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Dimitrios Thilikos. Thank you Marcin and Dimitrios for your constant availability
and for the freedom you gave me during these three years under your guidance.
I enjoyed the different topics we studied together, the blackboard sessions in Warsaw,
Montpellier and Paris, as well as your advice and discussions about the academic
world and life in general. Thank you Marcin for your valuable help with the Polish
paperwork.

Then, I would like to thank all the members of my defence committee: Stéphane
Bessy, Fedor Fomin, Petr Golovach, Laurent Imbert, Łukasz Kowalik, Nicolas Nisse,
Jerzy Tiuryn, and Nicolas Trotignon. Thank you for accepting to be part of my com-
mittee and for travelling to Montpellier the day of my defense. Thank you Petr and
Nicolas N. for accepting to review this thesis, for your interest in my work, for your
careful reading of my manuscript and for the improvements you suggested. In gen-
eral, thanks to all those who suggested improvements to the manuscript.

I also want to thank Agnieszka Graff who accepted to be my examiner for the
complementary discipline and who provided me with good reading.

Je remercie l’équipe AlGCo du LIRMM pour son ambiance, sa dynamique, pour la
proximité qui y règne entre thésards et permanents, pour les repas (festins?) d’équipe,
pour les voyages que vous m’avez permis de faire. Thanks also to the Algorithms
team of the University of Warsaw. Merci aux autres thésards montpelliérains pour
avoir distrait mes repas par vos débats toujours différents : Julien Baste, François
Dross, Valentin Garnero, Guillaume Guégan, Sabrina Ouazzani, Swann Rocher, et
j’en oublie sans doute. Thanks also to my officemates in Warsaw.

Thanks to all my coauthors and all those with whom I have had interesting re-
search discussions, in particular Aistis Atminas, Florian Barbero, Jarosław Błasiok,
Nicolas Bousquet, Dimitris Chatzidimitriou, Vincent Cohen-Addad, François Dross,
Archontia Giannopoulou, Gwenaël Joret, O-joung Kwon, Guillaume Lagarde, Marcin
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UNE INTRODUCTION EN FRANÇAIS

This chapter is a translation of Chapter 1 to French language.

Imaginons une collection d’objets, possiblement infinie. Dans cette collection, cer-
tains objets peuvent être plus désirables que d’autres. Il peut aussi arriver que deux
objets soient incomparables, c’est à dire qu’aucun ne soit plus désirable que l’autre.
Une illustration est donnée dans la figure 1, où les objets ordonnés sont des fruits.
Dans un tel diagramme, qu’on appelle diagramme de Hasse, un élément x est supé-
rieur (pour l’ordre considéré) à un élément y s’il y a un chemin de haut en bas reliant
x à y. Par exemple, on voit sur le diagramme de la figure 1 que la cerise est plus dé-
sirable que le kiwi, car le chemin cerise-abricot-kiwi va de bas en haut. Il faut noter
que certains fruits, comme la framboise et la mirabelle, ne sont pas comparables.

figue

mirabelleframboisecerise

raisin abricot poire

kiwi

FIGURE 1 : Quelques fruits ordonnés par désirabilité.

Fixons un objet x et considérons tous les objets qui ne sont pas plus désirables
que x. Cela inclut les objets qui sont moins désirables que x, mais aussi ceux qui n’y
sont pas comparables. Les fruits de la figure 1 dont le nom est souligné sont ceux
qui ne sont pas plus désirables que l’abricot. Un thème central de cette thèse, pour
diverses collections d’objets et notions de désirabilité, est l’étude des objets qui ne sont
pas plus désirables que x. À quoi ressemblent-ils ? Quelle est leur structure? Quelles

11



sont leurs propriétés? Pour continuer l’exemple de la figure 1, on peut remarquer
qu’un point commun à tous les fruits qui ne sont pas plus désirables que l’abricot est
d’avoir des pépins1.

Les objets que nous considérons dans cette thèse sont les graphes et le concept de
désirabilité est remplacé par divers ordres partiels : sous-graphes, sous-graphes in-
duits, mineurs, mineurs topologiques, mineurs induits, immersions, etc., qui la plu-
part du temps expriment qu’un graphe est contenu comme sous-structure d’un autre.
La figure 2 présente les (classes d’isomorphisme des) graphes qui peuvent être ob-
tenus en subdivisant les arêtes du graphe complet à cinq sommets (dessiné au bas
de la figure), ordonné(e)s par l’ordre correspondant. Bien entendu, cette figure est
incomplète car il y a une infinité de tels graphes.

...
...

...
...

...
...

...

FIGURE 2 : Subdivisions de K5.

Un des premiers théorèmes à établir les propriétés d’une classe de graphes defi-
nie par sous-structure interdite est la caractérisation des graphes planaires par Kura-
towski (voir la figure 3 pour un dessin des graphes mentionnés).

Théorème 0.1 (Théorème de Kuratowski, 1930 [Kur30]2). Un graphe est planaire3 si et
seulement si il ne contient pas de sous-graphe qui est une subdivision de K5 ou K3,3.

1Un fruit de ce diagramme montre que la présence de pépins n’est pas une caractérisation des fruits
qui ne sont pas plus désirables que l’abricot (lequel?).

2D’après [Bur78], ce résultat a été indépendamment obtenu par Pontryagin, mais jamais publié.
3On dit qu’un graphe est planaire s’il peut être dessiné dans le plan sans croisement d’arêtes.
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FIGURE 3 : Les graphes de Kuratowski K5 et K3,3 (de gauche à droite).

Une particularité notable de ce résultat est qu’il décrit une propriété topologique,
être planaire, en termes purement combinatoriaux : l’absence de certaines sous-structures
dans le graphe. Souvent présenté comme un précuseur de la théorie des graphes mo-
derne, le théorème de Kuratowski a été l’initiateur d’une longue lignée de résultats
sur les classes définies par exclusion d’une sous-structure donnée. L’un d’entre eux
est le théorème de Turán, qui donne un majorant au nombre d’arêtes d’un graphe ne
contenant par un grand sous-graphe complet.

Théorème 0.2 (Théorème de Turán, 1941 [Tur41]). Soient p ≥ 2 un entier etG un graphe
qui ne contient pas de sous-graphe complet à p sommets. Si G a n sommets, alors son nombre
d’arêtes est au plus :

p− 2

2(p− 1)
· n2.

Turán a également obtenu une description des graphes avec un nombre maximal
d’arêtes (à nombre de sommets fixé) parmi ceux qui ne contiennent pas un sous-
graphe complet d’une taille donnée. Il faut noter que, contrairemement au théorème
de Kuratowski, le théorème de Turán donne une borne sur un invariant de graphes
(ici, le nombre d’arêtes). C’est un autre type de théorèmes sur les classes de graphes
excluant une sous-structure, que nous considérons dans cette thèse.

Nous présentons désormais un troisième type de théorèmes sur ces classes, qui
décrivent comment leurs éléments peuvent être construits à partir de blocs de base.
Dans la longue et fructueuse suite de papiers Graph Minors, Robertson et Seymour
ont donné une description générale des graphes ne contenant pas un gros graphe
complet comme mineur [RS03]. Ce théorème fournit une description structurelle de
ces graphes : à quoi ils ressemblent et comment ils peuvent être décomposés. Infor-
mellement, Robertson et Seymour ont prouvé que ces graphes peuvent être obtenus
en attachant ensemble sous forme arborescente des graphes qui peuvent être “pres-
que” plongés dans une surface de genre borné. On ne donnera pas ici d’énoncé plus
précis de ce théorème car cela nécéssiterait d’introduire beaucoup trop de définitions.
Mentionnons tout de même qu’outre sa valeur combinatoire, ce résultat est une pierre
angulaire de la preuve du Théorème de Robertson et Seymour que nous rencontre-
rons d’ici quelques paragraphes.

Les trois théorèmes énoncés ci-dessus donnent différentes conclusions à propos
des classes considérées : le premier fournit une information topologique, le second
une majoration d’un invariant pour tous les graphes de la classe et le troisième la
structure des graphes. Notre but en énonçant ces théorèmes est de présenter les types
de résultats qu’on peut obtenir à propos des classes définies par exclusion de sous-
structure.
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Cette thèse est centrée autour des théorèmes d’exclusion. Nous présentons main-
tenant deux sujet connexes et qui recevront notre attention dans cette thèse : les beaux
préordres et la propriété d’Erdős–Pósa.

Beaux préordres

Revenons à notre exemple initial d’une collection d’objets dont certains sont plus
désirables que d’autres. Supposons qu’on nous demande de choisir un objet dans
cette collection. Quelles propriétés garantissent qu’un tel choix est toujours aisé? Si
la collection contient plusieurs objets qui sont deux à deux incomparables, on peut
choisir parmi eux en lançant un dé. Toutefois, cela n’est plus possible si ces objets
incomparables sont en nombre infini, en supposant qu’on veut un choix équitable. Il
est aussi possible que la collection contienne une séquence infinie d’objets de plus en
plus désirables : dans ce cas on ne peut pas trouver un objet le plus désirable parmi
eux (voir la figure 4).

. . .

Un nombre infini d’objets incomparables.

. . .

Une séquence croissante infinie.

FIGURE 4 : Deux situations où le choix est difficile.

Cela nous amène à considérer des collections où ces deux comportements sont
bannis. C’est plus ou moins la définition d’un beau préordre. Formellement, un beau
préordre est un préordre (i.e. une relation binaire réflexive et transitive) qui ne contient
pas de collection infinie d’éléments deux à deux incomparables, ni de séquence dé-
croissante infinie4. Ce concept est une extension de la notion de bon ordre, qui s’ap-
plique usuellement à des ordres totaux (voir [Mos06, Chapitre 7] pour une intro-
duction aux bons ordres), aux particularités des ordres partiels, où deux éléments
ne sont pas toujours comparables. Dans un bon ordre, seules les séquences décrois-
santes infinies sont interdites, car il n’y a pas de collection d’éléments incomparables
qui possède plus d’un élément. L’intérêt porté aux bons ordres en mathématiques
est partiellement dû au fait qu’ils sont utilisés, souvent implicitement, dans plusieurs
techniques de démonstration répandues, comme la récurrence (ou plus généralement
l’induction), les démonstrations par contre-exemple minimal et la technique de des-
cente infinie qui y est liée. Les bons ordres peuvent aussi être utilisés pour s’assurer
qu’un programme termine (ou, similairement, qu’un système de réécriture termine) :
si chaque état de l’exécution du programme est inférieure à l’état précédent pour un

4Bien que cette définition diffère légèrement de l’exemple donné ci-dessus où les séquences crois-
santes infinies sont interdites, c’est la même chose si on considère l’ordre dual où x est au moins y ssi
y est au moins x dans l’ordre original.
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bon ordre précautionneusement choisi, alors le programme terminera en un nombre
fini d’étapes. Cela est facilité par l’utilisation de types de données récursifs (comme
les listes et les arbres), qui sont souvent bonnement ordonnés [MP67, Bur69]. Les pre-
mières occurrences du concept de beau préordre sont apparues au début des années
1950 dans les publications de Higman [Hig52] et Erdős et Rado [ER52]. Avant cela,
Vazsonyi avait conjecturé que toute séquence infinie d’arbres finis contient une paire
d’arbres qui sont comparables par plongement homéomorphique, ce qui revient à
demander s’ils forment un beau préordre. Un autre précurseur du concept de beau
préordre peut être trouvé dans le travail de Kurepa, d’après [Kru72].

En théorie des graphes, il est courant de considérer des classes qui sont closes
pour un certain ordre, c’est à dire où tout graphe qui est inférieur à un graphe de la
classe en est aussi membre. Par exemple, la classe des graphes sans cycles est close
pour la relation de sous-graphe, car aucun sous-graphe d’un graphe sans cycles ne
contient de cycle. L’importance des beaux préordres en théorie des graphes et en
algorithmique est due au fait suivant : dans un beau préordre, le complémentaire
d’une classe close a un nombre fini d’éléments minimaux. Cela découle de la défi-
nition, car ces éléments étant minimaux, ils sont deux à deux incomparables. Ainsi,
afin de vérifier si un élément x appartient à une classe close d’un beau préordre, il
suffit de s’assurer que x n’est pas supérieur à y, pour un nombre fini d’objets y (les
éléments minimaux du complémentaire). En d’autres termes, toute classe close d’un
beau préordre peut être caractérisée par la négation d’un nombre fini d’inégalités.

Un des plus considérables résultats ayant trait aux beaux préordres de graphes
est certainement le théorème de Robertson et Seymour déjà mentionné plus haut.

Théorème 0.3 (Théorème de Robertson et Seymour, [RS04]). La relation de mineur est
un beau préordre sur les graphes finis.

Ses conséquences, importantes en combinatoire et théorie des graphes, touchent
aussi des domaines connexes comme l’algorithmique et ses liens avec la logique et
la complexité computationnelle. La démonstration du théorème de Robertson et Sey-
mour est longue et repose sur le théorème de structure de Robertson et Seymour.
Pour les raisons mentionnées ci-dessus, un corollaire du théorème 0.3 est que toute
classe de graphe close par mineur peut être caractérisée par un nombre fini de mi-
neurs exclus. D’une certaine manière, le théorème de Robertson et Seymour donne
un théorème du même type que le théorème de Kuratowski pour toute classe qui est
close par mineur. Il faut remarquer que la liste finie de graphes exclus n’est pas don-
née par le théorème, qui ne stipule que son existence. Complété par un algorithme qui
décide en temps polynomial si un graphe fixé est un mineur de l’entrée (également
issu de Graph Minors [RS95]), le théorème de Robertson et Seymour implique aussi
(encore une fois, purement existentiellement) que les problèmes de décision associés
à des classes de graphes closes par mineur peuvent être résolus en temps polyno-
mial. Le lecteur pourra se référer à [Lov06, Joh87] pour avoir une vue d’ensemble sur
la théorie des mineurs et ses conséquences algorithmiques.

Les autres préordres usuels sur les graphes ne sont pas aussi généreux : il ne sont
en général pas de beaux préordres. Ce fait est illustré par figure 5 : aucun cycle est un
sous-graphe d’un plus grand cycle. Cela nous conduit à poser la question d’identifier
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. . .

FIGURE 5 : Les cycles forment un ensemble infini de graphes deux à deux incompa-
rables pour l’ordre de sous-graphe.

les classes où ces préordres sont beaux.
Dans cette thèse, nous répondons partiellement à cette question pour plusieurs

préordres des graphes, ce qui complète les résultats existants. Un rôle de premier plan
dans nos démonstrations est joué par des théorèmes de décomposition, qui décrivent
la structure des graphes excluant une certaine sous-structure. En effet, de tels graphes
ont souvent une forme ou une structure spécifique qui peut alors être utilisée pour
les découper en objets plus simples et finalement les ordonner.

La propriété d’Erdős–Pósa

Nous considérons maintenant un sujet apparemment indépendant et montrons ce qui
le lie aux théorèmes d’exclusion. Pour commencer avec un exemple concret, considé-
rons un jeu pour enfant (répandu par [Mod], voir également [GOB06]). Considérons
une grille qui représente un jardin. Ce jardin est envahi par des rats, qui sont repré-
sentés par des formes identiques faites de cases adjacentes avec une orientation fixée.
Le but du jeu est de protéger le jardin en plaçant des pièges (qui occupent une case
chacun) de manière à ce que tout rat présent dans le jardin touche un piège. Un rat et
un piège sont dessinés sur la figure 6.

Un rat Un piège

FIGURE 6 : Rats et pièges.

Bien entendu, on pourrait mettre un piège sur chaque case, mais le but est d’uti-
liser le moins de pièges que possible. En guise d’exemple, la figure 7 présente deux
situations : un jardin avec cinq rats (peut-on en avoir plus?) et un jardin protégé par
neuf pièges (peut-on en utiliser moins?). Il faut noter que ce jeu a un grand nombre
de variantes : chaque choix d’un jardin (qui peut être une plus grande grille ou une
forme plus biscornue) et d’un rat donne un nouveau jeu.

Cet exemple nous permet de définir deux nombres : le premier est le nombre
maximum p de rats qui peuvent habiter le jardin sans partager une case et le second
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Une invasion de rats Le jardin protégé par des pièges

FIGURE 7 : La chasse au rat.

est le nombre minimum c de pièges à même de protéger le jardin. Observons que
c vaut toujours au moins p. En effet, si p rats sont présents dans le jardin, alors le
protéger demande à placer, au minimum, un piège par rat. Mais il y a des situations
où plus de p pièges sont nécessaires, ce qui soulève les questions suivantes :

(1) Quelle est le lien entre c et p? En particulier, peut-on majorer c par une fonction
de p?

(2) Peut-on facilement calculer les valeurs de p et de c?

Il n’est pas difficile de voir que, si on considère p rats dans le jardin, on peut pro-
téger ce dernier en plaçant un piège sur chaque case occupée par un rat. Comme
chaque rat occupe trois cases, on obtient c ≤ 3p. Peut-on faire mieux? Une variante
de ce jeu est de protéger le jardin de plusieurs espèces avec des formes différentes,
par exemple rats et serpents, ces derniers étant définis comme suite de trois cases
consécutives. On suppose que les pièges utilisés sont aussi efficaces contre les ser-
pents. Le problème change : comme la figure 8 le suggère, une disposition de pièges
protégeant contre les rats ne protège pas toujours contre les serpents. Par ailleurs, le
nombre maximum de rats et de serpents qui peuvent habiter le jardin est potentielle-
ment plus grand que p.

De retour aux graphes, on peut définir des invariants similaires. Étant donnés un
graphe G et une classe de graphesH, le nombre de packing deH dans G est le nombre
maximum de graphes de H (répétitions permises) qui peuvent être trouvés dans G
sans se superposer. Ici, G joue le rôle du jardin et H celui de la liste des animaux in-
désirables. De même, le nombre de couverture de H dans G est la taille minimale d’un
ensemble de sommets (correspondant à des pièges) qui touchent chaque occurrence
d’un graphe de H dans G. Les nombres de packing et de couverture incarnent les
nombres p et c, respectivement. Les mêmes questions que ci-dessus peuvent être po-
sées dans ce contexte. Un exemple d’un théorème classique répondant à la question
(1) est le théorème de Kőnig.

17



Un serpent Un serpent évitant les pièges

FIGURE 8 : Une solution pour rats n’est pas toujours une solution pour serpents.

Théorème 0.4 (Theorème de Kőnig, 1931 [Kőn31]). Dans tout graphe biparti, le nombre
maximal d’arêtes sommet-disjointes est égal au nombre minimal de sommets touchant toutes
les arêtes.

Ce théorème peut être reformulé comme suit : les nombres de packing et de cou-
verture de {K2} sont égaux dans les graphes bipartis. Pour une classe H de graphes,
il se peut que ces nombres ne soient pas égaux, mais que le nombre de couverture de
H soit majoré par une fonction de son nombre de packing. Dans ce cas, on dit que H
a la propriété d’Erdős–Pósa. Ce nom tire son origine du résultat suivant, prouvé dans
les années 1960 par Erdős et Pósa.

Théorème 0.5 (Théorème d’Erdős–Pósa, 1965 [EP65]). Il existe une fonction f : N → N
telle que, pour tout graphe G et tout entier naturel k, soit G contient k cycles deux à deux
sommet-disjoints, soit il a un ensemble de f(k) sommets dont la suppression rend le graphe
acyclique.

En d’autres termes, ce théorème révèle que la classe des cycles a la propriété
d’Erdős–Pósa. Cependant, toutes les classes de graphes n’ont pas cette propriété. Par
exemple, c’est le cas de la classe des cycles impairs, comme énoncé ci-dessous.

Théorème 0.6 ([DL88, Ree99]). Il existe une famille de graphes {Gi}i∈N telle que pour
tout i ∈ N, le nombre de packing des cycles impairs dans Gi est 1 tandis que le nombre de
couverture est au moins i.

Une illustration d’un graphe d’une telle famille est donnée dans la figure 9. Il a
été démontré que ce graphe ne contient pas deux cycles impairs sommet-disjoints.
Cependant, on peut facilement vérifier qu’en privant le graphe de trois sommets on
garde toujours un cycle impair intact, quels que soient ces sommets.

Les résultats de la forme du Théorème d’Erdős–Pósa sont intéressants car ils connectent
des invariants issus de problèmes apparemment orthogonaux. Ils nous invitent à ex-
plorer la dualité des problèmes de packing et de couverture. Mentionnons également
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FIGURE 9 : Un mur d’Escher de hauteur 4.

qu’ils ont trouvé des applications en algorithmique (voir par exemple [FLMS12, Co-
rollary 2] pour une preuve simple utilisant le théorème d’Erdős–Pósa) et en bioin-
formatique [ARS16, ADG04, Ara08]. Ainsi, de considérables efforts ont été déployés
pour identifier les classes qui ont la propriété d’Erdős–Pósa, c’est à dire répondre à
la question (1). Il se trouve que dans de nombreuses situations, une réponse à cette
dernière peut être obtenue en considérant des deux cas suivants :

1. le graphe considéré a un nombre de packing grand ;

2. un certain invariant structurel du graphe (le plus souvent la largeur arbores-
cente ou un paramètre “arborescent” alternatif) est majoré.

Le premier cas permet de conclure immédiatement, tandis que l’information structu-
relle que la majoration du second cas apporte permet de construire une petite cou-
verture. Il faut toutefois s’assurer, pour appliquer ce schéma de preuve, qu’un de
ces deux cas se présente pour les graphes considérés. Les théorèmes d’exclusion du
type du Théorème de Turán nous fournissent une telle dichotomie : quand une sous-
structure est absente du graphe, la majoration d’un certain invariant est donnée.

La question (2) peut elle aussi être posée dans le contexte des graphes. Cepen-
dant, pour de nombreuses classes de graphes, calculer les nombres de packing et de
couverture est un problème NP-dur [GJ79]. Les deux options naturelles pour les at-
taquer sont la complexité paramétrée et les algorithmes d’approximation (voir par
exemple [FLMS12, FLM+16]).

Dans cette thèse, nous continuons la longue lignée de recherche sur la propriété
d’Erdős–Pósa en répondant à la question (1) pour diverses classes de graphes. Nous
considérons également les problèmes algorithmiques de la question (2), pour lesquels
nous concevons un algorithme d’approximation pour certaines classes de graphes.
Ces algorithmes reposent sur des théorèmes d’exclusion, mais aussi sur le fait que les
classes considérées ont la propriété d’Erdős–Pósa.
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Aperçu des résultats et organisation de la thèse

La plupart des définitions et notions utilisées dans cette thèse sont définies dans
le chapitre 2.

Beaux préordres. Le chapitre 3 est dédié aux questions liées aux beaux préordres.
Dans ce chapitre, nous présentons des outils généraux pour prouver des résultats sur
les beaux préordres (section 3.3). Nous utilisons ensuite ces techniques ainsi que les
antichaînes de la section 3.5 pour démontrer trois résultats :

1. une caractérisation des classes de graphes définies par un mineur induit exclu
qui sont bellement préordonnés par la relation de mineur induit, dans la sec-
tion 3.6 ;

2. une caractérisation similaire pour la relation de contraction, dans la section 3.7 ;
et

3. une caractérisation des classes de multigraphes qui sont closes par contraction
et bellement préordonnées par la relation de contraction, dans la section 3.8.

Ces trouvailles complètent les résultats existants sur ces préodres de graphes qui ne
sont pas beaux en général. Elles sont obtenues via des théorèmes de décomposition
pour les graphes excluant une sous-structure, pour la plupart prouvés dans les sec-
tions correspondantes.

Théorèmes d’exclusion. Dans le chapitre 4 nous nous penchons sur les théorèmes
d’exclusion qui majorent un invariant des graphes excluant une sous-structure. Nous
obtenons :

1. une majoration d’un paramètre similaire à la maille des graphes excluant un
grand graphe complet comme mineur, dans la section 4.1 ;

2. une majoration du degré des graphes qui excluent une grande collection de
multiarêtes comme mineur, dans section 4.2 ;

3. une majoration (basse5) de la largeur arborescente des graphes excluant divers
graphes planaires comme mineurs, dans section 4.3 ; et

4. une majoration de la largeur de coupe arborescente des graphes excluant un
graphe planaire sous-cubique comme immersion, dans section 4.4.

La plupart de ces résultats sont utilisés dans les chapitres suivants.

5C’est à dire plus basse que la majoration donnée par les théorèmes généraux.
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La propriété d’Erdős–Pósa. Le chapitre 5 traite des liens entre les invariants de pa-
cking et de couverture. Il se découpe en trois parties :

1. une présentation de techniques générales pour prouver des résultats de type
Erdős–Pósa, soit à partir de décompositions arborescentes, soit en utilisant des
invariants comme la maille, section 5.3 ;

2. une application de ces techniques à plusieurs classes de graphes dans la sec-
tion 5.4, le plus souvent en utilisant les théorèmes d’exclusion démontrés dans
le chapitre 4 ;

3. un résumé des résultats positifs et négatifs sur la propriété d’Erdős–Pósa, la
section 5.6.

Applications algorithmiques. Nous présentons dans le chapitre 6 un algorithme
d’approximation pour calculer les nombres de packing et de couverture de certaines
classes de graphes. La démonstration définit une notion d’équivalence de graphes
vis-à-vis du problème considéré, ce qui permet de réduire un graphe dès qu’une cer-
taine sous-structure apparaît. En utilisant un résultat de la section 4.1, on peut alors
soit continuer à réduire le graphe, soit utiliser les arguments de la section 5.3 pour
conclure.

Conclusion. Nous concluons cette thèse par le chapitre 7 qui revient sur les résul-
tats présentés, énonce quelques problèmes ouverts et liste les publications obtenues
durant la préparation de la thèse.
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CHAPTER 1

INTRODUCTION

Imagine a (possibly infinite) collection of objects. In this collection, some objects may
be more desirable than others. It might also happen that two objects are not compa-
rable, that is, neither of them is more desirable than the other. An illustration is given
in Figure 1.1, where the ordered objects are fruits. In such a diagram, called a Hasse
diagram, an element x is greater (for the considered order) than an element y if there
is a top-bottom path from x to y. For instance, the diagram of Figure 1.1 shows that a
cherry is more desirable than a kiwi, because the path cherry-apricot-kiwi never goes
up. Note that some fruits (like raspberry and mirabelle) are not comparable.

fig

mirabelleraspberrycherry

grape apricot pear

kiwi

Figure 1.1: Some fruits ordered by desirability.

For a particular object x of the considered collection, let us consider all the objects
that are not more desirable than x. This includes objects that are less desirable than
x, but also those that are not comparable with it. The fruits of Figure 1.1 that are
underlined are those that are not more desirable than the apricot. A central theme
in this thesis, for various collections of objects and notions of desirability, is the study
of these objects that are not more desirable than x. How do they look like? What is
their structure? What are their properties? Continuing the example of Figure 1.1, a
feature shared by all fruits that are not more desirable than the apricot is that they
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have multiple seeds1.
The objects that we consider in this thesis are graphs and the desirability concept

is expressed by several partial orderings of graphs: subgraphs, induced subgraphs,
minors, topological minors, induced minors, immersions, etc., that most often ex-
press that a graph is contained as a substructure of an other. Figure 1.2 presents
(isomorphism classes of) graphs that can be obtained by subdividing edges of the
complete graph on five vertices, depicted at the bottom of the figure, ordered by the
corresponding order. Naturally, this picture is incomplete as there are infinitely many
such graphs.

...
...

...
...

...
...

...

Figure 1.2: Subdivisions of K5.

One of the first theorems that established the properties of a class of graphs de-
fined by forbidden substructures is the characterization of planar graphs by Kura-
towski (see Figure 1.3 for a picture of the mentioned graphs).

Theorem 1.1 (Kuratowski’s Theorem, 1930 [Kur30]2). A graph is planar3 iff it does not
contain a subgraph that is a subdivision of K5 or K3,3.

1A fruit in this diagram shows that the presence of multiple seeds is not a characterization of fruits
that are not more desirable than the apricot (which one?).

2According to [Bur78], this result has be independently obtained by Pontryagin, but never pub-
lished.

3We say that a graph is planar if it can be drawn on the plane without crossing edges.
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Figure 1.3: Kuratowski’s graphs K5 and K3,3 (from left to right).

A feature that made this result famous is that it describes a topological property,
being planar, in purely combinatorial terms: the absence of a substructure in the
graph. Often cited as a precursor of modern Graph Theory, Kuratowski’s Theorem
has been followed by a long line of results on classes defined by excluding a given
substructure. One of them is Turán’s Theorem, which gives an upper-bound on the
number of edges of a graph not containing a large complete subgraph.

Theorem 1.2 (Turán’s Theorem, 1941 [Tur41]). Let p ≥ 2 be an integer, and let G be a
graph that does not contain a complete subgraph on p vertices. If G has n vertices, then its
number of edges is at most:

p− 2

2(p− 1)
· n2.

Turán also provided a precise description of the graphs with the maximum num-
ber of edges that do not contain a complete subgraph of a given size. We should note
that, unlike Kuratowski’s Theorem, Turan’s theorem provides a bound on a graph
invariant (here, the number of edges). This is an other type of theorems on graphs
excuding a substructure that we consider in this thesis. Let us now present a third
type of such theorems, which describes how graphs of a class excuding a substructure
can be constructed from basic blocks.

In the long and fruitful series of papers Graph Minors, Robertson and Seymour
gave a general depiction of the graphs not containing a large complete graph as a
minor [RS03]. This result, known as the Graph Minor Structure Theorem, provides
a structural description of these graphs: what they look like and how they can be
decomposed. Informally, they proved that these graphs look like graphs that are “al-
most embedded” in surfaces of bounded genus glued together in a tree-like fashion.
We do not give a precise statement of this theorem here as it would require to in-
troduce many more definitions. Let us mention that in addition to its combinatorial
value, this result is a cornerstone of the proof of the Graph Minor Theorem [RS04]
that we will meet again in a few paragraphs.

The three theorems stated above yielded different conclusions about the consid-
ered classes: the first one provides us with topological information, the second one
upper-bounds an invariant for all graphs in this class, and with the third one we
learn about the structure of the graphs. Our purposes in introducing these theorems
are to present possible outcomes of results on classes defined by excluded substruc-
tures. Those considered in this thesis are that are bounds on invariants and structural
decompositions of graphs.

This thesis is centered around exclusion theorems. We now present two related
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topics that will receive attention in this thesis: well-quasi-orderings and the Erdős–
Pósa property.

Well-quasi-ordering

Let us go back to our initial example of a collection of objects, some of which are
more desirable than others. Imagine now that we are asked to choose one object
in this collection. What properties ensure that such a choice is always easy? If the
collection contains several desirable objects that are pairwise not comparable, we can
choose among them by rolling a dice. However this is not possible when these non
comparable objects are infinitely many, assuming that we want a fair choice. An
other situation that may occur is when the collection contains an infinite sequence
of objects that are ever more desirable: in this case we cannot find a most desirable
object among them (see Figure 1.4).

. . .

Infinitely many incomparable objects.

. . .

An infinite increasing sequence.

Figure 1.4: Two situation where the choice is hard.

This leads us to consider collections where these two behaviors are forbidden.
This is more or less the definition of a well-quasi-order. Formally, a well-quasi-order is
a quasi-order (that is, a reflexive and transitive binary relation) that contains neither
infinite collections of incomparable elements, nor infinite decreasing sequences4. This
concept is an extension of that of a well-order, usually defined for total orders (see
[Mos06, Chapter 7] for an introduction to well-ordering), to the setting of partial or-
ders, where two elements are not always comparable. In a well-order, only infinite de-
creasing sequences are forbidden, as there is no collection of incomparable elements.
The popularity of well-orders in mathematics is partly due to the fact that they are
used (often implicitly) in several widely-spread proof techniques such as induction,
proofs by minimal counterexample, and the related infinite descent technique. Well-
orders can also be used to ensure program termination (or similarly, the termination
of a rewriting system): if every state of the program execution is lower than its an-
terior step for some carefully chosen well-order, then the program will eventually
terminate. This is facilitated by the use of recursively defined data types (as lists and
trees), which are often well-ordered [MP67, Bur69]. The first mentions of the concept
of well-quasi-order appeared in the early 50’s in papers of Higman [Hig52] and Erdős

4While this definition slightly differs from the example we give above where infinite increasing
sequences are forbidden, it is quite the same if we consider the dual order where x is at least y iff y is
at least x in the original order.
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and Rado [ER52]. Prior to that, Vazsonyi conjectured that any infinite sequence of
finite trees contains a pair of trees that are comparable under homeomorphic embed-
ding, which is equivalent to well-quasi-ordering. An other forerunner of the concept
of well-quasi-ordering can be found in the work of Kurepa, according to [Kru72].

In Graph Theory, one often deals with classes that are closed with respect to some
ordering, i.e. every graph that is lower than a graph of the class also belongs to it. For
instance, the class of acyclic graphs is closed with respect to the subgraph relation,
because no subgraph of an acyclic graph contains a cycle. The importance of well-
quasi-orders in Graph Theory and Algorithms is due to the following fact: in a well-
quasi-order, the complementary of a closed class has finitely many minimal elements.
This follows from the definition, as these elements, being minimal, are incomparable.
Therefore, in order to decide if an object x belongs to a closed subclass of a well-
quasi-order, one simply needs to check that x is not greater than y, for finitely many
objects y (the minimal elements of the complementary). In other words, every closed
subclass of a well-quasi-order can be characterized by a finite number of (negated)
inequalities.

One of the most considerable results on well-quasi-ordering in Graph Theory is
arguably the already mentioned Graph Minor Theorem of Robertson and Seymour.

Theorem 1.3 (Graph Minor Theorem, [RS04]). Finite graphs are well-quasi-ordered by
the minor relation.

The above theorem is considered as one of the most striking results in modern
combinatorics. It had a strong impact, in Combinatorics and Graph Theory, but also
in related fields as Algorithms and their connections to Logic and Computational
Complexity. The proof of the Graph Minor Theorem is lenghty and relies on the
Graph Minor Structure Theorem. For the aforementioned reasons, a corollary is that
every class of graphs that is closed under taking of minors has a characterization in
terms of finitely many excluded minors. In some sense, the Graph Minor Theorem
provides a Kuratowski-type exclusion result for every class that is closed with respect
to minors. It should be noted that the finite list of excluded minors is not given by the
theorem, which only provides its existence. Together with an algorithm that decides
if a fixed graph is a minor of the input graph in polynomial time (also originating
from the Graph Minors series [RS95]), the Graph Minor Theorem also implies (again,
purely existentially) that decision problems associated to classes that are closed under
taking of minors can be solved in polynomial time. The reader is refered to [Lov06,
Joh87] for an account on Minor Theory and its algorithmic consequences.

Other natural orderings of graphs are not so generous; they usually do not well-
quasi-order all graphs. An illustration of this fact is given in Figure 1.5: no cycle is a
subgraph of a larger cycle. This raises the question of identifying the subclasses that
are well-quasi-ordered.

In this thesis we provide a partial answer to this question for several orderings
on graphs, complementing existing results. Essential parts of our proofs are decom-
position theorems, which provide structural information about graphs excluding a
certain substructure. Indeed, graphs in these classes often have a specific shape or
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. . .

Figure 1.5: Cycles form an infinite set of graphs that are pairwise not comparable for
the subgraph ordering.

structure, that can be used to dissect them into simpler objects, and eventually order
them.

The Erdős–Pósa property

We now move to a seemingly unrelated topic and show how it is connected to exclu-
sion theorems. Let us start with a concrete example, which is a mathematical puzzle
for children (popularized by [Mod], see also [GOB06]). We consider a grid that rep-
resents a garden. Imagine that this garden is invaded by rats, which are represented
by identical shapes of adjacent cells with a fixed orientation. The goal of the game is
to defend the garden, that is, to dispose traps (that cover one cell each) so that any rat
in the garden would meet a trap. A rat and a trap are depicted in Figure 1.6.

A rat A trap

Figure 1.6: Rats and traps.

Naturally, we could place one on every cell, but we aim at using as few traps
as possible. Figure 1.7 depicts five rats in the garden (can we have more?) and an
arrangement of traps that defend the garden (can we use less?). Observe that this
puzzle has a wealth of variants: each choice of a garden (which could be a larger
grid, or a more convoluted shape) and of a rat gives rise to a new problem.

This example allows us to define two numbers: the first one is the maximum
number p of rats that fit in the garden without sharing a cell, and the second one
is the minimum number c of traps required to defend the garden. Observe that c is
always at least p. Indeed, if p rats are present in the garden, then for every rat, we
need to place a trap on some of the cells it occupies. However, in some situations we
may need more than p traps. This raises the following questions.

(1) What is the relation between c and p? In particular, can we bound c from above
by a function of p?
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Rats invading the garden Traps defending the garden

Figure 1.7: Hunting rats.

(2) Can we easily compute the values of p and c?

It is easy to see that, if we consider p rats in the garden, placing a trap on each cell
they occupy is enough to defend the garden. As a rat fills three cells, we get c ≤ 3p.
Can we do better? An variant of this puzzle is to protect the garden against several
animals species with different shapes, for instance rats and snakes, where a snake is
defined as 3 consecutive cells. We assume that our traps are efficient against snake as
well. The problem then becomes different: as Figure 1.8 suggests, a trap arrangement
protecting against rats may not protect against snakes. Also, the maximum number
of rats or snakes that fit in the garden is potentially larger than p.

A snake A snake avoiding traps

Figure 1.8: A solution for rats is not always a solution for snakes.

Coming back to the setting of graphs, we can define similar invariants. Given
a graph G and a class H, the packing number of H in G is the maximum number of
graphs in H (with repetitions allowed) that can be found in G without overlapping.
Here,G plays the role of the garden, andH that of the list of potential pests. Similarly,
the covering number of H in G is the minimum size of set of vertices (corresponding
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to traps) that meet every occurrence of a graph of H in G. Packing and covering
numbers mirror the numbers p and c, respectively. The same questions as above can
be asked in this setting. An example of a classic theorem answering question (1) is
Kőnig’s Theorem.

Theorem 1.4 (Kőnig’s Theorem, 1931 [Kőn31]). In a bipartite graph, the maximum num-
ber of pairwise vertex-disjoint edges is equal to the minimum number of vertices that meet all
edges.

This theorem can be restated as follows: the packing and covering numbers of
{K2} are equal in bipartite graphs. For some class H of graphs, it may happen that
these numbers are not equal, but that the covering number of H is bounded from
above by a function of its packing number. In this case, H is said to have the Erdős–
Pósa property. This name originates from the next result, proved in 60’s by Erdős and
Pósa.

Theorem 1.5 (Erdős–Pósa Theorem, 1965 [EP65]). There is a function f : N → N such
that for every graph G and every positive integer k, either G has k pairwise vertex-disjoint
cycles, or there is a set of f(k) vertices, the removal of which yields an acyclic graph.

In other words, this theorem states that the class of cycles have the Erdős–Pósa
property. However, there are classes of graphs that do not have the Erdős–Pósa prop-
erty. One of them is the class of cycles of odd length, as stated below.

Theorem 1.6 ([DL88, Ree99]). There is a family {Gi}i∈N of graphs such that for every i ∈ N,
the packing number of odd cycles in Gi is one and the covering number is at least i.

An illustration of a graph in this family is provided by Figure 1.9. It has been
proved that this graph does not contain two vertex-disjoint odd cycles. However one
can easily check that removing any three vertices keeps some odd cycle intact.

Figure 1.9: An Escher wall of height 4.

Erdős–Pósa-type results are interesting as they link together invariants related to
apparently orthogonal problems. They invite us to investigate the duality between
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packing and covering problems. Let us also briefly mention that they have been
used in algorithm design (see e.g. [FLMS12, Corollary 2] for a simple proof using the
Erdős–Pósa Theorem) and in bioinformatics [ARS16, ADG04, Ara08]. Therefore, con-
siderable effort has been put in identifying classes that have the Erdős–Pósa property,
i.e. answering question (1). It appears that in several situations, a proof of (1) can be
obtained by considering the following two cases:

1. the considered graph has a large packing number; or

2. some structural invariant of the graph (most often the treewidth or some alter-
native “tree-structure” parameter) is bounded.

From the first case we can directly conclude, whereas the bound provided by the
second case usually yields structural information on the graph that indicates how to
construct a small cover. However, to apply this proof scheme, we first need to ensure
that at least one of these two cases is true for the considered graphs. Such a dichotomy
is provided by exclusion theorems of the type of Turán’s Theorem: in the case where
a substructure is absent from the graph, they provide a bound on some parameter.

Question (2) can be asked in the setting of graphs as well. However, it appears
that for several graph classes, computing packing an covering numbers is an NP-
hard problem [GJ79]. The two natural options to attack them are thus parameterized
algorithms and approximation (see e.g. [FLMS12, FLM+16]).

In this thesis we continue the long line of research on the Erdős–Pósa property
by answering (1) for several classes of graphs. We also consider the problems of (2),
for which we design an approximation algorithm on certain classes of graphs. These
algorithms rely on exclusion theorems, but also on the fact that the considered classes
have the Erdős–Pósa property.

Overview of the results and organization of the thesis

Most of the definitions and notions used in this thesis are defined on Chapter 2.

Well-quasi-orderings. Chapter 3 is devoted to questions related to well-quasi-orderings.
In this chapter, we present general tools to prove well-quasi-ordering results (Sec-
tion 3.3). We then use these techniques together with antichains introduced in Sec-
tion 3.5 to show three results on well-quasi-ordering:

1. a characterization of the classes of simple graphs defined by one forbidden in-
duced minor that are well-quasi-ordered with respect to this relation, in Sec-
tion 3.6;

2. a similar characterization for the relation of contraction, in Section 3.7; and

3. a characterization of the contraction-closed classes of multigraphs that are well-
quasi-ordered by the multigraph contraction relation, in Section 3.8.
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These results complement the similar characterizations known for most of the usual
orderings of graphs that are not well-quasi-orders in general. They are obtained us-
ing decomposition theorems for graphs excluding a substructure, most of which are
proved in the corresponding sections.

Exclusion theorems. Chapter 4 is concerned with exclusion theorems that upper-
bounds a parameter of the graphs excluding a substructure. We obtain:

1. bounds on a girth-like parameter of graphs excluding large complete graphs as
a minor, in Section 4.1;

2. bounds on the degree of graphs that exclude a large collection of multiedges as
a minor, in Section 4.2;

3. (low5) bounds on the treewidth of graphs excluding various planar graphs as
minors, in Section 4.3; and

4. bounds on the tree-cut width of graphs excluding a planar subcubic graph as
an immersion, in Section 4.4.

Most of these results are used in the following chapters.

The Erdős–Pósa property. Chapter 5 deals with connections between invariants of
packing and covering. It is split into three parts:

1. general techniques for proving Erdős–Pósa-type results, either from tree-like
decompositions of graphs, or using invariants as the girth, in Section 5.3;

2. an application of these techniques to several classes of graphs in Section 5.4,
most often using exclusion results proved in Chapter 4;

3. a summary of positive and negative results on the Erdős–Pósa property, in Sec-
tion 5.6.

Algorithmic applications. We complement the chapter on the Erdős–Pósa prop-
erty by presenting in Chapter 6 an approximation algorithm for packing and cover-
ing numbers of certain classes of graphs, relying on exclusion theorems proved Sec-
tion 4.1 and on the properties of the considered classes. The proof is using a notion
of equivalence of graphs with respect to the considered problem which allows us to
reduce the graph when some structure appears. Using a result of Section 4.1, we can
then either reduce further the graph, or use the arguments presented in Section 5.3 to
conclude.

Conclusion. We sumarrize in Chapter 7 the contributions of this thesis. We also
present directions for future research and list the publications written during the
preparation of the thesis.

5I.e. lower than the bounds provided by the general theorems.

32



CHAPTER 2

GENERAL DEFINITIONS

Let us introduce notions that will be used all along this thesis. Specific notions will
be defined in the corresponding chapters. The reader may refer to the index (on page
246) in order to find were a given notion or symbol has been defined.

2.1 Basics

In this thesis, logarithms are binary. If S is a set of sets, then ∪∪∪∪∪∪∪∪∪S =
⋃
S∈S S. For

every integers i and j, the notation Ji, jK stands for the interval of integers {i, . . . , j}.
For every positive integer k, we denote by N≥k the set N \ J0, k − 1K. We denote by
P(S) the power set of a set S and by P<ω(S) the set of all its finite subsets. Given
a function φ : A → B and a subset C ⊆ A, we define φ(C) = {φ(x) | x ∈ C}. Let
t = (x1, . . . , xl) ∈ Nl and χ, ψ : N → N. We say that χ(n) = Ot(ψ(n)) if there exists a
computable function φ : Nl → N such that χ(n) = O(φ(t) ·ψ(n)). We set N+ = N\{0}.

By polylog(t) we denote some function that is a polynomial in the logarithm of t.
More formally, we write f(t) = O(polylog t) if there are constants t0, A, α such that
∀t > t0, f(t) ≤ A logα(t).

2.2 Orders

In this section we introduce basic definitions that are related to order theory.

Sequences. A sequence of elements of a set A is an ordered countable collection of
elements of A. Unless otherwise stated, sequences are finite. The sequence of ele-
ments s1, . . . , sk ∈ A in this order is denoted by 〈s1, . . . , sk〉 . We use the notation A?

for the class of all finite sequences overA (including the empty sequence). The length
of a finite sequence s ∈ A? is denoted by |s|.

Ordered sets. A quasi-order (qoset for short) is a pair (A,�) where A is a set and �
is a binary relation on A that is reflexive and transitive.
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Two elements x and y of a qoset (A,�) are said to be non-comparable if none of x� y
and y�x holds. In a qoset, an antichain is a sequence of pairwise non-comparable
elements. In a sequence 〈xi〉i∈I⊆N of a qoset (A,�), a pair (xi, xj), i, j ∈ I is a good pair
if xi�xj and i < j. A qoset (A,�) is a well-quasi-order (wqo for short), and A is said to
be well-quasi-ordered by �, if every infinite sequence has a good pair, or equivalently,
if (A,�) has neither an infinite decreasing sequence, nor an infinite antichain. An
infinite sequence containing no good pair is called an bad sequence.

Other notions related to orders are defined either in Section 2.4 (graph orderings)
or in Section 3.2 (notions specific to the chapter on well-quasi-ordering).

2.3 Graphs

2.3.1 Basics

A graph G is a pair (V,E), where V is a set referred to as the set of vertices of G and
E is a multiset, the underlying set of which is a subset of

(
V
2

)
, that we call the set of

edges of G (even if it is a multiset). We denote by V (G) the vertex set of the graph G
and by E(G) its edge set. In this thesis, we do not consider graphs with loops, i.e.
edges connecting a vertex to itself. This definition corresponds to what is sometimes
called a “loopless multigraph”. The order of a graph G is its number of vertices, that
we denote by n(G), whereas we use m(G) for its number of edges (counting multi-
plicities). We sometimes use the notation |G| = |V (G)| and ‖G‖ = |E(G)| (counting
multiplicities). We denote by multG({u, v}) the function that gives the multiplicity in
G of a given edge (which might be zero if {u, v} does not belong to E). We drop the
subscript when it is clear from the context. To refer to a particular edge of a multiedge
{u, v}, we use the subscript {u, v}i, where i ∈ J1,multG({u, v})K.

We also deal with simple graphs, which are graphs where every edge has multi-
plicity one. We use the notations V (G) and E(G) for the vertex and edge sets of a
graph, respectively. The underlying simple graph of a graph G is the graph G′ such that
V (G′) = V (G) and E(G′) is the underlying set of E(G). All the graphs we consider
in this thesis are finite, i.e. both V (G) and the values taken by multG are finite. For H
andG graphs, we writeH+G for the disjoint union ofH andG. Also, for every k ∈ N,
k ·G is the disjoint union of k copies of G. The Cartesian product H ×G of H and G is
the graph on vertex set V (H) × V (G) and where, given two vertices (u, v), (u′, v′) ∈
V (H) × V (G), either u = u′ and multH×G({(u, v), (u′, v′)}) = multG({v, v′}), or v = v′

and multH×G({(u, v), (u′, v′)}) = multH({u, u′}).
For every X ⊆ V (G), the subgraph induced by X , that we write G[X], is the sub-

graph with vertex set X and edge set {e ∈ E(G), e ⊆ X}. We denote by G \ X
the subgraph of G induced by V (G) \ X . If X ⊆ E(G), then G \ X is the subgraph
(V (G), E(G) \X). The complement of a simple graph G, denoted G is the graph ob-
tained by replacing every edge by a non-edge and vice-versa in G. Given a graph
class C and a graph G, we call C-subgraph of G any subgraph of G that is isomorphic
to some graph in C. If the class of C-subgraphs of G is empty, then we say that G is
C-free.
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Neighbors and degree. Two vertices u, v ∈ V (G) are said to be adjacent if mult({u, v}) ≥
1. An edge e ∈ E(G) is incident to a vertex v ∈ V (G) if v ∈ e. Two edges are incident
if they share some endpoint. The neighborhood of a vertex v ∈ V (G), denoted NG(v),
is the set of all vertices of G that are adjacent to v. For every subset S ⊆ V (G), we set
NG(S) =

⋃
v∈S NG(v)\S (all vertices of V (G)\S that have a neighbor in S). We extent

the definition of multG as follows, for every subsets X, Y ⊆ V (G):

multG(X, Y ) =
∑

(x,y)∈X×Y

multG({x, y}).

If multG(X, Y ) ≥ 1, we say that X and Y are adjacent in G.
The degree degG(v) of a vertex v ∈ V (G) is the cardinality of NG(v), i.e. the number

of vertices ofG that are adjacent to v. On the other hand, the multidegree mdegG(v) of
v is defined as the cardinality of multG({v}, NG(v)), i.e. the number of edges incident
with v. Observe that these values are equal in simple graphs. We drop the subscript
when it is obvious from the context. The minimum degree over all vertices of a graph
G is denoted by δ(G), and the maximum degree by ∆(G).

Distances. For a given graph G and two vertices u, v ∈ V (G), distG(u, v) denotes
the distance between u and v, which is the number of edges on a shortest path between
u and v, and diam(G) denotes max{distG(u, v) | u, v ∈ V (G)}. For a set S ⊆ V (G)
and a vertex w ∈ V , distG(S,w) denotes min{distG(v, w) | v ∈ S}. Also, for a given
vertex u ∈ V (G), eccG(u) denotes the eccentricity of vertex v, that is, max{distG(u, v) |
v ∈ V (G)}. The girth of a graph G, denoted girth(G), is the length of a shortest cycle
in G if G is not a forest, and∞ otherwise.

Connectivity and separations. A graph G is connected if, for every x, y ∈ V (G),
there is a path starting in x and ending in y. A pair (A,B) of subsets of V (G) is a
called a separation of order k in G if A∪B ⊆ V (G), k = |A ∩B|, none of A,B is a subset
of the other, and there is no edge of G between A \B and B \ A.

For every k ∈ N, k ≥ 2, we say that G is k-connected if there is no separation
of order less than k in G. A connected component of a graph is a maximal connected
subgraph. We denote by cc(G) the number of connected component of a graphG. We
say that a subgraph is a 2-connected component is a maximal 2-connected subgraph. A
maximal subgraph with no cutvertex is called a block. A cut C = (X, Y ) of G is a
partition of V (G) into two subsets X and Y . The cut-set of C is E(X, Y ) and the width
of the cut is |E(X, Y )|.

Trees, paths, and cycles. A tree is a connected acyclic simple graph. A leaf in a tree
is a vertex of degree one.

For every two vertices u, v ∈ V (T ), there is exactly one path in T between u and v,
that we denote by uTv. Also, given that uTv has at least 2 vertices, we denote by ůT v
(respectively uT v̊) the path uTv with the vertex u (respectively v) deleted. Let C be a
cycle on which we fixed some orientation. Then, there is exactly one path following
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this orientation between any two vertices u, v ∈ V (C). Similarly, we denote this path
by uCv and we define ůCv and uCv̊ as we did for the tree. Two paths in a graph are
internally disjoint if they do not share any internal vertex.

Rooted trees. A rooted tree is a pair (T, r), where T is a tree and v ∈ V (T ) is a
distinguished vertex called root Let (T, s) be a rooted tree. Given a vertex x ∈ V (T ),
the descendants of x in (T, s), denoted by desc(T,s)(x), is the set containing each vertex
w such that the unique path from w to s in T contains x. Given a rooted tree (T, s) and
a vertex x ∈ V (G), the height of x in (T, s) is the maximum distance between x and a
vertex in desc(T,s)(x). The height of (T, s) is the height of s in (T, s). The children of a
vertex x ∈ V (T ) are the vertices in desc(T,s)(x) that are adjacent to x. A leaf of (T, s)
is a vertex of T without children. The parent of a vertex x ∈ V (T ) \ {s}, denoted by
p(x), is the unique vertex of T that has x as a child. In a rooted tree T with root r, the
least common ancestor of two vertices u and v, written lcaT (u, v), is the first common
vertex of the paths uTr and vTr.

2.3.2 Special graphs and graph classes

In this section we define specific graphs that will appear all along this thesis. Let n
be a positive integer. We denote by:

• Kn the complete graph on n vertices;

• Pn the path on n vertices;

• Cn the cycle on n vertices (when n ≥ 2);

• θn the graph obtained by connecting two vertices with an edge of multiplicity n,
sometime called the n-pumpkin (see Figure 2.1 for an example);

• Dn the graph 2 ·K1 ∪ ·Kn (idem), andD2 is the graph sometimes called diamond.

Figure 2.1: The graphs θ5 (left) and D4 (right).

We call prism the Cartesian product ofK3 andK2.A cograph is a graph not contain-
ing the path on four vertices as induced subgraph. A linear forest is a disjoint union
of paths. A graph is subcubic its maximum degree is upper-bounded by 3.
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Grids and Walls. Let k and r be positive integers where k, r ≥ 2. The (k×r)-grid Γk,r
is the Cartesian product of two paths of lengths k−1 and r−1 respectively. We denote
by Γk the (k×k)-grid. The k-wallWk is the graph obtained from a ((k+1)×(2 ·k+2))-
grid with vertices (x, y), x ∈ {1, . . . , k+1}, y ∈ {1, . . . , 2k+2}, after the removal of the
“vertical” edges {(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices
of degree 1. The graphs Γ4 and W4 are depicted on Figure 2.2.

Let Wk be a wall. We denote by P (v)
j the shortest path connecting vertices (1, 2j)

and (k+1, 2j), j ∈ [k] and call these paths the vertical paths ofWk, with the assumption
that P (v)

j contains only vertices (x, y) with y = 2j, 2j − 1. Note that these paths are
vertex-disjoint. Similarly, for every i ∈ [k + 1] we denote by P

(h)
i the shortest path

connecting vertices (i, 1) and (i, 2k + 2) (or (i, 2k + 1) if (i, 2k + 2) has been removed)
and call these paths the horizontal paths of Wk.

Figure 2.2: The (4× 4)-grid (left) and the 4-wall (right).

Wheels. For every positive integer n, a n-wheel, also called wheel of order n, is a sim-
ple graph obtained by connecting a (new) vertex to n distinct vertices of an induced
cycle C. This cycle is said to be the cycle of the n-wheel, whereas the new vertex is its
center. A double wheel of order n is obtained from a cycle of order by adding two non-
adjacent vertices, each connected to the same n vertices of the cycle. See Figure 2.3
for examples.

Figure 2.3: A wheel of order six (left) and a double wheel of order 6 (right).
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Yurts. For every integer n > 0, the yurt graph of order n the graph Yn of the form

V (Yn) = {x1, . . . , xn, y1, . . . , yn, o}
E(Yn) =

{
{xi, xi+1}i∈J1,n−1K

}
∪
{
{yi, yi+1}i∈J1,n−1K

}
∪ {{xi, yi}}i∈J1,nK

∪ {{yi, o}}i∈J1,nK

(see Figure 2.4 for an example).

Figure 2.4: The yurt graph of order 5.

2.4 Graph operations and orderings

Most of the common order relations on graphs can be defined in two equivalent ways:
either in terms of graph operations, or by using models. Let us have a closer look at
them.

2.4.1 Local operations

Let G be a graph. We here describe the effects of the following local operations when
applied to G: the vertex deletion, the edge deletion, the vertex dissolution, the edge
contraction, the vertex identification and the lift.

Deleting a vertex v (respectively an edge e) yields the graph G \ {v} (respectively
G \ {e}). For every {u, v} ∈ E(G), the contraction of the edge {u, v} adds a new vertex
w, sets mult({w,w′}) = mult({u,w′}) + mult({v, w′}) for every w ∈ N(u) ∪ N(v) and
then deletes u and v (see Figure 2.5). If G is a simple graph, we do not keep the
multiple edges that might be created during this process (i.e. we set their multiplicity
to one). In the case where G is labeled, we label the new vertex w in the obtained
graph with λG(u) ∪ λG(v).

e

Figure 2.5: The contraction of the edge e creates a double edge.
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If u is a vertex of degree two, the dissolution of u is the contraction of one edge
incident with u. On the other hand, a subdivision of the edge {u, v} adds a new ver-
tex adjacent to u and v and decreases the multiplicity of the edge {u, v} by one (i.e.,
removes this edge in the case were G is a simple graph). We delete edges of multi-
plicity 0. The vertex added during this process is called a subdivision vertex. These
two operations are depicted on Figure 2.6.

w e
dissolving w

subdividing e

Figure 2.6: Dissolution and subdivision as complementary operations.

The identification of two vertices u and v adds the edge {u, v} if it was not already
existing, and contracts it. If G is (Σ,�)-labeled (for some qoset (Σ,�)), a label contrac-
tion is the operation of relabeling a vertex v ∈ V (G) with a label l such that l�P λG(v).
This operation will be used when dealing with well-quasi-orders in Chapter 3. The
lift of two incident edges {u, v} and {v, w} decreases by one the multiplicities of these
edges and increases by one the multiplicity of {u,w} (or create the edge if it was not
existing).

The closure of a class G by a given operation is the class obtained from graphs of G
by a finite application of this operation.

2.4.2 Containment models

In this section we define models, which are functions witnessing the presence of a
substructure in a graph. They come in different flavours, depending on the type of
substructure considered.

Containment models. Let G and H be two graphs and let us consider a function
µ : V (H)→ P<ω(V (G)) and the following properties:

(M1): for every two distinct u, v ∈ V (H), the sets µ(u) and µ(v) are vertex-disjoint;

(M2): for every u ∈ V (H), the subgraph of G induced by µ(u) is connected;

(M3): λH(u)�P
⋃
v∈µ(u) λG(v);

(M4): root(G) ∈ µ(root(H));

(M5): ∀u, v ∈ V (H), multG(µ(u), µ(v)) ≥ multH({u, v});

(M6): ∀u, v ∈ V (H), multG(µ(u), µ(v)) = multH({u, v});

(M7):
⋃
v∈V (H) µ(v) = V (G);

(M8): ∀v ∈ V (H), |µ(v)| = 1.
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. . . -model (M1) (M2) (M3) (M4) (M5) (M6) (M7) (M8)
minor X X (X) (X) X
induced minor X X (X) (X) X (X)
contraction X X (X) (X) X (X) X
subgraph X X (X) (X) X X X
induced subgraph X X (X) (X) X X X X

Table 2.1: Requirements for containment models

If µ satisfies (M1) up to (M5), then we call it an H-minor model in G, or a minor
model of H . A minor model that also satisfies (M6) is an induced minor model, and an
induced minor model where (M7) holds is a contraction model. A minor model that
additionally satisfies (M7) and (M8) is a subgraph model; it is an induced subgraph model
if it satisfies (M1) up to (M8). These definitions are summarized by Table 2.1. Items
(M3) and (M4) are required only when H and G are labeled or rooted, respectively.
We do not require (M6) for simple graphs. An example of a minor model is given in
Figure 2.7. When (M3) holds, µ is said to be label-preserving.

Figure 2.7: A K4-minor model (dashed arrows) in the 3 × 3 grid, that is also a topo-
logical minor model and an induced minor model.

Models for immersions and topological minors. In order to deal with the order-
ings of immersion and topological minor, to be defined in Subsection 2.4.3, we need a
different kind of model. An H-immersion model is a pair of functions (φ, ψ) satisfying
the following properties:

1. φ : V (H)→ V (G) is an injection;

2. ψ sends {u, v}i to a path of G between φ(u) and φ(v), for every {u, v} ∈ E(H)
and every i ∈ J1,multH({u, v})K, in a way such that distinct edges are sent to
edge-disjoint paths.

Every vertex in the image of φ is called a branch vertex and every path in ψ(E(H))
a certifying path. If it also holds that no branch vertex is an internal vertex of any
certifying path, then the function (φ, ψ) is an H-strong-immersion model. If moreover,
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the paths in the image of ψ are internally disjoint, then (φ, ψ) is an H-topological minor
model.

With these definitions the following observation is straightforward.

Observation 2.1. Let H and G be graphs. If (φ, ψ) is an H-topological-minor model in
G then (φ, ψ) is also an H-strong-immersion model in G.

u

v

w

x

x

v

u w

Figure 2.8: A K4-immersion model in a graph that has no K4-minor model: vertices
are sent on vertices with the same name, and edges are sent to paths of the same color.

The next section links together models and local operations in the definition of
graph orderings.

2.4.3 Graph orderings

Local operations and models can be used to express that a graph is contained as a
substructure of an other one. The graph ordering where this notion of containment is
the most obvious is perhaps the subgraph relation which can be defined as follows:
H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

The orderings we consider here can be defined in two equivalent ways: either
using models, of using local operations. Let us start with the definition involving
models.

• H is a subgraph of G, what we note H ≤sg.G, if there is an H-subgraph model in
G;

• H is an induced subgraph of G, what we note H ≤i.sg.G, if there is an H-induced
subgraph model in G;

• H is a contraction of G, what we note H ≤c.G when these graphs are simple
and H ≤m.c.G when they may have multiple edges1, if there is an H-contraction
model in G;

• H is a minor of G, what we note H ≤m.G, if there is an H-minor model in G;

• H is an induced minor of G, what we note H ≤i.m.G, if there is an H-induced
minor model in G;

1As we will consider these two settings, we choose to use two different symbols to stress that the
corresponding order relations are different.
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• H is a topological minor of G, what we note H ≤t.m.G, if there is an H-topological
minor model in G;

• H is an immersion of G, what we note H ≤imm.G, if there is an H-immersion
model in G;

• H is a strong immersion of G, what we note H ≤s.im.G, if there is an H-strong
immersion model in G;

We add µ as superscript of the aforementioned order symbols when we want to spec-
ify that µ is a model witnessing the relation (like in H ≤c.

µG). Observe that each
of the aforementioned relation defines a qoset on the class of graphs. For every
� ∈ {≤sg.,≤i.sg.,≤c.,≤m.,≤i.m.}, the graph G is said to be H-�-free, or to exclude H
with respect to �, if H �G does not hold.

We now give the equivalent definition of these containment relations in terms of
local operations. The list below also contains the definitions of dissolution, induced
immersions, and induced topological minors, that we did not defined in terms of
models as we will not consider them (see e.g. [KO04b] for a definition).

• H ≤i.sg.G iff there is a sequence of vertex deletions transforming G into H ;

• H ≤sg.G iff there is a sequence of vertex deletions and edge deletions transform-
ing G into H ;

• H ≤m.c.G (or H ≤c.G if H and G are simple graphs) iff there is a sequence of
edge contractions transforming G into H ;

• H ≤i.m.G iff there is a sequence of vertex deletions and edge contractions trans-
forming G into H ;

• H ≤m.G iff there is a sequence of vertex deletions, edge deletions and edge con-
tractions transforming G into H ;

• H ≤imm.G iff there is a sequence of vertex deletions, edge deletions and lifts
transforming G into H ;

• H ≤t.m.G iff there is a sequence of vertex deletions, edge deletions, and vertex
dissolutions transforming G into H ;

• H is an induced topological minor ofG iff there is a sequence of vertex deletions
and vertex dissolutions transforming G into H ;

• H is an induced immersion of G iff there is a sequence of vertex deletions and
lifts transforming G into H .

Note that the aforementioned sequences of operations are allowed to be empty. Ta-
ble 2.2 summarizes these definitions. In this table, V D stands for “vertex deletion”,
ED for “edge deletion”, C− for vertex dissolution, C for edge contraction and L for
lift. The relations between the different containment relations are depicted on Fig-
ure 2.9 where the same abbreviations are used.

The aforementioned orderings allow us to define classes of graphs.
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Relation V D ED C− C L
isomorphism

spanning subgraph X
induced subgraph X

subgraph X X
dissolution X
contraction X X

induced minor X X X
induced topological minor X X

topological minor X X X
minor X X X X

induced immersion X X
immersion X X X

Table 2.2: Containment relations defined in terms of local operations.

Classes defined by graph orderings. Let H be a graph. An major of H (H-major for
short) is a subgraph-minimal graph that contains H as a minor. We denote the class
of H-majors byM(H).

A subdivision of H (H-subdivision for short) is a graph obtained from H by sub-
dividing edges. Observe that a graph G has a subgraph isomorphic to subdivision
of H iff it contains H as a topological minor. We denote by T (H) the class of all
subdivisions of H .

Also, an immersion expansion of H (H-immersion expansion for short) is a subgraph-
minimal graph that contain H as an immersion. Again, a graph G has a subgraph
isomorphic to an immersion expansion of H iff it contains H as an immersion. We
write I(H) for the class of immersions expansions of H . These definitions are ex-
tended to classes: M(H) is the class of all subgraph-minimal graphs that contain
some member of a classH as a minor (and similarly for T (H) and I(H)).

2.5 Tree-like decompositions and width parameters

A considerable amount of the recent algorithmic advances relies on tree-like decom-
positions, that are a way to decompose the graph into subsets organized in a tree-like
fashion. These decompositions give rise to graph parameters usually called width
parameters. Among the existing decompositions, tree-decompositions are certainly
those that received the most considerable attention.

Definition 2.2. A tree decomposition of a graph G is a pair (T,X ) where T is a tree and
X a family {Xt}t∈V (T ) of subsets of V (G) (called bags) indexed by elements of V (T )
and such that the following holds

(i)
⋃
t∈V (T ) Xt = V (G);

(ii) for every edge e of G there is an element of X containing both ends of e;
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Isomorphism

Spanning subgraph
E

Dissolution
C−

Induced subgraph
V

Subgraph
VE

Contraction
C

Topological minor
VEC−

Immersion
VEL

Induced topological minor
VC−

Induced immersion
VL

Induced minor
VC

Minor
VEC

Figure 2.9: Connections between common orderings of graphs. An arrow from an
order relation � to an other �′ means that H �′G holds whenever H �G does. Col-
ored areas represent allowed local operations for each relation: vertex deletion (red),
edge deletion (blue), edge contraction or vertex dissolution (green), and lift (orange).
The allowed operations are also specified by letters with the same convention as in
Table 2.2.

(iii) for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ), v ∈ Xt} is con-
nected.

The width of a tree decomposition T is defined as equal to maxt∈V (T ) |Xt| − 1. The
treewidth ofG, written tw(G), is the minimum width of any of its tree decompositions.

The torso of a bag Xt of a tree decomposition (T, {Xt}t∈V (T )) is the underlying
simple graph of the graph obtained from G[Xt] by adding all the edges {x, y} such
that x, y ∈ Xt ∩Xt′ for some neighbor t′ of t in T .

Treewidth has been extensively used in Algorithmics and Combinatorics. The
Graph Minor series of Robertson and Seymour provides several results and tools
related to this parameter. In particular, Robertson and Seymour proved that every
graph of big enough treewidth contains as a minor a big grid. This result will be dis-
cussed in Chapter 4. Also, it appears that several algorithmic problems, that are
hard in general, become tractable on graphs of bounded treewidth. In this direction,
Courcelle proved [Cou90] that a large family of problems (those that can be expressed
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in monadic second-order logic2) can be solved in linear time on graphs of bounded
treewidth.

In order to deal with tree decompositions, we sometimes consider nice tree de-
compositions, which are defined as follows.

Definition 2.3 ([Klo94a]). A triple (T, r, {Xt}t∈V (T )) is said to be a nice tree decom-
position of a graph G if (T, {Xt}t∈V (T )) is a tree-decomposition where the following
holds:

1. every vertex of T has degree at most 3;

2. (T, r) is a rooted tree and the bag of the root r is empty (Xr = ∅);

3. every vertex t of T is

• either a base node, i.e. a leaf of T whose bag is empty (Xt = ∅) and different
from the root;

• or an introduce node, i.e. a vertex with only one child t′ such that Xt′ =
Xt ∪ {u} for some u ∈ V (G) \Xt;

• or a forget node, i.e. a vertex with only one child t′ such that Xt = Xt′ ∪ {u}
for some u ∈ V (G) \Xt;

• or a join node, i.e. a vertex with two child t1 and t2 such thatXt = Xt1 = Xt2 .

It is known that every graph G has an nice tree decomposition with width tw(G)
and at most 4n nodes [Klo94a]. A more restrictive notion is the one of path decom-
position, defined as follows.

Definition 2.4 ([Klo94b]). A tree decomposition (T, {Xt}t∈V (T )) is a path decomposition
if T is a path, and the pathwidth of G, that we write pw(G), is the minimum width of
a path decomposition of G.

A path decomposition
(
p1p2 . . . pk, {Xpi}i∈J1,kK

)
of a graph G is said to be nice if

|Xp1| = 1 and
∀i ∈ J2, kK ,

∣∣(Xpi \Xpi−1
) ∪ (Xpi−1

\Xpi)
∣∣ = 1

It is known [BT04] that every graph have an optimal path decomposition which
is nice and that in such decomposition, every node pi is either an introduce node (i.e.
either i = 1 or

∣∣Xpi \Xpi−1

∣∣ = 1) or a forget node (i.e.
∣∣Xpi−1

\Xpi

∣∣ = 1).

Remark 2.5. For every graph G on n vertices, there is an optimal path decomposition
with n introduce nodes and n forget nodes (one of each for each vertex of G), thus of
length 2n.

Tree partitions have proven useful when dealing with problems related to ver-
tices. For instance, deciding if the deletion of a certain number of vertices yields
a given property is such a problem. However, these decompositions are not well-
suited for the study of problems related to edges. Therefore, several attempts have
been done to design an edge-analogues of treewidth. Let us present two of them.

2We do not define this logic here as we will not use it.
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Definition 2.6. A tree partition of a graph G is a pair D = (T,X ) where T is a tree
and X = {Xt}t∈V (T ) is a partition of V (G) (the elements of which are called bags) such
that either n(T ) = 1 or for every {x, y} ∈ E(G), there exists an edge {t, t′} ∈ E(T )
where {x, y} ⊆ Xt ∪ Xt′ . In other words, the endpoints of every edge of G either
belong to the same bag or they belong to bags of adjacent vertices of T . Given an
edge f = {t, t′} ∈ E(T ), we define Ef as the set of edges with one endpoint in Xt

and the other in Xt′ . The width of D is defined as max{maxt∈V (T ) |Xt|,maxf∈E(T ) |Ef |}.
The tree partition width of G is the minimum width over all tree partitions of G and is
denoted by tpw(G).

An example of a tree-partition of a graph is given in Figure 2.10.

Figure 2.10: A depiction of a tree-partition of a graph, where the tree-structured bags
of the tree-partition are represented in gray and the graph in black. Notice that edges
of the graph are not allowed to connect vertices of bags that are not adjacent.

A rooted tree partition of a graph G is a triple D = (T, s,X ) where (T, s) is a rooted
tree and (T,X ) is a tree partition of G.

Tree partitions have been introduced in [See85] (see also [Hal91] and tree partition
width has been defined for simple graphs in [DO96]. The above definition is an
extension of the original definition to the setting of (multi)graphs. Tree partitions will
in particular be used in Section 4.1 and Subsection 5.3.1. However, a drawback of tree
partition width compared to treewidth is that a graph with large tree partition width
does not necessarily contains a large substructure, whereas a graph of large treewidth
is known to contain a large grid, as mentioned above (see Theorem 4.1 for a formal
statement). For instance, the graph obtained by setting to k the multiplicity of every
edge of a path on k edges (for some positive integer k) has tree partition width k,
however its subgraphs are quite poor compared to those of a graph containing a large
grid as a minor. Ding described in [DO96, Theorem 1.2] the subgraphs that one can
expect in graphs of large tree partition width, as we mention in Subsection 5.4.3.

A decomposition that avoids this pitfall has been recently introduced by Wollan
in [Wol15] under the name tree-cut decomposition. Let us give a formal definition of
such a decomposition. A near-partition of a set S is a collection of pairwise disjoint
subsets S1, . . . , Sk ⊆ S (for some k ∈ N) such that

⋃k
i=1 Si = S. Observe that this

definition allows a set of the family to be empty.

Definition 2.7 ([Wol15]). A tree-cut decomposition of a graph G is a pair D = (T,X )
where T is a tree and X = {Xt}t∈V (T ) is a near-partition of V (G).
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In particular, a tree-partition is a special type of tree-cut decomposition. How-
ever, tree-cut decompositions are much more general as edges are allowed between
vertices of non-adjacent bags. An example of a tree-cut decomposition is given in Fig-
ure 2.11.

Figure 2.11: A depiction of a tree-cut decomposition a graph, where the tree-
structured bags of the tree-cut decomposition are represented in gray and the graph
in black. Notice that bags may be empty and edges are allowed to connect vertices of
bags that are not adjacent. Edges of the graph are drawn along the edges of the tree
to stress that they belong to the adhesions of these edges.

Let D = (T, {Xt}t∈V (T )) be a tree-cut decomposition of a graph G. If, for an edge
{u, v} of T , we define Tu (respectively Tv) as the connected component of T \ {{u, v}}
that contains u (respectively v), then the adhesion of the edge {u, v} in D, that we
write adhD({u, v}) (or adh({u, v}) when the decomposition is given by the context),
is the set of edges of G that have the one endpoint in

⋃
t∈V (Tu) Xt and the other one

in
⋃
t∈V (Tv) Xt. Intuitively, the adhesion of e is the set of edges of the grap that “fly

over” e in the tree-cut decomposition. On Figure 2.11, the adhesion of an edge of the
tree (depicted by a thick grey line) is the set of edges of the graph (depicted by black
lines) that are drawn inside this edge. The width of the decomposition (T,X ), is

max{ max
e∈E(T )

| adh(e)|, max
t∈V (T )

|V (Ht)|},

where Ht is the graph obtained from G by first consolidating the vertices of the bags
of each subtree of T \ t into one vertex and then removing the possibly created loops
and vertices of degree two. The tree-cut width of G, denoted by tcw(G), is the mini-
mum width of a tree-cut decomposition of G.

The motivation for the introduction of tree-cut decompositions is that, as proved
by Wollan in [Wol15], every graph of large tree-cut width contains a large wall as an
immersion (cf. Theorem 4.67), which was not true for tree-partitions, as mentioned
above. Also, an immersion of a graph of tree-cut width k (for some k ∈ N) has tree-
cut width at most k. In that sense, tree-cut decompositions seems to play the same
role for immersions as tree decompositions do for minors.

Let us define a concept similar to nice tree decompositions for tree-cut decompo-
sitions. A rooted tree-cut decomposition of a graph G is a triple D = (T, s,X ) where
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(T, s) is a rooted tree and (T,X ) is a tree-cut decomposition of G. LetD = (T, s,X ) be
a rooted tree-cut decomposition of G. We set

Gt = G

 ⋃
u∈desc(T,s)(t)

Xu

 .
In a rooted tree-cut decomposition, the adhesion of a vertex t ∈ V (T ) (noted adh(t))
is the adesion of the first edge of a path from t to the root, or the empty set if t = s. A
vertex t ∈ V (T ) is thin if adhD(t) ≤ 2, bold otherwise. We also say that D is nice if for
every thin vertex t ∈ V (T ) we have

N(V (Gt)) ∩
⋃

b is a sibling of t

V (Gb) = ∅.

In other words, there is no edge from a vertex of Gt to a vertex of Gb, for any sib-
ling b of t, whenever t is thin. This notion can be seen as an analogue of nice tree-
decompositions.

In [GKS15], Ganian et al. proved that every graph has a tree-cut decomposition of
minimal width, that, moreover, is nice.

Proposition 2.8 ([GKS15]). Every rooted tree-cut decomposition can be transformed into a
nice tree-cut decomposition without increasing the width.
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CHAPTER 3

GRAPHS AND
WELL-QUASI-ORDERING

In this chapter, we consider quasi-orders defined by the usual order relations on
graphs. After presenting some results and techniques on well-quasi-ordering, we
focus on the contraction and induced minor relations. For these relations, we charac-
terize the well-quasi-ordered subclasses, among those that are defined by excluding
a unique graph. This chapter contains material that previously appeared in the fol-
lowing articles:

• [BKRT15a, BKRT15b] Induced minors and well-quasi-ordering, co-authored with
Jarosław Błasiok, Marcin Kamiński, and Théophile Trunck, EuroComb 2015;

• [KRT14] Multigraphs without large bonds are well-quasi-ordered by contraction, co-
authored with Marcin Kamiński and Théophile Trunck, submitted (2014); and

• [KRT16] Well-quasi-ordering H-contraction-free graphs, co-authored with Marcin
Kamiński and Théophile Trunck, submitted (2015).

3.1 Preliminaries on well-quasi-orders

A well-quasi-order is a quasi-order which contains neither an infinite decreasing se-
quence nor an infinite collection of pairwise incomparable elements. This strength-
ening of the concept of well-order has been introduced in the 50’s. Since then, a whole
theory of well-quasi-orders has been developed and has led to surprising results and
unsuspected developments.

Before going more into detail, let us present one of the most remarkable aspects of
well-quasi-orders. Several objects of interest in graph theory are classes of graphs that
are downward closed. That is, every graph that is smaller (wrt. a given order) than a
graph in the class also belongs to the class. For instance, forests, planar graphs, more
generally, graphs of genus at most g (for every fixed g ∈ N), and graphs of treewidth
at most k (for every fixed k ∈ N) are downward closed wrt. the minor relation. On
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the opposite, the class of 3-colorable graphs is not downward closed wrt. the minor
relation, as witnessed by the graph of Figure 3.1, which is 3-colorable but contains
the non-3-colorable graph K4 as a minor.

Figure 3.1: A 3-colorable graph that contains K4 as minor.

For every class C of a quasi-order (S,�), we can ask the question : “can we easily
characterize the elements of S that belong toC?”. An approach on this question when
C is downward closed is to consider the minimal elements of the complementary of
C, when they exist. These elements are called obstructions, because every element
x of S belongs to C if and only if there is no obstruction y such that y�x. That
way, obstructions provide a precise characterization of C. Here the well-quasi-orders
come into play: if (S,�) is a well-quasi-order, then C has finitely many obstructions.
These obstructions exist because S \C does not contain infinite decreasing sequences
and they are finitely many as the set of obstructions is an antichain. In other words,
there are elements x0, . . . , xc (for some c ∈ N depending on C) such that the following
holds:

∀x ∈ S, x ∈ C ⇐⇒ ∀i ∈ J0, cK , xi�x.
This property, that Pouzet refers to as a finite basis property in [Pou85], has the fol-
lowing algorithmic implication. If, for every i ∈ J0, cK, there is a algorithm that can
decide if xi� y in a time that is polynomial in the size of y for every y ∈ S, then the
membership of C can be decided in a time that is polynomial in the input size. As
an illustration, let us consider the minor relation. Robertson and Seymour proved in
their Graph Minors series [RS04] that this relation well-quasi-orders all (finite) graphs
and they also gave an algorithm that, for every fixed graph H , decides if H is a mi-
nor of the input graph G in a time that is polynomial in the size of G [RS95]. As
mentioned above, a consequence of these results is that, for every graph class that
is downwards closed wrt. minors, there is an algorithm that answers in polynomial
time whether the input graph belongs to the considered class. It is worth noting that
these results are purely existential: they do not provide any way to construct the al-
gorithm. Even the upper-bound on the complexity of these algorithms is existential,
as it depends on the number of obstructions for the considered class.

Recall that a qoset (for quasi-ordered set) is a pair of a set and a relation that
is reflexive and transitive. Also, for every qoset (A,�), we denote by (A?,�?) the
qoset of finite sequences over A ordered by the subsequence relation (cf. Section 2.2).
A cornerstone of the theory of well-quasi-orders is the following theorem, usually
called “Higman’s Lemma”.

Theorem 3.1 (Higman’s Lemma, [Hig52]). If (A,�) is a wqo, then so is (A?,�?).

It is noteworthy that Higman’s Lemma appears in the proofs of several later re-
sults on well-quasi-ordering. In fact the main result of [Hig52] is more general than
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Theorem 3.1 but we will only use this form in this chapter. Given a qoset (S,�), the
main question we are here concerned with is the following.

Question 3.2. Is (S,�) a well-quasi-order?

Let us now present some known results answering this question for various choices
of S and � among graph classes and graph orderings. Unless otherwise specified,
the word graph will in this chapter refer to simple graphs, i.e. graphs without loops
or multiple edges. One of the most important well-quasi-ordering result on graphs is
certainly the aforementioned Graph Minor Theorem by Robertson and Seymour.

Theorem 3.3 (Graph Minor Theorem, [RS04]). The class of all graphs is well-quasi-
ordered by the minor relation.

The Graph Minor Theorem extends the earlier Kruskal Tree Theorem, which was
concerned with trees.

Theorem 3.4 (Kruskal Tree Theorem, [Kru60], see also [NW63]). The class of all trees is
well-quasi-ordered by the topological minor relation.

Robertson and Seymour later proved that the same also holds for the immersion
relation.

Theorem 3.5 ([RS10]). The class of all graphs is well-quasi-ordered by the immersion rela-
tion.

However, among the usual containment relations on graphs (listed in Section 2.4),
the minor relation and the immersion relation are the only relations known to be well-
quasi-order in general (i.e. on the class of all graphs). Regarding other relations, ei-
ther the problem is still open, or infinite antichains are known. Table 3.1 summarizes
the status of Question 3.2 when S is the class of all graphs.

well-quasi-order open not a well-quasi-order
minors strong immersions subgraphs
immersions induced immersions induced subgraphs

topological minors
induced topological minors
contractions

Table 3.1: Status of Question 3.2 for the common orderings of graphs.

For all the qosets that are not well-quasi-orders, a natural question is to identify
the well-quasi-ordered subclasses.

Question 3.6. For which C ⊆ S is (C,�) a well-quasi-order?

Much attention has been brought to this question in the last decades. For instance,
Fellows et al. proved in [FHR12] that graphs with bounded feedback-vertex-set are
well-quasi-ordered by topological minors. Another result is that of Oum [Oum08]

51



who proved that graphs of bounded rank-width are wqo by vertex-minors1. Other
papers considering this question include [Tho85, Dam90, Din92, Din98, Pet02, Din09,
DRT10, HL14, AL14]. In order to approach Question 3.6, which is quite general, one
may consider a fixed family of subclasses only. One way to do this is to look at graph
classes defined by forbidden substructures.

Question 3.7. For which x ∈ S is the set {y ∈ S, x� y}well-quasi-ordered by �?

This line of research has been fruitful. Let us present some results in this direc-
tion, starting from the following theorem by Damaschke, that initiated the quest for
answers to Question 3.7.

Theorem 3.8 (Dichotomy for induced subgraphs, [Dam90, Theorem 4]). Let H be a
graph. The class of H-induced subgraph-free graphs is well-quasi-ordered by the induced
subgraph relation iff H ≤i.sg. P4.

Notice that that the above result is a full characterization of subclasses that are
well-quasi-ordered by the induced subgraph relation, among those that are uniquely
defined. Such a dichotomy has also been proved for other orderings. Damaschke
has been followed by Ding who proved two years later the following non-induced
counterpart of Theorem 3.8.

Theorem 3.9 (Dichotomy for subgraphs, [Din92]). Let H be a graph. The class of H-
subgraph-free graphs is well-quasi-ordered by the subgraph relation iff H ≤sg. Pn for some
n ∈ N.

More recently, Liu obtained a result of the same type for topological minors.

Theorem 3.10 (Dichotomy for topological minors, [HL14]). Let H be a graph. The class
of H-topological minor-free graphs is well-quasi-ordered by topological minors iff H ≤t.m.Rn

for some n ∈ N, where Rn is the multigraph obtained by doubling every edge of a path on n
edges.

About the induced minor relation, a well-quasi-ordered class defined by exclud-
ing an induced minor has been identified by Thomas.

Theorem 3.11 ([Tho85]). The class of K4-(induced) minor-free graphs is well-quasi-ordered
by the induced minor relation.

Question 3.7 has also been considered in [KL11a, KL11b, Che11]. In this part, we
provide an answer to this question for the following graph containment relations:

• the induced minor relation ≤i.m. on simple graphs, in Section 3.6;

• the contraction relation ≤c. on simple graphs, in Section 3.7;

• the contraction relation ≤m.c. on multigraphs2, in Section 3.8.

1Vertex-minors is another ordering of graphs, which we will not consider in this thesis.
2Recall that we use the symbol ≤m.c. to stress that we are dealing with the contraction relation on

multigraphs, i.e. that multiple edges that may appear after a contraction are not deleted.
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As mentioned above, none of these relations is a well-quasi order in general. Infi-
nite antichains witnessing this fact will be given in Subsection 3.5.1. Let us introduce
three graphs that play a major role in this chapter. They are depicted on Figure 3.2.
The first one, K̂4, is obtained by adding a vertex of degree two toK4. The second one,
called the gem, is constructed by adding a dominating vertex to P4. The last one is the
diamond (or D2), that one can obtain by removing an edge in K4. In the forthcoming

v3

v1 v4

v2

v5

v2

v3 v4

v5

v1

v1v2

v3 v4

Figure 3.2: The graphs K̂4, gem, and D2 (from left to right).

section we prove the following theorems.

Theorem 3.12 (Dichotomy for induced minors). LetH be a graph. The class ofH-induced
minor-free simple graphs is wqo by ≤i.m. iff H ≤i.m. K̂4 or H ≤i.m. Gem.

Theorem 3.13 (Dichotomy for contractions). LetH be a graph. The class ofH-contraction-
free simple graphs is wqo by ≤c. iff H ≤c.D2.

Theorem 3.14 (Dichotomy for multigraph contractions). LetH be a class of graphs. The
class of H-contraction-free multigraphs is wqo by ≤m.c. iff there is an integer n such that
θn′ ∈ H and Kn′ ∈ H for every integer n′ ≥ n.

Theorem 3.12 and Theorem 3.13 are the induced minor and contraction counter-
parts of Theorem 3.8. Besides, Theorem 3.12 completes Theorem 3.11 into a full di-
chotomy. We shall stress that Theorem 3.14 is more general, in the sense that it charac-
terizes all the well-quasi-ordered classes defined by forbidding contractions, whereas
Theorem 3.12 and Theorem 3.13 only deal with uniquely defined such classes. It
could be interesting to extend Theorem 3.14 to induced minors and contractions in
simple graphs, that is, to answer the following question.

Question 3.15. For which classes H is the class of H-induced minor-free (respectively
H-contraction-free) graphs well-quasi-ordered by ≤i.m. (respectively ≤c.)?

A first step towards this goal could be to look at classes defined by excluding two
graphs.

Question 3.16. For which graphs H1, H2 is the class of {H1, H2}-induced minor-free
(respectively {H1, H2}-contraction-free) graphs well-quasi-ordered by ≤i.m. (respec-
tively ≤c.)?
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This question already received partial answers on the induced subgraph ordering,
see e.g. [KL11a].

Another line of research when considering qosets that are not wqos is to consider
infinite antichains. In his study of infinite antichains for the (induced) subgraph re-
lation, Ding [Din09] introduced the concept of canonical antichain. Let us announce
the definition we will give in Section 3.2. Let us consider a quasi-order (S,�). An
antichain A of this quasi-order is said to be canonical if, for every finite subset A′ of
A, the class Excl�(A \ A′) (elements that are not larger than any element of A \ A′)
has no infinite antichain. Informally, a canonical antichain A represents all infinite
antichains of a quasi-order. Indeed, as excluding all but finitely many elements of A
also excludes all infinite antichains (according to the definition), an intinite antichain
has only finitely many elements that are not larger than some element of A. In that
sense, a canonical antichain can be seen as a common denominator of all infinite
antichains. Also, the presence of a canonical antichains discriminates between the
quasi-orders where the infinite antichains are “similar enough” so that they can be
represented by one of them, and the quasi-orders where infinite antichains are “too
diverse” for this to happen.

Another motivation for introduction by Ding [Din09] of the concept of canonical
antichains is the following: from the definition given above, a quasi-order has a finite
canonical antichain iff it has no infinite antichain. This allows us to partition quasi-
orders in three classes: those that have no infinite antichains, those that have infinite
antichains and a canonical antichain, and those that have infinite antichains and no
canonical antichain. The study of canonical antichains can then be seen as an exten-
sion of well-quasi-ordering theory, which mostly focuses on the presence of infinite
antichains. The most natural question about canonical antichains is the following.
Question 3.17. If (S,�) is not a wqo, does it have a canonical antichain?

As shown by the results below, the question of the presence or absence of a canon-
ical antichain has been studied for several containment relations and graph classes.

Theorem 3.18 ([Din09]). Under the subgraph relation, the class of finite graphs has a canon-
ical antichain.

The canonical antichain for Theorem 3.18 given in [Din09] can be written {Bj
i , i ∈

N, j ∈ J1, 4K}, where the graphs Bj
i are depicted in Figure 3.3. Observe that from the

definition of an antichain, we can immediately deduce that every infinite antichain
for the subgraph relation contains infinitely many graphs of the same “type” among
those presented on Theorem 3.18 (formally, infinitely many graphs of {Bj

i }i∈N, for
some j ∈ J1, 4K).

Theorem 3.19 ([Din09]). Under the induced subgraph relation, the class of finite graphs
does not have a canonical antichain.

Theorem 3.20 ([Din09]). Under the induced subgraph relation, both the class of interval
graphs and the class of bipartite permutation graphs have a canonical antichain.

We give an answer to Question 3.17 for the contraction relation with the following
result.
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Figure 3.3: The elements of a canonical antichain for the subgraph relation.

Theorem 3.21. Under the contraction relation, the class of all graphs does not have a canon-
ical antichain.

The proof of Theorem 3.21 relies on the tools introduced in [Din09] that can be
used to prove that a quasi-order does not have a canonical antichain. We also ob-
tained a complete characterization of the canonical antichains of the multigraph con-
traction ordering. Let Aθ be the class of all connected multigraphs on two vertices,
and AK be the class of all edgeless graphs (see Figure 3.4).

Aθ =
, ,

. . .

,
. . .

,
. . .

,
. . .

,
. . .

AK =
, , , , , ,

. . .

Figure 3.4: Two infinite antichains for multigraph contractions: multiedges and edge-
less graphs.

Theorem 3.22. Every antichainA of≤m.c. is canonical iff each of the following sets are finite:

Aθ \ A; AK \ A; and A \ {Aθ ∪ AK}.

In other words, an antichain A is canonical iff it contains all but finitely many
graphs fromAθ, all but finitely many graphs fromAK , and a finite number of graphs
that do not belong to Aθ ∪ AK . Two easy consequences are that ≤m.c. has infinite
canonical antichains and the following result.

Corollary 3.23. Every canonical antichain of ≤m.c. is fundamental3.
3The definition of the concept of fundamental antichain is given in Section 3.2.
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3.2 Notions specific to this chapter

Let us introduce notions that will be used in this chapter.

Union and product. If (A,�A) and (B,�B) are two qosets, then

• their union (A ∪ B,�A ∪�B) is the qoset defined as follows: for every x, y ∈
A ∪B, we have x�A ∪�B y if

(x, y ∈ A and x�A y), or (x, y ∈ B and x�B y);

• their Cartesian product (A×B,�A×�B) is the qoset defined by:

∀(a, b), (a′, b′) ∈ A×B, (a, b)�A×�B(a′, b′) if a�A a′ and b�B b′.

Ordering sequences. For any qoset (A,�), we define the relation �? on A? as fol-
lows: for every r = 〈r1, . . . , rp〉 and s = 〈s1, . . . , sq〉 of A?, we have r�? s if there is a
increasing function ϕ : J1, pK → J1, qK such that for every i ∈ J1, pK we have ri� sϕ(i).
Observe that =? is then the subsequence relation. This order relation is extended to
the class P<ω(A) of finite subsets of A as follows, generalizing the subset relation: for
every B,C ∈ P<ω(A), we write B�P C if there is an injection ϕ : B → C such that
∀x ∈ B, x�ϕ(x). Observe that =P is the subset relation.

In order to stress that domain and codomain of a function are qosets, we some-
times use, in order to denote a function ϕ from a qoset (A,�A) to a qoset (B,�B), the
following notation: ϕ : (A,�A)→ (B,�B).

Monotonicity. A function ϕ : (A,�A) → (B,�B) is said to be monotone if it satisfies
the following property:

∀x, y ∈ A, x�A y ⇒ ϕ(x)�B ϕ(y).

Informally, a monotone function preserves the order. A function ϕ : (A,�A) →
(B,�B) is a qoset epimorphism (epi for short) if it is surjective and monotone.

Closed sets. Let (A,�) be a qoset. A subset B ⊆ A is said to be downward �-closed
(sometimes shortened as �-closed) if for every x, y ∈ A such that x� y and y ∈ B we
have x ∈ B. Symmetrically, we say thatB is upward�-closed if for every x, y ∈ A such
that x� y and x ∈ B we have y ∈ B.
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Incl and Excl. Let (A,�) be a qoset. For every x ∈ A, we define

excl�(x) = {y ∈ A, x� y} and
Incl�(x) = {y ∈ A, y�x}.

Informally, Excl�(x) is the class of elements excluding x (with respect to �), and
Incl�(x) the class of elements included in x. We extend these definitions to any subset
B ⊆ A as follows:

Excl�(B) = {y ∈ A, ∀x ∈ B, x� y} and
Incl�(B) = {y ∈ A, ∃x ∈ B, y�x}.

The set Incl�(B) contains all the elements of B and all the elements that are smaller
than some element of B. It is sometimes referred to as the closure of B with respect to
the relation �. Observe both Incl�(B) and Excl�(B) are downward �-closed sets. A
subset B ⊆ A is said to be uniquely defined if B = Excl�(x) for some x ∈ A.

Canonical antichains. An antichain A of a qoset (S,�) is said to be canonical if it
is such that every �-downwards-closed subclass J of S has an infinite antichain iff
J ∩ A is infinite. This definition differs from that given in the previous section, how-
ever they are equivalent [Din09, Proposition 1.2]. More intuition about canonical an-
tichains is given in the previous section. If Incl(A) has no infinite antichains, then A
is a fundamental antichain. This can be seen as a notion of minimality, as the elements
that are below (with respect to the considered order) do not have infinite antichains.

Labeled graphs. As detailed in this chapter, labeling the vertices of graphs may
simplify well-quasi-ordering proofs. Let us introduce some definitions related to
graph labeling. For this, we consider a qoset (S,�). A (S,�)-labeled graph is a pair
(G, λ) such that G is a graph, and λ : V (G) → P<ω(S) is a function referred as the
labeling of the graph. For the sake of simplicity, we will refer to the labeled graph of a
pair (G, λ) by G and to λ by λG. If G is a class of (unlabeled) graphs, lab(S,�)(G) de-
notes the class of (S,�)-labeled graphs of G. The notion of labeled graph generalizes
the one of graph as any (unlabeled) graph can be seen as a ∅-labeled graph.

This definition of a labeled graph differs from the commonly used one where ver-
tices are assigned single elements of S instead of finite subsets. Whereas the usual
definition can be easily used to prove well-quasi-ordering results with the induced
subgraph ordering, the definition we introduced is suited for proofs on graph order-
ings involving contractions. The extensions of these orderings to labelled graphs will
be given in Section 2.4.

Rooted graphs. In several proofs, the labels that will be assigned to vertices of
graphs will be sets of rooted graphs. This will be used in order to encode a class of
connected graphs as labeled 2-connected graphs (cf. Lemma 3.31 and Lemma 3.32).
Roots will also be used on trees to defined a partial order on the vertices.
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A rooted graph is a couple (G, r) where G is a graph and r is a vertex of G, called
root of G. For the sake of simplicity, we sometimes denote by G the rooted graph
(G, r) and refer to its root by root(G). If H is a class of graphs, we define its rooted
closure, denotedHr as the class of rooted graphsHr = {(G, v) : G ∈ H, v ∈ G}.

3.3 Raising well-quasi-orders

As we explain in the forthcoming Section 3.4, a way to show that a given qoset (A,�A)
is a wqo is to build a wqo (B,�B) from smaller qosets that are known to be well-
quasi-ordered and then find a correspondence between the elements of A and B that
preserves the well-quasi-orderness. In this section, we present different constructions
to obtain well-quasi-orders. In particular, we recall that being well-quasi-ordered is
preserved by several operations including union, Cartesian product, and application
of a monotone function.

Let us start with an easy remark.

Remark 3.24. If B ⊆ A and (A,�) is a wqo, then so is (B,�).

Indeed, any infinite antichain of (B,�) is an antichain of (A,�).

Union and product. Recall that, in the union of two qosets (A,�A) and (B,�B),
two elements are comparable only if both belong to the same qoset, in which case
they are ordered as in this qoset. In the Cartesian product of (A,�A) and (B,�B),
the elements are pairs over A × B and are compared coordinate-wise. The formal
definitions can be found in Section 2.2.

Remark 3.25 (union of wqos). If (A,�A) and (B,�B), are two wqos, then so is (A ∪
B,�A ∪�B).

In fact, for every infinite antichain S of (A ∪ B,�A ∪�B), there is an infinite sub-
sequence of S whose all elements belong to one of A and B (otherwise S is finite).
But then one of (A,�A) and (B,�B) has an infinite antichain, a contradiction to our
initial assumption. Similarly, every finite union of wqos is a wqo.

Lemma 3.26 (Higman [Hig52]). If (A,�A) and (B,�B) are wqo, then so is (A×B,�A×�B).

Sequences and subsets. Higman’s Lemma (Theorem 3.1), which we mentioned in
the previous section, states that finite sequences over a well-quasi-order (A,�) are
well-quasi-ordered by �?. It has the following easy corollary.

Corollary 3.27. If (A,�) is a wqo, then so is (P<ω(A),�P ).

Surjective images. Recall that an epi is a function from one qoset to an other that
is surjective and monotone. Epis have the following interesting property, which we
will extensively use to show that some qosets are well-quasi-ordered.

Remark 3.28 (epi from a wqo). If the domain of an epi is wqo, then its codomain is
also wqo.
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Indeed, for any pair x, y of elements of the domain of an epi ϕ such that ϕ(x)
and f(y) are incomparable, x and y are incomparable as well (by monotonicity of ϕ).
Therefore, and as ϕ is surjective, any infinite antichain of the codomain of ϕ can be
translated into an infinite antichain of its domain.

In order to apply Remark 3.28 one needs to show that the considered function is
monotone. The aim of the next remark is to make this task easier when dealing with
multivariate functions.

Remark 3.29 (componentwise monotonicity). Let (A,�A), (B,�B), and (C,�C) be
three qosets and let f : (A×B,�A×�B)→ (C,�C) be a function. If we have both

∀a ∈ A, ∀b, b′ ∈ B, b�B b′ ⇒ f(a, b)�C f(a, b′) (3.1)
and ∀a, a′ ∈ A, ∀b ∈ B, a�A a′ ⇒ f(a, b)�C f(a′, b), (3.2)

then f is monotone.

Indeed, let (a, b), (a′, b′) ∈ A × B be such that (a, b)�A×�B(a′, b′). By definition
of the relation �A×�B, we have both a� a′ and b� b′. From line (3.1) we get that
f(a, b)�C f(a, b′) and from line (3.2) that f(a, b′)�C f(a′, b′), hence f(a, b)�C f(a′, b′)
by transitivity of �C . Thus f is monotone. Observe that this remark can be general-
ized to functions with more than two arguments.

Excluding elements. We will often deal with classes defined by forbidding an ele-
ment, that is, subclasses of a qoset (S,�) of the form {y ∈ S, x� y} for some x ∈ S.

Remark 3.30. Let (S,�) be a qoset. For every x, x′ ∈ S such that x′�x, we have
{y ∈ S, x′� y} ⊆ {y ∈ S, x� y}. As a consequence, ({y ∈ S, x′� y},�) is a wqo
whenever ({y ∈ S, x� y},�) is.

Labeled graphs. As defined in Section 2.3, a graph labeled by a qoset is a graph,
the vertices of which are assigned subsets of this qoset. Informally speaking, labels
will be used to encode connected graphs into labeled 2-connected graphs. Given a
connected graph which is not 2-connected, we can pick an arbitrary block B, delete
the rest of the graph, and label each vertex v ofB by the subgraph it was attached to in
the original graph if v was a cutvertex, and by ∅ otherwise. That way, contracting the
label of a vertex v corresponds to contracting a subgraph. This intuition is formalized
by the next result.

Lemma 3.31 ([FHR12]). Let G be a class of graphs. If for any wqo (S,�) the class of (S,�)-
labeled 2-connected graphs of G is wqo by ≤i.m., then (G,≤i.m.) is a wqo.

This result can also be proved for multigraph contractions.

Lemma 3.32. Let G be a class of connected multigraphs. If for any wqo (S,�) the class of
(S,�)-labeled 2-connected graphs of G is wqo by ≤m.c., then (G,≤m.c.) is a wqo.
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Proof. This proof is very similar to the proof of Lemma 3.31 given in [FHR12]. As-
suming that (H,≤m.c.) is not a wqo, we will reach a contradiction by showing that its
rooted closure (Hr,≤m.c.) is a wqo.

Let 〈Gi〉i∈N be a bad sequence inHr such that, for every i ∈ N, there is noG≤m.c.Gi

such that a bad sequence starts withG0, . . . , Gi−1, G (a so-called minimal bad sequence).
For every i ∈ N, let Ai be the block of Gi which contains root(Gi). Let Ci the set
of cutvertices of Gi that are included in Ai. For each cutvertex c ∈ Ci, let Bi

c the
connected component in Gi \ (V (Ai) \ Ci), and rooted at c (i.e., we set root(Bi

c) = c).
Note that we have Bi

c≤m.c.Gi.
Let us denote by B the family of rooted graphs B = {Bi

c : c ∈ Ci, i ∈ N}. We will
show that (B,≤m.c.) is a wqo. Let 〈Hj〉j∈N be an infinite sequence in B and for every
j ∈ N choose an i = ϕ(j) ∈ N for which Hj ≤m.c.Gi. Pick a j with smallest ϕ(j) and
consider the sequence G1, . . . , Gϕ(j)−1, Hj, Hj+1, . . . . By minimality of 〈Gi〉i∈N and by
our choice of j, since Hj ≤m.c.Gϕ(j) and Hj 6= Gϕ(j), this sequence is good so contains
a good pair (G,G′). Now, if G is among the first ϕ(j) − 1 elements, then as 〈Gi〉i∈N
is bad we must have G′ = Hj′ for some j′ ≥ j and so we have Gi′ = G≤m.c.G

′ =
Hj′ ≤m.c.Gϕ(j′), a contradiction. So there is a good pair in 〈Hi〉i≥j and hence the infinite
sequence 〈Hj〉j∈N has a good pair, so (B,≤m.c.) is a wqo.

We will now find a good pair in 〈Gi〉i∈N to show a contradiction. The idea is to
label the graph family A = {Ai}i∈N so that each cutvertex c of a graph Ai gets labeled
by their corresponding connected component Bi

c, and the roots are preserved under
this labeling. More precisely, for each Ai we define a labeling σi that assigns to every
vertex v ∈ V (Gi) a label {(σ1

i (v), σ2
i (v))} defined as follows:

• σ1
i (v) = 1 if v = root(Gi) and σ1

i (v) = 0 otherwise;

• σ2
i (v) = Bi

v if v ∈ Ci and σ2
i (v) is the one-vertex rooted graph otherwise.

The labeling σ ofA is then {σi : i ∈ N}. Let us define a quasi-ordering� on the set
of labels Σ assigned by σ. For two labels (s1

a, s
2
a), (s

1
b , s

2
b) ∈ Σ we define (s1

a, s
2
a)�(s1

b , s
2
b)

iff s1
a = s1

b and s2
a≤m.c. s

2
b . Note that in this situation, s2

a and s2
b are rooted graphs, so

≤m.c. compares rooted graphs. Observe that since (B,≤m.c.) is wqo, then (Σ,�) is
wqo. For every i ∈ N, let A′i be the (Σ,�)-labeled rooted graph (Ai, σi). We now
consider the infinite sequence 〈A′i〉i∈N. By our initial assumption, (labΣ(A),≤m.c.) is
wqo (as A consists only in 2-connected graphs), so there is a good pair (A′i, A

′
j) in the

sequence 〈A′i〉i∈N.
To complete the proof, we will show that A′i≤m.c.A

′
j ⇒ Gi≤m.c.Gj . Let µ be a

contraction model of A′i in A′j . Then for each cutvertex c ∈ Ci, µ(c) contains a vertex
d ∈ Cj with Bi

c≤m.c.B
j
d. Let µc denote a root-preserving contraction model of Bi

c onto
Bi
d. We construct a model model g as follows:

ν :


V (Gi) → P(V (Gj))

v 7→ µ(v) if v ∈ Ai \ Ci
v 7→ µc(v) if v ∈ Bi

c \ Ci
v 7→ µ(v) ∪ µv(v) if v ∈ Ci
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We now prove that ν is a contraction model ofGi ontoGj . First note that by defini-
tion of µ and each µc, we have ν(u)∩ ν(v) = ∅, for any pair of distinct vertices u and v
in Gi, and also every vertex of Gj is in the image of some vertex of Gi (items (M1) and
(M7) in the definition of a contraction model). If u ∈ Ci, then µ(u) contains a vertex
v ∈ Cj for which Bi

u≤m.c.B
j
v and v is also contained in µv(v) since µv preserves roots.

Thus, Gj[ν(u)] is connected when u ∈ Ci (point (M2)). This is obviously true when
u 6∈ Ci again by the definitions of µ and each µc. Moreover, the endpoints of every
edge ofGi belong either both toAi, or both toBi

c, so point (M6) follows from the prop-
erties of µ and each µc. Finally, as the labeling σ ensures that root(Gj) ∈ ν(root(Gi)),
we establish that Gi≤m.c.Gj . So 〈Gi〉i∈N has a good pair (Gi, Gj), a contradiction.

Let us now summarize the tools introduced in this section.

Lemma 3.33 (Summary of Section 3.3). If (A,�A) and (B,�B) are wqos, then

(i) (C,�A) is a wqo for every C ⊆ A (Remark 3.24);

(ii) (A ∪B,�A ∪�B) is a wqo (Remark 3.25);

(iii) (A×B,�A×�B) is a wqo (Lemma 3.26);

(iv) (A?,�?) is a wqo (Theorem 3.1);

(v) (P<ω(A),�P) is a wqo (Corollary 3.27);

(vi) (C,�C) is a wqo, for every epi f : (A,�A)→ (C,�C) (Remark 3.28);

(vii) ({y ∈ C, x′�
c
y},�c) is a wqo whenever ({y ∈ C, x�

C
y},�C) is, for every x′, x

elements of a qoset (C,�C) such that x′�x (Remark 3.30);

(viii) if for any wqo (C,�C) the 2-connected graphs of a graph classH labeled by (C,�C) are
wqo by ≤i.m., then (H,≤i.m.) is a wqo (Lemma 3.31);

(ix) if for any wqo (C,�C) the 2-connected multigraphs of a multigraph class H labeled by
(C,�C) are wqo by ≤m.c., then (H,≤m.c.) is a wqo (Lemma 3.32).

In the next section we give the main lines of the proofs of Theorem 3.12, Theo-
rem 3.13, and Theorem 3.14.

3.4 A high-level view of the proofs

The techniques that we use in the following sections mostly follow a general scheme.
The purpose of this section is to provide an informal description of its steps. The
general setting is the following: we are given a qoset (S,�) and the goal is to show
that it is a wqo.
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Step 1: Define a compact representation of the elements of S. More formally, we choose
an injective function f from S to some other set S ′. The intuition is that,
usually, S is a subset of a wider set and its elements only span a restricted area
of this set. Therefore we would like to project these elements into a smaller
set, that will be easier to well-quasi-order afterwards. This representation
can be seen as an encoding, as we will sometime break a graph into parts
and represent is as a tuple containing these parts. It may be deduced from
structural information about the graphs of S.

Step 2: Find a quasi-order relation�′ on S ′with good properties. This relation should
be chosen such that whenever f(x)�′ f(y) holds, we have x� y, for every
x, y ∈ S. We should stress that the choice of f must be done with this step in
mind.

Step 3: The third and last step is to show that (S ′,�′) is a wqo. This can be done by
applying standard results on well-quasi-orders, if both S ′ and �′ have been
chosen carefully.

Finally, we obtain that f is a epi, the domain of which is a subset of the wqo
(S ′,�′). According to Remark 3.24 and Remark 3.28, we get that (S,�) is a wqo, as
desired. As an illustration of this scheme, let us prove the following easy lemma.

Lemma 3.34. LetH be a class of connected graphs and let G the class of graphs, the connected
components of which belong toH. If (H,≤i.sg.) is a wqo, then so is (G,≤i.sg.).

Proof. Let us follow the steps detailed above.

Step 1: We represent every graph G of G as a sequence f(G) listing its connected
components taken in an arbitrary order. The function f : G → H? thus defined
is clearly injective.

Step 2: We notice that for every G,G′ ∈ G, if f(G)≤i.sg.
? f(G′) then G≤i.sg.G

′. There-
fore the quasi-order relation ≤i.sg.

? suits our needs.

Step 3: We show that the codomain of f is a wqo. For this, we apply Higman’s
Lemma (Theorem 3.1) to (H,≤i.sg.), which is a wqo by our initial assumption.

As explained above, this implies that (G,≤i.sg.) is a wqo and we are done.

Let us end this section with a simple but crucial observation in the study of the
well-quasi-orderability of classes that are defined by forbidden structures (of any
kind). If none of the elements of an infinite antichain A contains some element x,
then excluding x does not give a well-quasi-order. Indeed, the class obtained still
contains the infinite antichain A. Let us formally restate this observation.
Observation 3.35. Let (S,�) be a qoset and let A ⊆ S be an infinite antichain wrt. �.
Let x ∈ S. If {y ∈ S, x� y} is well-quasi-ordered by �, then all but finitely many
elements of A are larger than x wrt. �.

For this reason, we devote the next section to a study of infinite antichains for the
orderings considered in this chapter.
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3.5 The bestiary

It is worth noting that none of the orderings we consider in this chapter admits an
infinite decreasing sequence. Indeed, for all these relations, the sum of the number of
vertices and edges, which is a non-negative integer, is decreasing when considering
smaller graphs. Hence, every decreasing sequence of graphs yields a decreasing se-
quence of positive integers of the same length, which is always finite. Therefore the
only obstacle for these relations to be well-quasi-orders is the presence of an infinite
antichain.

As noted in Observation 3.35, the study of infinite antichains may provide helpful
information when proving dichotomy theorems. In this section, we present several
antichains for the orderings we consider.

3.5.1 Antichains for induced minors

,, ,,,,, . . .

Figure 3.5: Thomas’ alternating double wheels.

In 1985, Thomas [Tho85] presented an infinite sequence of planar graphs (also
mentioned later in [RS93]) and proved that it is an antichain for induced minors. He
showed that this relation does not well-quasi-order planar graphs. The elements of
this antichain, called alternating double wheels, are constructed from an even cycle by
adding two nonadjacent vertices and connecting one to one color class of the cycle
and connecting the other vertex to the other color class (cf. Figure 3.5 for the three
first such graphs). This infinite antichain shows that (Excl≤i.m.

(K5),≤i.m.) is not a wqo
since no alternating double wheel containsK5 as (induced) minor. As a consequence,
(Excl≤i.m.

(H),≤i.m.) is not a wqo as soon as H contains K5 as induced minor.
Therefore, in the quest for all graphs H such that (Excl≤i.m.

(H),≤i.m.) is wqo, we
can focus the cases where H is K5-induced minor-free.

Let K−5 denote the complete graph on five vertices where one edge has been
deleted. The infinite antichainAM , depicted in Figure 3.6, has been introduced in [MNT88].
Notice that graphs in this antichain have bounded maximum degree. As illustrated in
Figure 3.7, these graphs are also planar. The authors of [MNT88] furthermore proved
that no graph of AM contains K−5 as induced minor. Similarly as the above remark,
we deduce that if (Excl≤i.m.

(H),≤i.m.) is a wqo then K−5 6 ≤i.m.H .
An interval graph is the intersection graph of segments of R. A well-known prop-

erty of interval graphs that we will use later is that they do not containsC4 as induced
minor. In order to show that interval graphs are not wqo by ≤i.m., Ding introduced
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Figure 3.6: The infinite antichain AM of Matoušek, Nešetřil, and Thomas.

in [Din98] an infinite sequence of graphs defined as follows. For every n ∈ N, n > 2,
let Tn be the set of closed intervals

• [i, i] for i in J−2n,−1K ∪ J1, 2nK;

• [−2, 2], [−4, 1], [−2n+ 1, 2n], [−2n+ 1, 2n− 1];

• [−2i+ 1, 2i+ 1] for i in J1, n− 2K;

• [−2i, 2i− 2] for i in J3, nK.

Figure 3.8 depicts the intervals of T6: the real axis (solid line) is folded up and an
interval [a, b] is represented by a dashed line between a and b.

For every n ∈ N, n > 2, let ADn be the intersection graph of segments of Tn. Let
AD =

〈
ADn
〉
n>2

. Ding proved in [Din98] thatAD is an antichain for≤i.m., thus showing
that interval graphs are not wqo by induced minors.

Let us now present two more infinite antichains. Let AC =
〈
Cn
〉
n≥5

be the se-
quence of antiholes (i.e. complements of cycles of order at least five), whose first ele-
ments are represented in Figure 3.9.

Lemma 3.36. AC is an antichain for induced minors.

Proof. Let deg be the function that maps a vertex v of a graph G to the value |V (G)| −
deg(v), that is, the number of vertices (including v) that are not adjacent to v. Remark
that performing edge contractions and vertex deletions in a graph can only decrease
the value of deg of a given vertex. Indeed, during such an operation, the order of the
graph decreases by exactly one whereas the degree of a vertex decreases by at most
one. Also notice that in every graph G of AC , every vertex v satisfies deg(v) = 3. An
edge contraction in G yields a vertex v such that deg(v) < 3 whereas a vertex deletion
gives a vertex v with deg(v) = 2. By an above remark, this value cannot be increased
by further edge contractions of vertex deletions. Therefore there is no sequence of
edge contractions and vertex deletions on G yielding an other graph of AC . This
proves that AC is an antichain wrt. ≤i.m..
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Figure 3.7: A planar drawing (right) of the third graph of AM (left).
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Figure 3.8: An illustration of the intervals in T6.

We will meet again the antichainAC in the proof of Theorem 3.12. Another infinite
antichain which shares with AM the properties of planarity and bounded maximum
degree is the antichain of nested lozenges depicted in Figure 3.10. We will not go
more into detail about it here as this antichain will not be used in our proofs.

3.5.2 Antichains for contractions

Let us first mention that since every contraction of a graph is also an induced minor,
all the antichains for induced minors presented in Subsection 3.5.1 are also antichains
for the contraction relation. Not surprisingly there are more antichains for the con-
traction ordering. The most simple is certainly the class AK = {Ki}i∈N of edgeless
graphs. We present here one more infinite antichain for contractions, which is the
class of complete bipartite graphs with one part of size two: AK = {K2,r, r ∈ N≥2}
(cf. Figure 3.11).
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Figure 3.9: Antiholes antichain.

, , , , . . .

Figure 3.10: Nested lozenges.

Lemma 3.37. For every (p, q), (p′, q′) ∈ N≥2 such that p ≤ p′ and q < q′, there is no
contraction model of Kp,q in Kp′,q′ .

Proof. Let us assume for contradiction that there is a contraction model ϕ of Kp,q in
Kp′,q′ . AsKp′,q′ has more vertices thanKp,q, there is a vertex v ofKp,q such that |ϕ(v)| ≥
2. Observe that every subset of at least two vertices of Kp,q that induced a connected
subgraph is dominating. Indeed, such a subset must contain at least a vertex from
each part of the bipartition. It follows from the definition of a contraction model
that Kp′,q′ has a dominating vertex, a contradiction. Therefore there is no contraction
model of Kp,q in Kp′,q′ .

Corollary 3.38. {K2,p, p ∈ N≥2} is an antichain of ≤c..

If we allow multiple edges and consider the multigraph contraction ordering,
then the sequence of multiedges Aθ = {θi}i∈N∗ depicted in Figure 3.12 is also an
infinite antichain.

As we will show in Subsection 3.8.3, every infinite antichain for multigraph con-
traction is mainly composed of AK and Aθ.

3.6 Induced minors and well-quasi-ordering

In this section, we prove the dichotomy Theorem 3.12. Let us first recall this result.

Theorem 3.12 (Dichotomy for induced minors). LetH be a graph. The class ofH-induced
minor-free simple graphs is wqo by ≤i.m. iff H ≤i.m. K̂4 or H ≤i.m. Gem.
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AK =
, , , , , . . .

Figure 3.11: The antichain AK .

Aθ =
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Figure 3.12: The multiedges antichain.

Our proof naturally has two parts: for different values of H , we need to show
wqo of H-induced minor-free graphs or exhibit an H-induced minor-free antichain.
We recall that, unless otherwise specified, this section deals with simple graphs.

In order to achieve Step 1 presented in Section 3.4, we first prove two decomposi-
tion theorems. The following two theorems describe the structure of graphs with H

forbidden as an induced minor, when H is K̂4 and the Gem, respectively. Recall that
the prism is the Cartesian product of K3 and K2.

Theorem 3.39 (Decomposition of K̂4-induced minor-free graphs). LetG be a 2-connected
graph such that K̂4�i.m.G. Then:

• either K4�i.m.G;

• or G is a subdivision of a graph among K4, K3,3, and the prism;

• or V (G) has a partition (C,M) such that G[C] is an induced cycle, G[M ] is a complete
multipartite graph and every vertex of C is either adjacent in G to all vertices of M , or
to none of them.

Theorem 3.40 (Decomposition of Gem-induced minor-free graph). LetG be a 2-connected
graph such that Gem�i.m.G. Then G has a subset X ⊆ V (G) of at most six vertices such
that every connected component of G \X is either a cograph or a path whose internal vertices
are of degree two in G.

Using the two above structural results, we are able to show the well-quasi-ordering
of the two classes with respect to induced minors by following the steps described
in Section 3.4.

Theorem 3.41. The class of K̂4-induced minor-free graphs is wqo by ≤i.m..

Theorem 3.42. The class of Gem-induced minor-free graphs is wqo by ≤i.m..
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Organization of the proof. Subsection 3.6.1 is devoted to the proof of Theorem 3.12,
assuming Theorem 3.41 and Theorem 3.42, the proofs of which are respectively given
in Subsection 3.6.2 and Subsection 3.6.3.

Let us first provide some definitions specific to this section. An induced subgraph
of a graph G is said to be basic in G if it is either a cograph, or an induced path whose
internal vertices are of degree two in G.

Complete multipartite graphs. A graph G is said to be complete multipartite if its
vertex set can be partitioned into sets V1, . . . , Vk (for some positive integer k) in a way
such that two vertices of G are adjacent iff they belong to different Vi’s. The class of
complete multipartite graphs is referred to as KN? .

Containing K4-subdivisions. A graph G contains K4 as an induced minor if and
only if G contains K4-subdivision as a subgraph. This equivalence is highly specific
to the graph K4 and in general neither implication would be true. We will freely
change between those two notions for containing K4, depending on which one is
more convenient in the given context.

A graph G will be said to contain a proper K4-subdivision, if there is some vertex
v ∈ V (G), such that G \ v contains a K4-subdivision.

Cycle-multipartite. Given a graph G, a pair (C,R) of induced subgraphs of G is
said to be a cycle-multipartite decomposition of G if the following conditions are satis-
fied:

(i) (V (C), V (R)) is a partition of V (G);

(ii) C is a cycle and R is a complete multipartite graph;

(iii) ∀u, v ∈ V (R), NC(u) = NC(v).

The class of graphs having cycle-multipartite decomposition is denoted byW .

Cuts. In a graph G, a K2-cut (respectively K2-cut) is a subset S ⊆ V (G) such that
G− S is not connected and G[S] is isomorphic to K2 (respectively K2).

3.6.1 The dichotomy theorem

The purpose of this section is to prove Theorem 3.12, that is, to characterize all graphs
H such that (Excl≤i.m.

(H),≤i.m.) is a wqo. To this end, we will assume Theorem 3.41
and Theorem 3.42, which we will prove later, in Subsection 3.6.2 and Subsection 3.6.3
respectively.

The main ingredients of the proof are the infinite antichains presented in Subsec-
tion 3.5.1, together with Theorem 3.41 and Theorem 3.42. Infinite antichains will be
used to discard every graph H that is not induced minor of all but finitely many ele-
ments of some infinite antichain. On the other hand, knowing that (Excl≤i.m.

(H),≤i.m.)
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is a wqo gives that (Excl≤i.m.
(H ′),≤i.m.) is a wqo for every H ′≤i.m.H , by the virtue of

Remark 3.30.
In the statement of the following results, we assume that H is any graph. Recall

that a linear forest is a disjoint union of paths.

Lemma 3.43. If (Excl≤i.m.
(H),≤i.m.) is a wqo then H is a linear forest.

Proof. Let us show that Excl≤i.m.
(H) has an infinite antichain given that H is not a

linear forest. We will in fact show that Excl≤i.m.
(H) contains infinitely many antiholes.

If H is not a linear forest, then it has a vertex of degree at least 3, or it contains an
induced cycle as induced subgraph.
First case: H has a vertex v of degree 3. Let x, y, z be three neighbors of v. In the graph
H[{v, x, y, z}], the vertex v is adjacent to none of x, y, z. In an antihole (c.f. Figure 3.9),
every vertex has exactly two non-neighbors, soH[{v, x, y, z}] is not an induced minor
of any element of AC . Therefore AC ⊆ Excl≤i.m.

(H).
Second case: H contains has a cycle. Let k be the length of an induced cycle ofH . Then
we have Ck≤i.m.H . Let us start with the case where k ≥ 5, and let us consider Cn for
some n > |H|. By the choice of n, we haveCn�i.m.H . On the other hand, ifH ≤i.m.Cn,
then by the fact that Ck≤i.m.H and transitivity of ≤i.m., we would have Ck≤i.m.Cn,
which would yield a contradiction with the fact that AC is an antichain. Hence AC ∩
Excl≤i.m.

(H) contains all antiholes of size greater than |H|, and in particular is infinite
as required. Let us now consider the case where k ∈ {3, 4}. Every vertex of an
antihole A has only two non-neighbors, which are adjacent, therefore A does not
contain C3 (i.e. three independent vertices) as an induced subgraph. Moreover, as
the neighbors of two distinct vertices of a cycle are distinct, the non-neighbors of two
distinct vertices of A are also distinct and we deduce that A does not have a pair of
independent edges, i.e. C4�i.sg.A. Observe that if J has maximum degree one, then
J ≤i.sg.G iff J ≤i.m.G, for any graph G. Therefore C3�i.sg.A and C4�i.sg.A, and we
have A ∈ Excl≤i.m.

(H). This holds for every antihole A, hence AC ⊆ Excl≤i.m.
(H) and

we are done.

Due to the interesting properties on H given by Lemma 3.43, we will be led below
to work with this graph rather than with H . The following lemma presents step by
step the properties that we can deduce on H by assuming that Excl≤i.m.

(H) is wqo
by ≤i.m.. Recall that we denote by cc(G) the number of connected components of
graph G.

Lemma 3.44. If (Excl≤i.m.
(H),≤i.m.) is a wqo, then we have

(R1) H has at most 4 connected components;

(R2) at most one connected component of H is not a single vertex;

(R3) the largest connected component of H has at most 4 vertices;

(R4) if n = |V (H)| and c = cc(H) then n ≤ 7 and H = (c− 1) ·K1 + Pn−c+1;

(R5) if cc(H) = 3 then |V (H)| ≤ 5.
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(R6) if cc(H) = 4 then |V (H)| ≤ 4.

Proof. Proof of item (R1). The infinite antichainAM does not containK5 as an (induced)
minor, hence K5�i.m.H and so H does not contain 5 ·K1 as induced minor. Therefore
it has at most 4 connected components.
Proof of items (R2) and (R3). The infinite antichain AD does not contain C4 as induced
minor (as it is an interval graph), hence neither doesH . ThereforeH does not contain
2 · P2 as induced minor. This implies that H does not contain P5 as induced minor
and that given two connected components of H at least one must be of order one.
As connected components of H are (induced) paths (by Lemma 3.43), the largest
connected component of H has order at most 4.

Item (R4) follows from the above proofs and from the fact that H is a linear forest.
Proof of item (R5). Similarly as in the proof of item (R1), AM does not contain K−5 as
induced minor so K−5 = K2 + 3 · K1 is not an induced minor of H . If we assume
that cc(H) = 3 and |V (H)| ≥ 6, the largest component of H is a path on (a least) 4
vertices, so it contains K1 + K2 as induced subgraph. Together with the two other
(single vertex) components, this gives an K2 + 3 ·K1 induced minor, a contradiction.
Proof of item (R6). Let us assume that cc(H) = 4. If the largest connected component
has more than one vertex, then H contains K2 + 3 ·K1 as an induced minor, which is
not possible (as in the proof of item (R5)). ThereforeH = 4·K1 and so

∣∣V (H)
∣∣ = 4.

We are now able to describe more precisely graphsH for which (Excl≤i.m.
(H),≤i.m.)

could be a wqo. Let K+
3 be the complement of P3 + K1 and recall that we call D2 the

complement of K2 + 2 ·K1, which is also the graph obtained from K4 by deleting an
edge (sometimes referred as diamond graph).

Lemma 3.45. If (Excl≤i.m.
(H),≤i.m.) is a wqo, then H ≤i.m. K̂4 or H ≤i.m. Gem.

Proof. Using the information on H given by Lemma 3.44, we can build a table of
possible graphs H depending on cc(H) and

∣∣V (H)
∣∣. Table 3.2 is such a table: each

column corresponds to a number of connected components (between one and four
according to item (R1)) and each line corresponds to an order (at most seven, by
item (R4)). A grey cell means either that there is no such graph (for instance a graph
with one vertex and two connected components), or that for all graphs H matching
the number of connected components and the order associated with this cell, the
qoset (Excl≤i.m.

(H),≤i.m.) is not a wqo.
From Table 3.2 we can easily deduce Table 3.3 of the corresponding graphs.
Remark that we have

• K1≤i.m. 2 ·K1≤i.m.K2 +K1≤i.m. P4≤i.m. Gem;

• K2≤i.m. P3≤i.m.K
+
3 ≤i.m. Gem;

• K3≤i.m.D2≤i.m. K̂4; and

• K4≤i.m. K̂4.

This concludes the proof.
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|V (H)| \ cc(H) 1 2 3 4
1 K1

2 K2 2 ·K1

3 P3 K2 +K1 3 ·K1

4 P4 P3 +K1 K2 + 2 ·K1 4 ·K1

5 (R3) P4 +K1 P3 + 2 ·K1 (R6)
6 (R3) (R3) (R5) (R6)
7 (R3) (R3) (R5) (R6)

Table 3.2: If (Excl≤i.m.
(H),≤i.m.) is a wqo, then H belongs to this table.

|V (H)| \ cc(H) 1 2 3 4
1 K1

2 2 ·K1 K2

3 K2 +K1 P3 K3

4 P4 K+
3 D2 K4

5 (R3) Gem K̂4 (R6)
6 (R3) (R3) (R5) (R6)
7 (R3) (R3) (R5) (R6)

Table 3.3: If (Excl≤i.m.
(H),≤i.m.) is a wqo, then H belongs to this table.

We are now ready to give the proof of Theorem 3.12 that we first restate.

Theorem 3.12 (Dichotomy for induced minors). LetH be a graph. The class ofH-induced
minor-free simple graphs is wqo by ≤i.m. iff H ≤i.m. K̂4 or H ≤i.m. Gem.

Proof. If H �i.m. Gem and H �i.m. K̂4, then by Lemma 3.45 (Excl≤i.m.
(H),≤i.m.) is not

a wqo. On the other hand, by Theorem 3.41 and Theorem 3.42 we know that both
Excl≤i.m.

(K̂4) and Excl≤i.m.
(Gem) are wqo by ≤i.m.. Consequently, by Remark 3.30,

(Excl≤i.m.
(H),≤i.m.) is wqo as soon as H ≤i.m. Gem or H ≤i.m. K̂4.

3.6.2 Graphs not containing K̂4

The main goal of this section is to provide a proof to the following theorem, that we
already stated above.

Theorem 3.41. The class of K̂4-induced minor-free graphs is wqo by ≤i.m..

To this purpose, we first prove that the graphs of Excl≤i.m.
(K̂4) admit a simple

structural decomposition. This structure is then used to show that graphs of Excl≤i.m.
(K̂4)

are well-quasi-ordered by the relation ≤i.m..
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A decomposition theorem for Excl≤i.m.
(K̂4)

The main topic of this section is the proof of Theorem 3.39. This theorem states that
every graph in the class Excl≤i.m.

(K̂4), either does not have even K4 as induced mi-
nor, or is a subdivision of some small graph, or has a cycle-multipartite decomposi-
tion. Most of the time, we show that some property P is not satisfied by graphs of
Excl≤i.m.

(K̂4) by showing an induced minor model of K̂4 in graphs satisfying P. We
first assume that G contains a proper K4-subdivision, and we show in Lemma 3.62
how to deal with the other case.

Lemma 3.46. If G contains as induced minor any graph H consisting of:

• a K4-subdivision S;

• an extra vertex x linked by exactly two paths L1 and L2 to two distinct vertices s1, s2 ∈
V (S), where the only common vertex of L1 and L2 is x;

• and possibly extra edges between the vertices of S, or between L1 and L2, or between
the interior of the paths and S,

then K̂4≤i.m.G.

Proof. We assume that L1 and L2 do not share internal vertices with S, what we can
do without loss of generality by considering the paths of minimum length satisfying
the requirements of the lemma. Let us call V = {v1, v2, v3, v4} the non-subdivision
vertices of S, i.e. vertices corresponding to vertices of K4. We present here a sequence
of edge contractions in H leading to K̂4. Let us iteratively repeat the following pro-
cedure: as long as there is a path on at least two edges between two elements of
V ∪ {s1, s2, s} that is internally disjoint with this set, contract the whole path to a
single edge.

Once we can not apply this contraction any more, we end up with a graph that has
two parts: theK4-subdivision with at most 2 subdivisions (with vertex set V ∪{s1, s2})
and the vertex x, which is now only adjacent to s1 and s2.

First case: s1, s2 ∈ V. The graph H is isomorphic to K̂4: it is K4 plus a vertex of
degree two.
Second case: s1 ∈ V and s2 6∈ V (and the symmetric case). As vertices of V are the
only vertices of H that have degree 3 in S, s2 is of degree 2 in S (it is introduced by
subdivision). The contraction of the edge between s2 and one of its neighbors in S
that is different to s1 leads to first case.
Third case: s1, s2 6∈ V. As in the second case, these two vertices have degree two in S.
Since no two different edges of K4 can have the same endpoints, the neighborhoods
of s1 and s2 have at most one common vertex. Then for every i ∈ {1, 2} there is a
neighbor ti of si that is not adjacent to s3−i. Contracting the edges {s1, t1} and {s2, t2}
leads to first case.

Corollary 3.47. Let G ∈ Excl≤i.m.
(K̂4) be a 2-connected graph containing a proper K4-

subdivision. For every subdivision S of K4 in G, and for every vertex x ∈ V (G) \ V (S),
NS(x) ≥ 3.
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Proof. Let S be a proper K4-subdivision in G and x ∈ V (G) \ V (S). Let L1, L2 be two
shortest paths from x to S meeting only in x. Such paths exist by the 2-connectivity
of G. Remark that if |NG(x) ∩ V (S)| ≤ 2, then then graph induced by S, L1, and L2

satisfies conditions of Lemma 3.46. Therefore, NS(x) ≥ 3.

Remark 3.48. For every two edges of K4 there is a Hamiltonian cycle using these
edges.
Remark 3.49. Three edges of K4 are not contained into a same cycle iff they are inci-
dent with the same vertex.

Recall that a 3-wheel a graph that can be obtained by connecting three distinct
vertices of a cycle to a new vertex.

Lemma 3.50. Every 2-connected graphG ∈ Excl≤i.m.
(K̂4) containing a properK4-subdivision

has a 3-wheel as subgraph.

Proof. Let S be a minimum (proper) K4-subdivision in G and let x ∈ V (G)\V (S). We
define V as in the proof of Lemma 3.46 and we say that two neighbours of x in S are
equivalent if they lie on the same path between two elements of V (intuitively they
correspond to the same edge of K4). By Corollary 3.47, we only have to consider the
case |NS(x)| ≥ 3.

First of all, observe that if some three neighbors of x lie on a cycle of S, then we are
done. Let us assume from now on, that there is no cycle of S containing three neigh-
bors of x. This implies that no two neighbors of x are equivalent (by Remark 3.48),
no neighbor of x belongs to V (by the same remark), and that |NS(x)| = 3 (by Re-
mark 3.49). Let us consider the induced minor H of S + x obtained by contracting all
edges not incident with two vertices of V ∪NS(x). By Remark 3.49 and since the three
neighbors of x do not belong to a cycle, there is a vertex of V (H) \ {x} adjacent to the
three neighbors of x. Contracting two of the edges incident with this vertex merges
two neighbors of x and the graph we obtain is a K4-subdivision (corresponding to S)
together with a vertex of degree 2 (corresponding to x). By Lemma 3.46, this would
imply that K̂4≤i.m.G, a contradiction. Therefore three neighbors of x lie on a cycle of
S and this concludes the proof.

Now we will deal with a graphG that satisfies conditions of Lemma 3.50; namely:
G is a 2-connected graph, without K̂4 as an induced minor, containing a proper K4-
subdivision; C denotes the cycle of a minimum (in terms of number of vertices) 3-
wheel in G, and R the graph induced by the remaining vertices.
Remark 3.51. As this 3-wheel is a subdivision of K4 as subgraph of G, by Corol-
lary 3.47, every vertex of R has at least three neighbors in C.
Remark 3.52. This 3-wheel contains no more vertices than the K4-subdivision that we
assumed to be contained in G. Therefore, every minimum K4-subdivision of G (in
terms of vertices) is a 3-wheel.

Lemma 3.53. Let G be a 2-connected graph of Excl≤i.m.
(K̂4). Every minimum (in terms of

number of vertices) 3-wheel W of cycle C and center r that is a subgraph of G is such that, if
C is not an induced cycle in G,
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(i) the endpoints of every chord are both adjacent to some u ∈ NC(r);

(ii) every two distinct v, w ∈ NC(r) \ {u} are adjacent on C;

(iii) C has exactly one chord in G

(iv) |NC(r)| = 3.

r

C

u

v w

x

y
r

C

u

v w

x

y
r

C

u

v w

x

y

r

C

u

v w

x y
z t

r

C

u

v w

x

y

z

Figure 3.13: Forbidden configurations in the proof of Lemma 3.53.

Proof. Let u, v, w ∈ NC(r) be three distinct neighbours of r in C and let Cu be the
path of C between v and w that does not contains the vertex u, and similarly for
Cv and Cw. First of all, notice that no proper subgraph of W can be a subdivision
of K4, otherwise G would contain a graph smaller than W but meeting the same
requirements, according to Lemma 3.50. Below we will show that when conditions
(i)-(iv) are not fulfilled, W is not minimal, i.e. that when some vertices are deleted
in W, it still contains a K4-subdivision. Figure 3.13 illustrates such configurations,
where white vertices can be deleted.

Let {x, y} be a chord of C in G. Remark that the endpoints of a chord cannot
belong to the same path Cl for any l ∈ {u, v, w}without violating the minimality of S,
as deleting vertices of Cl that are between x and y would still lead to a 3-wheel (first
configuration of Figure 3.13). Therefore, x and y belongs to different Cl’s, say without
loss of generality that x ∈ V (Cw) and y ∈ V (Cv).

Let us prove that x and y must both be adjacent to u. By contradiction, we as-
sume that, say, y and u are not adjacent. Let us consider the induced subgraph of
W obtained by the deletion of the interior of the path yCvu (containing at least one
vertex). Notice that contracting into an edge each of the paths vCuw, vCwx, yCvw and
rpathtuCwx gives K4, a contradiction (cf. the second configuration of Figure 3.13).
The case where x and u are not adjacent is symmetric. This proves that every chord
of C in G has endpoints adjacent to a same neighbor of r on C, that is (i).

Now, we show that the path Cu must be an edge. To see this, assume by contradic-
tion that it has length at least 3. The subgraph of W induced by the six paths rvCwx,
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{r, u}, rwCvy, {x, y}, uCwx and uCvy does not contain the internal vertices of Cu, thus
it is smaller than W (third configuration of Figure 3.13). However, it contains a sub-
division of K4 as subgraph, that can for instance be obtained by contracting each of
these six paths to an edge. This contradicts our first remark, therefore the two neigh-
bors v and w of r on the cycle are adjacent. This proves item (ii).

Let now assume that there C has a second chord {z, t} in G. In the light of the
previous remark, Cu is an edge, hence the only paths to which z and t can belong
are the paths xCwv and yCvw and, according to our first remark, they do not both
belong to the same of these two paths. Also, as {z, t} 6= {x, y}, one of z, t does not
belong to {x, y}. We can thus assume without loss of generality that z ∈ V (xCwv),
t ∈ V (yCvw) and z 6= x. This case is represented by the fourth configuration of
Figure 3.13. Let us consider the cycle C ′ obtained by the concatenation of the paths
zCwv, Cu, wCvt and (t, z) and the vertex r, which is connected to the cycle by the
three paths (r, v), (r, w) and (r, u)−uCvt that only share the vertex r. This subgraph is
smaller than H since it does not contain vertex x, but it is a subdivision of K4 (three
paths issued from the same vertex a and meeting the cycle C ′). By one of the above
remarks, this configuration is impossible and thus the chord (z, t) cannot exist. Hence
we proved item (iii): C can have at most one chord in G.

Notice that we have |NC(r)| ≥ 3 since W is a 3-wheel. We now assume that
|NC(r)| > 3. Let u, v, w, z be four different neighbors of r such that z is a common
neighbor of the endpoints of the chord x and y. This case is depicted in the fifth
configuration of Figure 3.13. Then r has at least three neighbors (u, v, and w) on the
cycle going through the edge {x, y} and following C up to x without using the vertex
z. As this contradicts the minimality of W, we have |NC(r)| = 3, that is item (iv), and
this concludes the proof.

Corollary 3.54. According to Remark 3.52, every minimum K4-subdivision in G is a 3-
wheel, so Lemma 3.53 is still true when replacing 3-wheel by K4-subdivision in its statement.

Lemma 3.55. Every two non-adjacent vertices of R have the same neighborhood in C.

Proof. By contradiction, we assume that there are two non-adjacent vertices s, t ∈
V (R) and a vertex u1 ∈ V (C) such that {s, u1} ∈ E(G) but {t, u1} 6∈ E(G). By Re-
mark 3.51, s and t have (at least) three neighbors in C. Let U = {u1, u2, u3} and
V = {v1, v2, v3} be the respective neighbors of s and t. We consider the graph H
induced in G by C and {s, t} where we iteratively contracted every edge of S that is
not incident with two vertices of {u1, u2, u3, v1, v2, v3}. This graph consists of a cycle
on at most 6 vertices that may have chords; we call this cycle C ′; plus the two non-
adjacent vertices of degree at least three s and t. Remark that while two neighbors
of s are adjacent and are not both neighbors of t, we can contract the edge between
them and decrease the degree of s, without changing degree of t. If the degree of
s reaches two by such means, then by Lemma 3.46, K̂4≤i.m.H, a contradiction. We
can thus assume that every vertex of C ′ adjacent to a neighbor of s is a neighbor of
t. This is also true when s and t are swapped since this argument can be applied
to t too. This observation implies that NS(s) ∩ NS(t) = ∅ (as u1 is adjacent to s but
not to t, none of its neighbors on C can be adjacent to s, and so on along the cycle)
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and that the neighbors of s and t are alternating on C ′. Without loss of generality, we
suppose that C ′ = u1v1u2v2u3v3. We consider now the five following sets of vertices
of H : M1 = {u1},M2 = {s},M3 = {u2, v1},M4 = {v2, u3, v3},M5 = {t}. They are
depicted on Figure 3.14. Let µ : K̂4 → P<ω(V (H)) be the function defined as follows:
∀i ∈ J1, 5K , µ(vi) = Mi (using the names of vertices of K̂4 defined on Figure 3.2).
Now, remark that µ is an induced minor model of K̂4 in H : for every i ∈ J1, 5K , the
setMi is connected, M1,M3,M4 forms a cycle (using edges {u1, v1}, {u2, v2}, {v3, u1} is
this order), M2 is adjacent to any of these three sets (by edges {s, u1}, {s, u2}, {s, u3})
and the set M5 is only adjacent to M3 and M4 (by edges {t, v1}, {t, v2}). Remark that
the previous statement holds even when C ′ is not an induced cycle, as any possible
chord of C ′ will be between vertices of the sets M1,M2,M3,M4 (as M5 is reduced to
t 6∈ V (C ′)) and these sets are already all pairwise adjacent. We assumed our initial
graph to be K̂4-induced minor-free but we proved that it contains an induced minor
model of K̂4 : this is the contradiction we were looking for.
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Figure 3.14: Graph H (left) used in Lemma 3.55 (middle) and in Lemma 3.56 (right).

Lemma 3.56. Every two adjacent vertices of R have the same neighborhood in C.

Proof. By contradiction, we assume that there are two adjacent vertices s, t ∈ V (R)
and u1 ∈ V (C) such that {s, u1} ∈ E(G) but {t, u1} 6∈ E(G). As this proof is very
similar to the proof of Lemma 3.55, we define u1, u2, u3, v1, v2, v3, U, V,H,C ′ in the
same way here.
First case: C ′ is an induced cycle. In this case, the graph H is the (induced) cycle
C ′ = u1v1u2v2u3v3 plus the two adjacent vertices s and t. Let us define five vertex
sets: M1 = {v2},M2 = {t},M3 = {u3, v3},M4 = {v1, u2, s},M5 = {u1}. They are
depicted on Figure 3.14. Now, remark that the function that sends the vertex of K̂4

labeled i on Figure 3.2 to Mi is an induced minor model of K̂4 in H : every set Mi

is connected, M1,M3,M4 forms a cycle (using edges {v2, u3}, {u3, s}, {u2, v2} is this
order), M2 is adjacent to any of these three sets (by edges {t, v2}, {t, v3}, {t, v1}), and
the set M5 is only adjacent to M3 and M4 (by edges {u1, v3}, {u1, v1}). As we assumed
our initial graph to be K̂4-induced minor-free, this is a contradiction.
Second case: the cycle C ′ is not induced. By Lemma 3.53 and as C is supposed to be a
minimal 3-wheel of G, the cycle C has only one chord. In this case, the graph H is the
(induced) cycle C ′ = u1v1u2v2u3v3 plus the two adjacent vertices s and t and an edge
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e between two vertices of C ′. In H, both H \ {s} and H \ {t} are minimal 3-wheels,
sharing the same cycle C ′. By applying Lemma 3.53 on these two 3-wheels, we obtain
that the endpoints of e must both be adjacent to a vertex of u1, u2, u3 (neighbor of
s on C ′) and to a vertex of v1, v2, v3 (neighbor of t on C ′). Such a configuration is
impossible.

Lemma 3.57. If C is not an induced cycle of G, then |V (R)| = 1.

Proof. Let r ∈ V (R) be the center of a minimum 3-wheel of cycle C. By contradiction,
let us assume that R contains a vertex s 6= r. By Lemma 3.53, r has exactly three
neighbors on C, one of which, that we call u, is adjacent to both endpoints of the
only chord of C. Furthermore the two other neighbors or r, that we denote by {v, w},
are adjacent. According to Lemma 3.55 and Lemma 3.56, r and s have the same
neighborhood inC. There are now two different cases to consider depending whether
{r, s} is an edge or not. The case {r, s} ∈ E(G) (respectively {r, s} 6∈ E(G)) is depicted
on the right (respectively left) of Figure 3.15. Remark that if {r, s} ∈ E(G), the graph
G satisfies conditions of Lemma 3.46 (withG[{r, s, u, v, w}] for S, {u, v} for {s1, s2} and
x for x), so G≤i.m. K̂4, what is contradictory. In the other hand, when {r, s} 6∈ E(G),

the induced subgraphG[{r, s, u, v, w}] is isomorphic to K̂4, so we also haveG≤i.m. K̂4.
Hence |V (R)| < 2. By definition of C and R, the subgraph R contains at least one
vertex (that is the center of a 3-wheel of cycle C), thus |V (R)| = 1 as required.

r s

C

uu

vv ww

x y

r s

C

uu

vv ww

x y

Figure 3.15: Two different cases in the proof of Lemma 3.57

Recall that the prism is the Cartesian product of K3 and K2, see Figure 3.16 for a
picture.

Figure 3.16: The prism.

Corollary 3.58. If C is not an induced cycle of G, then G is a subdivision of the prism.

Lemma 3.59. R is complete multipartite.
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Proof. As a graph is complete multipartite iff it does not contain K1 + K2 as induced
subgraph, we only need to show that the case where R = K1 + K2 is not possible.
Consequently, let us assume that we are in this case, and let u, v, w be the vertices of
R, {u, v} being the only edge in R. As R is an induced subgraph of G, u and w are
not adjacent in G neither. By Lemma 3.55, they have the same neighborhood on C.
The same argument can be applied to v and w to show that NC(u) = NC(v) = NC(w).
Let x, y, z ∈ NC(u) be three different vertices (they exist by Corollary 3.47) and let
H be the graph obtained from G by contracting every edge of C that is not incident
with two vertices of {x, y, z}. Such a graph is a triangle (obtained by contracting C)
and the three vertices u, v, w each adjacent to every vertex of the triangle, as drawn
in Figure 3.17. Deleting vertex y gives a graph isomorphic to K̂4, as one can easily
check (cf. Lemma 3.59).

x

y zw

u v

x

zw

u v

Figure 3.17: The graph H of Lemma 3.59 (left) and the graph obtained after deletion
of y (right).

We now need to show that every graph containing a K4-subdivision either has a
proper K4-subdivision, or fall in the possible cases of the statement of Theorem 3.39.

Lemma 3.60. IfG can be obtained by adding an edge between two vertices of aK3,3-subdivision,
then G has a proper K4-subdivision.

Proof. Let S be the spanning subgraph of G which is a K3,3-subdivision. A branch of
S is a maximal path, the internal vertices of which are of degree two. In S, non-
subdivision vertices are connected by branches. Let us call a, b, c, x, y, z the non-
subdivision vertices of S in a way such that there is neither a branch between any
two vertices of {a, b, c} nor between any two vertices of {x, y, z} (intuitively {a, b, c}
and {x, y, z} correspond to the two maximum independent sets ofK3,3). Observe that
every K3,3-subdivision contains a K4-subdivision (but not a proper one). Let us now
consider all the possible endpoints of the only edge e of E(G) \ E(S).
First case: both endpoints of e belong to the same branch B of S. Let X be the set of
internal vertices of the subpath of B starting at the one endpoint of e and ending at
the other one. As G is a simple graph, |X| ≥ 1. Then G \X has a K4-subdivision (as
it is a K3,3-subdivision), which is a proper K4-subdivision of G.
Second case: e is incident with two non-subdivision vertices. Observe that the case
where e is incident with a vertex from {a, b, c} and the other from {x, y, z} is contained
in the previous case. Let us assume without loss of generality that e = {a, b}. Then
G \ {x} has a K4-subdivision. Indeed, if Bs,t denotes the branch with endpoints the
vertices s and t (for (s, t) ∈ {a, b, c}×{x, y, z}), then the vertices of the paths Bb,y, Bb,z,
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Bc,z and Bc,y induce a cycle in G. The vertex a is then connected to this cycle with the
paths Ba,y, Ba,z and the edge e. Hence G has a proper K4-subdivision, as required.
Third case: e is incident with two subdivision vertices. If the two endpoints of e belong
to the same branch, then we are in the first case. Otherwise, we can easily reach the
second case as follows. If we contract all the edges on the path connecting the first
endpoint of e to a vertex of {a, b, c} and all the edges on the path connecting the
second endpoint of e to a vertex of {x, y, z}, we get a K4-subdivision (because we
never contracted an edge incident with two non-subdivision vertices of S) plus the
edge e which is now incident with two non-subdivision vertices. This concludes the
proof.

Lemma 3.61. If G can be obtained by adding an edge between two vertices of a prism-
subdivision, then G has a proper K4-subdivision.

Proof. Let S be a prism-subdivision in G and let e ∈ E(G) \ E(S). We will use the
concept of branch defined in the proof of Lemma 3.60, which is very similar to this
one. Let us call a, b, c, x, y, z the non-subdivision vertices in a way such that there
are branches between every pair of vertices of {a, b, c} (respectively {x, y, z}) and be-
tween vertices of the pairs (a, x), (b, y), and (c, z). Intuitively {a, b, c} and {x, y, z}
correspond to the two triangles of the prism. Let us consider the positions of the
endpoints of e.
First case: both endpoints of e belong to the same branch of S. Since the prism contains
a K4 subdivision (but not a proper one), we can in this case find a smaller prism
subdivision as in the first case of the proof of Lemma 3.60, and thus a proper K4-
subdivision.
Second case: e is incident with two non-subdivision vertices. Let us assume with-
out loss of generality that e = {a, y} (the cases e ⊆ {a, b, c}, e ⊆ {x, y, z}, and
e ∈ {{a, x}, {b, y}, {c, z}} are subcases of the first one). Then in G \ {x}, the paths
Ba,b, Bb,z and Bx,y together with the edge e induces a cycle to which the vertex c is
connected via the paths Bc,b, Bc,a, and Bc,y. Hence G has a proper K4-subdivision.
Third case: e is incident with two branches between a,b, and c (and the symmetric case
with branches between x, y, and z). Let us assume without loss of generality that
e has one endpoint r among the interior vertices of Ba,c and the other one s among
the interior vertices of Bb,c. Then (r, s), sBb,cc, and cBa,cr induce in G \ {x} a cycle to
which the vertex b is connected via the paths bBb,cs, bBa,ba together with aBa,cr, and
Bb,z together with Bz,y and By,b. Again, G has a proper K4-subdivision.
Fourth case: e is incident with two branches, the one connected to a vertex in {a, b, c}
and the other one connected to a vertex in {x, y, z}. In this case, by contracting the
edges of the first branch that are between the endpoint of e and a vertex of {a, b, c}
and similarly with the second branch and a vertex of {x, y, z} gives a graph with a
prism-subdivision plus an edge between two non-subdivision vertices (that is, first
case), exactly as in the proof of Lemma 3.60.

Lemma 3.62. If graphG contains aK4-subdivision, then eitherG has a properK4-subdivision,
or G is a wheel, or a subdivision of one of the following graphs: K4, K3,3, and the prism.
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Proof. Looking for a contradiction, let G be a counterexample with the minimum
number of vertices and, subject to that, the minimum number of edges. Let S be a
K4-subdivision in G and let e ∈ E(G) \ E(S). Observe that since G has no proper
K4-subdivision, S is a spanning subgraph of G. Also, e is well defined as we assume
that G is not a K4-subdivision. Notice that since the minimum degree of K4 is 3,
contracting an edge incident with a vertex of degree 2 in G would yield a smaller
counterexample. Therefore G has minimum degree at least 3. Let G′ = G \ {e}. This
graph clearly contains S. By minimality of G, the graph G′ is either a wheel, or a
subdivision of a graph among K4, K3,3, and the prism. Observe that G′ cannot have
a proper K4-subdivision because it would also be a proper K4-subdivision in G.
First case: G′ is a wheel. Let C be the cycle of the wheel and let r be its center. Ob-
viously, in G the edge e has not r as endpoint otherwise G would also be a wheel.
Therefore e is incident with two vertices of C. Let P and P ′ be the two subpaths of
C whose endpoints are then endpoints of e. Observe that none of P and P ′ contains
more than two neighbors or r. Indeed, if, say, P contained at least three neighbors
of r, then the subgraph of G induced by the vertices of P , e, and r would contain a
K4-subdivision, hence contradicting the fact that G has no proper K4-subdivision.

Therefore G is the cycle C with exactly one chord, e, and the vertex r which has
at most 4 neighbors on C. Because G has maximum degree at least 3, it has at most 7
vertices. If r has three neighbors on C, then necessarily P contains one of them and
P ′ the other two (or the other way around). We can easily check in this case that G
is a subdivision of the prism. If r has four neighbors on C, the interior of P and P ′

must each contain two of them according to the above remarks. The deletion of any
neighbor of r in this graph yields a K4-subdivision of non-subdivision vertices r and
the remaining neighbors. Observe that both cases contradict the assumptions made
on G.
Second case: G′ is a subdivision of K4, or K3,3, or the prism. If G′ is a subdivision of
K3,3 or of the prism, then the result follows by Lemma 3.60 and Lemma 3.61. Let
us now assume that G′ is a subdivision of K4 and let us consider branches of this
subdivision as defined in the proof of Lemma 3.60. If e has endpoints in the same
branch, then as in the first cases of the aforementioned lemmas we can find in G′ a
K4-subdivision with fewer vertices and thus a proper K4-subdivision in G. In the
case where the endpoints of e belong to the interior of two different branches, then
it is easy to see that G is a prism-subdivision. Let {x, y, z, t} be the non-subdivision
vertices of the K4-subdivision. Finally, let us assume that the one endpoint of e is
a non-subdivision vertex, say x, and the other one, that we call u, is a subdivision
vertex of a branch, say By,z (using the same notation as in the proof of Lemma 3.60).
IfX is set set of interior vertices of one ofBx,y, Bx,z, orBx,t, then the graphG\X has a
K4-subdivision of non-subdivision vertices x, u, z, t, x, y, y, t or x, y, u, z respectively.
In this case G has a proper K4-subdivision. If none of Bx,y, Bx,z, and Bx,t has internal
vertices, then G is a wheel of center x.

In all the possible cases we reached the contradiction we were looking for. This
concludes the proof.

We are now ready to prove Theorem 3.39, that we restate here.
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Theorem 3.39 (Decomposition of K̂4-induced minor-free graphs). LetG be a 2-connected
graph such that K̂4�i.m.G. Then:

• either K4�i.m.G;

• or G is a subdivision of a graph among K4, K3,3, and the prism;

• or V (G) has a partition (C,M) such that G[C] is an induced cycle, G[M ] is a complete
multipartite graph and every vertex of C is either adjacent in G to all vertices of M , or
to none of them.

Proof. Let G ∈ Excl≤i.m.
(K̂4) be a 2-connected graph. If G does not contain a K4-

subdivision, then the theorem is trivially true forG. If graphG contains aK4-subdivision
but not a proper one, from Lemma 3.62 we get that G is a subdivision of one of K4,
K3,3, or the prism, in which case the theorem holds, or that G is a wheel, which has a
trivial cycle-multipartite decomposition, with the center being the multipartite part.

Finally, let us assume that G contains a proper K4-subdivision. By Lemma 3.50,
G contains a 3-wheel. Let C be the cycle of a minimum 3-wheel in G and R the
subgraph of G induced by V (G) \ V (C). According to Corollary 3.58, if C is not an
induced cycle, then G is a subdivision of the prism. When C is induced, then by
Lemma 3.59, R is complete multipartite. Furthermore, vertices of R have the same
neighborhood on C, as proved in Lemma 3.55 and Lemma 3.56. Therefore, (C,R) is
a cycle-multipartite decomposition of G and we are done.

From a decomposition theorem to well-quasi-ordering

This section is devoted to the proof of Theorem 3.41.
The proof relies on the two following lemmas which are proved in the next sub-

sections.

Lemma 3.63. For every (unlabeled) graphG and every wqo (S,�), the class of (S,�)-labeled
G-subdivisions is well-quasi-ordered by the contraction relation.

Lemma 3.64. For every wqo (S,�), the class of (S,�)-labeled graphs having a cycle-multipartite
decomposition is well-quasi-ordered by induced minors.

Let us recall the statement of Theorem 3.41.

Theorem 3.41. The class of K̂4-induced minor-free graphs is wqo by ≤i.m..

Proof. The class of graphs not containing K4 as minor (or, equivalently, as induced
minor) has been shown to be well-quasi-ordered by induced minors in [Tho85], cf.
Theorem 3.11. According to Remark 3.25, we can then restrict our attention to graphs
of Excl≤i.m.

(K̂4) that contain K4 as minor. As some of these graphs might not be
2-connected, we use Lemma 3.31: it is enough to show that for every wqo (S,�),
the class of (S,�)-labeled 2-connected graphs containing K4 as minor are wqo by
induced minors. By Theorem 3.39, this class can be divided into two subclasses:
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• (2-connected) subdivisions of a graph among K4, K3,3, and the prism;

• graphs having a cycle-multipartite decomposition.

Lemma 3.63 and Lemma 3.64 handle these two cases, hence by Remark 3.25 the
class of (S,�)-labeled 2-connected graphs containing K4 as minor are wqo by in-
duced minors for every wqo (S,�). This concludes the proof.

The following subsections contains the proofs of Lemma 3.63 and Lemma 3.64,
that follow the steps described in Section 3.4.

Well-quasi-ordering subdivisions

Let OP denote the class of paths whose endpoints are distinguished, i.e. one end is
said to be the beginning and the other one the end. In the sequel, fst(P ) denotes the
first vertex of the path P and lst(P ) its last vertex. We extend the relation ≤i.m. to OP
as follows: for every G,H ∈ OP , G≤i.m.H if there in an induced minor model µ of
G in H such that fst(H) ∈ µ(fst(G)) and lst(H) ∈ µ(lst(G)), and similarly for ≤c. .

Lemma 3.65. If the qoset (Q,�Q) is a wqo, then the qoset (lab(Q,�Q)(OP),≤c.) also is a
wqo.

Proof. Let us take (S,�) to be (P<ω(Q),�PQ ). By Corollary 3.27 (S,�) is a wqo. We
consider the function

f : (S?,�?)→ (lab(S,�)(OP),≤c.)

that, given a sequence 〈s1, . . . , sk〉 ∈ S? of elements of S, returns the path P on k ver-
tices whose i-th vertex vi is labeled by si for every i ∈ J1, lK and where fst(P ) = v1 and
lst(P ) = vk. The image of this function is clearly lab(S,�)(OP) and by Theorem 3.1 its
domain is well-quasi-ordered by �? . By the virtue of Remark 3.28, it is thus enough
to show that

f : (S?,�?)→ (lab(S,�)(OP),≤c.)

is monotone in order to prove that (lab(S,�)(OP),≤c.) is wqo.
Let R = 〈r1, . . . , rk〉 , S = 〈s1, . . . , sl〉 ∈ S?, be two sequences such that R�? S and

let us show that f(R)≤c. f(S). We will use the following notation: f(R) is the path
v1 . . . vk labeled by λR and similarly for f(S), u1 . . . ul and λS. Let ϕ : J1, kK → J1, lK
be an increasing function such that ∀i ∈ J1, kK , we have ri� sϕ(i) (such a function
exists since R�? S). Let us consider the path obtained from f(S) by, for every i 6∈
{ϕ(j)}j∈J1,kK, contracting the label4 of ui to the empty set and then dissolving ui. Re-
mark that this graph is a path on k vertices p1p2 . . . pk such that ∀i ∈ J1, kK , λR(vi) =
ri�λS(pi) = sϕ(i). Furthermore, this path is a contraction of f(S) where either u1 = p1

(respectively ul = pk) or this vertex has been contracted to p1 (respectively pk), hence
f(R)≤c. f(S), as desired.

We can now prove Lemma 3.63, that we first restate.

4Recall that a label contraction is the operation of relabeling with a label that is smaller (in the qoset
used for labelling).
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Lemma 3.63. For every (unlabeled) graphG and every wqo (S,�), the class of (S,�)-labeled
G-subdivisions is well-quasi-ordered by the contraction relation.

Proof. Let G be a non-labeled graph, let (S,�) be a wqo and let G be the class of
all (S,�)-labeled G-subdivisions. We set m = |E(G)| . Let us show that (G,≤c.) is
a wqo. First, we arbitrarily choose an orientation to every edge of G and an enu-
meration e1, . . . , em of these edges. We now consider the function f that, given a
tuple (Q1, . . . , Qm) of m paths of lab(S,�)(OP), returns the graph constructed from
G by, for every i ∈ J1,mK , replacing the edge ei by the path Qi, while respecting
the orientation, i.e. the first (respectively last) vertex of Qi goes to the first (respec-
tively last) vertex of ei. By Lemma 3.26 on Cartesian products of wqos and since
(lab(S,�)(OP),≤c.) is a wqo (Lemma 3.65), the domain lab(S,�)(OP)m of f is well-
quasi-ordered by ≤c.

m . Notice that every element of the codomain of f is an G-
subdivision (by definitions of f ), and moreover that f is surjective on G: for every
(S,�)-labeled G-subdivision H we can construct a tuple (Q1, . . . , Qm) of m paths of
lab(S,�)(OP), such that f(Q1, . . . , Qm) = H.

In order to show that (G,≤c.) is a wqo, it is enough to prove that

f : (lab(S,�)(OP),≤c.
m)→ (G,≤c.)

is an epi, as explained in Remark 3.28, that is, to prove that for every two tuples
Q,R ∈ lab(S,�)(OP)m such that Q≤c.

mR, we have f(Q)≤c. f(R). According to Re-
mark 3.29, we only need to care, for every i ∈ J1,mK , of the case whereQ andR only
differs by the i-th coordinate. It is at this point of the proof important to remark the
symmetry of the definition of f : since the different coordinates any element of the
domain of f are playing the same role, we only have to deal with the case where Q
and R differs by one (fixed) coordinate, say the first one. Therefore, let us consider
two tuples Q = (Q,Q2, . . . , Qm) and R = (R,Q2, . . . , Qm) of lab(S,�)(OP)m such that
Q≤c.

mR, i.e. satisfying Q≤c.R. Let µ : V (Q)→ P<ω(V (R)) be a contraction model of
Q in R and let µ′ be the trivial contraction model of f(Q) in itself, that is,

µ′ :

{
V (f(Q)) → P<ω(V (f(Q)))

u 7→ {u}.
We now consider the function ν defined as follows:

ν :


V (f(Q)) → P<ω(V (f(R)))

u 7→ µ(u) if u ∈ V (Q)
u 7→ µ′(u) otherwise.

Let us show that ν is a contraction model of f(Q) in f(R). First, notice that since
both µ and µ′ are contraction models, ν inherits some of their properties: for every
u ∈ V (f(Q)), the subgraph induced in f(R) by ν(u) is connected and λf(Q)(u) ⊆⋃
v∈µ(u) λf(R)(v). For the same reason, we have:⋃

u∈V (f(Q))

ν(u) =
⋃

u∈V (Q)

µ(u) ∪
⋃

u∈V (f(Q)\V (Q))

µ′(u)

= V (R) ∪ V (f(Q)) \ V (Q)

= V (f(R)).
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Let us now consider two distinct vertices u and v of f(Q).

First case: u and v both belong to the same set among V (Q) and V (f(Q)) \ V (Q). In
this case ν(u) and ν(v) are disjoint and they are adjacent iff {u, v} ∈ E(f(Q)) since
both µ and µ′ are contraction models.
Second case: u ∈ V (Q) and v ∈ V (f(Q)) \ V (Q) (or the symmetric case). As in the
previous case, ν(u) and ν(v) are disjoint. Assume that {u, v} is an edge of f(Q).Notice
that we necessarily have either u = fst(Q) and v ∈ Nf(Q)\V (Q)(fst(Q)), or u = lst(Q)
and v ∈ Nf(Q)\V (Q)(lst(Q)). Let us assume, without loss of generality, that we are in
the first of these two subcases. By definition of f(R), {fst(R), v} is an edge. Since µ is
a contraction model, we then also have fst(R) ∈ ν(u) and therefore ν(v) and ν(u) are
adjacent in f(R).

We just proved that ν is an induced minor model of f(Q) in f(R). As explained
above, this is enough in order to show that f is monotone. Hence (G,≤c.) is a wqo
and this concludes the proof.

Well-quasi-ordering cycle-multipartite decompositions

In this section, we show that graphs having a cycle-multipartite decomposition are
well-quasi-ordered by induced minors.

Lemma 3.66. If (Q,�Q) is wqo then the class of (Q,�Q)-labeled independent sets is wqo by
the induced subgraph relation.

Proof. We will again define (S,�) :=
(
P<ω(Q),�PQ

)
, and observe that it is a wqo.

The function f that maps every sequence 〈x1, . . . , xk〉 (for some positive integer
k) of elements of S to the (S,�)-labeled independent set on vertex set {v1, . . . , vk}
where vi have label xi for every i ∈ J1, kK has clearly the class of (S,�)-labeled inde-
pendent sets as codomain. Let us show that f is an epi. Let X = 〈x1, . . . , xk〉 , Y =
〈x1, . . . , xl〉 ∈ S? be two sequences such that X �? Y. By definition of the relation
�?, there is an increasing function ϕ : J1, kK → J1, lK such that ∀i ∈ J1, kK , xi� yϕi.
Therefore the function µ : V (f(X)) → V (f(Y )) that maps the vertex vi of f(X) to
the singleton {vϕ(i)} of f(Y ) is an induced subgraph model of f(X) in f(Y ) and this
proves the monotonicity of f . By the virtue of Remark 3.28 and since (S?,�?) is a
wqo, we get that the class of (S,�)-labeled independent sets is wqo by the induced
subgraph relation.

Corollary 3.67. With a very similar proof, we can also show that if (S,�) is wqo then the
class of (S,�)-labeled cliques is wqo by the induced subgraph relation.

The join of two graphs H and G is the graph obtained by taking the disjoint union
ofH andG and adding all possible edges (with multiplicity one, as we deal here with
simple graphs) with the one endpoint in G and the other one in H .

Corollary 3.68. If a class of (S,�)-labeled graphs (G,≤i.m.) is wqo, then so is its closure by
finite disjoint union (respectively join).
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Proof. Let U be the closure of (G,≤i.m.) by disjoint union. Remark that every graph of
U can be partitioned in a family of pairwise non-adjacent graphs of G. Therefore we
can define a function mapping every G-labeled independent set to the graph of U ob-
tained fromG by replacing each vertex by its label (which is an (S,�)-labeled graph).
It is easy to check that this function is an epi of (G,≤i.m.) → (U ,≤i.m.). Together with
Remark 3.28 and Lemma 3.66, this yields the desired result.

Corollary 3.69. If (S,�) is a wqo then the class of (S,�)-labeled complete multipartite
graphs are wqo by the induced subgraph relation.

We now prove Lemma 3.64. Let us restate it.

Lemma 3.64. For every wqo (S,�), the class of (S,�)-labeled graphs having a cycle-multipartite
decomposition is well-quasi-ordered by induced minors.

Proof. We consider the function

f : (lab(S,�)(OP)? × lab(S,�)(KN?),≤c.
?×≤i.sg.)→ (lab(S,�)(W),≤i.m.)

that, given a sequence [R0, . . . , Rk−1] ∈ lab(S,�)(OP) of (S,�)-labeled paths of OP
and a (S,�)-labeled complete multipartite graph K, returns the graph constructed as
follows.

1. consider the disjoint union of K and the paths of {Ri}i∈J0,k−1K and call vi the
vertex obtained by identifying the two vertices lst(Ri) and fst(R(i+1) mod k), for
every i ∈ J0, k − 1K (informally, this graph is the disjoint union of K and the
cycle built by putting Ri’s end-to-end);

2. for every element v of {vi}i∈J0,k−1K, add all possible edges between v and the
vertices of K.

Remark that the codomain of f isW . Indeed, every element of the image of f has
a cycle-multipartite decomposition (by construction) and conversely, if G ∈ W is of
cycle-multipartite decomposition (C,K), one can construct a sequence ofR0, . . . Rk of
subpaths of C meeting only on endpoints and whose interior vertices are of degree
two such that G = f(R, . . . Rk−1, K). Let us show that the domain of f is well-quasi-
ordered by ≤c.

?×≤i.sg. . We proved in Lemma 3.65 that (lab(S,�)(OP),≤c.) is a wqo
and Corollary 3.69 shows that (KN? ,≤i.sg.) is a wqo, so by applying Theorem 3.1 we
get first that (lab(S,�)(OP)?,≤c.

?) is a wqo, and then by Lemma 3.26 together with
Corollary 3.69 that (lab(S,�)(OP)? ×KN? ,≤c.

?×≤i.sg.) is a wqo.
According to Remark 3.28, it is enough to show that the function

f : (lab(S,�)(OP)? × lab(S,�)(KN?),≤c.
?×≤i.sg.)→ (W ,≤i.m.)

is an epi in order to prove that (lab(S,�)(W),≤i.sg.) is wqo. We show the monotonicity
of f in two steps: the first by showing

∀R ∈ lab(S,�)(OP)?, ∀H,H ′ ∈ lab(S,�)(KN?), H ≤i.sg.H
′ ⇒ f(R,H)≤i.m. f(R,H ′)
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and the second by proving

∀Q,R ∈ lab(S,�)(OP)?, ∀H ∈ lab(S,�)(KN?), Q≤c.
?R⇒ f(Q,H)≤i.m. f(R,H).

According to Remark 3.29, the desired result follows from these two assertions.
First step. Let R = 〈Ro, . . . , Rk−1〉 ∈ lab(S,�)(OP)? and H,H ′ ∈ lab(S,�)(KN?) be
such that H ≤i.sg.H

′. We therefore have (R,H)≤c.
?×≤i.sg.(R,H

′). Let us show that
f(R,H)≤i.m. f(Q,H ′). SinceH ≤i.sg.H

′, there is a subsetA ⊆ V (H ′) such thatH ′\A =
H. Let C denote the cycle obtained from the disjoint union of {Ri}i∈J0,k−1K by the
identification of the two vertices lst(Ri) and fst(R(i+1) mod k), for every i ∈ J0, k − 1K ,
where we call vi the vertex resulting from this identification. Let us consider the
graph f(Q,H)\A: to construct this graph we started with the disjoint union of C and
H, then added all possible edges between vi and V (H) for every i ∈ J0, k − 1K, and
at last deleted the vertices of A \H. Remark that this graph is isomorphic to f(R,H)
and therefore f(R,H)≤i.m. f(R,H ′), as desired.
Second step. Let Q = 〈Q0, . . . , Qk−1〉 and R = 〈R0, . . . , Rl−1〉 be two elements of
lab(S,�)(OP)? such thatQ≤c.

?R and letH ∈ lab(S,�)(KN?).We thus have (Q,H)≤c.
?×≤i.sg.(R,H).

Let us show that f(Q,H)≤i.m. f(R,H). By definition of the relation ≤c.
?, there is an

increasing function ϕ : J0, k − 1K→ J0, l − 1K such that

∀i ∈ J0, k − 1K , Qi≤c.Rϕ(i).

For every i ∈ J0, k − 1K , let µi : V (Qi) → P<ω(Rϕ(i)) be a contraction model of Qi in
Ri. Recall that since Qi and Rϕ(i) are oriented paths, the contraction sending Rϕ(i) on
Qi preserves endpoints. We now consider the function µ defined as follows

µ


V (f(Q,H)) → P<ω(V (f(R,H)))

x → {x} if x ∈ V (H)

lst(Qi) → µi(lst(Qi)) ∪
⋃ϕ(i+1)−1
j=ϕ(i)+1 V (Rj) \ {fst(Rϕ(i+1))}

x → µi(x) ⊆ Rϕ(i) if x ∈ Qi \ {lst(Qi)}.

We will show that µ is an induced minor model of f(Q,H) is f(R,H). First at all,
remark that every element of the image of f induces in f(R,H) a connected subgraph:

• either x ∈ V (H) and µ(x) is a singleton;

• or x ∈ lst(Qi) \ {lst(Qi)} and f(R,H)[µ(x)] is connected since µi(x) = µ(x) is an
induced minor model;

• or x = lst(Qi) and µi(lst(Qi))∪
⋃ϕ(i+1)−1
j=ϕ(i)+1 V (Rj)\{fst(Rϕ(i+1))} induces in f(R,H)

a connected subgraph because f(R,H)[µi(lst(Qi))] is connected and the other
vertices are consecutive on the cycle.

Let us now show that adjacencies are preserved by µ. Let u, v be two distinct
vertices of f(Q,H). If u, v ∈ H , then µ(u) and µ(v) are adjacent in f(R,H) iff u and v
are in f(Q,H), as µ(u) = {u} and µ(v) = {v} (informally, the “H-part” of f(R,H) is
not changed by the model). If u, v ∈ Q, observe that u and v are adjacent in f(Q,H)
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iff they belong to the same path of {Qi}i∈J0,k−1K. Thus in this case, the property that
u and v are adjacent in f(Q,H) iff µ(u) is adjacent to µ(v) in f(R,H) is given by the
fact that {µi}i∈J0,k−1K are contraction models.

If u ∈ Q and v ∈ H , then {u, v} ∈ f(Q,H) (respectively µ(u) is adjacent to µ(v)
in f(R,H)) iff u is an endpoint of a path of {Qi}i∈J0,k−1K (respectively µ(u) contains
an endpoint of a path of {Ri}i∈J0,l−1K), by definition of f . As the contraction relation
on oriented paths of OP is required to contract endpoints to endpoints, the image
µ(u) must contain the endpoint of a path of {Ri}i∈J0,l−1K iff u is the endpoint of a path
of {Qi}i∈J0,k−1K. Therefore u and v are adjacent in f(Q,H) iff µ(u) is adjacent to µ(v)
in f(R,H), as required. We finally proved that f is monotone. This was the only
missing step in order to prove that (lab(S,�)(W),≤i.sg.) is a wqo.

3.6.3 Graphs not containing Gem

The purpose of this section to give a proof to Theorem 3.42. This will be done by first
proving a decomposition theorem for graphs of Excl≤i.m.

(Gem), and then using this
theorem to prove that (Excl≤i.m.

(Gem),≤i.m.) is a wqo.

A Decomposition theorem for Excl≤i.m.
(Gem)

This section is devoted to the proof of Theorem 3.40, which is split in several lemmas.
In the sequel, G is a 2-connected graph of Excl≤i.m.

(Gem). When G is 3-connected, we
will rely on the following result originally proved by Ponomarenko.

Proposition 3.70 ([Pon91]). Every 3-connected Gem-induced minor-free graph is either a
cograph or has an induced subgraph S isomorphic to P4, such that every connected component
of G \ S is a cograph.

Therefore we will here focus on the case whereG is 2-connected but not 3-connected.
In this section, we deal with edge-rooted graphs, that are graphs with one distin-
guished edge. For two edge rooted graphs G,H , we say that H is an induced minor
ofG if there is an induced minor model µ ofH inG such that, if {u, v} is the root ofH ,
then the root of G has the one endpoint in µ(u) and the other one in µ(v). Intuitively,
the model preserves the root. A rooted diamond is a graph which can be constructed
from a rooted C4 by adding a chord incident with exactly one endpoint of the root
(cf. Figure 3.18).

Figure 3.18: A rooted diamond, the root being the thick edge.

Lemma 3.71. Let S = {v1, v2} be a cutset in a graph G and let C be a component of G \ S.
Let H be the graph G[V (C) ∪ {v1, v2}] rooted at {v1, v2}. If C ′ has a rooted diamond as an
induced minor, then Gem≤i.m.G.
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Proof. Let C ′ be a component of G \ S other than C and let G′ be the graph obtained
from G by:

1. applying the necessary operations (contractions and vertex deletions) to trans-
form G[V (C) ∪ {v1, v2}] into a rooted diamond;

2. deleting every vertex not belonging to V (C) ∪ V (C ′) ∪ {v1, v2};

3. contracting C ′ to a single vertex.

The graph G′ is then a rooted diamond and a vertex adjacent to both endpoints of its
root, that is, G′ is isomorphic to Gem.

Let us now characterize the 2-connected graphs avoiding rooted diamonds.

Lemma 3.72. Let G be a 2-connected graph rooted at {u, v} ∈ E(G). If {u, v} is not a cut of
G and G does not contain a rooted diamond as an induced minor, then either G is an induced
cycle or both u and v are dominating in G.

Proof. Assuming that u is not dominating and G is not an induced cycle, let us prove
that G contains a rooted diamond as induced minor. Let w ∈ V (G) be a vertex such
that {u,w} 6∈ E(G). Such a vertex always exists given that u is not dominating. Let C
be a shortest cycle using the edge {u, v} and the vertex w (which exists since G is 2-
connected), let Pu be the subpath of C linking u to w without meeting v and similarly
let Pv be the subpath of C linking v to w without meeting u. By the choice of C, both
Pu and Pv are induced paths. Notice that if there is an edge connecting a vertex of
Pu \ {w} to vertex of Pv \ {w}, then G contains a rooted diamond as induced minor.
Therefore we can now assume that C is an induced cycle.

Recall that we initially assumed that G is not an induced cycle. Therefore G con-
tains a vertex not belonging to C. Let G′ be the graph obtained from G by contracting
to one vertex x any connected component of G \ C and deleting all the other compo-
nents. Obviously we have G′≤i.m.G. Let us show that G′ contains a rooted diamond
as induced minor.

Remark that the neighborhood of x, which is of size at least two (asG is 2-connected),
is not equal to {u, v}, otherwise {u, v}would be a cut in G. Now contract in G′ all the
edges of C \ {u, v} except three in a way such that |N(x)| ≥ 2 and N(x) 6= {u, v}. Let
G′′ be the obtained graph, which consists of a cycle of length four rooted at {u, v} and
a vertex x adjacent to at least two vertices of this cycle. We shall here recall that since
this cycle is a contraction of the induced cycle C, it is induced too. If x is adjacent
(among others) to two vertices at distance two on this cycle, then, by contracting the
edge between x and one of these vertices, we get a rooted diamond. The remaining
case is when x is only adjacent to the vertices of the cycle which are not u and v. The
contraction of the edge between v and one of these vertices gives a rooted diamond,
and this concludes the proof.

Remark 3.73. In a Gem-induced minor-free graph G, every induced subgraph H dom-
inated by a vertex v ∈ V (G) \ V (H) is a cograph.
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Indeed, assuming that H is not a cograph, let P be an path on four vertices which
is induced subgraph ofH . ThenG[V (P ) ∪ {v}] is isomorphic to Gem, a contradiction.

Recall that we say that an induced subgraph of a graphG is basic inG if it is either
a cograph, or an induced path whose internal vertices are of degree two in G.

Lemma 3.74. If G has a K2-cut S = {v1, v2}, then every connected component of G \ S is
basic in G.

Proof. By Lemma 3.71, for every connected component C of G \ S we know that the
graph G[V (C) ∪ S] rooted at {u, v} contains no rooted diamond. By the virtue of
Lemma 3.72, this graph either is an induced cycle or has a dominating vertex among
u and v. In the first case, C is a path whose all internal vertices are of degree two in
G, hence H is basic. If one of u and v is dominating, then C is a cograph according to
Remark 3.73. Therefore in both cases C is basic in G.

Let us now focus on 2-connected graphs with a K2-cut, which is the last case in
our characterization theorem.

Corollary 3.75. If G has a K2-cut S such that G \ S contains more than two connected
components, then every connected component of G \ S is basic in G.

Proof. It follows directly from Lemma 3.74. Indeed, if the connected components of
G \ S are C1, C2, . . . Ck, let us contract C1 to an edge between the two vertices of S.
The obtained graph fulfills the assumptions of Lemma 3.74: S is a K2-cut. Therefore
each of the components C2, . . . , Ck is basic in G. Applying the same argument with
C2 instead of C1 yields that C1 is basic in G as well.

Lemma 3.76. Let S = {u, v} be a K2-cut, such that and G \ S has only two connected
components H1 and H2. Then G contains a cycle C as induced subgraph such that every
connected component of G \ C is basic in G.

Proof. For every i ∈ {1, 2}, let Qi be a shortest path linking u to v in G[V (Hi) ∪ {u, v}].
Notice that the cycle C = G[V (Q1) ∪ V (Q2)] is then an induced cycle. For contradic-
tion, let us assume that some connected component J of G[V \ C] is not basic in G.
By symmetry, we can assume that J ⊂ H1.

Notice that since G is 2-connected, J has at least two distinct neighbors x, y on C.
Let G′ be the graph obtained from G[V (H1) ∪ V (C) ∪ V (H2)] by contracting Q1 to
an edge between u and v in a way such that x is not contracted to y (that is, x is
contracted to one of u, v and y to the other one). In G′, {u, v} is a K2-cut, therefore by
Lemma 3.74, every connected component of G \ S is basic in G′. As this consequence
holds for every choice of J and G′ is an induced minor of G, we eventually get that
every connected component of G \ C is basic in G.

In the sequel, S, u, v and C follow the definitions of the statement of Lemma 3.76.
In order to be more accurate on how the connected components ofG\C are connected
to C, we will prove the following lemma according to which most of the vertices of
C have degree 2 in G.
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Remark 3.77. Every connected component J ofG\C has at least two and at most three
neighbours on C.

Indeed, it has at least two neighbours on C because G is 2-connected. Besides if J
has at least four neighbours on C, then contracting in G[V (C) ∪ V (J)] the component
J to a single vertex, deleting a vertex of C not belonging to N(J) (which exists since
J belongs to only one of the components of G \ S) and then contracting every edge
incident with a vertex of degree two would yield Gem.

Lemma 3.78. If C has at least one vertex of degree two, then for every distinct connected
components J1 and J2 of G \ C we have NC(J1) ⊆ NC(J2) or NC(J2) ⊆ NC(J1).

Proof. Let us assume, for contradiction, that the claim is not true and let G be a min-
imal counterexample with respect to induced minors. In such a case both J1 and J2

are single vertices (say j1 and j2 respectively) and they are the only connected com-
ponents ofG\C. We now would like to argue that any such minimal counterexample
must contain as induced minor one of graphs presented on Figure 3.19 (where thick
edges represent the cycle C). This would conclude the proof as each of these graphs
contains Gem as induced minor, as shown in Figure 3.20.

First of all, in such a minimal counterexample there is only one vertex in C of
degree 2, let us call it c. We will consider all the ways that the vertices j1 and j2 can
be connected to the neighbors of c and show that in every such case we can contract
our graph to one of the graphs on Figure 3.19. According to Remark 3.77, each of j1

and j2 will have either two or three neighbors on C.
First case: both j1 and j2 are connected with both neighbours of c. As N(j1) 6⊆ N(j2)
and N(j2) 6⊆ N(j1), each of j1, j2 has a neighbor which is not adjacent to the other.
But since j1 and j2 can have at most three neighbors, the neighborhood of j1 and j2

is now completely characterized. The leftmost part of Figure 3.19 presents the only
possible graph for this case.

c
j1

j2

c
j1

j2

c
j2

j1

Figure 3.19: Induced minor-minimal counterexamples in Lemma 3.78.

Second case: j1 is connected with exactly one of neighbours of c and j2 is connected
with the other one. In this case, as each of j1, j2 has at least two neighbors on C,
contracting all the edges of C whose both endpoints are at distance at least two from
c gives the graph depicted in the center of Figure 3.19.
Third case: j1 is connected with both neighbours of c, and j2 is connected with at most
one of them. In this case, as long as C has more than 4 edges, we can contract an edge
of C to find a smaller counterexample. Precisely, if there are at least 4 edges, there
are two edges e1, e2 in C within distance exactly 1 to c and those two do not share an
endpoint. Moreover j2 has a neighbour s in C \N(c), say x, which is not a neighbour
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of j1. Now one of the edges e1, e2 is not incident to s and contracting this edge would
yield a smaller counterexample.

Therefore, we only have to care about the case where C has exactly 4 edges and
this case is exactly the graph represented on the right of Figure 3.19.

We have considered all possible induced minor-minimal counterexamples (up to
symmetry between j1 and j2). For each of these cases, which are presented on Fig-
ure 3.19, we will now give an induced minor model of Gem, which proves that they
all contain Gem as induced minor. For each graph of depicted on Figure 3.20 we con-
sider the model mapping the vertex vi of Gem to the set of vertices labeled Mi. It is
easy to check that each of these sets induces a connected subgraph and that the adja-
cencies between two sets correspond to the ones between the corresponding vertices
of Gem. This concludes the proof.
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Figure 3.20: Models of Gem in graphs from Figure 3.19.

Corollary 3.79. If C has at least one vertex of degree two, then it has at most three vertices
of degree greater than two.

Proof. Notice that the set of vertices of C that have degree greater then two is ex-
actly the union of NC(J) over all connected components J of G \ C. We just saw
in Lemma 3.78 that for every two connected components of G \ C, the neighbor-
hood on C of one is contained in the neighborhood on C of the other and that these
neighborhoods have size at most three. Therefore their union have size at most three
as well.

Corollary 3.80. Every connected component of G \C is basic and C has at most six vertices
of degree greater than two.

Proof. Remark that contracting H1 to a single vertex h in G gives a graph G′ and a
cycle C ′ (contraction of C) such that every connected component of G′ \ C ′ is basic
and C ′ has at least one vertex of degree 2, which is h. By Corollary 3.79, C ′ has at
most three vertices of degree greater than two. Notice that these vertices belong to
G′ \ h which is isomorphic to G \ H1. Hence G \ H1 has at most three vertices of
degree greater than two. Applying the same argument with H2 instead of H1 we get
the desired result.

Now we are ready to prove main decomposition theorem for Gem-induced minor-
free graphs. Let us remind its statement.
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Theorem 3.40 (Decomposition of Gem-induced minor-free graph). LetG be a 2-connected
graph such that Gem�i.m.G. Then G has a subset X ⊆ V (G) of at most six vertices such
that every connected component of G \X is either a cograph or a path whose internal vertices
are of degree two in G.

Proof. Recall that we are looking for a subset X of V (G) of size at most 6 such that
each component of G \X is basic in G.

If G is 3-connected, by Proposition 3.70 it is either a cograph, or has a subset X of
four vertices such that every connected component of G \X is a cograph. Let us now
assume that G is not 3-connected.

In the case where G has a K2-cut S, or if G has a K2-cut S such that G \ S has
more than two connected components, then according to Lemma 3.74 and Corol-
lary 3.75 respectively, S satisfies the required properties. In the remaining case, by
Corollary 3.80 G has a cycle C such that every connected component of G \C is basic
in G and which has at most six vertices of degree more than two in G. Let X be the
set containing those vertices of degree more than two. Observe that every connected
component of G \X is either a connected component of G \ C (hence it is basic) or a
part of C, i.e. a path whose internal vertices are of degree two in G (which is basic as
well). As |X| ≤ 6, X satisfies the desired properties.

Well-quasi-ordering of labelled cographs

We were able to show that structure of 2-connected Gem-induced minor-free graphs
is essentially very simple, with building blocks being cographs and long induced
paths. To conclude that labelled 2-connected Gem-induced minor-free graphs are
wqo by induced minor relation we will need the fact that the building blocks, in par-
ticular labelled cographs, are themselves well-quasi-ordered by the induced minor
relation.

This following result has been proven by Damaschke in [Dam90] in the unlabelled
case. The proof for the labelled case follows the same general approach. We present
below the sketch of the proof.

Let us denote C to be a class of all cographs.

Theorem 3.81. For any wqo (Q,�Q), the class lab(Q,�Q)(C) is wqo with respect to ≤i.sg..

Proof. Let us define as usual (S,�) to be (P<ωQ,�P ). Define (S+,�+) such that S+

is disjoint union of S and {0, 1}; the order�+ is such that�+ is just�when restricted
to S, but 0, 1 and elements of S are incomparable.

By virtue of Remark 3.25 and Corollary 3.27, we know that (S+,�+) is wqo. By
the labelled version of the famous Kruskal theorem (see [Kru60]), the class of all finite
trees labelled by (S+,�+) is wqo, with respect to a topological minor relation. In
particular, we can consider class T of finite trees, labelled by (S+,�+), such that all
internal nodes have labels {0, 1}, and all leaves has label from S. We will consider
this class again with the ordering by a labelled topological minor relation. As it is a
subclass of a wqo, the class T itself is also wqo. We will now provide a epi φ : T →
lab(Q,�Q)(C), and we will conclude by Remark 3.28, that lab(Q,�Q)(C) is wqo.
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The function φ is defined as follows: given a labelled tree T , if the whole tree is
only a single leaf, it produces a graph with a single vertex, and with the same label
as the one the leaf has in T . If the tree is larger than a single vertex, it has root r
with label s, and subtrees T1, T2, . . . , Tk, all rooted at some children of r. Then φ(T ) is
defined as disjoint union of φ(Ti) if label s were 0, or join of φ(Ti) of label of s were
1. It is well-known, that every cograph has such a presentation, i.e. that function φ
indeed is surjective. The tree T which is mapped G by φ is usually called cotree of G.

Now we only need to prove that φ is monotone. Indeed, consider two labelled
trees T1, T2 ∈ T , such that T1 ≤ T2, and let i : V (T1) 7→ V (T2) to be an embedding
of T1 in T2 as a topological minor, such that λT1(u)�+ λT2(i(u)). In particular, by the
second property, we conclude that i maps leaves of T1 to leaves of T2. Therefore
we can consider a corresponding mapping ĩ from V (φ(T1)) to V (φ(T1)). Clearly it
is injective, and has the property that λφ(T1)(u)�λφ(T2)(̃i(u)). To show that it defines
an induced minor model of φ(T1) as an induced subgraph of φ(T2), we only need to
prove that ĩ(u) and ĩ(v) are connected by an edge iff u and v are connected by an edge.

Remark that two vertices u, v ∈ V (φ(T )) are connected by an edge in φ(T ) iff the
label of a lowest common ancestor of the corresponding leaves in T is 1. But i was
an embedding of T1 in T2 as a topological minor, so in particular lowest common
ancestor of i(u) and i(v) is the same as an image of lowest common ancestor of u, v.
Moreover, by the definition of the order S+, embedding i preserves exactly labels
of internal nodes. Hence φ is indeed monotone and this concludes the proof of the
theorem.

Well-quasi-ordering Gem-induced minor-free graphs

In this section we will give a proof of Theorem 3.42.
We define B as the class of graphs which are disjoint unions of induced paths and

cographs, and C as the class of cographs.

Lemma 3.82. Let k ∈ N, let (S,�) be a wqo and let G be the class of (S,�)-labelled graphs
such that the removal of at most k vertices yields a graph of B. Then (G,≤i.m.) is a wqo.

Proof. Let k be fixed.
For every G ∈ G, let XG be a set of at most k vertices of G such that G \X ∈ B.
For every graph H on at most k vertices, let GH = {G ∈ G, G[XG] = H}. Observe

that this gives a partition of G into a finite number of subclasses. By the virtue of
Remark 3.25, we only need to focus on one of these classes. For the sake of simplicity,
we assume that H has exactly k vertices {v1, . . . vk}.

Informally, our goal is now to define a function f which constructs a graph of GH ,
given an encoding in terms of graphs of B. We will then show that f is an epi.

Le f be the function whose domain is the quasi-order

(D,�D) = (S,�)k ×
(
P<ω(lab(S,�)(OP)),≤c.

?
)(k2) × (lab(S,�)×(2J1,kK,=)(C),≤i.sg.)

(where �D = �k×(≤c.
?)(

k
2) ×≤i.sg.) and which, given a tuple(

(si)i∈J1,kK, (Li,j)i,j∈J1,kK,i<j, J
)
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such that

• (si)i∈J1,kK ∈ Sk is a tuple of k labels from S,

• (Li,j)i,j∈J1,kK,i<j is a tuple of
(
k
2

)
subsets of (S,�)-labeled oriented paths, and

• J ∈ lab(S,�)×(2J1,kK,=)(C), is a (S,�)× (2J1,kK,=)-labeled cograph,

returns the graph constructed as follows, starting from H :

1. label si the vertex vi, for every i ∈ J1, kK;

2. for every i, j ∈ J1, kK2 , i < j, and for every path L ∈ Li,j , add a copy of L to the
current graph, connect vi to fst(L) and vj to lst(L);

3. add to the current graph a copy of the underlying graph of J and, for every
vertex v labeled (s, {e1, . . . el}) (for some l ∈ J1, kK), give the label s to v in the
current graph and make v adjacent to vertices ve1 , . . . , vdl .

By construction, the codomain of f is included in lab(S,�)(GH). Let us now show
that f is surjective on lab(S,�)(GH). Let G ∈ lab(S,�)(GH) and let us consider the con-
nected components of G\XG. Let J be the disjoint union of all such components that
are cographs. Note that J is a cograph as well. For every vertex v of J of label s, we
relabel v with the label (s, {e1, . . . el}), where {e1, . . . el} are all the integers i ∈ J1, kK
such that v is adjacent to vi. For every i, j ∈ J1, kK , i < j, let Li,j be the set of paths
of G \XH which are neighbors in G of vi and vj , to which we give the following ori-
entation: the first vertex of such a path is the one which is adjacent to vi and its last
vertex is the one adjacent to vj . Last, let si be the label of vi for every i ∈ J1, kK. Then
it is clear that G is isomorphic to f({si}i∈J1,kK, {Li,j}i,j∈J1,kK,i<j, J). Consequently f is
surjective on lab(S,�)(GH).

Our current goal is now, in order to show that f : (B,�B)→ (lab(S,�)(GH),≤i.m.) is
an epi, is to prove that it is monotone. Let A,B be two elements of

Sk ×
(
P<ω(lab(S,�)(OP))

)(k2) × lab(S,�)×(2J1,kK,=)(C)

such that A�D B. Let us show that f(A)≤i.m. f(B). According to Remark 3.29, it is
enough to focus on the cases where A and B differ by only one coordinate.
First case: A and B differ by the i-th coordinate, for i ∈ J1, kK. Let sA (respectively sB)
be the value of the i-th coordinate ofA (respectively ofB). According to the definition
of f , the graphs f(A) and f(B) differ only by the label of vertex vi: this label is sA
in f(A) whereas it equals sB in f(B). But since we have sA� sB (as A ≤B B), we
get f(A)≤i.m. f(B).
Second case: A andB differ by the last coordinate. Let JA (respectively JB) be the value
of the last coordinate ofA (respectively ofB). As previously,A�B B gives JA≤i.sg. JB,
therefore we can obtain JA by removing vertices of JB and contracting labels. As the
adjacencies of vertices of JA and JB to the rest of f(A) and f(B) (respectively) depend
only on the label of their vertices, the same deletion and contraction operations in
f(B) give f(A), hence f(A)≤i.m. f(B).
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Third case: A and B differ by the i-th coordinate, for some i ∈
q
k + 1, k +

(
k
2

)y
. Let LA

(respectively LB) be the value of this coordinate in A (respectively in B). As previ-
ously again, A�B B gives LA≤c. LB, consequently we can obtain LA by contracting
edges of JB and contracting labels. Since the contraction relation onOP requires that
endpoints (beginning and end of a path) are preserved, the same contraction opera-
tions in f(B) give f(A), thus we again get f(A)≤i.m. f(B).

We just proved that f is monotone, therefore it is an epi. By Remark 3.28, it is
enough to show that (B,�B) is a wqo in order to prove that (lab(S,�)(GH),≤i.m.) is a
wqo.

Notice that (B,�B) is a Cartesian product of wqos and of the set of finite sub-
sets of a wqo. Indeed, we assumed that (S,�) is a wqo. Furthermore, we proved in
Lemma 3.65 that for every wqo (S,�), the quasi-order (lab(S,�)(OP),≤c.) is a wqo,
and hence so is (P<ω(lab(S,�)(OP)),≤c.

?) (cf. Corollary 3.27). Last, we proved in The-
orem 3.81 that the class of cographs labeled by a wqo is well-quasi-ordered by the in-
duced subgraph relation. Therefore, (B,�B) is a wqo, which concludes the proof.

We can now prove Theorem 3.42, that we restate here as a reminder.

Theorem 3.42. The class of Gem-induced minor-free graphs is wqo by ≤i.m..

Proof. According to Lemma 3.31, it is enough to prove that for every wqo (S,�), the
class of (S,�)-labeled 2-connected graphs which does not contain Gem as induced
minor is well-quasi-ordered by induced minors. By Theorem 3.40, these graphs can
be turned into a disjoint union of paths and cographs by the deletion of at most six
vertices. A consequence of Lemma 3.82 (for k = 6), these graphs are well-quasi-
ordered by induced minors and we are done.

3.7 Contractions and well-quasi-ordering

This section is devoted to the proof of Theorem 3.13. We recall that, unless otherwise
specified, this section deals with simple graphs.

3.7.1 On graphs with no diamond

In this section we show that graphs in Excl≤c.(D2) have a simple structure. The clique-
cactus graphs are the graphs whose blocks are cliques and cliques (cf. Figure 3.21 for
an example).

Recall that for every positive integer r, we denote by Dr the graph obtained by
contracting an edge of K2,r+1. In particular, D2 is the graph sometimes called dia-
mond. For this section, we set D = {Dr, r ∈ N} (cf. Figure 3.22) and S = {K1,r, r ∈
N}.

We prove the following lemma.

Lemma 3.83 (Characterization of clique-cactus graphs). Graphs of Excl≤c.(D2) are ex-
actly the clique-cactus graphs.
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Figure 3.21: A clique-cactus graph.

, , , , ,
D =
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Figure 3.22: Graphs of D.

The proof of Lemma 3.83 will be given after a few lemmas. If C is a cycle of a
graph G and {u, v}, {u′, v′} ⊆ V (C), we say that {u, v} and {u′, v′} are crossing in C
if u, u′, v, v′ are distinct and are appearing in this order on the cycle. A non-chord in a
cycle is a set of two vertices that are not adjacent.

Lemma 3.84. Let G be a graph and let C be a cycle in G. If C has at least one chord and one
non-chord in G, then it has one chord and one non-chord that are crossing in C.

Proof. Let {x, x′} be a non-chord of C in G and let P and Q be the connected compo-
nents of C \ {x, x′} which obviously are paths. Let us assume that every chord of C
in G has both endpoints either in P or in Q (otherwise we are done) and let {y, y′} be
a chord of C in G, the endpoints of which belong, say, to P . Let z be a vertex of the
subpath of P delimited by y and y′ such that z 6∈ {y, y′} and let z′ be a vertex of Q. If
{z, z′} is a chord ofC inG, then {x, x′} and {z, z′} are satisfying the required property.
Otherwise, {z, z′} is a non-chord and now {y, y′} and {z, z′} are crossing.

Lemma 3.85. Let G ∈ Excl≤c.(D2). Every cycle of G is either an induced cycle, or it induces
a clique in G.

Proof. Let G be a graph of Excl≤c.(D2) and let C be a cycle of G. For contradiction, let
us assume that C has at least one chord {u, u′} and one non-chord {v, v′}. According
to Lemma 3.84 we can assume without loss of generality that they are crossing in
C. Let P and Q be the two connected components of C \ {v, v′}. In the graph G[C],
contracting P to a single vertex x and Q to y yields a graph on four vertices v, v′, x, y
such that

1. v, x, v′, y lie on the cycle in this order;

2. {v, v′} 6∈ E(G); and

96



3. {x, y} ∈ E(G) (as {u, u′} connects the subgraphs that are respectively contracted
to x and y).

The obtained graph is D2, a contradiction. Therefore C has either no chords or no
non-chords in G. It is clear that in the first case C is an induced cycle of G and that in
the second case it induces a clique.

Lemma 3.86. Let G ∈ Excl≤c.(D2) be a 2-connected graph. Then G is either a cycle, or a
clique.

Proof. We assume that |V (G)| > 1, otherwise the result is trivial. Let C be a longest
cycle of G. By Lemma 3.85 the cycle C is either an induced cycle or it induces a
clique in G. Let us treat these two cases separately. For contradiction, we assume
that V (G) \ V (C) is not empty and we call H1, . . . , Ht the connected components of
G \ C, for some t ∈ N≥1. Let us consider the graph G′ where Hi, which is connected,
has been contracted to a single vertex hi, for every i ∈ J1, tK. Observe that G′ is 2-
connected, given that G is 2-connected. Also, G′ ∈ Excl≤c.(D2).
First case: C induces a clique in G′. Notice that C is then a maximal clique. Let u = h1.
As C is maximal, there is a vertex v ∈ V (C) such that {u, v} 6∈ E(G′). Let x and y
be two neighbors of u on C (they exist since G′ is 2-connected). These vertices define
two subpaths of C. Let R be the longest of these paths that contains v. Observe that
in this case, R has at least three vertices. The union of {u, x}, {u, y} and R is a cycle of
G′ that we call C ′. According to Lemma 3.85, this cycle is either induced or it induces
a clique. As {u, v} 6∈ E(G′), C ′ cannot induce a clique in G. On the other hand, C is
not an induced cycle as every pair of vertices of R are adjacent (and |V (R)| ≥ 3 as
mentioned earlier). We reached the contradiction we were looking for.
Second case: C is an induced cycle and has at least 4 vertices. Let i ∈ J1, tK. As G′ is
2-connected, hi has at least two neighbors on C: let x and y be two of them.
Claim 3.87. x and y are not adjacent.

Proof. Let us assume that {x, y} ∈ E(G′). Let C ′ be the cycle obtained from C by
replacing the edge {x, y} by the path xhiy. This cycle is not induced as x, y are not
adjacent in C ′ whereas {x, y} ∈ E(G). It does not induce a clique neither since x is
not adjacent with the other neighbor of y on C (which is not x as we assume that
C has at least 4 vertices). This contradicts Lemma 3.85 and therefore proves that
{x, y} 6∈ E(G).

Every pair of distinct vertices of the cycle C defines two subpaths of C meeting
only at these vertices. Let u and v be two vertices of C such that hi has at least one
neighbor in the interior of each of the subpaths of C defined by u and v, that we will
respectively call P and Q. Such vertices exists, as a consequence of Claim 3.87.

Let us consider the contraction H of G′ obtained by contracting the interior path
of P (respectively Q) to a single vertex wP (respectively wQ) and then by contracting
the edge connecting hi to wP . This edge exists by definition of u and v. Then uwPvwQ
is a cycle of H where {wP , wQ} is a chord (because we contracted to wP the vertex
h1 which was adjacent to both wP and wQ) and {u, v} is a non-chord (as they were
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non-adjacent vertices of the induced cycle C and that noting has been contracted to
them). According to Lemma 3.85, the graph H contains D2 as contraction. As H is a
contraction of G, then D2≤c.G, a contradiction.

In both cases we reached a contradiction, therefore V (G) \ V (C) is empty: G is a
clique or an induced cycle.

We are now ready to prove Lemma 3.83. Let us recall its statement.

Lemma 3.83 (Characterization of clique-cactus graphs). Graphs of Excl≤c.(D2) are ex-
actly the clique-cactus graphs.

Proof. The fact that a graph of Excl≤c.(D2) is a clique-cactus is a straightforward corol-
lary of Lemma 3.86. It is easy to see that a cactus graph does not contain D2 as con-
traction by noticing that D2 is a contraction of a graph if and only if it is a contraction
of one of its 2-connected components. As D2 is neither a contraction of a cycle, nor of
a clique, we get the desired result.

3.7.2 Well-quasi-ordering clique-cactus graphs

We proved in the previous section that graphs of Excl≤c.(D2) are exactly the con-
nected clique-cactus graphs. This section contains the last part of the proof of Theo-
rem 3.13, which is the following lemma.

Lemma 3.88. Connected clique-cactus graphs are well-quasi-ordered by ≤c..

In this section we deal with rooted graphs. Let us denote by C the class of rooted
connected clique-cactus graphs. In this class, two isomorphic graphs with a differ-
ent root are seen as different. It is clear that proving that (C,≤c.) is a wqo implies
Lemma 3.88. This is what we will do.

Building blocks. Let us define three functions stick : C? → C, cycle : C? → C, and
clique : C? → C that will output graphs obtained by combining together the graphs
given as parameters, in the following fashion. Given a sequence 〈G0, . . . , Gp−1〉 ∈ C?
(for some p ∈ N), if U denote the union of the graphs G1, . . . , Gp−1, then we define;

• stick(G0, . . . , Gp−1) is the graph obtained from U by identifying the vertices

root(G0), . . . , root(Gp−1);

• cycle(G0, . . . , Gp−1) is the graph obtained from U by adding the edges

{root(Gi), root(G(i+1) mod p)}

for every i ∈ J0, p− 1K; and

• clique(G0, . . . , Gp−1) is the graph obtained from U by adding the edges

{root(Gi), root(Gj)}

for every distinct i, j ∈ J0, p− 1K.
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The root of stick(G0, . . . , Gp−1), cycle(G0, . . . , Gp−1) and clique(G0, . . . , Gp−1) is the
vertex that is the root of G0. These functions will allow us to encode graphs of C into
sequences.

We will now decompose graphs of C along blocks.
For every block B of a graph G, let decB(G) denote the collection of all the graphs

H that can be constructed from some connected component C of G \V (B) by adding
a new vertex v adjacent to the vertices of C that are adjacent to a vertex of B in G and
setting root(H) = v.

Observe that, as soon as root(G) ∈ V (B), every graph of decB(G) is a proper con-
traction of G. Let dec(G) denote the union of the sets decB(G) for every block B of G
containing the root of G. The following observation is a consequence of Lemma 3.83.

Observation 3.89. For every graph G ∈ C there is a (non necessarily unique) sequence
〈G0, . . . ,Gp−1〉 ∈ dec(G)? (for some p ∈ N) such that either

G = cycle(stick(G0), . . . , stick(Gp−1)), or
G = clique(stick(G0), . . . , stick(Gp−1)).

From encodings to well-quasi-ordering. The following lemma will allow us to
work on sequences in order to show that two graphs are comparable.

Lemma 3.90. Let σ, τ ∈ C?. If σ≤c.
? τ , then

(i) cycle(σ)≤c. cycle(τ);

(ii) clique(σ)≤c. clique(τ); and

(iii) stick(σ)≤c. stick(τ).

Proof. Let σ = 〈H1, . . . , Hp〉 and τ = 〈G1, . . . , Gq〉 (for some positive integers p, q)
and let H = cycle(σ) and G = cycle(τ). For the sake of readability we will refer to
Hi’s (respectively Gi’s) either as elements of σ (respectively τ ) or as subgraphs of H
(respectively G).

If σ≤c.
? τ , then there is, by definition of ≤c.

?, an increasing function ϕ : J1, pK →
J1, qK such that ∀i ∈ J1, pK , Hi≤c.Gϕ(i). Therefore there is a sequence of edge con-
tractions transforming Gϕ(i) into Hi for every i ∈ J1, pK. Let us perform the following
operations on G:

1. for every j ∈ J1, qK \ {ϕ(i), i ∈ J1, pK} we contract the subgraph Gj to a single
vertex vj and we then contract some edge incident with vj ;

2. for every i ∈ J1, pK we contract the subgraph Gi in order to obtain the sub-
graph Hϕ(i).

Observe that after step 1., we obtain the graph cycle(τ−), where τ− can be obtained
from τ be deleting elements of indices in J1, qK \ {ϕ(i), i ∈ J1, pK}. Intuitively, we
contracted the graphs that do not appear in H and removed their attachment point
from the cycle. Then we replace in step 2. every graph of τ− by its corresponding
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contraction of σ. Therefore the graph obtained at the end is cycle(σ), that is H , as
required.

The cases (ii) and (iii) are very similar: H can be obtained from G by following the
same operations as above.

Let us restate Lemma 3.88 before we give its proof.

Lemma 3.88. Connected clique-cactus graphs are well-quasi-ordered by ≤c..

Proof. Let us assume by contradiction that (C,≤c.) is not a wqo. All decreasing se-
quences of this quasi-order are finite (as each contraction decreases the number of
edges by one), therefore (C,≤c.) contains an infinite antichain. Let us consider an
antichain {Ai}i∈N of (C,≤c.) with the property that, for every i ∈ N, Ai is a mini-
mal element (with respect to ≤c.) such that there is an infinite antichain starting with
{Aj}j∈J0,iK. Let B =

⋃
i∈N dec(Ai) and let us show that (B,≤c.) is a wqo. For con-

tradiction, let us assume that it is not a wqo and let {Bi}i∈N be an antichain of this
quasi-order, with the same minimality requirement as above.

By definition of B, for every H ∈ B there is an integer i ∈ N such that H ≤c.Ai (for
instance, an integer i such that H ∈ dec(Ai)). Therefore for every i ∈ N there is an
integer π(i) such that Bi≤c.Aπ(i). Let k ∈ N be the integer where π is minimum. Then
the following sequence

A = A0, . . . , Aπ(k)−1, Bk, Bk+1, . . .

is an infinite antichain of (C,≤c.). Indeed, as both {Ai}i∈N and {Bi}i∈N are antichains,
every pair of comparable graphs of A involves one graph of {Ai}i∈J1,π(k)−1K and one
graph of {Bi}i∈N≥k . Let us assume that for some i ∈ J0, π(k)− 1K and j ∈ N≥k we
have Ai ≤ Bj . Then Ai ≤ Bj ≤ Aπ(i), a contradiction with the fact that {Ai}i∈N is an
antichain. The caseBj ≤ Ai is not possible by the choice of k. This proves that (B,≤c.)
is a wqo. According to Theorem 3.1, (B?,≤c.

?) is also a wqo. Let B′ = {stick(σ), σ ∈
B?}. Item (iii) of Lemma 3.90 implies that any antichain in (B′,≤c.) can be translated
into an antichain of the same length in (B?,≤c.

?), hence (B′,≤c.) is a wqo. By the
same argument (now using items (i) and (ii) of Lemma 3.90), we deduce that the
quasi-orders

({cycle(σ), σ ∈ B′?},≤c.) and ({clique(σ), σ ∈ B′?},≤c.)

are well-quasi-orders. Therefore U = {cycle(σ), σ ∈ B′?} ∪ {clique(σ), σ ∈ B′?} is
well-quasi-ordered by ≤c., as a consequence of Remark 3.25. According to Observa-
tion 3.89, we have {Ai}i∈N ⊆ U . This contradicts the fact that {Ai}i∈N is an infinite
antichain. Therefore (C,≤c.) is a wqo and we are done.

3.7.3 The dichotomy

The next observations will allow us to give the the proof of Theorem 3.13, using the
results obtained in the previous section. Recall that our goal is to characterize the
graphs H such that (Excl≤c.(H),≤c.) is a wqo.
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Observation 3.91. For every p ∈ N≥1, contracting one edge in Dp gives either Dp−1, or
K1,p, depending on which edge is contracted.

To remind the definition of Dr, the reader may refer to Figure 3.22. We want to
identify graphs H such that (Excl≤c.(H),≤c.) is a wqo, therefore we must consider
every graph H such that A ∩ Excl≤c.(H) is finite, for every antichain A. Let us set
D = {Dr, r ∈ N} and S = {K1,r, r ∈ N}. A first step towards this goal is the
following observation.

Lemma 3.92. Let p ∈ N≥2. If H ≤c.K2,p then H ∈ D ∪ S.

Proof. Given that H ≤c.K2,p, there is a sequence of contractions transforming K2,p

into H . If this sequence contains only one contraction, then it is straightforward that
H = Dp−1. Therefore in the other cases H is a contraction of Dp−1. We get the result
from Observation 3.91 and the observation that every contraction of a graph of S
belongs to S.

Observation 3.93. For every positive integers p, q such that p < q, we have Dp≤c.K2,q.

Indeed, if F is a collection of q − p edges that are pairwise not incident with the
same vertex of degree 2 of K2,p, then it is easy to check that contracting F in K2,p

yields Dp. An immediate consequence of Observation 3.93 is thatAK ∩Excl≤c.(Dp) is
finite for every positive integer p.

From the fact that every graph of D ∪ S is a contraction of Dp for some positive
integer p, Observation 3.93 gives.

Observation 3.94. If (Excl≤c.(H),≤) is a wqo, then H ≤c.Dp for some p ∈ N≥1

However we will need an other antichain in order to find more properties that H
must satisfy. Let us consider the antichain AC of antiholes, that has been presented
in Subsection 3.5.1.

Again, we look at graphs H such that Excl≤c.(H) ∩ AC is finite. As a wqo must
contain none ofAK andAC , it is enough to consider graphs such that Excl≤c.(H)∩AC
is finite among those for which Excl≤c.(H) ∩ AK is finite.

Lemma 3.95. If p ≥ 3 then Excl≤c.(Dp) ∩ AC is infinite.

Proof. For every p ≥ 3, then graph Dp has independence number at least 3. Let q >
p. As contracting edges can only decrease the independence number, there is no
sequence of contractions transforming Cq (which has independent number 2) to Dp,
for every integer q > p. Therefore Cq ∈ Excl≤c.(Dp), for every integer q > p.

Corollary 3.96. If (Excl≤c.(H),≤c.) is a wqo, then H ≤c.D2.

We are now ready to give the proof of Theorem 3.13. We first restate it, as a re-
minder.

Theorem 3.13 (Dichotomy for contractions). LetH be a graph. The class ofH-contraction-
free simple graphs is wqo by ≤c. iff H ≤c.D2.
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Proof. Let H be a graph such that Excl≤c.(H) is a wqo. Then H ≤c.D2, by Corol-
lary 3.96. On the other hand, if H ≤c.D2 then Excl≤c.(H) ⊆ Excl≤c.(D2). Observe
that every antichain (respectively decreasing sequence) of (Excl≤c.(H),≤c.) is an an-
tichain (respectively a decreasing sequence) of (Excl≤c.(D2),≤c.). As a consequence
of Lemma 3.88 we get that (Excl≤c.(H),≤c.) is a wqo and we are done.

3.7.4 Canonical antichains and contractions

In this section, we will use the following result of Ding in order to prove Theo-
rem 3.21.

Lemma 3.97 ([Din09]). Let (S,�) be a quasi-order, let {Ai}i∈N be a sequence of elements of
S and let {Wi}i∈N be a sequence of sequences of elements of S. If we have

(i) {Ai}i∈N is a fundamental infinite antichain; and

(ii) for every i ∈ N,Wi is a fundamental infinite antichain; and

(iii) for every i ∈ N and every H ∈ Wi, Ai�H ,

then (S,�) does not have a canonical antichain.

We will now define some sequences of graphs and show that they satisfy the prop-
erties of Lemma 3.97.

For every p, q ∈ N, let Wp,q be the graph obtained by adding two non-adjacent
dominating vertices to the disjoint union of Kp and K2,q. These two vertices are
called poles, and the two vertices corresponding to the part of K2,q of size 2 are called
semipoles. Observe that the other vertices either have degree two (in which case they
are adjacent to the two poles, only), or have degree four (and they are adjacent to
both poles and both semipoles).

Lemma 3.98. For every p, p′, q, q′ ∈ N≥3, there is no contraction model of Wp,q in Wp′,q′ if
(p, q) 6= (p′, q′).

Proof. Let us assume that there is a contraction model ϕ of Wp,q in Wp′,q′ . Let u be
a vertex of Wp,q of degree two. By definition of a contraction model, its image by ϕ
must be a subset of degree 2. In Wp′,q′ , the connected subsets of degree 2 are either of
the form {v}, or V (Wp′,q′) \ {v}, where v ∈ V (Wp′,q′) has degree 2. As Wp,q has more
than two vertices, the only possible form for ϕ(u) is {v} for some vertex v ∈ V (Wp′,q′)
of degree 2. Therefore we have p ≤ p′. The same argument applied to vertices of
degree 4 yields q ≤ q′. Let us now consider poles and semipoles.

Let u be a pole. Observe that according to the above remarks, ϕ(u) must be adja-
cent to vertices of degree two, so it should contain a pole of Wp,q. If ϕ(u) contains in
addition a vertex of degree 2 or 4 of Wp,q, then ϕ(u) is dominating. This is not possi-
ble since u is not dominating, therefore ϕ(u) = {v} for some pole v of Wp′,q′ . Let us
now assume that u is a semipole ofWp,q. As previously, the above remarks imply that
ϕ(u) is adjacent to vertices of degree 4 of Wp′,q′ . Hence ϕ(u) contains a semipole of
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Wp′,q′ (it cannot contain a pole as both belong to the image of poles ofWp,q). Therefore
each semipole of Wp,q is sent to a subset of V (Wp′,q′) containing a semipole. Observe
that ϕ(u) cannot contain a vertex of degree two otherwise it would not be connected.
Besides, it cannot contain a vertex of degree 4 otherwise it would be adjacent to the
image by ϕ of the other semipole of Wp,q. Consequently ϕ(u) contains a semipole of
Wp′,q′ and no other vertex. We proved that for every u ∈ V (Wp,q), the set ϕ(u) is a
singleton. Therefore |V (Wp,q)| = |V (Wp′,q′)|. Given that p ≤ p′ and q ≤ q′ (as proved
above), this is possible only if p = p′ and q = q′. This concludes the proof.

Corollary 3.99. {Wp,q}p,q≥3 is an antichain for ≤c..

For every i ∈ N≥3, letWi = {Wi,q}q∈N≥3
.

Lemma 3.100. For every p, q ∈ N≥3, K2,p+1≤c.Wp,q.

Proof. Let S be the set of vertices of degree 4 and semipoles of Wp,q (i.e. the vertices of
the copy of K2,q used in the construction of Wp,q). These vertices induced a connected
subgraph as every vertex of degree 4 is adjacent to both semipoles. It is not hard to
see that contracting S to a single vertex yields K2,p+1.

Observation 3.101. Let p, q ∈ N≥3. There is no path containing four independent ver-
tices in Wp,q.

Corollary 3.102. For every p, q ∈ N≥3, the graph Wp,q does not contain the gem as induced
minor.

Corollary 3.103. No graph of Incl≤c.(Wi) contains the gem as induced minor, for every
i ∈ N≥3.

The following observation will allow us to use Theorem 3.42, which deals with
induced minors.

Observation 3.104. Let H and G be two graphs. If both of them have a dominating
vertex, then H ≤c.G ⇐⇒ H ≤i.m.G.

The following corollary is a direct consequence of Theorem 3.42, Observation 3.104
and Corollary 3.103.

Corollary 3.105. Graphs of Incl≤c.(Wi) with a dominating vertex are wqo by ≤c., for ev-
ery i ∈ N≥3.

Lemma 3.106. Wi is a fundamental antichain, for every i ∈ N≥3.

Proof. Let i ∈ N≥3. We need to show that (Incl≤c.(Wi),≤c.) is a wqo. Let us call inner
edge every edge of Wp,q that is not incident with a pole, for every p, q ∈ N≥3. Observe
that if a graph H ∈ Incl≤c.(Wi) has been obtained by contracting at least one edge
incident with a pole, then H has a dominating vertex. According to Corollary 3.105,
these graphs are wqo by ≤c., therefore we will here consider graphs of Incl≤c.(Wi)
that have been obtained by only contracting inner edges. We call I this class.

We first show that I is the union of the two following classes:
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• the class I0 of graphs that can be obtained by adding two non-adjacent domi-
nating vertices to Ki +Dq for some q ∈ N≥0; and

• the class I1 of graphs that can be obtained by adding two non-adjacent domi-
nating vertices to Ki +K1,q for some q ∈ N≥0.

Again we use the notion of poles to denote the two dominating vertices added
to construct graphs of I0 and I1. A semipole is either a dominating vertex of Dq

(when dealing with graphs of I0), or the dominating vertex of K1,q (when dealing
with graphs of I1).

Contracting an inner edge in Wi,q clearly yields a graph of I0. Now, observe that
any further contraction of an edge connecting a vertex of degree 4 to a semipole gives
a graph of I0 again. If, on the other hand, we contract the edge connecting the two
semipoles, then we get a graph of I1. On a graph of I1, contracting an edges of the star
(used in the construction of this graph) still gives a graph of I1. Therefore I = I0∪I1.

Let us assume that I is not wqo by ≤c.. Therefore it has an infinite antichain. As
I = I0 ∪ I1, one of I0 and I1 (at least) has an infinite antichain. Let A be such an
infinite antichain.

We now look at vertices of graphs of A that are neither poles, nor semipoles, nor
have degree 2. These vertices are the vertices of degree 2 of the copy of Dq or the
vertices of degree one of the copy of K1,q used in the construction of the graphs of A
(depending whether A ⊆ I0 or A ⊆ I1). We call them inner vertices.

Let A and A′ be two graphs ofA such that A has less inner vertices than A′. These
graphs exist since the elements ofA are distinct. Let q be the number of inner vertices
of A and q′ the one of A′.

In both cases A ⊆ I0 and A ⊆ I1 we can obtain A from A′ by contracting q′ − q
inner vertices of A′ to a semipole. This contradicts the fact that A is an antichain.
Therefore (I,≤c.) is a wqo. This implies thatWi is fundamental, as required.

We are now ready to prove Theorem 3.21, that we first restate.

Theorem 3.21. Under the contraction relation, the class of all graphs does not have a canon-
ical antichain.

Proof. LetAi = K2,i+1 for every i ∈ N≥3. According to Lemma 3.106 and Lemma 3.100,
these sequences of graphs satisfy the requirements of Lemma 3.97. Therefore there is
no canonical antichain for the contraction relation.

3.8 Multigraph contractions and well-quasi-ordering

In this section, we prove Theorem 3.14 and Theorem 3.22. Let us introduce some
definitions and present the intermediate results that we use. First of all, as opposite
to the previous sections of this chapter, we deal here with multigraphs: multiple
edges are allowed, but not loops.

A bond is a minimal non-empty edge cut, i.e. a minimal set of edges whose re-
moval increases the number of connected components (cf. Figure 3.23).
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Figure 3.23: A bond of size 3 (dashed edges) in the house graph.

For every p, k ∈ N, let Gp,k be the class of graphs having at most p connected
components and not containing a bond of order more than k. What we prove in this
section is the following result.

Theorem 3.107. For every p, k ∈ N, the class Gp,k is well-quasi-ordered by ≤m.c. .

It is easy to see that Theorem 3.14 is a consequence of Theorem 3.107. Remark
that a graph has a bond of order k iff it contains θk as contraction, and that it has
p connected components iff it can be contracted to Kp. Theorem 3.107 is proven in
Subsection 3.8.2 and results on canonical antichains appear in Subsection 3.8.3.

Let us now introduce the notation and definitions we will use in this section. As
we have to handle many objects with several indices, we find more convenient to
use the dot notation A.b, informally meaning “object b related to object A”. For every
i ∈ {2, 3}we denote byH(i) the class of all i-connected graphs in a classH.

2-rooted graphs. We define a 2-rooted graph in a very similar way as a rooted graph
is defined. A 2-rooted graph is a triple (G, r, s) where G is a graph and r and s are
two distinct vertices of G. Given two 2-rooted graphs (G, r, s), (H, r′, s′), we say that
(H, r′, s′) is a contraction of (G, r, s),what we denote by (H, r′, s′)≤m.c.(G, r, s), if there
is a contraction model µ of H in G such that r′ ∈ µ(r) and s′ ∈ µ(s′). For the sake of
simplicity, we sometimes denote by G the 2-rooted graph (G, r, s) and refer to its first
(respectively second) root by G.r (respectively G.s). For every rooted graph G, we
define root(G) = {G.r,G.s}. A 2-rooted graph G is edge-rooted if {G.r,G.s} ∈ E(G).

G.r

u

G.s

v

H.r H.s

J.r

J.s

⊕vu =

G H J = G⊕vu H

Figure 3.24: Attaching H to vertices (u, v) of G (roots are the white vertices).

The operation of attaching a 2-rooted graphH on the pair of vertices (u, v) of graph
G, denoted G ⊕vu H, yields the graph rooted in (G.r,G.s) obtained by identifying u
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with H.r and v with H.s in the disjoint union of G and H (see Figure 3.24 for an
illustration). If both G and H are (Σ,�)-labeled (for some qoset (Σ,�)), then the
labeling function λ of the graph G⊕vu H is defined as follows:

λ :


V (G⊕vu H) → P(Σ)

w 7→ G.λ(w) if w ∈ V (G) \ {u, v}
w 7→ H.λ(w) if w ∈ V (H) \ {H.r,H.s}
w 7→ G.λ(w) ∪H.λ(w) otherwise, i.e. when w ∈ {u, v}.

Now we state several results that we will use. The first one is a decomposition
theorem for 2-connected graphs by Tutte.

Proposition 3.108 ([Tut61], see also [Die05, Exercise 20 of Chapter 12]). Every 2-connected
simple graph has a tree-decomposition (T,X ) such that |Xt ∩ Xt′ | = 2 for every edge
{t, t′} ∈ T and all torsos are either 3-connected or a cycle.

Proposition 3.109 ([OOT93]). For every k ∈ N there is a positive integer ζk such that every
3-connected simple graph of order at least ζk contains a wheel of order k or a K3,k as minor.

3.8.1 Gluing graphs

This section is devoted to building larger wqos from smaller ones in classes of labeled
graphs that are rooted by two vertices. Step by step, we will construct wqos that will
be directly used in the proof of the main result, as in Step 3 of the general scheme
of Section 3.4. Labels will be used to reduce the study of (unlabeled) graphs to the
case of 2-connected graphs with labels (by the virtue of Lemma 3.32), whereas roots
enable us to construct graphs using the operation ⊕. In this section, let (Σ,�) be
any qoset.

Lemma 3.110. Let H,H ′, G,G′ be four (Σ,�)-labeled 2-rooted graphs. If H ≤m.c.H
′ and

G≤m.c.
µG′, then for every distinct u, v in V (G) and u′ ∈ µ(u), v′ ∈ µ(v) we have

G⊕vu H ≤m.c.G
′ ⊕v′u′ H ′.

Proof. Let µH : V (H) → P(V (H ′)) (respectively µG : V (G) → P(V (G′))) be a contrac-
tion model of H in H ′ (respectively of G in G′). We consider the following function:

ν :


V (G⊕vu H) → P(V (G′ ⊕v′u′ H ′))

v 7→ µH(v) if v ∈ H \ root(H)
v 7→ µG(v) if v ∈ G \ {u, v}
v 7→ µH(v) ∪ µG(v) otherwise.

Let us check that ν is a contraction model ofG⊕vuH inG′⊕v′u′H ′. First, observe that
for every x ∈ V (G⊕vuH), the subgraph induced inG′⊕v′u′H ′ by ν(x) is connected (M2):
either ν(x) = µH(x) or ν(x) = µG(x) (and in these cases it follows from the fact that
µH and µG are models) or ν(x) = µH(x) ∪ µG(x) (if x ∈ {u, v}) and (G′ ⊕v′u′ H ′)[ν(x)]
is connected because both µH(x) and µG(x) induce a connected subgraph and both
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contain the root of H ′. Furthermore, the images through ν of two distinct vertices are
always disjoint (M1), and every vertex of G′ ⊕v′u′ H ′ belongs to the image of a vertex
(M7), again because µH and µG are models. Let us now show point (M6). For every
distinct x, y ∈ V (G⊕vu H),

• either x, y ∈ V (H) and {x, y} 6= root(H) and then

multG⊕vuH(x, y) =
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕vuH′(x
′, y′)

as µH is a contraction model (and symmetrically for the case x, y ∈ V (G) and
{x, y} 6= {u, v});

• or x ∈ V (H) \ root(H) and y ∈ V (G) \ {u, v}: there are no edges between x and
y because every edge of G ⊕vu H is either an edge of H or an edge of G, neither
between ν(x) and ν(y) since ν(x) ⊆ V (H) \ root(H) and ν(y) ⊆ V (G) \ {u, v},
therefore we get

multG⊕vuH(x, y) =
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕vuH′(x
′, y′) = 0;

• or {x, y} = {u, v} = root(H):

multG⊕vuH(x, y) = multG(x, y) + multH(x, y) (by definition of ⊕)

=
∑

(x′,y′)∈µG(x)×µG(y)

multG′(x
′, y′)

+
∑

(x′,y′)∈µH(x)×µH(y)

multH′(x
′, y′)

=
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕vuH′(x
′, y′).

Besides, as a consequence that µG is root-preserving, ν also has this property. Last,
let us check that ν is label-preserving. Let x ∈ V (G ⊕vu H). If x 6∈ {u, v}, then (G ⊕vu
H).λ(x) = G.λ(x) or (G ⊕vu H).λ(x) = H.λ(x) (depending whether x ∈ V (G) \ {u, v}
or x ∈ H \ root(H)) and in these cases labels are preserved, since µG and µH are
label-preserving. If x ∈ {u, v}, then, as µG and µH are label-preserving we have:

(G⊕vu H).λ(x) = G.λ(x) ∪H.λ(y)

�?
⋃

x′∈µG(x)

G′.λ(x′) ∪
⋃

x′∈µH(x)

H ′.λ(x′)

�?
⋃

x′∈ν(x)

(G′ ⊕vu H ′).λ(x′)

and thus ν is label-preserving as well. We just proved that ν is a contraction model of
G⊕vu H in G′ ⊕vu H ′. Consequently, G⊕vu H ≤m.c.G

′ ⊕vu H ′, as desired.
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Corollary 3.111. Let l ∈ N∗, let J be a (Σ,�)-labeled 2-rooted graph and 〈(ui, vi)〉i∈J1,lK be
a sequence of pairs of distinct vertices of J. LetH be a class of (Σ,�)-labeled 2-rooted graphs,
〈G1, . . . , Gl〉 , 〈H1, . . . , Hl〉 ∈ Hl and let G (respectively H) be the graph constructed by at-
tachingGi (respectivelyHi) to the vertices (ui, vi) of J, for every i ∈ J1, lK . If 〈H1, . . . , Hl〉≤m.c.

l 〈G1, . . . , Gl, 〉
then H ≤m.c.G.

Proof. By induction on l. The case l = 1 follows from Lemma 3.110. If l ≥ 2, then,
let G′ (respectively H ′) be the graph constructed by attaching Gi (respectively Hi) to
the vertices (ui, vi) of J, for every i ∈ J1, l − 1K . By induction hypothesis, we have
H ′≤m.c.G

′. SinceH (respectivelyG) is isomorphic toH ′⊕vlulHl (respectivelyG′⊕vlulGl)
and Hl≤m.c.Gl, by Lemma 3.110, we have H ≤m.c.G as desired.

Lemma 3.112. Let H be a family of (Σ,�)-labeled 2-rooted connected graphs, let J be a
(Σ,�)-labeled 2-rooted graph, and let HJ be the class of (Σ,�)-labeled 2-rooted graphs that
can be constructed by attaching a graph H ∈ H to (u, v) for every u, v ∈ V (J). If (H,≤m.c.)
is a wqo, then so is (HJ ,≤m.c.).

Proof. Let (u1, v1), . . . , (ul, vl) be an enumeration of all the pairs of distinct vertices of
J . In this proof, we will design an epi that constructs graphs of HJ from a tuple
of l graphs of H. Let f : (Hl,≤m.c.

l) → (HJ ,≤m.c.) be the function that, given a tuple
(H1, . . . , Hl) of l graphs of H, returns the graph constructed from J attaching Hi to
(ui, vi) for every i ∈ J1, lK. This function is clearly surjective. Let us show that it is
monotone.

Let (G1, . . . , Gl), (H1, . . . , Hl) ∈ Hl be two tuples such that the following holds:

(H1, . . . , Hl)≤m.c.
l(G1, . . . , Gl).

According to Remark 3.29, it is enough to deal with the cases where these two se-
quences differ only in one coordinate. Since all parameters of f play a similar role,
we only look at the case where H1≤m.c.G1 and ∀i ∈ J2, lK , Hi = Gi. Let J ′ be the
graph obtained from J by attaching Gi to (ui, vi), for every i ∈ J2, lK . Remark that
f(H1, . . . , Hl) (respectively f(G1, . . . , Gl)) can be obtained by attaching H1 (respec-
tively G1) to (u1, v1) in J ′. By Lemma 3.110 and since H1≤m.c.G1, we have J ⊕v1u1
H1≤m.c. J⊕v1u1G1 and thus f(H1, . . . , Hl)≤m.c. f(G1, . . . , Gl). Consequently, f is mono-
tone and surjective: f is an epi. In order to show thatHJ is a wqo, it suffices to prove
that the domain of f is a wqo (cf. Remark 3.28). As a finite Cartesian product of wqos,
(Hl,≤m.c.

l) is a wqo by Lemma 3.26. This concludes the proof.

Lemma 3.113. Let H be a family of (Σ,�)-labeled 2-rooted connected graphs and let H◦ be
the class of (Σ,�)-labeled graphs that can be constructed from a cycle by attaching a graph of
H to either (u, v) or (v, u) for every edge {u, v}, after deleting the edge {u, v}. If (H,≤m.c.)
is a wqo, then so is (H◦,≤m.c.).

Proof. Again, this proof relies on the property of epimorphisms to send wqos on
wqos: we will present an epi that maps sequences of graphs of (H,≤m.c.) to graphs
of (H◦,≤m.c.). Let H′ = H ∪ {(H, s, r), (H, r, s) ∈ H}, i.e. H′ contains graphs of H
with the roots possibly swapped. As the union of two wqos, (H′,≤m.c.) is a wqo
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(Remark 3.25). We consider the function f : (H′?,≤m.c.
?) → (H◦,≤m.c.) that, given

a sequence 〈H1, . . . , Hk〉 of graphs of (H′,≤m.c.) (for some integer k ≥ 2), returns
the graph obtained from the cycle on vertices v0, . . . , vk−1 (in this order) by deleting
the edge {vi, v(i+1) mod k} and attaching Hi to (vi, v(i+1) mod k), for all i ∈ J1, kK . Ob-
serve that by definition of H◦ and H′, the function f is surjective. We now show
that f is monotone. Let G = 〈G0, . . . , Gk−1〉 and H = 〈H0, . . . , Hl−1〉 ∈ H′? be two
sequences such that G≤m.c.

?H. For the sake of readability, we will refer to the ver-
tices of f(G) (respectively f(H)) and to the graphs of G (respectively H) by the
same names. By definition of the relation ≤m.c.

?, there is an increasing function
ρ : J0, k − 1K→ J0, l − 1K such that for every i ∈ J0, k − 1K , we have Gi≤m.c.Hρ(i).

A crucial remark here is that since the graphs of H′ are connected, each of them
can be contracted to an edge between its two roots. Therefore, for every graph Hi of
the sequenceH (for some i ∈ J0, l − 1K) we can first contractHi to an edge in f(H) and
then contract this edge. That way we obtain a graph similar to f(H) except thatHi has
been deleted and its roots merged: this is the graph f(〈H0, . . . , Hi−1, Hi+1, . . . , Hl−1〉).
By applying this operation on every subgraph of f(H) belonging to {Hi, i ∈ J1, lK \
ρ(J0, kK)},we obtain the graph f(

〈
Hρ(i)

〉
i∈J1,kK) and we thus have f(

〈
Hρ(i)

〉
i∈J1,kK)≤m.c. f(H).

Now, recall that the function ρ is such that for every i ∈ J0, k − 1K ,we haveGi≤m.c.Hρ(i).
Furthermore, the graphs f(G) and f(

〈
Hρ(i)

〉
i∈J1,kK) are both constructed by attaching

graphs to the same graph (a cycle on k vertices). By Corollary 3.111, we therefore
have f(G)≤m.c. f(

〈
Hρ(i)

〉
i∈J1,kK), hence f(G)≤m.c. f(H) by transitivity of≤m.c. .We just

proved that f is an epi. The domain of f is a wqo (as a set of finite sequences from
a wqo, cf. Theorem 3.1), so its codomain (H◦,≤m.c.) is a wqo as well according to
Remark 3.28 and this concludes the proof.

Lemma 3.114. Let k ∈ N and let H be a class of 2-rooted graphs, none of which having
more than k edges between the two roots. Let H− be the class of graphs of H where all edges
between the two roots have been removed. If (H,≤m.c.) is a wqo, then so is (H−,≤m.c.).

Proof. Let us assume that (H,≤m.c.) is a wqo. For every i ∈ J0, kK , let Hi be the
subclass of graphs of H having exactly i edges between the two roots. Each class Hi

(i ∈ J0, kK) is a subclass ofHwhich is well-quasi-ordered by≤m.c., therefore it is well-
quasi-ordered by ≤m.c. as well. Let f be the function that, given a 2-rooted graph G,
returns a copy of G where all edges between the roots have been deleted. The rest of
the proof draws upon the following remark.
Remark 3.115. Let G,H be two edge-rooted graphs where the edge between the roots
has the same multiplicity. Then H ≤m.c.G⇔ f(H)≤m.c. f(G) (every model of H in G
is also a contraction model of f(H) in f(G), and vice-versa).

Let i ∈ J0, kK , let H−i = {f(H), H ∈ Hi}, and let 〈f(Gi)〉i∈N be an infinite se-
quence of H−i . By an observation above, (Hi,≤m.c.) is a wqo, hence 〈Gi〉i∈N has a
good pair (Gi, Gj) (with i, j ∈ N, i < j). According to Remark 3.115, (f(Gi), f(Gj))
is a good pair of 〈f(Gi)〉i∈N . Every infinite sequence of (H−i ,≤m.c.) has a good pair,
therefore this qoset is a wqo. Remark that (H−,≤m.c.) is the union of the k + 1 wqos
{(H−i ,≤m.c.)}i∈J0,kK, therefore it is a wqo as well (cf. Remark 3.25) and this concludes
the proof.
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Proposition 3.108 provides an interesting description of the structure of 2-connected
simple graphs. The two following easy lemmas show that it can easily be adapted to
multigraphs.

Lemma 3.116. Let G be a graph and let G′ be its underlying simple graph. The graph G is
2-connected iff G′ is 2-connected or G = θk for some integer k ≥ 2.

Proof. It is clear that G is 2-connected whenever G′ is. Let us now assume that G is
2-connected but G′ is not, and let u, v ∈ V (G′) be two distinct vertices of G′ such that
there is no pair of internally disjoint paths from u to v in G′. Since G is 2-connected,
there are two internally disjoint paths P and Q in G linking u to v. Remark that if
P and Q are edge-disjoint, then the corresponding paths in G′ are internally disjoint
and link u to v, a contradiction with the choice of these two vertices. Therefore P
and Q share an edge (which has multiplicity at least two). Since these paths are
internally disjoint, their ends must be the ends of the edge that they share: {u, v}
is an edge with multiplicity at least two. Removing (all multiplicities of) the edge
{u, v} in G yields two connected components, one, Gu, containing u and the other,
Gv, containing v. Since every path from vertices of Gu to vertices of Gv in G contains
u, the graph Gu contains only the vertex u (otherwise G is not 2-connected) and by
symmetry V (Gv) = {v}. Therefore G = θk, for some integer k ≥ 2, as required.

Lemma 3.117 (extension of Proposition 3.108 to graphs). Every 2-connected graph has
a a tree-decomposition (T,X ) such that |Xt ∩Xt′ | = 2 for every edge {t, t′} ∈ T and where
every torso is either 3-connected or a cycle.

Proof. Let G be a 2-connected graph and G′ be its underlying simple graph. If G′ is
2-connected, then by Proposition 3.108 it has a tree-decomposition (T,X ) such that
|Xt ∩Xt′| = 2 for every edge {t, t′} ∈ T and where every torso is either 3-connected,
or a cycle. Noticing that (T,X ) is also a tree-decomposition of G concludes this case.
If G′ is not 2-connected, then by Lemma 3.116 we have G = θk for some integer
k ≥ 2. If k = 2 the graph G is a cycle, and if k > 2 it is 3-connected, therefore it has
a trivial tree-decomposition with one bag, which satisfies the properties required in
the statement of the lemma.

We call a tree decomposition as in Lemma 3.117 a Tutte decomposition.

3.8.2 Well-quasi-ordering graphs without big bonds

The main result is proved in three steps. First, we show that for every k ∈ N, the
class of labeled 2-connected graphs of G1,k is well-quasi-ordered by ≤m.c. . Then, we
use Lemma 3.32 to extend this result to all graphs of G1,k, i.e. all connected graphs
not containing a bond of size more than k. The result for disconnected graphs then
follows by the application of Lemma 3.34.

Lemma 3.118. For every k ∈ N, and for every wqo (Σ,�), the qoset

(lab(Σ,�)(G(2)
1,k),≤m.c.)

is a wqo.
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Proof. Let k ∈ N, and let (Σ,�) be a wqo. By contradiction, let us assume that
(lab(Σ,�)(G(2)

1,k),≤m.c.) is not a wqo. We consider the edge-rooted closureH of lab(Σ,�)(G(2)
1,k),

i.e. the class of all edge-rooted graphs whose underlying non-rooted graphs belongs
to lab(Σ,�)(G(2)

1,k). Clearly, (H,≤m.c.) is not a wqo, as a consequence of our initial as-
sumption. We will show that this leads to a contradiction.

Let {Ai}i∈N be an infinite minimal (wrt.≤m.c.) bad sequence of (H,≤m.c.): for every
i ∈ N, Ai is a minimal graph (wrt. ≤m.c.) such that there is an infinite bad sequence
starting withA0, . . . , Ai. For every i ∈ N, Ai has a Tutte decomposition (Lemma 3.117)
which has a bag containing the endpoints of the edge {Ai.r, Ai.s} (because it is a tree
decomposition). Let Ai.X be the torso of some (arbitrarily chosen) bag in such a
decomposition which contains Ai.r and Ai.s.

For every edge x, y ∈ V (Ai.X), let Ai.Vx,y be the vertex set of the (unique) block
which contains both x and y in the graph obtained from Ai by deleting vertices
V (Ai.X) \ {x, y} and adding the edge {x, y}with multiplicity 2.

Let us consider graphs obtained by contracting all the edges of Ai that does not
have both endpoints in Ai.Vx,y in a way such that Ai.r gets contracted to x and Ai.s
gets contracted to y. Remark that for fixed i and (x, y), these graphs differ only by
the multiplicity of the edge between the two roots x and y. For every i ∈ N and
x, y ∈ V (Ai.X), we denote by Ai.Cx,y an arbitrarily chosen such graph. Eventually,
we set Ai.C = {Ai.Cx,y, x, y ∈ V (Ai.X)}. Remark that every graph of Ai.C belongs to
G(2)

1,k and is a contraction of Ai.

Claim 3.119. C = ∪i∈NAi.C is wqo by ≤m.c. .

Proof. By contradiction, assume that (C,≤m.c.) has an infinite bad sequence {Bi}i∈N.
By definition of C, for every i ∈ N there is a j = ϕ(i) ∈ N such that Bi≤m.c.Aj.
Let i0 ∈ N be an integer with ϕ(i0) minimum. Let us consider the following infinite
sequence:

A0, . . . , Aϕ(i0)−1, Bi0 , Bi0+1, . . . .

Remark that this sequence cannot have a good pair of the form Ai≤m.c.Aj, 0 ≤ i <
j < ϕ(i0) (respectively Bi≤m.c.Bj, i0 ≤ i < j) since {Ai}i∈N (respectively {Bi}i∈N)
is an antichain. Let us assume that there is a good pair of the form Ai≤m.c.Bj, for
some i ∈ J0, ϕ(i0)− 1K , j ≥ i0. Then we have Ai≤m.c.Bj ≤m.c.Aϕ(j). By the choice
of i0 we have ϕ(i0) ≤ ϕ(j), hence i < ϕ(j) so (Ai, Aϕ(j)) is a good pair of {Ai}i∈N, a
contradiction. Therefore, this sequence is an infinite bad sequence of (H,≤m.c.) and
we have Bi0 ≤m.c.Aϕ(i0) and Bi0 6= Aϕ(i0). This contradicts the minimality of {Ai}i∈N,
therefore (C,≤m.c.) is a wqo.

Let C− be the class of 2-rooted graphs obtained from graphs of C by deleting the
edge between the roots. We set C+ = {H ⊕H.sH.r θi, i ∈ J0, kK , H ∈ C−}. In other words
C+ is the class of graphs that can be constructed by possibly replacing the edge at the
root of a graph of C by an edge of multiplicity i, for any i ∈ J1, kK.

Remark 3.120. It follows from Lemma 3.114 that both (C−,≤m.c.) and (C+,≤m.c.) are wqos.
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Notice that for every i ∈ N and {x, y} ∈ E(Ai.X), the graph Ai[Ai.Vx,y] rooted in
(x, y) belongs to C+. As explained thereafter, this property enables us to see Ai as a
graph built from graphs of C+.

According to Lemma 3.117, for every i ∈ N, the graphAi.X (which is the torso of a
bag of a Tutte decomposition) is either a 3-connected graph (and thus |V (Ai.X)| < ζk
by Proposition 3.109), or a cycle (of any length). Therefore we can partition {Ai}i∈N
into at most ζk subsequences depending on the type of Ai.X , where this type can
be either “cycle” or one type for each possible value of |V (Ai.X)| when Ai.X is 3-
connected. Let us show that each of these subsequences is finite.

First case: {Ai}i∈N has an infinite subsequence {Di}i∈N such that for every i ∈ N, Di.X
is a cycle. Then each graph of {Di}i∈N can be constructed by attaching a graph of the
wqo (C+,≤m.c.) to each edge of a cycle after deleting this edge. By Lemma 3.113, these
graphs are wqo by ≤m.c., a contradiction.

Second case: for some positive integer n < ζk, {Ai}i∈N has an infinite subsequence
{Di}i∈N such that for every i ∈ N, |V (Di.X)| = n. Then every graph of {Di}i∈N can be
constructed by attaching a graph of the wqo (C+,≤m.c.) to each pair of distinct vertices
of Kn. By Lemma 3.112, {Di}i∈N has a good pair, which is contradictory since it is a
bad sequence.

We just proved that {Ai}i∈N can be partitioned into a finite number of subse-
quences each of which is finite. Hence {Ai}i∈N is finite as well, a contradiction. There-
fore our initial assumption is false and (lab(Σ,�)(G(2)

1,k),≤m.c.) is a wqo.

Corollary 3.121. For every k ∈ N, the class G1,k is well-quasi-ordered by ≤m.c. .

Proof. According to Lemma 3.118, for every wqo (Σ,�), the class of Σ-labeled 2-
connected graphs of G are wqo by≤m.c. . By Lemma 3.32, this implies that (G1,k,≤m.c.)
is a wqo and we are done.

The proof of Theorem 3.107 now follows from the combination of Corollary 3.121
and Lemma 3.34.

3.8.3 Canonical antichains and multigraph contractions

This section is devoted to the proof of the two results related to canonical antichains
of ≤m.c..

Remark 3.122. Every canonical antichain of ≤m.c. is infinite.

Recall that Aθ is the class of all connected multigraphs on two vertices, and that
AK is the class of all edgeless graphs, as depicted on Figure 3.25.

Let us remind the statement of Theorem 3.22 before we prove it.

Theorem 3.22. Every antichainA of≤m.c. is canonical iff each of the following sets are finite:

Aθ \ A; AK \ A; and A \ {Aθ ∪ AK}.
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Aθ =
, ,

. . .

,
. . .

,
. . .

,
. . .

,
. . .

AK =
, , , , , ,

. . .

Figure 3.25: Two infinite antichains for multigraph contractions: multiedges and
edgeless graphs.

Proof. “⇒”: LetA be a canonical antichain of≤m.c. and let us assume for contradiction
that B = Aθ \ A (respectively B = AK \ A) is infinite. Let B+ be the closure of
B and remark that B+ = B ∪ {K1} (respectively B+ = B). Then the contraction
downwards-closed class B+ has finite intersection with A whereas it contains the
infinite antichain B. This is a contradiction with the fact that A is canonical, hence
both Aθ \ A and AK \ A are finite.

Let us now assume that C = A \ {Aθ ∪ AK} is infinite and let C+ be the closure
of C. Being a subset of an antichain, C is an antichain as well and consequently C+ is a
contraction downwards-closed class that is not well-quasi-ordered. By Theorem 3.14,
C+ contains infinitely many elements of Aθ ∪ AK . Notice that besides being infinite,
C+ ∩ (Aθ ∪ AK) is also disjoint from A ∩ (Aθ ∪ AK), otherwise A would contain an
element from C contractible to an element of A ∩ (Aθ ∪ AK). But then one of Aθ \ A
and AK \ A is infinite, a contradiction with our previous conclusion. Therefore C is
finite.

“⇐”: LetA be an antichain such that each ofAθ \A,AK \A, andA\{Aθ ∪AK} is
finite, and let us show that A is canonical. Let F be a contraction downwards-closed
class of graphs. If F ∩A is infinite, then F trivially contains the infinite antichain F ∩
A.On the other hand, if F∩A is finite then by Theorem 3.14 the class F is well-quasi-
ordered, hence by definition it does not contain an infinite antichain. Consequently,
A is canonical, as required.

We can now prove Corollary 3.23, that has already been stated in the introduction
of this chapter.

Corollary 3.23. Every canonical antichain of ≤m.c. is fundamental5.

Proof. Let A be a canonical antichain of ≤m.c.. Observe that we have the following:

Incl≤m.c.(A) = Incl≤m.c.(A ∩Aθ) ∪ Incl≤m.c.(A ∩AK) ∪ Incl≤m.c.(A \ (Aθ ∪ AK)).

Now, is is easy to notice that:

5The definition of the concept of fundamental antichain is given in Section 3.2.
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• Incl≤m.c.(A ∩Aθ) ⊆ Incl≤m.c.(Aθ) = {K1};

• Incl≤m.c.(A ∩AK) ⊆ Incl≤m.c.(AK) = ∅;

• Incl≤m.c.(A\ (Aθ ∪AK)) is finite, becauseA\ (Aθ ∪AK) is finite by Theorem 3.22
and since A is canonical.

Therefore, Incl≤m.c.(A) is finite as well and hence cannot contain an infinite antichain;
this proves that A is fundamental.
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CHAPTER 4

EXCLUSION THEOREMS

One of the most celebrated results from the Graph Minors series of Robertson and
Seymour is the following result, also known as the Grid Exclusion Theorem.

Theorem 4.1 (Grid Exclusion Theorem, [RS86]). There exists a function f : N→ N such
that, for every integer h, every graph that does not contain a minor isomorphic to the h × h-
grid has treewidth at most f(h).

This result is an exclusion theorem: it relates a graph parameter (in this case the
treewidth) with the absence of some pattern as a substructure. In this chapter, we
present exclusion theorems related to the parameters of girth (Section 4.1), treewidth
(Section 4.3), maximum degree (Section 4.2), and tree-cut width (Section 4.4).

Beside their combinatorial value, exclusion theorems has proven useful in order
to obtain Erdős–Pósa-type results. This aspect will be illustrated in Chapter 5.

This chapter contains material that previously appeared in the following articles:

• [RT15] Low polynomial exclusion of planar graph patterns, co-authored with Dim-
itrios M. Thilikos, Journal of Graph Theory (2015);

• [RST16] An edge variant of the Erdős-Pósa property, co-authored with Ignasi Sau
and Dimitrios M. Thilikos, Discrete Mathematics (2016);

• [CRST15c] Minors in graphs of large θr-girth, co-authored with Dimitris Chatzidim-
itriou, Ignasi Sau, and Dimitrios M. Thilikos, submitted (2015);

• [GKRT16] Packing and covering immersion models of planar subcubic graphs, co-
authored with Archontia Giannopoulou, O-joung Kwon, and Dimitrios M. Thi-
likos, WG 2016.

4.1 Clique-majors in graphs of large θr-girth

In this section, we introduce the concept of θr-girth of a graph and show that graphs
of sufficiently large minimum degree contain as a minor cliques whose order is an
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exponential function of their girth, extending a result of [KO03]. We also show that
the minimum degree can be replaced by some connectivity measurement.

4.1.1 The quest for large clique-majors

A classic result in graph theory asserts that if a graph has minimum degree ck
√

log k,
then it can be transformed to a complete graph of at least k vertices by applying edge
contractions (i.e., it contains a k-clique minor). This result has been proved by Kos-
tochka in [Kos84] and Thomason in [Tho83a] and a precise estimation of the constant
c has been given by Thomason in [Tho01a]. For recent results related to conditions
that force a clique minor see [Mar04, JW13, DHJ+13, FKO09, KO04a].

Recall that the girth of a graph G is the minimum length of a cycle in G. Inter-
estingly, graphs of large minimum degree contain clique-minors whose order is an
exponential function of their girth. In particular, it follows by the main result of Kühn
and Osthus in [KO03] that there is a constant c such that, if a graph has minimum
degree d ≥ 3 and girth z, then it contains as a minor a clique of size k, where

k ≥ dcz√
z · log d

.

In this section we provide conditions, alternative to the above one, that can force
the existence of a clique-minor whose size is exponential.

H-girth. Given two graphs G and H , we define the H-girth of G as the minimum
number of edges of an H-major in G. If G does not contain H as a minor, we will say
that its H-girth is equal to infinity. For every r ∈ N, recall that θr denotes the graph
with two vertices and r parallel edges. Clearly, the girth of a graph is its θ2-girth and,
for every r1 ≤ r2, the θr1-girth of a graph is at most its θr2-girth.

Our first result is the following extension of the result of Kühn and Osthus in [KO03]
for the case of θr-girth.

Theorem 4.2. There is a constant c > 0 such that, for every r ≥ 2, d ≥ 3r, and z ≥ r, if
a graph has minimum degree d and θr-girth at least z, then it contains as a minor a clique of
size k, where

k ≥
(d
r
)
cz
r√

z
r
· log d

.

In the formula above, a lower bound to the minimum degree as a function of r is
necessary. An easy computation shows that when applying Theorem 4.2 for r = 2,
we can get the aforementioned formula of Kühn and Osthus, where the constant in
the exponent is one fourth of the constant of Theorem 4.2.

Our second finding is that this degree condition can be replaced by some “loose
connectivity” requirement.
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Loose connectivity. For two integers α, β ∈ N, a graph G is called (α, β)-loosely
connected if for every A,B ⊆ V (G) such that V (G) = A ∪ B and G has no edge
between A \ B and B \ A, we have that |A ∩ B| < β ⇒ min(|A \ B|, |B \ A|) ≤ α.
Intuitively, this means that a small separator (i.e., one of less than β vertices) cannot
“split” the graph into two large parts (that is, with more than α vertices each).

Our second result indicates that the requirement on the minimum degree in The-
orem 4.2 can be replaced by the loose connectivity condition as follows.

Theorem 4.3. There is a constant c > 0 such that, for every r ≥ 2, α ≥ 1, and z ≥
168 ·α · r log r, it holds that if a graph has more than (α+ 1) · (2r−1) vertices, is (α, 2r−1)-
loosely connected, and has θr-girth at least z, then it contains as a minor a clique of size k
where

k ≥ 2c·
z
rα

√
rz
.

Both Theorem 4.2 and Theorem 4.3 are derived from two more general results,
namely Theorem 4.5 and Theorem 4.4, respectively. Theorem 4.5 asserts that graphs
with large θr-girth and sufficiently large minimum degree contain as a minor a graph
whose minimum degree is exponential in the girth. Theorem 4.4 replaces the mini-
mum degree condition with the absence of sufficiently large “edge-protrusions”, that
are roughly tree-like structured subgraphs with small boundary to the rest of the
graph (see Subsection 4.1.2 for the detailed definitions). While these theorems are
more general, we present Theorem 4.2 and Theorem 4.3 as the main results of this
section as they are easier to apply.

As an application of these results, we will in Subsection 4.3.6 optimally improve
(up to a constant factor) the upper-bound on the treewidth of graphs excluding k · θr
as a minor.

Organization of the section. The main notions used in this section are defined
in Subsection 4.1.2. Then, we show in Subsection 4.1.3 that the proofs of Theo-
rem 4.2 and Theorem 4.3 can be derived from Theorem 4.5 and Theorem 4.4, which
are proved in Subsection 4.1.4.

4.1.2 Definitions specific to this section

In this section, when giving the running time of an algorithm involving some graph
G, we agree that n = |V (G)| and m = |E(G)|.

In order to decompose graphs along edge cuts, we introduce the following edge-
counterpart of the notion of (vertex-)protrusion used in [BFL+09a, BFL+09b] (among
others). A subset Y ⊆ V (G) is a t-edge-protrusion of G with extension w (for some
positive integer w) if the graph G[Y ∪NG(Y )] has a rooted tree-partitionD = (T, s,X )
of width at most t and such that NG(Y ) = Xs and |V (T )| ≥ w. The protrusion Y is
said to be connected whenever Y ∪NG(Y ) induces a connected subgraph in G.

We recall that rooted tree-partitions, that are mentioned in the following defini-
tion, are defined in Section 2.5 (Definition 2.6).
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Distance-decompositions. A distance-decomposition of a connected graphG is a rooted
tree-partitionD = (T, s,X ) ofG, where the following additional requirements are met
(see also [YBdFT99]):

(i) Xs contains only one vertex, we shall call it u, refered to as the origin of D;

(ii) for every t ∈ V (T ) and every x ∈ Xt, distG(x, u) = distT (t, s);

(iii) for every t ∈ V (T ), the graph Gt = G
[⋃

t′∈desc(T,s)(t)
Xt′

]
is connected; and

(iv) if C is the set of children of a vertex t ∈ V (T ), then the graphs {Gt′}t′∈C are the
connected components of Gt \Xt.

Observe that a distance decomposition is uniquely determined by its origin. An ex-
ample of distance-decomposition is given in Figure 4.1. For every vertex u of a graph
on m edges, a distance-decomposition (T, s,X ) with origin u can be constructed in
O(m) steps by breadth-first search.

u5

u6

u8

u7

u3

u4

u1u0

u2 {u5}

{u6, u7} {u3, u4}

{u8} {u0, u2} {u1}

Figure 4.1: A graph (left) and a distance-decomposition with origin u5 of it (right).

Let P be a path in G andD = (T, s,X ) a distance-decomposition of P . We say that
P is a straight path if the heights, in (T, s), of the indices of the bags in D that contain
vertices of P are pairwise distinct. Obviously, in that case, the sequence of the heights
of the bags that contain each subsequent vertex of the path is strictly monotone.

Let us introduce the notion of grouped partition, that extends the construction
used in the proof of [Die05, Lemma 7.2.3] to our setting.

Grouped partitions. LetG be a connected graph and let d ∈ N. A d-grouped partition
of G is a partitionR = {R1, . . . , Rl} of V (G) (for some positive integer l) such that for
each i ∈ {1, . . . , l}, the graph G[Ri] is connected and there is a vertex si ∈ Ri with the
following properties:

(i) eccG[Ri](si) ≤ 2d and
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(ii) for each edge e = {x, y} ∈ E(G) where x ∈ Ri and y ∈ Rj for some distinct
integers i, j ∈ {1, . . . , l}, it holds that distG(x, si) ≥ d and distG(y, sj) ≥ d.

A set S = {s1, . . . , sl} as above is a set of centers of R where si is the center of Ri for
i ∈ {1, . . . , l}.

Given a graph G, we define a d-scattered set W of G as follows:

• W ⊆ V (G) and

• ∀u, v ∈ W, distG(u, v) > d.

If W is inclusion-maximal, it will be called a maximal d-scattered set of G.

Frontiers and ports. LetG be a graph, letR = {R1, . . . , Rl} be a d-grouped partition
ofG, and let S = {s1, . . . , sl} be a set of centers ofR. For every i ∈ J1, lK, we denote by
Di = (Ti, si,Xi) the unique distance-decomposition with origin si of the graph G[Ri]
where Xi = {X i

t}t∈V (Ti). For every i ∈ J1, lK and every h ∈ J0, eccTi(si)K, we denote by
Ihi the vertices of (Ti, si) that are at distance h from si and we set I<hi =

⋃h−1
h′=0 I

s
h′ and

I≥hi =
⋃eccTi (si)

h′=h Ih
′

i . We also set

V h
i =

⋃
t∈Ihi

X i
t , V <h

i =
⋃
t∈I<hi

X i
t , and V ≥hi =

⋃
t∈I≥hi

X i
t .

The vertex-frontier Fi of Ri is the set of vertices in V d−1
i that are connected in G to

a vertex x ∈ V (G) \ Ri via a path, the internal vertices of which belong to V ≥di . The
node-frontier of Ti is

Ni = {t ∈ V (Ti) | Fi ∩Xt 6= ∅}. (4.1)

A vertex t ∈ I≥d−1
i is called a port of Ti if X i

t contains some vertex that is adjacent in
G to a vertex of V (G) \Ri.

4.1.3 Finding small θr-majors

Two intermediate results

In this section we show how Theorem 4.2 and Theorem 4.3 can be proved using the
two following intermediate results, that will be proved in a subsequent section.

Theorem 4.4. There exists an algorithm that, with input three positive integers r, w, z and
an n-vertex graph G, outputs one of the following:

• a θr-major in G with at most z edges,

• a connected (2r − 2)-edge-protrusion Y of G with extension more than w, or

• an H-major in G for some graph H where δ(H) ≥ 1
r−1

2
z−5r

4r(2w+1) ,
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in Or(m) steps.

Theorem 4.5. There exists an algorithm that, with input three integers r, δ, z, where r ≥ 2,
δ ≥ 3r, and z ≥ r and an n-vertex graph G, outputs one one the following:

• a θr-major in G with at most z edges,

• a vertex v of G of degree less than δ, or

• an H-major in G for some graph H where δ(H) ≥ δ−2r+3
r−1

· b δ
r−1
− 1c

z−r
4r ,

in Or(m) steps.

The results of Chandran and Subramanian in [CS05] imply that if G has girth at
least z and mimumum degree at least δ, then tw(G) ≥ δc·z, for some constant c. As in
the third condition of Theorem 4.5 it holds that tw(G) ≥ tw(H) ≥ δ(H), Theorem 4.5
can also be seen as a qualitative extension of the results of [CS05].

The above two results will be used to prove Theorem 4.2 and Theorem 4.3. We
will also need the following result of Kostochka [Kos84].

Proposition 4.6 ( [Kos84], see also [Tho83a, Tho01a]). There exists a constant ξ ∈ R
such that for every d ∈ N, every graph of average degree at least d contains a clique of order k
as a minor, for some integer k satisfying

k ≥ ξ · d√
log d

.

Let us restate Theorem 4.2 before proving it.

Theorem 4.2. There is a constant c > 0 such that, for every r ≥ 2, d ≥ 3r, and z ≥ r, if
a graph has minimum degree d and θr-girth at least z, then it contains as a minor a clique of
size k, where

k ≥
(d
r
)
cz
r√

z
r
· log d

.

Proof. Observe that sinceG has no θr-major with at most z edges andG has minimum
degree δ ≥ 3r, a call to the algorithm of Theorem 4.5 on (r, δ, z, G) should return an

H-major in G, for some graph H where δ(H) ≥ δ−2r+3
r−1

· b δ
r−1
− 1c

z−r
4r =: d. Using the

fact that z − r ≥ z/2, it is not hard to check that there is a positive constant c′ ∈ R
such that

ξ · d√
log d

≥
( δ
r
)c
′· z
r√

z
r
· log δ

.

Hence by Proposition 4.6, G has a clique of the desired order as a minor.

We also recall Theorem 4.3 before providing its proof.
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Theorem 4.3. There is a constant c > 0 such that, for every r ≥ 2, α ≥ 1, and z ≥
168 ·α · r log r, it holds that if a graph has more than (α+ 1) · (2r−1) vertices, is (α, 2r−1)-
loosely connected, and has θr-girth at least z, then it contains as a minor a clique of size k
where

k ≥ 2c·
z
rα

√
rz
.

Proof. As in the proof of Theorem 4.2, the properties that G enjoys will force a minor
of large minimum degree. Let us call the algorithm of Theorem 4.4 on (r, 3α, z,G).
We assumed that G has no θr-major with z edges or less, hence the output of the
algorithm cannot be such a major. Let us now assume that the algorithm outputs a
(2r − 2)-edge-protrusion Y of extension more than 3α, and let (T, s,X ) be a rooted
tree-partition of Y of width at most 2r − 2 such that NG(Y ) = Xs and |V (T )| > 3α. It
is known that every tree of order n has a vertex, the removal of which partitions the
tree into components of size at most n/2 each. Hence, there is a vertex v ∈ V (T ) and
a partition (Z,Z ′) of V (T ) \ {v} such that:

• both Z ∪ {v} and Z ′ ∪ {v} induce connected subtrees of T ;

• 1
3
|V (T )| ≤ |Z|, |Z ′| ≤ 2

3
|V (T )|; and

• Xs ⊆ Z or v = s.

Let A = Z ′ ∪ {Xv} and B = V (G) \ Z ′. Notice that V (G) = A ∪B and that no edge of
G lies between A and B. As A ∩ B = Xv, we have |A ∩ B| < 2r − 1. Last, Z ′ ⊆ A \ B
and Z ⊆ B \A give that |A \B|, |B \A| ≥ α. The existence of A and B contradicts the
fact that G is (α, 2r− 1)-loosely connected. Thus G has no (2r− 2)-edge-protrusion Y
of extension more than 3α.

A consequence of this observation is that the only possible output of the algorithm
mentioned above is an H-major of G for some graph H , where

δ(H) ≥ 1

r − 1
· 2

z−5r
4r(6α+1) ≥ 1

r
· 2

z
168·rα =: d.

Notice also that log d = z
168·rα which, by the condition of the theorem, is a non-

negative number. Moreover, log d ≤ z/r. Therefore, there is there is a constant c′′ ∈ R
such that

ξ · d√
log d

≥ 2c
′′· z
rα

√
z · r

in order to conclude the proof.

4.1.4 Structural results on graphs with large θr-girth

This section is devoted to the proofs of Theorem 4.4 and Theorem 4.5.
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Preliminary results

Before proving Theorem 4.4 and Theorem 4.5 we need some preliminary results. Let
us start we some definitions.

Let (T, s) be a rooted tree and let N be a subset of its leaves. We say that a vertex
u of T is N -critical if either it belongs to N ∪ {s} or there are at least two vertices
in N that are descendants of two distinct children of u. An N -unimportant path in
T is a path with at least 2 vertices, with exactly two N -critical vertices, which are
its endpoints (see Figure 4.2 for a picture). As we see in the proof of the following
lemma, N -unimportant paths are the maximal paths with internal vertices of degree
2 that appear if we repeatedly delete leaves that do not belong to N ∪ {s}. Notice
that an N -unimportant path in T cannot have an internal vertex that belongs to some
other N -unimportant path. Also, among the two endpoints of an N -unimportant
path there is always one which is a descendant of the other.

root

v ∈ N

w ∈ N
u ∈ N

Figure 4.2: An unimportant path (dashed) in a tree. Gray subtrees are those without
vertices from N .

Lemma 4.7. Let d, k ∈ N, k ≥ 1. Let (T, s) be a rooted tree and let N be a set of leaves
of (T, s), each of which is at distance at least than d from s. If for some integer k, every
N -unimportant path in T has length at most k, then |N | ≥ 2d/k.

Proof. We consider the subtree T ′ of T obtained by repeatedly deleting leaves that do
not belong to N ∪ {s}. By construction, every leaf of (T ′, s) belongs to N , hence our
goal is then to show that (T ′, s) has many leaves. Notice that in (T ′, s), every vertex
of degree at least 3 is N -critical. Therefore, the N -unimportant paths of (T ′, s) are
the maximal paths, the internal vertices of which have degree two. By contracting
each of these paths into an edge, we obtain a tree T ′′ where every internal vertex has
degree at least 3. Observe that every edge on a root-leaf path of T ′′ is originated from
the contraction of a path on at most k edges, as we assume that every N -unimportant
path in T has length at most k. We deduce that T ′′ has height at least d/k, hence it has
at least 2d/k leaves. Consequently, T ′ has at least 2d/k leaves, and then |N | ≥ 2d/k.
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If (T, s,X ) is a distance-decomposition of a graph and t ∈ V (T ) \ {s}, we call E(t)

the set of edges that have one endpoint in Xt and the other in Xp(t).

Lemma 4.8. Let G be an n-vertex graph, let r be a positive integer, let D = (T, s,X ) be a
distance-decomposition of G, and let d > 1 be the height of (T, s). Then either G contains a
θr-major with at most 2·r ·d edges or for every vertex i ∈ V (T )\s, it holds that |E(i)| ≤ r−1.
Moreover there exists an algorithm that, in Or(m) steps, either finds such a major, or asserts
that |E(i)| ≤ r − 1 for every i ∈ V (T ) \ s.

Proof. We consider the non-trivial case where r ≥ 2. Suppose that there exists a node
t of (T, s) such that |E(t)| ≥ r. Clearly, such a t can be found in O(m) steps. We will
prove that G contains a θr-major. Let k be the height of t in T .

We need first the following claim.
Claim 4.9. Given a non-empty proper subset U of Xt, we can find in Gt a path of
length at most 2k from a vertex of U to a vertex of Xt \ U , in O(m) steps.
Proof of Claim 4.9. We can compute a shortest path P from a vertex of U to a vertex of
Xt \U , inO(m) steps using a BFS. Let us show that P has length at most 2k. Let u ∈ U
and v ∈ Xt \U be the endpoints of P , and let w be a vertex of P of the lowest possible
height h (0 ≤ h ≤ k). Then it holds that distGt(v, u) = distGt(U, v). We examine
the non-trivial case where P has more than one edge. By minimality of P we have
w /∈ Xt.

Our next step is to prove that if P has more than one edge, then both the subpaths
of P from u tow and from v tow are straight. Suppose now, without loss of generality,
that the subpath from u to w is not straight and let z be the first vertex of it (starting
from u) which is contained in a bag of height greater than or equal to the height of the
bag of its predecessor in P . By definition of a distance-decomposition (in particular
items (ii) and (iii)), there is at least one vertex x ∈ Xt which is connected by a straight
path P ′ to z in G. Then there are two possibilities:

• either x ∈ U , and then the union of the path P ′ and the portion of P between z
and v is a path that is shorter than P ;

• or x ∈ Xt \ U , and in this case the union of the path P ′ and the portion of P
between u and z is a path that is shorter than P .

As, in both cases, the occurring paths contradict the construction of P , we conclude
that both the subpath of P from u to w and the one from v to w are straight. This
implies that P has length at most 2 · (k − h) ≤ 2 · k and the claim follows. 3

Our next step is to construct a vertex set U and a set of paths P as follows. We
set P = ∅, U = ∅, and we start by adding in U an arbitrarily chosen vertex u ∈ Xt.
Using the procedure of Claim 4.9, we repeatedly find a path from a vertex of U to a
vertex of Xt \U , add this second vertex to U and the path to P , until there are at least
r edges in E(t) that have endpoints in U .

The construction of U requires at most r repetitions of the procedure of Claim 4.9,
and therefore O(r · m) steps in total. Clearly |U | ≤ r, hence |P| ≤ r − 1. Besides,

123



every path in P has length at most 2k according to Claim 4.9. Notice now that∪∪∪∪∪∪∪∪∪P is
a connected subgraph of Gt with at most 2k · (r − 1) edges.

As there are at least r edges in E(t) with endpoints in U we may consider a subset
F of them where |F | = r. Since D is a distance-decomposition (by item (ii) of the
definition), each edge e ∈ F is connected to the origin by a path of length d − k − 1
whose edges do not belong to Gt. Let P ′ be the collection of these paths. Clearly, the
paths in P ′ contain, in total, at most r · (d− k − 1) edges.

If we now contract in G all edges in P and all edges in P ′, except those in F , and
then remove all edges not in F , we obtain a graph isomorphic to θr. Therefore we
found in G a θr-major with at most

r · (d− k − 1) + 2 · k · (r − 1) + r ≤ r · (d− k − 1) + 2 · k · r + r

= r · (d+ k)

≤ 2 · r · d (since d ≥ k)

edges in O(r ·m) steps.

The following result is a direct consequence of Lemma 4.8 and item (ii) of the
definition of a distance-decomposition.

Corollary 4.10. Let G be an n-vertex graph, let r be a positive integer, let D = (T, s,X ) be
a distance-decomposition of G, and let d > 1 be the height of (T, s). If some bag of D contains
at least r vertices, then G contains a θr-major with at most 2 · r · d edges, which can be found
in Or(m) steps.

The remaining lemmata will be related to grouped partitions.

Lemma 4.11. For every positive integer d and every connected graph G there is a d-grouped
partition of G that can be constructed in O(m) steps.

Proof. If diam(G) ≤ 2d, then {V (G)} is a d-grouped partition of G. Otherwise, let
R = {s1, . . . , sl} be a maximal 2d-scattered set in G. This set can be constructed in
O(m) steps by breadth-first search. The sets {Ri}i∈J1,lK are constructed by the follow-
ing procedure:

1. Set k = 0 and R0
i = {si} for every i ∈ J1, lK;

2. For every i ∈ J1, lK, every v ∈ Rk
i and every u ∈ NG(v), if u has not been

considered so far, add u to Rk+1
i ;

3. If k < 2d, increment k by 1 and go to step 2;

4. Let Ri =
⋃2d
k=0R

k
i for every i ∈ J1, lK.

Let R = {Ri}i∈J1,lK. By construction, each set Ri induces a connected graph in G. It
remains to prove thatR is a partition of V (G) and that it has the desired properties.
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Notice that in the above construction if a vertex is assigned to the set Ri, then it is
not assigned to Rj , for every distinct integers i, j ∈ J1, lK. Let v ∈ V (G) be a vertex
that does not belong to Ri for any i ∈ J1, lK after the procedure is completed. Then for
every i ∈ J1, lK we have distG(v, si) > 2d and v /∈ R, which contradicts the maximality
of R. ThereforeR is a partition of V (G).

Since for each vertex v in Ri it holds that distG(v, si) ≤ 2d, R obviously satisfies
property (i) of the definition.

For property (ii) of the definition, let e = {x, y} be an edge in G such that x ∈ Ri,
y ∈ Rj , for some distinct integers i, j ∈ J1, lK. Towards a contradiction, we assume
without loss of generality that distG(x, si) < d. This means that during the con-
struction of Ri, the vertex x was added to the set Rk

i for some k ≤ d − 1. Also,
since the vertex y is adjacent to x but was added to Rl

j for some l ≤ 2d instead
of Rk+1

i , it follows that l ≤ k + 1, which means that distG(y, sj) ≤ k + 1. Hence
distG(si, sj) ≤ distG(si, x) + distG(x, y) + distG(y, sj) ≤ k + 1 + k + 1 ≤ 2d again is
not possible since R is a 2d-scattered set.

Finally, in the procedure above, each edge of the graph is encountered at most
once, hence the whole algorithm will take at most O(m) time. This concludes the
proof of the lemma.

Lemma 4.12. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let si be a center of Ri, for every i ∈ J1, lK. If for some distinct i, j ∈ J1, lK, G has at least r
edges from vertices in Ri to vertices in Rj then G[Ri ∪ Rj] contains a θr-major with at most
4 · r · d+ r edges, which can be found in Or(m) steps.

Proof. Suppose that for some i ∈ J1, lK, G has a set F of at least r edges from vertices
in Ri to vertices in Rj . Let R′i ⊆ Ri and R′j ⊆ Rj be the sets of the endpoints of
those edges. Since R is a d-grouped partition of G, it holds that, for each x ∈ R′i
and y ∈ R′j , distG(x, si) ≤ 2d and distG(y, sj) ≤ 2d. That directly implies that for
every h ∈ {i, j}, there is a collection Ph of r paths, each of length at most 2d and not
necessarily disjoint, in G[Rh] connecting sh with each vertex in R′h, which we can find
in Or(m) steps. It is now easy to observe that the graph Q, obtained from∪∪∪∪∪∪∪∪∪Pi ∪ ∪∪∪∪∪∪∪∪∪Pj
by adding all edges of F , is the union of r paths between si and sj , each containing
at most 4 · d+ 1 edges. Therefore, Q is a major of θr with at most 4 · r · d+ r edges, as
required. As mentioned earlier the construction of Pi and Pj takes Or(m) steps.

Lemma 4.13. Let r, d ∈ N, let G be a graph with no θr-major on 2rd edges, let R =
{R1, . . . , Rl} be a d-grouped partition of G, and let S = {s1, . . . , sl} be a set of centers of
R. For every i ∈ J1, lK, let Di = (Ti, ri,Xi) be the distance-decomposition with origin si of
the graph G[Ri].

If for some i ∈ J1, lK andw ∈ N, the tree Ti, with node-frontierNi, has anNi-unimportant
path of length at least 2(w + 1), then G has a connected (2r − 2)-edge-protrusion Y with
extension more than w, which can be constructed in Or(m) steps.

Proof. Let P = t0 . . . tp be a Ni-unimportant path of length p ≥ 2(w + 1) in Ti. We
assume without loss of generality that tp ∈ desc(Ti,ri)(t0). Due to the definition of
distance-decompositions, the vertices in X i

t0
or X i

tp form a vertex-separator of G. Let
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Z ⊆ E(G) be the set containing all edges between X i
t0

and X i
t1

and all edges between
X i
tp−1

and X i
tp in G. Let T ′i be the subtree of Ti that we obtain if we remove the de-

scendants of tp and any vertex that is not a descendant of t1. Notice that Z is an
edge-separator of G: it separates the vertices in bags of T ′i from the rest of the graph.
Furthermore, Z has at most 2r − 2 edges as two bags of Di are never connected by
more that r − 1 vertices, according to Lemma 4.8 applied to the fact that G has no
θr-major on 2rd edges or less. Let Y =

⋃
t∈V (T ′i )\{t0,tp}

X i
t . In other words, Y consists

of the vertices in the bags of T ′i excluding X i
i and X i

j . Obviously, NG(Y ) = Xt0 ∪Xtp .
We will now construct a rooted tree-partition F = (TF , rF ,XF) of G[Y ∪ NG(Y )]

of width at most 2r − 2 and such that |V (TF)| > w. Let TF be the tree obtained
from T ′i by identifying, for every j ∈ J0, b(p− 1)/2cK, the vertex tj with the vertex
tp−j . If multiple edges are created during this identification, we replace them with
simple ones. We also delete loops that may be created. Let us define the elements of
XF = {XFt }t∈V (TF ) as follows. If t ∈ V (TF ) is the result of the identification of tj and
tp−j for some j ∈ J0, b(p− 1)/2cK, then we set XFt = Xtj ∪Xtp−j . On the other hand, if
t ∈ V (TF ) is a vertex of T ′i that has not been identified with some other vertex, then
XFt = Xt. The construction of F is completed by setting rF to be the result of the
identification of t0 and tp, the endpoints of P .

It is easy to verify that F is a rooted tree-partition of G[Y ∪ NG(Y )] of width at
most 2r − 2. Notice also that the identification of the antipodal vertices of the path P
creates a path in TF of length b(p − 1)/2c. This implies that the extension of F is at
least b(p− 1)/2c ≥ w+ 1. Besides, all the operations performed to construct F can be
implemented in Or(m) steps. This completes the proof.

We continue with two easy lemmata related to ports and frontiers.

Lemma 4.14. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ J1, lK, let Di = (Ti, ri,Xi) be the
distance-decomposition with origin si of the graph G[Ri], and let Ni be the node-frontier of
Ti. Then, for every i ∈ J1, lK, there are at least |Ni| ports in Ti.

Proof. Let i ∈ J1, lK. We will show that every vertex in the node-frontier of Ti has a
descendant which is a port. For every vertex t ∈ Ni ⊆ V (Ti), there is, by definition, a
path from t to a vertex in G \ Ri, the internal vertices of which belong to V ≥di . Let v
be the last vertex of this path (starting from t) which belongs to Ri and let t′ ∈ V (T )
be the vertex such that v ∈ X i

t′ . Then t′ is a port of Ti. Observe that t′ cannot be the
descendant of any other vertex of Ni. Therefore there are at least |Ni| ports in Ti.

Corollary 4.15. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ J1, lK, let Di = (Ti, ri,Xi) be the
distance-decomposition with origin si of the graphG[Ri], and letNi be the node-frontier of Ti.
If for some integer k, every Ni-unimportant path in Ti has length at most k, then Ti contains
at least 2d/k ports.

Proof. Let i ∈ J1, lK. From Lemma 4.14, it is enough to prove that |Ni| ≥ 2d/k. Then
the result follows by applying Lemma 4.7 for (Ti, si), d, Ni, and k.
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Proof of Theorem 4.4

Proof. Let d = z−r
4r

. According to Lemma 4.11, we can construct in O(m) steps a
d-grouped partition R = {R1, . . . , Rl} of V (G), with a set of centers S = {s1, . . . , sl},
and also, for every i ∈ J1, lK, the distance-decompositionsDi = (Ti, ri,Xi) with origins
si of the graphs G[Ri]. For every i ∈ J1, lK, we use the notation Xi = {X i

t}t∈V (Ti) and
denote by Ni the node-frontiers of Ti.

Similarly, by applying the algorithm of Lemma 4.8, in Or(m) steps we either find
a θr-major in G with at most 2 · r · d ≤ z edges or we know that for every i ∈ J1, kK
and every t ∈ V (Ti), the bag X i

t contains at most r − 1 vertices.
Using the algorithm of Lemma 4.13, in Or(m) steps we either find a (2r − 2)-

edge-protrusion with extension more than w, or we know that for every i ∈ J1, lK, all
Ni-unimportant paths of Ti have length at most 2w + 1.

We may now assume that none of the above algorithms provided a θr-major with
z edges, or a (2r − 2)-edge-protrusion.

From Corollary 4.15, for every i ∈ J1, lK the tree Ti contains at least 2
d−1
2w+1 =

2
z−5r

4r·(2w+1) ports, which by definition means that there are at least 2
z−5r

4r·(2w+1) edges in
G with one endpoint in Ri and the other in V (G) \Ri.

By applying the algorithm of Lemma 4.12, in Or(m) steps, we will either find a θr-
major in G with at most z = 4 · r · d+ r edges or we know that for every two distinct
i, j ∈ J1, lK there are at most r − 1 edges of G with one endpoint in Ri and one in Rj .
By Lemma 4.12, for every distinct integers i, j ∈ J1, lK there are at most r − 1 edges
with one endpoint in Ri and the other in Rj . As a consequence of the two previous
implications, for every i ∈ J1, lK there is a set Zi ⊆ J1, lK\{i}, where |Zi| ≥ 1

r−1
2

z−5r
4r(2w+1) ,

such that for every j ∈ Zi there exists an edge with one endpoint in Ri and the other
in Rj . Consequently, if we now contract all edges in G[Ri] for every i ∈ J1, lK, the
resulting graph H is a minor of G of minimum degree at least 1

r−1
2

z−5r
4r(2w+1) . Therefore,

we output G, which is an H-major, as required in this case.

Proof of Theorem 4.5

Proof. The proof is quite similar to the one of Theorem 4.4. If G contains a vertex v of
degree less than δ, we can easily find it in Or(m) steps. Hence, from now on we can
assume that every vertex has degree at least δ.

Let d = z−r
4r

. From Lemma 4.11, in O(m) steps, we can construct a d-grouped
partition R = {R1, . . . , Rl} of G, with a set of centers S = {s1, . . . , sl}, and also the
distance-decomposition Di = (Ti, ri,Xi) with origins si of the graphs G[Ri], for ev-
ery i ∈ J1, lK. We use again the notation Xi = {X i

t}t∈V (Ti).
As in the proof of Theorem 4.4, in Or(m) steps, we can either find a θr-major in

G with at most z = 4 · r · d + r edges or we know that for every distinct integers
i, j ∈ [l] there are at most r − 1 edges of G with one endpoint in Ri and one in Rj (cf.
Lemma 4.12).

Using Corollary 4.10, we can in Or(m) steps either find a θr-major in G with at
most z edges or we know that every bag of Di has less than r vertices, for every i ∈
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J1, lK. Let i ∈ J1, lK and let u ∈ Ri be a vertex at distance less than d from si. As u
has degree at least 3r, it must have neighbors in at least 3 different bags of Di, apart
from the one containing it. This means that every vertex in Ti of distance less than d
from ri has degree at least b δ

r−1
c ≥ 3 and therefore Ti has at least b δ

r−1
− 1cd leaves.

Notice also that if t is a leaf of Ti, then each vertex in X i
t can have at most r − 1

neighbors in X i
p(t) and at most r − 2 neighbors in X i

t . Therefore there are at least
δ − (r− 1)− (r− 2) = δ− 2r+ 3 edges in G with one endpoint in X i

t and the other in
V (G) \Ri. This means that for every i ∈ J1, lK there are at least (δ− 2r+ 3) · b δ

r−1
− 1cd

edges with one endpoint in Ri and the other V (G) \Ri.
Similarly to the proof of Theorem 4.4, we deduce that, for each i ∈ J1, lK, there is a

set Zi ⊆ J1, lK \ {i} where |Zi| ≥ δ−2r+3
r−1

· b δ
r−1
− 1cd such that, for every j ∈ Zi, there

exists an edge with one endpoint in Ri and the other in Rj . This implies the existence

of an H-major in G for some H with δ(H) ≥ δ−2r+3
r−1

· b δ
r−1
− 1c

z−r
4r . We then output G,

which, in this case, is an H-major.

4.1.5 Remarks on the H-girth

The results presented in this section are centered around the concept of θr-girth which
generalizes the usual notion of girth of a graph. A natural line of research is to inves-
tigate the H-girth parameter for different instantiations of H . An interesting problem
in this direction could be to characterize the graphs H for which our results (Theo-
rem 4.2 and Theorem 4.3) can be extended.

From its definition, the H-girth is related to the minor relation. An other direc-
tion of research would be to extend the parameter of H-girth to other containment
relations. One could consider, for a fixed graph H , the minimum size of an induced
subgraph that can be contracted to H , or the minimum size of a subdivision of H in a
graph. The first one of these parameters is related to induced minors and the second
one to topological minors.

As the usual notion of girth appears in various contexts in graph theory, we won-
der for which graphs H the results related to girth can be extended to the H-girth or
to the two aforementioned variants.

4.2 Degree and θr-packings

In this section we show how lower bounds on the degree of the vertices of a graph
can be used to prove the existence of a packing of θr-majors.

4.2.1 On maximum degree and edge-disjoint packings

The main result of this section is the following. It relates the maximum degree of a
2-connected graph with the presence of an edge-disjoint union of θr-majors.
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Lemma 4.16. Let k > 0, r > 0 be two integers, and let G be a 2-connected graph with
∆(G) ≥ 2kr. Then G contains a subgraph that is the disjoint union of k edge-disjoint θr-
majors.

For the purpose of the proof, we deal with graphs in which some vertices are
marked. If G is a graph and m : V (G) → {0, 1} is a function, we say that (G,m) is a
graph marked bym.A vertex v ofG such thatm(v) = 1 is said to be marked. We denote
by µ the function that, given a graph, returns its number of marked vertices. We now
define an r-good partition. Given a positive integer r, a marked tree (T,m) is said to
have an r-good partition of root v if there is a pair ((T1,m1), (T2,m2)) of marked trees
such that:

(i) T1 and T2 are subtrees of T such that (E(T1), E(T2)) is a partition of E(T );

(ii) r ≤ µ ((T1,m1)) ≤ 2r;

(iii) v ∈ V (T2); and

(iv) every vertex that is marked in (T,m) is either marked in (T1,m1) or marked in
(T2,m2), but not in both. In other words, for every u ∈ V (T ),

• if v ∈ V (T1) ∩ V (T2) then m(v) = 1⇔ m1(v) = 1 or m2(v) = 1 but not both;

• otherwise, let i ∈ {1, 2} be the integer such that v ∈ V (Ti). Then we have
m(v) = mi(v).

We remark that because of (iv), µ(T ) = µ(T1) + µ(T2). If for every v ∈ V (T ), (T,m)
has an r-good partition of root v, then T is said to have an r-good partition.

Lemma 4.17. For every integer r > 0 and every marked tree (T,m), if µ(T ) ≥ 2r then
(T,m) has an r-good partition.

Proof. Let r > 0 be an integer. We prove this lemma by induction on the size of the
tree.
Base case: |V (T )| = 0. Since 2r ≥ 2 > |V (T )| , T does not have 2r marked vertices and
we are done.
Induction step: Assume that for every integer n′ < n, every marked tree (T ′,m′) on n′

vertices and satisfying µ((T ′,m′)) ≥ 2r has an r-good partition (induction hypothe-
sis).

Let us prove that every marked tree on n vertices has a r-good partition if it has
at least 2r marked vertices. Let (T,m) be a tree on n vertices and let v be a vertex of
T. We assume that µ((T,m)) ≥ 2r. We distinguish two cases.

• µ((T,m)) = 2r:

Let T1 = T, let m1 = m, let T2 = ({v}, ∅), and let m2 : V (T2)→ {0, 1} be the func-
tion equal to 0 on every vertex of T2. Remark that (E(T1), E(T2)) = (E(T ), ∅)
is a partition of E(T ), T2 contains v, and as (T,m) contains (exactly) 2r marked
vertices, so does (T1,m).Consequently ((T1,m1), (T2,m2)) is an r-good partition
of (T,m).
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• µ((T,m)) > 2r:

We distinguish different cases depending on the degree of the root v in T.

Case 1: deg(v) = 1.
Let u be the neighbor of v in T, let T ′ = T \ {v}, and m′ = m|V (T ′). Remark
that µ((T ′,m′)) ≥ 2r and |V (T ′)| = |V (T )| − 1. By induction hypothesis,
(T ′,m′) has an r-good partition ((T ′1,m1), (T ′2,m1)) of root u.We extend it to
T by setting T1 = T ′1 and T2 = (V (T ′2) ∪ {v}, E(T ′2) ∪ {v, u}) . Notice that T2

contains v. As the subtree T ′1 contains at least r and at most 2r marked ver-
tices (induction hypothesis), so does T1. Also, remark that (E(T1), E(T2))
is a partition of E(T ) and that since u ∈ T ′2, the graph T2 is connected.
Therefore the pair (T1, T2) is an r-good partition of T.

Case 2: deg(v) = d > 1.

Let u1, . . . , ud be the neighbors of v in T and for every i ∈ J1, dK , let Ci be
the connected component of T \ {v} that contains ui. We also define, for
every i ∈ J1, dK , the restricted marking function wi = m|V (Ci).

Subcase (a): there exists i ∈ J1, dK such that µ((Ci, wi)) > 2r.
Let T ′ = (V (Ci) ∪ {v}, E(Ci) ∪ {u, v}) and let m′ = m|V (T ′). Remark
that |V (T ′)| < |V (T )| and µ((T ′,m′)) > 2r. According to the induc-
tion hypothesis, (T ′,m′) has an r-good partition ((T1,m1), (T2,m2)) of
root ui. Similarly as before, we can extend it into an r-good partition
((T1,m1), (T2,m2)) of (T,m). This is done by setting:

T1 = T ′1,

m1 = m′1,

T2 = (V (T ′2) ∪ {v}, E(T ′2) ∪ {v, ui}), and

m2 :

{
v 7→ 0
u ∈ V (T2) \ {v} 7→ m′2(u)

.

Subcase (b): there exists i ∈ J1, dK such that r ≤ µ((Ci, wi)) ≤ 2r.
Let T1 = Ci and T2 = T [E(T ) \ E(T1)]. In this case, (E(T1), E(T2)) is
a partition of E(T ) and T2 is connected since it contains v, the vertex
which is adjacent to the Cj’s. Thus, if we set m1 = m|V (T1) and m2 =
m|V (T2), ((T1,m1), (T2,m2)) is an r-good partition of (T,m).

Subcase (c): for all i ∈ J1, dK , µ((Ci, wi)) < r.

Let j = min
{
j ∈ J2, dK ,

∑j
i=1 µ((Ci, wi)) ≥ r

}
. We set:

T1 = (∪i∈J1,jKV (Ci) ∪ {v},∪i∈J1,jK(E(Ci) ∪ {v, ui})),

m1 :

{
v 7→ 0
u ∈ V T1 \ {v} 7→ m(u)

,

T2 = T [E(T ) \ E(T1)], and
m2 = m|V (T2).
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By definition of j, µ((T1,m1)) ≥ r and as for every i ∈ J1, dK , µ((Ci, wi)) <
r we also have µ((T1,m1)) < 2r. As before, the pair ((T1,m1), (T2,m2))
is an r-good partition of (T,m).

In conclusion, we proved by induction that for every integer r, every tree having
at least 2r marked vertices has an r-good partition.

We are now ready to give the proof of Lemma 4.16.

Proof of Lemma 4.16. As G is 2-connected, the removal of a vertex v of maximum de-
gree gives a connected graph. Let T be a minimal tree of G \ {v} spanning the neigh-
borhood NG(v) of v. We mark the vertices of T that are elements of NG(v): this gives
the marking function m for T. Let us prove by induction on k that (T,m) has k edge-
disjoint marked subtrees (T1,m1), . . . , (Tk,mk), each containing at least r marked ver-
tices. If we do so, then we are done because {{v}, Ti}i∈J1,kK is a collection of k edge-
disjoint θr majors. In fact, as for every i ∈ J1, kK , Ti contains r′ ≥ r vertices adjacent
to v in G, contracting the edges of Ti in G[{v} ∪ V (Ti)] gives the graph θr′ . Let r > 0
be an integer.
Base case k = 1: Clear.
Induction step k > 1: Assume that for every k′ < k, every tree with at least 2k′r
vertices marked has k′ edge-disjoint subtrees, each with at least r marked vertices.
Let (T,m) be a marked tree such that µ((T,m)) ≥ 2kr. According to Lemma 4.17,
(T,m) has an r-good partition ((T1,m1), (T ′1,m

′
1)) such that r ≤ µ((T1,m1)) ≤ 2r and

µ((T ′1,m
′
1)) = µ((T,m)) − µ((T1,m1)) ≥ 2(k − 1)r. By induction hypothesis, (T ′1,m

′
1)

has k− 1 edge-disjoint marked subtrees (T2,m2), . . . , (Tk,mk) each containing at least
r marked vertices. Remark that as all these trees are subgraphs of T ′1, which is edge-
disjoint from T1 in T , they are edge-disjoint from T1 as well. Consequently, (T1,m1),
(T2,m2), . . . , (Tk,mk) is the family of edge-disjoint subtrees we were looking for.

Remark 4.18. Let r > 0 be an integer. For every positive integer k, the graph θkr−1 does
not contain k edge-disjoint θr-majors. Therefore the bound provided by Lemma 4.16
is tight up to a constant factor.

4.2.2 On the minimum degree and vertex-disjoint packings

In this subsection we show that every graph of large minimum degree contains k · θr
as minor, which can be found in polynomial time. Our proof relies on the following
result.

Theorem 4.19 (Theorem 12 of [BTV07]). Given k, r ∈ N≥1 and an input graphG such that
δ(G) ≥ k(r + 1) − 1, a partition (V1, . . . , Vk) of V (G) satisfying ∀i ∈ J1, kK , δ(G[Vi]) ≥ r
can be found in O(nc) steps, for some c ∈ N.

Theorem 4.19 is the algorithmic version of the next older result.

Theorem 4.20 ([Sti96, Corollary 3]). For every k, r ∈ N≥1, every graph G with δ(G) ≥
k(r + 1) − 1 has a partition (V1, . . . , Vk) of its vertex set satisfying δ(G[Vi]) ≥ r for every
i ∈ J1, kK.
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Theorem 4.21. There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥ kr,
returns a subgraph of G containing an edge-disjoint union of k copies of a θr-major, in O(m)
steps.

Proof. Starting from any vertex u, we grow a maximal (non induced) path P in G
by iteratively adding to P a vertex that is adjacent to the previously added vertex
but does not belong to P . Since δ(G) ≥ kr, any such path will have length at least
kr + 1. At the end, all the neighbors of the last vertex v of P belong to P (otherwise
P could be extended). Since v has degree at least kr, v has at least kr neighbors in P .
Let w0, . . . , wkr−1 be an enumeration of the kr first neighbors of v in the order given
by P , starting from u. For every i ∈ J0, k − 1K, let Si be the subgraph of G induced
by v and the subpath of P starting at wir and ending at w(i+1)r−1. Observe that for
every i ∈ J0, k − 1K, Si contains a θr-major and that the intersection of every pair of
graphs from {Si}i∈J0,k−1K is {v}. Hence P contains a e-M(θr)-packing of G of size k,
as desired. Every edge of G is considered at most once in this algorithm, yielding to
a running time of O(m) steps.

Corollary 4.22. There is an algorithm that, given r ∈ N≥1 and a graph G with δ(G) ≥ r,
returns a θr-major of G in O(m)-steps.

Observe that the previous lemma only deals with edge-disjoint packings. An ana-
logue of Theorem 4.21 for vertex-disjoint packings can be proved using Theorem 4.19
to the price of a worse time complexity.

Theorem 4.23. There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥
k(r + 1) − 1, outputs a (k · θr)-major of G in O(nc + m) steps, where c is the constant of
Theorem 4.19.

Proof. After applying the algorithm of Theorem 4.19 on G to obtain in O(nc)-time k
graphsG[V1], . . . , G[Vk], we extract a θr-major from each of them using Corollary 4.22.

4.3 Treewidth and excluded majors

In this section, we show upper-bounds on the treewidth of graphs not containing a
major of some fixed pattern, among which: the wheel, the double wheel, any graph of
pathwidth at most 2, the yurt graph, and the disjoint union of copies of the graph θr.

In [RST94a], Robertson, Seymour, and Thomas proved that every planar graph is
a minor of a large enough grid.

Lemma 4.24 ([RST94a, (1.5)]). For every positive integer h, the h × h-grid contains as a
minor any planar graph H satifsying 2|V (H)|+ 4|E(H)| ≤ h.

Together with the Grid Exclusion Theorem which upper-bounds the treewidth of
graph excluding a grid (Theorem 4.1), the above lemma implies the next result.
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Theorem 4.25. There is a function f : N→ N such that, for every for every planar graph H
on h vertices, every graph G that does not contain a minor isomorphic to H has treewidth at
most f(h).

The original proof of Theorem 4.1 in [RS86] does not provide any explicit esti-
mation for the function f . Later, in [RST94a], Robertson, Seymour, and Thomas
proved the same result for f(h) = 2O(h5), while a less complicated proof appeared
in [DJGT99a]. The bound f(h) ≤ h − 2 was also obtained in [BRST91] in the case
where H is required to be a forest. Theorem 4.25 has several applications in algo-
rithms and a lot of research has been devoted to optimizing the function f in general
or for specific instantiations of H (see [RST94b, DJGT99b]).

For a long time, whether Theorem 4.25 can be proved for a polynomial f was an
open problem. In [RST94a], an Ω(h2 · log h) lower bound was provided for the best
possible estimation of f and was also conjectured that the optimal estimation should
not be far away from this lower bound. In fact, a more precise variant of the same con-
jecture was given by Demaine, Hajiaghayi, and Kawarabayashi in [DHK09] where
they conjectured that Theorem 4.25 holds for f(h) = O(h3). The bounds of [RST94a]
were then improved by Kawarabayashi and Kobayashi [iKK12], where they show
that Theorem 4.25 holds for f(h) = 2O(h·log h). The same bounds were obtained by
Leaf and Seymour [LS15]. Until recently, this was the best known estimation of the
function f .

In a breakthrough result [CC14], Chekuri and Chuzhoy proved that Theorem 4.1
holds for f(h) = O(h228). Chuzhoy recently improved this bound.

Theorem 4.26 ([Chu16], see also [CC14, Chu15]). There exists a function f1 : N → N
with f1(h) = O(h19 polylog h) such that, for every integer h, every graph that does not
contain a minor isomorphic to the h× h-grid has treewidth at most f(h).

The remaining open question is whether the degree of this polynomial bound can
be substantially reduced in general. In this direction, one may still consider restric-
tions either on the graphG or on the graphH that yield a low polynomial dependence
between the treewidth and the size of the excluded minor. In the first direction, De-
maine and Hajiaghayi proved in [DH08] that, when G is restricted to belong to some
graph class excluding some fixed graph as a minor, then Theorem 4.25 (optimally)
holds for f(h) = O(h). Similar results have been proved by Fomin, Saurabh, and
Lokshtanov, in [FLS12], for the case where G is either a unit disk graph or a map
graph that does not contain a clique as a subgraph.

In a second direction, one may consider H to be some specific planar graph and
find a good upper bound for the treewidth of the graphs that exclude it as a minor.
More generally, we can consider a parametrized class of planar graphsHk where each
graph inHk has size (or a given parameter) bounded by a polynomial in k, and prove
that the following fragment of Theorem 4.25 holds for some low degree polynomial
function f : N→ N:

∀k ≥ 0 ∀H ∈ Hk, if H �m.G then tw(G) ≤ f(k). (4.2)
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The question can be stated as follows: find pairs (Hk, g(k)) for which (4.2) holds
for some f(k) = O(g(k)), where Hk is as general as possible and g is as small as
possible (and certainly polynomial). It is known, for example, that (4.2) holds for the
pair ({Ck}, k), where Ck is the cycle or a path of k vertices (see e.g. [Bod93, FL94]),
and for the pair ({K2,k}, k), (see [BvLTT97b]). Two more results in the same direction
that appeared in the last decade are the following: according to the result of Birmelé,
Bondy, and Reed in [BBR07a], (4.2) holds for the pair (Pk, k2) where Pk contains all
minors of K2×Ck (we denote by K2×Ck the Cartesian product of K2 and the cycle of
k vertices, also known as the k-prism). Finally, one of the consequences of the recent
results of Leaf and Seymour in [LS15], implies that (4.2) holds for the pair (Fk, k),
where Fk contains every graph on k vertices that contains a vertex that meets all its
cycles.

Results presented in this section. In this section we provide new exclusion theo-
rems by proving that (4.2) holds for the pairs:

• (H0
k, k

2), whereH0
k contains all simple graphs H on k vertices and of pathwidth

at most 2;

• (H1
k, k), whereH1

k contains all minors of a wheel on k+1 vertices – see Figure 2.3;

• (H2
k, k

2 log2 k), whereH2
k contains all minors of a double wheel on k+ 2 vertices

– see Figure 2.3;

• (H3
k, k

4), where H3
k contains all minors of the yurt graph on 2k + 1 vertices (i.e.

the graph obtained it we take a (2× k)-grid and add a new vertex adjacent with
all the vertices of its “upper layer” – see Figure 4.6); and

• (H4
k,r, k log k), whereH4

k,r contains all minors of the graph k · θr.

Notice that none of the classes H0
k, H1

k, H2
k, and H3

k is minor comparable with the
classes Pk and Fk treated in [BBR07a] and [LS15], whereas H4

k,r ( Pkr. Moreover,
H1
k ( H2

k ( H3
k, whileH3

k,r ( H0
k. The above results are presented thereafter in detail,

without the O-notation.

Theorem 4.27. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 36k − 2, then G
contains a wheel of order k as minor.

Theorem 4.28. Let k > 0 be an integer andG be a graph. If tw(G) ≥ 12(8k log(8k)+2)2−4,
then G contains a double wheel of order at least k as minor.

Theorem 4.29. LetG be a graph, letH be a simple graph on k vertices such that pw(H) ≤ 2.
If tw(G) ≥ 3(k − 2)2 − 1 then G contains H as a minor.

Theorem 4.29 can be extended to the setting of graphs that are not simple as fol-
lows.
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Corollary 4.30. Let G be a graph, let H be a graph such that pw(H) ≤ 2 and let k =
|V (H)|+ |E(H)|. If tw(G) ≥ 3(k − 2)2 − 1 then G contains H as a minor.

Theorem 4.31. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 6k4 − 24k3 + 48k2 −
48k + 23, then G contains the yurt graph of order k as minor.

Theorem 4.32. Let k > 0 and r ≥ 2 be two integers and let G be a graph. If tw(G) ≥
26r · k · log(k + 1), then G contains k · θr as a minor.

The aforementioned results will we proved in the forthcoming sections, in this
order. The proofs of the four first results use as a departure point the results of Leaf
and Seymour in [LS15], whereas the last one uses the results of Geelen, Gerards,
Robertson, and Whittle on the excluded minors for the matroids of branch-width
k [GGRW03] together with Theorem 4.4. In Subsection 4.3.1, we introduce notions
that we will use and we prove two lemmas, for later use. We give in Subsection 4.3.7
lower bounds on the best function f of (4.2) that one can expect for the classes studied
here and we discuss the tightness of our results.

4.3.1 Our tools

This section contains some definitions, as well as two lemmas that will be useful later.

Definition 4.33 (linked set). Let G be a graph and S ⊆ V (G). The set S is said to
be linked in G if for every two subsets X1, X2 of S (not necessarily disjoint) such that
|X1| = |X2|, there is a set Q of |X1| (vertex-)disjoint paths between X1 and X2 in G
whose length is not one (but can be null) and whose endpoints only are in S.

Definition 4.34 (left-contains, [LS15]). Let H be a graph on r vertices, G a graph and
(A,B) a separation of order r in G. We say that (A,B) left-contains H if there is a
H-minor model µ in G[A] such that |µ(v) ∩B| = 1 for every v ∈ V (H).

In this section, we denote by Bh the complete binary tree of height h, for every
integer h > 0. Given a tree T , we denote by L(T ) the set of its leaves.

Proposition 4.35 ([LS15, (4.3)]). Let k > 0 be an integer, let F be a forest on k vertices and
let G be a graph. If tw(G) ≥ 3

2
k − 1, then G has a separation (A,B) of order k such that

• G[B \ A] is connected;

• A ∩B is linked in G[B];

• (A,B) left-contains F .

Proposition 4.36 (Erdős–Szekeres Theorem, [ES87]). Let k and ` be two positive inte-
gers. Then any sequence of (`− 1)(k − 1) + 1 distinct integers contains either an increasing
subsequence of length k or a decreasing subsequence of length `.
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Recall that if T is a tree and x, y ∈ V (T ), we denote by xTy the unique path of T
linking x to y, and by xT ẙ the same path were y has been deleted.

Lemma 4.37. For every tree T , |V (T )| ≤ |L(T )|·diam(T )
2

+ 1.

Proof. Root T to a vertex r ∈ V (T ) that is halfway of a longest path of T . For each
leaf x ∈ L(T ), we know that |V (xT r̊)| ≤

⌊
diam(T )

2

⌋
. Observe that V (T ) = {r} ∪⋃

x∈L(T ) V (xT r̊). Therefore,

|V (T )| ≤
∑

x∈L(T )

|V (xT r̊)|+ 1

|V (T )| ≤ |L(T )| ·
⌊
diam(T )

2

⌋
+ 1.

Notice that equality holds for the subdivided star (obtained fromK1,n by subdividing
k times every edge, for some n, k ∈ N).

Definition 4.38 (The set Λ(T )). Let T be a tree. We denote by Λ(T ) the set contain-
ing every graph obtained as follows: take the disjoint union of T , a path P where
|V (P )| ≥

√
|L(T )|, and an extra vertex vnew, and add edges such that

(i) there is an edge between vnew and every vertex of P ;

(ii) there are |V (P )| disjoint edges between P and L(T );

(iii) there are no more edges than the edges of T and P and the edges mentioned in
(i) and (ii).

Lemma 4.39. Let n ≥ 1 be an integer, T be a tree on n vertices and let G be a graph. If
tw(G) ≥ 3n− 1, then H ≤m.G for some H ∈ Λ(T ).

Proof. Let n, T , and G be as in the statement of the lemma. Let l be the number of
leaves of T , and let J be a path on l vertices. We consider the disjoint union of J
and T .

The graph G has treewidth at least 3
2
(n + l)− 1, then by Proposition 4.35, G has a

separation (A,B) of order n+ l such that

(i) G[B \ A] is connected;

(ii) A ∩B is linked in G[B];

(iii) (A,B) left-contains the graph J ∪ T .

Let ϕ be a J ∪ T -minor model in G[A] that witnesses (iii). We call the vertices of
A ∩ B that belong to ϕ(v) for some v ∈ V (J) the J-part, and vertices that belong to
ϕ(v) for some v ∈ L(T ) forms the L(T )-part. Notice that two distinct vertices of the
J-part (respectively L(T )-part) belong to the images by µ of two distinct vertices of J
(respectively L) by the definition of the left-containment.
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Let P a set of l disjoint paths with the one endpoint in the J-part and the other
in the L(T )-part, and whose interior belongs to B \ A. The existence of such paths is
given by (ii). For each P ∈ P , we arbitrarily choose a vertex vP of the interior of P ,
that is, vP ∈ V (P ) \A. By (i), G[B \ A] is connected: let Y be a smallest tree spanning
the vertices {vP}P∈P . Let s =

√
|L(T )|, and let Y ∗ be the tree obtained from Y by

dissolving every vertex of degree two that is not vP for some P ∈ P . We are now
facing two possible situations.

Case 1: Y ∗ has a path of length s. Let Q be the path of Y corresponding to a path of
lenght s in Y ∗ and let S be the set of vertices u ∈ V (Q) that are not of degree two
or that are vP for some P ∈ P . Observe that from every u ∈ S, there is a path Ju to
the L(T )-part and a path J ′u to the J-part. Indeed, if u = vP for some P ∈ P , then
u is a vertex of P linking (by definition) a vertex of the L(T )-part to a vertex of the
J-part. Otherwise, u is of degree at least 3 in Y and every leaf of the subtrees of Y \Q
(at least one of which is adjacent to u), is a vP for some P ∈ P (by minimality of Y ),
so is connected to the L(T )-part and the J-part as explained above. Furthermore, for
every two distinct u, v ∈ S, the aforementioned path are disjoint.

Let us now summarize. G[∪v∈V (J)ϕ(v)] is a connected subgraph of G, which is
connected by the s disjoint paths J ′uu∈S to the path Y . All the endpoints of the paths
J ′uu∈S on Y are connected by s disjoint paths Juu∈S to the L(T )-part, which correspond
to the leaves in a major of T . Therefore this graph contains a member of Λ(T ) as a
minor, as required.
Case 2: diam(Y ∗) < s. From Lemma 4.37, |L(Y )| = |L(Y ∗)| ≥ s. Observe that L(Y ) ⊆
{vP}P∈P (this follows by the minimality of Y ). Let S = V (Y ) \ L(Y ). We consider
the minor of G obtained by contracting, for every P ∈ P such that vP ∈ L(Y ), every
edge of the subpath connecting the J-part to a leaf of Y . In this graph, S induces
a connected subgraph adjacent to at least s distinct vertices of the J-part. All these
s vertices of the J-part are connected by s disjoint paths to distinct vertices of the
L(T )-part. Thus this contains a member of Λ(T ) as a minor, and so do G.

The proof of Theorem 4.32 requires additional definitions, that we introduce in
the corresponding section as they are not used in the proofs of the other results.

4.3.2 Excluding a wheel

In this section we prove Theorem 4.27. For every integer r ≥ 3, we denote by Wr the
wheel of order r where every vertex of the cycle is adjacent to the center. An example
is given in Figure 4.3.

Recall that in this section, Bh is the complete binary tree of height h, for every
integer h > 0.

Lemma 4.40. Let h > 2 be an integer. Let G be a graph obtained from the union of the
tree T = Bh and a path P by adding the edges {l, ψ(l)} ∈ E(G) for every l ∈ L(T ), where
ψ : L(T )→ V (P ) is a bijection. Then G contains a wheel of order 2h−2 + 1 as a minor.
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Figure 4.3: A wheel of order six (left) and a double wheel of order 6 (right).

Proof. Let h, ψ, T , P = p1 . . . p2h and G be as above. Let r be the root of T .
In the arguments to follow, if t ∈ V (T ), we denote by Tt the subtree of T rooted at

t (i.e. the subtree of T whose vertices are all the vertices t′ ∈ V (T ) such that the path
t′Tr contains t).

We consider the vertices u = ψ−1(p1) ∈ L(T ) and v = ψ−1(p2h) ∈ L(T ).
Let τ be a largest subtree of T which is disjoint from uTv. Let Lτ = L(τ) ∩ L(T )

and letQ = ψ(Lτ ) ⊆ P . It is not hard to see thatG containsW|Q|+1 as a minor. Indeed,
the paths P and uTv together with the edges {p1, u} and {p2h, v} form a cycle in G.
Besides, the tree τ , which is disjoint from this cycle, has at least |Q| + 1 vertices that
are adjacent to distinct vertices of P : |Q| of them are the elements of Q, and the other
one is the (only) vertex of τ adjacent to uTv (which exists by maximality of τ ). In the
subgraph of G induced by V (P ) ∪ V (uTv) ∪ V (τ), contracting τ to a vertex gives a
vertex adjacent to at least |Q|+1 vertices of a (non necessarily induced) cycle, a graph
containing W|Q|+1 as subgraph.

Depending onG, |Q|may take different values. However, we show that it is never
less than 2h−2. Remember, |Q| is the number of leaves that a largest subtree of T that is
disjoint from uTv shares with T . The root r of T has two children r1 and r2, inducing
two subtrees Tr1 and Tr2 of T . Let w = lcaT (u, v) ∈ V (T ) \ L(T ).

Case 1. w 6= r. As w 6= r, w is a vertex of one of {Tr1 , Tr2}, say Tr1 , which contains
also u and v, and thus the path uTv. The other subtree Tr2 is then disjoint from uTv,
it has height h − 1 and is complete so it has 2h−1 leaves. Consequently, in this case
|Q| ≥ 2h−1.

Case 2. w = r. In this case, the path uTv contains r (and r 6= u, r 6= v as u and
v are leaves) so u and v are not in the same subtree of {Tr1 , Tr2} and uTv contains
the two edges {r, r1} and {r, r2}. For every i ∈ {1, 2}, we denote by ri,1 and ri,2 the
two children of ri in T . We assume without loss of generality that u ∈ V (Tr1,1) and
v ∈ V (Tr2,1) (if not, we just rename the ri’s ans ri,j’s). Notice that the path uTv is
the concatenation of the paths uTr1r1, r1Tr2, r2Tr2v. Since the tree Tr1,2 is disjoint
from uTv, is complete and is of height h − 2, it has 2h−2 leaves. Therefore we have
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|Q| ≥ 2h−2.

In both cases, |Q| ≥ 2h−2 and according to what we proved before, G contains a
major of W|Q|+1. As every wheel contains as a minor every smaller wheel, we proved
that G contains a wheel of order at least 2h−2.

We are now ready to prove Theorem 4.27. Let us first recall its statement.

Theorem 4.27. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 36k − 2, then G
contains a wheel of order k as minor.

Proof. Let k > 0 be an integer, G be a graph such that tw(G) ≥ 36k − 2, and let
h = dlog 4ke . Since there is a major of a wheel in every bigger whell, we have

Wk≤m. W2dlog ke+1

≤m. W2d(log 4k)−2e+1

≤m. W2h−2+1

Therefore, if we prove that there is a W2h−2+1-major in G, then we are done because
the minor relation is transitive. Let Y −h be the graph of the following form: the disjoint
union of the complete binary tree Bh of height h with leaves set YL and of the path
YP on 2h vertices, and let Yh be the set of graphs of the same form, but with the
extra edges {{l, φ(l)}}l∈YL , where φ : YL → V (YP ) is a bijection. As we proved in
Lemma 4.40 that every graph in Yh contains the wheel of order 2h−2 + 1 as minor,
showing that G contains an element of Yh as minor suffices to prove this lemma.
That is what we will do.

From our initial assumption, we deduce the following.

tw(G) ≥ 36k − 5

2

≥ 3

2
(3 · 2log 8k − 1)− 1

≥ 3

2
(3 · 2blog 4kc+1 − 1)− 1

tw(G) ≥ 3

2
(3 · 2h − 1)− 1

According to Proposition 4.35, G has a separation (A,B) of order 3 · 2h − 1 such
that

(i) G[B \ A] is connected;

(ii) A ∩B is linked in G[B];

(iii) (A,B) left-contains the graph Y −h .
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By definition of left-contains, there is an Y −h -minor model in G[A] such that every
element ofM− := {ϕ−(v), v ∈ Y −h } contains exactly one element of A ∩B. For every
x ∈ A ∩ B, we denote by M−

x the element ofM− that contains x. Let L (respectively
R) be the subset of A ∩ B of vertices that belong to an element of M related to the
leaves of Bh in Y −h (respectively to the path P ). We remark that these sets are both of
cardinality 2h.

Since A∩B is linked in G[B] (see (ii)), there is a set P of 2h disjoint paths between
the vertices of L and the elements of R. Let ψ : L→ V (P ) be the function that match
each element l of L with the (unique) element of R it is linked to by a path (that we
call Pl) of P . Observe that ψ is a bijection. We set

∀l ∈ L, Ml = M−
l ∪ V (lPlψ̊(l))

∀r ∈ (A ∩B) \ L, Mr = M−
r

M =
⋃

x∈A∪B

Mx.

Let us show that M allows us to define a minor model of some H ∈ Yh. Let us
consider the following mapping.

ϕ :

{
V (Y −h ) → M
x 7→ Mx

We claim that ϕ is an H-minor model, for some H ∈ Yh. This is a consequence of
the following remarks.
Remark 4.41. Every element ofM is either an element ofM−, or the union of a ele-
ment M ofM− and of the vertices of a path that start in M , thus every element ofM
induces a connected subgraph of G.
Remark 4.42. The paths of P are all disjoint and are disjoint from the elements ofM−.
Every interior of path of P is in but one element ofM, therefore the elements ofM
are disjoint.
Remark 4.43. The elements {ml}l∈L are in bijection with the elements of {mr}r∈R
(thanks to the function ψ) and every two vertices l ∈ L and ψ(l) ∈ R are such that
there is an edge between ml and mψ(l) (by definition ofM+).

We just proved that ϕ is a minor model of a graph of Yh in G. Finally, we apply
Lemma 4.40 to find a minor model of the wheel of order 2h−2 + 1 = 2dlog ke−2 + 1 ≥ k
in G and this concludes the proof.

4.3.3 Excluding a double wheel

This section is devoted to the proof of Theorem 4.28. Recall that for every integer
n ≥ 3, a double wheel of order n is obtained from a cycle of order n by adding two
non-adjacent, each connected to at least three vertices of the cycle. We denote by W2

n

the double wheel of order n where the two extra vertices are adjacent to every vertex
of the cycle.

140



Lemma 4.44. Let G be a graph and h > 0 be an integer. If tw(G) ≥ 6 · 2h − 4, then G

contains as minor a double wheel of order at least 2
h
2 −2

2h−3
.

Proof. Let h and G be as above. Observe that tw(G) ≥ 3(2h+1 − 1) − 1. As the bi-
nary tree T = Bh has 2h+1 − 1 vertices, G contains a graph H ∈ Λ(Bh) as minor (by
Lemma 4.39). Let us show that any graph H ∈ Λ(Bh) contains a double wheel of

order at least 2
h
2 −2

2h−3
as minor.

Let P be the path of length at least 2
h
2 in the definition of H . Let L be the set,

of size at least 2
h
2 , of the leaves of T that are adjacent to P in H . Such a set exists

by definition of Λ(Bh). We also define u (respectively u′) as the vertex of L(T ) that is
adjacent to one end of P (respectively to the other end of P ) and Q = uTu′.

As T is a binary tree of height h, Q has at most 2h − 1 vertices. Each vertex of Q
is of degree at most 3 in T except the two ends which are of degree 1. Consequently,
T \ Q has at most 2h − 3 connected components that are subtrees of T. Notice that
every vertex of the 2

h
2 elements of L is either a leaf of one of these 2h− 3 subtrees, or

one of the two ends of Q. By the pigeonhole principle, one of these subtrees, which

we call T1, has at least 2
h
2 −2

2h−3
leaves that are elements of L.

Let Mo1 be the set of vertices of this subtree T1. We also set Mo2 = {vnew} (cf. Defi-
nition 4.38 for a definition of vnew). Let us consider the cycle C made by the concate-
nation of the paths uPu′ and u′Tu in H .

By definition ofMo1 , there are at least 2
h
2 −2

2h−3
vertices ofC adjacent to vertices ofMo1 .

Let J =
{
j1, . . . , j|J |

}
be the set of such vertices of C, in the same order as they appear

in C (we then have |J | ≥ 2
h
2 −2

2h−3
).

We arbitrarily choose an orientation ofC and define the sets of verticesM1,M2, . . . ,M|J |
as follows.

∀i ∈ J1, |J | − 1K , Mi = V (jiC ˚ji+1)

M|J | = V (j|J |Cj̊1)

LetM =
{
M1, . . . ,M|J |,Mo1 ,Mo2

}
and ψ : V (W2

|J |) → M be the function defined
by

∀i ∈ J1, |J |K , ψ(wi) = Mi

ψ(o1) = Mo1

ψ(o2) = Mo2

Notice thatψ maps the vertices of W2
|J | to connected subgraphs ofH such that ∀(v, w) ∈

E(W2
|J |), there is a vertex of ψ(v) adjacent in H to a vertex of ψ(w). Therefore, ψ is a

W2
|J |-minor model in H.

Since |J | ≥ 2
h
2 −2

2h−3
, H contains a double wheel of order at least 2

h
2 −2

2h−3
, which is what

we wanted to show.
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Corollary 4.45. Let l > 0 be an integer and G be a graph. If tw(G) ≥ 12l − 4 then G

contains a double wheel of order at least
√
l−2

2 log l−5
as minor.

Proof. Let l and G be as above. First remark that

dlog le − 1 ≤ log l ≤ dlog le (4.3)

Our initial assumption on tw(G) gives the following.

tw(G) ≥ 12l − 4

≥ 6 · 2log(2l) − 4

≥ 6 · 2log l+1 − 4

≥ 6 · 2dlog le − 4 by (4.3)

By Lemma 4.44, G contains a double wheel of order at least

q =
2
dlog le

2 − 2

2 dlog le − 3

≥ 2
1
2

log l − 2

2(log l − 1)− 3
by (4.3)

≥
√
l − 2

2 log l − 5

Therefore, G contains a double wheel of order q ≥
√
l−2

2 log l−5
, as required.

We can now deduce Theorem 4.28, that we recall hereafter, from Corollary 4.45.

Theorem 4.28. Let k > 0 be an integer andG be a graph. If tw(G) ≥ 12(8k log(8k)+2)2−4,
then G contains a double wheel of order at least k as minor.

Proof. Applying Corollary 4.45 for l = (8k log(8k)+2)2 yields thatG contains a double
wheel of order at least

q ≥
√
l − 2

2 log l − 5

≥ 8k log(8k)

4 log(8k log(8k) + 2)− 5

≥ 8k log(8k)

4 log(8k log(8k))− 1

≥ 8k log(8k)

4(log(8k) + log log(8k))− 1

≥ 8k log(8k)

8 log(8k)− 1

≥ k

Consequently G contains a double wheel of order q ≥ k and we are done.
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4.3.4 Excluding a graph of pathwidth at most 2

This sections contains the proofs of Theorem 4.29 and Corollary 4.30. We define the
graph Ξr as the graph of the following form (see Figure 4.4).{

V (G) = {x0, . . . , xr−1, y0, . . . , yr−1, z0, . . . , zr−1}
E(G) = {{xi, xi+1} , {zi, zi+1}}i∈J1,r−1K ∪ {{xi, yi} , {yi, zi}}i∈J0,r−1K

z0 z1 z2 z3 z4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 4.4: The graph Ξ5.

Graphs of pathwidth 2 in Ξr

Instead of proving that a treewidth quadratic in |V (H)| + |E(H)| forces an H-minor
for every graph H of pathwidth at most 2, we prove that a treewidth quadratic
in r forces an Ξr-major and then that every graph H of pathwidth at most 2 with
|V (H)| + |E(H)| ≤ r is a minor of Ξr. Recall that every graph has an optimal path
decomposition which is nice. Let us state some observations on path decompositions.

Remark 4.46. Let G be a graph and let (p1p2 . . . pk,X ), X = {Xpi}i∈J1,kK be a nice (non
necessarly optimal) path decomposition of G. Let w be the width of this decomposi-
tion.

For every i ∈ J2, k − 1K, and if pi is a forget node, |Xpi | ≤ w − 1 and pi+1 is an
introduce node, then by setting

X ′pi = Xpi−1
∪Xpi+1

∀j ∈ J1, kK , j 6= i, X ′pj = Xpj

X ′ =
{
X ′pj

}
j∈J1,kK

we create from (p1p2 . . . pk,X ′) a valid path decomposition of G, where pi is now an
introduce node and pi+1 a forget node. Observe that

∣∣X ′pi∣∣ ≤ |Xpi |+2 = w+1 Therefore
the new path decomposition has the same width as the original one. Note that the
condition |Xpi | ≤ w − 1 holds, for instance, when pi−1 is required to be a forget node
too (for i ∈ J3, k − 1K).

Remark 4.47. Let G be a graph and P = (p1p2 . . . pk,X ) be a nice path decomposition
of G. For every i ∈ J1, kK, the path p1 . . . pi contains at most as many forget nodes
as introduce nodes and the difference between these two numbers is at most w + 1
where w is the width of P.
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Lemma 4.48. Let G be a graph on n vertices . Then G has an optimal path decomposition P
such that

(i) every bag of P has size pw(G) + 1;

(ii) every two adjacent bags differs by exactly one element, i.e. for every two adjacent vertices
u and v of P , |Xu \Xv| = |Xv \Xu| = 1.

Proof. Let P = (p1p2 . . . p2k,X ) with X = {Xpi}i∈J1,2kK be a nice optimal path decom-
position of G with as many introduce nodes (respectively forget nodes) as there are
vertices in G.

Let s = pw(G)+1. According to Remark 4.46 and Remark 4.47, P can be modified
into a path decomposition of G of the same width and such that

(a) the s first vertices of P are introduce nodes and ps+1 is a forget node;

(b) the s last vertices of P are forget nodes and p2k−s is an introduce node;

(c) for every i ∈ Js, 2k − sK, pi and pi+1 are nodes of different type.

In the arguments to follow, we assume that P satisfies this property.
Remark 4.49. Introduce nodes all have bags of cardinality s.
Remark 4.50. For every i ∈ J0, k − sK, the node ps+2i is an introduce node and the
node ps+2i+1 is a forget node, which implies Xps+2i

( Xps+2i+1
. Also note that for

every i ∈ J1, s− 1K , Xpi ( Xps and for every i ∈ J2k − s+ 1, 2kK, Xpi ( Xp2k−s .
Intuitively, every bag X that is included in one of its adjacent bags X ′ contains no

more information than what X ′ already contains, so we will just remove it.
We thus define P ′ = psps+2 . . . ps+2i . . . p2k−s (a path made of all introduce nodes of

P ). Clearly, P and P ′ have the same width and as we deleted only redundant nodes,
P ′ is still a valid path decomposition of G.

Since every two adjacent nodes of P ′ were introduce nodes separated by a forget
node in P , they only differ by one element. According to Remark 4.49 and since
every node of P ′ was an introduce node in P , every bag of P ′ have size pw(G) + 1.
Consequently, P ′ is an optimal path decomposition that satisfies the conditions of the
lemma statement.

Remark 4.51. The path decomposition of Lemma 4.48 has length V (G)− pw(G).

Proof. Let (P,X ) be such a path decomposition. Remember that the first node of P
has a bag of size pw(G) + 1 and that every two adjacent nodes of P have bags which
differs by exactly one element. Since every vertex of G is in a bag of P , in addition to
the first bag containing pw(G)+1 vertices of G, P must have V (G)−pw(G)−1 other
bags in order to contain all vertices of G. Therefore P has length V (G)− pw(G).

A proof of a slightly weaker version of the following lemma previously appeared [Pro89].

Lemma 4.52. For every simple graph G on n vertices and of pathwidth at most 2, there is a
G-major in Ξn−1.
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Proof. Let G be as in the statement of the lemma. We assume that pw(G) = 2 (if this
is not the case we add edges to G in order to obtain a graph of pathwidth 2 which
contains G as a minor). Let r = V (G)− pw(G) = n− 2.

Let P = (p1 . . . pr, {Xp1 , . . . , Xpr}) be an optimal path decomposition of G satisfy-
ing the properties of Lemma 4.48, of length r. Such decomposition exists according
to Lemma 4.48 and Remark 4.51).

Using this decomposition, we will now define a labeling λ of the vertices of Ξr+1.
When dealing with the vertices of Ξr+1 we will use the notations given in the defini-
tion of this graph. Let λ : V (Ξr+1)→ V (G) be the function defined as follows:

(a) λ(x0) and λ(y0) are both equal to one (arbitrarily chosen) element of the set Xp1 ∩
Xp2 ;

(b) λ(z0) is equal to the only element of the set Xp1 ∩Xp2 \ {λ(x1)};

(c) ∀i ∈ J2, rK, λ(yi) = Xpi \Xpi−1
and we consider two cases:

Case 1: Xpi−1
∩Xpi = Xpi ∩Xpi+1

λ(xi) = λ(xi−1) and λ(zi) = λ(zi−1);

Case 2: Xpi−1
∩Xpi 6= Xpi ∩Xpi+1

if Xpi−1
∩Xpi ∩Xpi+1

= λ(xi−1),

then λ(xi) = λ(xi−1) and λ(zi) = Xpi \Xpi−1
;

else λ(xi) = Xpi \Xpi−1
and λ(zi) = λ(zi−1).

Thanks to this labeling, we are now able to present a G-minor model in Ξr+1 :

∀v ∈ V (G), Mv = {u ∈ V (Ξr+1), λ(u) = v}
M = {Mv}v∈V (G)

ϕ :

{
V (G) → M
u 7→ Mu

To show that ϕ is a G-minor model in Ξr+1, we now check if it matches the defini-
tion.

By definition, every element ofM is a subset of V (Ξr+1). To show that every ele-
ment ofM induces a connected subgraph in G, it suffices to show that nodes of Ξr+1

which have the same label induces a connected subgraph in G (by construction of the
elements ofM). This can easily be seen by remarking that for every i ∈ J2, rK, every
vertex yi of Ξr+1 gets a new label and that every vertex xi (respectively zi) of Ξr+1

receive either the same label as yi, or the same label as xi−1 (respectively zi−1).
Let us show that this labeling ensure that if two vertices u and v of G are in the

same bag of P , there are two adjacent vertices of Ξr+1 that respectively gets labels u
and v. Let u, v be two vertices of G which are in the same bag of P . Let i be such that
Xi is the first bag of P (with respect to the subscripts of the bags of P ) which contains
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both u and v. The case i = 1 is trivial so we assume that i > 1. We also assume
without loss of generality that Xi \ Xi−1 = {v}, what gives λ(yi) = v. Depending
on in what case we are, either either λ(xi) = u (c1) or λ(zi) = u ((c1) and (c2)). In
both cases, u and v are the labels of two adjacent nodes of Ξr+1. By construction of
the elements ofM, this implies that if {u, v} ∈ E(G), then there are vertices u′ ∈ ϕ(u)
and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(Ξr+1).

Therefore, ϕ is a G-minor model in Ξn−1, what we wanted to find.

Observe that Lemma 4.52 can be straighforwardly extended to the setting of graphs
that are not simple. Indeed, given a graph G, one can subdivide once every edge
in order to obtain a simple graph G′ that contains G as a minor, and then apply
Lemma 4.52 on G′, that satisfies |V (G′)| = |V (G)|+ |E(G)|.

Corollary 4.53. For every graph G of pathwidth at most 2, there is a G-major in Ξn, where
n = |V (G)|+ |E(G)| − 1.

Exclusion of Ξr

Lemma 4.54. For any graph, if tw(G) ≥ 3` − 1 then G contains as minor the following
graph: a path P = p1 . . . p2` of length 2` and a family Q of ` paths of length 2 such that every
vertex of P is the end of exactly one path of Q and every path of Q has one end in p1 . . . pl (the
first half of P ) and the other end in pl+1 . . . p2l (the second half of P ) (see Figure 4.5).

P

Q

first half of P second half of P

Figure 4.5: Example for Lemma 4.54.

Proof. Let ` > 0 be an integer and G be a graph of treewidth at least 3`−1. According
to Proposition 4.35, G has a separation (A,B) of order 2` such that

(i) G[B \ A] is connected;

(ii) A ∩B is linked in G[B];

(iii) (A,B) left-contains a path P = p1 . . . p2` of length 2`.

146



Let ϕ be a P -minor model in G[A], and let M = {ϕ(v), v ∈ V (P )}. Let us call
M1, . . . ,M2` the elements ofM. We assume without loss of generality that ϕ maps pi
to Mi for every i ∈ J1, 2`K.

As A ∩ B is linked in G[B], there is a set Q of ` disjoint paths in G[B] of length at
least 2 and such that every path q ∈ Q has one end in (A ∩ B) ∩

⋃
i∈J1,`KMi, the other

end in (A ∩B) ∩
⋃
i∈J`+1,2`KMi and its internal vertices are not in A ∩B.

Let G′ be the graph obtained from G[
(⋃

q∈Q V (q)
)
∪
(⋃

M∈MM
)
] after the follow-

ing operations.

1. iteratively contract the edges of every path of Q until it reaches a length of 2.
The paths of Q have length at least 2, so this is always possible.

2. for every i ∈ J1, 2`K, contract Mi to a single vertex. The image of a minor model
induce connected subgraphs (by definition) thus this operation can always be
performed.

As one can easily check, the graphG′ is the graph we were looking for and it has been
obtained by contracting some edges of a subgraph of G, therefore G′≤m.G.

Let us now prove Theorem 4.29. First, we restate it.

Theorem 4.29. LetG be a graph, letH be a simple graph on k vertices such that pw(H) ≤ 2.
If tw(G) ≥ 3(k − 2)2 − 1 then G contains H as a minor.

Proof. LetG,H and h be as in the statement of the Lemma. According to Lemma 4.52,
every simple graph F on n vertices and of pathwidth at most two is a minor of Ξn−1.
Therefore, in order to show that H ≤m.G it is enough to prove that Ξk−1≤m.G. This
is what we will do.

According to Lemma 4.54, G contains as minor two paths P = p1 . . . p(k−2)2 and
R = r1 . . . rk−2)2 and a family Q of (k − 2)2 paths of length 2 such that every vertex of
P or R is the end of exactly one path of Q and every path of Q has one end in P and
the other end in R. For every p ∈ P , we denote by ϕ(p) the (unique) vertex of R to
which p is linked to by a path of Q. Observe that ϕ is a bijection. By Proposition 4.36,
there is a subsequence P ′ = (p′1, p

′
2, . . . , p

′
k−1) of the vertices of P such that the vertices

ϕ(p′1), ϕ(p′2), . . . , ϕ(p′k−1) appear in R either in this order or in the reverse order. Let
R′ = (ϕ(p′1), ϕ(p′2), . . . , ϕ(p′k−1)) and Q′ be the set of inner vertices of the paths from p′i
to ϕ(p′i) for all i ∈ J1, k − 1K .

Iteratively contracting inG the edges of P (respectivelyR) which have at most one
end in P ′ (respectively in R′) and removing the vertices that are not in P ′, R′ or Q′

gives the graph Ξk−1. The operations used to obtain it are vertices and edge deletions,
and edge contractions, thus Ξk−1 is a minor of G. This concludes the proof.

Observe that Theorem 4.29 can be extended to the setting of graphs that are not
simple as we did for Corollary 4.53, what gives Corollary 4.30.
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4.3.5 Excluding a yurt graph

In this section we prove Theorem 4.31. For every positive integer n, we denote by Yn
the Yurt graph of order n (as a reminder, see Figure 4.6 or refer to Subsection 2.3.2).

Figure 4.6: The yurt graph of order 5.

For every r > 0, we define the comb of order r as the tree made from the path
p1p2 . . . pr and the extra vertices v1, v2, . . . , vr by adding an edge between pi and vi for
every i ∈ J1, rK .

By using Lemma 4.39 we can immediately prove Theorem 4.31. Let us remind its
statement.

Theorem 4.31. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 6k4 − 24k3 + 48k2 −
48k + 23, then G contains the yurt graph of order k as minor.

Proof. Let k > 0 be an integer and G be a graph such that tw(G) ≥ 6k4 − 24k3 +
48k2 − 48k + 23. Let C be the comb with l = k4 − 4k3 + 8k2 − 8k + 4 teeth. As
tw(G) ≥ 3 |V (C)| − 1, G contains as a minor some graph of Λ(C) by Lemma 4.39.

Let us prove that every graph of Λ(C) contains the yurt graph of order k. Let H
be a graph of Λ(C). We respectively call T , P and o the tree, path and extra vertex of
Λ(C). Let F be the subset of edges between P and the leaves of T

Let L = l0, . . . , lk2−2k+2 (respectively Q = q0, . . . , qk2−2k+2) be the leaves of T (re-
spectively of P ) that are the end of an edge of F We assume without loss of generality
that they appear in this order.

According to Proposition 4.36, there is a subsequence Q′ of Q of length k such that
the corresponding vertices L′ of L appear in the same order. As one can easily see,
this graph contains the yurt of order k and we are done.

4.3.6 Excluding a union of k disjoint copies of θr
This section is devoted to the proof of Theorem 4.32. Before we present the proof, we
need to introduce some definitions and related results.

Preliminaries

Let G be a graph and G1, G2 two non-empty subgraphs of G. We say that (G1, G2) is
a dissociation of G if:

• V (G1) ∪ V (G2) = V (G); and

• (E(G1), E(G2)) is a partition of E(G).
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LetG be a graph. Given a set E ⊆ E(G), we define VE as the set of all endpoints of
the edges in E. Given a partition (E1, E2) of E(G) we define δ(E1, E2) = |VE1 ∩ VE2|.

A cut C = (X, Y ) of G is a partition of V (G) into two subsets X and Y . We define
the cut-set of C as EC = {{x, y} ∈ E(G) | x ∈ X and y ∈ Y } and call |EC | the
order of the cut. Also, given a graph G, we denote by σ(G) the number of connected
components of G.

The branchwidth of a graph. A branch-decomposition of a graph G is a pair (T, τ)
where T is a ternary tree and τ a bijection from the edges of G to the leaves of T .
Deleting any edge e of T partitions the leaves of T into two sets, and thus the edges
of G into two subsets Ee

1 and Ee
2. The width of a branch-decomposition (T, τ) is equal

to maxe∈E(T ){δ(Ee
1, E

e
2)}. The branchwidth of a graph G, denoted bw(G), is defined as

the minimum width over all branch-decompositions of G.

The branchwidth of a matroid. We assume that the reader is familiar with the
basic notions of matroid theory. We will use the standard notation from Oxley’s
book [Oxl92]. The branchwidth of a matroid is defined very similarly to that of a
graph. Let M be a matroid with finite ground set E(M) and rank function r. The
order of a non-trivial partition (E1, E2) of E(M) is defined as λ(E1, E2) = r(E1) +
r(E2) − r(E) + 1. A branch-decomposition of a matroidM is a pair (T, µ) where T is a
ternary tree and µ is a bijection from the elements of E(M) to the leaves of T . Delet-
ing any edge e of T partitions the leaves of T into two sets, and thus the elements
of E(M) into two subsets Ee

1 and Ee
2. The width of a branch-decomposition (T, µ)

is equal to maxe∈E(T ){λ(Ee
1, E

e
2)}. The branchwidth of a matroidM, denoted bw(M),

is again defined as the minimum width over all branch-decompositions ofM. The
cycle matroid of a graph G denotedMG, has ground set E(MG) = E(G) and the cycles
of G as the cycles of MG. Let G be a graph, MG its cycle matroid and (G1, G2) a
dissociation of G. Then clearly (E(G1), E(G2)) is a partition of E(MG), but to avoid
confusion we will henceforth denote it (E1, E2) and we will call it the partition ofMG

that corresponds to the dissociation (G1, G2) of G. Observe that the order of this partition
is:

λ(E1, E2) = δ(E(G1), E(G2))− σ(G1)− σ(G2) + σ(G) + 1. (?)

Minor obstructions. Let G be a graph class. We denote by obs(G) the set of all
minor-minimal graphs H such that H /∈ G and we will call it the minor obstruction set
for G. Clearly, if G is closed under minors, the minor obstruction set for G provides
a complete characterization for G: a graph G belongs in G if and only if none of the
graphs in obs(G) is a minor of G.

Given a class of matroids M, the minor obstruction set for M, denoted by obs(M),
is defined very similarly to its graph-counterpart: it is simply the set of all minor-
minimal matroidsM such thatM /∈M.

We will need the following results.

Proposition 4.55 ([RS91, Theorem 5.1]). Let G be a graph of branchwidth at least 2. Then,
bw(G) ≤ tw(G) + 1 ≤ b3

2
bw(G)c.
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Proposition 4.56 ([BvLTT97a]). Let r ∈ N≥1 and let G be a graph. If bw(G) ≥ 2r + 1,
then G contains a θr-major.

Proposition 4.57 ([HJ07, Theorem 4]). Let G be a graph that contains a cycle andMG be
its cycle matroid. Then, bw(G) = bw(MG).

Proposition 4.58 ([GGRW03, Lemma 4.1]). Let a matroidM be a minor obstruction for
the class of matroids of branchwidth at most k and let g(n) = (6n−1 − 1)/5. Then, for every
partition (X, Y ) ofM with λ(X, Y ) ≤ k, either |X| ≤ g(λ(X, Y )) or |Y | ≤ g(λ(X, Y )).

The following observations are also crucial.
Observation 4.59. Let G be a graph class that is closed under minors and let MG =
{MG | G ∈ G}. G is minor closed if and only ifMG is minor closed. Moreover, for
every H ∈ obs(G) it holds thatMH ∈ obs(MG).

The above observation is a direct consequence of the definition of matroid remo-
val/contraction, e.g., see Proposition 4.9 of [Pit14].
Observation 4.60. There is a c ∈ R≥2, such that for any integer k ≥ r ≥ 2, if g(n) =

(6n−1−1)/5, then 1
r−1

2
cr log k−5r

4r(2g(2r−2)+1) ≥ k(r+1)−1. Moreover, this holds for c = 26 logr
2
3
.

Now we are ready to prove Theorem 4.32. Let us recall its statement.

Theorem 4.32. Let k > 0 and r ≥ 2 be two integers and let G be a graph. If tw(G) ≥
26r · k · log(k + 1), then G contains k · θr as a minor.

Proof. For every r ∈ N, we define f(r) = 2
3
26r. By Proposition 4.55, it is enough to

prove that if bw(G) ≥ f(r) · k · log(k + 1), then G contains k · θr as a minor. To prove
this we use induction on k.

The case where k = 1 follows from Proposition 4.56 and the fact that f(r) ≥ 2r+1.
We now examine the case where k > 1, assuming that the proposition holds for
smaller values of k. As bw(G) ≥ f(r) · k · log(k + 1), G contains a minor obstruction
for the class of graphs of branchwidth at most f(r) · k · log(k + 1)− 1.
Claim 4.61. Any (2r − 2)-edge-protrusion of G has extension at most g(2r − 2).
Proof of Claim 4.61. Let C = (X, Y ) be a cut in G of order at most 2r − 2 (one exists
as soon as G has a (2r − 2)-edge-protrusion) and let GX be the subgraph of G with
V (GX) = X ∪ NG(X) and let E(GX) = E(G[X]) ∪ EC . Clearly the pair (GX , G[Y ]) is
a dissociation of G. LetMG be the cycle matroid of G and (EX , EY ) be the partition
of MG that corresponds to the aforementioned dissociation. By Proposition 4.57,
bw(MG) = bw(G) ≥ f(r) · k · log(k + 1). Therefore, by Observation 4.59, MG is a
minor obstruction for the class of matroids of branchwidth f(r) · k · log(k+ 1)− 1. We
set λ = λ(EX , EY ). From (?), we have:

λ = r(EX) + r(EY )− r(MG) + 1

= δ(E(GX), E(G[Y ]))− σ(GX)− σ(G[Y ]) + σ(G) + 1

≤ δ(E(GX), E(G[Y ]))

≤ |EC | = 2r − 2

≤ f(r) · k · log(k + 1)− 1.
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Thus, by Proposition 4.58, either |EX | ≤ g(λ) or |EY | ≤ g(λ). Since g is non-
decreasing, either |E(GX)| ≤ g(2r− 2) or |E(G[Y ])| ≤ g(2r− 2). This directly implies
that for any (2r−2)-edge-protrusion Z ofG,G[Z∪NG(Z)] has at most g(2r−2) edges.
Therefore the extension of Z is at most g(2r − 2) and the claim follows. 3

Combining the above claim, Observation 4.60, and Theorem 4.4, we infer that
either G contains a θr-major M with at most f(r) · log k edges, or it contains a minor

with minimum degree at least 1
r−1
·2

f(r) log k−5r
4r(2g(2r−2)+1) ≥ k(r+1)−1. If the second case is true,

then by Theorem 4.23, G contains k · θr as a minor, which proves the inductive step.
We now consider the first case. Because M is 2-connected, we obtain that |V (M)| ≤
|E(M)|. Therefore, |V (M)| ≤ |E(M)| ≤ f(r) · log k and we can bound the treewidth
of the graph G′ = G \ V (M) as follows:

tw(G′) ≥ tw(G)− |V (M)|
≥ f(r) · k · log(k + 1)− f(r) · log k

≥ f(r) · k · log k − f(r) · log k

= f(r) · (k − 1) · log k.

Then, from the induction hypothesis, G′ contains a (k− 1) · θr-major M ′ and obvi-
ously M ∪M ′ is a k · θr-major in G, which concludes our proof.

Theorem 4.32 implies that for every fixed r, it holds that every graph excluding
k · θr as a minor has treewidth O(k · log k). We give in Subsection 4.3.7 a lemma
indicating that this bound is tight up to the constants hidden in the O-notation.

4.3.7 Lower bounds

An natural question is whether the aforementioned results for the classes {Hi
k}i∈J1,4K

are tight. In this section we provide lower bounds on the function upper-bounding
the treewidth of graphs excluding members of these classes.

Lemma 4.62. There is a sequence (Gk)k∈N≥3
of graphs such that:

• Gk does not contain W2
k as a minor, for every k ∈ N≥3; and

• tw(Gk) = Ω(k).

Proof. The sequence (Kk−1)k∈N≥3
satisfies the above properties.

As Wk≤m. W
2
k for every k ∈ N≥3, Lemma 4.62 implies that (4.2) does not hold for

the classesH1
k andH2

k with a function f such that f(k) = o(k).

Corollary 4.63. The bound given in Theorem 4.27 is tight up to a constant factor.

Lemma 4.64. There is a sequence (Gi)i∈N≥1
of graphs and an increasing sequence (ki)i∈N≥1

of integers such that:

• Gi does not contain ki ·K3 as a minor, for every i ∈ N≥1; and
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• tw(Gi) = Ω(ki log ki).

Proof. According to [Mor94, Theorem 5.13], there is an infinite familly {Gi}i∈N of 3-
regular Ramanujan graphs Gi such that i 7→ |Gi| is an increasing function. Further-
more, for every i ∈ N, the graph Gi has girth at least 2

3
log |V (Gi)| ([Mor94, Theorem

5.13]) and satisfies tw(Gi) = Ω(|V (Gi)|) (see [BEM+04, Corollary 1]). For every i ∈ N,
let ki be the minimum integer such that |V (Gi)| < ki· 23 log |V (Gi)|. Observe that (ki)i∈N
is increasing. Notice that |V (Gi)| = Ω(ki · log ki), and thus tw(Gi) = Ω(ki · log ki). We
will show that Gi does not contain ki vertex-disjoint cycles, which implies that ki · θr
is not a minor of Gi, for every r ∈ N≥2. Suppose for contradiction that Gi contains ki
vertex-disjoint cycles. As the girth of Gi is at least 2

3
log |V (Gi)|, each of these cycles

has at least 2
3

log |V (Gi)| vertices. Therefore G should contain at least k · 2
3

log |V (Gi)|
vertices. This implies that |V (G)| ≥ k · 2

3
log |V (Gi)| > |V (Gi)|, a contradiction. There-

fore (ki)i∈N and (Gi)i∈N satisfy the required properties.

As every graph ofH0
2k ∪H3

2k ∪H4
k,r contains k ·K3 as a minor (for every r ∈ N≥2),

we deduce that (4.2) does not hold for the classes H0
k, H3

k, and H4
k with a function f

such that f(k) = o(k log k).

Corollary 4.65. For every fixed r ∈ N≥2, the bound given in Theorem 4.32 is tight up to a
constant factor.

4.4 Immersions of planar subcubic graphs in graphs of
large tree-cut width

This section contains the proof of the following result.

Theorem 4.66. There is a function f : N → N where f(h) = O(h29 polylog(h)) such that
for every planar subcubic graph H with h edges and every graph G, if tcw(G) ≥ f(h) then
H is an immersion of G.

This theorem is a consequence of the polynomial bounds of the Grid Exclusion
Theorem of Chekuri and Chuzhoy (Theorem 4.26) and the following exclusion theo-
rem for walls. We present it here as we will use it in Chapter 5.

Theorem 4.67 ([Wol15, Theorem 7]). Let G be a graph and r ≥ 1 be a positive integer. Let
f be a function for which Theorem 4.1 (the grid exclusion theorem) holds. If G has tree-cut
width at least 4r10f(r), then G admits an immersion of the r-wall.

We will also use the following ingredient.

Lemma 4.68 ([Kan96]). Every simple planar subcubic graph of n vertices is a topological
minor of the bn

2
c-grid.

According to Theorem 4.67, graphs of large enough tree-cut width contain a large
wall as an immersion. Therefore we only need to show that every planar subcubic
graph is an immersion of a (large enough) wall in order to prove Theorem 4.66. For
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this we use a supergraph of the wall defined as follows from the wall Wk. Let E =

{e, e ∈ E(P
(v)
j ) ∩ E(P

(h)
i ), j ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , k + 1}}. We obtain Ŵk from

Wk by adding a second copy of every edge in E. (For an example, see Figure 4.7.)

Figure 4.7: The graph Ŵ5.

The next observation is a formal statement of what is depicted on Figure 4.8: Ŵn

contains the (n × n) grid Γn as a strong immersion. Branch vertices are depicted by
white nodes and horizontal (respectively vertical) paths use the color green (respec-
tively red).

Figure 4.8: Finding Γ5 as a strong immersion in Ŵ5.

Observation 4.69. Let k ≥ 2 be an integer. If we define φ and ψ with domains V (Γn)
and E(Γn), respectively, as follows:

φ((i, j)) = (i, 2j − 1)

ψ({(i, j), (i, j + 1)}) = (i, 2j − 1)(i, 2j)(i, 2(j + 1)− 1)

ψ({(i, j), (i+ 1, j)}) = (i, 2j − 1)(i+ 1, 2j − 1) for odd i

ψ({(i, j), (i+ 1, j)}) = (i, 2j − 1)(i, 2j)(i+ 1, 2j)(i+ 1, 2j − 1) for even i,
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then (φ, ψ) is a Γk-strong-immersion model in Ŵk (where we assume that Γk has ver-
tex set J1, kK2).

The next result is mentioned in [Tho88] but not proof is provided.

Lemma 4.70. Every planar subcubic graph on n-vertices is a topological minor of the wall
Wn.

Proof. Let H be a planar subcubic graph on n vertices. The proof goes as follows: we
first construct a subdivision H ′ of H that is a simple graph. Then we prove that H ′ is
a strong-immersion of Ŵn and obtain the following ordering:

H ≤t.m.H
′≤t.m. Γn≤s.im. Ŵn. (4.4)

Finally, we construct a subdivision of H ′ in Ŵn. This is simple, hence it is a subgraph
of Wn, as required.

Let H be a planar subcubic graph and let H ′ be the simple subcubic planar graph
obtained from H by subdividing all but one edges of every multiedge. Notice that
the first inequality of equation (4.4) is satisfied. Let us count how many vertices are
added during the construction ofH ′. AsH is subcubic, among the edges incident to a
given vertex, at most two are being subdivided. That way we count each subdivided
edge twice (once for each of its endpoints), hence we get:

|V (H ′)| ≤ 2|V (H)|.

According to Lemma 4.68, H ′ is a topological minor of Γn: this gives the second
inequality of the equation. Observation 4.69 gives the third inequality.

Let (φ1, ψ1) be an H ′-topological minor model in Γn and let (φ2, ψ2) be the Γn-
strong-immersion model in Ŵn given by Observation 4.69. These two models can be
used to construct an H ′-strong immersion model (φ, ψ) in Ŵn, as the composition of
(φ1, ψ1) and (φ2, ψ2): for every v ∈ V (H ′), φ(v) = φ2(φ1(v)) and for every e ∈ E(H ′),
ψ(e) is the concatenation of the paths obtained by applying ψ2 to the edges of the path
ψ1(e) (taken in the same order as they appear in this path). Let us call expansion of
an immersion (respectively topological minor) model (µ, µ′) of a graph J the graph(⋃

e∈E(J) V (µ′(e)),
⋃
e∈E(J) E(µ′(e))

)
. Intuitively, this is the graph described by the

model. Observe that the model (φ, ψ) satisfies the following properties:

• the expansion of (φ, ψ) is a subgraph of the expansion of (φ2, ψ2); and

• the branch vertices of (φ, ψ) are branch vertices of (φ2, ψ2).

We provide the following diagram to recall the roles of the different models we
use (topological minor models are indicated by double arrows and strong immersion
models by simple ones).
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H ′ Γn

Ŵn

(φ1, ψ1)

(φ2, ψ2)
(φ, ψ)

Let us show the following claim.
Claim 4.71. Let e, f ∈ E(H ′). If v is an internal vertex of both ψ(e) and ψ(f), then
these paths also share an endpoint, which is adjacent to v.

If ψ(e) and ψ(f) share an internal vertex v, there are two edges a ∈ ψ1(e) and
b ∈ ψ1(f) such that both ψ2(a) and ψ2(b) contain v. By definition of (φ2, ψ2), such a
situation occurs only if a = {(i, j), (i + 1, j)} (for even i) and b = {(i, j), (i, j + 1)}
or b = {(i + 1, j), (i + 1, j + 1)}, for some even i ∈ J1, nK and some j ∈ J1, nK (see
Figure 4.8). Observe that in both cases a and b share an endpoint. As (φ1, ψ1) is a
topological minor model, ψ1(e) and ψ1(f) may meet on endpoints only. Therefore the
common endpoint of a and b is an endpoint of both ψ1(e) and ψ1(f), hence ψ(e) and
ψ(f) have a common endpoint. This proves the first part of the claim. The second part
is now clear from the definition of (φ2, ψ2), as we know that the paths ψ1(e) and ψ1(f)
start from the same vertex, one with a “vertical” edge, the other with a “horizontal”
edge (see Figure 4.8). �

If (φ, ψ), which is a strong immersion model, is a topological minor model, then
we can directly jump to the next step. Otherwise, according to Claim 4.71, there are
two edges e = {u, v}, f = {u,w} of H and vertices x, y ∈ Ŵn such that ψ(e) and ψ(f)

both start with x = φ(u) followed by y. Hence {x, y} is a double edge of Ŵn. As (φ, ψ)
is a strong immersion model of a subcubic graph, x has degree at most three in the
expansion of (φ, ψ) We can therefore modify (φ, ψ) as follows: we set φ(u) = x and we
shorten ψ({u, v}) and ψ({u,w}) by removing the edge {x, y} from each of them. In
the case where there is a third vertex t ∈ V (H) \ {v, w} adjacent to u, we also extend
the path ψ({t, u}) by adding the edge {x, y}. See Figure 4.9 for an example.

Figure 4.9: Swapping branch vertices.

It is easy to see that by applying these changes we still get anH ′-strong immersion
model, with less crossings of certifying paths. By repeatedly applying these steps we
eventually obtain a H ′-topological minor model in Ŵ+

n . Notice that its expansion is
a simple graph, as H ′ is a simple graph. Therefore this expansion is also a subgraph
of Wn. We proved that H ′ is a topological minor of Wn. It follows that the same holds
for H and we are done.
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The proof of Theorem 4.66 is now staighforward: given that tcw(G) ≥ 4h10f1(h)
(recall that f1 is the function of the Grid Exclusion Theorem, Theorem 4.26), G con-
tains Wh as an immersion (Theorem 4.67). As we just proved with Lemma 4.70, every
planar subcubic graph on h vertices is an immersion ofWn, so it is an immersion ofG.
Also, 4h10f1(h) = O(h29 polylog(h)).
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CHAPTER 5

THE ERDŐS-PÓSA PROPERTY

In this chapter, we present general techniques for proving that a class of graphs have
the Erdős–Pósa property. The first one is based on tree-like decompositions. Initially
used with tree-decompositions, it can in fact also be applied to other decompositions
as tree-partitions and tree-cut decompositions. The second technique is related to
the notion of girth and its extensions. We then apply these techniques to obtain new
Erdős–Pósatype results. In particular, we shed some light on the edge variant of the
Erdős–Pósaproperty. In the remaining sections, we provide negative results on the
Erdős–Pósaproperty of classes defined by containment relations and we present a
collection of tables listing the known results on the Erdős–Pósaproperty.

• [RST16] An edge variant of the Erdős-Pósa property, co-authored with Ignasi Sau
and Dimitrios M. Thilikos, Discrete Mathematics (2016);

• [CRST15b] An O(log OPT)-approximation for covering/packing minor models of θr,
co-authored with Dimitris Chatzidimitriou, Ignasi Sau, and Dimitrios M. Thi-
likos, WAOA 2015;

• [GKRT16] Packing and covering immersion models of planar subcubic graphs, co-
authored with Archontia Giannopoulou, O-joung Kwon, and Dimitrios M. Thi-
likos, WG 2016;

• [RT16] Recent techniques and results on the Erdős-Pósa property, co-authored with
Dimitrios M. Thilikos, submitted (2016).

5.1 Introduction

A considerable part of Combinatorics has been developed around min-max theo-
rems. Min-max theorems usually identify dualities between certain objects in graphs,
hypergraphs, and other combinatorial structures. The target is to prove that the ab-
sence of the primal object implies the presence of the dual one and vice versa.

A classic example of such a duality is Menger’s theorem: the primal concept is the
existence of k internally disjoint paths between two vertex sets S and T of a graph
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G, while the dual concept is a collection of k vertices that intersect all (S, T )-paths.
Another example is Kőnig’s theorem where the primal notion is the existence of a
matching of k vertices in a bipartite graph and the dual one is the existence of a
vertex cover of size k. It is also known that, in case of general graphs, this duality
becomes an approximate one, i.e., a vertex cover of size 2k. In both aforementioned
examples, the duality is between the notions of packing and covering of a collection
C of combinatorial objects of a graph. In Menger’s theorem C consists of all (S, T )-
paths of G while in Kőnig’s theorem C is the set of all edges of G. That way, both
aforementioned min-max theorems can be stated, for some class of graphs G (called
host class) and some gap function f : N→ N, as follows:

For every graph G in G, either G contains k-vertex disjoint objects in C or
it contains f(k) vertices intersecting all objects in C that appear in G.

Clearly, for the case of Menger’s theorem the host class is the class of all graphs while
in the case of Kőnig’s theorem the host class is restricted to the class of bipartite
graphs. In both cases the derived duality is an exact one in the sense that f is the
identity function. However, this is not the case if we want to extend the duality of
Kőnig’s theorem in the case of all graphs, where we can consider f : k 7→ 2k (i.e., we
have an approximate duality).

One of the most celebrated results about packing/covering dualities was obtained
by Paul Erdős and Lajos Pósa in 1965 where the object to cover and pack was the
set of all cycles of G [EP65]. In this case the host class contains all graphs, while
f : k 7→ O(k · log k). Moreover, Erdős and Pósa proved that this gap is optimal in the
sense that it cannot be improved to a function f : k 7→ o(k · log k). This result moti-
vated a long line of research for min-max dualities that are not necessarily exact. Since
then, a multitude of results on Erdős–Pósa properties have appeared for several com-
binatorial objects, including extensions to digraphs [LY78, Sey96, RRST96b, HM13,
GT10], rooted graphs [KKK12, PW12, Joo14, BJS14], labeled graphs [KW05], signed
graphs [HNP06, ADG04], hypergraphs [Alo02, Bou13, BT15], matroids [GK09], and
other combinatorial structures [GL69] (see [Ree97] for a survey on this topic). Also
it is worth stressing that Erdős–Pósa dualities have been useful in more applied do-
mains. For example, in bioinformatics where they where useful for upper-bounding
the number of fixed-points of a boolean networks [Ara08, ADG04, ARS16].

The chapter is organized as follows. We first describe some recent techniques for
proving Erdős–Pósa properties, mainly based on techniques related to tree-like de-
compositions of graphs (Subsection 5.3.1 and Subsection 5.3.2). We focused our pre-
sentation to the description of general frameworks that, we believe, might be useful
for further investigations. We then present several results related to the Erdős-Pósa
property. Lastly, in Subsection 5.6.2, we provide an extensive update of results on
Erdős–Pósa properties, reflecting the current progress on this vibrant area of graph
theory. Most of the notions used in this chapter are defined in Section 5.2.
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5.2 Notions related to the Erdős–Pósa property

Let us introduce definitions related to the topic of this chapter and that will also be
used in the next chapter.

Most of the definitions we give here have two variants: one is related to vertices
and the other one is related to edges. In order to make the definitions more concise,
we use symbols v and e in order to distinguish the vertex and the edge variants of the
properties/parameters that we are dealing with. For instance, if x ∈ {v, e}, and G is a
graph, we set Ax(G) = V (G) if x = v and Ax(G) = E(G) if x = e. Similarly, x-disjoint
stands for vertex-disjoint when x = v and for edge-disjoint when x = e.

Packing and covering. Let H be a family of graphs and let x ∈ {v, e}. An x-H-cover
of G is a set C ⊆ Ax(G) such that G \C does not contain any subgraph isomorphic to
a member ofH. An x-H-packing in G is a collection of x-disjoint subgraphs of G, each
being isomorphic to some graph ofH.

We denote by x-packH(G) the maximum size of an x-H-packing, which we call
packing number (with respect to H) and by x-coverH(G) the minimum size of an x-H-
covering in G, also referred to as covering number (also defined relatively toH).

There is an easy inequality between these two parameters.
Remark 5.1. For every x ∈ {v, e}, for every graph class H, and every graph G, the
following holds:

x-packH(G) ≤ x-coverH(G).

Indeed, any x-H-cover must contain at least one vertex (if x = v) or edge (if x = e)
of each element of an x-H-packing of maximum size.

The Erdős–Pósa property is concerned with the other direction, that is, bounding
the covering number in terms of the packing number.

The Erdős–Pósa property.
Definition 5.2. Let G andH be two graph classes and let x ∈ {v, e}. We say thatH has
the x-Erdős–Pósa property for G if there is a function f : N→ N such that the following
holds:

∀G ∈ G, x-coverH(G) ≤ f(x-packH(G)).

Any function f satisfying the above inequality is called a gap of the x-Erdős–Pósa
property of H for G. When a class of graphs has the x-Erdős–Pósa-property for the
class of finite graphs, we simply say that it has the x-Erdős–Pósa-property. We usually
refer to G as the host graph class and byH as the guest graph class.

5.3 General tools for proving Erdős–Pósa type results

In this section we present general techniques for proving Erdős–Pósa type results.
They are either based on tree-like decompositions of graphs, that allow to find small
separators, or on variants of the girth, which certify that the graph contains a small
subgraph of the desired type.
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5.3.1 The Erdős–Pósa property from graph decompositions

LetH be a graph class, p be a graph parameter, and x ∈ {v, e}. We say that a function
f : N→ N is a ceiling for the triple (p,H, x) if for every graphG, p(G) ≤ f(x-packH(G)).
Intuitively, there is a ceiling for the triple (p,H, x) if a large value of p on a graph
forces a large x-packing of elements of H. Notice that every ceiling for (p,H, v) is a
ceiling for (p,H, e), since a vertex-disjoint packing is a special case of an edge-disjoint
packing.

Given a graph parameter p and an integer k, we denote

Gp≤k = {G, p(G) ≤ k}.

Theorem 5.3. Let H be a class of graphs, x ∈ {v, e}, p be a graph parameter, let f : N → N
be a function and let hr : N → N be a function, for every r ∈ N. Suppose that the following
two conditions hold:

A. f is a ceiling for the triple (p,H, x);

B. for every r ∈ N,H has the x-Erdős–Pósa property for Gp≤r with gap hr;

thenH has the x-Erdős–Pósa property with gap k 7→ hf(k)(k).

Proof. Let G be a graph and let k = x-packH(G). We have p(G) ≤ f(k), by definition
of a ceiling. Therefore, G ∈ Gp≤f(k), and thus x-coverH(G) ≤ hf(k)(k).

Theorem 5.3 will be used as a master theorem for the results of this section.

Vertex version and tree decompositions

In a breakthrough paper [CC13], Chekuri and Chuzhoy proved that every graph of
large treewidth can be partitioned into several subgraphs of large treewidth, with a
polynomial dependency between the treewidth of the original graph, the one of the
subgraphs, and the number of subgraphs. In fact they proved the two next results.

Theorem 5.4 ([CC13, Theorem 1.1]). There is a non-decreasing function f2 : R → R with
f2(t) = polylog t such that, for every graph G and every positive integers h and p, if

hp2 ≤ tw(G)

f2(tw(G))
,

then there is a partitionG1, . . . , Gh ofG into vertex-disjoint subgraphs such that tw(Gi) ≥ p
for every i ∈ J1, hK .

Theorem 5.5 ([CC13, Theorem 1.2]). There is a non-decreasing function f3 : R → R with
f3(t) = polylog t such that, for every graph G and every positive integers h and p, if

h3p ≤ tw(G)

f3(tw(G))
,

then there is a partitionG1, . . . , Gh ofG into vertex-disjoint subgraphs such that tw(Gi) ≥ p
for every i ∈ J1, hK .
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There results have been used to obtain ceilings. In fact, [CC13] also contains the
following result.

Lemma 5.6 ([CC13, from the proof of Theorem 5.4]). If r is an integer andH is a class of
graphs such that every graph of treewidth at least r contains an H-subgraph, then there is a
ceiling f4 for (tw,H, v) such that f4(k) = kr2 polylog(kr).

Let us now see the role of ceilings with respect to the Erdős–Pósa property. A
function f : R → R is said to be superadditive if f(x) + f(y) ≤ f(x + y) for every pair
x, y of positive reals. The main argument of the next lemma has been first used in
[FST11]. Different statements of this results appeared in [CC13, RST16, CRST15b].

Lemma 5.7. Let H be a family of connected graphs. If f is a superadditive ceiling for
(tw,H, v) thenH has the v-Erdős–Pósa property with gap k 7→ 5 · f(k) log(k + 1).

Proof. Let us show the following for every integer k: for every graphG, if v-packH(G) =
k then v-coverH ≤ 5f(k) log(k+1). The proof is by induction on k. The base case k = 0
is trivial. Let k > 0, and let us assume that the above statement holds for every
positive integer k′ < k (induction hypothesis).

Let G be a graph such that v-packH(G) = k. We will rely on the following claim.

Claim 5.8. There is a separation (A,B) of order tw(G) + 1 of G such that

k/3 ≤ v-packH(G[A \B]) ≤ 2k/3.

Proof. It is known that every graph G has a nice tree decomposition with width
tw(G) [Klo94a]. We therefore can assume that (T, r, (Xt)t∈V (T )) is a nice tree decom-
position of G of optimal width. We define

Gt = G

 ⋃
s∈desc(T,r)(t)

Xs

 and G−t = Gt \Xt.

Let t be a vertex of T at minimal distance from a leaf subject to the requirement
v-packH(G−t ) > 2k/3. Such a vertex exists, as v-packH(G−r ) = v-packH(G

)
r = k. Ob-

serve that t is either a forget node, or a join node. Indeed, for every base node u
we have v-packH(G−u ) = 0. Moreover, every introduce node u with child v satisfies
v-packH(G−u ) = v-packH(G−v ), since G−u = G−v .

First case: t is a forget node with child u. We set A = V (Gu) and B = V (G) \ V (G−u ).

Second case: t is a join node with children u1, u2. We set A = V (Gui) and B = V (G) \
V (G−ui), where ui is a child of t such that v-packH(G−ui) ≥ k/3. Such child exist because
v-packH(G−t ) = v-packH(G−u1) + v-packH(G−u2) (as t is a join node) and v-packH(G−t ) >
2k/3, by definition of t.
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It is clear that in both cases (A,B) is a separation of order tw(G)+1. The inequality
v-packH(G[A]) ≤ 2k/3 follows from the definition of t. In the first case, we have

v-packH(G[A \B]) = v-packH(G−u )

≥ v-packH(G−t )− 1 (as t is a forget node)

>
2k

3
− 1

≥ k

3
.

In the second case, the choice of i ensures that k/3 ≤ v-packH(G[A \B]).

Observe that tw(G) ≤ f(k), by definition of f. According to Claim 5.8, there is a
separation (A,B) of order tw(G) + 1 in G such that k/3 ≤ v-packH(G[A \ B]) ≤ 2k/3.
Let kA = v-packH(G[A \ B]) and kB = v-packH(G[B \ A]). It follows that kA, kB ≤
b2k/3c .

We then have

v-coverH(G) ≤ v-coverH(G[A \B]) + v-coverH(G[B \ A]) + |A ∩B|
≤ v-coverH(G[A \B]) + v-coverH(G[B \ A]) + f(k) + 1

≤ 5f(kA) log(kA + 1) + 5f(kB) log(kB + 1) + f(k) + 1.

The first inequality follows from the fact that the graphs in H are connected. In-
deed, a connected subgraph of G \ (A ∩ B) belong to exactly one of G[A \ B] and
G[B \ A], so we can consider these two parts of G \ (A ∩ B) independently. Notice
that in the case where k = 1, we get kA = kB = 0 and we have v-coverH(G) ≤ f(k) ≤
3 f(k) log(k+ 1). Therefore we now assume k ≥ 2. We can deduce from kA, kB ≤

⌊
2
3
k
⌋

that kA + 1 ≤ 3
4
(k + 1) and kB + 1 ≤ 3

4
(k + 1).

v-coverH(G) ≤ 5 · (f(kA) + f(kB)) log

(
3(k + 1)

4

)
+ f(k) + 1

≤ 5 · f(k) log

(
3(k + 1)

4

)
+ f(k) + 1 (superadditivity of f )

≤ 5 · f(k) log(k + 1)− 5 · log(4/3)f(k) + 2f(k)

≤ 5 · f(k) log(k + 1). �

Corollary 5.9 (see also [CC13] and [CC14]). For every connected planar graph H , the
classM(H) has the v-Erdős–Pósa property with gap O(k · h38 · polylog(kh)), where h =
V (H) + 2E(H).

For every connected planar graph H , Corollary 5.9 provides a gap forM(H) that
is polynomial in both k and h = |V (H)|+ 2|E(H)| ([RST94a, 1.5]). In Subsection 5.4.1
we will apply Lemma 5.6 to majors of specific planar graphs in order to obtain better
gaps.
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Notice that the proof of Lemma 5.7 strongly relies on the fact that H is connected.
The non-connected case requires some more ideas that are originating from [RS86]
(also used for forests in [FJW13a]). We expose them hereafter. We will need the two
next lemmas.

Lemma 5.10 ([RS86]). Let q, k be two positive integers, let T be a tree and let A1, . . . ,Aq be
families of subtrees of T. Assume that for every i ∈ J1, qK, there are kq elements ofAi that are
pairwise vertex-disjoint. Then for every i ∈ J1, qK, there are k elements T i1, . . . , T ik of Ai such
that

T 1
1 , . . . T

1
k , T

2
1 , . . . T

2
k , . . . , T

q
1 , . . . T

q
k

are all pairwise vertex-disjoint.

The next lemma is the Erdős–Pósa property of subtrees of a tree. It can be obtained
from the fact that subtrees of a tree have the Helly property.

Lemma 5.11 (see [GL69]). Let T be a tree and let A be a collection of subtrees of T. For
every positive integer k, either T has (at least) k vertex disjoint subtrees that belong to A, or
T has a subset X of less than k vertices such that no subtree of T \X belongs to A.

We are now ready to deal with disconnected patterns.

Lemma 5.12 ([RS86]). Let w be a positive integer and let H be a graph on q connected
components. M(H) has the v-Erdős–Pósa property on the class of graphs of treewidth at
most w with gap k 7→ (w − 1)(kq − 1).

Proof. Let k be a positive integer. We want to show that either v-packM(H)(G) ≥ k
or v-coverM(H)(G) ≤ (w − 1)(kq − 1). Let H1, . . . , Hq be the connected components
of H. Let (T,X ) be a tree-decomposition of G of width w. For every subgraph F of G,
we denote by T (F ) the subgraph of T induced by the bags containing vertices of F.
Notice that T (F ) is connected if F is connected.

For every i ∈ J1, qK, we let Hi be the class of subgraphs of G that are isomorphic
to a graph inM(Hi) and we consider the class Ti = {T (F ), F ∈ Hi}.

If for every i ∈ J1, qK, Ti contains kq vertex-disjoint trees, then according to Lemma 5.11
there are pairwise vertex-disjoint trees {T ij}i∈J1,qK, j∈J1,kK. Observe that for every two
subgraphs F, F ′ of G, if T (F ) and T (F ′) are vertex-disjoint, then so are F and F ′.
Therefore G has pairwise vertex-disjoint subgraphs {F i

j}i∈J1,qK, j∈J1,kK such that F i
j is

isomorphic to an element of Hi for every i ∈ J1, qK and j ∈ J1, kK . This proves that in
this case, v-packM(H)(G) ≥ k.

We therefore now assume that the above condition does not hold, namely there is
an index i ∈ J1, qK such that Ti contains less than kq vertex-disjoint trees. Lemma 5.11
implies the existence of a subset X with |X| ≤ kq − 1 such that T \ X is free from
subtrees isomorphic to a member of Ti. Let Y denote the union of the bags indexed by
vertices inX.Observe that |Y | ≤ (w−1)|X| ≤ (w−1)(kq−1). The choice of Y ensures
that G \ Y has no subgraph isomorphic to a member of Hi. Hence v-coverM(Hi) ≤
(w − 1)(kq − 1). We deduce v-coverM(H) ≤ (w − 1)(kq − 1).

Corollary 5.13. For every planar graph H with q connected components, the classM(H)
has the Erdős–Pósa property with gap O(qk2 ·h38 ·polylog(kh)), where h = V (H)+2E(H).
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Edge version and tree partitions

In the edge variant of the Erdős–Pósa properties we use tree-partition width as a
possible edge-analogue of treewidth.

Let H be a class of graphs. We define H̃ as the set of all the subgraph minimal
elements ofH, i.e.,

H̃ = {H, H ∈ H and none of the subgraphs of H belongs toH}.

We define ∆(H) as the maximum number of edges incident to a vertex in a graph
ofH (counting multiple edges). We also set ∆̃(H) = ∆(H̃).

Observation 5.14. For every graphH of h edges, it holds that ∆̃(M(H)) ≤ h, ∆̃(T (H)) ≤
h, ∆̃(I(H)) ≤ 2h.

Lemma 5.15. Let H be a class of connected non-trivial graphs where ∆̃(H) ≤ d. Then for
every r ∈ N,H has the e-Erdős–Pósa-property on Gtpw≤r with gap gr(k) = k · r · (dr + 1).

Proof. Let r ∈ N. We will show the following for every k ∈ N: for every graph G ∈
Gtpw≤r, if e-packH(G) = k then e-coverH(G) ≤ gr(k).

We proceed by induction. The base case k = 0 is trivial. We thus assume that
k > 0 and that the above statement holds for every positive integer k′ < k (induction
hypothesis).

Let G ∈ Gtpw≤r be a graph such that e-packH(G) = k. We assume that G is con-
nected, as otherwise we can treat each connected component separately.

Let (T, s, {Xt}t∈V (T )) be an optimal rooted tree partition decomposition of G. We

define Gt = G
[⋃

u∈desc(T,s)(t)
Xu

]
. For every edge {u, v} of T we denote by E{u,v} the

edges of G with the one endpoint in Xu and the other one in Xv. Let t be a vertex of
T of minimum distance from a leaf, subject to e-packH(Gt) > 0.

Let M be a subgraph-minimal subgraph of Gt that is isomorphic to some member
of H and let t1, . . . , tp be the children of t such that V (Gti) ∩ V (M) 6= ∅ for every
i ∈ J1, pK. By minimality of M , it has no vertex with more than ∆̃(H) ≤ d incident
edges. As |Xt| ≤ r, we deduce that p ≤ rd.

Let C = E(Xt)∪
⋃p
i=1E{t,ui}. Notice that |C| ≤ r+ dr2. Let us consider then graph

G′ = G \ C. Let M ′ be a subgraph of G′ that is isomorphic to some member of H. By
minimality of t, e-packH(Gti) = 0, for every i ∈ J1, pK . Therefore, if M ′ contained an
edge e ∈ E(Gti) (for some i ∈ J1, pK), it would also contain an edge of E(G) \ E(Gti).
Since every graph of H is connected, M ′ would also need to contain some edge of
Et,ui in order to be connected to edges of E(G) \ E(Gti). However E(G′) ∩ Et,ui = ∅.
We deduce that for every subgraphM ′ ofG′ that is isomorphic to some member ofH,
we have E(M ′) ∩ E(M) = ∅. It follows that every e-H-packing in G′ is edge-disjoint
with M.

Hence e-packH(G′) < k, as otherwise a packing of size k in G′ would, together
with M , yield a packing of size k + 1 in G whereas e-packH(G) = k. By applying the
induction hypothesis on G′, there is a subset D ⊆ E(G′) such that e-packH(G′ \D) = 0
and moreover |D| ≤ gr(k − 1). It is easy to see that C ∪ D is an e-H-cover of G.
Furthermore |C ∪D| ≤ r(dr + 1) + gr(k − 1) = gr(k), as required.
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In this section we presented decomposition-based techniques aiming to prove the
edge-Erdős-Pósa property, and towards this purpose we used tree-partition decom-
positions as a possible edge-counterpart to tree-decompositions, that are used in the
vertex case. Let us briefly mention that there are other tree-like decompositions that
deserve attention. For instance, tree-cut decompositions can be succesfully used to
deal with immersion expansions, as we will see in Subsection 5.4.4. Applications of
the techniques described in this section will be presented in Section 5.4.

5.3.2 The Erdős–Pósa property from girth

In this section, we give a proof of the Erdős–Pósa Theorem that highlights a technique
for proving more general Erdős–Pósa type results. The technique can be informally
summarized as follow. We prove that either G contains a small cycle or that it can be
reduced to a smaller graph with the same packing and covering number. We then
apply induction on either the graph where a small cycle has been deleted (in the first
case), or on the reduced graph (in the second case). This technique has been suc-
cessfully applied in [FJW13a, CRST15b], for instance. Let us first recall the following
result.

Lemma 5.16 ([Tho83b], see also [Die05, Theorem 7.4.2]). There is a constant c ∈ R, such
that for every q ∈ N≥1, every graph of minimum degree at least 3 and girth at least c log q
contains Kq as a minor.

A direct consequence of this result is the following trichotomy.

Corollary 5.17. For every graph G and every integer q > 1, one of the following holds:

(i) G has a cycle on at most c log q vertices;

(ii) G has a vertex of degree at most 2;

(iii) G contains Kq as a minor,

where c is the constant of Lemma 5.16.

We now prove the lemma that implies the classic Erdős–Pósa Theorem both for
the vertex and its edge version. Recall that Ax(G) denotes V (G) or E(G), depending
if x = v or x = e.

Lemma 5.18. For every q ∈ N+ and every x ∈ {v, e}, the setM(θ2) has the x-Erdős–Pósa
property for the class of Kq-minor-free with gap O(k · log q).

Proof. We will prove that for every non-negative integer k and every Kq-minor-free
graph G, either G has k x-disjoint cycles, or G has a subset X ⊆ Ax(G) of size at most
ck log q such that G \X is a forest, where c is the constant of Lemma 5.16. We proceed
by induction on the pair (k,G), with the well-founded order defined by (k′, G′) ≤
(k,G) ⇐⇒ (k′ ≤ k and |Ax(G

′)| ≤ |Ax(G)|), for all graphs G, G′ and non-negative
integers k, k′.
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The base cases corresponding to k = 0 or |Ax(G)| = 0 are trivial. Let us now
assume that k ≥ 1, |Ax(G)| ≥ 1, and that the lemma holds for every pair (k′, G′) such
that (k′, G′) ≤ (k,G).

According to Corollary 5.17, either Gi has a cycle C on at most c log q vertices, or
it has a vertex v of degree at most two, or it contains Kq as a minor. The last case is
not possible, as we require G to be Kq-minor-free.

Whenever the first case applies, we set G′ = G \ Ax(C) and we consider the
pair (k − 1, G′). If G′ contains k − 1 x-disjoint cycles, then G contains k x-disjoint
cycles obtained by adding C to those of G′ and we are done. Otherwise, the induc-
tion hypothesis implies the existence of a subset X ′ ⊆ Ax(G

′) with |X| ≤ c(k− 1) log q
such that G′ \X ′ is a forest. Then by definition of C, X = X ′ ∪Ax(C) has size at most
c log q and G \X is a forest, as required.

In the second case, we delete v if it is isolated and we contract an edge e incident
with it otherwise. Notice that since we cannot apply the first case, this contraction
does not decrease the number of cycles in G. Also, we can assume without loss of
generality that v (respectively e) is not part of a minimum x-cover of cycles in G,
as any vertex adjacent to v (respectively edge incident with e) covers all the cycles
covered by v (respectively e). Therefore the obtained graph G′ satisfies x-packH(G′)
and x-coverH(G) = x-coverH(G′). It is not hard to see that Ax(G

′) < Ax(G). Therefore
we can apply the induction hypothesis on G′ and obtain the desired result on G′, that
immediately translates to G by the above remarks.

By setting q = 3k and observing that every graph containing K3k as a minor also
contains k vertex-disjoint cycles (hence also edge-disjoint), Lemma 5.18 yields the
vertex and edge versions of the classic Erdős–Pósa theorem as a corollary.

The technique presented in this section has been used to show the following re-
sult.

Theorem 5.19 ([FJW13a]). For every forest H ,M(H) has the v-Erdős–Pósa property with
gap OH(k).

Other applications will be presented in Section 5.4. To extend the idea of Lemma 5.18
in order to prove that some graph classH has the x-Erdős–Pósa property with gap f : N→
N, one should show that for every positive integer k and every graphGwith x-packH(G) ≤
k,

• either there is a graph G′ with x-packH(G) = x-packH(G′) and x-coverH(G) =
x-coverH(G′) and such that |G′|+ ‖G′‖ < |G|+ ‖G‖ (reduction case);

• or G has a subgraph isomorphic to a member of H on at most f(k)/k ver-
tices/edges (progress case).

5.4 Applications to selected classes of graphs

In this section, we show classes of graphs where the techniques presented in Sec-
tion 5.3 can be applied to yield Erdős–Pósa type results. The classes we will consider
are the following:
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• majors of wheels, yurts, and graphs of pathwidth at most two in Subsection 5.4.1;

• majors of θr in Subsection 5.4.2;

• immersion models of connected planar subcubic graphs in Subsection 5.4.4;

5.4.1 Wheels, yurts, and graphs of pathwidth at most two

The gap provided by Corollary 5.9 relies on general exclusion theorems for majors of
planar graphs. In this section we provide an application of the results of Section 5.3.1
to decrease the contribution of H , for specific planar patterns where a better exclu-
sion theorem is known. The classes we will consider are the majors of the following
graphs: wheels, double wheels, graphs of pathwidth at most 2, and yurt graphs; and
we will use the exclusion theorems introduced in Section 4.3.

Theorem 5.20. The classM(H) has the v-Erdős–Pósa-property with gap:

(i) k 7→ kh2 polylog(kh) if H is a wheel of order h;

(ii) k 7→ kh4 polylog(kh) ifH is a graph of pathwidth at most two with |V (H)|+ |E(H)| =
h or a double wheel of order h;

(iii) k 7→ kh8 polylog(kh) if H is a yurt graph of order h.

Proof. Let us prove (i). We denote by Wh the wheel of order h, for every positive
integer h. According to Theorem 4.27, for every positive integer h, every graph of
treewidth at least 36h− 2 contains a major of Wh. Lemma 5.6 then implies that there
is a ceiling fh for (tw,M(Wh), v), with fh(k) = k(36h − 2)2 polylog(kh). Thanks to
Lemma 5.7, this ceiling yields a gap gh(k) = 5k(36h− 2)2 polylog(kh) · log(k + 1) and
we are done. The proofs of (ii) and (iii) follow the very same path, using exclusion
theorems Theorem 4.28, Theorem 4.29, and Theorem 4.31.

5.4.2 Pumpkins

A way to extend the classic Erdős-Pósa Theorem is to consider generalizations of the
class of cycles. A class that attracted some attention in this direction is M(θr) for
r ∈ N, which is the class of cycles when r = 2. For instance, Fomin et al. gave in
[FST11] the following extension.

Theorem 5.21 ([FST11]). There is a function fr(k) = O(k2r2) such that for every r ∈ N,
M(θr) has the v-Erdős–Pósa property with gap fr.

In an unpublished manuscript [FJS13], Fiorini et al. proved that the classic Erdős–
Pósa Theorem can be extended to M(θr) (instead of cycles) without increasing the
order of magnitude of the gap, O(k log k).

Theorem 5.22 ([FJS13], see also [CRST15b]). There is a function fr(k) = Or(k log k) such
that for every r ∈ N,M(θr) has the v-Erdős–Pósa property with gap fr.
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We present in this section the following result.

Theorem 5.23. There is a function fr with fr(k) = O(k2r2 polylog kr) and fr(k) = O(k4r2 polylog kr),
such that for every r ∈ N,M(θr) has the e-Erdős–Pósa property with gap fr.

Theorem 5.23 is an edge-analogue of Theorem 5.22. The bound on the gap is
worse in terms of k but it indicated the contribution of r, which is polynomial.

We will in Chapter 6 prove the following result, that completes the symmetry
between the vertex and edge settings.

Theorem 5.24. There is a function fr(k) = Or(k log k) such that for every x ∈ {v, e} and
every r ∈ N,M(θr) has the x-Erdős–Pósa property with gap fr.

Let us here prove Theorem 5.23. Recall that we proved in Section 4.2 that every
2-connected graph that has a vertex of degree at least 2kr has a subgraph that is an
edge-disjoint union of kM(θr)-subgraphs. Let us show the next result.

Lemma 5.25. Let r ∈ N. If M(θr) has the v-Erdős–Pósa property with a gap f that is
superadditive, then it has the e-Erdős–Pósa property with gap k 7→ 2kr · f(k).

We first need some intermediate lemmas in order to be able to use Theorem 5.3.

Lemma 5.26. Let d ∈ N. The class M(θr) has the e-Erdős–Pósa property for the class of
graphs of maximum degree at most d with gap k 7→ d · f(k), where f is the (vertex-) gap
provided by Theorem 5.22.

Proof. Let G be a graph satisfying ∆(G) ≤ d and let k be a positive integer. If G
contains k vertex-disjointM(θr)-subgraphs, these subgraphs are in particular edge-
disjoint hence e-packM(θr)(G) ≥ k. On the other hand, if v-packM(θr)(G) < k, according
to Theorem 5.22 there is a subset X ⊆ V (G) such that |X| ≤ f(k) and G \X does not
contain anyM(θr)-subgraph. Let Y be the set of edges incident to the vertices in X .
As ∆(G) ≤ d we have |Y | ≤ d · f(k). Notice that anyM(θr)-subgraph of G \ Y does
not contain a vertex fromX , hence the existence of such a subgraph would contradict
the definition of X . This proves that e-coverM(θr) ≤ d · f(k) and we are done.

Lemma 5.27. If a class of 2-connected graphsH has the e-Erdős–Pósa property for 2-connected
graphs with a superadditive gap, then it has the e-Erdős–Pósa property (for all graphs) with
the same gap.

Proof. Let f be the gap mentioned in the statement of the lemma. Let G be a graph
and let G1, . . . , Gt be its 2-connected components, for some positive integer t. Let k
be an integer and let pi = e-packH(Gi), for every i ∈ J1, tK. If p1 + · · · + pt ≥ k, then
e-packH(G) ≥ k, as two subgraphs in two distinct 2-connected components of G are
always edge-disjoint. On the other hand, let us assume that p1 + · · ·+pt < k. We have
e-coverH(Gi) ≤ f(pi) for every i ∈ J1, tK. Since no H-subgraph of G contains edges
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from two or more distinct 2-connected components, we can cover H-subgraphs in
each 2-connected component in order to cover them in the graph:

e-coverH(G) ≤
t∑
i=1

e-coverH(Gi)

≤
t∑
i=1

f(pi)

≤ f

(
t∑
i=1

pi

)
(f is superadditive)

≤ f(k − 1).

We can now prove Lemma 5.25.

Proof of Lemma 5.25. By applying Theorem 5.3 to Lemma 4.16 and Lemma 5.26, we
obtain the result for 2-connected graphs. Lemma 5.27 then allows us to extend it to
graphs that are not 2-connected.

We also need the following result before we prove Theorem 5.23.

Theorem 5.28 ([BvLTT97b, Theorem 14]). For every r ∈ N, every graph of treewidth at
least 2r − 1 contains a K2,r major.

Let us now prove Theorem 5.23. We first restate it.

Theorem 5.23. There is a function fr with fr(k) = O(k2r2 polylog kr) and fr(k) = O(k4r2 polylog kr),
such that for every r ∈ N,M(θr) has the e-Erdős–Pósa property with gap fr.

Proof. Lemma 5.6 applied toM(θr) using Theorem 5.28 yields a gap fr(k) = O(kr2 polylog kr)
for the vertex-Erdős-Pósa property of M(θr). Then, Lemma 5.25 yields a gap 2kr ·
fr(k) = O(k2r3 polylog kr) for the edge version, as required. A gap of order of mag-
nitude O(k4r2 polylog kr) can be obtained the same way using Theorem 5.5 instead of
Lemma 5.6.

5.4.3 Double pumpkins

For every r, r′ ∈ N, we denote by θr,r′ the graph obtained by identifying one vertex of
θr with one vertex of θr′ . In this section, we use the tools provided by Section 5.3 to
prove thatM(θr,r′) have the edge-Erdős–Pósa-property for simple graphs.

Theorem 5.29. For every r, r′ ∈ N, M(θr,r′) has the edge-Erdős–Pósa property for simple
graphs.
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We must note that at the time of writing, the graphs {θr,r′}r,r′∈N are the only graphs
on at least three vertices, the majors of which are known to have the edge-Erdős–
Pósa property. This fact must be compared to the results on the vertex variant where
the graphs H for whichM(H) has the vertex-Erdős–Pósa property have been com-
pletely characterized: they are exactly the planar graphs [RS86, Theorem 8.2] (see
Section 5.6). This raises the following question.

Question 5.30. What are the graphs, the majors of which have the edge-Erdős–Pósa
property?

Lemma 5.47 provides a partial answer to Question 5.30: all these graphs are pla-
nar. Prior to the proof of Theorem 5.29, we need to introduce a result of Ding et
al. [DO96], the statement of which requires additional definitions.

Walls, fans, paths, and stars. Wall have been defined in Subsection 2.3.2. As a
reminder, the 7-wall is depicted in Figure 5.1. The n-fan is the graph obtained by
adding a dominating vertex to a path on n vertices. A collection of paths is said to
be independent if two paths of the collection never share interior vertices. The n-star
is the graph obtained by replacing every edge of K1,n with n independent paths of
two edges. The n-path is the graph obtained by replacing every edge of an n-edge
path with n independent paths of two edges. Examples of these graphs are depicted
in Figure 5.1. The wall number (respectively fan number, star number, and path number)
of a graph G is defined as the largest integer k such that G contains a subdivision of
a k-wall (respectively of a k-fan, of a k-star, of a k-path), or infinity is no such integer
exists. Let γ(G) denote the maximum of the wall number, fan number, star number,
and path number of a graph G.

Ding et al. gave in [DO96] the following characterization of classes of graphs of
bounded tree-partition width in terms of excluded topological minors.

Theorem 5.31 ([DO96]). There is a function f5 : N → N such that every simple graph G
satisfies tpw(G) ≤ f5(γ(G)).

In other words, for every integer k, every simple graph of large enough tree-
partition width contains a subdivision of one of the following graphs: the k-wall,
the k-fan, the k-path, or the k-star.

Notice that for every r, r′ ∈ N, r′ ≤ r, the graph θr,r′ is a minor of the following
graphs: the r-path, the r-star, the (r + r′ + 1)-fan, and the r-wall (for r ≥ 6). Hence,
every simple graph of large enough tree-partition width contains a θr,r′-major. This
can easily be generalized to edge-disjoint packings, as follows.

Lemma 5.32. For every r, r′, k ∈ N, every graph G satisfying γ(G) ≥ k(r+ r′+ 7) contains
an e-M(θr,r′)-packing of size k.

Using Theorem 5.31, we get the following corollary.

Corollary 5.33. For every r, r′, k ∈ N, every simple graph G satisfying tpw(G) ≥ f5(k(r+
r′ + 7)) contains an e-M(θr,r′)-packing of size k.
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7-fan

4-star

7-wall

4-path

Figure 5.1: Unavoidable patterns of graphs of large tree-partition width.

In other words, Corollary 5.33 provides a ceiling for the triple (tpw,M(θr,r′), e) in
simple graphs. The proof of Theorem 5.29 now follows by a straighforward applica-
tion of Theorem 5.3 to Corollary 5.33 and Lemma 5.15.

5.4.4 Planar subcubic graphs

In this section, we apply the tools of Section 5.3 to immersion expansions of planar
subcubic graphs. The result we prove is the following.

Theorem 5.34. For every connected planar subcubic graph H on h > 0 edges and every
x ∈ {v, e}, the class I(H) has the x-Erdős–Pósa property with a gap that is polynomial in
both h and the packing number.

We will show in Section 5.5 that neither the planarity requirement, nor the subcu-
bicity can be droped.

The main tools of our proof are the graph invariants of tree-cut width and tree-
partition width. Our proof uses the exclusion result Theorem 4.66 which implies that
(as the disjoint union of planar subcubic graphs is planar subcubic), for every fixed
planar subcubic graph H and every positive integer k, every graph of large enough
tree-cut width contains k vertex-disjoint immersion expansions of H . This allows us
to focus on graphs of bounded tree-cut width. By applying suitable reductions, we
finally reduce the problem to graphs of bounded tree partition width (Lemma 5.35).
The result then follows by the application of Theorem 5.3.
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From tree-cut decompositions to tree-partitions

The purpose of this section is to reduce the proof of Theorem 5.34 (when x = e)
for host graphs with bounded tree-cut width to the case where host graphs have
bounded tree-partition width. In particular, we prove the following lemma.

Lemma 5.35. For every connected graph G, and every connected graph H with at least one
edge, there is a graph G′ and a graph H ′ such that

• tpw(G′) ≤ (tcw(G) + 1)2/2,

• e-packI(H′)(G
′) ≤ e-packI(H)(G), and

• e-coverI(H)(G) ≤ e-coverI(H′)(G
′).

Observe that, with the notation of Lemma 5.35, if we prove that

e-coverI(H′)(G
′) ≤ f(e-packI(H′)(G

′))

for some non-decreasing function f : N→ N, then it immediately implies

e-coverI(H)(G) ≤ f(e-packI(H)(G)).

For every vertex v of a graph G, we denote by mdegG(v) (or mdeg(v) when G is
given by the context) the number of edges (counting multiplicities) incident with v.
For every graph G, we define G+ as the graph obtained if, for every vertex v, we add
two new vertices v′ and v′′ and the edges {v′, v′′} (of multiplicity 2), {v, v′} and {v, v′′}
(both of multiplicity 1). Observe that for every G, every vertex of G+ is incident to
at least 3 edges (counting multiplicities). We also define G∗ as the graph obtained
by adding, for every vertex v, the new vertices v′1, . . . , v′mdeg(v) and v′′1 , . . . , v

′′
mdeg(v) and

the edges {v′i, v′′i } (of multiplicity 2), {v, v′i}, and {v, v′′i } (both of multiplicity 1), for
every i ∈ J1, deg(v)K. If v is a vertex of G, then we denote by Zv,i the subgraph
G∗[{v, v′i, v′′i }] for every i ∈ J1,mdegG(v)K.

Observation 5.36. LetH andG be two graphs, and let (φ, ψ) be anH-immersion model
in G. Then for every vertex x of G, we have mdegH(x) ≤ mdegG(φ(x)).

Our first aim is to prove the following three lemmata.

Lemma 5.37. Let G be a graph, let H be a connected graph with at least one edge and let G′

be a subdivision of G∗. Then we have

• e-packI(H+)(G
∗) = e-packI(H+)(G

′) and

• e-coverI(H+)(G
∗) = e-coverI(H+)(G

′).

Proof. We denote by S the set of subdivision vertices added during the construction
ofG′ fromG+. AsG′ is a subdivision ofG∗, we have e-packI(H+)(G

′) ≥ e-packI(H+)(G
∗)

and e-coverI(H+)(G
′) ≥ e-coverI(H+)(G

∗).
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As a consequence of Observation 5.36 and the fact that every vertex of H+ is in-
cident with at least 3 edges (counting multiplicities), if M is an H+-immersion ex-
pansion in G′ then no branch vertex of M belongs to S. Indeed, every vertex of S
has multidegree 2 in G′. Therefore, by dissolving in M the vertices of S that belong to
V (M), we obtain anH+-immersion expansion inG∗. It follows that e-packI(H+)(G

∗) ≥
e-packI(H+)(G

′), hence e-packI(H+)(G
∗) = e-packI(H+)(G

′).
On the other hand, let X be an H+-cover of G∗ and let X ′ be a set of edges con-

structed by taking, for every e ∈ X , an edge of the path of G′ connecting the end-
points of e that has been created by subdividing e. Assume that X ′ is not an H+-
cover of G′. According to the remark above, this implies that X is not an H+-cover
of G∗, a contradiction. Hence X ′ is an H+-cover of G′ and thus e-coverI(H+)(G

∗) =
e-coverI(H+)(G

′).

Lemma 5.38. For every two graphs H and G such that H is connected and has at least one
edge, we have e-packI(H+)(G

∗) ≤ e-packI(H)(G).

Proof. In G∗ (respectively H+), we say that a vertex is original if it belongs to V (G)
(respectively V (H)). Let (φ, ψ) be an H+-immersion model in G∗.

We first show that if u is an original vertex of H+, then φ(u) is an original vertex
of G∗. By contradiction, let us assume that φ(u) is not original, for some original
vertex u ofH+. Then φ(u) = v′i or φ(u) = v′′i , for some v ∈ V (G) and i ∈ J1,mdegG(v)K.

Observe that since H is connected and has at least one edge, every vertex of H+

has degree at least three: let x, y, and z be the endpoints of three multiedges incident
with u. Then ψ({u, x}), ψ({u, x}), and ψ({u, x}) are edge-disjoint paths connecting
φ(u) to three distinct vertices. This is not possible because there is an edge cut of size
two, {{v, v′i}, {v, v′′i }}, separating the two vertices v′i and v′′i (among which is φ(u))
from the rest of the graph. Consequently, if u ∈ V (H+) is original, then φ(u) is origi-
nal.

Let us now consider an edge {u, v} ∈ E(H). By the above remark, φ(u) and
φ(v) are original vertices of G∗. It is easy to see that ψ({u, v}) contains only original
vertices of G∗. Indeed, if this path contained a non-original vertex w′ or w′′ for some
original vertex w of V (G∗), it would use w twice in order to reach u and v, what
is not allowed. Therefore, from the definition of H+, the pair (φ|V (H), ψ|E(H)) is an
H-immersion model of G.

We proved that every H+-immersion-expansion of G∗ contains an H-immersion-
expansion that belongs to the subgraph G of G∗. Consequently every H+-packing
of G∗ contains an H-packing of the same size that belongs to G, and the desired
inequality follows.

Lemma 5.39. For every two graphs H and G such that H is connected and has at least one
edge, we have e-coverI(H)(G) ≤ e-coverI(H+)(G

∗).

Proof. Similarly to the proof of Lemma 5.38, we say that an edge of G∗ is original if it
belongs to E(G). Let X ⊆ E(G∗) be a minimum cover of H+-immersion expansions
in G∗.
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First case: all the edges in X are original. In this case, X is an H-cover of G as well.
Indeed, if G \ X contains an H-immersion expansion M , then G∗ \ X contains M∗

that, in turn, contains H+. Hence in this case, e-coverI(H)(G) ≤ e-coverI(H+)(G
∗).

Second case: there is an edge e ∈ X that is not original. Let v be the original vertex of
G∗ such that either e ∈ Zv,l for some l ∈ J1,mdegG(v)K. Let us first show the following
claim.
Claim: For every i ∈ J1,mdegG(v)K, there is an edge of Zv,i that belongs to X .

Proof of claim: Looking for a contradiction, let us assume that we have E(Zv,i) ∩X =
∅, for some i ∈ J1,mdegG(v)K. Clearly i 6= l. By minimality of X , the graph G \
(X \ {e}) contains an H+-immersion expansion M that uses e. Observe that M ′ =
M \ E(Zv,l) ∪ E(Zv,i) contains an H+-immersion expansion (since Zv,l and Zv,i are
isomorphic). Hence, M ′ is a subgraph of G\ (X \{e}) that contains an H+-immersion
expansion. This is not possible as X is a cover, so we reach the contradiction we were
looking for and the claim holds. �

We build a set Y as follows. For every edge f ∈ X , if f is original then we add
to Y . Otherwise, if vf is the (original) vertex of G∗ such that e ∈ E(Zvf ,i) for some
i ∈ J1,mdegG(vf )K, then we add to Y all edges that are incident to vf in G.

The above claim ensures that when a non-original edge f of X is encountered,
then X contains an edge in each of Zvf ,1, . . . , Zvf ,mdegG(vf ). Therefore, the same set of
edges, of size mdegG(vf ), will be added to Y when encountering an other edge from
Zvf ,1, . . . , Zvf ,mdegG(vf ). Consequently, |X| = |Y |.

Let us now show that Y is an H+-cover of G∗. Suppose that there exists an H+-
immersion expansion M in G∗ \Y . Observe that since H is connected and has at least
one edge, M does not belong to

⋃
i∈{1,...,mdegG(u)} Zu,i, for every original vertex u of G∗.

Let
Z =

⋃
u∈V (G)

⋃
i∈{1,...,mdegG(u)}

E(Zu,i)

Then M is a subgraph of G \ (Y ∪ Z). As X ⊆ Y ∪ Z, this contradicts the fact that X
is a cover. Therefore, Y is an H+-cover. Moreover all the edges in Y are original. As
this situation is treated by the first case above, we are done.

If (T, {Xt}t∈V (T )) is a tree-cut decomposition of a graph G and t ∈ V (T ), we say
than an edge of G crosses the bag Xt if its endpoints belongs to bags Xt1 and Xt2 ,
for some t1, t2 ∈ V (T ) such that t belongs to the interior of the (unique) path of T
connecting t1 to t2. We are now ready to prove Lemma 5.35, that we recall hereafter.

Lemma 5.35. For every connected graph G, and every connected graph H with at least one
edge, there is a graph G′ and a graph H ′ such that

• tpw(G′) ≤ (tcw(G) + 1)2/2,

• e-packI(H′)(G
′) ≤ e-packI(H)(G), and

• e-coverI(H)(G) ≤ e-coverI(H′)(G
′).
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Proof. Let k = tcw(G). We examine the nontrivial case where G is not a tree, i.e.,
tcw(G) ≥ 2. Let us consider the graph G∗. We claim that tcw(G∗) = tcw(G). Indeed,
starting from an optimal tree-cut decomposition of G, we can, for every vertex v of G
and for every i ∈ J1,mdegG(v)K, create a bag that is a children of the one of v and con-
tains {v′i, v′′i }. According to the definition of G∗, this creates a tree-cut decomposition
D = ((T, s), {Xt}t∈V (T )) of G∗. Observe that for every vertex x that we introduced to
the tree of the decomposition during this process, adhD(x) = 2 and the corresponding
bag has size two. This proves that tcw(G∗) ≤ max(tcw(G), 2) = tcw(G). As G is a
subgraph of G∗, we obtain tcw(G) ≤ tcw(G∗) and the proof of the claim is complete.

According to Proposition 2.8, we can assume that G∗ has a nice rooted tree-cut
decomposition of width ≤ k. For notational simplicity we again denote it by D =
((T, s), {Xt}t∈V (T )) and, obviously, we can also assume that all leaves of T correspond
to non-empty bags.

Our next step is to transform the rooted tree-cut decomposition D into a rooted
tree-partition D′ = ((T, s), {X ′t}t∈V (T )) of a subdivision G′ of G∗. Notice that the only
differences between two decompositions are that, in a tree-cut decomposition, empty
bags are allowed as well as edges connecting vertices of bags corresponding to non-
adjacent vertices of T .

We proceed as follows: if X is a bag crossed by edges, we subdivide every edge
crossing X and add the obtained subdivision vertex to X . By repeating this process
we decrease at each step the number of bags crossed by edges, that eventually reaches
zero. Let G′ be the obtained graph and observe that G′ is a subdivision of G. As G
is connected, the obtained rooted tree-cut decompositionD′ = ((T, s), {X ′t}t∈V (T )) is a
rooted tree partition of G′.

Recall that we say that a vertex t ∈ V (T ) is thin if adh(t) ≤ 2, bold otherwise.
Notice that the adhesion of any bag of T in D is the same as in D′. However, the
bags of D′ may grow during the construction of G′. Let t be a vertex of T and let
{t1, . . . , tm} be the set of children of t. We claim that |X ′t| ≤ (k + 1)2/2.

Let Et be the set of edges crossing Xt in G. Let Ht be the torso of D at t, and let
H ′t = Ht \Xt. Observe that |Et| is the same as the number of edges in H ′t. Let zp be the
vertex of H ′t corresponding to the parent of t, and similarly for each i ∈ {1, . . . ,m} let
zi be the vertex of H ′t corresponding to the child ti of t. Notice that if ti is a thin child
of t, then zi can be adjacent to only zp as D is a nice rooted tree-cut decomposition.
Thus the sum of the number of incident edges with zi in H ′t for all thin children ti of t
is at most adhD(t) ≤ k. On the other hand, if ti is a bold child of t, then zi has at least 3
neighbors in Ht, and thus it is contained in the 3-center of (Ht, Xt). Thus, the number
of all bold children of t is bounded by k − |Xt|. Since each vertex in H ′t is incident
with at most k edges, the total number of edges in H ′t is at most (k− |Xt|+ 1)k/2 + k.
As |E(H ′t)| = |Et| = |X ′t \ Xt|, it implies that |X ′t| ≤ |Xt| + k · (k − |Xt| + 2)/2 ≤
max{2k, k(k + 2)/2} ≤ (k + 1)2/2. We conclude that G′ has a rooted tree-partition of
width at most (tcw(G) + 1)2/2.

Recall that G′ is a subdivision of G∗. By the virtue of Lemma 5.39, Lemma 5.38,
and Lemma 5.37 (relating the packing and covering numbers of I(H) and I(H+)
in G and G′) we obtain that e-packI(H+)(G

′) ≤ e-packI(H)(G) and e-coverI(H)(G) ≤
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e-coverI(H+)(G
′). Hence G′ satisfies the desired properties.

Therefore we get the following lemma.

Lemma 5.40. Let H be a graph on h edges, let r be an integer and let G be a graph such that
tcw(G) ≤ r. Then e-coverI(H)(G) ≤ e-packI(H)(G) · h(r + 1)4.

Proof. Let G′ and H ′ be the graphs given by Lemma 5.35. As tcw(G) ≤ r we have
tpw(G′) ≤ (r + 1)2/2. Applying Lemma 5.15, we get:

e-coverI(H′)(G
′) ≤ e-packI(H′)(G

′) · h(r + 1)4.

Then Lemma 5.35 provides the desired inequality (cf. the remark following it).

Recall that our current goal is to prove Theorem 5.34, that we restate for conve-
nience.

Theorem 5.34. For every connected planar subcubic graph H on h > 0 edges and every
x ∈ {v, e}, the class I(H) has the x-Erdős–Pósa property with a gap that is polynomial in
both h and the packing number.

The edge version of this result follows from the application of the Master Theorem
Theorem 5.3, using the ceiling provided by Theorem 4.66 together with Lemma 5.40.

The vertex case

To prove the vertex version of Theorem 5.34 is a much easier task. For this, we follow
the same methodology by using the graph parameter of treewidth instead of tree-cut
width, and topological minors instead of immersions. We use the following vertex-
counterpart of Theorem 4.66.

Lemma 5.41. For every h ∈ N there is a function f : N → N with f(k) = (h · k)O(1)

such that, for every planar subcubic graph H with |V (H)| + |E(H)| = h, f is a ceiling for
(tw, I(H), v).

Proof. A equivalent statement of Theorem 4.26 is that every graph of treewidth at
least f1(k) contains a subdivision of a wall of height and width Ω(k) as a subgraph,
for every k ∈ N. According to Lemma 4.70, every planar subcubic graph H is an
immersion of the wall of width and height h, where h = |V (H)| + |E(H)|. Therefore
the wall of width and height kh contains k-edge-disjoint I(H)-subgraphs. We de-
duce that every graph of treewidth at least f1(c · hk) contains k vertex-disjoint I(H)-
subgraphs, for some constant c not depending on H . We note that f1 is polynomial
and this concludes the proof.

The vertex version of Theorem 5.34 follows by the application of Theorem 5.3 to
Lemma 5.41 and Lemma 5.7.
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5.5 Negative results

Let us now here state several negative results on the Erdős–Pósa property of classes
related to containment relations.

In the proofs below, we use the notion of Euler genus of a graph G. The Euler
genus of a non-orientable surface Σ is equal to the non-orientable genus g̃(Σ) (or the
crosscap number). The Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ) is
the orientable genus of Σ. We refer to the book of Mohar and Thomassen [MT01] for
more details on graph embeddings. The Euler genus of a graph G is the minimum
integer γ such that G can be embedded on a surface of the Euler genus γ.

Lemma 5.42. Let H be a non-planar graph. Then T (H) does not have the v-Erdős–Pósa
property.

Proof. Informally, we will construct, for every positive integer k, a graphGk by “thick-
ening” the vertices and edges of H . From the non-planarity of H and the way this
graph is constructed, we will deduce that v-packT (H)(Gk) = 1. On the other hand,
the connectivity provided by the thickening of H will ensure that the removal of any
k − 1 vertices will leave a subdivision of H unaltered.

For every integers k > 0 and d, we denote by Γd,k the graph obtained from a grid
of width dk and height d + k − 1 by adding k vertices a1, . . . , ak (that we call apices)
and connecting a1 to the d first vertices on the first row of the grid (starting from the
left), a2 to the d next vertices, and so on. For every i ∈ J0, d− 1K, the set of vertices at
indices {ik + j, j ∈ J0, k − 1K} on the last row of Γd,k is called the i-th port of Γd,k. We
will refer to the vertex at index ik+ j of the last row as the j-th vertex of the i-th port.
See Figure 5.2 for a drawing of Γ4,3. On this drawing, the ports are U0, . . . , U3.

Let k be a positive integer. For every vertex v of H , we arbitrarily choose an
ordering of its neighbors and we denote by σv(u) the rank of u in this ordering (that
takes values from 0 to deg(v)− 1), for every neighbor u of v. We also let Fv be a copy
of the graph Γdeg(v),k.

The graph Gk can be constructed from the disjoint union of the graphs of {Fv, v ∈
V (H)} by adding, for every pair u, v of adjacent vertices of H , the edge connecting
the i-th vertex of the σv(u)-th port of Fv to the i-th vertex of the σu(v)-th port of Fu,
for every i ∈ J0, k − 1K . Informally, we connect the vertices of the σv(u)-th port of Fv
to the vertices of the σu(v)-th port of Fu using “parallel” edges. Figure 5.3 depicts the
graph Gk when G = K5 and k = 3.

The Euler genera of Gk and H are equal, however, as H is not planar, the Euler
genus of the disjoint union of two copies of H is larger than that of H (see [BHK62])
and we get that v-packT (H)(Gk) < 2. On the other hand, our construction ensures that
v-packT (H)(Gk) ≥ 1.

Let us now show that for every subsetX ⊆ V (Gk) with |X| < k we have v-packT (H)(G\
X) ≥ 1. This would complete the proof, since {Gk, k ∈ N≥1} would be an infinite
family of graphs that have no v-T (H)-packings of size 2 but where a minimum v-
T (H)-cover can be arbitrarily large.

Let u and v be two adjacent vertices of H , and let d = deg(v). For every i ∈
J0, k − 1K, let Ci denote the vertices that are
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U0

U1

U2

U3

a1

a2

a3

Figure 5.2: The gadget Γ4,3 used in Lemma 5.42.

• either in the same column of Fu as the i-th vertex of the σu(v)-th port of Fu;

• or in the same column of Fv as the i-th vertex of the σv(u)-th port of Fv.

The family {Ci, i ∈ J1, kK} contains k vertex disjoint elements, therefore at least one
of them does not contain any vertex from X (as |X| < k). Therefore, for every edge
{u, v} of H there is an edge f({u, v}) between a vertex x of the σu(v)-th port of Fu and
a vertex y of the σv(u)-th port of Fv such that no vertex of the same column as x in
Fu (respectively y in Fv) belong to X. Using the same argument we can show that for
every vertex v ∈ V (H) there is an apex a such that the columns of Fv adjacent to a are
free of vertices of X. Also we know that at least d rows do not contain vertices from
X , as the grid of Fv has height d + k − 1. Therefore Fv contains as a subgraph a grid
Sv such that:

1. an apex a is adjacent to d vertices of the first row of Sv;

2. for every vertex u adjacent to v, the edge f({u, v}) shares one vertex the last row
of Sv;
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Figure 5.3: The “thickened” K5 for k = 3. Edges with dashed ends are connected to
the aligned edges at the opposite side of the figure. This graph contains a subdivision
ofK5 but not two vertex-disjoint ones, and the removal of any two vertices leaves one
subdivision of K5 unaltered.

3. no vertex of the last row of Sv belong to two edges f({u, v}) and f({u′, v}) for
some distinct neighbors u, u′ of v;

4. Sv has height and width at least d;

5. Sv does not contain any vertex of X.

We deduce that Fv \ X contains d paths P0, . . . , Pd−1 that have only the apex a as
common vertex and such that Pi connects a to an endpoint of f({v, ui}), where ui is
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the neighbor of v of rank i, for every i ∈ J0, d− 1K . It is now easy to see that the graph

Gk

 ⋃
v∈V (H)

degH(v)−1⋃
i=0

V (P v
i )


contains a subdivision of H that does not contain any vertex of X. This concludes the
proof.

The proof of Lemma 5.42 can be adapted to the setting of the edge-Erdős–Pósa
property under the additional requirement that the pattern is subcubic.

Lemma 5.43. Let H be a subcubic non-planar graph. Then T (H) does not have the e-Erdős–
Pósa property.

Proof. Let k be a positive integer. We use the same construction of Gk as in the proof
of Lemma 5.42 with the following modifications: each vertex v of degree d ≥ 4 of
Gk is replaced by a subcubic tree, the leaves of which are the neighbors of v. Let us
call G′k the graph we obtain. It is not hard to see that the genera of G′k and Gk are
equal. Moreover, as G′k is subcubic, every e-T (H)-packing is also an v-T (H)-packing.
We then obtain as previously that e-packT (H)(G

′
k) = 1. The arguments to show that

e-coverT (H)(G
′
k) ≥ k are identical to the ones used in the proof of Lemma 5.42.

In fact, Lemma 5.42 and Lemma 5.43 can be used to prove that more general
classes do not have the Erdős–Pósa property, as follows. As we will see in Corol-
lary 5.45 and Corollary 5.46, the conditions of Lemma 5.44 already encompass several
well-studied classes.

Lemma 5.44. Let x ∈ {v, e}, let H be a non-planar graph and letH be a class of graphs such
that:

(i) T (H) ⊆ H; and

(ii) H is graph of minimum Euler genus inH;

(iii) if x = e, then H is subcubic.

ThenH does not have the x-Erdős–Pósa property.

Proof. Let k be a positive integer. We again consider the constructions of Gk and G′k
used in the proofs of Lemma 5.42 and Lemma 5.43. Let Jk be Gk if x = v and Jk = G′k
if x = e. Let show that v-packH(Jk) = 1. For this, let us assume that there is an x-T (H)-
packing F1, . . . , Fp, for some p ∈ N≥2 in Jk. It is crucial to note that in both the cases
x = v and x = e, the subgraphs F1, . . . , Fp are vertex-disjoint. In fact, when x = v,
this follows from the definition of a v-T (H)-packing, and if x = e it is because G′k is
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subcubic. Then we have:

γ(Jk) ≥ γ(F1 ∪ · · · ∪ Fp)

=

p∑
i=1

γ(Fi) (see [BHK62])

≥ p · γ(H) (by minimality of H)
γ(Jk) > γ(H) (contradiction).

We reached a contradiction, hence v-packH(Jk) = 1. On the other hand,

v-coverH(Jk) ≥ v-coverT (H)(Jk) ≥ k.

The last inequality can be found in the proof of Lemma 5.42 or Lemma 5.43 (depend-
ing if x = v or x = e). This concludes the proof.

Corollary 5.45 (proved in [RS86] for M(H)). For every non-planar graph H , none of
I(H) andM(H) have the v-Erdős–Pósa property.

Corollary 5.46. For every subcubic non-planar graph H , none of I(H) andM(H) have the
e-Erdős–Pósa property.

Corollary 5.46 can be strengthened by dropping the degree condition on H when
considering minor models of H , as follows.

Lemma 5.47. For every non-planar graph H ,M(H) does not have the e-Erdős–Pósa prop-
erty.

Proof. Let k be a positive integer. Again we use the graph G′k constructed as in
Lemma 5.43. We modify it by replacing every apex a by a subcubic tree, the leaves of
which are the neighbors of a. Let G′′k denote the graph that we obtain. Observe that
G′′k is subcubic. Therefore, using the same argument as in the proof of Lemma 5.43
we can show that e-packM(H)(G) = 1. In the sequel we use the terminology of the
proof of Lemma 5.42. Let F ′′v denote the graph obtained from Fv by replacing every
vertex u of degree at least 4 by a subcubic tree, the leaves of which are the neighbors
of u, for every v ∈ V (H). The proof that e-coverM(H)(G) ≥ k goes as in the proof of
Lemma 5.42, except that we obtain, for every v ∈ V (H), that F ′′v \ X contains a tree,
the leaves of which are endpoints of f({v, ui}) for i ∈ J0, d− 1K (instead of paths con-
necting an apex to endpoints of f({v, ui})). Fortunately this is enough to guarantee
that G′′k \X contains H as a minor, and we are done.

Thomassen in [Tho88] provided an example of a tree such that H 6∈ EPv
≤t.m.

(the
same graph does not belong to EPe

≤t.m.
neither). Inspired by this construction we give

another such graph that, additionally, is 2-connected.

Lemma 5.48. There is a 2-connected (respectively 3-connected) planar graph that belongs to
none of EPv

≤t.m.
, EPe

≤t.m.
, EPv

≤imm.
, and EPe

≤imm.
.
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Figure 5.4: A 2-connected graph H for which I(H) does not have the (vertex or edge)
Erdős–Pósa property.

Informal proof. This graph H is depicted in Figure 5.4. To see that H 6∈ EPv
≤t.m.

and
H 6∈ EPe

≤t.m.
, consider as host graph G the graph in Figure 5.5. This graph consists of

a main body that is a wall of height 3 and three triples of graphs attached at its upper,
leftmost, and lower paths. Each of these triples consists of three copies of some of
the 3-connected components of H . Notice that G does not contain more than one
H-immersion expansion. However, in order to cover all H-immersion expansions
of G one needs to remove at least 3 edges/vertices. By increasing the heigh of the
wall of G, we may increase the minimum size of an I(H)-vertex/edge cover while
no I(H)-vertex/edge packing of size greater than 1 will appear. It is easy to modify
H so to make it 3-connected: just add a new vertex and make it adjacent with the tree
vertices of degree 4. The resulting graph H ′ remains planar. The same arguments,
applied to an easy modification of the host graph, can prove that H ′ is not a graph in
Hv orHe.

Figure 5.5: The host graph G.

5.6 Summary of results

5.6.1 Results in terms of containment relations

For every partial order � on graphs, and for every graph H , let

G�(H) = {G, H �G}.

182



For instance, G≤m.(H) is the class of all graphs containing H as a minor. For every
x ∈ {v, e}, we define

EPx
� = {H, G�(H) has the x-Erdős–Pósa property}

A general question on Erdős–Pósa properties is to characterize EPx
� for several con-

tainment relations. We start with the following easy observation.

Lemma 5.49. If � is the subgraph or the induced subgraph relation, x ∈ {v, e}, and H is a
non-trivial graph, then G�(H) has the x-Erdős–Pósa property, with gap f : k 7→ k · |Ax(G)|.
In other words, EPx

� is the set of all graphs.

Proof. Let H and G be two graphs and let k = x-packG�(H)(G). Let M1, . . . ,Mk be
a v-G�(H)-packing (respectively e-G�(H)-packing) of size k with the minimal num-
ber of vertices (respectively edges). Observe that in this case, |Mi| = |H| (respectively
‖Mi‖ = ‖H‖) for every i ∈ J1, kK . LetX =

⋃k
i=1 V (Mi) (respectivelyX =

⋃k
i=1E(Mi)).

As the packing we consider is of size k, the graph G \ X does not have any sub-
graph isomorphic to a member of G�(H). Hence X is an v-G�(H)-cover (respectively
e-G�(H)-cover), and besides we have |X| = k · |H| (respectively |X| = k · ‖H‖).

Notice that in case x = v, it is not necessary to demand that H is non-trivial in the
statement of Lemma 5.49.

Let us summarize known results that are related to the most common containment
relations.

Subgraphs and induced subgraphs: EPx
� is the class of all graphs, both for � being

the subgraph and induced subgraph relation, for every x ∈ {v, e} (Lemma 5.49).

Minors: EPv
≤m.

is the class of planar graphs [RS86, Theorem 8.2]. About the edge
version, Theorem 5.24, Theorem 5.23, and Theorem 5.29 imply that EPe

≤m.
in-

cludes the class {θr}r∈N≥1
∪ {θr,r′}r,r′∈N, and we show in Lemma 5.47 that EPe

≤m.

is a subclass of planar graphs.

Topological Minors: EPv
≤t.m.

has been characterized in the unpublished manuscript [LPW14].
There are trees, 2-connected and 3-connected graphs that belongs to none of
EPv
≤t.m.

and EPe
≤t.m.

([Tho88] and Lemma 5.48). The class EPv
≤t.m.

does not con-
tain any non-planar graph (Lemma 5.42) and EPe

≤t.m.
does not contain any non-

planar subcubic graph (Lemma 5.43).

Immersions: As proved in Subsection 5.4.4, EPv
≤imm.

contains all planar subcubic
graphs and EPe

≤imm.
contains all non-trivial, connected, planar subcubic graphs.

Moreover, EPv
≤imm.

does not contain any non-planar graph (Corollary 5.45) and
EPe
≤imm.

does not contain any subcubic non-planar graph (Corollary 5.46). On
the other hand there is a 3-connected planar graph that belongs to none of
EPv
≤imm.

and EPv
≤imm.

Lemma 5.48.
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5.6.2 Results in terms of graph classes

In the following sections we list positive and negative results on the Erdős–Pósaproperty,
and open problems.

Let us define the notation used in all the tables of Section 5.6.2 and Section 5.6.2.
The fourth column of the tables gives the type of the packings/covers the current
line is about. The character v (respectively e) refers to vertex-disjoint (respectively
edge-disjoint) packings and vertex (respectively edge) covers. We write v/e when the
mentioned result holds for both the vertex and the edge version. The symbol v1/2

(resp. e1/2) indicates that the packing is allowed to use at most twice each vertex
(resp. each edge) and that the cover contains vertices (resp. edges). Finally, w stands
for vertex covers and packings where every vertex v of the host graph can be used
at most w(v) times by every packing, where w is a function mapping reals to the ver-
tices of the host graph. The more specific definitions are given in the corresponding
sections.

Positive results

We provide a series of tables presenting known results on the Erdős–Pósa property of
some graph classes, sorted depending on the pattern. Results related to other struc-
tures (matroids, hypergraphs, geometry) and to fractional versions are not mentioned
here.

A dash in the “gap” column means that the authors did not explicitly provided
a gap function, even though one might be computable from the proof. The fourth
column refers to the type of packing/cover, as defined above.

Acyclic patterns. Let G be a graph. For every S, T ⊆ V (G), an (S, T )-path of G is
a path with the one endpoint in S and the other one in T . An S-path is a path with
both endpoints (which are distinct) in S. If S is a collection of subsets of V (G), an
S-path is a path that has endpoints in two differents elements of S. A generalization
of these settings have been introduced in [MW15], where the pairs of vertices that
can be connected by a path are specified by an auxilliary graph. If S ⊆ V (G) and H
(demand graph) is a graph with vertex set S, a path of G is said to be H-valid if its
endpoints are adjacent vertices of H .
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Ref. Guest classH Host class G T. Gap
[Kőn31] K2 bipartite v k
[LY78] directed cuts any e k
[Men27] (S, T )-paths any v/e k
[Grü38] directed (S, T )-

paths
any (digraph) v/e k

[Gal64] S-paths any v 2k
[Mad78b] S-paths any v see [Sch01]
[Mad78a] S-paths any e see [SS04]
[CGG+06] non-zero directed

S-paths
edge-group-
labeled digraphs

v 2k − 2

[MW15] H-valid paths, H
with no matching
of size t

any v 22O(k+t)

[FJW13a],
Th. 5.19 M(H), H forest any v OH(k)

Triangles. A graph is flat if every edge belongs to at most two triangles.

Ref. Guest classH Host class G T. Gap

[Tuz90] triangles
planar graphs e 2k
G with ||G|| ≥
7|G|2/16

e 2k

tripartite graphs e 7k/3
[Kri95] triangles T (K3,3)-free

graphs
e 2k

[HK88] triangles tripartite graphs e 1.956k
[Hax99] triangles any e (3− 3

23
)k

[ALBT11] triangles odd-wheel-free
graphs e 2k

4-colorable graphs

[HKT11] triangles K4-free planar
graphs e 3k/2

K4-free flat graphs

Cycles. The statement of the results in [DZ02, DXZ03] requires additional defini-
tion. An odd ring is a graph obtained from an odd cycle by replacing every edge
{u, v} by either a triangle, or three triangles uab and ucd together with the edges
{b, c} and {a, d}. We denote by G1 the class of graphs with no induced subdivision of
the following: K2,3, a wheel, or an odd ring. We denote by G2 the class of graphs with
no induced subdivision of the following: K3,3, a wheel, or an odd ring. ~C≥t is the class
of directed cycles of length at least t.

The results on directed cycles also need few more definitions. A digraph is strongly
planar if it has a planar drawing such that for every vertex v, the edges with head v
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form an interval in the cyclic ordering of edges incident with v (definition from [GT10]).
An odd double circuit is a digraph obtained from an undirected circuit of odd length
more than 2 by replacing each edge by a pair of directed edges, one in each direction.
F7 is the digraph obtained from the directed cycle on vertices v1, . . . , v7, v1, by adding
the edges creating the directed cycle v1, v3, v5, v7, v2, v4, v6, v1.We denote byF the class
of digraphs with no butterfly minor isomorphic to an odd double circuit, or F7 (for
the definition of butterfly minors of digraphs see [GT10, JRST01, AKKW16]).

Results related to cycles with length constraints, with prescribed vertices, or to
extensions of cycles are presented in the forthcoming tables.

Ref. Guest classH Host class G T. Gap
[EP65] cycles any v O(k log k)
[Sim67] cycles any v < (4 + o(1)) k log k
[Vos68] cycles any v ≤ (2 + o(1)) k log k
[Die05] cycles any e (2 + o(1))k log k
[DZ02] cycles G1, weighted w k
[DXZ03] cycles G2 v k

[KLL02b] cycles planar graphs v 5k
outerplanar
graphs

v 2k

[MYZ13] cycles planar graphs v 3k
e 4k − 1

[RRST96a] directed cycles any v –
[RS96] directed cycles planar v O(k log(k) log log k))

[GT10] directed cycles strongly planar v kF
[LY78] directed cycles planar e k
[Sey96] directed cycles eulerian with a lin-

kless embedding
in 3-space

e k

[HJW16] cycles non homo-
loguous to zero

embedded graphs v1/2 –

Cycles with length constraints. The class of cycles of length at least t is referred to
as C≥t. For every positive integer k with, we say that a graph is k-near bipartite if every
set X of vertices contains a stable of size at least |X|/2− k.
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Ref. Guest classH Host class G T. Gap
[Ree99] odd cycles planar graphs v superexponential

[FHRV05] odd cycles planar graphs v 10k
e 2k

[Tho01b] odd cycles 239k-connected
graphs

v 2k − 2

[RR01] odd cycles 576k-connected
graphs

v 2k − 2

[KR09] odd cycles 24k-connected
graphs

v 2k − 2

[Ree99] odd cycles k-near bipartite
graphs

v –

[KN07] odd cycles embeddable in an
orientable surface
of Euler genus t

v/e –

[BR00] odd cycles any e –
[KV04] odd cycles planar graphs e 2k

[KK12] odd cycles 4-edge-connected
graphs

e 22O(k log k)

[Ree99] odd cycles any v1/2 –
[Tho88] cycles of length 0

mod t
any v –

[KW05] non-zero cycles (15k/2)-connected
group-labeled
graphs

v 2k − 2

[Wol11] non-zero cycles group-labeled
graphs, c.f.
[Wol11]

v ck
c′ for some c, c′

cycles of non-zero
length mod 2t+ 1

any

[HJW16] doubly non-
zero cycles, c.f.
[HJW16]

doubly group-
labeled graphs v1/2 –

odd cycles non ho-
mologuous to zero

embedded graphs

[BBR07b] C≥t any v (13 + ot(1))tk2

[FH14] C≥t any v (6t+ 4 + ot(1))k log k
[MNŠW16] C≥t any v 6kt+(10+o(1))k log k

[HM13] ~C≥3 any v –

Extensions of cycles. A dumb-bell is a graph obtained by connecting two cycles by
a (non-trivial) path.
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Ref. Guest classH Host class G T. Gap
[Sim67] dumb-bells any v < (4000 + o(1))k log k
[FLM+13] M(θt) any v O(t2k2)
[FJS13] M(θt) any v Ot(k log k)

[RST16] M(θt) any e O(k2t2 polylog kt)
O(k4t2 polylog kt)

[CRST15b],
Th. 5.24 M(θt) any v/e Ot(k log k)

Majors. For every digraph D, we denote by ~M(D) (respectively ~T (G), ~I(G)) the
class of all digraphs that contain D as a directed minor (respectively directed topo-
logical minor, directed immersion). Refer to [CS11, CFS12, FS13] for a definition of
these notions.

We also denote by ~M./(D) (respectively ~T./(G)) the class of all digraphs that con-
tain D as a butterfly-minor (respectively as a butterfly topological minor). ~P (re-
spectively ~W) is the class of all graphs that are butterfly minors of a cylindrical di-
rected grid (respectively butterfly topological minors of a cylindrical directed wall).
See for instance [AKKW16] for a definition of the cyclindrical directed grid and wall
and [JRST01, AKKW16] for a definition of butterfly (topological) minors.

For every s ∈ N, a digraph is said to be s-semicomplete if for every vertex v there
are at most s vertices that are not connected to v by an arc (in either direction). A
semicomplete digraph is a 0-semicomplete digraph.

Ref. Guest classH Host class G T. Gap

[RS86],
Lemma 5.12

M(H), H planar any v –
{G, tw(G) ≤ t} v (t− 1)(k cc(H)− 1)

[DKW10] M(Kt) O(kt)-connected
graphs

v –

[FST11] M(H), H planar
connected

Kt-minor free v OH,t(k)

[RT13b] M(H), pw(H)≤ 2
and H connected

any v 2O(|H|2) · k2 log k

[CC13]+
[CC14],
Cor. 5.9

M(H), H planar
connected

any v O(|H|O(1)·k polylog k)

[CRST15b],
Lem. 5.15,
Th. 5.29

M(H), H con-
nected

{G, tpw(G) ≤ t} v/e OH,t(k)

M(θt,t′) simple graphs e –
[AKKW16] ~M./(H), H ∈ ~P any v –
[Ray16] ~M(H), for any di-

graph H
t-semicomplete,
for fixed t

v –

Subdivisions. For every t ∈ N, T(0 mod t)(H) denotes the class of subdivisions of
H where every edge is subdivided 0 mod t times. L is a graph class defined in the
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(unpublished) manuscript [LPW14]. See the previous section for the definition of
~T (G) and ~W .

Ref. Guest classH Host class G T. Gap
[Tho88] T(0 mod t)(H), H

planar subcubic
any v –

[LPW14] T (H), H ∈ L any v –
[AKKW16] ~T./(H), H ∈ ~W any v –
[Ray16] ~T (H), for any di-

graph H
t-semicomplete,
for fixed t

v –

Immersion expansions. A graph H is a half-integral immersion of a graph G is H is
an immersion of the graph obtained by G after duplicating the multiplicity of all its
edges. We denote by I1/2(H) the class of all graphs containing H as a half-integral
immersion. See above the definition of ~I(G).

Ref. Guest classH Host class G T. Gap
[Liu15] I(H) 4-edge-connected e –
[GKRT16],
Th. 5.34
Lemma 5.40

I(H), H planar
subcubic con-
nected non-trivial

any e (‖H‖ · k)O(1)

I(H),H connected
non-trivial

{G, tpw(G) ≤ t} e ‖H‖ · t2 · k{G, tcw(G) ≤ t}
[Liu15] I1/2(H) any e1/2 –
[Ray16] ~I(H), H strongly

connected, H 6=
K1

semicomplete v 2O(k2‖H‖2)

Patterns with prescribed vertices. Let us first present the two settings of Erdős–
Pósa problems with prescribed vertices that we want to deal with here. The first type
is when the guest class consists of fixed subgraphs of the host graph. For instance,
one can consider a family F of (non necessarily disjoint) subtrees of a tree T , and
compare the maximum number of disjoint elements in F with the minimum number
of vertices/edges of T meeting all elements of F . We will refer to these guest classes
by words indicating that we are dealing with substructures (like “subtrees”). We
stress that in this setting, the host class is allowed to contain one subgraph F of the
host graph, but not one other subgraph F ′ even if F and F ′ are isomorphic. For every
positive integer t, a t-path is a disjoint union of t paths, and a t-subpath of a t-path G
is a subgraph that has a connected intersection with every connected component of
G. The concept of t-forests and t-subforests is defined similarly.

In order to introduce the second type of problem, we need the following defini-
tion. Let x ∈ {v, e}. If H is a class of graphs, G is a graph and S ⊆ Ax(G), then a
S-H-subgraph of G is a subgraph of G isomorphic to some member of H and that
contain one edge/vertex of S. We are now interested in comparing, for every graph
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G and every S ⊆ Ax(G), the maximum number of S-H-subgraph of G with the min-
imum number of elements of Ax(G) that meet all S-H-subgraphs of G. We refer to
these problems by prefixing the guest class with an “S” (like in “S-cycles”). The au-
thors of [HJW16] consider (S1, S2)-cycles for S1, S2 ⊆ V (G): such cycles must meet
both of S and S ′. A generalization of this type of problem has been introduced in
[KM15]: instead of one set S, one considers three subsets S1, S2, S3 of V (G) and a
(S1, S2, S3)-subgraph is required to intersect at least two sets of S1, S2 and S3. Note
that some results on patterns with prescribed vertices have been stated in the table
on acyclic patterns.

Ref. Guest classH Host class G T. Gap
[HS58] subpaths paths v k

[GL69]
t-subpaths t-paths v O(kt!)
subgraphs H with
cc(H) ≤ t

paths v –

t-subforests t-forests v –
[GL69] subtrees of a tree trees v k
[Kai97] t-subpaths t-paths v (t2 − t+ 1)k
[Alo98] t-subpaths t-paths v 2t2k

[Alo02]
subgraphs H with
cc(H) ≤ t

trees v 2t2k

subgraphs H with
cc(H) ≤ t}

{G, tw(G) ≤ w} v 2(w + 1)t2k

[KiKM11] S-cycles any v O(k2 log k)
[PW12] S-cycles any v/e O(k log k)
[BJS14] S-cycles ∩ C≥t any v O(tk log k)
[Joo14] odd S-cycles 50k-connected

graphs
v O(k)

[KK13] odd S-cycles any v1/2 –
[KKKK13] odd directed

S-cycles
any v1/2 –

[HJW16] (S1, S2)-cycles any v –
[KM15] (S1, S2, S3)-M(H),

H planar
any v –

Classes with bounded parameters.
Ref. Guest classH Host class G T. Gap
[Tho88] any family of con-

nected graphs
{G, tw(G) ≤ t} v k(t+ 1)

[FJW13a] {H, pw(H) ≥ t} any v Ot(k)
[CRST15b] any finite family of

connected graphs
{G, tpw(G) ≤ t} v/e Ot(k)
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Negative results

The next table present lower bounds on the gap for several graph classes, as well as
graph classes that do not have the Erdős–Pósa property. It indicates to which extend
the results of the table of Section 5.6.2 are best possible. The notation used here are
the same as in the previous section, where they are defined.

Cycles and paths.
Ref. Guest classH Host class G T. Gap
[Tuz90] triangles all graphs e ≥ 2k
[EP65] cycles all graphs v Ω(k log k)
[Sim67] cycles all graphs v >

(
1
2

+ o(1)
)
k log k

[Vos68] cycles all graphs v ≥
(

1
8

+ o(1)
)
k log k

[KLL02b] cycles planar graphs v ≥ 2k

[MYZ13] cycles planar graphs e
≥ 4k − c,
c ∈ N

[DL88] odd cycles all graphs v none
[Tho88] cycles of length

p mod t,
p ∈ J1, t− 1K

all graphs v none

[Ree99] odd cycles all graphs e none
[Tho01b] odd cycles planar graphs v ≥ 2k − 2
[KV04] odd cycles planar graphs e ≥ 2k
[PW12] S-cycles any v Ω(k log k)
[KK13] odd S-cycles all graphs v none
[KKKK13] odd directed

S-cycles
all graphs v none

[FH14] C≥t all graphs v
Ω(k log k),
t fixed
Ω(t), k fixed

[MNŠW16] C≥t all graphs v ≥ (k − 1)t

≥ (k−1) log k
8

[Sim67] dumb-bells all graphs v > (1 + o(1))k log k
[MW15] H-valid paths,

H with no
matching of size t

all graphs v f(k, t) (i.e. unavoid-
able dependency in
t)
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Patterns related to containment relations.
Ref. Guest classH Host class G T. Gap
from
[EP65]

M(H), H has a cycle all graphs v Ω(k log k)

[RS86] M(H), H non-planar all graphs v none
Lemma 5.47 M(H), H non-planar all graphs e none
Lemma 5.42 T (H), H non-planar all graphs v none
[Tho88] T(p mod t)(H), H planar sub-

cubic, p ∈ J1, t− 1K
all graphs v none

[Tho88] T (H), for infinitely many
trees H with ∆(H) = 4

planar graphs e none

Lemma 5.43 T (H), H non-planar sub-
cubic

all graphs e none

copying
[Tho88]

I(H), for infinitely many
trees H with ∆(H) = 4

planar graphs e none

Cor. 5.45 I(H), H non-planar all graphs v none
Cor. 5.46 I(H), H non-planar sub-

cubic
all graphs e none

[GKRT16] I(H), for some 3-
connected H with
∆(H) = 4

planar graphs e none

[Liu15] I(H), for every H 3-edge-connected
graphs

e none

[AKKW16]
~M(G), G 6∈ ~P all graphs v none~T (G), G 6∈ ~W
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CHAPTER 6

FROM THE ERDŐS–PÓSA PROPERTY
TO APPROXIMATION

In this chapter we show how the combinatorial connection between invariants of
packing and covering provided by the Erdős–Pósa property can be used to design
approximation algorithms. We focus on packing and covering graphs from M(θr)
for any r ∈ N, in both the vertex and edge setting. Drawing upon combinatorial re-
sults presented in Chapter 4, we give an algorithmic proof thatM(θr) has the vertex-
and edge-Erdős–Pósa property with gap O(k log k), which is optimal. Using the al-
gorithmic machinery of our proofs we introduce a unified approach for the design of
an O(logOPT)-approximation algorithm for v-packθr , v-coverθr , e-packθr , and e-coverθr
that runs in O(n · log(n) ·m) steps.

This chapter contains material that previously appeared in the following article:
An O(logOPT)-approximation for covering/packing minor models of θr, co-authored with
Dimitris Chatzidimitriou, Ignasi Sau, and Dimitrios M. Thilikos, WAOA 2015, Patras,
Greece, 2015 [CRST15b, CRST15a].

6.1 Introduction

From the algorithmic point of view, the computation of x-packH (for x ∈ {v, e}) cor-
responds to the general family of graph packing problems, while the computation
of x-coverH belongs to the general family of graph modification problems where the
modification operation is the removal of vertices/edges (depending on whether x = v
or x = e). Interestingly, particular instantiations of H =M(θr) generate known, well
studied, NP-hard problems. For instance, asking whether v-coverM(θr) ≤ k generates
VERTEX COVER for r = 1, FEEDBACK VERTEX SET for r = 2, and DIAMOND HIT-
TING SET for r = 3 [FJP10, FLMS12]. Moreover, asking whether x-packM(θr)(G) ≥ k
corresponds to VERTEX CYCLE PACKING [BTY11, KLL02a] and EDGE CYCLE PACK-
ING [ACR03, KNS+07] when x = v and x = e, respectively. Finally, asking whether
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|E(G)|− e-coverM(θr)(G) ≤ k corresponds to the MAXIMUM CACTUS SUBGRAPH1. All
parameters keep being NP-complete to compute because the aforementioned base
cases can be reduced to the general one by replacing each edge by one of multiplicity
r − 1.

From the approximation point of view, it was proven in [FLMS12] that, when H
is a planar graph, there is a randomized polynomial O(1)-approximation algorithm
for v-coverM(H). For the cases of v-coverM(θr) and v-packM(θr),O(log n)-approximations
are known for every r ≥ 1 because of [JPS+11, JPS+14] (see also [SV05]). Moreover,
v-coverM(θ3) admits a deterministic 9-approximation [FJP10]. About the edge variant,
it is known, from [KNY05], that there is a polynomial O(

√
log n)-approximation al-

gorithm for e-packM(θ2)(G). Notice also that it is trivial to compute e-coverM(θ1)(G) in
polynomial time. However, to our knowledge, nothing is known about the compu-
tation of e-coverM(θr)(G) for r ≥ 3.

In this section we introduce a unified approach for the study of the combinatorial
interconnections and the approximability of the parameters v-coverM(θr), e-coverM(θr),
v-packM(θr), and e-packM(θr). Our main combinatorial result is the following theorem,
already stated in the previous chapter.

Theorem 5.24. There is a function fr(k) = Or(k log k) such that for every x ∈ {v, e} and
every r ∈ N,M(θr) has the x-Erdős–Pósa property with gap fr.

Our proof is unified and treats simultaneously the covering and the packing pa-
rameters for both the vertex and the edge cases. This verifies the optimal combinato-
rial bound for the case where x = v [FJS13] and optimally improves (in terms of k) the
bound given in Subsection 5.4.2 (which appeared in [RST16]) for the case where x = e.
In this section, when giving the running time of an algorithm with input some graph
G, we agree that n = |V (G)| and m = |E(G)|. Based on the proof of Theorem 5.24, we
prove the following algorithmic result.

Theorem 6.1. For every r ∈ N≥2 and every x ∈ {v, e}, there exists an O(n · log(n) · m)-
step algorithm that, given a graphG, outputs anO(logOPT)-approximation for x-coverM(θr)

and x-packM(θr).

Theorem 6.1 improves the results in [JPS+11, JPS+14] for the cases of v-coverM(θr)

and v-packM(θr) and is, to our knowledge, the first approximation algorithm for e-coverM(θr)

and e-packM(θr) for r ≥ 3.

Overview of the proof. Our proofs are based on the notion of partitioned protru-
sion that, roughly, is a tree-structured subgraph of G with small boundary to the rest
of G (see Subsection 6.2.2 for the precise definition). Partitioned protrusions, that
we met in Section 4.1 under the name of edge-protrusions, can be seen as the edge-
analogue of the notion of protrusions introduced in [BFL+09a] (see also [BFL+09b]).

1The MAXIMUM CACTUS SUBGRAPH problem asks, given a graph G and an integer k, whether G
contains a subgraph with k edges where no two cycles share an edge. It can be reduced to the VERTEX
CYCLE PACKING problem on cubic graphs which, in turn, can be proved to be NP-complete using a
simple variant of the NP-completeness proof of EXACT COVER BY 2-SETS [Gol15].
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Our approach makes strong use of the main result of Section 4.1, that is equivalently
stated as Theorem 4.4 in this section. According to this result, there exists a polyno-
mial algorithm that, given a graph G and an integer k as an input, outputs one of the
following:

1. a collection of k edge/vertex disjoint θr-majors of G,

2. a θr-major J with O(log k) edges, or

3. a large partitioned protrusion of G.

Our approximation algorithm does the following for each k ≤ |V (G)|. If the first
case of the above combinatorial result applies on G, we can safely output a packing
of k θr-majors in G. In the second case, we make some progress as we may remove
the vertices/edges of J from G and then set k := k− 1. In order to deal with the third
case, we prove that in a graph G with a sufficiently large partitioned protrusion, we
can either find some θr-major with O(log k) edges (which is the same as in the second
case), or we can replace it by a smaller graph where both x-coverM(θr) and x-packM(θr)

remain invariant (Lemma 6.2). The proof that such a reduction is possible is given
in Section 6.3 and is based on a suitable dynamic programming encoding of partial
packings and coverings that is designed to work on partitioned protrusions.

Notice that the “essential step” in the above procedure is the second case that re-
duces the packing number of the current graph by 1 to the price of reducing the cov-
ering number by O(log k). This is the main argument (previously used in [FJW13b])
that supports the claimed O(logOPT)-approximation algorithm (Theorem 6.1) and
the corresponding Erdős–Pósa relations in Theorem 5.24.

Organization of the chapter. In Section 6.2 we provide all concepts and notation
that we use in our proofs. Section 6.3 contains the proof of Lemma 6.2, which is the
main technical part of the chapter. The presentation and analysis of our approxi-
mation algorithm is done in Section 6.4, where Theorem 5.24 and Theorem 6.1 are
proven.

6.2 Definitions specific to this section

6.2.1 Basic definitions

Recall that we use n(G) and m(G) to denote |G| and ‖G‖, respectively, for every
graph G. If H is a finite collection of graphs, we set n(H) =

∑
H∈H n(H), m(H) =∑

H∈Hm(H).
Given a graph H and a graph J that are both subgraphs of the same graph G, we

define the subgraph H ∩G J of G as the graph (V (H) ∩ V (J), E(H) ∩ E(J)).
Given a graphG and a set S ⊆ V (G), such that all vertices in S have degree 2 inG,

we define diss(G,S) as the graph obtained from G after we dissolve in it all vertices
in S.
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Topological minors. Whereas the results presented in this chapter deal with majors,
the tools that we provide in Section 6.3 are expressed in the setting of subdivisions.
We show in Section 6.4 how this more general setting can be applied to majors. IfG is
a graph andH is a finite collection of connected graphs, recall than anH-subdivision in
G is a subgraphM ofG that is a subdivision of a graph, denoted by M̂ in this chapter,
that is isomorphic to a member of H. Clearly, the vertices of M̂ are vertices of G and
its edges correspond to paths inG between their endpoints such that internal vertices
of a path do not appear in any other path. We refer to the vertices of M̂ in G as the
branch vertices of theH-subdivisionM , whereas internal vertices of the paths between
branch vertices are called subdivision vertices of M .

Approximation algorithms. A way to approach problems that are believed to be
computationally hard is via approximation algorithms. The main idea is to trade
accuracy for speed. As approximation algorithms appear very locally in this thesis,
we only give the few required definitions.

In an optimization problem, one is typically asked the minimum (or maximum, de-
pending on the problem) size of an object satisfying predefined properties.

For instance, in the Independent Set optimization problem, one is asked, for a
graphG, the maximum size of a subset of V (G) that consist of pairwise non-independent
vertices.

Informally, an approximation algorithm for an optimization problem is an algorithm
that computes an approximate solution for this problem. In order to give a guarantee
on the performance of the algorithm, we use the following definition: for a constant
c ∈ R, c > 1, we say that an algorithm is a c-approximation for a given problem if on
every input it returns a solution that is within a factor c of the optimal solution. If,
for some function f : N→ R, the algorithm returns on every input of size n a solution
which is within a factor f(OPT) (resp. f(n)) of the optimal solution OPT, then we call
it an f(OPT)-approximation (resp. f(n)-approximation).

6.2.2 Boundaried graphs

Informally, a boundaried graph is used to represent a graph that has been obtained
by “dissecting” a larger graph along some of its edges, where the boundary vertices
correspond to edges that have been cut. In this section we formally define boundaried
graphs and related notions. We also give a notion of equivalence that is a cornerstone
of our algorithms.

Boundaried graphs A boundaried graph G = (G,B, λ) is a triple consisting of a
graph G, a set B of vertices of degree one (called boundary), and a bijection λ from
B to a subset of N≥1. The edges with at least one endpoint in B are called boundary
edges. We define Es(G) as the subset of E(G) of boundary edges. We stress that in-
stead of N≥1 we could choose any other set of symbols to label the vertices of B. We
denote the set of labels of G by Λ(G) = λ(B). Given a collectionH of graphs, we say
that a G isH-free if G \B isH-free.
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Two boundaried graphs G1 and G2 are compatible if Λ(G1) = Λ(G2). Let now G1 =
(G1, B1, λ1) and G2 = (G2, B2, λ2) be two compatible boundaried graphs. We define
the graph G1⊕G2 as the graph obtained by first taking the disjoint union of G1 and
G2, then, for every i ∈ Λ(G1), identifying λ−1

1 (i) with λ−1
2 (i), and finally dissolving

all resulting identified vertices. Suppose that e is an edge of G = G1⊕G2 that was
created after dissolving the vertex resulting from the identification of a vertex v1 in
B1 and a vertex v2 inB2 and that ei is the boundary edge ofGi that has vi as endpoint,
for i = 1, 2. Then we say that e is the heir of ei in G, for i = 1, 2, and we denote this by
heirG(ei). For i ∈ {1, 2}, if S ⊆ E(Gi), then

heirG(S) = (E(Gi) ∩ S) ∪ {heirG(e) | e ∈ Es(Gi) ∩ S}.

For reasons of notational consistency, if V ⊆ V (Gi), we denote heirG(V ) = V .
Figure 6.1 shows the result of the operation ⊕ on two graphs. Boundaries are

drawn in gray and their labels are written next to them. The graphs G1 and G2 on
this picture are compatible as Λ(G1) = Λ(G2) = {0, 1, 2, 3}.

0

3

1

2

2

1

0

3

⊕ =

G1 G2 G

Figure 6.1: Gluing graphs together: G = G1 ⊕G2.

For every t ∈ N≥1, we denote by Bt all boundaried graphs whose boundary is
labeled by numbers in J1, tK. Given a boundaried graph G = (G,B, λ) and a subset
S of V (G) such that all vertices in S have degree 2 in G, we define diss(G, S) as the
graph Ĝ = (Ĝ, B, λ) where Ĝ = diss(G,S).

Let W be a graph and S be a non-empty subset of V (W ). An S-splitting of W is
a pair (GS,GSc) consisting of two boundaried graphs GS = (GS, BS, λS) and GSc =
(GSs , BSs , λSs) that can be obtained as follows: First, let W+ be the graph obtained
by subdividing in W every edge with one endpoint in S and the other in V (W ) \ S
and let B be the set of created vertices. Let λ be any bijection from B to a subset of
N≥1. Then GS = W+[S ∪ B], GSc = W+ \ S, BS = BSc = B, and λS = λSc = λ.
Notice that there are infinite such pairs, depending on the numbers that are assigned
to the boundaries of GS and GSc . Moreover, keep in mind that all the boundary
edges of GS are non-loop edges with exactly one endpoint in B and the same holds
for the boundary edges of GSs . An example of a splitting is given in Figure 6.2, where
boundaries are depicted by gray vertices.

We say that G′ = (G′, B′, λ′) is a boundaried subgraph of G = (G,B, λ) if G′ is a
subgraph of G, B′ ⊆ B and λ′ = λ|B′ . On the other hand, G is a subgraph of a (non-
boundaried) graph H if G = HS for some S-splitting (HS,HSc), where S ⊆ V (H).
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W

5

3 6

GS

5

3

6

GSc

Figure 6.2: Cutting a graph: (GS,GSc) is an S-splitting of W , where S consists of all
the white vertices.

If H is a graph, G is a subgraph of H , and F = (F,B, λ) is a boundaried subgraph
of H , we define G∩H F as follows. Let S = V (G)∩ (V (F )\B) and let G+ be the graph
obtained by subdividing once every edge of G that has one endpoint in S and the
other in V (G) \ S. We call B′ the set of created vertices and let G′ = G+[S ∪B′]. Then
G′ is a subgraph of F where B′ ⊆ B. For every v ∈ B′, we set λ′(v) = λ(v), which is
allowed according to the previous remark. Then G ∩H F = (G′, B′, λ′). Observe that
G ∩H F is one side of an S-splitting of G.

Given two boundaried graphs G′ = (G′, B′, λ′) and G = (G,B, λ), we say that
they are isomorphic if there is an isomorphism from G′ to G that respects the labelings
of B and B′, i.e., maps every vertex x ∈ B′ to λ−1(λ′(x)) ∈ B. Given a boundaried
graph G = (G,B, λ), we denote n(G) = n(G)− |B| and m(G) = m(G).

Given a boundaried graph G = (G,B, λ) and an x ∈ {v, e}, we set Ax(G) = V (G)\
B or Ax(G) = E(G), depending on whether x = v or x = e.

Partial structures. Let F be a finite family of connected graphs. A boundaried sub-
graph J of a boundaried graph G is a partial F-subdivision if there is a boundaried
graph H which is compatible with G and a boundaried subgraph J′ of H which is
compatible with J such that J ⊕ J′ is an F-subdivision of G ⊕ H. Intuitively, this
means that J can be extended into an F-subdivision in some larger graph. In this
case, the F-subdivision J⊕ J′ is said to be an extension of J.

Similarly, for every p ∈ N≥1, a collection of boundaried subgraphsJ = {J1, . . . ,Jp}
of a graph G is a partial x-F-packing if there is a boundaried graph H which is com-
patible with G and a collection of boundaried subgraphs {J′1, . . . ,J′p} of H such that
{J1 ⊕ J′1, . . . ,Jp ⊕ J′p} is an x-F-packing of G ⊕ H. The obtained packing is said to
be an extension of the partial packing J . A partial packing is T (F)-free if none of its
members is an F -subdivision for some F ∈ F . Observe that since every graph in
F is connected, every partial subdivision of an T (F)-free partial packing in G must
contain at least one boundary vertex of G.

Partitions and protrusions. In order to decompose graphs along edge cuts, we in-
troduce the following edge-counterpart of the notion of (vertex) protrusion introduced
in [BFL+09a, BFL+09b].
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Given a rooted tree-partition D = (T, s,X ) of G and a vertex i ∈ V (T ), we define

Ti = T [descT,s(i)], Vi =
⋃

h∈V (Ti)

Xh, and Gi = G[Vi].

Let W be a graph and t ∈ N≥1. A pair P = (G,D) is a t-partitioned protrusion of W
if there exists an S ⊆ V (W ) such that

• G = (G,B, λ) is a boundaried graph where G ∈ Bt and G = GS for some
S-splitting (GS,GSc) of W and

• D = (T, s, {Xu}u∈V (T )) is a rooted tree-partition of G \ B of width at most t,
where Xs is the set of neighbors in G of the vertices in B.

Given a family F of graphs, we say that a t-partitioned protrusion (G,D) of a graph
W is F-free if G is F-free. For every vertex u ∈ V (T ), we also define the t-partitioned
protrusion Pu of W as a pair Pu = (Gu,Du), where Du = (Tu, u, {Xv}v∈Vu) and Gu =
GVu for some Vu-splitting (GVu ,GV c

u
) of W . We choose the labeling function of Gs so

that it is the same as the one of G, i.e., Gs = G. Notice that the labelings of all other
Gu’s are arbitrary. For every u ∈ V (T ) we define

Gu = {Gl}l∈children(T,s)(u).

6.2.3 Encodings, signatures, and folios

In this section we introduce tools that we will use to sort boundaried graphs depend-
ing on the subdivisions that are realizable inside.

Encodings. Let H be a family of graphs, let t ∈ N≥1, and let x ∈ {v, e}. If G =
(G,B, λ) ∈ Bt is a boundaried graph and S ⊆ Ax(G), we define ppxH(G, S) (pp as the
initials of partial packings) as the collection of all sets {(J1, L1), . . . , (Jσ, Lσ)} such that

(i) {J1, . . . ,Jσ} is a partial x-T (H)-packing of G \ S of size σ and

(ii) Li = V (M̂i) ∩ V (G), where Mi is an extension of Ji, for every i ∈ J1, σK.

In other words, Li contains branch vertices of the partial H-subdivision Ji for
every i ∈ J1, σK (see Figure 6.3 and Figure 6.4). The set ppxH(G, S) encodes all different
restrictions in G of partial x-H-packings that avoid the set S. Given a boundaried
graph G = (G,B, λ) and a set L ⊆ V (G) such that every vertex of V (G)\L has degree
2 in G, we define κ(G, L) as the boundaried graph obtained from G by dissolving
every vertex of V (G) \ L, i.e., κ(G, L) = (diss(G, V (G) \ L), B, λ). In the definition of
κ we assume that the boundary vertices of κ(G, L) remain the same as in G while the
other vertices are treated as new vertices (see Figure 6.5).

This allows us to introduce the following notation aimed at representing, intu-
itively, the essential part of each partial packing:

cppxH(G, S) = {Ĵ = {Ĵ1, . . . , Ĵσ} = {κ(J1, L1), . . . , κ(Jσ, Lσ)} |
{(J1, L1), . . . , (Jσ, Lσ)} ∈ ppH(G, S)}

(here, cpp is mnemonic for compressed partial packings).
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H = {K4, K2,3}

F G

Figure 6.3: An e-T (H)-packing in G, where branch vertices are circled.

J

L

Figure 6.4: A partial subdivision from the packing of Figure 6.3, where L is the set of
subdivision vertices.

Isomorphisms. If G = (G,B, λ) and G′ = (G′, B′, λ′) are two compatible bound-
aried graphs in Bt, S ∈ V (G), and S ′ ∈ V (G′), we say that a member Ĵ of cppxH(G, S)

and a member Ĵ ′ of cppxH(G′, S ′) are isomorphic if there is a bijection between them
such that paired elements are isomorphic. We also say that cppxH(G, S) and cppxH(G′, S ′)
are isomorphic if there is a bijection between them such that paired elements are iso-
morphic.

We now come to the point where we can define, for every boundaried graph, a
signature encoding all the possible partial packings that can be realized in this graph.

Signatures and folios. For every y ∈ N, we set

sigxH(G, y) = {cppxH(G, S), S ⊆ Ax(G), |S| = y}

and, given two compatible boundaried graphs G,G′ ∈ Bt and a y ∈ N, we say that
sigxH(G, y) and sigxH(G′, y) are isomorphic if there is a bijection between them such that
paired elements are isomorphic.

Finally, for ρ ∈ N, we set

folioH,ρ(G) = (sigvH(G, 0), . . . , sigvH(G, ρ), sigeH(G, 0), . . . , sigeH(G, ρ)).

Given two G,G′ ∈ Bt, a ρ ∈ N, and a finite collection of connected graphs H, we
say that G 'H,ρ G′ if G and G′ are compatible, neither G nor G′ contains an H-
subdivision, and the elements of folioH,ρ(G) and folioH,ρ(G

′) are coordinate-wise iso-
morphic.
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Ĵ

Figure 6.5: The compression of the partial packing of Figure 6.4: Ĵ = κ(J, L).

6.3 The reduction procedure

Let H be a finite set of connected graphs. In this section we show that one can, in
linear time, either find a smallH-subdivision in a t-partitionned protrusion, or reduce
it so that the parameters of packing and covering (wrt. H-subdivisions) remain un-
changed. More formally, the purpose of this section is to prove the following lemma.

Lemma 6.2. There exists a function f6 : N2 → N and an algorithm that, given a positive
integer t, a finite collection H of connected graphs where h = m(H), and a t-partitioned
protrusion P = (G, (T, s,X )) of a graph W with n(G) > f6(h, t), outputs either

• anH-subdivision of W with at most f6(h, t) edges, or

• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )).

Before giving the proof of Lemma 6.2, we need to prove several intermediate re-
sults. In the sequel, unless stated otherwise, we assume that x ∈ {v, e}, t ∈ N≥1 and
thatH is a finite collection of connected graphs. We set h = m(H).

Lemma 6.3. There are two functions f7 : N2 → N and f8 : N2 → N such that, for every
graph W and every t-partitionned protrusion (G, (T, s,X )) of W , if P is an H-free partial
x-H-packing in G then:

(a) The partial subdivisions of graphs of H that are contained in P have in total at most
f7(h, t) branch vertices.

(b) P intersects at most f8(h, t) graphs of Gs.

Proof. Proof of (a). First, note that P has cardinality at most t. Indeed, since every
element of P is a partial subdivision (because the packing is T (H)-free) of a con-
nected graph, it contains a boundary edge of G (which by definition has degree one).
Also, two distinct partial subdivisions in P are (at least) edge-disjoint. Finaly, each of
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these partial subdivisions contains at most maxH∈H n(H) ≤ h branch vertices. Con-
sequently, the number of branch vertices of graphs of H induced by the elements of
P in G is at most t · h. Hence the function f7(h, t) := t · h upper-bounds the amount
of branch vertices each T (H)-free partial packing can contain.

Proof of (b). Let ζ be the maximum multiplicity of an edge in a graph of H. Be-
cause of (a), P has at most f7(h, t) branch vertices of graphs of H, so at most f7(h, t)
graphs of Gs may contain such vertices. Besides, P might also contain paths free of
branch vertices linking pairs of branch vertices. Since there are at most (f7(h, t))2 such
pairs and no pair will need to be connected with more than ζ ≤ h distinct paths, it
follows that at most (f7(h, t))2·h graphs of Gs contain vertices from these paths. There-
fore, the elements of P intersects all together at most f7(h, t) + (f7(h, t))2 ·h =: f8(h, t)
graphs of Gs.

Lemma 6.4. The size of the image of the function cppxH, when its domain is restricted to

{(G, S), G ∈ Bt is T (H)-free and S ⊆ Ax(G)},

is upper-bounded by a function of h and t.

Proof. Let G ∈ Bt be T (H)-free and let S ⊆ Ax(G). By Lemma 6.3(a), every T (H)-free
partial x-H-packing in G contains at most f7(h, t) branch vertices. A partial packing
may in addition use at most t boundary vertices. Let Ch,t be the class of all boundaried
graphs of Bt on at most f7(h, t) + t vertices. Clearly the size of this class is a function
depending on h and t only. Recall that the elements of the set cppxH(G, S) are obtained
from partial x-H-packings by dissolving internal vertices of the paths linking branch
vertices, hence every element of cppxH(G, S) is a boundaried graph of Bt having at
most f7(h, t) + t vertices. Therefore, for any T (H)-free boundaried graph G ∈ Bt
and subset S ⊆ Ax(G), we have cppxH(G, S) ⊆ Ch,t. As a consequence, the image
of the function cppxH when restricted to T (H)-free boundaried graphs G ∈ Bt (and
subsets S ⊆ Ax(G)) is a subset of the power set of Ch,t, so its size is upper-bounded
by a function that depends only on h and t.

Corollary 6.5. There is a function f9 : N2 → N such that the relation 'H,t partitions T (H)-
free boundaried graphs of Bt into at most f9(h, t) equivalence classes.

The following follows directly from the definition of cppxH.

Remark 6.6. Let F,G ∈ Bt be two compatible boundaried graphs and let k ∈ N. The
following are equivalent:

• F⊕G has an x-T (H)-packing of size k;

• there is a Ĵ ∈ cppxH(G, ∅) such that F⊕∪∪∪∪∪∪∪∪∪Ĵ has an x-T (H)-packing of size k.

The choice of the definition of the relation ' is justified by the following lemma.
Informally speaking, it states that we can replace a t-partitioned protrusion of a graph
with any other 'H,t-equivalent t-partitioned protrusion without changing the cover-
ing and packing number of the graph. The reduction algorithm that we give after
this lemma relies on this powerful property.
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Lemma 6.7 (protrusion replacement). Let F,G,G′ ∈ Bt be three compatible boundaried
graphs such that G 'H,t G′. For every k ∈ N, we have:

(i) there is an x-T (H)-packing of size k in F⊕G iff there is one in F⊕G′; and

(ii) there is an x-T (H)-cover of size k in F⊕G iff there is one in F⊕G′.

Proof. Proof of (i), “⇒”. LetM be an x-T (H)-packing of size at least k in F⊕G, whose
set of branch vertices is L. We define

JF = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G F,

JG = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G G, and

ĴG =
⋃

M∈M

κ(M ∩F⊕G G, L ∩ V (G)).

Note that ĴG ∈ cppxH(G, ∅) and that F ⊕ ĴG has an x-T (H)-packing of size at least k
(cf. Remark 6.6). By definition of ', there is a bijection ψ between cppxH(G, ∅) and
cppxH(G′, ∅). Let Ĵ′G be the image of ĴG by ψ. Since Ĵ′G and ĴG are isomorphic, F⊕ Ĵ′G
also has an x-T (H)-packing of size at least k. By Remark 6.6, this implies that such a
packing exists in F ⊕G′ as well. The direction “⇐” is symmetric as G and G′ play
the same role.

Proof of (ii), “⇒”. Let C ⊆ Ax(F ⊕G) be a minimum x-H-covering of F ⊕G of
size at most k. Let S = C ∩Ax(G). Since we assume that G is T (H)-free and that C is
minimum, we can also assume that |S| ≤ t (otherwise we could get a smaller covering
by taking the t boundary vertices/edges of G). By our assumption that G 'H,t G′,
there is an isomorphism between sigxH(G, |S|) and sigxH(G′, |S|). Let S ′ ⊆ Ax(G

′) be
a set such that cppxH(G, S) is sent to cppxH(G′, S ′) by this isomorphism. Then observe
that every partial packingJ ′ of G′\S ′, such that (F \ C)⊕(∪∪∪∪∪∪∪∪∪J ′) has anH-subdivision,
can be translated into a partial packing J of G \ S such that (F \ C)⊕ (∪∪∪∪∪∪∪∪∪J ) also has
such a subdivision, in the same way as in the proof of (i) above. As C is a cover,
this would lead to contradiction. Therefore ppxH(G, S) does not contain such a partial
packing. As a consequence, C ∩ Ax(F) ∪ S ′ is a covering of F ⊕G′ of size at most k.
As in the previous case, the proof of direction “⇐” comes from the symmetry in the
statement.

Lemma 6.7 can be rewritten as follows.

Corollary 6.8. Under the assumptions of Lemma 6.7, we have x-pack(F⊕G) = x-pack(F⊕
G′) and x-cover(F⊕G) = x-cover(F⊕G′).

Recall that f9(h, t) denotes the number of equivalence classes of'H,t among bound-
aried graphs of Bt. For every h, t ∈ N, let f10(h, t) = f9(h, t) · f8(h, t) and let and
f6(h, t) = 2ht3 · (f10(h, t))f9(h,t)+1. Let us give some intuition about these definitions.
The first remark is an application of the pigeonhole principle.

Remark 6.9. In a collection of more than f10(h, t) T (H)-free boundaried graphs of Bt,
there is one that is equivalent (w.r.t. 'H,t) to f8(h, t) other graphs of the collection.
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Lemma 6.10. If (T, s,X ) is a rooted tree-partition of a graphGwith the following properties:

• (T,X ) has width at most t;

• T has height at most f9(h, t); and

• T has degree at most f10(h, t) + 1,

then G has at most f6(h, t) vertices, and everyH-subdivision of G has at most f6(h, t) edges.

Proof. Indeed, the above assumptions imply that T has at most (f10(h, t))f9(h,t)+1 ver-
tices. Every bag of (T,X ) contains at most t vertices of G, therefore G has at most
(f10(h, t))f9(h,t)+1 · t ≤ f6(h, t) vertices. Also, every bag induces a subgraph with at
most t(t − 1)/2 multiedges (i.e. without counting multiplicities), and for every edge
f of T we have |Ef | ≤ t, hence every bag contributes for at most t2 + t multiedges.
ThereforeG has at most (t+t2) (f10(h, t))f9(h,t)+1 multiedges. Now, observe that a mul-
tiedge of G is used at most h times by anH-subdivision, since every path connecting
two branch vertices of a subdivision uses a given multiedge at most once. We deduce
that an H-subdivision of G contains at most h · (t + t2) (f10(h, t))f9(h,t)+1 ≤ f6(h, t)
edges.

The two next lemmas are the main tools used in the proof of Lemma 6.2. Un-
der different conditions, they provide either a small subdivision, or a reduced graph.
Lemma 6.11 considers the case where a vertex of T has high degree, whereas Lemma 6.12
deals with the situation where T has a long path.

Lemma 6.11. There is an algorithm that, given a t-partitioned protrusion P = (G, (T, s,X )),
and a vertex u ∈ V (T ) with more than f10(h, t) children such that for every v ∈ children(T,s)(u),
we have m(Gv) ≤ f6(h, t), outputs either

• anH-subdivision with at most f6(h, t) edges, or

• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Moreover, this algorithm runs in Oh,t(1) steps.

Proof. If Gv contains anH-subdivision for some child v of u, then this subdivision has
at most f6(h, t) edges and we are done. Therefore we now consider the case where
Gv is H-free for every child v of u. This allows us to consider the folios of these
boundaried graphs.

As u has more than f10(h, t) children, it contains a collection of d = f8(h, t) +
1 children v1, . . . , vd, such that Gv1 'H,t Gvi for every i ∈ J2, dK (by Remark 6.9).
Since every x-T (H)-packing of W will intersect at most f8(h, t) bags of children of u
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(by Lemma 6.3(b)), we can safely delete one of the f8(h, t) + 1 equivalent subgraphs
mentioned above.

We use the following procedure in order to identify such a subgraph to delete or
a smallH-subdivision;

1. let A be an array of f9(h, t) counters initialized to 0, each corresponding to a
distinct equivalence class of 'H,t;

2. pick a vertex v ∈ children(T,s)(u) that has not been considered yet;

3. if Gv contains anH-subdivision M , then return M and exit;

4. otherwise, increment the counter of A corresponding to the equivalence class of
Gv by one;

5. if this counter reaches d+ 1, return v, otherwise go back to line 2.

Notice that the subdivision returned in line 3 has size at most f6(h, t) as mentioned
above, and that the vertex returned in line 5 has the desired property. The relation
'H,t has at most f9(h, t) equivalence classes (Corollary 6.5), thus the main loop will
be run at most f9(h, t) · f8(h, t) + 1 times (by the pigeonhole principle). Eventually,
lines 3 and 4 can be performed in Oh,t(1)-time given that Gv has size bounded by a
function of h and t.

In the end, we return W ′ = W \ V (Gv) if the algorithm above outputs v and M
otherwise.

Lemma 6.12. There is an algorithm that, given a t-partitioned protrusion P = (G, (T, s,X ))
of a graph W and a vertex u ∈ V (T ) of height f9(h, t) in (T, s) such that Tu has maximum
degree at most f10(h, t) + 1, outputs either

• anH-subdivision with at most f6(h, t) edges, or

• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Moreover, this algorithm runs in Oh,t(1)-time.

Proof. As in the proof of Lemma 6.10, we use the fact that every H-subdivision of
Gu uses every multiedge at most h times. A consequence is that the boundaried sub-
graph of Gu obtained by setting the multiplicity of every multiedge e to min(mult(e), h)
contains an H-subdivision iff Gu does. As the number of vertices and edges of this
subgraph is bounded by a function of h and t, we can therefore check in Oh,t(1)-
time if Gu contains an H-subdivision. If one is found, it has at most f6(h, t) edges
(Lemma 6.10) and we are done.
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Let us now consider the case where Gu is T (H)-free. By definition of vertex u,
there is a path on f9(h, t) + 1 vertices from a leaf of Tu to u. Let us arbitrarily choose,
for every vertex v of this path, a Vv-splitting (GGv ,GGc

v
) of G. By definition of f9(h, t)

(the number of equivalence classes in 'H,t in Bt), there are two distinct vertices v, w
on this path such that Gv 'H,t Gw. As mentioned above, the number edges of Gu

is bounded by a function of h and t, hence finding these two vertices can be done
in Oh,t(1)-time. Let us assume without loss of generality that s is closer to v than w.
Let H be the boundaried graph such that W = H ⊕ GGv and let W ′ = H ⊕ GGw .
By Corollary 6.8, we have x-packT (H)(W

′) = x-packT (H)(W ) and x-coverT (H)(W
′) =

x-coverT (H)(W ). Furthermore, the graph W ′ is clearly smaller than W .

We are now ready to prove Lemma 6.2. Let us first recall its statement.

Lemma 6.2. There exists a function f11 : N2 → N and an algorithm that, given a positive
integer t, a finite collection H of connected graphs where h = m(H), and a t-partitioned
protrusion P = (G, (T, s,X )) of a graph W with n(G) > f6(h, t), outputs either

• anH-subdivision of W with at most f6(h, t) edges, or

• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )).

Proof. Let us consider the following procedure:

1. by a DFS on (T, s), compute the height of each vertex of T and find (if it exists)
a vertex v of degree more than f10(h, t) + 1 and height at most f9(h, t) − 1 that
has minimum height;

2. if such a vertex v is found, then apply the algorithm of Lemma 6.11 on P and v,
and return the obtained result;

3. otherwise, find a vertex u of height exactly f9(h, t) in (T, s) and then apply the
algorithm of Lemma 6.12 on P and (Tu, u) and return the obtained result.

Observe that since n(G) > f6(h, t), Lemma 6.10 implies that either T has diameter
more than f9(h, t), or it contains a vertex of degree more than f10(h, t) + 1. Therefore,
the vertex u of line 3 always exists in the case where no vertex of high degree is found
in line 1. The correctness of this algorithm follows from Lemma 6.11 and Lemma 6.12.
The DFS done on line 1 takes time O(n(T )) and the rest of the algorithm takes time
Oh,t(1) according to the aforementioned lemmas.
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6.4 Approximation meets the Erdős–Pósa property

We show in this section an application of the results of Section 6.3. Given a graph H ,
we denote by ex(H) the set of all graphs that contain H as a minor, and, subject to
this condition, are minimal for the topological minor relation. Whereas Lemma 6.2 is
stated in terms of subdivisions, we translate to the setting of majors using the follow-
ing remark.

Remark 6.13. Recall thatM(H) is defined as the set of subgraph-mininal graphs con-
taining H as a minor. For every graph H , the following holds:

M(H) = T (ex(H)).

Also, the size of ex(H) is upper-bounded by some function of m(H).

Applied to Lemma 6.2, the above remark yields the next corollary.

Corollary 6.14. There is an algorithm that, given a positive integer t, a finite collectionH of
connected graphs where h = m(H), and a t-partitioned protrusion P = (G, (T, s,X )) of a
graph W with n(G) > f6(h, t), outputs either

• anH-major of W with at most f6(h, t) edges, or

• a graph W ′ such that

x-packM(H)(W
′) = x-packM(H)(W ),

x-coverM(H)(W
′) = x-coverM(H)(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )).

Let us restate the main result of Section 4.1.3, that we will use in the subsequent
proofs.

Theorem 4.4. There exists an algorithm that, with input three positive integers r, w, z and
an n-vertex graph G, outputs one of the following:

• a θr-major in G with at most z edges,

• a connected (2r − 2)-edge-protrusion Y of G with extension more than w, or

• an H-major in G for some graph H where δ(H) ≥ 1
r−1

2
z−5r

4r(2w+1) ,

in Or(m) steps.
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6.4.1 Reduce or progress

The proof of the next lemma combines Theorem 4.4 and Corollary 6.14.

Lemma 6.15 (reduce or progress). There is an algorithm that, with input x ∈ {v, e},
r ∈ N≥2, k ∈ N and an n-vertex graph W , outputs one of the following:

• a θr-major of W with at most Or(log k) edges;

• a graph W ′ where

x-coverM(θr)(W
′) = x-coverM(θr)(W ),

x-packM(θr)(W
′) = x-packM(θr)(W ), and

n(W ′) < n(W ); or

• an H-major in W , for some graph H with δ(H) ≥ k(r + 1),

in Or(m) steps.

Proof. We set t = 2r − 2, w = f6(h, t), z = 2r(w − 1) log(k(r + 1)(r − 1)) + 5r, and
h = m(M(θr)). Observe that z = Or(log k) and h, t, w = Or(1). Also observe that our
choice for variable z ensures that 2

z−5r
2r(w−1)/(r − 1) = k(r + 1).

By applying the algorithm of Theorem 4.4 to r, w, z, andW , we obtain inOr(m(W ))-
time either:

First case: a θr-major in W of at most z edges,

Second case: a (2r − 2)-edge-protrusion Y of W with extension > w, or

Third case: an H-major M in W , for some graph H with δ(H) ≥ k(r + 1).

In the first case, we return the obtained θr-major.
In the second case, by applying the algorithm of Corollary 6.14 on Y , we get in

O(n(W ))-time either a θr-major of W on at most w = Or(1) vertices, or a graph W ′

where, for x ∈ {v, e}, x-coverH(W ′) = x-coverH(W ), x-packH(W ′) = x-packH(W ) and
n(W ′) < n(W ).

In the third case, we return the major M .

In each of the above cases, we get after O(m) steps either a major of a graph with
large minimum degree, or a small θr-major in W , or an equivalent graph that has less
vertices.

It might not be clear yet to what purpose the major of a graph of degree more than
k(r+1) output by the algorithm of Lemma 6.15 can be used. Recall that we presented
in Subsection 4.2.2 an algorithm that finds a large packing of θr-majors in a graph of
large minimum degree. Applying this algorithm to the graph output by Lemma 6.15
gives the desired packing.

208



6.4.2 Approximation algorithms

Theorem 5.24 is a direct combinatorial consequence of the following.

Theorem 6.16. There is a function f12 : N→ N and an algorithm that, with input x ∈ {v, e},
r ∈ N≥2, k ∈ N≥1, and an n-vertex graphW , outputs either a x-M(θr)-packing ofW of size k
or an x-M(θr)-covering of W of size at most f12(r) · k · log k. Moreover, this algorithm runs
in O(n · m) steps if x = e and in O(nc + n · m) steps if x = v, where c is the constant
from Theorem 4.19.

Proof. Let f12 : N → N be a function such that each θr-major output by the algorithm
of Lemma 6.15 has size at most f12(r) · log k. We consider the following procedure:

1. G := W ; P := ∅;

2. apply the algorithm of Lemma 6.15 on (x, r, k,G):

Progress: if the output is a θr-major M , let G := G \ Ax(M) and P = P ∪ {M};
Win: if the output is aH-majorM inW for some graphH with δ(H) ≥ k(r+1),

apply the algorithm of Theorem 4.21 (if x = e) or the one of Theorem 4.23 (if
x = v) to H to obtain an x-M(θr)-packing of size k in H ; using M , translate
this packing into an x-M(θr)-packing of size k in W and return this new
packing;

Reduce: otherwise, the output is a graph G′: let G := G′;

3. if |P | = k then return P which is an x-M(θr)-packing of size k in W ;

4. if n(W ) = 0 then return P which is in this case a a x-M(θr)-covering of size at
most f12(r) log k of W ;

5. Otherwise, go back to line 2.

This algorithm clearly returns the desired result. Furthermore, the loop is executed at
most n(W ) times and each call to the algorithm of Lemma 6.15 takes O(m(W )) steps.
When the algorithm reaches the “Win” case (which can happen at most once), the
calls to the algorithm of Theorem 4.21 (if x = e) or the one of Theorem 4.23 (if x = v),
respectively, take O(m(H)) and O ((n(H))c) steps. Therefore, in total, this algorithm
terminates in O(n ·m) steps if x = e and in O (nc + n ·m) steps if x = v.

Observe that if the algorithm of Theorem 6.16 reaches the “Win” case, then the
input graph is known to contain an x-M(θr)-packing of size at least k. As a conse-
quence, if we are only interested in the existence of a packing or covering, the call to
the algorithm of Theorem 4.21 or Theorem 4.23 is not necessary. This gives a faster
algorithm for the existential version of Theorem 6.16.

Corollary 6.17. There is an algorithm that, with input x ∈ {v, e}, r ∈ N≥2, k ∈ N, and
a graph W , outputs 0 only if W has an x-M(θr)-packing of size k or 1 only if W has an x-
M(θr)-covering of size at most f12(r) ·k · log k. Furthermore this algorithm runs in O(n ·m)
steps.
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Notice that there may be graphs where both the outputs 0 and 1 of the algorithm of
Corollary 6.17 are valid. We now conclude this section with the proof of Theorem 6.1.
We start by restating it.

Theorem 6.1. For every r ∈ N≥2 and every x ∈ {v, e}, there exists an O(n · log(n) · m)-
step algorithm that, given a graphG, outputs anO(logOPT)-approximation for x-coverM(θr)

and x-packM(θr).

Proof. Let us call A the algorithm of Corollary 6.17. Let k0 ∈ J1, n(W )K be an in-
teger such that A(x, r, k0,W ) = 1 and A(x, r, k0 − 1,W ) = 0, and let us show that
the values k0 − 1 and k0 log k0 are O(logOPT)-approximations of x-packM(θr)(W ) and
x-coverM(θr)(W ), resectively.

First, notice that for every k > x-packM(θr)(W ), the value returned by A(x, r, k,W )
is 1. Symmetrically, for every k such that k log k < x-coverM(θr)(W ), the value of
A(x, r, k,W ) is 0. Therefore, the value k0 is such that:

k0 − 1 ≤ x-packM(θr)(W ) and

x-coverM(θr)(W ) ≤ k0 log k0.

As every minimal covering must contain at least one vertex or edge (depending on
whether x = v or x = e) of each model of a maximal packing, x-packM(θr)(W ) ≤
x-coverM(θr)(W ), hence we have:

k0 − 1 ≤ x-packM(θr)(W ) ≤ x-coverM(θr)(W ) ≤ k0 log k0. (6.1)

We then deduce:

1 ≤
x-packM(θr)(W )

k0 − 1
≤ k0 log k0

k0 − 1

= O(log k0)

= O
(
log x-packM(θr)(W )

)
using (6.1),

and symmetrically for the covering parameter:

1 ≤ k0 log k0

x-coverM(θr)(W )
≤ k0 log k0

k0 − 1

= O(log k0)

= O
(
log x-coverM(θr)(W )

)
using (6.1) again.

This proves that the values k0−1 and k0 log k0 are indeedO(logOPT)-approximations
of x-packM(θr)(W ) and x-coverM(θr)(W ), resectively. The value k0 can be found by
performing a binary search in the interval J1, nK, with O(log n) calls to Algorithm A.
Hence, our approximation algorithm runs in O(n · log(n) ·m) steps.

Notice that all our results are strongly exploiting Lemma 6.2 that holds for every
finite collection H of connected graphs. Actually, what is missing in order to have
an overall generalization of all of our results, is an extension of Theorem 4.4 where
M(θr) is replaced by any finite collectionH of connected planar graphs. This is an an
interesting combinatorial problem even for particular instantiations ofH.
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CHAPTER 7

CONCLUSION

7.1 General contribution

This thesis is centered around results on graph classes excluding a given pattern as
a substructure. We focused on theorems providing, for the considered classes, either
a decomposition theorem, or a bound on a graph invariant. These results are then
applied to problems of well-quasi-ordering and Erdős–Posa-type problems.

Decomposition theorems and applications to well-quasi-ordering. Decomposi-
tion theorems sometimes provide enough information about the considered class
to obtain well-quasi-ordering results. We proved decomposition theorems for the

classes of simple graphs excluding the graphs and as induced minors, and
as a contraction. These structural descriptions allowed us to show that the consid-
ered classes are well-quasi-ordered by the induced minors and contraction relations,
respectively. The study of some infinite antichains for these relations then yielded,
in each case, a characterization on the well-quasi-ordered classes defined by one for-
bidden pattern. Such dichotomies were known for most of the other containment
relations that are not well-quasi-orders in general (subgraph, induced subgraph and
topological minor). Using structural results of Tutte and Oporowski et al., we ob-
tained a similar characterization of well-quasi-ordered classes of multigraphs with
respect to the contraction relation. Considering infinite antichains rather than well-
quasi-orders, we characterized all canonical antichains for the induced minor relation
and proved that there is no such antichain for the contraction relation.

Bounds on graph invariants. A chapter of this thesis is devoted to theorems pro-
viding bounds on invariants of the graphs excluding some pattern as a substruc-
ture. We considered basic invariants like minimum and maximum degree, structural
invariants like treewidth and tree-cut width, and introduced the H-girth, a family
of invariants that generalizes the parameter of girth. The excluded patterns range
from parameterized planar graphs (wheels, double wheels, yurts, packings of θr’s) to
larger families of graphs as planar subcubic graphs, cliques, and graphs of pathwidth
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at most 2. A summary of the results we proved is given in Table 7.1. For each line, the
table can be read as follows: if we consider the class of graphs excluding the pattern
of the first column (an example of which is given in the second column) with respect
to the relation of the third column, then the parameter given in the fourth column is
equal to the expression of the fifth column.

excluded pattern ex. relation par. value of the parameter

wheel of order k minor tw Θ(k)

double wheel of order k minor tw O(k2 log2 k)

H, pw(H) ≤ 2 minor tw O ((|H|+ ‖H‖)2)

yurt graph of order k minor tw O(k4)

k · θr minor tw Θ(k log k)
δ Θ(k)

edge-disj. union of k θr’s minor ∆ Θ(k)

Kk minor θr-girth O(log k)

H planar subcubic immersion tcw O (‖H‖29 polylog ‖H‖)

Table 7.1: Summary of the exclusion results of Chapter 4. When applicable, r is con-
sidered to be constant. The bounds related to Kk and to edge-disjoint θr’s have other
requirements that are given in the corresponding theorems. The result on planar
subcubic graphs draws upon Theorem 4.67 as obtained by Wollan.

The Erdős-Pósa property. A possible application of our results on graph invariants
is Erdős–Pósa-type problems. For this, we presented two general schemes. The first
one, Theorem 5.3, is a master theorem that unifies known techniques based on tree
decompositions and treewidth. We applied it to parameters that are less common for
this type of problems, like minimum and maximum degree, and to structural param-
eters alternative to the treewidth, the tree-partition width and the tree-cut width. This
technique, together with exclusion results proved in the previous section, yielded
new Erdős–Pósa-type results for various classes of graphs. The second scheme is re-
lated to the notion of girth and its aforementioned extensions (H-girth). We used it to
prove that majors of θr have the edge and vertex Erdős–Pósa property with optimal
gap k 7→ c · k log k (for some c depending on r). This provides one of the first re-
sults on the edge-Erdős–Pósa property of majors. Last, as an algorithmic application
of Erdős–Pósa-type results, we give a O(log OPT)-approximation algorithm for the
(edge and vertex) packing and covering numbers of M(θr), improving the known
O(log n)-approximation for the vertex version and providing the first approximation
for the edge version (for general r). The proof relies on the concept of edge-protrusion,
a variation of the notion of protrusion that is tailored for edge-related problems.
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7.2 Perspectives and problems

7.2.1 On the H-girth

In this thesis we introduced the H-girth and considered in particular the θr-girth (for
any positive integer r). Recall that for every graph H , we call H-girth of a graph
the minimum order of an H-major in this graph. It could be fruitful to study this
parameter for different instanciations of H . As we mention in the corresponding
section, the girth is a concept that arises in various areas of Graph Theory and an
interesting question is to investigate for which graphs H the girth can be replaced by
H-girth in these contexts. To give an example related to the topics addressed in this
thesis, let us consider the following result of Thomassen.

Theorem 7.1 ([Tho83b]). There is a function f : N → N such that for every r ∈ N, every
graph of minimum degree 3 and girth at least f(r) contains a Kr-major.

The corresponding problem for H-girth is the following.

Problem 7.2. Given a graph H , does Theorem 7.1 hold when “girth” is replaced with
“H-girth”?

According to the original theorem, K3 is a positive instance of Problem 7.2. Also,
we gave in Section 4.1 a proof that θr would be an positive instance too (for every
r ∈ N) if we allowed minor changes of the statement (in the main result of Section 4.1,
we require the minimum degree to be at least 3r).

A first step could be to try to extend Theorem 7.1 to K4-girth.

Question 7.3. Does Theorem 7.1 hold when “girth” is replaced with “K4-girth”?

It turns out that a positive instances to Problem 7.2, even for specific patterns and
with slight changes in the statement, may be used to prove Erdős–Pósa-type results.
Indeed, we detailed in the section on the Erdős–Pósa property a general approach
to prove Erdős–Pósa-type results based on the H-girth, and we unfolded it to the θr-
girth to obtain our results. In order to obtain results for any other graph H , the only
missing part is a theorem expressing that a graph of large H-girth either contains
a large packing of H-majors, or can be reduced to a smaller graph with the same
parameters of packing and covering. A positive answer to Problem 7.2 for some
graph H would guarantee that we can prove such a theorem. In the case where the
answer to Problem 7.2 is negative for H , we can still focus on the weaker goal of
identifying positive instances to the following problem.

Problem 7.4. Given a graph H , does Theorem 7.1 hold when “girth” is replaced with
“H-girth”, if we additionally assume thatG does not contain a-edge-protrusions with
extension more than b, for some constants a, b ∈ N depending on H?

There are other parameters that can be defined in a similar way: given a graph
G, we could consider the minimum order of a subgraph of G that contains H as an
induced minor (respectively topological minor, immersion, etc.). For each of these
variants the above questions can be asked and lead to interesting developments.

213



7.2.2 On the Erdős–Pósa property

The vertex-Erdős–Pósa property of graph majors is completely explained (i.e. we
know precisely the graphs whose majors have the vertex-Erdős–Pósa property), mainly
thanks to the work of Robertson and Seymour. However, its edge-counterpart is still
not well understood.

Question 7.5. Charactrize graphs whose majors have the edge-Erdős–Pósa property?

We proved in this thesis that the majors of any graph in {θr}r∈N ∪ {θr,r′}r,r′∈N have
the edge-Erdős–Pósa property (recall that θr,r′ can be obtained from P3 by setting the
multiplicities of the edges to r and r′, respectively). We also provided a construction
that shows that the majors of any non-planar graph fail to have the edge-Erdős–Pósa
property in general (i.e. for any host graph). What is the correct boundary between
these two classes? Again, a first step is to look at small graphs.

Question 7.6. DoesM(K4) have the edge-Erdős–Pósa property?

Naturally, similar questions can be asked for other classes defined via a contain-
ment relation. Lets us now consider immersions. We do not understand yet the
classes of graphs whose immersion-expansions have the (edge or vertex) Erdős–Pósa
property.

Question 7.7. Characterize graphs whose immersion expansions have the vertex-Erdős–
Pósa property (respectively, edge-Erdős–Pósa property)?

In this thesis we proved that the immersion expansions of every planar subcubic
graph have the vertex and edge-Erdős–Pósa property. We also gave examples of
families of planar graphs with maximum degree at least 4, the immersion expansions
of which do not have the vertex and edge Erdős–Pósa property. Furthermore, as for
majors, the immersion expansions of a non-planar graph do not have the Erdős–Pósa
property in general. Again, we provide weaker questions on this topic.

Question 7.8. Does I(W4) have the vertex-Erdős–Pósa property (resp. edge-Erdős–
Pósa property), where W4 = ?

Question 7.9. For every r ∈ N, does I(θr) have the vertex-Erdős–Pósa property (resp.
edge-Erdős–Pósa property)?

Symmetrically to minors, the status of the Erdős–Pósa property for topological
minors is half-solved: the class of graphs whose subdivisions have the vertex-Erdős–
Pósa property have been completely characterized in [LPW14]. On the other hand,
not much is known about the graphs whose subdivisions have the edge-Erdős–Pósa
property. Families of trees with maximum degree 4 whose subdivisions do not have
the (vertex and edge) Erdős–Pósa property have been provided in [Tho88], and we
gave in Subsection 5.6.1 other examples of such families.

Question 7.10. Characterize graphs whose subdivisions have the edge-Erdős–Pósa
property?
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7.2.3 On edge-protrusions

The concept of protrusion has been introduced [BFL+09b, BFL+09a] in order to easily
deal with pieces of a graph that are simple (for the considered problem) and have a
small boundary with the rest of the graph. The boundary is usually a set of vertices
and this has certain drawbacks when dealing with edge-deletion problems. In partic-
ular, knowing that the protrusion has a small (vertex-)boundary with the rest of the
graph does not give any bound on the number of edges one would need to delete in
order to separate the protrusion from the rest of the graph. In some of the problems
we considered (covering the vertices or edges of the θr-majors of a graph), we fixed
this problem by introducing an edge-counterpart of the notion of protrusion. This no-
tion of edge-protrusion can be easily used with tree-like decompositions that provide
small edge-separators, such as tree-cut decomposition and tree-partition. We hope
that it will find further combinatorial and algorithmic applications to edge-related
problems.

7.2.4 On well-quasi-ordering

As we characterized all classes of graphs defined by one forbidden induced minor
which are well-quasi-ordered by this relation, a natural line of research is to investi-
gate what happens when we exclude more graphs.

Question 7.11. For which graphs G and H is the class Excl≤i.m.
(G,H) well-quasi-

ordered by induced minors?

Of course, the question can be asked for any number of forbidden induced minors.
It can even be asked when infinite families of graphs are forbidden. Let us call fan a
graph containing a vertex whose removal yields a path.

Question 7.12. Let H be a class of planar graphs that do not contain large fans as
induced minors. Is (H,≤i.m.) a well-quasi-order?

Several well-quasi-ordering proofs presented in this thesis handle graphs with
vertices labelled by the elements of a well-quasi-order. In fact, labels are a standard
tool in well-quasi-ordering theory. An other question of interest is to characterize the
classes of graphs that are well-quasi-ordered by induced minors when labelled by a
well-quasi-order. Note that this question has already been considered for the induced
subgraph relation in [AL14].

Question 7.13. Characterize the classes of graphs H such that, for every well-quasi-
order (L,�), the class (lab(L,�)(H),≤i.m.) is a well-quasi-order.

An other question related to labels has been asked by Pouzet. We say that a class
G of graphs is n-well-quasi-ordered (for some n ∈ N) if (lab(J1,nK,=)(G),≤i.sg.) is a well-
quasi-order. In other words, the graphs of G labeled with integers of J1, nK are well-
quasi-ordered by the induced subgraph relation that respects labels.

Conjecture 7.14 (Pouzet’s conjecture [Pou72]). A class of graphs that is (downwards)
closed under induced subgraphs is 2-well-quasi-ordered iff it is n-well-quasi-ordered,
for every n ∈ N.
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An obstruction to well-quasi-ordering is the existence of infinite antichains, which
are objects of interest as well. To conclude this section, let us mention a question
asked by Ding.

Question 7.15 ([Din]). Characterize infinite antichains of the class of all fans, for the
induced subgraph relation.

Observe that there is a strong connection between the quasi-order of fans ordered
by the induced subgraph relation and that of binary words ordered by the factor
relation. Every word corresponds to a fan, and every fan to at most two words.
Therefore the goal of Question 7.15 is essentially the same as characterizing infinite
antichains of {0, 1}? for the factor relation.

7.3 Publications

The results presented in this thesis are mainly originated from nine publications.
However, for the sake of consistency, we chose to omit some results obtained dur-
ing the PhD. Let us briefly present here all of them.

7.3.1 On the Erdős–Pósa property

• [RT13a, RT13b] Polynomial gap extensions of the Erdős-Pósa Theorem with Dim-
itrios M. Thilikos, EuroComb 2013. We prove that the majors of graphs of
pathwidth at most two have the vertex-Erdős–Pósa property with gap k 7→
2O(h2)k2 log k. We omitted these results as they are now subsumed by the re-
sults presented in Subsection 5.4.1.

• [RST16] An edge variant of the Erdős-Pósa property with Ignasi Sau and Dimitrios
M. Thilikos, Discrete Mathematics (2016). These results are presented in Chap-
ter 5, more specifically in Subsection 5.4.2.

• [CRST15b, CRST15a] AnO(log OPT)-approximation for covering/packing minor mod-
els of θr with Dimitris Chatzidimitriou, Ignasi Sau and Dimitrios M. Thilikos,
WAOA 2015. Long version submitted. These results are presented in Chap-
ter 6.

• [GKRT16] Packing and covering immersion models of planar subcubic graphs, with
Archontia Giannopoulou, O-jong Kwon, and Dimitrios M. Thilikos, WG 2016.
Long version submitted. There results are presented in Section 4.4 and Subsec-
tion 5.4.4.

• [RT16] Recent techniques and results on the Erdős–Pósa property, with Dimitrios M.
Thilikos. Submitted. These results are presented in Chapter 5.

• [Ray16] Hitting minors, subdivisions, and immersions in tournaments. Submitted.
This paper deals with the Erdős–Pósa property in directed graphs. Using ex-
clusion theorems of Chudnovsky, Fradkin, Kim, and Seymour in the class of
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tournaments, we show that the majors (respectively subdivisions) of every di-
rected graph have the vertex-Erdős–Pósa property in tournaments, and that
the immersion expansions of every strongly connected directed graph have the
edge-Erdős–Pósa property in tournaments. We chose to omit this result because
it is about directed graphs, whereas all the other results presented in the thesis
deal with undirected graphs.

7.3.2 On well-quasi-ordering

• [BKRT15a, BKRT15b] Induced minors and well-quasi-ordering with Jarosław Bła-
siok, Marcin Kamiński and Théophile Trunck, EuroComb 2015. Long version
submitted. These results are presented in Chapter 3.

• [KRT14] Multigraphs without big bonds are wqo by contraction with Marcin Kamiński
and Théophile Trunck, submitted. These results are presented in Section 3.8.

• [KRT16] Well-quasi-ordering H-contraction-free graphs, with Marcin Kamiński and
Théophile Trunck. Submitted. These results are presented in Section 3.7.

7.3.3 On exclusion results

• [RT15] Low polynomial exclusion of planar graph patterns with Dimitrios M. Thi-
likos, to appear in Journal of Graph Theory (2016). These results are presented
in Section 4.3.

• [CRST15c] Minors in graphs of large θr-girth with Dimitris Chatzidimitriou, Ig-
nasi Sau and Dimitrios M. Thilikos, submitted. These results are presented in
Section 4.1.

7.3.4 On other topics

• [AKR14] Scattered packings of cycles with Aistis Atminas and Marcin Kamiński,
to appear in Theoretical Computer Science (2016). In this paper, we consider
the problem of deciding, given a graph G and two positive integers k and l,
whether G contains k cycles that are at distance at least l from each other. We
obtain polynomial kernels and hardness results for this problem parameterized
by several combinations of k, l, and the maximum degree of the input graph.

• [GPR+16a] Cutwidth: obstructions and algorithmic aspects with Archontia Giannopoulou,
Michał Pilipczuk, Dimitrios M. Thilikos, and Marcin Wrochna, IPEC 2016. Cutwidth
is a graph parameter which measures the minimal number of edges of a graph
crossing an ordering of its vertices. Our main result is a single-exponential up-
per bound on the size of immersion-minimal graphs that have cutwidth greater
than k (i.e. obstructions for cutwidth at most k).
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• [GPR+16b] Linear kernels for edge deletion problems to immersion-closed graph classes
with Archontia Giannopoulou, Michał Pilipczuk, Dimitrios M. Thilikos, and
Marcin Wrochna. Submitted. Let F be a collection of connected graphs con-
taining at least one planar graph. In [FLMS12], Fomin et al. considered the
problem of deciding, with input a graph G and a positive integer k, if one can
delete k vertices in G in order to obtain an F-minor free graph. They obtained
a randomized constant factor approximation for the optimization version of
this problem (i.e. computing the minimum k such that the above holds) and
a randomized FPT algorithm for the parameterized version. We consider the
immersion variant of this problem where one is asked if we can delete k edges
in the input graph in order to get an F-immersion free graph. In this direction,
whenF contains at least one planar subcubic graph, we obtain a constant factor
approximation, a linear kernel, and an FPT algorithm.
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[Tho01b] Carsten Thomassen. The Erdős-Pósa property for odd cycles in graphs
of large connectivity. Combinatorica, 21(2):321–333, 2001.

[Tur41] Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok,
48(436-452):137, 1941.

[Tut61] W. T. Tutte. A theory of 3-connected graphs. Indagationes Mathematicae,
23(1961):441–455, 1961.

[Tuz90] Zsolt Tuza. A conjecture on triangles of graphs. Graphs and Combina-
torics, 6(4):373–380, 1990.

[Vos68] Heinz-Jürgen Voss. Some properties of graphs containing k independent
circuits. In Proceedings of Colloquium Tihany, pages 321–334, 1968.

234



[Wol11] Paul Wollan. Packing cycles with modularity constraints. Combinatorica,
31(1):95–126, 2011.

[Wol15] Paul Wollan. The structure of graphs not admitting a fixed immersion.
Journal of Combinatorial Theory, Series B, 110:47–66, 2015.

[YBdFT99] K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomor-
phism for graphs of bounded distance width. Algorithmica, 24(2):105–
127, 1999.

235



236



LIST OF FIGURES

1 Quelques fruits ordonnés par désirabilité. . . . . . . . . . . . . . . . . . 11
2 Subdivisions de K5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Les graphes de Kuratowski K5 et K3,3 (de gauche à droite). . . . . . . . 13
4 Deux situations où le choix est difficile. . . . . . . . . . . . . . . . . . . 14
5 Les cycles forment un ensemble infini de graphes deux à deux incom-

parables pour l’ordre de sous-graphe. . . . . . . . . . . . . . . . . . . . 16
6 Rats et pièges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 La chasse au rat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Une solution pour rats n’est pas toujours une solution pour serpents. . 18
9 Un mur d’Escher de hauteur 4. . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Some fruits ordered by desirability. . . . . . . . . . . . . . . . . . . . . . 23
1.2 Subdivisions of K5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Kuratowski’s graphs K5 and K3,3 (from left to right). . . . . . . . . . . . 25
1.4 Two situation where the choice is hard. . . . . . . . . . . . . . . . . . . 26
1.5 Cycles form an infinite set of graphs that are pairwise not comparable

for the subgraph ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Rats and traps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7 Hunting rats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.8 A solution for rats is not always a solution for snakes. . . . . . . . . . . 29
1.9 An Escher wall of height 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 The graphs θ5 (left) and D4 (right). . . . . . . . . . . . . . . . . . . . . . 36
2.2 The (4× 4)-grid (left) and the 4-wall (right). . . . . . . . . . . . . . . . . 37
2.3 A wheel of order six (left) and a double wheel of order 6 (right). . . . . 37
2.4 The yurt graph of order 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 The contraction of the edge e creates a double edge. . . . . . . . . . . . 38
2.6 Dissolution and subdivision as complementary operations. . . . . . . . 39
2.7 A K4-minor model in the 3× 3 grid. . . . . . . . . . . . . . . . . . . . . 40
2.8 A K4-immersion model in a graph that has no K4-minor model. . . . . 41
2.9 Connections between common orderings of graphs. . . . . . . . . . . . 44

237



2.10 An example of a tree-partition of a graph. . . . . . . . . . . . . . . . . . 46
2.11 An example of a tree-cut decomposition of a graph. . . . . . . . . . . . 47

3.1 A 3-colorable graph that contains K4 as minor. . . . . . . . . . . . . . . 50
3.2 The graphs K̂4, gem, and D2. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 The elements of a canonical antichain for the subgraph relation. . . . . 55
3.4 Two infinite antichains for multigraph contractions: multiedges and

edgeless graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Thomas’ alternating double wheels. . . . . . . . . . . . . . . . . . . . . 63
3.6 The infinite antichain AM of Matoušek, Nešetřil, and Thomas. . . . . . 64
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Résumé

Le thème central à cette thèse est l’étude des propriétés des classes de graphes
définies par sous-structures interdites et leurs applications.

La première direction que nous suivons a trait aux beaux ordres. À l’aide de
théorèmes de décomposition dans les classes de graphes interdisant une sous-structure,
nous identifions celles qui sont bellement-ordonnées. Les ordres et sous-structures
considérés sont ceux associés aux notions de contraction et mineur induit.

Ensuite, toujours en considérant des classes de graphes définies par sous-structures
interdites, nous obtenons des bornes sur des invariants comme le degré, la largeur ar-
borescente, la tree-cut width et un nouvel invariant généralisant la maille.

La troisième direction est l’étude des relations entre les invariants combinatoires
liés aux problèmes de packing et de couverture de graphes. Dans cette direction,
nous établissons de nouvelles relations entre ces invariants pour certaines classes de
graphes. Nous présentons également des applications algorithmiques de ces résul-
tats.

Mots clefs : théorie des graphes structurelle, sous-structures interdites, beaux ordres,
propriété d’Erdős-Pósa.

Abstract

The central theme of this thesis is the study of the properties of the classes of
graphs defined by forbidden substructures and their applications.

The first direction that we follow concerns well-quasi-orders. Using decomposi-
tion theorems on graph classes forbidding one substructure, we identify those that
are well-quasi-ordered. The orders and substructures that we consider are those re-
lated to the notions of contraction and induced minor.

Then, still considering classes of graphs defined by forbidden substructures, we
obtain bounds on invariants such as degree, treewidth, tree-cut width, and a new
invariant generalizing the girth.

The third direction is the study of the links between the combinatorial invariants
related to problems of packing and covering of graphs. In this direction, we establish
new connections between these invariants for some classes of graphs. We also present
algorithmic applications of the results.

Keywords: structural Graph Theory, forbidden substructures, well-quasi-orders, Erdős-
Pósa property.
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