M. Baker, Biotech giant publishes failures to confirm high-profile science, Nature, vol.530, issue.7589, 2016.
DOI : 10.1038/nature.2016.19269

B. W. Boehm, Guidelines for Verifying and Validating Software Requirements and Design Specifications, Euro IFIP 79
DOI : 10.1109/ms.1984.233702

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Briere, Assessment of TELEMAC system performances, a hydrodynamic case study of Anglet, France, Coastal Engineering, vol.54, issue.4, pp.345-356, 2007.
DOI : 10.1016/j.coastaleng.2006.10.006

W. Chiang, Determinism and Reproducibility in Large-Scale HPC Systems, 5th Workshop on Determinism and Correctness in Parallel Programming, 2013.

M. A. Christie, Error Analysis and Simulations of Complex Phenomena, 2008.

D. Christophe, Numerical verification of an Industrial code to simulate accurately large scale Hydrodynamics events, pp.46-51, 2013.

M. A. Cleveland, Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle

C. Collberg, Measuring Reproducibility in Computer Systems Research, pp.1-37, 2014.

L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering, vol.5, issue.1, pp.46-55, 1998.
DOI : 10.1109/99.660313

M. Daumas, Multiplications of floating point expansions, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), pp.14-16, 1999.
DOI : 10.1109/ARITH.1999.762851

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.5, issue.3, pp.224-242, 1971.
DOI : 10.1007/BF01397083

J. W. Demmel and H. D. Nguyen, Fast Reproducible Floating-Point Summation, 2013 IEEE 21st Symposium on Computer Arithmetic, 2013.
DOI : 10.1109/ARITH.2013.9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. W. Demmel and H. D. Nguyen, Parallel Reproducible Summation, IEEE Transactions on Computers, vol.64, issue.7
DOI : 10.1109/TC.2014.2345391

K. Diethelm, The Limits of Reproducibility in Numerical Simulation, Computing in Science & Engineering, vol.14, issue.1, pp.64-72, 2012.
DOI : 10.1109/MCSE.2011.21

C. Drummond, Replicability is not reproducibility: Nor is it good science, Proceedings of the Evaluation Methods for Machine Learning Workshop at the 26th ICML, 2009.

C. Ferrarin, Tide-surge-wave modelling and forecasting in the Mediterranean Sea with focus on the Italian coast, Ocean Modelling, vol.61, pp.38-48, 2013.
DOI : 10.1016/j.ocemod.2012.10.003

N. Gentile, M. Kalos, and T. A. Brunner, Obtaining Identical Results on Varying Numbers of Processors in Domain Decomposed Particle Monte Carlo Simulations, pp.423-433, 2004.
DOI : 10.1007/3-540-28125-8_19

W. Gropp and E. Lusk, Reproducible Measurements of MPI Performance Characteristics Recent Advances in Parallel Virtual Machine and Message Passing Interface: 6th European PVM/MPI Users' Group Meeting Barcelona, Spain, Proceedings. Ed. by J. Dongarra, E. Luque, and T. Margalef. Berlin, pp.11-18, 1999.

Y. He and C. English, Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in Parallel Applications

. Supercomput, ISSN: 0920-8542, pp.259-277, 2001.

J. Hervouet and J. Janin, Matrix storage and matrix-vector product in Finite Elements, In: WIT Transactions on Ecology and the Environment, 1998.

J. Hervouet, Hydrodynamics of free surface flows: Modelling with the finite element method, 2007.
DOI : 10.1002/9780470319628

Y. Hida, X. S. Li, and D. H. Bailey, Algorithms for quad-double precision floating point arithmetic, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, 2001.
DOI : 10.1109/ARITH.2001.930115

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. J. Higham, Accuracy and Stability of Numerical Algorithms, p.680, 2002.
DOI : 10.1137/1.9780898718027

URL : http://eprints.ma.man.ac.uk/238/04/covered/MIMS_ep2006_75_Book_Covers.pdf

M. S. Horritt, Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery, Hydrological Processes, vol.122, issue.20, pp.2745-2759, 2007.
DOI : 10.1002/hyp.6486

S. Hunold, A Survey on Reproducibility in Parallel Computing, p.4217, 1511.

I. Task and P. , Standard for Floating-Point Arithmetic (electronic) DOI: http, pp.754-2008, 2008.

. Intel, Using the RDTSC Instruction for Performance Monitoring, 1997.

F. Jézéquel, P. Langlois, and N. , First steps towards more numerical reproducibility, ESAIM: Proceedings 45, 2014.

W. Kahan, Doubled-precision ieee standard 754 floating-point arithmetic. Unpublished manuscript, 1987.

D. E. Knuth, The Art of Computer Programming Seminumerical Algorithms, pp.688-688, 1998.

P. Kornerup, On the Computation of Correctly Rounded Sums
URL : https://hal.archives-ouvertes.fr/inria-00475279

P. Langlois and N. Louvet, More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms " . 11 pages, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165020

P. Langlois, R. Nheili, and C. Denis, Numerical reproducibility: Feasibility issues, 2015 7th International Conference on New Technologies, Mobility and Security (NTMS)
DOI : 10.1109/NTMS.2015.7266509

URL : https://hal.archives-ouvertes.fr/lirmm-01141852

P. Langlois, R. Nheili, and C. Denis, Recovering Numerical Reproducibility in Hydrodynamic Simulations, 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)
DOI : 10.1109/ARITH.2016.27

URL : https://hal.archives-ouvertes.fr/lirmm-01274671

P. Langlois, Less Hazardous and More Scientific Research for Summation Algorithm Computing Times Research Report RR-12021, Manuscrit soumis à Science of Computer Programming. Lirmm, 2012.

C. Q. Lauter, Basic building blocks for a triple-double intermediate format. Tech. rep. 2005-38, pp.2005-2043, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070314

N. Louvet, Algorithmes compensés en arithmétique flottante : précision , validation, performances, 2007.

M. Passing and . Forum, Mpi : A message-passing interface standard. Rapport technique, 2012.

O. Møller, Note on quasi double-precision, BIT, vol.8, issue.5, pp.251-255, 1965.
DOI : 10.1007/BF01937505

J. Muller, On the definition of ulp(x). Tech. rep. RR-5504. INRIA, Feb URL: https, p.16, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070503

J. Muller, Handbook of Floating-Point Arithmetic, Birkhäuser Boston, p.572, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

R. Nheili, P. Langlois, and C. Denis, First improvements toward a reproducible Telemac-2D URL: https, 2016.

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

H. Oudin, Méthode des éléments finis " . Lecture URL: https://cel.archives-ouvertes, p.341772, 2008.

J. Raamachandran, Boundary and Finite Elements: Theory and Problems ISBN: 9780849309366. URL: https, 2000.

R. W. Robey, J. M. Robey, and R. Aulwes, In search of numerical consistency in parallel programming, Parallel Computing, vol.37, issue.4-5, pp.4-5, 2011.
DOI : 10.1016/j.parco.2011.02.009

S. M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing, vol.31, issue.5, pp.3466-3502, 2009.
DOI : 10.1137/080738490

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. M. Rump, T. Ogita, and S. Oishi, Fast high precision summation, Nonlinear Theory and Its Applications, IEICE, vol.1, issue.1
DOI : 10.1587/nolta.1.2

M. Sato, ICCS 2011 A data and code model for reproducible research and executable papers, Proceedings of the International Conference on Computational Science, pp.579-588, 2011.

J. R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates, ACM Symposium on Computational Geometry, pp.305-363, 1996.

W. W. Smari, New advances in High Performance Computing and simulation: parallel and distributed systems, algorithms, and applications " . In: Concurrency and Computation: Practice and Experience 28 CPE-15-0606, pp.2024-2030, 2016.

I. M. Smith and L. Margetts, The convergence variability of parallel iterative solvers, Engineering Computations, vol.23, issue.2, pp.154-165, 2006.
DOI : 10.1108/02644400610644522

L. Stanisic, A. Legrand, and V. Danjean, An Effective Git And Org-Mode Based Workflow For Reproducible Research, ACM SIGOPS Operating Systems Review, vol.49, issue.1, pp.61-70, 2015.
DOI : 10.1145/2723872.2723881

URL : https://hal.archives-ouvertes.fr/hal-01112795

M. Taufer, Improving numerical reproducibility and stability in large-scale numerical simulations on GPUs, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pp.1-9, 2010.
DOI : 10.1109/IPDPS.2010.5470481

L. Thévenoux, Code Synthesis to Optimize Accuracy and Speed in Floating- Point Arithmetic " . Theses. Université de Perpignan Via Domitia URL: https, 2014.

P. Vandewalle, J. Kovacevic, and M. Vetterli, Reproducible research in signal processing, IEEE Signal Processing Magazine, vol.26, issue.3, pp.37-47, 2009.
DOI : 10.1109/MSP.2009.932122

O. Villa, Effects of Floating-Point non-Associativity on Numerical Computations on Massively Multithreaded Systems, 2009.

. Wikipedia, Computer simulation ? Wikipedia The Free Encyclopedia. [Online ; accessed 2 URL: https, 2016.