.. Phiks-algorithm, 55 5.3.1 Distributed Projection Counting, p.58

M. Berry, Survey of Text Mining Clustering, Classification, and Retrieval, 2004.

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster computing with working sets, Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'10, pp.10-10, 2010.

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.487-499, 1994.

P. Han and Y. , Mining frequent patterns without candidate generation, ACM SIGMOD Record, vol.29, 2000.
DOI : 10.1145/335191.335372

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.2678

H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, Pfp, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.107-114, 2008.
DOI : 10.1145/1454008.1454027

J. Arno, E. K. Knobbe, and . Ho, Maximally informative k-itemsets and their efficient discovery, Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp.237-244, 2006.

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.487-499, 1994.

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.432-444, 1995.

W. Song, B. Yang, and Z. Xu, Index-bittablefi: An improved algorithm for mining frequent itemsets. Knowl.-Based Syst, pp.507-513, 2008.
DOI : 10.1016/j.knosys.2008.03.011

N. Jayalakshmi, V. Vidhya, M. Krishnamurthy, and A. Kannan, Frequent Itemset Generation using Double Hashing Technique, Procedia Engineering, vol.38, issue.0, pp.1467-1478, 2012.
DOI : 10.1016/j.proeng.2012.06.181

URL : http://doi.org/10.1016/j.proeng.2012.06.181

M. J. Zaki, Scalable algorithms for association mining. Knowledge and Data Engineering, IEEE Transactions on, vol.12, issue.3, pp.372-390, 2000.
DOI : 10.1109/69.846291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.656

Y. Tsay and Y. Chang-chien, An efficient cluster and decomposition algorithm for mining association rules, Information Sciences, vol.160, issue.1-4, pp.161-171, 2004.
DOI : 10.1016/j.ins.2003.08.013

R. Anand, Mining of massive datasets

T. M. Cover, Elements of information theory, 2006.

J. Lin and D. Ryaboy, Scaling big data mining infrastructure, ACM SIGKDD Explorations Newsletter, vol.14, issue.2, pp.6-19, 2013.
DOI : 10.1145/2481244.2481247

J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer Networks, vol.52, issue.12, pp.2292-2330, 2008.
DOI : 10.1016/j.comnet.2008.04.002

A. Degenne, Introducing social networks, SAGE, 1999.
DOI : 10.4135/9781849209373

D. J. Hand, Principles of Data Mining, Drug Safety, vol.15, issue.2, 2001.
DOI : 10.2165/00002018-200730070-00010

H. Ian, E. Witten, and . Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems), 2005.

Z. Qin, Introduction to e-commerce, 2009.

B. Goethals, Survey on frequent pattern mining, 2003.

B. Negrevergne, A. Termier, M. Rousset, and J. Méhaut, Para Miner: a generic pattern mining algorithm for multi-core architectures, Data Mining and Knowledge Discovery, vol.1, issue.1, pp.593-633, 2014.
DOI : 10.1007/s10618-013-0313-2

URL : https://lirias.kuleuven.be/bitstream/123456789/448158/1/paraminer.pdf

S. B. Kotsiantis, Supervised machine learning: A review of classification techniques, Proceedings of International Conference on Emerging Artificial Intelligence Applications in Computer Engineering, pp.3-24, 2007.

M. Usama, G. Fayyad, P. Piatetsky-shapiro, and . Smyth, Advances in knowledge discovery and data mining. chapter From Data Mining to Knowledge Discovery: An Overview, American Association for Artificial Intelligence, pp.1-34, 1996.

R. C. Agarwal, C. C. Aggarwal, and V. V. Prasad, A Tree Projection Algorithm for Generation of Frequent Item Sets, Journal of Parallel and Distributed Computing, vol.61, issue.3, pp.61350-371, 2001.
DOI : 10.1006/jpdc.2000.1693

J. Pei, J. Han, and L. V. Lakshmanan, Pushing Convertible Constraints in Frequent Itemset Mining, Data Engineering Proceedings. 17th International Conference on, pp.433-442, 2001.
DOI : 10.1023/B:DAMI.0000023674.74932.4c

J. Liu, Y. Pan, K. Wang, and J. Han, Mining frequent item sets by opportunistic projection, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.229-238, 2002.
DOI : 10.1145/775047.775081

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3431

G. Grahne and J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, 2003.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering Frequent Closed Itemsets for Association Rules, Proceedings of International Conference in Database Theory, pp.398-416, 1999.
DOI : 10.1007/3-540-49257-7_25

URL : https://hal.archives-ouvertes.fr/hal-00467747

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Efficient mining of association rules using closed itemset lattices, Information Systems, vol.24, issue.1, pp.25-46, 1999.
DOI : 10.1016/S0306-4379(99)00003-4

J. Pei, J. Han, and R. Mao, Closet: An efficient algorithm for mining frequent closed itemsets, ACM SIGMOD workshop on research issues in data mining and knowledge discovery, pp.21-30, 2000.

M. Javeed, Z. , and C. Hsiao, Charm: An efficient algorithm for closed itemset mining, SDM, pp.457-473, 2002.

J. Wang, J. Han, and J. Pei, CLOSET+, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.236-245, 2003.
DOI : 10.1145/956750.956779

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.487-499, 1994.

P. Han and Y. , Mining frequent patterns without candidate generation, ACM SIGMOD Record, vol.29, 2000.
DOI : 10.1145/335191.335372

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.2678

H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen, and J. K. Seppänen, Finding low-entropy sets and trees from binary data, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.350-359, 2007.
DOI : 10.1145/1281192.1281232

S. Brin, R. Motwani, and C. Silverstein, Beyond market baskets, ACM SIGMOD Record, vol.26, issue.2, pp.265-276, 1997.
DOI : 10.1145/253262.253327

N. Tatti, Probably the best itemsets, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.293-302, 2010.
DOI : 10.1145/1835804.1835843

C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, Mining frequent patterns in data streams at multiple time granularities, 2002.

W. Teng, M. Chen, and P. S. Yu, A Regression-Based Temporal Pattern Mining Scheme for Data Streams, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.93-104, 2003.
DOI : 10.1016/B978-012722442-8/50017-3

C. Zhang and F. Masseglia, Discovering Highly Informative Feature Sets from Data Streams, Database and Expert Systems Applications, pp.91-104, 2010.
DOI : 10.1007/978-3-642-15364-8_7

G. Chandrashekar and F. Sahin, A survey on feature selection methods, Computers & Electrical Engineering, vol.40, issue.1, pp.16-28
DOI : 10.1016/j.compeleceng.2013.11.024

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res, vol.3, pp.1157-1182, 2003.

M. Riondato, J. A. Debrabant, R. Fonseca, and E. Upfal, PARMA, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.85-94, 2012.
DOI : 10.1145/2396761.2396776

K. Chen, L. Zhang, S. Li, and W. Ke, Research on Association Rules Parallel Algorithm Based on FP-Growth, Proceedings of International Conference on Information Computing and Applications, pp.249-256, 2011.
DOI : 10.1023/B:DAMI.0000005258.31418.83

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

R. Osmar, M. Zaïane, P. El-hajj, and . Lu, Fast parallel association rule mining without candidacy generation, Proceedings of IEEE International Conference on Data Mining, pp.665-668, 2001.

E. Li and L. Liu, Optimization of frequent itemset mining on multiple-core processor, Proceedings of International Conference on Very Large Data Bases, pp.1275-1285, 2007.

H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, Pfp, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.107-114, 2008.
DOI : 10.1145/1454008.1454027

J. Wang, J. Han, and J. Pei, CLOSET+, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.236-245, 2003.
DOI : 10.1145/956750.956779

C. Lucchese, S. Orlando, and R. Perego, Fast and memory efficient mining of frequent closed itemsets, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.1, pp.21-36, 2006.
DOI : 10.1109/TKDE.2006.10

H. Chen, R. H. Chiang, and V. C. Storey, Business intelligence and analytics: From big data to big impact, MIS Quarterly, vol.36, issue.4, pp.1165-1188, 2012.

B. Goethals, Memory issues in frequent itemset mining, Proceedings of the 2004 ACM symposium on Applied computing , SAC '04, pp.530-534, 2004.
DOI : 10.1145/967900.968012

T. White, Hadoop : the definitive guide

C. Bizer, P. A. Boncz, M. L. Brodie, and O. Erling, The meaningful use of big data, ACM SIGMOD Record, vol.40, issue.4, pp.56-60, 2011.
DOI : 10.1145/2094114.2094129

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.432-444, 1995.

S. Even, Graph algorithms, 1979.
DOI : 10.1017/CBO9781139015165

S. Owen, Mahout in action Shelter Island, N.Y, 2012. [64] Grid5000

A. Labrinidis and H. V. Jagadish, Challenges and opportunities with big data, Proc. VLDB Endow, pp.2032-2033, 2012.
DOI : 10.14778/2367502.2367572

W. Fan and A. Bifet, Mining big data, ACM SIGKDD Explorations Newsletter, vol.14, issue.2, pp.1-5, 2013.
DOI : 10.1145/2481244.2481246

Y. Tsay and Y. Chang-chien, An efficient cluster and decomposition algorithm for mining association rules, Information Sciences, vol.160, issue.1-4, pp.1-4161, 2004.
DOI : 10.1016/j.ins.2003.08.013

J. Han, Data Mining, 2012.
DOI : 10.1007/978-1-4899-7993-3_104-2

E. Greengrass, Information retrieval: A survey, 2000.

R. Gray, Entropy and information theory, 2011.

Z. Ghahramani, Unsupervised Learning, Advanced Lectures on Machine Learning, pp.72-112, 2004.
DOI : 10.1080/01621459.1995.10476550

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster computing with working sets, Proceedings of the 2Nd USENIX Conf. on Hot Topics in Cloud Computing, pp.10-10, 2010.

S. Moens, E. Aksehirli, and B. Goethals, Frequent Itemset Mining for Big Data, 2013 IEEE International Conference on Big Data, pp.111-118, 2013.
DOI : 10.1109/BigData.2013.6691742

K. Berberich and S. Bedathur, Computing n-gram statistics in MapReduce, Proceedings of the 16th International Conference on Extending Database Technology, EDBT '13, pp.101-112, 2013.
DOI : 10.1145/2452376.2452389

I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, Mind the gap, Proceedings of the 2013 international conference on Management of data, SIGMOD '13, pp.797-808, 2013.
DOI : 10.1145/2463676.2465285

R. Anand, Mining of massive datasets

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.432-444, 1995.

T. White, Hadoop : the definitive guide, 2012.

A. Jurek, Y. Bi, S. Wu, and C. Nugent, A survey of commonly used ensemble-based classification techniques, The Knowledge Engineering Review, vol.7, issue.05, pp.551-581
DOI : 10.1016/j.dss.2009.06.007