Milligan and Cooper, 1985]
• Tracew [Milligan and Cooper, 1985]
• Friedman [Friedman and Rubin, 1967]
• Rubin [Friedman and Rubin, 1967]
• Dunn [Dunn, 1974]

As previously mentioned, in general for polysemy detection problems, WSI, WSD,
cluster number prediction, the major works tend to use words to characterize datasets.
So, taking as base words, they are grouped in a vector, or the well-known “bag-of-
words”. They are also used to build graphs of words. Then supervised and unsu-
pervised algorithms are applied for performing clustering and classification tasks.
As we mentioned, meta-learning is a related computational intelligence field, which
conducts classification using several dataset characterization strategies and gives
very good classification results. We propose an overview of these types of dataset
characterization in section 10.3, with the aim of using these types for performing
the task of polysemy detection, WSI, and cluster number prediction.
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10.3 Meta-learning

Meta-learning was originally described by [Maudsley, 1979] as “the process by which
learners become aware of and are increasingly in control of habits of perception,
inquiry, learning, and growth that they have internalized”.

In classification, various approaches are available to solve algorithm selection prob-
lems and a lot of research carried out in that direction. In [Bhatt et al., 2012], meta-
learning is defined as a hot topic in machine learning research, which has emerged
from the need to improve the generalization ability and stability of learned models
and support data mining automation in issues related to algorithm and parameter
selection. It is the process of generating knowledge that relates the performance of
machine learning algorithms to the characteristics of the problem (i.e. character-
istics of its datasets). Therefore, meta-learning is the study of principled methods
that exploit meta-data to obtain efficient models and solutions by adapting machine
learning and data mining processes [Bhatt et al., 2013].

Meta-learning has many aspects, but its final goal is to automatically discover many
interesting models for given data [Duch et al., 2011].
In [Peng et al., 2002], the authors mention two basic tasks in meta-learning: the
description of learning tasks (datasets), and the correlation between the task descrip-
tion and the optimal learning algorithm. The first task is to characterize datasets
with meta-features, which constitutes the meta-data for meta-learning. The second
is learning at the meta-level, which develops meta-knowledge for selecting appropri-
ate algorithms in classification.

The meta-learner is a learning system that receives a set of such meta-examples as
input and then acquires knowledge used to predict the algorithm’s performance for
new problems being solved. The meta-features are, in general, statistics describing
the training dataset of the problem, such as the number of training examples, num-
ber of attributes, correlation between attributes, class entropy, etc. [Lemke et al.,
2013].

As in any learning task, the characterization of instances (meta-features) plays a
crucial role in enabling learning. In particular, the meta-features used must have
some predictive power. To date, authors have categorized meta-features in several
categories. Major studies divide these meta-features in three categories, for instance
[Giraud-Carrier, 2008, Bhatt et al., 2012]:

• Direct meta-features: In general simple, statistical and information-theoretic
meta-features. The simplest and most widely used functions. The objective is
to extract a number of statistical and information-theoretic measures. Typical
measures include the number of features, number of classes, ratio of examples
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to features, degree of correlation between features and the target concept, av-
erage class entropy, class-conditional entropy, skewness, kurtosis, and signal
to noise ratio. The idea here is that learning algorithms are sensitive to the
underlying structure of the data on which they operate, so it may be hoped
that it could be possible to map structures to algorithms. Several experi-
ments suggest that the size of the training set and the size of the input space
play a crucial role in determining the difference between algorithms. Since,
in practice, these are usually different, one may expect to capture sufficient
information from these and other measures to discriminate among learners.
Empirical results do seem to confirm this intuition.

• Model-based meta-features: A different form to exploit properties accord-
ing to an induced model. This approach has some advantages:
(i) The dataset is summarized in a data structure that can embed the com-
plexity and performance of the induced hypothesis, and thus is not limited to
the example distribution.
(ii) The resulting representation can serve as a basis to explain the reasons
behind the performance of the learning algorithm. Currently, only decision
trees have been considered, and they consist of some extracted properties, such
as nodes per meta-feature, maximum tree depth, shape, and tree imbalance.

• Landmarking meta-features: Another source of characterization falls un-
der the landmarking concept. Each learner has a class of tasks on which it
performs particularly well, under a reasonable measure of performance. We
call this class the area of expertise of a learner. The basic idea of the land-
marking approach is that the performance of a learner on a task uncovers
information about the nature of the task. Hence, a task can be described by
the collection of areas of expertise to which it belongs. We call a landmark
learner, or simply a landmarker, a learning mechanism whose performance is
used to describe a task. Landmarking is the use of these learners to locate the
task in the expertise space, the space of all areas of expertise. Landmarking
thus views meta-learning as intending to find locations of tasks in the expertise
space. While other approaches rely on peripheral information (e.g. statistical
characteristics, model-based properties, etc.), landmarking uses an expertise
map as its main source of information.

As previously mentioned, the most frequent measures to characterize datasets, are
frequency, mean, standard deviation, etc. For instance, new measures are presented
in [Peng et al., 2002] based on an induced decision tree to characterize datasets
in order to select appropriate learning algorithms. The main idea is to capture the
dataset characteristics from the structural shape and size of the decision tree induced
from the dataset. The authors extracted 15 meta-features of three types: general
meta-features, statistical meta-features, information-theoretic meta-features.
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Additional meta-features have been proposed, as transformations of existing ones
[Castiello et al., 2005], and some guidelines have been set to select the most infor-
mative ones. In their work, 9 new meta-features have been proposed of the three
types above mentioned.

Other statistic meta-features have been presented in [Reif et al., 2012b], where the
authors present a novel approach for constructing more informative meta-features
using a two-stage method based on traditional meta-features. The proposed meta-
features are able to describe differences over datasets that are not accessible using
the standard meta-measures method. Moreover, they added an additional meta-
feature selection method in order to automatically select the most useful measures.
A similar work [Reif et al., 2012a] presented a new function, which is a novel data
generator for creating datasets with specific characteristics that can be used for the
development and evaluation of meta-learning systems.

As we saw, induced decision trees are generally used to extract meta-features, but
there is no meta-feature extraction approach based on graph-based models. The
properties of graphs make them a very useful structure. In addition, graphs have
been shown to achieve state-of-the-art performances in standard evaluation tasks.
That will be detailed in the next section.

In [Brazdil et al., 2008], the authors consider the number of classes as meta-features,
the ratio of examples to meta-features, the degree of correlation between meta-
features and target concept and average class entropy. In comparison with other
areas, meta-features can look completely different, as for example summarized in
[Lemke et al., 2009] for time series forecasting, where meta-features can include, for
example, length, seasonality, autocorrelation, standard deviation and trends of the
series.

Other measures are proposed [Vilalta and Drissi, 2009], they include class variation
from the dataset, probability of variation, distance measure, cohesiveness, and den-
sity of the example distribution in the training set. In a similar approach, [Köpf
and Iglezakis, 2002] suggests comparing observations with each other and extracts
case base properties, which assess the dataset quality using measures such as re-
dundancy, for example induced by data records that are exactly the same, or inco-
herency, which, for example occurs if data records have the same meta-features but
different class labels.

Several meta-features can be extracted by using a model that is fast to build and
train to take advantage of its properties. In this spirit, [Bensusan et al., 2000] sug-
gests building a decision tree for a classification problem and using properties of the
tree such as nodes per meta-feature, tree depth or shape to characterize it. Another
approach wherby the landmarking type is extracted as meta-feature as proposed in
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[Pfahringer et al., 2000], using the performance of simple algorithms to describe a
problem and correlating this information with the performance of more advanced
learning algorithms. A list of landmarking algorithms can be found in [Vanschoren,
2010]. An empirical evaluation of different categories of meta-features can be found
in [Reif et al., 2014], where the authors distinguish 5 such categories of meta-features,
i.e. simple, statistical, information-theoretic, landmarking and model-based, which
corresponds to the general categorization evident from the literature.

10.4 Semantic Linkage

The aim of Semantic Linkage is to find a semantic relation between two entities.
This belongs to the Relation Extraction (RE) domain. RE is one of the most im-
portant topics in NLP. RE is the task of determining semantic relations between
entities mentioned in a text. RE is an essential part of information extraction
and is useful for question answering [Ravichandran and Hovy, 2002], textual en-
tailment [Marelli et al., 2014] and many other applications. Many applications in
information extraction, natural language understanding and information retrieval
require an understanding of the semantic relations between entities. Several rela-
tion extraction approaches in different domains have been proposed.

Relations are extracted after the new candidate terms have been found. Several
approaches use identified terms to locate relations between them. These approaches
have been categorized in several different categories, where one division could be
[Bach and Badaskar, 2007]: (i) unsupervised relation discovery, and (ii) supervised
classification.

In unsupervised paradigms, contextual features are used, this is also called semantic
linkage. Distributional hypothesis theory [Harris, 1954] indicates that words that
occur in the same context tend to have similar meanings. Accordingly, it is assumed
that pairs of terms that occur in similar contexts tend to have similar relations.

In [Hasegawa et al., 2004], the authors adopted a hierarchical clustering method to
cluster the contexts of terms and simply select the most frequent words in the con-
texts to represent the relation between the terms. This study involves context based
clustering of pairs of entities. The assumption is that pairs of entities occurring in
similar context can be clustered and that each pair in a cluster is an instance of
the same relation. In cases where contexts linking a pair of entities express multiple
relations, the pair of entities either would not be clustered at all, or would be placed
in a cluster corresponding to its most frequently expressed relation.

Another work [Chen et al., 2005] proposed a novel unsupervised method based on
model order selection and discriminative label identification to address this problem.
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In recent works, the main idea is that the relation extractor simultaneously discovers
facts expressed in natural language, and the ontology into which they are assigned
[Banko and Etzioni, 2008, Lin and Pantel, 2001, Bollegala et al., 2010, Yao et al.,
2011].

In the supervised paradigm, relation classification is considered a multi-classification
problem, and researchers concentrate on extracting more complex features. Gener-
ally, these methods can be categorized into two types: feature-based and kernel-
based. In feature-based methods, a diverse set of strategies have been exploited to
convert the classification clues (such as sequences and parse trees) into feature vec-
tors [Kambhatla, 2004, Suchanek et al., 2006]. Feature-based methods are hampered
by the problem of selecting a suitable feature set when converting the structured
representation into feature vectors. Kernel-based methods provide a natural alterna-
tive to exploit rich representations of the input classification clues, such as syntactic
parse trees. Kernel-based methods allow the use of a large set of features without
explicitly extracting the features. Various kernels, such as the convolution tree ker-
nel [Qian et al., 2008], sub-sequence kernel and dependency tree kernel [Bunescu
and Mooney, 2005], have been proposed to solve the relation classification problem.
However, the methods mentioned above suffer from a lack of sufficient labeled data
for training.

In the biomedical domain, there are several approaches available to extract relations,
by matching linguistic patterns including those first described in [Liu et al., 2011]
and those used in [Charlet et al., 2006, Baneyx et al., 2007]. These patterns include
the relations “is a” for hierarchy and “also known as” for synonymy [Liu et al., 2011].
Other methods include hierarchical clustering [Kuo et al., 2007] rules to extract syn-
onyms as well [Henriksson et al., 2014, Wang et al., 2015a].

In [Abacha and Zweigenbaum, 2011], the authors presented MeTAE (Medical Text
Annotation and Exploration). MeTAE is used to extract and annotate medical en-
tities and relationships from medical texts and to semantically explore the produced
RDF annotations.
A recent work [Doing-Harris et al., 2015] presents a system to extract concepts and
relationships from clinical and biomedical documents called SEAM. This system
features a natural language processing pipeline for information extraction. Syn-
onym and hierarchical groups are identified using corpus-based semantics and lexico-
syntactic patterns.

A very closely related task is automatic thesaurus building from a corpus, i.e. a
so-called distributional thesaurus. Given an input word, the thesaurus semanti-
cally identifies similar words based on the assumption that they share a distribution
similar to that of the input word. It is usually ordered in descending values of simi-
larity to the input word. Distributional thesauri are useful for several tasks, such as
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the extraction of relationships [Min et al., 2012] and syntactic analysis [Anguiano,
2013]. Generally this construction is based on distributional similarity, which has
been widely discussed for several years, as in [Sparck Jones, 1986, Grefenstette,
1994, Lin, 1998b, Curran and Moens, 2002, Weeds, 2003, Heylen et al., 2008].

Distributional similarity establishes the fact that two words are closely related, i.e.
a semantic relation, if they share similar contexts. These contexts are typically co-
occurrent words in a limited window around the target word, or syntactically related
words [Claveau et al., 2014].

There are two kinds of semantic relations: (i) paradigmatic relations, such as hyper-
onymy or synonymy, and (ii) syntagmatic relations, or so-called collocation relations
[Halliday and Hasan, 1976] in the context of lexical cohesion or “non-classical rela-
tions” by [Morris and Hirst, 2004, Budanitsky and Hirst, 2006a, Adam et al., 2013].
In [Ferret, 2013], the author states that the difference between these two kinds of
relations depends basically on the difference between semantic similarity and se-
mantic relatedness. For instance, the studies carried out in [Budanitsky and Hirst,
2006b, Zesch and Gurevych, 2010]. As mentioned in [Ferret, 2013], in existing stud-
ies it is hard to determine the limit between these two notions of semantic similarity
and semantic relatedness, so they are usually interchanged. Generally, semantic
similarity is considered to be included in semantic relatedness.

One way to improve a distributional thesaurus is focused on the content of distri-
butional contexts of words, for instance the filtering of components [Padró et al.,
2014, Polajnar and Clark, 2014]; the weighting of distributional contexts [Ferret,
2015]; and looking for better algorithmic efficiency [Rychlý and Kilgarriff, 2007].

A quality evaluation of a distributional thesaurus [Adam et al., 2013] can be car-
ried out by: (i) comparing the thesaurus to reference lexicons, also called direct
evaluation, and (ii) in a specific task, which is called indirect evaluation, e.g. re-
placing a word by one of its neighbors so as not to alter the meaning of the sentence.

In a recent study [Claveau and Kijak, 2015], the authors use IR tools and concepts
to build a thesaurus, they directly assess the results with reference lexicons, and
indirectly in an IR task. In this study, only 25 000 nouns are considered, with a
context window of +2-. WordNet and Moby thesauri are used for direct evalua-
tion, and indirect evaluation is conducted through an RI task. The corpus used is
AQUAINT-23. WordNet4 provides 3 neighbors on average for 10 473 nouns found in
AQUAINT-2, and Moby5 provides 50 neighbors on average for 9 216 nouns. Com-
bined, these two ressources cover 12 243 nouns of the corpus with 38 neighbors on

3https://catalog.ldc.upenn.edu/LDC2008T25
4https://wordnet.princeton.edu/
5http://moby-thesaurus.org/

https://catalog.ldc.upenn.edu/LDC2008T25
https://wordnet.princeton.edu/
http://moby-thesaurus.org/
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average.

Recent studies of Ferret range from the creation of distributional thesauri to re-
ranking of distributional thesauri. In [Ferret, 2015], the authors propose a new
criterion for improving distributional thesauri from a bootstrapping perspective. It
is geared towards compound and single-word terms. The authors use AQUAINT-2
as a corpus to create the single-word term thesaurus (A2ST) and the compound
thesaurus (A2ST-comp). The proposed methodologies generally involve a context
window of +3-. This study is a follow-up to the methodologies proposed in [Ferret,
2010, Ferret, 2012, Ferret, 2013].

In the above-mentioned studies, the authors tend to extract paradigmatic relations
such as hyperonymy or synonymy. In many studies it is not clear if just the syn-
onyms are taken into account, or synonyms and hyperonyms. Most methodologies
are based on single words, but none are based on hyponymy, which is very impor-
tant in ontologies. This is where the semantic field of a term is included in another,
i.e. its hyperonym. In the previously mentioned studies, the context of a word is
generally represented by a windows of +2,3- neighbors. All of these approaches rank
similar words without a linked concept.

Our objective is to enrich biomedical ontologies, so in this thesis we focus on the
extraction of paradigmatic relations such as hyperonymy (fathers), synonymy, and
hyponymy (sons). We use conventional semantic similarity approaches in a different
manner, where each term has its own context. For us, single- or mutli-word terms
are possible. Each context is represented by the most important features occurring
in the paragraphs that contain the term, forming a bag-of-words (vector). Then
a measure is applied to compute the similarity between the two vectors. For each
new term, a concept is induced, which is not offered by the distributional thesaurus
methodologies. The corpora used in other works are different from ours, which is
an inconvenience fir comparing our approach.

Another close task is Entity Linking, which seeks to map an entity mention ap-
pearing in a text document to an entity in a knowledge base. Entity linking goes
beyond NER tasks. The challenges [D’Souza and Ng, 2015] in this task are: (i) same
words or phrases can be used to refer to different entities, (ii) same entities can be
referred to by different words or phrases, and (iii) many mentioned entities may not
appear in a knowledge base. In other words, entity linking is challenging due to
name variations and entity ambiguity [Shen et al., 2015]. A named entity may have
multiple surface forms, such as its full name, partial names, aliases, abbreviations,
and alternate spellings.

One open-domain based approach [Rao et al., 2013] involves linking organizations,
geo-political entities, and persons to entities in a Wikipedia-derived knowledge base,
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utilizing heuristics for matching mention strings with candidate concept phrases.

In the biomedical domain, this task is also known as normalization of entities or of
concepts. These tasks are geared towards mapping a word or phrase in a document
to an unique concept in an ontology. The disease normalization task consists of
finding disease mentions and assigning a unique identifier to each. A recent study
[D’Souza and Ng, 2015] presents a multi-pass sieve approach to the under-studied
task of normalizing disorder mentions in the biomedical domain. It takes documents
from two genres, i.e. clinical reports and biomedical abstracts.

In [Ghiasvand and Kate, 2014], the methodology first generates variations in a given
disorder word/phrase based on a set of learned edit distance patterns for converting
one word/phrase into another, and then attempts to normalize these query phrase
variations by performing exact matches with a training disorder mention or a con-
cept term.

In this kind of task, we can cite DNorm6 [Leaman et al., 2013], which is an au-
tomated method for determining which diseases are mentioned in biomedical texts
and this task is called disease normalization. DNorm learning similarities between
mentions and concept names directly from training data. DNorm is the first tech-
nique to use machine learning to normalize disease names and also the first method
that uses pairwise learning to rank in a normalization task. DNorm achieved the
best performance in the 2013 ShARe/CLEF shared task on disease normalization
in clinical notes [Leaman et al., 2011].

MetaMap7 aims to map biomedical texts to the UMLS Metathesaurus or, equiva-
lently, to discover Metathesaurus concepts referred to in texts. Briefly, given a tex-
tual passage, MetaMap identifies candidate UMLS concepts and the corresponding
spans of mentions. MetaMap uses a knowledge-intensive approach based on sym-
bolic, natural-language processing (NLP) and computational-linguistic techniques.
MetaMap is a highly configurable system for biomedical named entity recognition
and UMLS normalization. According to our MetaMap use experience, in all cases
we obtained entities already existing in the UMLS metathesaurus. We did not find
any new entity variants, i.e. not existing in UMLS.

A key difference between entity linking and our methodology is that the terms
already exist for entity linking. In our methodology, we seek to find new terms or
new term forms for an entity. We find the best position in an ontology for these new
terms. Experts must validate if this is a new term and concept, or if it is a synonym
of another already existing term.

6http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/DNorm.html
7https://metamap.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/DNorm.html
https://metamap.nlm.nih.gov/
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10.5 Discussion

We have outlined works related to several domains. These domains are inscribed
in the workflow that we designed for this part of the thesis. Concerning polysemy
detection, few works seek to predict polysemy as true or false. Most studies seek to
identify the senses as well.

Regarding the term sense induction, studies are classified in four categories: (i)
Context clustering, ii) Word clustering, iii) Co-occurrence Graphs, and iv) Proba-
bilistic clustering. Most works are based on the first three categories and for general
domains. This leads to characterization of the dataset using bags-of-words and
graphs of words, i.e. the most commonly used. For this problem, other kinds of
dataset characterization have never been adopted, such as those proposed in the
meta-learning field.

A major problem in term sense induction is the determination of the number of
senses of a word. A second problem is the best choice of a clustering algorithm for
textual datasets.

The few studies solving the determination of the number of senses problem have
given poor results. This task relies on determination of the number of clusters for
the clustering task. Many measures have been proposed to induce the number of
clusters, several proposed measures are not used, because of the dataset type and
because there is not a consensus to determine which ones are the best. The choice
of clustering algorithm becomes easier to solve when the number of senses is a priori
known.

As we mentioned previously, we focus on the extraction of paradigmatic relations
as hyperonymy (fathers), synonymy, and hyponymy (sons). We do not identify the
type of relation. This part is based on conventional approaches of semantic simi-
larity between two biomedical terms. For us, a term can be single- or multi-word
term. Each context is represented by the most important features occurring in the
paragraphs that contain the term, forming a bag-of-words (vector). Then, a measure
is applied to compute the similarity between the two vectors. For each new term, a
concept is induced, which is not offered by the distributional thesaurus methodolo-
gies.

In our context, in order to automatically enrich biomedical ontologies/terminolo-
gies, we tackle all the identified steps without human intervention. In our workflow,
the human operator (i.e. expert) can participate at the end of the entire workflow,
suggesting and validating the options to enrich biomedical ontologies. To sum up,
we take the new candidate terms extracted in the first part of this thesis. We hence
propose a complete automatic workflow to achieve automatic enrichment, which
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has been divided in three steps: (i) Polysemy Detection, (ii) Term Sense Induc-
tion, and (iii) Semantic Linkage. Our approach enables identification of different
places where the new candidate term could be added in an ontology. By using our
approach, we overcome polysemy detection for new terms by using a new type of
dataset characterization involving meta-learning. We also induce the sense of a term
using bag-of-words and graph-based approaches, as well as semantic linkage. This
workflow is applied in particular to the biomedical domain.

At the same time, we deal with special problems such as the prediction of the num-
ber of senses for new candidate terms using the same characterization offered by
meta-learning.

In the following chapter, we describe each step of our workflow to achieve automatic
biomedical ontology enrichment.
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Chapter

11

Methodology

In the first part of this thesis, Automatic Term Extraction, we extracted new biomed-
ical candidate terms as potential candidates for ontology enrichment. In this chapter,
we describe the proposed methodology in order to enrich biomedical ontologies. The
main objective of this second part is to induce concepts and find the correct position
in an already existing biomedical ontology. The meaning or sense of a particular
candidate term is induced according to the context in which those terms appear. A
clustering task is done over the contexts, and the most important features of clus-
ters are used to give a semantic orientation, hereafter called concept or sense. The
semantic orientation helps determine the appropriate position of terms in an ontol-
ogy. Our methodology for enriching biomedical ontologies involves three main steps,
described in Figure 11.1, and in the sections hereafter: (1) Polysemy Detection, (2)
Term Sense Induction, and (3) Semantic Linkage.

Figure 11.1: Workflow for Concept Extraction and Semantic Linkage.

121
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11.1 Polysemy Detection (step 1)

In this section, we present the methodology proposed to determine if a biomedical
term is polysemic. Polysemy is one of the most important issues of recent linguistic
semantics, since the analysis of the polysemy process is essential for accurate reading,
language acquisition, computational linguistics and similar tasks [Crossley et al.,
2010]. In our case, polysemy is important for language acquisition in the biomedical
domain via the enrichment of biomedical ontologies.

Figure 11.2: Solving the Polysemy Detection issue

As we mentioned in the previous chapter, most studies addressing polysemy detec-
tion and those tackling the word sense disambiguation/induction problem generally
use the most well-known representation of the dataset based on bags-of-words or
graphs-of-words. Meta-learning offers another way to characterize the dataset with
the aim of performing a classification process. In this thesis, this characterization
is called meta-features, which allows us to represent different types of datasets, i.e.
to abstract into a single manner several kind of data and to apply many types of
classification algorithms. In our case, these meta-features are used to detect biomed-
ical polysemy via the additional information they can offer, i.e. the meta-data. For
instance, the number of biomedical terms in a dataset can suggest the domain of
the dataset (i.e. biomedicine).

Therefore, we opted to focus on meta-features with the objective of representing
our dataset for the polysemy detection task. First, we present the main meta-
features that serve to characterize the dataset. The dataset is the context of the
new biomedical candidate terms. To create these new meta-features, we apply some
statistical measures and we use UMLS1 and AGROVOC2 dictionaries, which are
respectively a biomedical and an agronomic thesaurus. Our intuition behind the
use of two different and related dictionaries at the same time, is to determine if a
term appears in two different contexts. In this case, we can suppose this term could

1http://www.nlm.nih.gov/research/umls/
2http://aims.fao.org/agrovoc

http://www.nlm.nih.gov/research/umls/
http://aims.fao.org/agrovoc
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be polysemic. Figure 11.3 shows the workflow of our approach, described hereafter.

Figure 11.3: Workflow Methodology for Polysemy Prediction.

11.1.1 Meta-features

As cited in Section 10.3 there are two basic tasks in meta-learning: (i) the dataset
characterization task (datasets), and (ii) the correlation between the dataset char-
acterization and the optimal learning algorithm. The first task is to characterize
datasets with meta-features, and the second is selecting appropriate algorithms for
classification [Peng et al., 2002].

We present new meta-features based on statistical measures to characterize our
biomedical dataset [Lossio-Ventura et al., 2016a]. They are extracted directly from
the data and from a graph induced by these data. We select appropriate learning
algorithms to determine if a term is polysemic. The main idea, as mentioned before,
is to capture the characteristics of datasets from the structural shape and size of the
graph induced from the data. Graphs are usually beneficial because they summarize
and display information in a manner that is easy for most people to comprehend.
Graphs are used in many domains, such as maths, social sciences, etc. Graphs are
also used to concisely and clearly summarize data.
A total of 23 measures are proposed: 11 direct and 12 from the induced graph. Their
effectiveness is illustrated by comparing the results obtained by different machine
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learning algorithms.

Notation: for each term t, there is a set At of titles/abstracts extracted from
Medline, a ∈ At, is a title/abstract associated with single or multiple senses for
polysemic terms.

11.1.1.1 Direct Meta-features

These are extracted directly from the text dataset without any model construction
(i.e. a tree model, a graph). They consist of statistic measures based mainly on
counting some terms from UMLS and AGROVOC, i.e. the two dictionaries used.

1. Number of Words: represented as nWords(t), is the number of words that
contains the term t. For instance nWords(Lung cancer)= 2.

2. Number of UMLS Terms: represented by termsU(t), i.e. the number of
UMLS terms contained in the set of abstracts At.

3. Minimum of UMLS Terms: denoted as minU(t), represents the minimum
number of UMLS terms contained for each a of At.

minU(t) = min(termsU(a1), termsU(a2), ...)

4. Maximum of UMLS Terms: denoted asmaxU(t), represents the maximum
number of UMLS terms contained for each a of At.

maxU(t) = max(termsU(a1), termsU(a2), ...)

5. Mean of UMLS terms: denoted as meanU(t), represents the mean number
of UMLS terms for each a of At.

meanU(t) = 1
n
×
∑n

i=1 termsU(ai)

6. Standard deviation of UMLS Terms: denoted as sdU(t), represents the
standard deviation of the number of UMLS terms contained for each a of A.

sdU(t) = 1
n−1 ×

√∑n
i=1 (termsU(ai)−meanU(t))2

7. Number of AGROVOC Terms: denoted as termsA(t), represents the
number of AGROVOC terms contained in the set of abstracts At of t.

8. Minimum of AGROVOC Terms: denoted as minA(t), is the minimum
number of AGROVOC terms contained in each a of At.

minA(t) = min(termsA(a1), termsA(a2), ...)
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9. Maximum of AGROVOC Terms: denoted as maxA(t), is the maximum
number of AGROVOC terms contained in each a of At.

maxA(t) = min(termsA(a1), termsA(a2), ...)

10. Mean of AGROVOC Terms: denoted as meanA(t), represents the mean
number of AGROVOC terms for each a of At.

meanA(t) = 1
n
×
∑n

i=1 termsA(ai)

11. Standard deviation of AGROVOC Terms: denoted as sdA(t), represents
the standard deviation of the number of AGROVOC terms contained for each
a of A.

sdA(t) = 1
n−1 ×

√∑n
i=1 (termsA(ai)−meanA(t))2

The 11 meta-features defined previously are computed directly from the data. After
that, for each candidate term context, we build a co-occurrence graph of terms.
We thus represent the dataset via a graph, and compute new meta-features from
these induced graphs. The meta-features based on graphs are described in the next
section.

11.1.1.2 Graph-based Meta-features

As previously mentioned, we decided to use graphs to characterize a dataset. In fact,
graphs are useful for summarizing and displaying information that is not highlighted
by a bag-of-words characterization. We thus take advantage of the graph properties,
such as, the neighborhood, the edge weights and size. We decided to represent the
context of each candidate term as a graph. Hence, we built a graph for the context
of each biomedical candidate term, with each graph being independent of the others.

Graph construction: A graph (see Figure 11.4) for each biomedical term is
built (done in a similar way as defined in Section 5.3.1). Vertices denote terms, and
edges denote co-occurrence relations between terms. Co-occurrences between terms
are measured as the weight of the relation in the initial dataset. This relation is
statistic-based by linking all co-occurring terms without considering their meaning
or function in the text.

Each graph is built with the first 1 000 terms extracted with the BioTex application
(see Chapter 8). The graph is undirected as the edges imply that terms simply
co-occur, without any further distinction regarding their role. We take the Dice
coefficient because, as explained in Section 5.3.1, this coefficient less penalizes the
similarity value between two objects. We take this basic measure to compute the
co-occurrence between two terms x and y, defined by the following formula:
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D(x, y) =
2× |x ∩ y|
|x|+ |y|

(11.1)

Where |x| and |y| are the number of abstracts in which we find x and y, respectively,
and |x ∩ y| is the number of abstracts shared by the two terms; D(x, y) is the
similarity quotient that ranges from 0 to 1.

Figure 11.4: Graph created for the t term.

In Figure 5.9, vt represents the vertex with the t term, vi represents a vertex i in
the graph (term), N(vi) the neighborhood of vi, |N(vi)| the number of neighbors of
vi, rj the neighbor j of vi, weight(v, rj) the edge weight between vi and its neighbor
rj, so weight(vi, rj) = D(vi, rj).
Hereafter, we define the new proposed meta-features based on graphs and show how
to compute them.

1. Number of Neighbors: represented as ng, is the number of neighbors of
vertex vt in the induced graph.

ng(vt) = |N(vt)|

2. Sum of Edge Weights: denoted sum, represents the sum of edge weights
specifically for the vertex vt in the graph created for t.

sum(vt) =

ng(vt)∑
j=1

weight(vt, rj)

3. Minimum Number of Neighbors: denoted minNG, represents the mini-
mum number of neighbors of all vi in the graph created for t.

minNG(t) = min(ng(v1), ng(v2), ...)

4. Maximum Number of Neighbors: denoted maxNG, represents the maxi-
mal number of neighbors of all vi in the graph created for t.

maxNG(t) = max(ng(v1), ng(v2), ...)
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5. Mean Number of Neighbors: denoted meanNG, represents the mean num-
ber of neighbors of all vi in the graph created for t.

meanNG(t) =

∑1000
i=1 ng(vi)

1000

6. Standard deviation of the Number of Neighbors: denoted sdNG, repre-
sents the standard deviation of the number of neighbors of all vi in the graph
created for t.

sdNG(t) =

√∑1000
i=1 (ng(vi)−meanNG(t))2

1000−1

7. Min Sum of Edge Weights: denoted minSUM, represents the minimum
sum of edge weights of all vi on the graph created for t.

minSUM(t) = min(sum(v1), sum(v2), ...)

8. Max Sum of Edge Weights: denoted maxSUM, represents the maximum
sum of edge weights of all vi on the graph created for t.

maxSUM(t) = max(sum(v1), sum(v2), ...)

9. Mean Sum of Edge Weights: denoted meanSUM, represents the mean sum
of edge weights of all vi in the graph created for t.

meanSUM(t) =

∑1000
i=1 sum(vi)

1000

10. Standard deviation of the Sum of Edge Weights: denoted sdSUM,
represents the standard deviation of the sum of edge weights of all vi in the
graph created for t.

sdSUM(t) =

√∑1000
i=1 (sum(vi)−meanSUM(t))2

1000−1

11. Number of Neighbors in UMLS: represented as ngUMLS, is the number
of neighbor terms with the vertex vt in the graph and in turn in UMLS.

ngUMLS(vt) = |N(vt)|rj∈UMLS

12. Sum of Edge Weights in UMLS: as sumUMLS, represents the sum of edge
weights for vt with its neighbors that are in UMLS.

sumUMLS(vt) =

ngUMLS(vt)∑
j=1

weight(vt, rj)

To illustrate the new proposed meta-features, we show an example of the entire
process, step by step to compute the direct and graph-based meta-features in the
next section (see Section 11.1.1.3).
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11.1.1.3 Example

As mentioned, we illustrate how to compute measures to characterize a dataset.
Table 11.1 shows a small extract of our dataset, a set of three titles/abstract for the
term yellow fever. The UMLS terms found in that text are in blue and AGROVOC
terms are in red. Table 11.2 presents the values obtained with the direct meta-
features. Note that the term yellow fever exists in both UMLS and AGROVOC.

Figure 11.5 shows a subgraph created with the entire set of titles/abstracts for
the term yellow fever. This subgraph shows the UMLS terms encircled in blue.
Table 11.3 presents the values obtained with the graph-based meta-features.

Id Title/Abstract
a1 “Risks of travel , benefits of a specialist consult. If patients are planning to

travel to developing countries , their primary care physicians can advise them
on various medical risks , especially traveler’s diarrhea , and offer to update their
immunizations . However, travelers to areas where there is a risk of malaria ,
<t> yellow fever </t>, or other tropical diseases should be referred to a spe-
cialist .”

a2 “Herpes zoster after <t> yellow fever </t> vaccination . An immuno-
competent 64-year-old women presented with brachial herpes zoster (HZ)
infection 3 days after vaccination against yellow fever (YF). The lesions
disappeared after antiviral treatment . There are very few reports of a possible
association between YF vaccination and HZ infection . This case highlights
the importance of continuing surveillance of vaccine adverse events .”

a3 “Broadening the horizons for <t> yellow fever </t>: new uses for an old vac-
cine. The vaccine against yellow fever is one of the safest and most effective
ever developed. With an outstanding record in humans , has this live attenuated
vaccine been overlooked as a promising vector for the development of vaccines
against pathogens outside its own genus ? Recent studies, including a report by
Tao et al. on page 201 of this issue, have sparked renewed interest.”

Table 11.1: An Extract of the Titles/Abstracts dataset for the term Yellow Fever

Terms found in UMLS (27): association, development, diarrhea, diseases, fever,
herpes zoster, humans, immunizations, infection, malaria, patients, physicians, pri-
mary care, primary care physicians, report, reports, risk, risks, specialist, surveil-
lance, travel, treatment, vaccination, vaccines, women, yellow fever, zoster.

Terms found in AGROVOC (22): countries, developing countries, development, dis-
eases, events, fever, genus, humans, infection, lesions, malaria, pathogens, patients,
physicians, planning, reports, risk, uses, vaccination, vaccines, women, yellow fever.
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Item Measure Comment
1 nWords(t) = 2 “yellow fever” contains two words.
2 termsU(t) = 27 The total number of distinct UMLS terms found in

the set of title/abstracts
3 minU(t) = 6 The minimum number of distinct UMLS terms

found for each abstract ai of t. That means
min(termsU(a1), termsU(a2), termsU(a3))
= min(13, 11, 6) = 6

4 maxU(t) = 13 The maximum number of distinct UMLS terms
found for each abstract ai of t. That means
max(termsU(a1), termsU(a2), termsU(a3))
= max(13, 11, 6) = 13

5 meanU(t) = 12
∑n

i=1 termsU(ai)

n
=∑3

i=1 termsU(ai)

3
= 13+11+6

3
= 10

6 sdU(t) = 2.55

√∑n
i=1 (termsU(ai)−meanU(t))2

n−1 =

√∑3
i=1 (termsU(ai)−10)2

3−1 =√
(13−10)2+(11−10)2+(6−10)2

2
= 2.55

7 termsA(t) = 22 The total number of distinct AGROVOC terms found
in the set of titles/abstracts

8 minA(t) = 8 The minimum number of distinct AGROVOC
terms found for each abstract ai of t. That
means min(termsA(a1), termsA(a2), termsA(a3)) =
min(10, 8, 8) = 8

9 maxA(t) = 10 The minimum number of distinct AGROVOC
terms found for each abstract ai of t. That
meansmax(termsA(a1), termsA(a2), termsA(a3)) =
max(10, 8, 8) = 10

10 meanA(t) = 8.67
∑n

i=1 termsA(ai)

n
=

∑3
i=1 termsA(ai)

3
= 10+8+8

3
= 8.67

11 sdA(t) = 0.82

√∑n
i=1 (termsA(ai)−meanA(t))2

n−1 =

√∑3
i=1 (termsA(ai)−8.67)2

3−1

=

√
(10−8.67)2+(8−8.67)2+(8−8.67)2

2
= 0.82

Table 11.2: Direct Meta-features for t = Yellow Fever

Figure 11.5: Subgraph created for the term t = Yellow Fever
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Item Measure Comment
1 ng(vt) = 3 the vertex vt “yellow fever” has three neighbors.
2 sum(vt) = 2.2337

∑ng(vt)
j=1 weight(vt, rj) =

∑3
j=1weight(vt, rj) =

weight(yellow fever, vaccine) + weight(yellow fever, fever) +
weight(yellow fever, virus) = 0.5946 + 0.9973 + 0.6418 = 2.2337

3 minNG(t) = 1 The minimum number of neighbors of all vi in the graph created
for t. That means min(ng(vt), ng(v1), ng(v2), ng(v3), ng(v4)) =
min(ng(yellow fever), ng(vaccine), ng(fever), ng(virus),
ng(protein)) =
min(3, 3, 3, 4, 1) = 1

4 maxNG(t) = 4 The maximum number of neighbors of all vi in the graph created
for t. That means max(ng(vt), ng(v1), ng(v2), ng(v3), ng(v4)) =
max(ng(yellow fever), ng(vaccine), ng(fever), ng(virus),
ng(protein)) =
max(3, 3, 3, 4, 1) = 4

5 meanNG(t) = 2.8
∑5

i=1 ng(vi)

5
= // in this case 5 instead of 1000, because the subgraph

contains only 5 vertices.∑5
i=1 ng(vi)

5
= 3+3+3+4+1

5
= 2.8

6 sdNG(t) = 0.55

√∑5
i=1 (ng(vi)−meanNG(t))2

5−1 = // in this case 5 instead of 1000, because
the subgraph contains only 5 vertices.√∑5

i=1 (ng(vi)−2.8)2
5−1 =√

(3−2.8)2+(3−2.8)2+(3−2.8)2+(4−2.8)2+(1−2.8)2
4

= 0.55
7 minSUM(t) = 0.3509 The minimum sum of edge weights of all vi

in the graph created for t. That means
min(sum(vt), sum(v1), sum(v2), sum(v3), sum(v4)) =
min(sum(yellow fever), sum(vaccine), sum(fever), sum(virus),
sum(protein)) =
min(2.2337, 1.739, 2.229, 2.1842, 0.3509) = 0.3509

8 maxSUM(t) = 2.2337 The minimum sum of edge weights of all vi
in the graph created for t. That means
max(sum(vt), sum(v1), sum(v2), sum(v3), sum(v4)) =
max(sum(yellow fever), sum(vaccine), sum(fever), sum(virus),
sum(protein)) =
max(2.2337, 1.739, 2.229, 2.1842, 0.3509) = 2.2337

9 meanSUM(t) = 1.7474
∑5

i=1 sum(vi)

5
= // in this case 5 instead of 1000, because the subgraph

contains only 5 vertices.∑5
i=1 sum(vi)

5
= 2.2337+1.739+2.229+2.1842+0.3509

5
= 1.7474

10 sdSUM(t) = 0.40

√∑5
i=1 (sum(vi)−meanSUM(t))2

5−1 = // in this case 5 instead of 1000, be-
cause the subgraph contains only 5 vertices.√∑5

i=1 (sum(vi)−1.7474)2
5−1 =

= 0.40
11 ngUMLS(vt) = 2 the vertex vt “yellow fever” has two neighbors (fever and virus) that

are in UMLS.
12 sumUMLS(vt) = 1.6391

∑ngUMLS(vt)
j=1 weight(vt, rj) =

∑2
j=1weight(vt, rj) =

weight(weight(yellow fever, fever) + weight(yellow fever, virus) =
0.9973 + 0.6418 = 1.6391

Table 11.3: Graph-based Meta-features for t = Yellow Fever

We have just seen how to compute the new meta-features in Tables 11.2, 11.3. The
next step is to apply some machine learning algorithms to classify the new candidate
terms as polysemic or not. We describe the algorithm used on these meta-features
in the next section (see Section 11.1.2). Experiments are reported in Section 12.1.2.
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11.1.2 Machine Learning Algorithms

We use some well-known supervised algorithms, the input data for these algorithms
is called training data and has a known label or result in our case polysemic/not-
polysemic. A model is prepared through a training process where it is required to
make predictions and is corrected when those predictions are wrong. The training
process continues until the model achieves a desired level of accuracy on the training
data. The algorithms that we use are implemented in Weka3 software with default
values for each algorithm, such as:

• Naive Bayes (NB) [John and Langley, 1995]
• AdaBoost (AB)
• Tree Decision (TD) [Quinlan, 1993]
• Support Vector Machine (SVM) [Platt, 1999]
• Meta Bagging (MB)
• M5P Tree (M5P)
• Multilayer Perceptron (NN)
• MultiClassClassifier Logistic (MCC)

Interested readers may refer to [Hall et al., 2009] for further details on these machine
learning approaches.

To sum up, this section describes the predictive process if a new biomedical candidate
term is polysemic or not. The next step is to induce a possible sense or senses for
these new candidate terms. Note that the workflow to induce possible senses for a
polysemic term differs from the workflow to induce a single sense of a non-polysemic
term. The following section describes the process to induce the sense(s) (see Section
11.2).

11.2 Term Sense Induction (step 2)
The objective of this step is to induce multiple or single sense(s) (concept) of a
polysemic and not polysemic new biomedical candidate term, respectively, in order
to conceptualize them. As we mentioned previously, the concepts or senses are
extracted according the context of the terms. A clustering task is applied on the
context, and the most important features of clusters are used to give a semantic
orientation.
For this, we carry out two tasks. First, (i) Number of senses prediction: This task
is performed only for the candidate terms predicted as polysemic in the previous
section. As these candidate terms have been predicted as polysemic, it is necessary
to determine the exact number of senses these terms may have according to the
corpus context. Then, (ii) Clustering for concept induction: This task carries out

3http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 11.6: Solving the Term Sense Induction.

a clustering algorithm taking the predicted k as input, and then for each cluster it
selects the most important features, which represent the formed concept. Note that
k = 1 when the candidate term is not polysemic. Figure 11.7 shows the workflow of
our approach, described hereafter.

Figure 11.7: Term Sense Induction Workflow.
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11.2.1 Sense Number Prediction

The prediction of the sense number of a term falls directly under clustering-based
issues. In clustering tasks, one of the most difficult problems is to determine the
number of clusters k, which is a basic input parameter for most clustering algorithms.
Many algorithms have been proposed to solve this problem, but mostly for the
general domain. One limitation of these approaches is that they tend to predict a
high k value. In contrast, in the biomedical domain, according to the statistics on
UMLS, polysemic terms tend to be linked to only 2 and 5 senses (2 and 5 clusters).
Therefore, as we aim to identify possible senses for a new biomedical candidate term,
we will limit the number of senses to between 2 and 5.
Table 11.4 shows the statistical details of polysemic terms in UMLS for English,
French, and Spanish. The English version of UMLS contains about 9 919 000 distinct
terms, about 54 257 of which are polysemic. This means that for approximately 200
biomedical terms there is just 1 polysemic term. So these statistics confirm that
in the biomedical domain there are more non-polysemic terms (monosemous) than
polysemic terms for the three languages (English, French, and Spanish). Table 11.5
shows the statistical details of polysemic terms in MeSH. The analysis is similar.

# of Senses English French Spanish
2 54 257 1 292 10 906
3 7 770 36 414
4 1 842 1 56
5+ 1 677 1 18

Table 11.4: Details of Polysemic Terms in UMLS.

# of Senses English French Spanish
2 178 11 0
3 1 0 0
4 0 0 0
5+ 0 0 0

Table 11.5: Details of Polysemic Terms in MeSH.

Three different ways are proposed to determine the number of senses: (i) Executing
clustering algorithms varying k over the bag-of-words representation of the data and
evaluating the quality indexes, (ii) Executing clustering algorithms varying k over
the graph created as defined in Section 11.1.1.2 and evaluating the quality indexes,
and (iii) Using the meta-features proposed in Section 11.1.1 and applying supervised
algorithms for classification.
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For (i) and (ii), we use the CLUTO4 application, which is a software program for
clustering of high-dimensional datasets, from which we select 5 clustering algorithms,
included in partitional, agglomerative, and graph-partitioning types, and we imple-
ment them by varying the number of k clusters from between 2 and 5. We then
evaluate the quality of clustering solutions, to finally take the best k. This process
allows us to determine the best k value. To evaluate the quality of clustering so-
lutions, we propose new indexes computed on the internal and external similarity
of clusters obtained by CLUTO’s clustering algorithm using an objective function.
Objective functions for clustering are introduced below.
Objective function rates the global quality of a clustering [Booth et al., 2008], and
is called a quality measure. We can obtain the optimal clustering by optimizing (i.e.
maximize/minimize) this objective function. Each of the measures have strengths
and weaknesses. Optimizing each of the measures is known to be an NP-hard
problem. Hence, many efficient algorithms that have been claimed to solve the
optimal problem with polynomial-time complexity yield sub-optimal clustering. The
objective functions used with algorithms are as follows:

I1 = maximize
k∑

i=1

1

ni

( ∑
v,u∈Si

sim(v, u)

)

I2 = maximize
k∑

i=1

√∑
v,u∈Si

sim(v, u)

E1 = minimize
k∑

i=1

ni

∑
v∈Si,u∈S sim(v, u)√∑

v,u∈Si
sim(v, u)

H1 = maximize
I1

E1

I2 = maximize
I2

E1

Where k is the number of clusters, S the total number of objects to be clustered,
Si the set of objects assigned to the ith cluster, ni the number of objects in the ith
cluster, v and u represents two objects, and sim(v, u) the similarity between two
objects.
Clustering algorithms generated from the given objective functions are shown, with
a number of examples of widely used approaches discussed in Section 12.

4http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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11.2.1.1 Definition of New Internal indexes

To evaluate the clustering solutions, there are several indexes, which are also called
validity indexes. These indexes are categorized in two classes: external and internal.
External indexes use pre-labelled datasets with “known” cluster configurations and
measure how well clustering techniques perform with respect to these known clus-
ters. Internal indexes are used to evaluate the “goodness” of a cluster configuration
without any prior knowledge of the nature of the clusters.
We use the following measures: (i) the intra-cluser similarity (ISIM ), and (ii) the
inter-cluster similarity (ESIM ), in order to create new indexes [Lossio-Ventura et al.,
2016c].
These new internal indexes are computed from the results obtained by using an
objective function. They focus on choosing the minimum or maximum value of a
criterion. This gives us an idea as to whether the obtained clusters are homogeneous.
New internal indexes are described below:
Notation: | Si | is the number of objects assigned to the ith cluster, OF =
I1, I2, E1, H1, H2 the objective function used by the clustering algorithm.

1. Average ISIM: represented as ak,OF , is the average of the ISIM value of each
cluster of a solution clustering with number of clusters = k.

ak,OF =

∑k
i=1 ISIMi

k

2. Average ESIM: represented as bk,OF , is the average of the ESIM value of
each cluster of a solution clustering with number of clusters = k.

bk,OF =

∑k
i=1ESIMi

k

3. Average of the difference between ISIM and ESIM: represented as
ck,OF , is the average of the difference between ISIM and ESIM multiplied by
the number of objects in such clusters | Si |.

ck,OF =
1

k

k∑
i=1

| Si | ×(ISIMi − ESIMk)

4. Division between the ISIM sum and ESIM sum: represented as ek,OF ,
is the division between the sum of ISIM multiplied by the number of objects
in such clusters | Si |, and the sum of ESIM multiplied by the number of
objects in such cluster.

ek,OF =

∑k
i=1 | Si | ×ISIMk∑k
i=1 | Si | ×ESIMi
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5. Global objective function divided by the logarithm: represented as
fk,OF , is the division between the value of the objective function (OF ) and the
logarithm of k to the base 10.

fk,OF =
OF

log10(k)

For each clustering solution, we are able to predict the number of senses, with dif-
ferent types of dataset representation. Note that these indexes can only be applied
to the clustering solutions. So we evaluated these indexes on two kinds of represen-
tation: i) Bag-of-words representation (see Section 11.2.1.3), and ii) Graph-of-words
representation (see Section 11.2.1.4).

11.2.1.2 Clustering Algorithms to Evaluate New Internal Indexes

We evaluate the prediction of the number of clusters with the proposed internal
indexes based on five clustering algorithms of classes partitional, agglomerative, and
graph-partitioning based. For this, as mentioned previously, we characterize our
dataset with the bag-of-words and graph-of-words representation. Then we compute
the values of our new internal indexes.
We use five well-known clustering algorithms implemented in CLUTO5 software,
such as:

• rb: In this method, the desired k-way clustering solution is computed by
performing a sequence of k − 1 repeated bisections. In this approach, the
objects are first clustered into two groups, then one of these groups is selected
and further bisected. This process continuous until the desired number of
clusters is found. During each step, the cluster is bisected so that the resulting
2-way clustering solution optimizes a particular clustering criterion function.
Note that this approach ensures that the criterion function is locally optimized
within each bisection, but in general is not globally optimized.
• rbr: In this method, the desired k-way clustering solution is computed in a

fashion similar to the repeated-bisecting method but ultimately the overall
solution is globally optimized.
• direct: In this method, the desired k-way clustering solution is computed by

simultaneously finding all k clusters. In general, computing a k-way clustering
directly is slower than clustering via repeated bisections. In terms of quality,
for reasonably small k values (usually less than 10–20), the direct approach
leads to better clusters than those obtained via repeated bisections. However,
as k increases, the repeated-bisecting approach tends to be better than direct
clustering.

5http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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• agglo: In this method, the desired k-way clustering solution is computed using
the agglomerative paradigm whose goal is to locally optimize (minimize or
maximize) a particular clustering criterion function. The solution is obtained
by stopping the agglomeration process when k clusters are left. In this kind
of algorithm, we find the k-means algorithm.
• graph: In this method, the desired k-way clustering solution is computed

by first modeling the objects using a nearest-neighbor graph (each object be-
comes a vertex, and each object is connected to its most similar other objects),
and then the graph is split into k-clusters using a min-cut graph partitioning
algorithm.

11.2.1.3 Prediction of k with Bag-of-words Representation

We represent our dataset as a “bag-of-words or vector of terms”, we prefer to call
them terms because these terms are composed of one or more words. Therefore, to
select these terms we used the BioTex application (see Chapter 8), while selecting
only the first 3 000 terms and using the LIDF-value measure to rank the terms.
Then we apply clustering algorithms with cosine as similarity measures, a well-
known similarity used on textual datasets. Given two vectors of terms p and q, the
cosine measure, is represented using a dot product and magnitude as:

sim(p, q) = cos(p,q) =

pq

‖p‖‖q‖
=

∑n
i=1 piqi√∑n

i=1 (pi)2
√∑n

i=1 (qi)2

Finally, to choose the number of senses, we select k of the maximum or minimum
value of each index computed previously. Note that the internal similarity (ISIM )
must be maximal, and the external similarity (ESIM ) must be minimal. Thus, for
k = 2, 3, 4, 5, we do:

1. max(ak,OF ): we choose the maximal value of the ISIM average of all clusters.
The main idea behind this decision is that the clustering solution should have
a high average internal similarity value.

max(ak,OF ) = max(a2,OF , a3,OF , a4,OF , a5,OF )

2. min(bk,OF ): we choose the minimal value of the ESIM average of all clusters,
which means that the clustering solution should have a low average external
similarity value.

min(bk,OF ) = min(b2,OF , b3,OF , b4,OF , b5,OF )

3. max(ck,OF ): we choose the maximal value for the average result of the sub-
traction between ISIM and ESIM of each cluster. The main reason for this
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decision is that the clustering solution should have a high difference between
ISIM and ESIM, showing that each cluster is compacter and the clusters are
well separated.

max(ck,OF ) = max(c2,OF , c3,OF , c4,OF , c5,OF )

4. max(ek,OF ): we choose the maximal average value of the division between
ISIM and ESIM of all clusters. The main reason for this decision is that
the clustering solution should show a high quotient between ISIM and ESIM,
showing that each cluster is compacter and the clusters are well separated.

max(ek,OF ) = max(e2,OF , e3,OF , e4,OF , e5,OF )

5. max(fk,OF ): we choose the maximal value of the division between the objective
function and the logarithm of k. The hypothesis underlying this index is that
the objective function is stronger when more clusters are included for the
solution, so we try to reduce this drawback via the logarithm of the number
of clusters.

max(fk,OF ) = max(f2,OF , f3,OF , f4,OF , f5,OF )

11.2.1.4 Prediction of k with Graph Representation

As we previously mentioned, we represent our dataset as a graph of co-occurrences
between terms. To predict the number of senses, we use the graph created previously,
as defined in Section 11.1.1.2. Then we apply the clustering algorithms with Dice
coefficient as a similarity measure (measure used to create the co-occurrence graph).
Finally, to choose the number of senses: we select k of the maximum or minimum
value of each previously computed index, the analysis is the same as in the previous
section (see Section 11.2.1.3). Thus, for k = 2, 3, 4, 5:

max(ak,OF ) = max(a2,OF , a3,OF , a4,OF , a5,OF )

min(bk,OF ) = min(b2,OF , b3,OF , b4,OF , b5,OF )

max(ck,OF ) = max(c2,OF , c3,OF , c4,OF , c5,OF )

max(ek,OF ) = max(e2,OF , e3,OF , e4,OF , e5,OF )

max(fk,OF ) = max(f2,OF , f3,OF , f4,OF , f5,OF )

11.2.1.5 Prediction of k with Meta-feature Representation

As previously carried out for polysemy detection, we represent our dataset with
meta-features. Based on the meta-features computed as explained in Section 11.1.1,
we apply the supervised classification algorithms to predict the number of senses.
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The result of Section 11.2.1 is the prediction of the number of possible senses “k” for
a polysemic candidate term. The next step is to induce the senses of the candidate
term. The next section (see Section 11.2.2) describes how to induce that concept
with the predicted k. Note that k = 1 when the candidate term is not polysemic.
These new internal indexes have also been used to evaluate tweet clustering [Lossio-
Ventura et al., 2016b].

11.2.2 Clustering for Concept Induction

When using cluster analysis on a dataset to gather similar cases, it is necessary to
choose among a large number of clustering methods and distance measures. Some-
times, one choice might influence another, but there are many possible combinations
of methods. A real problem is to find the number of clusters k, which is tackled
only for the biomedical domain in Section 11.2.1.

This concerns the final task to induce possible senses for a candidate term. There-
fore, for this task, we select the k-means clustering algorithm that proved to perform
well for textual data [Jing et al., 2006, Aggarwal and Zhai, 2012, Kinnunen et al.,
2011], while taking the number of sense(s) “k” computed in the preceding section
as input. Then we extract the most relevant features of each cluster, which repre-
sents the formed concept. From the set of clusters (concepts) we take the cluster
containing the highest number of biomedical terms to continue to next step. This
is the simplest methodology and we intend to improve this process in a future study.

If the candidate term is not polysemic, then k = 1. Therefore it is not possible to
apply a clustering algorithm, so we then extract the most relevant features of the
only context of the candidate term, which represents the formed concept.

At the end of this step, we have the candidate term with its induced concepts. The
next step is to find the position in a biomedical ontology where the candidate term
could be added. The induced concept (one or several) is useful to determine the
position, because it will be used to evaluate the semantic linkage with other terms
of an ontology. The next section (see Section 11.3) describes the methodology pro-
posed to add a candidate term to a biomedical ontology.

11.3 Semantic Linkage (step 3)

This section introduces how a new biomedical candidate term could be added in an
existing biomedical ontology, i.e. how to find the correct position in the ontology.
This is a first way to extract the type of relation between a new biomedical candi-
date term and an already existing term from an ontology.
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Figure 11.8: Semantic Linkage of a Candidate Term.

The idea underlying this process is, given a candidate term and its graphs of term co-
occurrence (as defined in Section 11.1.1.2), (1) we select the MeSH neighborhood,
then (2) we evaluate the semantic similarity of the candidate term with: (i) its
MeSH neighbors, and, (ii) the fathers/sons of those neighbors in the MeSH ontology.
Finally, a list of terms is proposed where the new biomedical candidate term could
be positioned. Figure 11.9 illustrates the principle to semantically link the candidate
terms.

Figure 11.9: Semantic Linkage Workflow.
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The semantic linkage is based essentially on context similarity between the new
biomedical candidate term and those appearing in an ontology. The following para-
graphs describe in detail the steps shown in the proposed workflow for the semantic
linkage task. As mentioned, the objective of this approach is to propose a list of
terms where the candidate term could be added. This list is ranked by their cosine
similarity between contexts.

Our methodology for semantic linkage follows two main steps:

1. Selecting the MeSH neighborhood: First, we take the neighbors of the
new biomedical candidate term from the co-occurrence graph of terms. These
graphs are built as defined in Section 11.1.1.2. Second, we just choose neigh-
bors belonging to a biomedical ontology, this is the ontology we want to enrich,
i.e. the MeSH ontology in our case. Figure 11.10 illustrates this first step.

Figure 11.10: First Semantic Linkage step.

2. Evaluating the semantic similarity: To compare the semantic similarity
between the candidate terms and the MeSH terms, we need to extract the
neighborhood context. For this, we use a database such as PubMed to extract
the context of each MeSH neighbor term. Then we apply the cosine measure
to compute the semantic similarity. We also take the subclasses and super
classes in MeSH or Hyponymy/hypernymy of the neighbors of the candidate
term. Figure 11.11 illustrates this second step.

Finally, the output of this methodology is an option list, ranked by the cosine
similarity. This list provides MeSH terms that are the most semantically re-
lated to the candidate term.
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Figure 11.11: Second Semantic Linkage step.

This chapter proposed a workflow to extract concepts of new biomedical terms,
and to add these terms to an already existing biomedical ontology, which rep-
resents the second part of this thesis. There were three steps in this workflow,
with an associated approach for each one. An approach to: i) predict the
polysemy of new biomedical terms, ii) induce senses of these new terms, and
finally iii) semantically link terms to an already existing biomedical ontology.

The results of the entire second part “Concept Extraction and Semantic Link-
age” are provided in next chapter (see Chapter 12).
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12

Data and Results

This chapter outlines the data sets and experiments of our proposal for: (i) Polysemy
Detection, (ii) Term Sense Induction, and (iii) Semantic Linkage. It is divided into
three sections, with each one first describing the data set, and then the results of
each step of the proposed methodology. Sections 12.1, 12.2, 12.3, present the data
sets and results for polysemy detection, term sense induction, and semantic linkage,
respectively, as shown in Figure 12.1.

Figure 12.1: Data sets and Results of the Proposed Methodology.

The data sets used in this thesis consisted of textual data collections, i.e. specifically
biomedical data. We used a different biomedical data set for each step because
there was no single annotated data set that could be used for the three proposed
approaches. Most commonly, the major data sets are annotated, i.e. gold standard
corpora, while the others are extracted from the Web, especially from PubMed. Each
data set and the results obtained are described in the next sections.

143
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12.1 Polysemy Detection
This section describes the data set used and the results of experiments conducted
to detect the polysemy of a candidate term. First, we describe the data set, then
the results.

Figure 12.2: Evaluation of Polysemy Detection

12.1.1 Data set

The data set used to evaluate the polysemy detection approach must contain poly-
semic and non-polysemic terms, hereafter polysemic is also called ambiguous. This
data set will allow to evaluate if a new biomedical term is polysemic or not (yes or
no). Therefore, our data set is composed of a polysemic data set and a non-polysemic
data set. The first one already exists, and the second one was built for this pur-
pose. In next sections, we describe the polysemic data set (see Section 12.1.1.1) and
non-polysemic data set (see Section 12.1.1.2).

12.1.1.1 Polysemic Data set

This data set consists of 203 ambiguous entities (polysemic) in English. These
entities have been extracted from the MSH WSD1 [Jimeno-Yepes et al., 2011] data
set, which consists of 106 ambiguous abbreviations, 88 ambiguous terms, and 9 which
are a combination of both. For each ambiguous term/abbreviation, on average the
data set contains 180 instances (i.e. titles/abstracts) obtained from MEDLINE.
This data set is well-known in Word Sense Disambiguation literature applied to the
biomedical domain.

12.1.1.2 Construction of the Non-polysemic Data set

For the experiments on our Polysemy Detection approach, we required both ambigu-
ous and non-ambiguous biomedical terms. The ambiguous data set already exists in

1http://wsd.nlm.nih.gov/

http://wsd.nlm.nih.gov/
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the literature. To our knowledge, there are no non-ambiguous data sets, so we con-
structed a non-polysemic data set using the UMLS metathesaurus and the manual
MeSH indexing of MEDLINE. This non-polysemic data set was built via two steps:
(i) selecting non-polysemic terms from MeSH/UMLS, and (ii) extracting a set of
titles and abstracts containing those terms from PubMed.

Hence, the MSH WSD data set contains, for each term, on average 180 titles/ab-
stracts. Actually this number differs for each term. For instance, the term “Cold”
contains 260 titles/abstracts, while “Yellow Fever” contains 183. To avoid bias in the
data set, we thus created our non-ambiguous data set following the same methodol-
ogy used for the ambiguous data set creation. For instance, if the term Cold has 260
titles/abstracts, for the non-ambiguous data set, we select the non-ambiguous term
Term1 and extract the same number of titles/abstracts, i.e. again 260. Table 12.1
illustrates this principle.

Polysemic Number of Non-polysemic Number of
Term Titles/Abstracts Term Titles/Abstracts
Cold 260 Term1 260

Cortical 297 Term2 297
PCA 491 Term3 491

Yellow Fever 183 Term4 183
. . . . . . . . . . . .

Table 12.1: Principle of Non-polysemic Data set Creation.

The steps for creation of the non-polysemic data set are:

• First, we select all terms contained in MeSH. We use MeSH because PubMed
only indexes articles with MeSH terms and we use PubMed to build the non-
polysemic data set.

• Then we screen UMLS to identify non-ambiguous terms (those associated to
only one concept). We filter this list, only taking those that are non-polysemic
in UMLS.

• UMLS terms contain multiple signs, so we clean them by eliminating all terms
containing (; , ? ! : { } [ ]).

• Then we randomly choose 203 non-polysemic terms (in order to have a bal-
anced data set of positive and negative examples, i.e. polysemic and non-
polysemic terms), and we extract their content from PubMed. PubMed is a
free resource that provides access to MEDLINE. MEDLINE is a bibliographic
database of life sciences and biomedical information. It includes bibliographic
information for articles from academic journals covering various medical do-
mains.
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• Finally, the non-polysemic data set is built and available for research.

Table 12.2 shows an extract of the polysemic/non-polysemic data set. Table 12.3
summarizes the details of our polysemic/non-polysemic data set.

Polysemic Number of Non-polysemic Number of
Term Titles/Abstracts Term Titles/Abstracts
Cold 260 Decision Making 260

Cortical 297 Superovulation 297
PCA 491 Policy Making 491

Yellow Fever 183 Zymosan 183
. . . . . . . . . . . .

Table 12.2: Extract of Polysemic and Non-polysemic Data set.

Description data set
Nb of Entities 406
Nb of Ambiguous Entities 203
Nb of Non-ambiguous Entities 203
Nb of Tokens of the Context of Ambiguous Entities 7 597 337
Nb of Tokens of the Context of Non-ambiguous Entities 8 294 378
Mean number of Tokens for each Ambiguous Entity 37 425
Mean number of Tokens for each Non-ambiguous Entity 40 859

Table 12.3: Details of our Polysemic/Non-polysemic Data set

At this stage, we finally count with a data set composed of polysemic terms and non-
polysemic terms. This allows us to evaluate our methodology to detect polysemy.

12.1.2 Polysemy Detection Results

The data set built in the previous section serves for experiments and evaluation of
our polysemy detection methodology, which is based on the definition of new meta-
features (see Section 11.1) computed directly from the corpus and from an induced
graph, to finally apply a set of machine learning algorithms. Our reason for learning a
classifier is to produce the best estimation of whether a biomedical term is polysemic
or not. Therefore, this section describes the experiments carried out to evaluate
the performance of the new proposed meta-features (total of 23). The previously
cited algorithms were applied for this analysis (see Section 11.1.2) with a 10-cross-
validation. The results are provided in terms of Accuracy (A), Precision (P), Recall
(R), and F-Measure (F) over the data set. In Section 12.1.2.1, experiments were
carried out with direct and graph-based meta-features separately. We also wanted
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to explore the performance of the meta-features by combining the 11 direct meta-
features with the 12 graph-based meta-features and these results are presented in
Section 12.1.2.3. As major studies deal with the identification of the correct meaning
of a term, we cannot provide a comparison of our approach with others. To the best
of our knowledge, there are no studies focused on the detection of polysemy with
binary output (i.e. true or false).

Data set: Polysemic and Non-polysemic Data set
Polysemic Term Class
Ca P
Cold P
Cortical P
Yellow Fever P
. . . . . .
Non-polysemic Term Class
Decision Making NP
Superovulation NP
Policy Making NP
Zymosan NP
. . . . . .

Algorithms: 8 algorithms mentioned in Section 11.1.2: NB, AB, TD,
SVM, MB, M5P, NN, MCC
Input: Meta-features extracted from our Data set
Output: Polysemy Detection P (polysemic) or NP (non-polysemic)

Experimental Protocol 1

12.1.2.1 Direct Meta-features

Table 12.4 shows the results obtained on the previously defined data set (Polysemic
and Non-polysemic Data set) with the 11 direct meta-features. Note that the M5P
Model Tree (M5P) gets the best results, with an Accuracy of 92.1%. This means
that the supervised algorithms on our direct meta-features have correctly classified
92 instances (polysemic or not). The worst result is obtained with Naive Bayes
(NB), with an Accuracy of 86%.

12.1.2.2 Graph-based Meta-features

Table 12.5 shows the results obtained with only graph-based meta-features. Note
that Meta Bagging gets the best results, with an accuracy of 92.1%. The results
obtained with the supervised algorithms differed for the two types of meta-features.
This is because the meta-features and their values are different. The worst result is
also obtained with Naive Bayes (NB), with an Accuracy of 86%.
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A P R F
Zero Rule (ZeroR) 0.493 0.491 0.493 0.472
One Rule (OneR) 0.887 0.901 0.887 0.886
Naive Bayes (NB) 0.860 0.863 0.860 0.859
AdaBoost (AB) 0.897 0.903 0.897 0.896

Tree Decision (TD) 0.879 0.882 0.879 0.879
Support Vector Machine (SVM) 0.919 0.922 0.919 0.919

Meta Bagging (MB) 0.892 0.896 0.892 0.891
M5P Tree (M5P) 0.921 0.925 0.921 0.921

Multilayer Perceptron (NN) 0.906 0.907 0.921 0.906
MultiClassClassifier Logistic (MCC) 0.914 0.915 0.914 0.914

Table 12.4: Direct Meta-features

A P R F
Zero Rule (ZeroR) 0.493 0.491 0.493 0.472
One Rule (OneR) 0.847 0.850 0.847 0.847
Naive Bayes (NB) 0.860 0.863 0.860 0.859
AdaBoost (AB) 0.899 0.900 0.899 0.899

Tree Decision (TD) 0.882 0.884 0.882 0.882
Support Vector Machine (SVM) 0.874 0.875 0.874 0.874

Meta Bagging (MB) 0.921 0.922 0.921 0.921
M5P Tree (M5P) 0.884 0.885 0.884 0.884

Multilayer Perceptron (NN) 0.906 0.907 0.906 0.906
MultiClassClassifier Logistic (MCC) 0.914 0.914 0.914 0.914

Table 12.5: Graph-based Meta-features

12.1.2.3 Combining two kinds of meta-features

We study the effect of feature mixing, i.e. direct plus graph-based meta-features.
These two types of meta-features are combined and Table 12.6 reports the results.
We can see that the Neural Network model (Multilayer Perceptron) gets excellent
results, with an accuracy (A) of 97.8%. This table also illustrates that the minimal
accuracy performance is 95.3%. We can prove that the combination of two kinds of
meta-features gives the best results.

12.1.2.4 Discussion

We evaluate the informativeness of the meta-features in detail. For this purpose,
from Table 12.6, we take the created decision tree (TD), in order to discuss the types
of meta-features highlighted by this algorithm, which obtains 97% of the F-measure.
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A P R F
Zero Rule (ZeroR) 0.493 0.491 0.493 0.472
One Rule (OneR) 0.837 0.837 0.837 0.837
Naive Bayes (NB) 0.956 0.956 0.956 0.956
AdaBoost (AB) 0.975 0.976 0.975 0.975

Tree Decision (TD) 0.970 0.970 0.970 0.970
Support Vector Machine (SVM) 0.966 0.966 0.966 0.966

Meta Bagging (MB) 0.970 0.970 0.970 0.970
M5P Tree (M5P) 0.963 0.963 0.963 0.963

Multilayer Perceptron (NN) 0.980 0.980 0.980 0.980
MultiClassClassifier Logistic (MCC) 0.953 0.953 0.953 0.953

Table 12.6: Combining two kinds of meta-features

Figure 12.3 shows the associated decision tree. We can see that only 4 of the 23
meta-features have been taken into account for classification. Two direct (minU(t),
sdA(t)) and two graph-based (sum(vt), ngUMLS(vt)) meta-features. The two di-
rect meta-features are extracted with UMLS (minU(t)) and AGROVOC (sdA(t)),
which confirms that overlapping between the two dictionaries is useful to detect
biomedical term polysemy. Figure 12.3 shows that the combination of minU(t) and
sum(vt) allows us to classify the most non-polysemic terms, i.e. 199 out of 203,
while minU(t) and ngUMLS(vt) allows us to classify the most polysemic terms, i.e.
161 out of 203.

Table 12.7 presents the confusion matrix, where each column represents the instances
in a predicted class, while each row represents the instances in an actual class,
corresponding to an Accuracy (A) of 0.97 (see Table 12.6, column A, row TD). This
table shows us that the prediction is balanced. The system has correctly classified
198 polysemic terms from a total of 203, and similar for non-polysemic terms, where
it has correctly classified 196 terms from 203.

Figure 12.3: Decision Tree obtained from the Polysemic and Non-polysemic Data
set.
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Pol Not Pol ← Classified as
Pol 198 5 203

Not Pol 7 196 203

Table 12.7: Confusion Matrix based on the Polysemic and Non-polysemic Data set.

Finally, as pointed out before, to our knowledge, no studies have focused on polysemy
detection as in our case by answering yes or no. Therefore, there is no baseline
comparison with related works.

12.2 Term Sense Induction

This section describes the data set used and results of our approach to induce possi-
ble sense(s) of a candidate term. First we describe the data set and then the results.

Figure 12.4: Evaluation of Term Sense Induction

12.2.1 Data set

As mentioned in Section 12.1.1.1, this data set is composed of 203 ambiguous entities
(polysemic). These entities have been extracted from the MSHWSD2 [Jimeno-Yepes
et al., 2011] data set, which consists of 106 ambiguous abbreviations, 88 ambiguous
terms, and 9 that are a combination of both. For each ambiguous term/abbrevia-
tion, the data set contains on average 180 instances (i.e. titles/abstracts) obtained
from MEDLINE. Table 12.8 shows the details of the polysemic data set used for
this experiment. Table 12.9 illustrates an extract of our data set with its respective
number of senses. This additional information, number of senses, which were not

2http://wsd.nlm.nih.gov/

http://wsd.nlm.nih.gov/
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used in the previous section, is the input for our experiments.

Description Details
Nb of Ambiguous Entities 203
Nb of Tokens of the Context of Ambiguous Entities 7 597 337
Mean number of Tokens for each Ambiguous Entity 37 425

Table 12.8: Sense Number per Term.

Term Sense Number
Ca 4
Cold 3
Cortical 3
Yellow Fever 2
. . . . . .

Table 12.9: Details of our Polysemic Data set

As we mentioned previously, for this methodology, the polysemic data set and its
number of associated senses is all that is necessary. The next section describes the
results obtained with our methodology on this data set.

12.2.2 Results of Sense Number Prediction

Readers should note that this methodology is only applied to terms which have been
classified as polysemic terms. So in this section we evaluate our approach to induce
the possible senses of a term. As previously cited, a major problem in TSI (Term
Sense Induction) is to determine the number of senses, which represents a cluster-
ing task. Therefore, we evaluate the results of determining the number of clusters
(number of senses for a new term) according to three aspects. The first one, apply-
ing clustering algorithms with the bag-of-words representation and computing the
values of our new internal indexes. The second one, applying clustering algorithms
with the Graph representation and computing the values of our new internal indexes.
And the third one, we evaluate our meta-features with supervised algorithms.

Note that the new indexes are only used to evaluate the clustering done with the
bag-of-words representation and the graph representation. We then evaluate our
meta-features with supervised algorithms to determine the number of clusters.
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12.2.2.1 Results With Bag of Words Representation

Data set: Polysemic Data set:
Polysemic Term Sense Number
Ca 4
Cold 3
Cortical 3
Yellow Fever 2
. . . . . .

Algorithms: 5 clustering algorithms: rb, rbr, direct, agglo, graph
Input: Bag-of-words of our Data set, 3 000 meta-features
Output: Prediction of the Number of Clusters (2,3,4 or 5)

Experimental Protocol 2

First, we recall the basic notation related to the concepts explained in Section 11.2.1.1:
(i) intra-cluster similarity (ISIM ), and (ii) inter-cluster similarity (ESIM ). We opted
by taking the cosine as distance similarity for all our clustering with a bag-of-words
representation. The selected number of meta-features was 3 000 terms, extracted
with the BioTex application.

Table 12.10 illustrates the process for determining the number of clusters (number
of possible senses for a term) according to the value of indices ak,I2 and ck,I2 (see
Section 11.2.1.1 and Section11.2.1.3).

Table 12.10 shows the values computed for the term “Yellow Fever”, where the ob-
jective function is I2 and the algorithm clustering is Partitional. In our data set,
“Yellow Fever” has 2 senses. So, the correct predicted number of clusters would be
2 as well. In this table, the first column represents the number of clusters, which we
vary between 2 and 5, and then we apply the clustering algorithms to compute the
new index values. For instance, the first row for k = 2, shows that the first cluster,
Cluster-1 has 110 objects (| Si |= 110), the intra-cluster similarity of this cluster is
0.058 (ISIM = 0.058), and the inter-cluster similarity is 0.025 (ESIM = 0.025).
For the two clusters formed when (k = 2), we compute a2,I2 and c2,I2.

The last two rows show, according the index values, how we choose the number of
clusters. For instance, if we take max(ck,I2), then the maximum value is 2.655
when k = 2. Therefore, the max(ck,I2) index predicts that the number of clus-
ters is 2 when the objective function is I2 and the algorithm clustering is Partitional.

Note that this process is performed for 5 objective functions, for 5 clustering al-
gorithms, for the 5 new indexes, and for each instance of our data set (see Sec-
tion 11.2.1). Table 12.11 summarizes this process by taking only two objective
functions I1 and I2 into account, for the instance “Yellow Fever” (one instance
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Objective function: I2, Algorithm: Partitional (rb)
k Id of Cluster | Si | ISIM ESIM ak,I2 ck,I2

2 Cluster-1 110 0.058 0.025 0.053Cluster-2 73 0.048 0.025 2.655

3
Cluster-1 43 0.087 0.029

0.070 2.374Cluster-2 67 0.074 0.030
Cluster-3 73 0.048 0.025

4

Cluster-1 16 0.118 0.008

0.085 2.299Cluster-2 43 0.087 0.029
Cluster-3 67 0.074 0.030
Cluster-4 57 0.063 0.028

5

Cluster-1 16 0.118 0.008

2.191
Cluster-2 26 0.105 0.025
Cluster-3 43 0.087 0.029
Cluster-4 31 0.086 0.032
Cluster-5 67 0.074 0.030

0.094

max(ak,I2) k = 5
max(ck,I2) k = 2

Table 12.10: Choosing k according to ak,I2 and ck,I2 values.

in our data set). For instance, the second row shows that max(ak,I1), with the
clustering algorithms agglo and graph , with I1 as objective function, predicts 2
clusters for “Yellow Fever” (yellow cells).

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 5 5 4 5 2
min(bk,I1) 3 3 3 2 2
max(ck,I1) 3 3 2 2 2
max(ek,I1) 5 5 5 5 2
max(fk,I1) 2 2 2 2 2
max(ak,I2) 5 5 5 5 5
min(bk,I2) 4 4 4 2 2
max(ck,I2) 2 2 2 2 2
max(ek,I2) 5 5 5 5 5
max(fk,I2) 2 2 2 2 2

Table 12.11: k Prediction for Yellow Fever, with bag-of-words representation (2
classes)

To determine the performance of our new indexes, we carried out this process for
our 203 ambiguous entities, while evaluating the accuracy of the cluster number
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prediction. Table 12.12 summarizes the accuracy for the determination of number
of clusters in the entire data set, while taking only two objective functions I1 and
I2 into account. Note that in several cases we achieve 93.10 % accuracy. It means
that for 189 terms our methodology predicted the correct k. Table 12.12, in the
last row, shows that max(fk,OF ) gives the best results for all of the clustering
algorithms and for the I2 objective function.

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 6.40 % 5.42 % 6.90 % 1.97 % 91.63 %
min(bk,I1) 36.45 % 38.92 % 34.98 % 92.12 % 93.10 %
max(ck,I1) 32.02 % 30.54 % 31.53 % 42.86 % 93.10 %
max(ek,I1) 0.99 % 1.48 % 1.48 % 8.87 % 93.10 %
max(fk,I1) 92.12 % 92.12 % 93.10 % 93.10 % 92.61 %
max(ak,I2) 0.99 % 0.99 % 0.49 % 1.97 % 91.63 %
min(bk,I2) 81.77 % 84.73 % 86.21 % 92.12 % 93.10 %
max(ck,I2) 88.67 % 87.68 % 91.63 % 42.86 % 93.10 %
max(ek,I2) 3.45 % 2.96 % 4.93 % 8.87 % 93.10 %
max(fk,I2) 93.10 % 93.10 % 93.10 % 93.10 % 93.10 %

Table 12.12: Accuracy (A) results for 203 Ambiguous Entities with bag-of-words.
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12.2.2.2 Results With Graph Representation

Data set: Polysemic Data set:
Polysemic Term Sense Number
Ca 4
Cold 3
Cortical 3
Yellow Fever 2
. . . . . .

Algorithms: 5 clustering algorithms: rb, rbr, direct, agglo, graph
Input: Graph representation of our Data set, 1 000 vertex

Output: Prediction of the Number of Clusters (2,3,4 or 5)

Experimental Protocol 3

Similar to the evaluation of bag-of-words representations, this process is performed
for 5 objective functions, for 5 clustering algorithms, for the 5 new indexes, and for
each instance of our data set (see Section 11.2.1). As previously described, our data
set contains 203 ambiguous instances.

For this evaluation, we use the graph as defined in Section 11.1.1.2, with each graph
containing 1 000 terms extracted with the BioTex application. Table 12.13 summa-
rizes this process while taking only two objective functions I1 and I2 into account,
for instance “Yellow Fever” (one instance in our data set). In our data set, the
number of clusters (concepts) of the term Yellow Fever is 2. For instance, the first
row of Table 12.13 shows thatmax(ak,I1), with the clustering algorithms rb, rbr,
direct and graph , with I1 as objective function, predicts 2 clusters for “Yellow
Fever” (yellow cells). In this same table, we observe that max(fk,OF ) generally
predicts the correct number of senses.

Similar to bag-of-words representations, we conducted this process for our 203 am-
biguous entities in order to determine the performance of our indexes over the graph
representation. Table 12.14 shows the accuracy for the prediction of the number of
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clusters in the entire data set. Note that in several cases we achieve 93.1% accuracy,
which means that our methodology has correctly predicted the number of senses of
189 entities out of 203. Consequently, with Table 12.13,max(fk,OF ) gives the best
accuracy results for all the clustering algorithms for both objective functions.

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 2 2 2 5 2
min(bk,I1) 2 2 2 2 2
max(ck,I1) 2 2 2 5 2
max(ek,I1) 5 5 5 5 2
max(fk,I1) 2 2 2 2 2
max(ak,I2) 5 5 4 5 2
min(bk,I2) 2 2 2 2 2
max(ck,I2) 2 2 2 5 2
max(ek,I2) 5 5 5 5 2
max(fk,I2) 2 2 2 2 2

Table 12.13: k Prediction for Yellow Fever with Graph representation (2 classes)

Internal Indexes rb rbr direct agglo graph
max(ak,I1) 1.97 % 1.97 % 1.48 % 1.48 % 9.36 %
min(bk,I1) 77.83 % 77.83 % 75.86 % 93.10 % 64.04 %
max(ck,I1) 76.35 % 74.88 % 76.85 % 85.22 % 64.53 %
min(ck,I1) 8.37 % 7.88 % 7.39 % 0.49 % 21.67 %
max(ek,I1) 3.94 % 4.43 % 4.93 % 47.78 % 3.94 %
max(fk,I1) 93.10 % 93.10 % 93.10 % 93.10 % 93.10 %
max(ak,I2) 0.49 % 0.99 % 0.49 % 1.48 % 2.96 %
min(bk,I2) 82.27 % 82.76 % 86.21 % 93.10 % 80.3 %
max(ck,I2) 91.13 % 91.13 % 90.15 % 85.22 % 87.19 %
min(ck,I2) 0.99 % 0.99 % 0.99 % 0.49 % 1.48 %
max(ek,I2) 4.43 % 3.94 % 3.94 % 47.78 % 2.46 %
max(fk,I2) 93.10 % 93.10 % 93.10 % 93.10 % 93.10 %

Table 12.14: Accuracy results for 203 Ambiguous Entities with Graph representa-
tion.

As stated in the two previous sections, the new indexes evaluated with bag-of-
words and graph representation obtained similar accuracy result values. From Ta-
bles 12.12, 12.14 shows that max(fk,OF ) works better over the graph representa-
tion. These values confirm that the graphs are really useful, particularly with the
methodologies proposed in this project.
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12.2.2.3 Results With Meta-features

In this section, we report experiments carried out to evaluate the performance of the
new meta-features for prediction of the number of clusters.We thus use direct and
graph meta-features together. Algorithms cited in Section 11.1.2 are evaluated with
a 10-cross-validation. The results are provided in terms of Accuracy (A), Precision
(P), Recall (R), and F-Measure (F) over the data set. On this occasion, the output
is 4 classes (2,3,4,5).

Table 12.15 shows the results obtained on the previously defined data set with
meta-features. Note that MB and M5P obtained the best results, with an accuracy
of 0.936. This means that the supervised algorithms on our direct meta-features
predicted the correct number of senses of 190 terms out of 203. We can prove that
the meta-features are also useful for predicting the number of clusters.

Data set: Polysemic Data set:
Polysemic Term Sense Number
Ca 4
Cold 3
Cortical 3
Yellow Fever 2
. . . . . .

Algorithms: 8 algorithms mentioned in Section 11.1.2: NB, AB, TD,
SVM, MB, M5P, NN, MCC

Input: Meta-features extracted from our Data set (direct + graph-based)
Output: Prediction of the Number of Clusters (2,3,4 or 5)

Experimental Protocol 4

A P R F
Naive Bayes (NB) 0.695 0.891 0.695 0.769
AdaBoost (AB) 0.921 0.866 0.921 0.893

Tree Decision (TD) 0.906 0.874 0.906 0.890
Support Vector Machine (SVM) 0.931 0.867 0.931 0.898

Meta Bagging (MB) 0.936 0.930 0.936 0.909
M5P Tree (M5P) 0.936 0.905 0.936 0.911

Multilayer Perceptron (NN) 0.897 0.884 0.897 0.890
MultiClassClassifier Logistic (MCC) 0.901 0.919 0.901 0.910

Table 12.15: Meta-features for Number of Sense Prediction.
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12.2.2.4 Discussion

In the previous evaluations, bag-of-words and graph representations generally ob-
tained similar accuracy values. For these two cases, the maximum value is 93.1%.
In general, we can see in Tables 12.12, 12.14 that the best accuracy results are given
by the fk index (see Section 11.2.1.1). The fk index is the division between the
objective function and the logarithm of k. As the objective function is stronger
when more clusters are included for the solution, we divided by the logarithm of the
number of clusters to try to overcome this drawback.

For meta-feature representation, MB (Meta Bagging model) was clearly one of the
models which gave good results. The Meta Bagging model generates multiple ver-
sions of a predictor to build an aggregated predictor. This aggregated predictor is
built from 10 regression trees, which is the main reasons for the accuracy gain in the
results. As we mentioned before, meta-features assign a correct number of senses to
190 biomedical candidate terms out of 203, which represents 93.6% precision. This
is very useful in the biomedical domain because it allows us to automatically deter-
mine the polysemy of candidate terms, including the associated number of senses
(or concepts).

To our knowledge, there are no studies of Term Sense Induction focused on the
biomedical domain. Therefore, a comparison with baselines measures is difficult.
In contrast, several approaches are focused on general domains. The main studies
use a particular data set to test their approaches. A well-known data set is that
provided by the SemEval-2010 WSI shared task [Manandhar et al., 2010]. This data
set contains 100 target words: 50 nouns and 50 verbs. The most relevant and known
systems using this data set are, for instance: Baseline Random, Baseline MFS (Most
Frequent Sense), Duluth-WSI [Pedersen, 2010], UoY [Korkontzelos and Manandhar,
2010], NMFlib [Van de Cruys and Apidianaki, 2011], NB [Choe and Charniak, 2013],
RPCL [Huang et al., 2015], which obtain between 57.3% and 68.44% precision when
predicting the number of senses for a word.
Another data set provided by SemEval-2007 task [Agirre and Soroa, 2007a], con-
tains 65 target nouns and 35 target verbs. The most well-known approaches taking
this data set for experiments on the sense number detection, such as Baseline MFS
(Most Frequent Sense); UMND2 [Niu et al., 2007]; I2R [Niu et al., 2007]; 10w,
5w (BNC) [Brody and Lapata, 2009], HDP [Yao and Van Durme, 2011], HDP +
position (tuned parameters) [Lau et al., 2012], obtain between 80.9% and 87.1%
precision.

These two above-mentioned data sets differ from ours as they contain nouns and
verbs and a fixed set of training and test instances are supplied for each target
word, typically 1 to 3 sentences in length, each containing the target word. The
approaches using these data sets should be adapted for the biomedical domain for
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our comparison, which represents a tough task. As mentioned previously, the sense
number is the cluster number in the clustering task, and this is predicted by eval-
uating the cluster quality. Therefore, we expect to adapt our data set to compare
the results of our proposed internal indexes with the R packageNbClust (see Sec-
tion 10.2.3), which implements several indexes to measure the clustering task quality.

Finally, next step is to evaluate the right position of new biomedical terms with the
associated senses to be added in an existing biomedical ontology. This is described
in the next section.

12.3 Semantic Linkage

From the previous section, we have new biomedical terms and their associated sense
or senses (if polysemic). This information is very important for evaluating the posi-
tion that a new biomedical could take in an already existing ontology to be added.
This section thus describes the data set used and methodology results obtained on
this data set. First we describe the data set, then the results.

Figure 12.5: Semantic Linkage Evaluation.

12.3.1 Semantic LinkageData set

To properly evaluate our methodology, we need to know if this propose for a new
biomedical terms a correct position in an ontology. So for our semantic linkage
methodology experiments, we experiment with already existing terms (which will
represent the new biomedical terms) from an already existing biomedical ontology.
The aim is to determine if our methodology can propose the right position of these
terms on the selected existing biomedical ontology. For this study, we selected MeSH
ontology.
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We hence created a data set containing the existing terms extracted from MeSH.
Then we extracted a context for each term from PubMed. We explain this data set
creation process in detail in the following paragraphs.

We collect MeSH terms that were added between 2009 and 2015, for instance the
term “aggregatibacter aphrophilus”. As mentioned before, each term will represent a
“new biomedical candidate term”. Then we retrieve the context of these terms using
PubMed. As shown in Figure 11.9, the methodology needs biomedical candidate
terms and its associated co-occurrence graph. Therefore we create a co-occurrence
graph per term from the retrieved context. Figure 12.6 illustrates the principle of
the process of collecting the data set for semantic linkage.
The steps for the creation of semantic linkage data set are:

• First, we select all the terms added to MeSH between 2009 and 2015.

• MeSH terms contain multiple signs, so we clean them by eliminating all terms
containing (; , ? ! : { } [ ]).

• For this experimentation, we take 60 collected terms, because of the length of
time necessary to retrieve its context and the context of their neighborhood.
These 60 terms represent the “new biomedical candidate terms”, the input in
our semantic linkage workflow (see Figure 11.9).

• We extract fewer than 100 titles/abstracts (a considerable amount for the
experimentation) from PubMed for each of these 60 terms.

• We create 60 co-occurrence graphs of terms using the BioTex application to
extract the terms. In this graph, terms represent vertices and co-occurrence
values represent the edges. The graph is built in a similar way to that outlined
in Section 5.3.1. So we ultimately take the 60 terms as input and their co-
occurrence graphs (see Figure 12.6 and Figure 12.7).

• We take the graph neighborhood and their correspond context from PubMed.
Table 12.16 shows the details of this data set.

Description data set
Nb of MeSH Terms 60
Nb of Neighbors 8 263
Nb of Tokens of the Total Neighborhood 333 073 311
Mean of Tokens for each Graph Neighborhood 40 309

Table 12.16: Details of our Semantic Linkage Data set

Finally, we created a data set that could allow us to evaluate the results of our
experiments. Then in next section we proceed to perform the experiments on this
data set.
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Figure 12.6: Semantic LinkageData set

Figure 12.7: First Semantic Linkage step.
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12.3.2 Semantic Linkage Results

In the previous section, we built the data set with already existing terms. That
will allow us to evaluate the right position of these terms in a biomedical ontol-
ogy. Therefore, in this section, we present the experimental results of our proposed
methodology to locate a term on the MeSH ontology. To remind readers of the
objective of the proposed methodology, we show the graphics of our methodology in
Figure 12.8 (as shown in 11.3).

Figure 12.8: Semantic Linkage Workflow.

Among all the MeSH neighbors found on the co-occurence graph, we thus seek to
evaluate where to locate the term. For each MeSH neighbor in the associated graph
of the “candidate term”, we thus select the closest terms to this neighbor in MeSH.

For this, we use a well-known pairwise measure. Pairwise measures are used to
compare two semantically close terms. We used the measure proposed in [Rada
et al., 1989] to evaluate the location of the candidate term. The authors defined the
similarity of two terms as a function of the shortest path linking the two concepts.
Therefore, the distance is defined as:

dist(u, v) = sp(u, v)

Where u and v represent two concepts (or terms), and sp(u, v) is the shortest
path linking these two concepts. This measure has shown to be the best among
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others [Dupuch, 2014], for the task of creating new clusters of pharmacovigilance
terms. Then we use sp(u, v) = {1, 2, 3} for this evaluation. This principle is
illustrated in Figure 12.9, where the term V3 hypothetically belongs to an ontology,
and the sp = 1 and sp = 2 terms are identified.

Figure 12.9: Shortest Path for the term V3.

For instance, we take the term “corneal injuries” added in MeSH between 2009 and
2015. In MeSH version 2015, this term is associated with the C0339289 concept.
Its synonyms are the terms associated with the same concept, such as: corneal
injury, corneal damage, and corneal trauma. The fathers of “corneal injuries” are
all terms associated with the concept C0010034, such as: corneal diseases and eye
injuries. Figure 12.10 shows the term “corneal injuries” , its synonyms and its
fathers (sp = 1) in the MeSH ontology version 2015.

Figure 12.10: Term corneal injuries in the MeSH ontology.

Then we apply our methodology to locate this term in MeSH. Table 12.17 shows the
first 10 best propositions on where to locate this term. From these 10 propositions,
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we can see that 5 proposed terms have a direct connection (i.e. synonyms and
fathers) with “corneal injuries” in MeSH version 2015 (yellow rows). More in
detail, Table 12.18 shows the number of correct propositions varying the k first
recommendations. For instance, in Table 12.18, the yellow cell shows that for the
first k = 2 propositions (i.e. best cosine value obtained), our methodology proposed
2 related terms that already exist in the MeSH ontology.

Term to be added Where Cosine
corneal injuries corneal injury 0.4251
corneal injuries corneal damage 0.4181
corneal injuries chemical burns 0.4081
corneal injuries corneal diseases 0.3696
corneal injuries corneal ulcer 0.3689
corneal injuries eye injuries 0.3681
corneal injuries amniotic membrane 0.3639
corneal injuries re-epithelialization 0.3588
corneal injuries corneal trauma 0.3582
corneal injuries wound 0.3472

Table 12.17: Proposition on where to add the term corneal injuries.

Top 1 Top 2 Top 5 Top 10
corneal injuries 1 2 3 5

Table 12.18: Evaluation of propositions to add corneal injuries, with sp = 1 (fa-
thers, sons and synonyms).

Data set: Contexts extracted from PubMed.
Algorithms: Cosine similarity between contexts.
Input: 60 MeSH Terms added between 2009 and 2015 and their co-
occurrence graphs.
Output: 10 position propositions to add the terms in the MeSH ontology.

Experimental Protocol 5

Table 12.19 shows an extract of 15 out the 60 terms added between 2009 and 2015.
This table illustrates the evaluation of the propositions put forward for these 15
terms for sp = {1, 2, 3}. Table 12.18 and Table 12.19 must be interpreted in a
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similar manner. For instance, the yellow cell in Table 12.19 is interpreted from 5
propositions, with 2 existing in the MeSH ontology.
Table 12.20 shows the precision of the number of terms which have at least 1 correct
proposition with our methodology for the Top 1, Top 2, Top 5 and Top 10 ; taking
the pairwise distance sp = {1, 2, 3} into account. For instance, the yellow cell
shows that there is at least 1 correct proposition (i.e. existing in the MeSH ontology)
for 36 of the 60 terms. (i.e. 40%).
As we have seen, this section introduced an approach to add a new biomedical can-
didate term in an existing ontology. The approach is based on the similarity between
the context of new biomedical term and those existing in an ontology. This approach
has generated relevant results on MeSH terms, i.e. finding the right position for the
evaluated terms. The most well-known approaches are based on the type relation
extraction task, counting with several baselines for different comparisons. This task
is expected and represents a future research process for this work, in which compar-
isons with known baselines can be made.

Finally, we completed the second part of this thesis in order to extract concepts and
add the new terms in the MeSH ontology. This part offered a first evaluation in order
to enrich biomedical ontologies in a automatic manner via three steps: (i) Polysemy
Detection, (ii) Term Sense Induction, and (iii) Semantic Linkage. This chapter
outlines the experiments carried out on the previously mentioned steps, showing
interesting results done automatically towards the main objective. This second part
could be supplemented with a manual evaluation carried out by experts to identify
the type of relation. In next chapter, we list the conclusions and perspectives of this
second part.
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Distance = 1 (sp = 1)
Top 1 Top 2 Top 5 Top 10

acanthocheilonema 0 0 0 1
ambulance diversion 0 1 1 1

apicoplasts 1 1 2 2
aurora kinase b 1 1 1 1
betacellulin 0 0 0 0

betamethasone valerate 0 0 1 2
British Virgin Islands 0 0 1 1
brown recluse spider 1 1 2 2

Buschke-Lowenstein tumor 1 2 3 3
central amygdaloid nucleus 1 1 2 2

cephalochordata 1 1 2 3
collagenous sprue 0 0 0 0

controlled before-after studies 0 0 0 0
corneal injuries 1 2 3 5
dexlansoprazole 0 0 0 0

Distance = 2 (sp = 2)
Top 1 Top 2 Top 5 Top 10

acanthocheilonema 0 0 3 5
ambulance diversion 0 1 3 5

apicoplasts 1 1 2 2
aurora kinase b 1 2 3 3
betacellulin 1 2 4 7

betamethasone valerate 1 1 2 3
British Virgin Islands 0 1 4 6
brown recluse spider 1 1 2 2

buschke-lowenstein tumor 1 2 3 3
central amygdaloid nucleus 1 1 2 2

cephalochordata 1 2 4 7
collagenous sprue 1 1 2 4

controlled before-after studies 1 1 2 2
corneal injuries 1 2 3 5
dexlansoprazole 0 0 0 0

Distance = 3 (sp = 3)
Top 1 Top 2 Top 5 Top 10

acanthocheilonema 1 2 5 9
ambulance diversion 0 1 3 5

apicoplasts 1 1 2 2
aurora kinase b 1 2 3 3
betacellulin 1 2 4 7

betamethasone valerate 1 1 2 3
British Virgin Islands 0 1 4 6
brown recluse spider 1 1 2 2

Buschke-Lowenstein tumor 1 2 3 3
central amygdaloid nucleus 1 1 2 2

cephalochordata 1 2 4 7
collagenous sprue 1 1 2 4

controlled before-after studies 1 1 2 2
corneal injuries 1 2 4 6
dexlansoprazole 1 1 1 1

Table 12.19: Evaluation of propositions put forward for the 15 terms for sp =
{1, 2, 3}.
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Top 1 Top 2 Top 5 Top 10
sp = 1 0.333 0.400 0.500 0.583
sp = 2 0.417 0.533 0.617 0.733
sp = 3 0.450 0.567 0.650 0.783

Table 12.20: Precision of the number of terms which have at least 1 correct propo-
sition with our methodology for sp = {1, 2, 3}.
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Chapter

13

Discussion and Conclusions

In this chapter, we discuss and conclude the results obtained with the proposed
methodology to enrich biomedical ontologies. The main objective of this second
part is to introduce concepts and to find the correct position in an already existing
biomedical ontology. As a reminder, our methodology for enriching biomedical on-
tologies has three main steps, as described in Figure 13.1. Each section discusses
and concludes the methodology process, its performance, obtained for : (i) polysemy
detection, (ii) term sense induction, and (iii) semantic linkage.

Figure 13.1: Workflow for Concept Extraction and Semantic Linkage.
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13.1 Polysemy Detection
This section presents the conclusions of the polysemy detection methodology. For
this, we present a novel approach focused on the biomedical domain to predict if
a term is polysemic. The main contribution of this section is the definition of new
meta-features, which are directly extracted from the text dataset and from an in-
duced graph. Our novel approach is based on the extraction of new meta-features
that better characterize our dataset. This allows a more efficient classification task
(polysemy prediction). For this classification, we used the most well-known super-
vised algorithms over the whole meta-features.

Those meta-features are extracted in the following two ways. First, direct extraction
from the dataset. This means that the characteristics more relevant and faster to
obtain. Second, extraction from a graph, which is built according the dataset of
each term. This allows us to take advantage of the graph properties to characterize
the dataset.

First, we evaluated the direct meta-features, then the graph-based meta-features,
and finally the performance when combining these two kinds of meta-features to
obtain the best results. The results were calculated in terms of Accuracy, Precision,
Recall and F-Measure. We obtained an accuracy (A) of between 95.3% and 97.8%
when using the set of supervised algorithms on the combined meta-features.

Different strategies could be considered in the future, such as increasing the num-
ber of meta-features using other dictionaries like Wordnet associated with a general
domain, or BabelNet, which contains general terms for several languages, including
French and Spanish.

After the evaluation to determine if a term is polysemic, we applied the term sense
induction methodology for all terms. The next section analyzes the term sense
induction methodology.

13.2 Term Sense Induction
In this section, we describe the results of inducing sense for new terms. This repre-
sents the continuation of the Polysemy Detection process.

First, we presented a novel approach to predict the number of clusters (number of
senses) for a new biomedical candidate term. The main contribution of this section
is the definition of new internal indexes which, according to their values, can be
used to predict the number of senses. This was also proved for a tweet clustering
process.
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We computed the values of these new internal indexes just for bag-of-words and
graph representations. We obtained similar results, with 93.1% accuracy. For graph
representation, we used the graph created in the previous sections for polysemy de-
tection.

We also used the meta-features proposed in the previous section to predict the num-
ber of senses and, based on these, we could obtain the best results for this purpose.
The meta-features for this task also allowed a good classification task. For the clas-
sification, we also used the most well-known supervised algorithms over the whole
meta-features. The results for this task were calculated in terms of Accuracy, Pre-
cision, Recall and F-Measure. We observed maximum accuracy (A) of 93.6%.

Second, the selection of the clustering algorithm for textual data. This task is even
easier than the first because we already know the number of parameter clusters. This
is a well-known problem in the community that we solved specifically for biomedical
term sense induction with the final objective of enriching ontologies.
With an induced sense (or concept), a term passed by an evaluation to be added to
an ontology. That process is called semantic linkage. The next section presents the
discussion an conclusions for this process.

13.3 Semantic Linkage
The aim of this process is to find the right position in an already established ontol-
ogy for new biomedical terms associated with their senses.

We thus extracted the possible relations for a term. This relation was based only
on the similarity context. We used the cosine similarity between the context of the
new term and the context of an existing term in an ontology.

To conduct this step, we used a well-known biomedical ontology, called MeSH, i.e.
the 2009 and 2015 version. We extracted 60 terms added between 2009 and 2015 in
this ontology.

We computed the number of relations extracted for different pairwise distances
sp = {1, 2, 3}. In major cases, the major number of relations proposition ex-
tracted happens when sp = 1. We also evaluated this approach based on the top
k first proposals.

This step could be used to extract the type of relation. This could be performed
with the linguistic patterns, e.g. the verbs used between two terms, as detailed in
the next chapter.
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Chapter

14

GENERAL CONCLUSIONS

To conclude this PhD thesis, we first summarize the presented approaches, and end
by describing the most important research prospects opened by them. This chapter
presents an overview of our work, including the conclusions and perspectives of
the two main parts: (i) Automatic biomedical term extraction, and (ii) Relation
extraction and semantic linkage. Below, Section 14.1 presents a summary of our
contributions, and then Section 14.2 presents the potential prospects and future
directions of our research work.

14.1 Conclusions

As we mentioned in Chapter 1, NLP for biomedical ontology enrichment involves
five challenges: (i) the text complexity and specialization to deal with; (ii) the com-
plexity of extracting new terminology; (iii) the semantic concept of newly found
terms, and the semantic relatedness; (iv) unifying several disciplines to set up a
general workflow; and (v) to make this multidisciplinary aspect “user friendly” and
“multilingual”.

These challenges were divided in two groups: the first one representing the lexical
complexity in the biomedical domain, and the second one representing the semantic
complexity in the biomedical domain. Moreover, this thesis is divided in two main
parts to address the previously mentioned challenges: (i) Automatic biomedical term
extraction, and (ii) Concept extraction and semantic linkage. The following para-
graphs summarize the contribution of each part, illustrating how they addressed the
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challenges.

Automatic Biomedical Term Extraction

This first part defined several measures for term extraction, while taking single-word
and multi-word terms into account. These measures were classified as ranking mea-
sures, and re-ranking measures. These measures were based on linguistic, statistical,
graph, and web information. We proposed new measures, as well as modifications
of some baseline measures. The best ranking measure is LIDF-value (linguistic and
statistic based), and the best re-ranking measures were TeRGraph (graph based),
and WAHI (web based).

The use of biomedical linguistic features allows extraction of complex terminology
associated with the biomedical domain. The use of statistical, graph, and web fea-
tures improves the extraction of new terminology, which also addresses the second
challenge of NLP, i.e. to build/enrich biomedical ontologies, due to their complex
structure.

Our ranking measures and re-ranking measures were proposed to work on biological,
life science, and medical texts, being those different. Indeed, they were applied on
datasets such as GENIA, LabTestsOnline and Agricultural datasets, generating very
good results. This addresses the first challenge associated with the specialized and
complex biomedical text to be processed.

In addition, as previously mentioned, these measures were applied to different lan-
guages, i.e. English, French, and Spanish. Furthermore, we created an application
called BioTex, which implements all of the ranking measures. Thus addressing the
user-friendly and multilingual challenge (fifth challenge).

To fulfill the objectives of this part, we used linguistic, statistical, graph and web
methods to propose a methodology, while also developing BioTex, which includes
software development. For this, several disciplines were useful to address the fourth
challenge.
As previously mentioned, we developed an application, called Biotex, which im-
plements the proposed measures. We underline the main characteristics of this
application in the next section.

BioTex

We presented the BioTex application for extracting biomedical terms. This involves
the implementation of all the ranking measures previously defined. It is available
for online testing and evaluation, but it can also be used in any program as a Java
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library (POS tagger not included). In contrast to other existing systems, our system
allows us to analyze French and Spanish datasets, to manually validate extracted
terms and to export the list of extracted terms.

BioTex is starting to be a valuable tool for the biomedical community. It has
also generated interesting results for other domains. Indeed, it is currently used in
other independent projects (i.e. use-cases). In addition, it is being used in a couple
of test-beds within the SIFR project1. BioTex, as web application, presents two
use cases: the first one, to extract terms (see Figure 14.1); and the second one, to
validate the extracted terms (see Figure 14.2).

Figure 14.1: BioTex Term extraction in-
terface.

Figure 14.2: BioTex Term validation in-
terface.

As previously mentioned, this part concerns extracting candidate terms. After this
step, the terms have to be added to an ontology. For this, we proposed a methodol-
ogy to determine the possible sense (s) of a term, and to figure out the position in
an ontology. The next section highlights the main characteristics of our proposed
approach.

Concept Extraction and Semantic Linkage

In this second part, we proposed a methodology to extract concepts and to add the
new terms in the MeSH ontology. This second part offered a process workflow to
enrich biomedical ontologies in an automatic manner, according to three steps: (i)
Polysemy detection, (ii) Term sense induction, and (iii) Semantic linkage. These
three steps were executed consecutively. The experiments carried out in all of the
steps generated interesting results.

1http://www.lirmm.fr/sifr

http://www.lirmm.fr/sifr
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For polysemy detection, we presented a novel approach to predict if a term is pol-
ysemic. This approach was based on the extraction of new meta-features. This
allowed a more efficient classification task (polysemy prediction). We used the most
well-known supervised algorithms for this classification. The meta-features were ex-
tracted in two ways. First, they were extracted directly from the dataset. Second,
they were extracted from a term co-occurrence graph derived from the dataset.

For term sense induction, as cited in previous chapters, a major problem is to iden-
tify the right number of senses of a term. Therefore, we presented a novel approach
to predict the number of clusters (number of senses) for a new biomedical candi-
date term. The main contribution is the definition of new internal indexes which,
according their values, allow us to predict the number of senses. These internal
indexes are based on the clustering task by using bag-of-words and graph-of-words
approaches. These indexes have the same behavior for the evaluation of clustering
of tweets, which proves that these indexes tend to find lower values for the number
of senses.

Meta-features used for the polysemy detection task were also efficient to predict
the number of senses, which generated the best results for this purpose. For the
classification, we also used the most well-known supervised algorithms for all the
meta-features.
Then the sense or concept was induced by selecting the most representative features
after having applied a clustering algorithm for textual data, taking the previous
computed number of clusters as input.

Finally, the aim of the the semantic linkage task was to find the relevant position
(or location) of a term in an already established ontology. Note that at this step we
have a candidate term associated with its sense. Therefore, we proposed to extract
several possible relations for a term. This relation is based on the similarity context.
We used the cosine similarity between the context of the new term and the context
of an existing term in an ontology. To perform a quantitative assessment (right
position) of our methodology, we used MeSH terms, i.e. those added between 2009
and 2015. This approach gave relevant results on MeSH terms, i.e. finding the right
position for the evaluated terms.

These three steps together provided the semantic sense of a new term. It also offered
the semantic relatedness of a new term with a term already existing in an ontology.
Hence, they addressed the third challenge, providing semantic (sense and linkage)
for a new term. As we have seen, several disciplines, such as word sense induction,
polysemy detection, machine learning, clustering and meta-learning are involved to
meet the main objective.

To address the fifth challenge, the methodology containing the three steps has to
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be implemented and also evaluated for French and Spanish. This methodology did
not provide the type of relation between terms (e.g. hyperonymy, synonymy, etc.).
Hence, for biomedical ontology enrichment, we could propose expert intervention at
the end of the entire workflow.

In this thesis, we identified several future biomedical ontology prospects, which are
described in next section.

14.2 Perspectives

All of the proposed approaches in this thesis open new perspectives and future
research directions. These form the basis for future work or perspectives required
for the main objective. The following paragraphs summarize the identified prospects
of each part.

Automatic Biomedical Term Extraction

Four features, such as linguistic, statistical, graph, and web features were used for
automatic biomedical term extraction. It could also be interesting to use a fifth
feature, i.e. the knowledge feature. The main idea is to create a measure to favour
candidate terms consisting of nested terms existing in a terminology. The measure
will be focused on multi-word term extraction, e.g. the extracted term “pancreatic
cancer center”. Its nested terms belonging to UMLS terminology are: cancer, pan-
creatic cancer. According to these terms, the knowledge based measure will favour
this term.

The relation value between terms could be used for the graph-based measure. An-
other idea is to use other graph ranking computations, e.g. PageRank, tailored for
automatic term extraction.

Moreover, future work will involve using the web to extract more terms than those al-
ready extracted. Moreover, another search engine could be used, such as Exalead2,
which offers terms related to that used in the query. This will generate seman-
tic information for candidate terms to improve the term extraction. The three
above-mentioned prospects are currently being evaluated in collaboration with the
NaCTeM team, at the University of Manchester.

Finally, we could potentially modify our measures in order to standardize the pos-
sible variants, looking towards for a preferred term for those variants.

2https://www.exalead.com/search/

https://www.exalead.com/search/
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BioTex

Concerning our application, a very interesting strategy could be to add the con-
text visualization of each candidate term. For instance, to show the most relevant
sentences containing the candidate term. This might enhance the validation of can-
didate terms. This could also allow manual recognition of whether a candidate term
is ambiguous (or polysemic).

In addition, a possible future work will be to present a graph of term co-occurrences,
showing the relatedness between the candidate terms, while determinging the right
position for new terms in a biomedical ontology. Note that the candidate terms are
terms present in a terminology (green terms), as well as new candidate terms (red
terms).

Concept Extraction and Semantic Linkage

The most important direction of future work of this thesis concerns the “relation ex-
traction” process. This process seeks to identify the type of relationship between two
terms. For instance, in the biological domain, gene-gene interactions and protein-
disease interactions are types of relation, as well as relations between cancer-related
genes, drugs and cell lines.

Actually, the extraction of relation type between terms in natural language text is
a crucial step towards automatic biomedical ontology enrichment/construction. Re-
lation extraction approaches can be categorized as [Bach and Badaskar, 2007]: (i)
unsupervised relation discovery, and (ii) supervised classification. Hence, we might
propose both types of approaches. The annotated dataset GENIA could be used
to test the supervised approaches. However, Big Data currently does not contain
annotated datasets. Therefore, there is a need to further develop unsupervised ap-
proaches.

Following the distributional approach, the syntactic information of specific verbs
could be combined, as done in [Nguyen et al., 2015]. Indeed, we consider that the
relevant context is not the set of co-occurrences but rather the set of elements which
are in a syntactic relationship with the target term. So the main idea is to find
the verbs used most between two terms. Normalize verbs with lemmatization, and
propose the most representative ones. At the end of the workflow, the expert will
decide on the most relevant type of relation, thus substantially decreasing the need
for expert intervention.

One more strategy could be considered in the future, such as increasing the number
of meta-features using other dictionaries like Wordnet, which is associated with a
general domain. However this dictionary is only available for English, so it would
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thus be more interesting to use BabelNet, which contains general terms for several
languages, including French and Spanish.

Finally, we think it will be very useful to develop an application to unify the issues
covered in the first and the second part of this thesis.
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