
HAL Id: tel-01693061
https://hal-lirmm.ccsd.cnrs.fr/tel-01693061v1

Submitted on 25 Jan 2018 (v1), last revised 28 Mar 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Describing Dynamic and Variable Software Architecture
Based on Identified Services From Object-Oriented

Legacy Applications
Seza Adjoyan

To cite this version:
Seza Adjoyan. Describing Dynamic and Variable Software Architecture Based on Identified Services
From Object-Oriented Legacy Applications. Software Engineering [cs.SE]. Université Montpellier;
Lirmm, University of Montpellier, 2016. English. �NNT : �. �tel-01693061v1�

https://hal-lirmm.ccsd.cnrs.fr/tel-01693061v1
https://hal.archives-ouvertes.fr

Granted by the UNIVERSITY OF MONTPELLIER

Prepared at the doctoral school I2S

and the research unit LIRMM

Specialty: Computer Science

Presented by Seza ADJOYAN

Describing Dynamic and Variable

Software Architecture Based on

Identi�ed Services From

Object-Oriented Legacy

Applications

Defended on the 30th of June 2016 in front of the jury composed of:

Mr. Philippe Aniorté Prof. Univ. of Pau and Pays de l'Adour Reviewer

Mr. Henri Basson Prof. Univ. of the Littoral Opal Coast Reviewer

Mr. Mourad Oussalah Prof. Univ. of Nantes Examinator

Mr. Fabien Michel Dr., HDR Univ. of Montpellier Examinator

Mr. Roland Ducournau Prof. Univ. of Montpellier Advisor

Mr. Abdelhak Seriai Dr. Univ. of Montpellier Co-Advisor

iii

Acknowledgments

First and foremost, I would like to express my gratitude to the members of my dis-

sertation committee,Mr. Philippe Aniorté,Mr. Henri Basson,Mr. Mourad

Oussalah, andMr. Fabien Michel for having accepted to judge my thesis work. I

highly appreciate your patience as well as the time you took out of your busy sched-

ule to read and evaluate my thesis work. Thank you for having provided me your

constructive comments and inspiring remarks which de�nitely improve the quality

of the conducted research and its results.

I would like to thank my thesis advisor, Mr. Roland Ducournau, for hav-

ing trusted in me and for having given me the freedom to develop my initiatives

throughout the PhD years. Moreover, you have always supported me and received

me with patience and kindness.

I would also like to thank my thesis co-advisor,Mr. Abdelhak-Djamel Seriai,

for his continuous investment in my thesis, for his remarkable human qualities and

for his pointed advices as much on the methodological side as on the technical side.

Mr. Seriai, indeed, you have supported me from my �rst arrival at LIRMM until

the �nal completion of my dissertation. Completing this thesis would not have been

possible without your help and encouragement, whether on the academic or personal

level, for which I will always remain grateful.

I would like to extend my sincere thanks to every permanent member of

MaREL team for having welcomed me in their team over these last few years.

You have granted me support every time I needed it. Simply, I appreciate to have

known you and hope to meet you again during further scienti�c events and/or to

continue coordination with you.

More generally, I would like to thank the laboratory LIRMM for giving me

the opportunity to work and complete my PhD degree under the best working

conditions. Likewise, I would like to thank the teaching sta� of the Faculty of

Sciences of the University of Montpellier, who put their con�dence in me and

wholeheartedly supported me to accomplish my teaching missions.

I would like to thank Erasmus Mundus program for providing me the op-

portunity as well as the scholarship to integrate and eventually obtain my PhD

degree from such a high-quality EU institution as the University of Montpellier. I

would also like to convey my appreciation to Calouste Gulbenkian foundation

for providing me the fund to complete my research in favourable conditions.

I would like to thank my friends / colleagues (current and former PhD stu-

dents) at LIRMM for the wonderful time I spent with their company. Thank you

for the quality moments and for the enriching scienti�c discussions we had together

as well as for sharing together the everyday concerns of a PhD student. I wish each

and everyone of you the best of luck and success in your future endeavors and look

forward to meeting you again. I share my success with you!

I would like to thank my beloved husband Yenovk Tokatelian for all the sacri-

iv

�ces he has made on my behalf. Your generosity, love, patience and encouragements

were the only way forward for me to overcome all obstacles and challenges. I owe a

lot to you!

Thank you my lovely daughter Lia for her unconditional love and innocent smile

that always lifted my spirit. Thank you for letting mom work on her dissertation

late at nights whenever you slept. For the source of inspiration you have been for

me, I dedicate this thesis to you, my dear Lia.

Lastly, I would like to sincerely thank my parents and my parents-in-law

for having transmitted to me the taste and interest in studies and research. Thank

you for the important moral support you provided to me during my PhD adventure,

despite all the su�ering and di�culties you have experienced. Your choice and

determination to stay and not quit your homeland Syria in this di�cult period

taught me, among others, braveness and courage. Although, I wished you could

attend my PhD defense, however I wish you can survive and continue living in

peace. I love you and miss you very much.

Thanks to my professors, family and friends who helped me along the way; I am

lucky to have you in my life.

v

Describing Dynamic and Variable Software Architecture Based on

Identi�ed Services From Object-Oriented Legacy Applications

Abstract: Service Oriented Architecture (SOA) is an architectural design paradigm

which facilitates building and composing �exible, extensible and reusable service-

oriented assets. These latter are encapsulated behind well-de�ned and published

interfaces that can be dynamically discovered by third-party services. Before the

advent of SOA, several software systems were developed using older technologies.

Many of these systems still a�ord a business value, however they su�er from evo-

lution and maintenance problems. It is advantageous to modernize those software

systems towards service-based ones. In this sense, several re-engineering techniques

propose migrating object-oriented applications towards SOA. Nonetheless, these

approaches rely on ad-hoc criteria to correctly identify services in object-oriented

legacy source code.

Besides, one of the most distinguishing features of a service-oriented application

is the ability to dynamically recon�gure and adjust its behavior to cope with chang-

ing environment during execution. However, in existing architecture description

languages handling this aspect, recon�guration rules are represented in an ad-hoc

manner; recon�guration scenarios are often implicit. This fact hinders a full man-

agement of dynamic recon�guration at architecture level. Moreover, it constitutes

a challenge to trace dynamic recon�guration description/ management at di�erent

levels of abstraction.

In order to overcome the aforementioned problems, our contributions are pre-

sented in two axes: First, in the context of migrating legacy software towards SOA,

we propose a service identi�cation approach based on a quality measurement model,

where service characteristics are considered and re�ned to metrics in order to mea-

sure the semantic correctness of identi�ed services. The second axis is dedicated to

an Architecture Description Language (ADL) proposition that describes a variant-

rich service-based architecture. In this modular ADL, dynamic recon�gurations are

speci�ed at architecture level. Moreover, the description is enriched with context

and variability information, in order to enable a variability-based self-recon�guration

of architecture in response to context changes at runtime.

Keywords: Service-Oriented Architecture (SOA), re-engineering, variability, Ar-

chitecture Description Language (ADL), recon�guration, dynamic architecture

vii

Architecture Dynamique Basée sur la Description de la Variabilité

et des Services Identi�és Depuis des Applications Orientées Objet

Résumé: L'Orienté Service (SOA) est un paradigme de conception qui facilite la

construction d'applications extensibles et recon�gurables basées sur des artefacts

réutilisables qui sont les services. Ceux-ci sont structurés via des interfaces bien

dé�nies et publiables et qui peuvent être dynamiquement découvertes. Les appli-

cations SOA peuvent être conçues selon deux démarches di�érentes. La première

est la démarche classique qui conçoit le système à partir de spéci�cation de besoin

(i.e. forward engineering en anglais). La deuxième démarche consiste à créer le sys-

tème SOA par la réingénierie d'un système existant (i.e. re-engineering en anglais).

Beaucoup d'approches ont été proposées dans la littérature pour la réingénierie

d'applications existantes développées dans des paradigmes pré-services, principale-

ment l'orienté objet, vers SOA. L'objectif est de permettre de sauvegarder la valeur

métier de ces d'applications tout en leur permettant de béné�cier des avantages de

SOA. Le problème est que ces approches s'appuient sur des critères ad-hoc pour

identi�er correctement des services dans le code source des applications existantes.

Par ailleurs, l'une des caractéristiques les plus distinctives d'une application ori-

entée service est sa capacité de se recon�gurer dynamiquement et d'adapter son

comportement en fonction de son contexte d'exécution. Cependant, dans les lan-

gages de description d'architecture (ADL) existants dont l'aspect de recon�guration

et pris en compte, les règles de recon�guration sont représentées d'une manière ad-

hoc; en général, elles ne sont pas modélisées d'une manière explicite mais enfouillées

dans la description de l'architecture. D'une part, ceci engendre une di�culté de

la gestion de la recon�guration dynamique au niveau de l'architecture et d'autre

part, la traçabilité de la description de la recon�guration dynamique à travers les

di�érents niveaux d'abstraction est di�cile à représenter et à gérer.

A�n de surmonter les problèmes précédents, nous proposons dans le cadre de

cette thèse deux contributions. D'abord, nous proposons une approche d'identi�cation

de services basée sur un modèle de qualité où les caractéristiques des services sont

étudiées, ra�nées et réi�ées en une fonction que nous utilisons pour mesurer la valid-

ité sémantique de ces services. La deuxième contribution consiste en une proposition

d'un langage de description d'architecture orientée service (ADL) qui intègre la de-

scription de la variabilité architecturale. Dans cet ADL les services qui peuvent

constituer l'architecture, les éléments de contexte dont les changements d'état sont

à l'origine des changements architecturaux, les variantes des éléments architecturaux

sélectionnées en fonction des états des éléments de contexte et le comportement ar-

chitectural dynamique sont ainsi spéci�és de façon modulaire.

Mots-clés: Architecture orientée service, réingénierie, variabilité, langage de de-

scription d'architecture, recon�guration, architecture dynamique

Contents

1 Introduction 1

1.1 Context . 1

1.1.1 Service Oriented Architecture's Support to Self-Adaptive Sys-

tems . 2

1.1.2 Variability Modeling as a Support to Self-Adaptive Systems . 2

1.2 Problem Statement . 3

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

2 State of the Art 7

2.1 Outline . 7

2.2 Context and Main Concepts . 7

2.2.1 Legacy Software . 7

2.2.1.1 Evolution of Technologies 8

2.2.1.2 Legacy Software Modernization Towards SOA . . . 9

2.2.2 Dynamic and Variable Software Architecture 10

2.2.2.1 Software Architecture 10

2.2.2.2 Service Oriented Architecture 12

2.2.2.3 Variability . 13

2.3 Related Works . 15

2.3.1 Classi�cation of Migration Approaches Towards Service- Ori-

ented Architecture . 15

2.3.1.1 General Classi�cation 15

2.3.1.2 Classifying Migration Approaches Regarding Service

Identi�cation . 20

2.3.1.3 Classifying Migration Approaches Regarding Service

Packaging . 21

2.3.1.4 Other Related Migration Approaches 23

2.3.2 Dynamicity and Variability Representation and Management

at Architectural Level . 24

2.3.2.1 Classifying Architecture Description Languages Com-

pared to Structural Description 25

2.3.2.2 Classifying Architecture Description Languages Sup-

porting Dynamicity 27

2.3.2.3 Classifying Architecture Description Languages Sup-

porting Variability 31

2.3.2.4 Classifying Architecture Description Languages Com-

pared to Variability and Dynamicity Support 33

x Contents

2.3.2.5 Summary of Architecture Description Classi�cations 34

2.4 Conclusion . 34

3 Service Identi�cation from Legacy Software Based on Quality Met-

rics 37

3.1 Introduction . 37

3.2 Object-to-Service Mapping Model . 38

3.3 Quality Measurement Model of Services 39

3.3.1 Characteristics of Services . 40

3.3.2 Characteristics of Web Services 41

3.3.3 Service Characteristics Classi�cation 42

3.3.4 Re�nement of Service Characteristics 43

3.3.5 Quality Metrics . 44

3.3.6 Fitness Function De�nition 46

3.3.7 Service Clustering . 46

3.4 Service Packaging and Deployment 47

3.4.1 Service Deployment . 49

3.4.2 Service Annotation . 51

3.4.3 Service Interface Generation 53

3.4.4 Service Registration . 54

3.5 Conclusion . 56

4 Variable-Architecture Centric Recon�guration of Service-Oriented

Systems 59

4.1 Introduction . 59

4.1.1 Context and Motivation . 59

4.1.2 Illustrative Example . 60

4.1.3 Chapter Organization . 61

4.2 Dynamic Architecture Description Language Based on Variability

Speci�cation . 61

4.2.1 DSOPL: A modular ADL for Describing Dynamicity Based

on Variability . 62

4.2.2 DSOPL Structure Description 64

4.2.3 DSOPL Variability Description 66

4.2.3.1 Variability Description Speci�cation 66

4.2.3.2 Variable Artifacts 67

4.2.3.3 Constraints Related to Alternative's Instantiation . 70

4.2.4 DSOPL Context Description 71

4.2.5 DSOPL Recon�guration Description 72

4.2.5.1 Behavioral Activities 73

4.2.5.2 Con�guration Description 74

4.3 Concrete Architecture and Executable Code Generation 82

Contents xi

4.3.1 Concrete Architecture Generation 82

4.3.2 Executable Code Generation 82

4.4 Conclusion . 85

5 Experimentation/ Validation 87

5.1 Introduction . 87

5.2 Service Identi�cation from Object-Oriented Classes 87

5.2.1 Service Identi�cation Results 88

5.2.2 Results and Validation . 88

5.3 Service Packaging and Deployment 90

5.3.1 Preparing Service Creation 90

5.3.2 Service Annotation . 94

5.3.3 Service Interface Generation 94

5.4 Concrete Architecture Generation of DSOPL-ADL 97

5.5 Transformation to Executable Language 98

6 Conclusion and Future Perspectives 103

6.1 Outline . 103

6.2 Contributions . 103

6.3 Future Perspectives . 105

6.3.1 Short-term Perspectives . 105

6.3.2 Long-term Perspectives . 106

Bibliography 109

List of Tables

2.1 Migration to SOA related work classi�cation 20

2.2 Service identi�cation related work classi�cation 22

2.3 Service packaging related work classi�cation 23

2.4 Architecture's structural speci�cations' classi�cation 26

2.5 Classifying related works according to their nature and main struc-

tural element . 26

2.6 Supported dynamic actions in existing dynamic ADLs 29

3.1 Characteristics of services . 42

3.2 Binding functionality characteristic to properties 44

4.1 DSOPL-ADL to BPEL mapping . 85

5.1 Case studies information . 88

5.2 Service identi�cation results . 89

5.3 Java Calculator Suite services' identi�cation results 95

List of Figures

1.1 Positioning thesis' contributions within a re-engineering process to-

wards SOA . 5

2.1 Evolution of software architecture design methodology 9

2.2 Feature model of mobile phone . 14

2.3 SOA development methodologies . 16

2.4 Legacy to SOA migration framework 17

2.5 Some of S3 layers [Arsanjani 2007] 25

2.6 Panorama of existing ADLs . 35

3.1 Object to service mapping model . 39

3.2 ISO/IEC 25010 software product quality model 40

3.3 Re�nement model of service characteristics 45

3.4 Dendrogram with set of services . 48

3.5 Transforming OO dependencies to interface-based dependencies . . . 49

3.6 Delegation design pattern . 50

3.7 Service interface development . 52

3.8 WSDL generation . 55

3.9 Web service invocation procedure . 56

4.1 Illustrative example: On-line sales scenario architecture 61

4.2 Modular DSOPL-ADL . 63

4.3 Structural description meta-model of DSOPL-ADL 65

4.4 Variability description meta-model of DSOPL-ADL 67

4.5 Example of service variability in sales scenario 68

4.6 Example of connection variability in sales scenario 69

4.7 Example of composition variability in sales scenario 70

4.8 Context description meta-model of DSOPL-ADL 72

4.9 Inter-service communicating activity types 74

4.10 Con�guration description meta-model of DSOPL-ADL 78

4.11 On-line sales scenario behavioral description 80

4.12 Concrete architecture generation . 83

4.13 Sales order activities' sequence . 84

4.14 Transformation to BPEL - sales order example 86

5.1 Java Calculator Suite service identi�cation result 89

5.2 Java Calculator Suite partial call graph 92

5.3 Sales order implementation in BPEL 99

Chapter 1

Introduction

Contents

1.1 Context . 1

1.1.1 Service Oriented Architecture's Support to Self-Adaptive Sys-

tems . 2

1.1.2 Variability Modeling as a Support to Self-Adaptive Systems . 2

1.2 Problem Statement . 3

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

1.1 Context

Human supervision to recon�gure the behavior of software systems which are subject

to environment changes is considered a costly and time-consuming task [Salehie 2009].

To keep pace with the increasing development of such systems notably in terms of

their size and complexity and to guarantee the quality of system's adaptation and

its e�ciency, availability and responsiveness against changing external conditions,

rendering the system self-con�gurable and dynamically adaptable could be an e�ec-

tive solution.

Self-con�gurable (or self-adaptive) systems aim to adapt their various artifacts (at-

tributes or their behavior) autonomously in response to changes in the operating

environment (i.e. context changes) without human interaction [Classen 2008]. Such

systems are capable to dynamically adapt their con�guration. This allows improving

�exibility and responsiveness to users' preferences or varying operating conditions

[Jaggernauth 2015], [Fiadeiro 2013]. The notion of dynamicity indicates that any

adaptation occurs during system's execution. This is a required property in systems

where stopping the execution to make modi�cations on it might cause dramatic

e�ects. Self-con�gurable and dynamically adaptable systems are used in di�erent

domains of application such as natural catastrophe prevention (�ood warning), traf-

�c control system, e-commerce applications, etc.

2 Chapter 1. Introduction

1.1.1 Service Oriented Architecture's Support to Self-Adaptive Sys-

tems

Service Oriented Architecture (SOA), whose main bricks are services [Lewis 2005],

has become a trend of computing paradigm to describe business functionalities

and application logics [Chen 2005], [Zhang 2005]. In SOA, a system is structured

into a set of loosely coupled [Chen 2009], [Nakamura 2009], [Papazoglou 2007] and

interoperable business services that can be easily composed [Lewis 2005], reused

[Lewis 2005] and shared [Corporation 2008] regardless of their physical location.

Services could either be entirely deployed on a single machine, residing on several

machines of company's internal network, or even distributed on several systems over

Internet [Brown 2002]. Moreover, having solid service-oriented architecture in place

will provide the infrastructure needed to successfully deploy services in a cloud en-

vironment. SOA enables the composition of heterogeneous third-party sub-systems

that run in a varying execution environment [Gri�ths 2010]. As a framework, SOA

facilitates the creation of �exible, extensible and reusable assets (i.e. services) with

di�erent granularities hidden behind well-de�ned interfaces that describe service's

functionality. This activity is called service encapsulation [Endrei 2004]. Realizing

Service-Oriented Architecture (SOA) system via Web service technology can provide

the required dynamicity and �exibility [Papazoglou 2008] and hence support the de-

sign of dynamically self-adaptive systems. Using Web service technology o�ers many

advantages for implementing a distributed system; particularly the possibility to

provide interoperability across heterogeneous software artifacts [Papazoglou 2008].

1.1.2 Variability Modeling as a Support to Self-Adaptive Systems

Variability modeling, which is one of the key activities of Software Product Lines

(SPL), explicitly represents the variation among software products of the same prod-

uct family in terms of features [Abu-Matar 2011]. It de�nes which features are

mandatory, optional or alternative in a system in addition to specifying the cross-

cutting conditions of requiring and exclusion between those features [Capilla 2014].

As a matter of fact, SPL aims to build a collection of similar products from a sin-

gle core asset [Bachmann 2005]. This is achieved by identifying commonalities and

variations of a product family at di�erent levels of abstraction and representing

them in a variability model. This variability model represents commonalities and

variations of a product family at di�erent levels of abstraction such as requirement,

architecture, or implementation level. In dynamically self-adaptive systems, vari-

ability modeling can be applied in order to de�ne system's runtime adaptations to

environment changes and to recon�gure its composition accordingly [Classen 2008].

1.2. Problem Statement 3

1.2 Problem Statement

Self and dynamic adaptability is a required property to realize various kind of sys-

tems. Service-Oriented Architecture is one of the preferred technology to materialize

this property.

On the one hand, many software applications have been developed using older

and out-to-dated technologies. Those applications are designated as legacy soft-

ware. Despite the fact that business-critical legacy software still probably a�ords

a great business value for its users, it su�ers from a particularly complex evolution

and maintenance problem. Indeed, the core functionalities which the legacy sys-

tem provides do not change over time but rather the technology and platform on

which it was developed is changed. From software evolution concerns, those core

functionalities of legacy software should �rst be identi�ed within the source code

and separated from platform-speci�c code. This is a challenging task, since legacy

Object-Oriented (OO) applications are not necessarily built applying separation of

concerns [Wahler 2015]. Even more, a complete documentation of such legacy soft-

ware might also be missing, thus making the evolution complicated.

In software development, SOA has advantages over object-oriented programming

due to the dynamic discovery and �exible combining of its structural elements in

heterogeneous computing environments. Moreover, the advent of Web services to

realize SOA has o�ered a larger facility to design and implement �exible, interop-

erable and portable services. In this regard, re-engineering OO software to SOA

and particularly implementing it as Web services has become a major topic of in-

terest during the recent years. Additionally, re-engineering legacy software towards

SOA contributes in building self-adaptive systems. In this context, several service

identi�cation solutions from object-oriented legacy source code have been proposed.

These approaches rely on ad-hoc criteria; they lack a clear mapping between object-

oriented concepts and service ones and thus fail to correctly identify relevant ser-

vices. Moreover, several approaches perform the re-engineering manually or in a

semi-automatic manner, thus, are considered as expensive solutions.

On the other hand, self-adaptive systems evolve during system's execution against

changes in operating environment. In existing software applications that apply SOA

architectural style, dynamic recon�guration of structural elements is achieved in an

ad-hoc manner. This implies that the recon�guration of software system is often

discussed only at implementation level. Such a late recon�guration hinders the

traceability of con�guration aspects and consistency between di�erent levels of the

software development life cycle. However, there are some approaches that discuss

recon�guration issues at early stages of development process, for example at ar-

chitecture or design levels. Those approaches lack of an explicit representation of

con�gurable elements; they model con�guration but not con�gurable elements. In

4 Chapter 1. Introduction

other words, these approaches do not provide explicit support for capturing variation

of structural elements, consequently they do not represent variability at architecture

level. This makes the con�guration description hard to understand and the recon�g-

uration hard to implement. It also constitutes a barrier for a �exible management of

recon�guration at architecture level as well as traceability issues between a dynamic

description given at the architectural level and its counterpart at other abstraction

levels.

Architectural recon�guration can be speci�ed at architecture level using a syntacti-

cal expressive language such as Architecture Description Languages (ADL)s. Vari-

ability modeling is an excellent instrument to model variations of software artifacts

and their behavior within a self-adaptive system. However, existing ADLs that sup-

port dynamic recon�guration do not explicitly model variation points, on which the

recon�guration is based.

1.3 Thesis Contributions

In this thesis, we treat the problems identi�ed in section 1.2 and propose the fol-

lowing contributions:

1. We propose an approach to migrate Object-Oriented (OO) legacy code to-

wards Service-Oriented Architecture (SOA). Therefore, we propose solutions

for service identi�cation and packaging problems.

(a) First, we propose a correspondence between object concepts in OO

paradigm and service concepts in SOA paradigm. Meanwhile, we con-

duct a rigorous study built on service characteristics and then propose

a semantic model that re�nes those characteristics into measurable met-

rics. Finally, those metrics are used to evaluate the quality of candidate

services.

(b) We apply a set of activities related to service packaging. First, we deploy

identi�ed services using a wrapping technique. Meanwhile, we annotate

those services and �nally generate a service interface that describes ser-

vice's functionality.

2. To obtain a dynamic recon�gurable service-based self-adaptive system, we

propose a modular Architecture Description Language (ADL) called Dynamic

Service Oriented Product Lines (DSOPL-ADL).

(a) In addition to specifying structural information, we distinguish three vari-

ability types and manage them at architecture level.

(b) We enrich the static description by specifying recon�guration aspects.

This enables a self-recon�guration of system at runtime in response to a

context change.

1.4. Thesis Organization 5

(c) We propose a preliminary process to generate, among several variable

con�gurations described in reference architecture, one concrete con�gu-

ration based on context values. Furthermore, we automatically generate

an executable implementation code from our architectural description.

We position these contributions within a re-engineering and engineering processes

towards respectively SOA and SOA-based self-adaptable systems, as demonstrated

in �gure 1.1. Our contributions are annotated and highlighted in yellow boxes.

Figure 1.1: Positioning thesis' contributions within a re-engineering process towards
SOA

1.4 Thesis Organization

The thesis is organized as follows. In chapter 2 - State of the Art, we present the

main underlying concepts used in our work and investigate the related approaches

that handle the problems discussed in section 1.2. In this regard, we propose a

classi�cation of SOA migration approaches mainly compared to service identi�ca-

tion and packaging activities. We also propose a classi�cation of ADLs compared

6 Chapter 1. Introduction

to their support to dynamicity and variability.

In chapter 3 - Service Identi�cation from Legacy Software Based on Qual-

ity Metrics, we propose a migration approach towards SOA. Therefore, we propose

a service quality measurement model in order to identify services in legacy object-

oriented source code.

In chapter 4 - Variable-Architecture Centric Recon�guration of Service-

Oriented Systems, we propose a modular ADL that describes structural, variabil-

ity, context and behavioral aspects of software architecture. The purpose of such

exhaustive speci�cations is to enable a variability-based dynamic self-recon�guration

of software system at architecture level.

As part of validating our contribution, in chapter 5 - Experimentation/ Vali-

dation, we demonstrate some case studies on which we have evaluated our service

identi�cation and packaging approaches and interpret obtained results. We also

demonstrate a concrete architecture generation as well as an executable process

generation from our architectural description.

In chapter 6 - Conclusion and Future Perspectives, we resume the work

realized in this thesis and give some perspectives and future directions.

Chapter 2

State of the Art

Contents

2.1 Outline . 7

2.2 Context and Main Concepts 7

2.2.1 Legacy Software . 7

2.2.2 Dynamic and Variable Software Architecture 10

2.3 Related Works . 15

2.3.1 Classi�cation of Migration Approaches Towards Service- Ori-

ented Architecture . 15

2.3.2 Dynamicity and Variability Representation and Management

at Architectural Level . 24

2.4 Conclusion . 34

2.1 Outline

In chapter 1, we have presented the problem that we treat in this thesis. To provide

a better understanding of this problem, in this chapter, we �rst present in section

2.2 the context as well as the main concepts related to the problem statement. In

section 2.3, we present the related work mainly classi�ed in two aspects: section

2.3.1 presents a classi�cation of existing migration approaches towards Service Ori-

ented Architecture (SOA). Moreover, we classify approaches that support service

identi�cation and service packaging activities. In section 2.3.2 we classify existing

ADLs according to their structural description, their support to variability as well

as dynamicity.

2.2 Context and Main Concepts

2.2.1 Legacy Software

Any software which has been developed using outdated technology [Sneed 2006],

but still brings great value to the organization that uses it, is considered as a legacy

software [Stehle 2008], [Sneed 2006]. [Sneed 2006] has even restricted the age of a

software to turn into legacy software to �ve years. While current trend in building

8 Chapter 2. State of the Art

applications is based on developing small entities which can be easily composed

together and even reused in other applications, legacy software, in contrast, su�ers

from being formed of a single large block and often very complex to maintain. This

is the reason of why upgrading a legacy system is considered a hard task. Overall,

legacy software su�ers from several disadvantages, such as:

• high cost of maintenance and upgrading

• lack of understanding

• lack of security

• di�culty to integrate with new systems that use recent technologies

However, despite above mentioned disadvantages, legacy software can neither be

ignored due to its important business value nor easily converted to new technolo-

gies due to its complex infrastructure and its probably unstructured architecture

[Cetin 2007]. Thus, a middle ground would be to re-engineer its architecture and

put a migration plan towards a modern and �exible technology.

2.2.1.1 Evolution of Technologies

Software architecture methodologies are evolving in parallel to the growing size of

systems. In �gure 2.1 inspired from [Audrey 2008], we display the evolution of

software architecture design methodologies. Among existing software architecture

methodologies, we focus only on those who build complex systems from simple sep-

arate entities.

First, in late 1960s and in 1970s, modular programming methodology was com-

mon in programming languages such as Turbo Pascal, Ada, etc., where common

functionalities were written in one module and later composed with other modules

to build an executable application [Lindsey 1978]. The biggest challenge in this type

of programming was how to manage parts of the code to render it reusable. Another

disadvantage of modular programming was that each module was used at most once

in the application and thus could have one single state.

To overcome the problems of modular programming, in 1970s, Object-Oriented

Programming (OOP) paradigm was introduced and became widely used in 1980s

and early 1990s in languages such as C++, Java and Delphi. The main features of

this paradigm are object composition, class inheritance, abstraction, encapsulation

and polymorphism [Cox 1986]. However, the main problem with OOP languages is

related to interoperability and platform independence.

2.2. Context and Main Concepts 9

In component-based development, components are independently deliverable

entities of functionalities [Szyperski 2002] that provide access through their inter-

faces [Brown 2000]. Independently deliverable entity means that it can be bought,

downloaded and deployed as a standalone executable package of software. A com-

ponent can also be subject to composition with other components. Most impor-

tant characteristics of component are; reusability of software components in other

systems, interoperability between several technologies and encapsulation (i.e. com-

ponent acts as a black box, whose implementation is completely hidden behind a

well-de�ned interface).

Finally, Service-Oriented Architecture (SOA) is a methodology for building

systems, which recommends using independent components (named services), which

communicate by exchanging messages, and whose interfaces are well-described in a

platform independent manner [Kuba 2007]. SOA is not a totally new concept; it

has been built as an evolution of other previous concepts such as component or even

object. Further information of its characteristics and features is detailed in section

2.2.2.2.

Figure 2.1: Evolution of software architecture design methodology

2.2.1.2 Legacy Software Modernization Towards SOA

The modernization of legacy software towards SOA is promising, given that SOA

methodology allows the reuse of the core functionalities of the legacy software while

10 Chapter 2. State of the Art

exposing larger visibility to clients through published and discoverable service in-

terfaces [Khadka 2013b]. SOA concepts are given in more details in section 2.2.2.2.

Several strategies have been proposed in literature in the context of modernizing an

object-oriented system towards SOA. [Almonaies 2010], [Bisbal 1999], [Stehle 2008]

and [Khadka 2013a] propose a classi�cation of those existing modernization strate-

gies. The conventional strategies of modernization are:

• Replacement: a complete rewrite of code from scratch is performed to re-

place the existing legacy code. Replacement is considered the least desirable

solution for modernization to SOA [Almonaies 2010].

• Wrapping: an additional layer of interface wraps the legacy code and as-

sures its accessibility by external entities. A signi�cant work using wrapping

technique was carried out in [Sneed 2006], which represents the functionality

within the legacy code in form of Web services wrapped in XML shell. Wrap-

ping, by far the most widely used modernization technique [Khadka 2013b],

is considered to be as a quick and cost e�ective solution in case the code is

relatively small but too expensive to completely re-write.

• Migration: a modernization technique that moves the legacy system to a

more �exible and new environment while retaining system's data and func-

tionality [Bisbal 1999]. It internally restructures and modi�es legacy systems.

This technique is further discussed in section 2.3.1.1.

It is worth noting that it does not exist any perfect solution for modernization

[Almonaies 2010]. In some cases, more than one strategy could be chosen to mod-

ernize legacy software depending on the available resources, time and budget.

2.2.2 Dynamic and Variable Software Architecture

2.2.2.1 Software Architecture

Software architecture describes a computational system by specifying its structure

which comprise software elements, interactions between them, and properties of

both [Clements 2010]. A software architecture can be constructed from one or more

viewpoints. Viewpoint signi�es the perspective from which a view is constructed

[Hilliard 1999]. Two well-known viewpoints that are used to describe a software

architecture are structural and behavioral views.

1. Structural viewpoint de�nes the computational elements of a system and

their organization [Oquendo 2008]. In particular, it describes the following

information:

• Components: The principal processing elements that comprise a sys-

tem. Components might be services, processes, clients and servers, etc...

2.2. Context and Main Concepts 11

• Connectors: The interconnections among the elements of the system

• Con�guration: The mechanism of composing components and connec-

tors altogether

2. Behavioral viewpoint de�nes the functional aspect and the dynamic re-

con�guration of the system. It allows specifying di�erent operational modes

for a dynamic system to adapt its behavior at runtime according to either

environment changing conditions or di�erent property values [Oquendo 2008].

Behavioral viewpoint is mainly speci�ed in terms of:

• Action: a fundamental unit in behavioral speci�cation that comprises a

set of activities that the system executes

• Runtime con�gurations: di�erent runtime con�gurations of architec-

tural artifacts

Software architecture can be documented using several representations varying from

informal notations (e.g. general purpose diagrams, views, natural language, etc.),

textual languages (e.g. architecture description languages ADLs) or graphical repre-

sentation (e.g. modeling languages) [Clements 2010]. A classi�cation of architecture

documenting notations are given in [Clements 2010]. We mainly classify these ar-

chitecture documentation representations into two categories, syntactic expressive

languages and graphical models:

• Syntactic expressive languages: usually specify software architecture us-

ing statements of a textual language. They describe and document software ar-

chitecture at a high-level of abstraction rather than specifying implementation

details [Vestal 1993]. Architecture Description Languages (ADLs) are feasible

solution for such architectural documentation. ADL is a formalism that al-

lows the speci�cation of system's conceptual architecture [Medvidovic 2000].

It describes the high-level structure of the system rather than implementa-

tion details and techniques. It enables architects to describe and validate

systems against stakeholders' requirements from one side, and ease the devel-

opment and implementation process of complex systems, from another side.

It often has a plain text syntax optionally accompanied with a graphical rep-

resentation. Conventional ADLs support only static architecture description

[Medvidovic 1996], [Deiters 2011]. Some ADLs provide a special formalism for

SOA to describe service dynamicity [Jia 2007], [Oquendo 2008].

• Graphical models: use graphical notation or add meta-tags to already ex-

isting standardized models or views to represent major functional and non-

functional requirements of the system [Abu-Matar 2011], [Niiyama 2008] and

[Kruchten 1995]. Such models are used to describe a software system from the

viewpoint of di�erent stakeholders such as end-users, developers, or project

12 Chapter 2. State of the Art

managers. Due to its understandable notation, this solution is usually pre-

ferred for communications with non-technical people (e.g. project managers,

end-users).

The de�nition of software architectural concepts and behavior using ADLs is more

precise and detailed, in addition to the fact that ADL renders automatic code veri-

�cation during development easier.

2.2.2.2 Service Oriented Architecture

Several de�nitions to Service-Oriented Architecture (SOA) have been proposed in

literature either by researches or standard organizations. [Footen 2012] de�nes SOA

as "an architecture of independent, wrapped services communicating via published in-

terfaces over a common middle-ware layer". [Papazoglou 2008] de�nes SOA as "a

logical way of designing a software system to provide services to either end-user

applications or to other services distributed in a network, via published and discov-

erable interfaces". Both de�nitions insist that SOA is not a product but rather an

architecture style. One of the keys of applying SOA is that it adds a new layer

of abstraction [Brown 2002] on top of existing layers in order to enable services to

operate independently and in heterogeneous and distributed environment.

In addition to taking all aforementioned advantages of previous technologies which

SOA was built on, we resume the main characteristics and features of SOA:

• Service granularity: SOA's main composing elements are coarse-grained

and loosely-coupled autonomous services, thus modifying service's implemen-

tation does not require modifying other services as well as a service can

be deployed by itself without other services [Brown 2002], [Clements 2010],

[Zhang 2004], [Nakamura 2009], [Gri�ths 2010].

• Platform independent: services in SOA communicate with each other

through their interfaces and via standard messages. This standard messaging

protocol [Papazoglou 2007] renders SOA a platform and language independent

[Stehle 2008] architectural style.

• Reuse: SOA enables sharing services between several applications and con-

sequently reduces development and maintenance costs [Gri�ths 2010].

• Composition: system in SOA is built by aggregating and orchestrating mul-

tiple services in a distributed process [Papazoglou 2007].

• Discoverable: Services are discoverable at design-time as well as run-time

[Brown 2002] by service brokers or end-user applications.

2.2. Context and Main Concepts 13

2.2.2.3 Variability

Variability De�nition

Several de�nitions of variability have been given in the literature. According to

[Galster 2011], variability is the ability of a software artifact to quickly change and

adapt for a speci�c context in a preplanned manner. [Weiss 1999] de�nes variabil-

ity as "an assumption about how members of a family may di�er from each other".

[Svahnberg 2005] de�nes variability as "the ability of a software system or artifact

to be e�ciently extended, changed, customized or con�gured for use in a particular

context". [Pohl 2005] de�nes variability in time as "the existence of di�erent ver-

sions of an artifact that are valid at di�erent times" and the variability in space as

"the existence of an artifact in di�erent shapes at the same time".

Variability is usually attached to Software Product Line (SPL) domain and is a

core property to develop complex adaptable software systems such as telecommu-

nication, pervasive, crisis management, surveillance and security systems. In such

systems, due to environment changes, a dynamic re-con�guration should be carried

out without having to re-deploy the whole system. A great majority of approaches

capture variability in a feature model, where commonalities and variabilities of a

family of software products are modeled in addition to representing constraints and

dependencies among those features [Lee 2012].

Variability Classi�cation

Sources of variation vary and so do their representations vary. According to Bach-

mann [Bachmann 2001], variability has several sources: variability in function, where

a particular function may or may not exist in a given product; variability in data

structure, where a certain data structure may vary from a product to another; vari-

ability in control �ow, where a sequence of control �ow may change from a product

to another; variability in environment or technology, where the operating system or

hardware may vary, etc. [Svahnberg 2005] proposes another classi�cation of variabil-

ity; variability may occur at di�erent levels: product-line level, architecture level,

component level, sub-component level and code level.

Variability Representation and Management

Variability management is the key feature that distinguishes SPL engineering from

conventional software engineering. It includes activities such as identifying, design-

ing, implementing and tracing variable artifacts in product families [Voelter 2007].

It captures variant and common artifacts during software lifecycle and promotes the

reuse of common assets across products to produce several distinct products of a

SPL. Feature modeling is the most famous formalism for that purpose [Clements 2001].

It is a de-facto standard to model the common and variable features of a family of

software products and their relationships [Kang 1990]. [Apel 2013] de�nes feature

14 Chapter 2. State of the Art

as "a characteristic or end-user-visible behavior of a software system. Features are

used in product-line engineering to specify and communicate commonalities and dif-

ferences of the products between stakeholders, and to guide structure, reuse, and

variation across all phases of the software life cycle". Feature model is a tree-like

hierarchy of features and constraints between those features [Czarnecki 2006]. Each

feature (node), except root, has one parent and one or more child features. There

are two types of relations between features: parent-child relationship and cross-tree

constraints. In the �rst type of relationship, features might be either mandatory,

optional, alternative inclusive (at least one variant should be chosen if parent fea-

ture is chosen) and alternative exclusive (only one variant among children must be

chosen). As to the cross-tree constraints, require and exclude are typical examples of

cross-dependencies between features. If feature A requires a feature B, this implies

that feature B has to be included whenever feature A is included. If two features

are in an exclude relation, this implies that only one of these features might exist in

any valid product con�guration.

Figure 2.2 depicts a simpli�ed feature model of constructing a mobile phone. Ac-

cording to the example, any mobile phone must support calling feature and must

have a screen. This latter can either be a basic screen, a colored screen or a high

resolution screen. Furthermore, the mobile phone can optionally have a GPS nav-

igation system as well as a multimedia support. As a media feature, any mobile

phone can either have a camera or a MP3 or both. However, equipping the mobile

phone with camera requires the screen to be a high resolution screen, since there is

a required constraint from camera to high resolution feature. Finally, both features

GPS and basic screen cannot be part of a same product since they are incompatible

together (exclude constraint).

Figure 2.2: Feature model of mobile phone

2.3. Related Works 15

2.3 Related Works

In the large context of service identi�cation from object-oriented legacy applications

and the representation of service-based dynamically recon�gurable and variable soft-

ware architecture, we investigate and classify, in the following sections, existing rel-

evant approaches. In section 2.3.1, we show the classical steps of object-oriented

application migration towards SOA with a focus on the service identi�cation and

packaging phases. In section 2.3.2, we classify existing architectural representations

in general, and ADLs in particular, mainly according to their structural descriptions

and their support to dynamicity and/or variability.

2.3.1 Classi�cation of Migration Approaches Towards Service- Ori-

ented Architecture

Migrating legacy applications towards SOA allows systems to remain internally un-

changed while exposing their functionality publicly through well-de�ned interfaces

[Cetin 2007]. In this section, we demonstrate the related works for service identi-

�cation and packaging within the context of migrating towards SOA and propose

classi�cations of these works.

2.3.1.1 General Classi�cation

Three methodologies, in general, are followed for creating SOA-based systems, as

displayed in �gure 2.3, inspired from [Audrey 2008]:

1. Top-down SOA development: which considers designing the target ar-

chitecture and the orchestration of services having business rules and re-

quirements as main input. This technique is advisable to apply for devel-

oping new systems since it does not consider the reuse of existing systems

[Nakamura 2009].

2. Bottom-up SOA development: which adopts reverse engineering tech-

niques and describes services in SOA by reusing at maximum existing software

source code [Nakamura 2009]. Here, the input is existing legacy source code.

3. Hybrid SOA development: depending on available inputs and desired out-

puts, a combination of top-down and bottom-up methodologies can be adopted

to achieve an improved service-based architecture. Here, existing legacy source

code from one side and information of target system requirements from other

side form the input of this type of migration towards SOA.

The migration process towards SOA can be seen as a re-engineering horseshoe model

(see �gure 2.4). The existing legacy system is represented on the left side of the

�gure and the target system on the right side. The model is also horizontally di-

vided to two abstraction layers: implementation and design. In order to recover

16 Chapter 2. State of the Art

Figure 2.3: SOA development methodologies

2.3. Related Works 17

Figure 2.4: Legacy to SOA migration framework

18 Chapter 2. State of the Art

the architecture of a legacy system, reverse engineering techniques are applied on

legacy source code. First, existing legacy source code is analyzed and candidate

services are evaluated to identify services. Then, the composition of those services

are recovered and hence represented in an architecture model. On the side, in order

to develop the architecture and generate deployable services and their orchestration,

forward engineering techniques are applied. Architecture is restructured in terms of

abstract services and some new requirements may be added.

Several approaches for legacy system migration towards SOA have been reported in

literature [Sneed 2006], [Chen 2005], [Khadka 2013a], [Lewis 2005], [Khadka 2011],

[Cetin 2007], [Channabasavaiah 2004], [Stehle 2008], [Matos 2009], [O'Brien 2005],

[Zhang 2004]. Some of these approaches handle only the left part of the horseshoe

process focusing on recovering the architecture of existing legacy software in term

of services, whereas other migration approaches apply a full-circle re-engineering

model. We mainly classify migration approaches into two categories:

• Migration approaches that are based on understanding and analyzing existing

legacy system without considering target system requirements. These ap-

proaches follow the bottom-up SOA development methodology. [Matos 2009],

[O'Brien 2005], [Nakamura 2009] and [Sneed 2006] are examples of such mi-

gration approaches.

• Migration approaches that are based on analyzing existing legacy software in

parallel to understanding the requirements of the target system in order to

match between existing artifacts and required functionalities and hence better

guide the SOA system development. These approaches follow the hybrid SOA

development methodology. Examples of such approaches include [Cetin 2007],

[Chen 2009] and [Khadka 2013a].

Table 2.1 classi�es existing migration towards SOA approaches. We demonstrate

the di�erent techniques used for both legacy and target systems' understanding. We

also underline whether approaches that understand legacy system provide service

identi�cation and service packaging phases. Some approaches do not handle target

system understanding, that is why their corresponding �eld of technique is marked

with a '-'. [Khadka 2013b] summarizes existing legacy to SOA migration approaches

through conducting a systematic literature review. Migration of legacy software to-

wards a modern system is considered a hard and complicated task due to the lack

of tools and available approaches to automate the process [Marchetto 2008]. We

notice that the majority of migration approaches use the hybrid methodology, such

as [Lewis 2005], [Cetin 2007], [Fuhr 2013].

In [Lewis 2005], authors present an initial migration approach called Service-Oriented

Migration and Reuse Technique (SMART). It assists businesses to analyze the ca-

pacity of their legacy code that may be exposed as services in a SOA environment

2.3. Related Works 19

by providing preliminary analysis of feasibility, strategy, cost and risk for the legacy

migration to the SOA. It uses a hybrid migration methodology (combined top-down

and bottom-up methodologies) to achieve the migration of legacy system towards

SOA. The key activities of their approach are: identifying system's stakeholders,

identifying expectations of future system and identifying migration concerns. Mean-

while, a list of candidate services is identi�ed in existing legacy code. Finally, as

a gap analysis, the results of those two phases are reconciled to identify a list of

potential services. However, the proposed approach requires several sources of infor-

mation (e.g. documentation) to support the analysis of the legacy system. Besides,

the approach largely relies on human interaction; System analysts, maintenance

programmers, etc. gather information through interviewing stakeholders in order

to �ll the gap between existing legacy system and target architecture. No techni-

cal details of legacy code extraction and service deployment is given in this approach.

An architecture-driven approach for migrating legacy systems to Service-Oriented

Computing SOC, referred as mashup, has been proposed in [Cetin 2007]. This strat-

egy consists of six steps: (1) model the target business requirements, (2) analyze

existing legacy system, (3) identify services by mapping the target enterprise model

to legacy components, (4) design concrete mashup server architecture, (5) de�ne

service level agreement, (6) implement and deploy services. This work is another

good example of using hybrid migration methodology; top-down technique is used

during the �rst step to analyze business requirements of the target system and model

them, whereas bottom-up technique is applied in the second step to understand and

recover valuable assets from existing legacy system.

In [Fuhr 2013], an architecture-based and requirement-driven service-oriented reengi-

neering method is discussed, where services are identi�ed by domain analysis and

business function identi�cation on the requirements abstraction level from one side

and on the source code level from other side. On the source code level, legacy code is

analyzed, architectural elements are identi�ed and similar architectural elements are

grouped into a component using hierarchical clustering algorithm. Later a matching

is performed between business functionalities and legacy functionalities in order to

determine the reusable legacy services. Since this approach is based on both re-

quirements abstraction and source code levels, thus, it needs both architectural and

requirement information to be available.

In order to evolve a legacy software towards a SOA, we have identi�ed two ma-

jor phases that are common in existing approaches that follow either bottom-up or

hybrid SOA development methodologies: (1) service identi�cation (or sometimes

called service extraction or in more general term called legacy system analysis),

where available software artifacts are analyzed to identify provided services and (2)

service packaging and deployment, that leverages extracted legacy code as usable

20 Chapter 2. State of the Art

services, wraps them by interfaces and orchestrates their operations.

Criteria/
Approach

Legacy system understanding
Target system
understanding

Case
study

Tool
support

Yes/No Technique Service
iden-
ti�ca-
tion

Service
Pack-
aging

Yes/No Technique

[Cetin 2007] Yes analyze legacy
system, ex-
tract com-
ponents and
architecture

Yes Yes Yes modeling busi-
ness needs us-
ing BPMN

Yes Yes

[Matos 2009] Yes source code
analysis,
service ex-
traction and
architecture
representation

Yes No No - Yes Yes

[Chen 2009] Yes static and dy-
namic source
code analysis

Yes Yes Yes Application
domain analy-
sis

Yes No

[O'Brien 2005] Yes code anal-
ysis and
architecture
reconstruction

Yes No No - Yes Yes

[Nakamura 2009] Yes reverse engi-
neering legacy
source code

Yes No No - Yes No

[Sneed 2006] Yes data �ow anal-
ysis

Yes Yes No - Yes Yes

[Khadka 2013a] Yes reverse engi-
neering

Yes Yes Yes SOAP based
web service

Yes Yes

Table 2.1: Migration to SOA related work classi�cation

2.3.1.2 Classifying Migration Approaches Regarding Service Identi�ca-

tion

Many approaches have been proposed in literature to identify services by analyz-

ing legacy software artifacts. The �rst major phase of migration is the identi�-

cation of services in existing system. This phase becomes crucial, especially with

the unavailability of certain resources (e.g. developers, architects) and poor docu-

mentation [Khadka 2013a], [Lewis 2005]. Even more, it is a challenging task, since

legacy systems are not necessarily built with the vision of service. Service identi�ca-

tion approaches mainly vary in terms of their source of information (input), service

identi�cation technique and degree of automation (human interaction). Table 2.2

summarizes some well-known existing SOA migration approaches with a particular

focus on what service identi�cation technique they apply.

As sources of information, several artifacts can be handled; Some researches rely

only on source code while others need further artifacts such as documentation,

system architecture or business requirements. Accordingly, legacy system under-

standing and modern architecture construction can be realized either by bottom-up

reverse engineering techniques using source code as an input or a hybrid bottom-

up and top-down techniques which is mostly the case [Lewis 2005], [Cetin 2007],

[Fuhr 2013].

2.3. Related Works 21

As to the source of information, we observe that most approaches assume the ex-

istence of large range of information about legacy systems such as their documen-

tation, architecture and design documents [Lewis 2005], [O'Brien 2005], see table

2.2. Therefore, they are applicable to systems where such information is avail-

able. They cannot be applied to systems where only the source code is available

[Nakamura 2009].

In regard to human interaction during the service identi�cation phase, we ob-

serve that the majority of service identi�cation approaches are carried out manually

[Sneed 2006], [Lewis 2005], [Khadka 2011] as displayed in table 2.2. These solu-

tions are considered as expensive in terms of expertise. Thus, some automatic or

quasi-automatic approaches were proposed [Chen 2005], [Zhang 2005], [Chen 2009],

[Matos 2009], [O'Brien 2005].

The main process in service identi�cation is to evaluate candidate services. A de-

tailed survey of all service identi�cation methods is discussed in [Khadka 2013b].

In object-oriented legacy systems, candidate services are considered as groups of

object-oriented classes evaluated in terms of development, maintenance and esti-

mated replacement costs. There are several approaches to evaluate services. For

example, [Sneed 2006] proposes an automatic approach to evaluate candidate ser-

vices. It calculates a service's value based on cost analysis of the development costs,

the maintenance costs, the estimated replacement costs and the annual business

value contributed by that service.

Other service identi�cation techniques propose to evaluate services either by code

pattern matching and graph transformation [Matos 2009], feature location [Chen 2005]

or formal concept analysis [Chen 2009]. In [Chen 2005] a feature location technique

is proposed to identify features in the source code and to map them to services. It

claims that services and features have many characteristics in common.

By observing existing service identi�cation techniques and approaches, we notice

that almost all existing approaches rely on ad-hoc criteria for evaluating candidate

services. Therefore, they fail to identify relevant service. This results in a gap

between identi�ed services and expected ones.

2.3.1.3 Classifying Migration Approaches Regarding Service Packaging

Several terms are used to name the phase of deploying identi�ed services, such

as service implementation, service packaging, service wrapping, determining service

interface, etc. However, the process is almost identical. Service packaging phase

concerns with the deploying, describing and publishing activities of an identi�ed

service. Describing the functionality of the service serves to make the service visible

22 Chapter 2. State of the Art

Criteria /
Approach

Source of infor-
mation (input)

Technique used
for service iden-
ti�cation

Case study Human interac-
tion

[Lewis 2005] architecture
data, design
data, source
code, interview
stake-holders, etc.

high level require-
ment driven

pilot application
of early version
of SMART is
applied at U.S.
Department of
Defense

manual (system
analysts)

[Sneed 2006] procedural source
code

data �ow analy-
sis and code strip-
ping (identifying
variables and re-
turned functions)

from roadmap to
case study

automatic code
extraction

[Zhang 2005] source code feature identi�ca-
tion, Hierarchical
clustering of com-
ponents

Virtual Learn-
ing Environment
Web-based system

human supervi-
sion for selecting
cutting point in
dendrogram

[Chen 2005] object-oriented
source code

feature analysis library Manage-
ment Information
system

developers decide
which identi�ed
classes to choose
to generate Web
services

[Khadka 2011] source code concept slicing,
source code visu-
alization, design
pattern recovery

case studies in
�nancial domain
implemented in
COBOL and
C++

semi-automated
service identi�-
cation (manual
investigation of
source code)

[Fuhr 2013] legacy code, busi-
ness processes, ar-
chitecture descrip-
tion model and in-
terviews

domain analysis,
business function
identi�cation
and legacy code
analysis and
transformation
to a TGraph
representation
(model)

GanttProject
2009

semi-automated
(service design-
ers for business
modeling)

[Cetin 2007] business require-
ments of target
system and exist-
ing legacy compo-
nents

N/A �nancial gateway
product line and
black list manage-
ment

manual

[Chen 2009] source code, busi-
ness requirements

formal concept
analysis and on-
tology techniques
for source code
analysis

e-Workforce Man-
agement product
originally imple-
mented in C++
and later rede-
veloped in .NET
framework

semi-automated

[Matos 2009] object-oriented
source code

annotating func-
tionality in source
code based on
pattern matching
rules, reverse en-
gineering, graph
transformation
at architecture
level, forward
engineering

small banking ap-
plication in Java

largely automated
with some human
interaction during
code annotation
phase

[O'Brien 2005] source code, doc-
umentation, inter-
views

architecture
reconstruction

Command and
Control (C2)
implemented in
C++

automated

[Nakamura 2009] procedural source
code

reverse engineer-
ing, hierarchical
data �ow analysis

liquor shop inven-
tory control sys-
tem implemented
in C

manual

Table 2.2: Service identi�cation related work classi�cation

2.3. Related Works 23

to service consumers from one side, meanwhile, it serves to hide the service's internal

implementation details from external clients.

In addition to the aforementioned phases which almost any service packaging tech-

nique performs, there are some additional improvements that can be carried out to

the extracted services during service packaging phase. Examples of such improve-

ments include re�ning the extracted reusable legacy code of the service extraction

phase, constructing missing components and bridging legacy components to newly-

built components [Zhang 2005].

[Khadka 2013b] has conducted a detailed literature review on service packaging tech-

niques and tools. Among packaging techniques there are wrapping, code transfor-

mation, code generation and program slicing techniques. However, wrapping is the

most widely used approach, where the functionalities of the legacy code are exposed

through interfaces without altering nor transforming the legacy code to another lan-

guage. There are several approaches or commercial tools that automatically wrap

legacy code written in COBOL, PL/I and C++ without manual interaction. As for

Web services, there exist some description languages and technologies that anno-

tate Web services with ontologies e.g. OWL-S [Martin 2004], WSMO [Lausen 2005],

WSDL-S [Akkiraju 2005] and SAWSDL [Farrell 2007]. Table 2.3 summarizes exist-

ing approaches that package extracted services within the process of legacy system

migration towards SOA.

Approach Packaging technique Tool support
[Cetin 2007] wrapping service, customizing existing

components and develop new services
No

[Chen 2005] wrapping service operations using del-
egation classes

Web Service Wrapper (WSW)

[Zhang 2006] wrapping Web service and implement-
ing a common interface

Java Native Interface (JNI)

[Sneed 2006] wrapping "Softwrap" tool
[Zhang 2004] legacy code re�nement, new service-

oriented components integration, de-
veloping glue code and service com-
plexity reduction

Axis SOAP processor

Table 2.3: Service packaging related work classi�cation

2.3.1.4 Other Related Migration Approaches

In previous sections, we have presented related migration approaches towards SOA.

However, other existing approaches can also be considered related to this problem,

especially approaches focusing on migration towards component. The main di�er-

ence behind both migration techniques relies on the di�erence between service and

component concepts. Services in SOA and components in component-based archi-

24 Chapter 2. State of the Art

tecture have several principles in common. Service-based systems and component-

based systems are composed of services and components respectively that are in-

terconnected to each other and can be decomposed to �ner structural elements.

However, there is a conceptual di�erence in designing both architectures. SOA

aims at designing business processes and encapsulating them in services, whereas

component-based development are implementation oriented which does not neces-

sarily respects a given business rule.

Both services and components are self-contained and autonomous entities and whose

functionalities are accessible through well-de�ned interfaces. In contrast to com-

ponents, services are platform-independent entities that are distributed over net-

work. Services are logical evolution of software components [Karastoyanova 2003]

and middle-ware.

In fact, services are in a higher abstraction level than components [Tosic 2003]; ser-

vices are built over an additional application architecture layer and components are

the best way to implement those services [Brown 2002]. Likewise, Arsanjani et al.

[Arsanjani 2007] de�ne a nine-layer model for SOA called S3, where the "services"

layer is above "service components" layer and followed by "business process" layer.

A clear separation of concerns is implemented in their SOA solution, as demon-

strated in �gure 2.5, where three of those nine S3 layers are displayed. A "service

component" is the realization of a "service" and represents the functionality of that

service, whereas the "service" has a more abstract nature who exposes su�cient

description about "business process" 's operation. Another di�erence between com-

ponent and service is the instantiation time. While components are instantiated as

needed, services are running instances that the client invokes [Brown 2002].

Despite the di�erences between service and component, services and software com-

ponents have several characteristics in common, in particular, those related to their

nature, structure and behavior. Both have the same main architectural properties;

loosely coupled and coarse grained services (software components), interfaces and

con�guration (connection between architectural elements). Even more, Web service

composition and component-based development have several practices in common

[Iribarne 2004]. For that obvious reason, component identi�cation techniques from

object oriented legacy system could be considered as related to our research.

2.3.2 Dynamicity and Variability Representation and Management

at Architectural Level

As we have mentioned in chapter 1, our goal is to propose a recon�guration of

system that comprises variability at architecture level. Being able to modify the ar-

chitecture of a running system at such a high level of abstraction renders the system

2.3. Related Works 25

Figure 2.5: Some of S3 layers [Arsanjani 2007]

highly extensible, customizable and powerful [Medvidovic 1996]. For that reason,

we present, in the following subsections, a classi�cation of di�erent approaches that

handle dynamicity and/or variability issues at architecture level. In fact, both vari-

ability and dynamicity properties concern the architectural elements, that is why

we �rst classify in section 2.3.2.1, existing architecture representations following

their structural elements. Then, we investigate in section 2.3.2.2 some ADLs that

provide special formalism to describe dynamicity. Likewise, we investigate existing

ADLs that describe variability in section 2.3.2.3. In section 2.3.2.4, we investigate

approaches that handle both variability and dynamicity issues.

2.3.2.1 Classifying Architecture Description Languages Compared to

Structural Description

Regardless of whether existing ADLs in literature describe variability and/or dy-

namicity, all ADLs provide structural speci�cations of system's architecture that

they represent. Table 2.4 lists the structural speci�cations of each existing ap-

proach. We also distinguish whether an ADL supports a composite hierarchical

description of architecture or not. Traditionally all architectural descriptions have

more or less the same structural speci�cations regardless of their names: compos-

ing element (component or service), provided/ required interfaces (or ports) and

connectors (connection between those elements). Some architecture descriptions

also specify hierarchical compositions such as [Magee 1995], [van Ommering 2000],

[Barbosa 2011], [Jia 2007], [Medvidovic 1996], [Oquendo 2004] etc. Some ADLs, in

addition to a syntactical expressive language, have a graphical representation to

visualize the structural architecture. Table 2.5 lists some architectural descriptions,

classi�es them to ADLs and non-ADLs, indicates whether they have a graphical

26 Chapter 2. State of the Art

visual support and classi�es whether those representations are used for component-

based systems or service-based systems.

Approach structural speci�cations
composite
element

description
ADL

Darwin [Magee 1995] component, required/provided interfaces (called services),
binding, component instantiation, hierarchy

Yes

KOALA
[van Ommering 2000]

component, required/ provided interfaces, connects, con�gu-
ration

Yes

Dynamic ACME component, port (interface), connector, systems (con�gura-
tions)

No

PL-
AspectualACME
[Barbosa 2011]

component, connector, role (provider/consumer), port, at-
tachments

Yes

Dynamic-WRIGHT
[Allen 1998]

component, port and role (as interface), connector, glue (as
behavior), constraint

No

π-ADL for
WS-Composition
[Oquendo 2008]

service, connection, port No

π-ADL
[Oquendo 2004]

component, port & connection (interface), protocol, connec-
tor, architecture, behavior, compose

Yes

C2 SAD(E)L
[Medvidovic 1996]

component, connector, port, topology Yes

SOADL [Jia 2007] service, provider/ requester port (interface), operation, mes-
sage, behavior, sequence, receive/ send

Yes

xADL [Dashofy 2002] component, connector, interface, sub-architecture, link Yes
Plastik [Joolia 2005] component, connector, port No

non-ADL
BPEL [BPE 2007] service (partnerLink), interface (WSDL), operation, port No
VxBPEL
[Koning 2009]

service (partnerLink), interface (WSDL), operation, port No

Table 2.4: Architecture's structural speci�cations' classi�cation

Criteria/Approach
graphical
visualization

main structural element
service component

ADL
Darwin [Magee 1995] Yes No Yes
Koala [van Ommering 2000] Yes No Yes
PL-AspectualACME Yes No Yes
Dynamic Wright [Allen 1998] Yes No Yes
Rapide [Luckham 1995] Yes No Yes
Plastik [Joolia 2005] No No Yes
π-ADL [Cavalcante 2015] Yes No Yes
SOADL [Jia 2007] Yes Yes No
π-ADL for WS-Composition [Oquendo 2008] Yes - BPMN Yes No
π-ADL [Oquendo 2004] No No Yes
C2 SAD(E)L [Medvidovic 1996] Yes No Yes
xADL [Dashofy 2002] Yes No Yes

non-ADL
[Abu-Matar 2011] Yes Yes No
BPEL [BPE 2007] Yes Yes No
VxBPEL [Koning 2009] Yes Yes No

Table 2.5: Classifying related works according to their nature and main structural
element

2.3. Related Works 27

2.3.2.2 Classifying Architecture Description Languages Supporting Dy-

namicity

Static versus Dynamic ADL

A software architecture can be classi�ed in terms of its capability of evolution into

two categories: static and dynamic [Oquendo 2008]. A static architecture speci�es

system's structure at design time. Traditional static ADLs describe in particular

the set of composing elements that encapsulate a functionality and their connectors

that coordinate the communication between those composing elements.

While ADLs have more or less agreed on what elements to represent regarding

structural speci�cations, there is not yet a common agreement of what dynamic

ADLs shall represent from behavioral point of view. It may happen that soft-

ware architecture evolves after its deployment [Clements 2010]. Such architecture

is called dynamic architecture. Several di�erent de�nitions of dynamic architec-

ture have been proposed in literature. For example, [Bradbury 2004] considers that

dynamic software architecture modi�es itself and adopts modi�cations during sys-

tem's execution. In Rapide language [Luckham 1995], one of the earliest ADLs that

tackle dynamicity, dynamic architecture has the capability of modeling an architec-

ture in which the number of components, connectors, and bindings may vary while

system's execution. Dynamic architectures, in addition to specifying the system in

terms of components, connectors and con�gurations, they should also specify how

these components and connectors are evolved or recon�gured at architectural level

during system's execution. De�ning those speci�cations in an ADL is considered a

challenging task. Having dynamic architecture is considered crucial in several do-

mains such as in air-tra�c control, high safety-critical systems, etc. where stopping,

recon�guring and then restarting the system may cause catastrophic e�ects. Hence

the importance to modify the architecture during system execution.

Dynamicity Management Types

It is evident that dynamicity is di�erently considered and perceived in di�erent

research communities, hence the importance to classify those literature works ac-

cording to our own understanding and in accordance to our contribution. We mainly

classify dynamic architecture descriptions, whether described in ADLs or other for-

malisms, into two types:

1. centralized dynamicity management: where all instructions of modifying

system's architectural behavior are de�ned in a central con�gurator. Hence

the behavioral description is independent from architectural elements' func-

tionality de�nition. Various approaches have emerged to explicitly describe the

interaction between architecture's structural elements in form of a sequence of

activities such as in [Oquendo 2008], [Jia 2007], [BPE 2007].

28 Chapter 2. State of the Art

2. event-driven dynamicity: where constraints in form of triggers or events

are de�ned inside each architectural element of the ADL. Here, an internal

observer listens to environment's changes and modi�es elements' behavior (e.g.

its connection with other elements) only if a pre-de�ned constraint or condition

is satis�ed. Darwin [Magee 1995], Plastik [Joolia 2005] and Dynamic Wright

[Allen 1998] are examples that use this technique.

In global, the recon�guration of architecture at runtime may happen through several

dynamic actions:

• creating (instantiating) / removing an architectural elements from the archi-

tecture

• binding / unbinding architectural elements to the architecture

• recon�guring architecture (modifying connections between architectural ele-

ments)

• upgrading existing architectural elements (substitution of architectural ele-

ments)

Dynamic Component-Based ADL

Among existing ADLs in the literature, only few of them support dynamic recon-

�guration such as C2 SAD(E)L [Medvidovic 1996], Darwin [Magee 1995], π-ADL

[Oquendo 2004], Rapide [Luckham 1995], Plastik [Joolia 2005] and Dynamic Wright

[Allen 1998]. We classify in table 2.6 existing dynamic ADLs according to their sup-

port of the aforementioned dynamic actions. [Minora 2012] investigates four ADL's

support to dynamic recon�guration. These languages are: π-ADL, Plastik, C2

SAD(E)L and Dynamic Wright. It di�erentiates between foreseen recon�guration

and unforeseen once. The foreseen recon�guration is programmed at design time

but executed at runtime, whereas unforeseen recon�guration concerns an ad-hoc

and unplanned modi�cation of architecture at runtime.

Our conviction is that component and services as structural entities have several

principles in common. That is why during related work classi�cation, we study

the dynamicity (behavioral) aspects not only in service-based ADLs but also in

component-based ones, such as Rapide, Koala [van Ommering 2000] and Dynamic

Wright [Allen 1998], Darwin [Magee 1995]. Following, a brief description of how

each ADL tackles dynamicity.

Plastik [Joolia 2005] has the following structural elements: component, connector

and port. As to dynamic elements to describe behavior (a speci�c con�guration), the

expression "on condition do operations" is used to toggle between di�erent choices at

runtime. To replace an instance of component at runtime, detach and attachment

2.3. Related Works 29

reference
dynamic action

D
a
r
w
in

[M
a
g
ee

1
9
9
5
]

D
y
n
a
m
ic
W
r
ig
h
t
[A
ll
en

1
9
9
8
]

S
O
A
D
L
[J
ia
2
0
0
7
]

π
-A
D
L
[O
q
u
en
d
o
2
0
0
4
]

C
2
S
A
D
(E
)L

[M
ed
v
id
ov
ic
1
9
9
6
]

π
-A
D
L
fo
r
W
S
-C
o
m
p
o
si
ti
o
n
[O
q
u
en
d
o
2
0
0
8
]

P
la
st
ik

[J
o
o
li
a
2
0
0
5
]

create architectural element Y Y N Y Y N Y
remove architectural element N Y N N Y N Y
bind architectural element to architecture Y Y Y Y Y Y Y
unbind architectural element to architecture N Y Y N Y N Y
recon�gure architecture (modify connections) N Y Y N Y N Y
substitute architectural element (upgrade) N Y Y N Y N Y

Table 2.6: Supported dynamic actions in existing dynamic ADLs

statements are used in operations' part in order to respectively unlink and link com-

ponents and thus replace an instance of component at runtime.

Darwin [Magee 1995], one of the earliest languages addressing dynamicity aspect

in ADL, is a con�guration language that models in addition to static structure (i.e.

component, interface, binding and component instantiation / composition) also some

properties of dynamic architectures. It o�ers component dynamic instantiation and

binding facilities but does not handle the creation or destruction of connections be-

tween component instances. It also uses the subclass concept to build more speci�c

classes from generic ones. Operation model is described in π-calculus.

Dynamic Wright [Allen 1998] supports the description of architecture from both

structural (static) and behavioral (dynamic) viewpoint. Its structural description

contains the following elements: component, component's interface named port,

connector and connector interface (role). As to dynamicity speci�cation, system's

behavior is speci�ed separately in a configuror. Con�guror is in charge of recon�g-

uring architecture's work�ow by using attach and detach instructions. Con�guror

is composed of two sections:

1. An initialization section, where initial structural elements are instantiated us-

ing new and attach instructions followed by a de�nition of an initial sequence

of actions.

30 Chapter 2. State of the Art

2. A recon�guration section that contains several alternative con�gurations. One

of those alternative con�gurations are executed if its constraint is satis�es.

Koala [van Ommering 2000] is also an example of a component model, where all

run-time recon�gurations are prede�ned at design-time. The dynamicity of this

language is restricted only to "switching" between components according to prede-

�ned rules in order to bind selected component at run-time.

Dynamic Service-Based ADL

All ADLs that were previously detailed in this section are ADLs that describe a

component-based architecture. There are also several ADLs that handle service-

based architectures. For example, π-ADL for WS-Composition [Oquendo 2008] is a

service-oriented ADL for Web Service (WS) composition that has the same roots as

π-ADL [Oquendo 2004] and highly relies on BPMN's visual notation. It formally de-

scribes service-oriented dynamic architectures from both structural and behavioral

viewpoints. π-ADL for WS-Composition is considered as dynamic ADL because

some third party services can be discovered and bound to service broker at runtime

while some other services are already bound at design-time. The de�nition of the

architecture is divided in two parts:

• Behavior, where the instances of components, and connectors are de�ned

abstractly and also the link between each component and connector

• Structure de�nition, where each component is de�ned (e.g ports)

Another example of service-based ADL supporting dynamicity is SOADL [Jia 2007],

a service-oriented architecture description language which is used for modeling

service-oriented architecture in an abstract level. Technically, SOADL adopts XML

notation and is therefore independent of the platform and technologies. It speci-

�es the architecture in terms of services, interfaces, behavior, semantics and quality

properties. It also supports architecture-based service composition. By observing

the pseudo-schema syntax of SOADL, we can distinguish four main parts:

• Port is the interaction point of service. It plays a provider or requester role

• Behavior consists of a sequence of actions, either a basic action or a composite

one

• subArchitecture part describes the structure of the (sub)system of a com-

posite service. More precisely this part includes three parts:

− Dependency part declares local or external service types that the (sub)

system may use

− Con�guror part speci�es all possible con�gurations for the given system.

Each con�guration is triggered by an event. However, all con�gurations

treat foreseen events (i.e. unforeseen events are not discussed).

2.3. Related Works 31

− Constraint part de�nes a set of temporal constraints between opera-

tions in one or more ports. It determines how an architectural design is

permitted to evolve over time.

• Properties part describes properties of security, transaction, load balance,

version, or information related to implementation

However, in SOADL the dynamic recon�guration of services discusses only the sub-

stitution of service instances in case of unavailability of a main service. Substituting

services are statically de�ned at design-time in the con�guror part of SubArchitec-

ture element.

All previously mentioned approaches provide certain dynamicity according to either

planned (prede�ned) or unplanned changes in a given architecture [Oquendo 2008].

However, there are other paradigms than ADLs that tackle dynamicity particularly

in Web service composition. In order to describe the composition of Web services

and to create executable business processes, many languages have been proposed

in literature. Among them, BPEL4WS (or referred as BPEL) [BPE 2007], an OA-

SIS standard executable language based on XML notation for specifying executable

and abstract business processes. A process is the ordering of activities, it has in-

puts and provides outputs. The composition of Web services is called "process"

which contains a set of "activities" that communicate with each other through

"messages". The involved services in BPEL process are called "partners" which

are invoked through their WSDL interfaces. In BPEL, it is possible to de�ne vari-

ables, create loops and conditions, create parallel or sequential activities and assign

values. BPEL has two types of activities: primitive and structured. Primitive

are single activities such as assign, receive, invoke, reply, while structured

instructions (e.g. sequence, flow) regroup several primitive activities.

2.3.2.3 Classifying Architecture Description Languages Supporting Vari-

ability

The notion of variability in the context of software architecture seems to be poorly

discussed in literature. In software architecture and its representation, variabil-

ity management is not often explicitly described, on the contrary to product lines

domain, where variability is a �rst-class concern [Galster 2011]. Only few exist-

ing approaches were concerned about representing an architecture that encom-

passes variability [Nakagawa 2012] at architectural level such as [Dashofy 2002],

[van Ommering 2000], [Zhu 2011], [Barbosa 2011], [Capilla 2014], [Abu-Matar 2011].

Among these approaches, [Dashofy 2002], [van Ommering 2000] and [Barbosa 2011]

integrate variability notions directly within their proposed ADL, while other ap-

proaches manage runtime variability at architecture level in general.

32 Chapter 2. State of the Art

Among existing ADLs that handle variability, xADL [Dashofy 2002] is an ADL

for modeling runtime and design-time architectural elements of software systems. It

is de�ned as a set of XML schemas. This gives xADL a full extensibility and �exi-

bility, as well as basic support from many available commercial XML tools. xADL

2.0 integrates product lines concepts in the form of three schemas: versions, options,

and variants schemas. Concerning the integration of product lines concepts within

xADL; this approach su�ers from the limitation of expressing constraints (i.e. re-

quires, excludes) between elements of di�erent variation points.

Koala [van Ommering 2000] is a component model with an architecture descrip-

tion language that supports product-line modeling by modeling variation points in

architecture. Inspired by Darwin [Magee 1995] language, and implemented in C. Its

main elements are interfaces (provided/ required), components and a con�guration.

Its dynamic recon�guration is limited to using a switch to bind a component's in-

terface to the system based on a statically de�ned condition. The main limitation

in Koala is its static nature; any deployed con�guration cannot be changed at run-

time and will require application recompilation, thus it is not suitable for dynamic

architectures.

PL-AspectualACME [Barbosa 2011] enriches Aspectual ACME description language

by adding a variability dimension description at architecture level. Structural el-

ements are described in terms of type of components, connectors, and ports.

Variabilities are modeled using representation elements for identifying product

variations, whereas port elements are used for representing the mechanism of vari-

ability selection. Features are described as component Type elements.

In a related context, Dynamic Software Product Line (DSPL) extends conventional

SPL perspective by delaying the binding time of product's composing elements (i.e.

features) to runtime, a feature called late variability [Baresi 2012]. It produces au-

tonomous and recon�gurable products that are able to recon�gure themselves to

select a valid con�guration during runtime [Cetina 2008]. Even though there is no

concrete agreement of what aspects a dynamic SPL should exactly treat, most ap-

proaches agree that the main characteristic of any dynamic SPL framework is the

runtime variability, which provides the following common activities at runtime:

• managing the dynamic selection of variants

• autonomous activation/ deactivation of composing elements

• substitution of composing elements

• dependency and constraint checking of changed elements [Capilla 2014]

Except previously described approaches that address variability at architecture level,

2.3. Related Works 33

we notice that variability management is not often described neither in the con-

text of service-based systems nor at architecture level, therefore we investigate at

other levels of abstraction how variability is described. For example, in implementa-

tion (business process) level, [Koning 2009] extends the process description language

grammar in BPEL to provide explicit variability support. New elements are added to

BPEL to support the dynamic recon�guration of variants during system's execution.

Those elements are variation points to indicate the place where an adaptation

may occur and variants which describe a BPEL activity that will be executed if

a variant is selected. It is worth noting that VxBPEL supports several variability

actions in particular describing service replacement and the possibility to modify

system's composition at runtime. However, it does not provide any mechanism to

check constraints among di�erent variants or di�erent variation points.

2.3.2.4 Classifying Architecture Description Languages Compared to

Variability and Dynamicity Support

So far, we were mainly interested in classifying Architecture Description Languages

(ADLs) according to their support to dynamicity or variability. However, we have

also noticed that the reconciliation between SPL and SOA to model software ar-

chitecture could have a di�erent nature than a syntactical expressive language (e.g.

ADL). In this section, we present other approaches that treat dynamicity and/or

variability. However, these existing approaches have di�erent nature than an ADL.

Variability modeling of service-family architecture is not necessarily always ex-

pressed in an ADL. For example, [Abu-Matar 2011] presents a service variability

model by applying SPL concepts to model SOA systems as service families. It inte-

grates feature modeling with service views using UML and SoaML. In this approach,

feature modeling is the unifying view that provides added dimension to the variabil-

ity in service-oriented product line architecture. The multi-view SOA variability

model consists of two requirements views (service contract and business process)

and two architectural views (service interface and service coordination). Each view

is modeled using an UML diagram which is extended by stereotypes to express vari-

ability notions. Unfortunately, the repartition of information in multi-views renders

it di�cult to convert it to a formal language that can be converted to executable

system.

[Zhu 2011] proposes a model of product line architecture. It describes variability

at architecture level using the following elements: components, connectors, inter-

faces and links. Variability in product lines architecture is usually represented

by optional and alternative architecture elements. However in this approach, re-

garding alternative elements, it discusses only components' alternativeness. Rather

than representing architecture-level variability of each architecture element sepa-

34 Chapter 2. State of the Art

rately (�ne-grained variability), it identi�es a con�guration of variation elements

and groups them as a bigger grain variation constructs.

2.3.2.5 Summary of Architecture Description Classi�cations

First, we have classi�ed existing architecture description approaches to syntactical

expressive languages (i.e. ADL) and graphical models. We have also classi�ed these

architectural descriptions regarding to their support to dynamicity and variability.

Concerning architecture descriptions (whether as an ADL or other formalisms), we

have noticed that the level of dynamicity varies ranging from only binding an ar-

chitectural element at runtime up to specifying a complete dynamic behavior of

the architecture where structural elements can be bound/ unbound, and the whole

architecture can be recon�gured at run-time without the need to re-compile the sys-

tem. In what concerns variability, we have noticed that only few number of works

were interested in describing it at architecture level and as an ADL.

We have also noticed that most existing works use components as a main com-

posing architectural element. We could only �nd few service-based ADLs. Basically

all ADLs describe the structural speci�cations of the architecture before treating

variability or dynamicity aspects. Dynamic and variability aspects may either be

embedded in the structural speci�cation of the architecture or it can be speci�ed

in a separate section assuring the concept of separation of concerns. For example,

for dynamicity speci�cation, in the �rst case, each architectural composing element

is a self-managing entity which is responsible for its connections to other entities.

Whereas in the second case, there is a orchestrator which is in charge of communi-

cation between several entities. In is worth noting, that one of the advantages of

separating the behavior speci�cation from the structural speci�cation is the possi-

bility to de�ne more than one con�guration for the same set of structural elements.

2.4 Conclusion

In this chapter, we have �rst presented existing approaches in relation to SOA mi-

gration. We have observed that a migration process towards SOA goes through two

main phases: service identi�cation and service packaging. As to the service iden-

ti�cation phase, we have found a lack of using SOA quality properties to guide the

selection of good candidate service. Existing approaches have either used ad-hoc

criteria to evaluate candidate services or candidate services were extracted depend-

ing on previous knowledge on expected software services and their functionalities.

Ad-hoc means that characteristics of services are not used to identify relevant ser-

vices. As to service packaging phase, some migration approaches do not handle

the deployment and packaging of identi�ed services. Existing packaging approaches

widely use wrapping technique to expose service's provided functionality.

2.4. Conclusion 35

Second, from the point of view of an architecture and its representation, we have

classi�ed di�erent approaches according to their support to dynamicity and vari-

ability. Figure 2.6 summarizes studied ADLs by distinguishing them into two major

classi�cations, their support to dynamicity and their support to variability.

Even more, among ADLs that support dynamicity, we distinguish two groups, those

who consider service as a main structural element and those who handle other

forms of structures (often components). Approaches that handle services as a

main architectural element are considered dynamic, since services are dynamic by

nature. Nevertheless, these ADLs are not able to describe service variants. From

another side, existing approaches that describe architectural elements' variations at

architecture level such as xADL [Dashofy 2002], Koala [van Ommering 2000], etc.

are not based on service-oriented systems. Approaches that reconcile SOA and SPL

were also studied, but those approaches were not designated at architecture level,

but rather at requirement level.

Figure 2.6: Panorama of existing ADLs

To resume, we have not found any approach that handles dynamic recon�gura-

tion of service variability at architecture level hence the idea to propose such an

architecture description language in chapter 4.

Chapter 3

Service Identi�cation from Legacy

Software Based on Quality Metrics

Contents

3.1 Introduction . 37

3.2 Object-to-Service Mapping Model 38

3.3 Quality Measurement Model of Services 39

3.3.1 Characteristics of Services . 40

3.3.2 Characteristics of Web Services 41

3.3.3 Service Characteristics Classi�cation 42

3.3.4 Re�nement of Service Characteristics 43

3.3.5 Quality Metrics . 44

3.3.6 Fitness Function De�nition 46

3.3.7 Service Clustering . 46

3.4 Service Packaging and Deployment 47

3.4.1 Service Deployment . 49

3.4.2 Service Annotation . 51

3.4.3 Service Interface Generation 53

3.4.4 Service Registration . 54

3.5 Conclusion . 56

3.1 Introduction

Service Oriented Architecture (SOA), as a design philosophy, ful�lls the require-

ments of modern systems, such as providing encapsulated and loosely coupled busi-

ness units, which can be dynamically bound or unbound to the system at runtime.

Moreover, services, which are the fundamental building blocks of SOA, are indepen-

dently developed but can be �exibly composed with each other.

Unfortunately legacy object-oriented software cannot be blindly transferred to SOA

paradigm. As a consequence, a migration towards SOA is the best way forward to

38
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

follow new technological advances and yet to conserve the business value of existing

legacy object-oriented software. One of the most common approach to realize SOA

is to implement it using Web services.

Our contribution in this chapter is a migration approach that comprises of two

main phases: service identi�cation and service packaging. Our service identi�ca-

tion proposition automatically identi�es services as groups of classes from legacy

software object-oriented source code. We base our legacy system analysis on the

source code, since it is the only resource that is always available, while other re-

sources such as documentation or software architect could often be missing. Unlike

other existing approaches that identify candidate services in source code manually

or in an ad-hoc manner, we propose an automatic identi�cation method of candidate

services. In our approach, we re�ne well-known service characteristics to measur-

able metrics and de�ne a �tness function that measures semantic correctness of each

group of source code elements to be considered as a service.

Service identi�cation is followed by a set of processes that are regrouped in a service

packaging phase. This phase serves as a preparation to make services deployable.

It includes activities such as making each cluster become interface-based by raising

the dependencies between classes into dependencies between clusters that commu-

nicate via their interfaces. Meanwhile, we apply an annotation algorithm to name

identi�ed clusters. Finally, an interface is generated for each class which exposes

services' functionalities.

This chapter is organized as follows: In section 3.2, we present a mapping model

between concepts of Object Oriented Programming (OOP) and Service Oriented Ar-

chitecture (SOA). In section 3.3, we specify service characteristics and re�ne them

to measurable quality metrics to evaluate potential services. We also group simi-

lar classes to form coarse-grained and loosely-coupled services. In section 3.4, we

present the packaging steps towards deploying those identi�ed services.

3.2 Object-to-Service Mapping Model

In order to be capable to identify services from object-oriented source code, we

de�ne a mapping between object-oriented and SOA concepts as presented in �gure

3.1. We consider a service as a group of classes de�ned in object-oriented source

code. Among these classes, some de�ne the operations provided by the service,

whereas others are internal classes. Internal classes are those which only have

internal connections to other classes of the same service. Classes that de�ne the

operations provided by the service are the classes that de�ne its interface. Internal

classes do not de�ne operations provided by the service. Operations provided by

3.3. Quality Measurement Model of Services 39

the service are class's public methods.

Figure 3.1: Object to service mapping model

3.3 Quality Measurement Model of Services

As we have mentioned earlier, a service is identi�ed from a group of object-oriented

classes. Initially, each group of classes is considered as a candidate service. A

quali�ed service is selected from candidate ones based on a function that measures

its quality. Diverse studies have been proposed in literature for measuring quali-

tative properties of SOA systems. Most of these works either assess systems that

are already service based or evaluate systems only after their implementation. Un-

fortunately, such approaches are not adapted to the context of re-engineering an

object-oriented system towards service oriented system. For example, [Aldris 2013]

proposes a framework to measure the degree of service orientation in SOA systems.

It focuses on the internal SOA attribute, decomposes a selected attribute to a set

of factors and maps each factor to a set of measurable criteria. Each criterion is

typically evaluated by a set of software metrics, though no dedicated metrics are

de�ned for each criterion.

As to our approach, we adopt the ISO standard for software quality ISO/IEC

25010:2011 [ISO 2011] to evaluate identi�ed services. ISO/IEC 25010 has de�ned

40
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

eight software product quality characteristics which are re�ned to thirty-one sub-

characteristics, as demonstrated in �gure 3.2. Each sub-characteristic is further

divided into properties. These properties are attributes which can be measured or

veri�ed for any software product evaluation. Likewise, we de�ne a quality func-

tion of services based on a set of service characteristics that are mapped to a set

of properties. Each property is later measured using a set of metrics. In the next

subsections, we will study di�erent service and Web service characteristics, classify

them, re�ne them to properties and then into measurable metrics. These metrics

will form a �tness function by which candidate services will be evaluated. Finally,

similar classes will be grouped in a cluster using a clustering algorithm.

Figure 3.2: ISO/IEC 25010 software product quality model

3.3.1 Characteristics of Services

We deduct the quality characteristics of services based on the analysis of the most

commonly used de�nitions of services in literature.

In literature, there are several de�nitions of services [Brown 2002], [Zhang 2005],

[Nakamura 2009]. According to [Zhang 2005], a service is an abstract resource that

performs a coherent and functional task. [Nakamura 2009] considers a service as a

process that has an open interface, self-containedness and coarse granularity. It can

be easily composed and decomposed to implement various business work�ows. W3C

[Booth 2004] de�nes a service as "an abstract resource that represents a capability

3.3. Quality Measurement Model of Services 41

of performing tasks that represents a coherent functionality from the point of view of

provider entities and requester entities". [Brown 2002] de�nes the service in terms

of its characteristics: A service is a coarse-grained and discoverable software entity

that interacts with applications and other services through a loosely coupled, often

asynchronous, message-based communication model.

• Coarse-grained means that services implement more than one functionality

and operate on larger data sets.

• Discoverable means that services can be found at both design time and run

time, not only by unique identity but also by interface identity and by service

kind.

• Self-contained refers to the self-su�ciency a service has, where context or

state information is not required from other services.

• For loosely coupled , services are connected to other services and clients using

standard, dependency-reducing, decoupled message-based methods such as

XML document exchanges.

3.3.2 Characteristics of Web Services

The most common form of realizing a SOA system is via Web services [Lewis 2005].

Web services are special types of services that are built via XML grammar in or-

der to expose their functionality over Internet (or private network). Web services

use a standard XML messaging system to communicate to each other, therefore

they are independent from any operating system or programming language. All the

characteristics mentioned for services in the section 3.3.1 such as loosely-coupled,

self-contained and coarse-grained entities that interact dynamically, apply to Web

services. However, Web services have some other speci�c characteristics which

worth to be studied. [Papazoglou 2008] de�nes Web service as "a self-describing,

self-contained software module available via a network, such as the Internet, which

completes tasks, solves problems, or conducts transactions on behalf of a user or

application." Web services also have the following characteristics:

• state property: Web services could either be stateful or stateless. Stateful

services maintain state information, whereas in stateless services, the Web

service does not have any memory to preserve state information. It simply

performs a requested operation without keeping any track of that invocation.

• synchronization : we can distinguish between two principal messaging styles

amongWeb services: synchronous and asynchronous; Synchronous is a request-

response operation. In synchronous communication, the client sends its re-

quest as a method call with a set of arguments and the synchronous Web

service responds in a return value. The client requires an immediate response

42
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

from the other service. Whereas in asynchronous communication, client in-

vokes a Web service and does not wait for the response. Once the latter

completes processing, it sends the result to the client. Asynchronous commu-

nication is a key factor in enabling loosely coupled services.

• well-de�nedness: The functionalities which a Web service provide are de-

scribed in a service interface usingWeb Service Description Language (WSDL).

In addition, this description speci�es the rules of how to interact with the ser-

vice. Service interface will render service's functionality visible to external

services without the need to expose its internal implementation details. So

in Web services there is a clear distinction between service's interface and its

implementation.

3.3.3 Service Characteristics Classi�cation

Table 3.1 lists the characteristics of services as mentioned in the de�nitions above.

We have categorized them into two categories: those related to the structure and be-

havior of services and others related to the SOA platform. Structural and behavior

characteristics (such as coarse-grained, loosely-coupled and composable) re�ect the

semantic properties of service and thus they could be measured in object-oriented

legacy source code, whereas characteristics that depend on SOA platform (such as

discoverable) do not re�ect any semantic property of service. Thus we could not

base our identi�cation metrics on that type of characteristics. Consequently, in or-

der to measure the semantic correctness of candidate services, we select from the

aforementioned characteristics the ones that de�ne service's structure and behav-

ior. These characteristics are: self-containment, composability and coarse-grained

(functionality).

Characteristic
Type

Structural and
behavioral

SOA platform

coarse-grained = functionality X
discoverable X
self-contained = loosely-coupled X
dynamic-binding X
composable X
message-based X
synchronous / asynchronous X
well-de�ned X
stateful / stateless X

Table 3.1: Characteristics of services

3.3. Quality Measurement Model of Services 43

3.3.4 Re�nement of Service Characteristics

The former selected characteristics are re�ned to measurable quality properties.

• A service can be completely self-contained if it does not require any interface,

i.e. it can be deployed as a single unit without depending on other services

[Nakamura 2009]. Thus, the property number of interfaces the service requires

gives us a good indication on the self-containment of the service. The higher

the number of required interfaces is, the less the service is self-contained.

• A service is subject to composition with other services. This composition

is realized without internal modi�cations but through service interface. A

decomposition of the legacy system will be e�ective with the principle of com-

posing those services with high cohesion and loose coupling, i.e. two services

are composed with each other if their interfaces are cohesive. Thus, the aver-

age of services' cohesion within an interface gives us a good indication on the

composability of the service.

• A service is more likely to be coarse-grained and hence represent complex,

rich and high-level business functionality. However, it may sometimes be �ne-

grained [Channabasavaiah 2004] and hence represent low-level primitive func-

tionality. Choosing the right level of granularity is the key for a successful

service reuse. The bigger the service grains are, the less the service becomes

reusable. It is relatively di�cult to determine from source code the exact

number of functionalities that the service provides. However, several factors

can help measuring the functionality of a service:

1. A service that provides several interfaces may provide numerous function-

alities, thus the higher the number of interfaces is, the more the service

provides functionalities.

2. An interface whose services are highly cohesive probably provide single

functionality.

3. A group of interfaces with high cohesion are most favorable to provide

single or limited number of functionalities.

4. When the extracted code of candidate service is highly coupled, this

means that the service probably provides very few or single functionality.

5. When the extracted code of candidate service is highly cohesive, this

means that the service probably provides very few or single functionality.

Thus, we suggest binding the functionality characteristic to properties as in-

dicated in table 3.2.

44
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

Functionality Characteristic Property

A service that provides several interfaces may
provide numerous functionalities, thus the
higher the number of interfaces is, the more the
service provides functionality.

Number of provided interfaces

An interface whose services are highly cohesive
probably provide single functionality.

Average of service's interface
cohesion within the interface

A group of interfaces with high cohesion are
most favorable to provide single or limited
number of functionality.

Cohesion between interfaces

When the extracted code of candidate service is
highly coupled, this means that the service
probably provides very few or single
functionality.

Coupling inside a service

When the extracted code of candidate ser-
vice is highly cohesive, this means that the
service probably provides very few or single
functionality.

Cohesion inside a service

Table 3.2: Binding functionality characteristic to properties

3.3.5 Quality Metrics

In our approach, according to the characteristics and properties of services we have

chosen above, we build our quality metrics to evaluate the quality of candidate

services. This quality will be the factor in distinguishing the extracted candidate

services. The property functionality requires coupling and cohesion measurements,

while composability only requires a cohesion measurement (see �gure 3.3). As to

[Patidar 2013], cohesion of a service measures how strong the elements within this

service are related to each other. A service is considered as highly cohesive, if it

performs a set of closely related functions and cannot be split into �ner elements.

The metric LCC Loose Class Cohesion proposed by [Bieman 1995] measures the

overall connectedness of the class. It is calculated by:

LCC =
number of direct and indirect connections

maximumnumber of possible connections
(3.1)

Coupling means the degree of direct and indirect dependence of a class on other

classes in the system. Here, two measures are counted: method calls and parameter

use, i.e. two classes are considered coupled to each other if the methods of one

class use the methods or attributes of the other class. In our approach, Coupl(E)

measures the internal coupling of the candidate service E and is calculated by the

ratio between number of classes inside the service that are internally called to the

3.3. Quality Measurement Model of Services 45

Figure 3.3: Re�nement model of service characteristics

46
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

total number of classes within the candidate service E. ExtCoupl(E) measures

the coupling of the candidate service E with other services. It is calculated as

ExtCoupl(E) = 1− Coupl(E).

3.3.6 Fitness Function De�nition

We de�ne a �tness function FF (E) for an identi�ed candidate service E as a linear

combination between the 3 characteristics of services previously de�ned, F (E) for

functionality, C(E) for composability and S(E) for self-containment as follows:

FF (E) =
αF (E) + βC(E) + γS(E)

n
(3.2)

; where α, β, γ are coe�cient weights for each characteristic that are determined

by software architect and n =
∑

(α, β, γ).

The characteristics functionality F (E), composability C(E) and self-containment

S(E) are measured according to their de�nition as follows:

F (E) =
1

5

(
np(E) +

1

I

∑
i∈I

LCC(i) + LCC(I) + Coupl(E) + LCC(E)
)

(3.3)

; where np(E) refers to number of provided interfaces, LCC(i) refers to the

average of service's interface cohesion within the interface, LCC(I) refers to the

cohesion between interfaces, Coupl(E) refers to the coupling inside a service, and

LCC(E) refers to the cohesion inside a service.

C(E) =
1

I

∑
i∈I

LCC(i) (3.4)

; where i refers to interface

S(E) = ExtCoupl(E) (3.5)

3.3.7 Service Clustering

In order to recover services from OO legacy code, we group classes based on their

dependencies. For that purpose, we propose a hierarchical agglomerative clustering

algorithm which generate clusters by gradually grouping system's classes using a

similarity measure.

3.4. Service Packaging and Deployment 47

Algorithm 1: Agglomerative Hierarchical Clustering

Input: OO source code classes
Output: A hierarchy of clusters (dendrogram)

1 let each class be a cluster;
2 compute �tness function of pair classes;
3 repeat
4 merge two "closest" clusters based �tness function value;
5 update list of clusters;

6 until only one cluster remains;
7 return dendrogram

The hierarchical agglomerative clustering algorithm groups together the classes with

the maximized value of the �tness function. At the outset, every class is consid-

ered as a single cluster. Next, we measure the �tness function between all pairs of

clusters. The algorithm merges the pair of clusters with the highest �tness function

value into a new cluster. Then, we measure the �tness function between the new

formed cluster and all other clusters and successively merge the pair with the highest

�tness function value. These steps are repeated as long as the number of clusters

is bigger than one, as illustrated in Algorithm 1. As a result, the legacy system is

expressed in hierarchical view presented in a dendrogram, as illustrated in �gure 3.4.

To obtain a partition of disjoint clusters, the resulting hierarchy needs to be cut

at some point. To determine the best cutting point we employ the standard Depth

First Search (DFS) algorithm. Initially on the root node, we compare the similarity

of the current node to the similarity of it child nodes. If the current node's similarity

value exceeds the average of similarity value of its children, then the current node is

a cutting point, otherwise, the algorithm continues recursively through its children.

By applying the aforementioned clustering algorithm, we evaluate the legacy system

and represent its classes in coarse-grained and loose-coupled disjoint set of services.

An example of partitioning legacy system's classes to services is illustrated in �gure

3.4.

3.4 Service Packaging and Deployment

A software service is an independent functional business entity that is hidden behind

its well de�ned interface which ensures the easy discovery and the use of service by

other service invokers (e.g. automatic agents, end user applications). The encapsu-

lation of implementation logic and data of service is called service packaging. Among

48
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

Figure 3.4: Dendrogram with set of services

several service deployment techniques, we choose the wrapping strategy because it

helps representing system's functionalities to be accessible externally without chang-

ing its inner architecture or implementation.

Here, we suppose that services of the target system are provided as Web services.

The W3C [Booth 2004] de�nes the Web service as "A software system designed

to support interoperable machine-to-machine interaction over a network. It has an

interface described in a machine-processable format (speci�cally WSDL). Other sys-

tems interact with the Web service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with an XML serialization in con-

junction with other Web-related standards". We consider that extracted services are

Web services for the following reasons:

• Web services share the characteristics of more general services [Brown 2002],

however they are written in standard Internet technologies and have a standard

accessing interface

• Enterprises heavily rely on Web services, since they can be physically located

beyond company's internal network anywhere in the World Wide Web

• The implementation of Web service is totally independent of the user's oper-

ating environment

From an implementation point of view, a Web service is typically composed of two

parts:

1. Business logic (i.e. implementation code), which actually carries out the real

work to provide service functionality

3.4. Service Packaging and Deployment 49

2. Interface implemented in XML, which describes what the service provides as

functionality in addition to how to communicate with that service (i.e. how a

service can be called and what results it returns).

In the following sections, we demonstrate how each of those parts are built or

adapted within the migration process from Object-Oriented (OO) legacy system

towards SOA. Our service packaging and deployment phase consists of the following

steps:

1. First, we prepare interface-based clusters by transforming dependencies be-

tween classes of di�erent clusters into dependencies between clusters

2. We assign appropriate names to each cluster (from now an called service) using

an annotation algorithm

3. Then, we generate an interface in SOA paradigm for each existing service

which will expose services' provided functionalities

4. We �nally register these services in a central registry so that they can be found

and accesses by service invokers

3.4.1 Service Deployment

In OO structure, we rather di�erentiate 2 types of classes:

1. internal class Ci, which has only internal connections to other classes of the

same cluster.

2. interface class Fj , which has at least one external connection to classes of

other clusters.

For example, in �gure 3.5b, classes C1 and C2 are examples of internal classes,

whereas F1, F2, F3 and F4 are examples of interface classes.

Figure 3.5: Transforming OO dependencies to interface-based dependencies

50
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

In �gure 3.5a, a collection of certain classes are grouped in one cluster Clusterk
based on the quality metric de�ned in section 3.3.5 and the clustering algorithm in

section 3.3.7 on page 44 and 46, respectively. We remind that at the end of the

clustering phase, we have identi�ed which set of classes will form a service. Every

cluster, in our approach, is transformed into a service Servicek (see �gure 3.5b and

3.5c) in SOA paradigm.

However, the service's concrete implementation is still resided within each object-

oriented class separately and the dependencies are still between classes not services.

In order to raise the dependencies between classes into a higher level of abstrac-

tion (service level) and to reduce the coupling between classes (see �gure 3.5b and

3.5c), we need to make dependencies between classes of di�erent clusters to become

interface-based. Therefore, we need to set up a new intermediate class that serves as

a communication port between clusters. This new established class called "delegator

class" has an interface role; it exposes the provided functionalities of its composing

interface classes Fi.

To build a delegator class, we inspire from delegation design pattern as demon-

strated in �gure 3.6.

Figure 3.6: Delegation design pattern

This delegator class de�nes the same methods of all interface classes with their

same signature. However these methods are only delegation methods; the delegator

class captures requests from external, instantiates an object of a proper class, and

delegates the execution to that class.

An example is demonstrated in �gure 3.7b, where DelegationClass3 de�nes a

method m5, instantiates an object of class C5 and delegates its execution to C5.

While originally the class C2 was invoking the class C5 in �gure 3.7a, this invocation

becomes an invocation between their delegator classes (i.e. DelegationClass1 in-

vokes DelegationClass3), as demonstrated in �gure 3.7b. In this �gure, delegation

is designated with dashed arrows. While invocations from and to delegator classes

3.4. Service Packaging and Deployment 51

are added during the service deployment phase, the part of architecture which is des-

ignated in gray in �gure 3.7b in addition to its implementation remain unchanged.

By transforming dependencies between classes of di�erent clusters into dependen-

cies between delegator classes, we make interface-based clusters. This process allows

hiding classes' internal dependencies and exposing only provided methods of inter-

face classes.

Transformation rules presented in [Alshara 2015] can be applied in this service de-

ployment phase in order to automatically transform dependencies between classes

to dependencies between clusters (i.e. services).

3.4.2 Service Annotation

Identi�ed services should be distinctly annotated, in a manner that they re�ect their

composing classes. For that, we observe that a good object-oriented design has some

basic organizational and metaphoric conventions that software developers follow in

their designs such as component naming conventions. Class naming usually follows

camelCase naming convention.

In order to automatically label each extracted service (i.e. delegator classes) with

the most relevant name, we exploit the linguistic information found in the names

of classes that compose a service and use a word-frequency technique. Our labeling

algorithm has the following steps: (1) extracting vocabulary terms, (2) weighting

terms and (3) composing terms to form new service name.

1. First, we extract vocabulary terms from each composing classes' composite

names by breaking up these composite names using a standard camelCase

splitting heuristic. We then exclude stop-words and programming language

special words.

2. A weight is attributed to each extracted term within a service according to its

frequency and its position within the entire class name. For example, terms

that are located in the �rst position of the class name are more likely to express

the main purpose and are consequently more important and indicative than

the terms that are located on the second position. Thus, a higher weight is

attributed to the term that is located in the �rst position. Even more, as we

have di�erentiated in section 3.4.1 between internal classes Ci and interface

classes Fj , di�erent weights are attributed to terms of each type of class;

internal classes either deal with internal operations or they are utility classes

and thus are not much concerned about the main functionality that the service

provides. Whereas, interface classes and especially provided interface classes

(for example, C3 in �gure 3.5a) are more likely to play a main role in service's

provided functionality. Terms of such provided interface classes are weighted

52
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

Figure 3.7: Service interface development

3.4. Service Packaging and Deployment 53

higher than terms of internal classes. For each term t, the weight w(t) is

calculated by the following formula:

w(t) =
1

4∑
1∈i

ni

(α× n1 + β × n2 + γ × n3 + δ × n4) (3.6)

; where

• α, β, γ, δ are coe�cient weights attributed to each factor. α, β, γ, δ ∈
<[0, 1] ∧ (α > β > γ > δ).

• n1 is the number of occurrences of term t on the �rst position of the

provided interface classes' name.

• n2 is the number of occurrences of term t on the �rst position of the

internal classes' or required interface classes' names.

• n3 is the number of occurrences of term t on a position other than the

�rst of the interface classes' names (provided or required interface).

• n4 is the number of occurrences of term t on a position other than the

�rst of the internal classes' names.

3. For each cluster, we sort the list of terms in a descending order according

to their weights. Finally, to attribute a new cluster name, we compose the

terms with the highest weights respecting once again the camelCase naming

convention. The number of terms that the a cluster name can be composed

of is determined by the architect. We recommend that a name is composed of

not more than �ve terms. In case more than one term has the same weight,

both terms are added to cluster's name.

3.4.3 Service Interface Generation

In SOA paradigm, the description of service's functionality and properties is de-

�ned separately from its implementation. It is the service interface which encloses

and exposes the functionality of its service. In other words, using interface allows

service's internal implementation details to be hidden from external clients. Ev-

ery service Sk is represented by an interface Ik that describes its functionalities.

This interface also de�nes the types of messages' exchanges in addition to a de-

scription about the service. Service description should be enough su�cient so that

it will enable external services or automatic agents to discover the service and use it.

In Web services, Web Services Description Language (WSDL) interface �le rep-

resents service's interface. Its main role is to abstractly describe the operations

54
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

that the service provides, in addition to the parameters that the service accepts and

returns, regardless of the hardware platform or the implementation language of the

service. More precisely, a WSDL �le contains information on:

• All publicly available functions that are externally visible

• All message requests and message responses

• Binding information about the transport protocol to be used

• Address information for locating the speci�ed service

Our goal in this phase is to provide an interface to each service that was identi�ed

from the legacy OO code. For Web service, this interface is summarized in a WSDL

document. Service interfaces are built based on delegator classes which we have

set up in OO paradigm. Similar to delegator classes that ensure their composing

classes' external connections by describing all their public methods, in service inter-

face Ik (WSDL �le), we de�ne all public methods which the delegator class provides.

Once the delegator class in OO paradigm is correctly set up, its interface in SOA

paradigm can be automatically generated. There are tools (such as in Eclipse envi-

ronment) that can automatically generate Web service's interface speci�ed in Web

Service Description Language (WSDL). It is worth noting that this automatic pro-

cedure is applied only in case we want to expose the functionalities implemented

within one single class. Since we have regrouped all public methods of interface

classes Fj in a separate class called DelegatorClassk, we can automatically gener-

ate a separate WSDL �le in compliant with each DelegatorClassk. This automatic

transformation is demonstrated in �gure 3.8; in OO paradigm an implementation

of DelegatorClass3 containing one delegate method m5 (which is concretely imple-

mented in class C5) is transformed to SOA paradigm.

3.4.4 Service Registration

After the creation of services and interfaces, extracted services in SOA are registered

in a warehouse such as in a Universal Description Discovery and Integration (UDDI)

central repository, an optional but recommended element of a service-oriented ar-

chitecture. The registration process will further help client applications (service

consumers) to easily search for a service (provider service) and locate it at runtime

by simply querying the UDDI repository.

Using UDDI has several advantages, among them:

• Dynamic recon�guration: UDDI allows the dynamic recon�guration of SOA

application. This is useful when there's a need to replace versions of compo-

nents with no system interruption.

3.4. Service Packaging and Deployment 55

Figure 3.8: WSDL generation

• Protocol independent: UDDI is not restricted to Simple Object Access Proto-

col (SOAP)1 based web services. Rather, UDDI can be used to describe any

service type whether it is SOAP, CORBA or Java RMI services.

• Private UDDI registries: it is possible for a company to set up its private

UDDI registries that registers only internal web services. This registry will

not be synchronized with the public UDDI registries which are available on

the Internet.

In section 3.4.1 and 3.4.2, we have deployed the services in OO paradigm, in section

3.4.3, we have generated their interfaces in SOA paradigm and �nally in this section

we have registered deployed services in the service registry. In order the Web services

to communicate between each other, several elements are needed. Figure 3.9 displays

those elements.

1. First, a client, who wants to invoke a service, searches for the appropriate

service within the available services that are registered in the registry (i.e.

UDDI registry).

2. Each registry records in addition to service's meta-data, a pointer to the service

interface description (i.e. WSDL �le) of each given service.

1SOAP is a standard XML-based communication protocol for consuming Web services through

message exchanges over the Internet

56
Chapter 3. Service Identi�cation from Legacy Software Based on

Quality Metrics

3. Service interface informs the client how to invoke and desired Web service

by providing information about its binding, operation and input/output mes-

sages.

4. The client can now connect to the given service over the speci�ed binding

(usually SOAP) and invoke its remote methods.

Figure 3.9: Web service invocation procedure

3.5 Conclusion

The main contributions of the work presented in this chapter is the identi�cation

of services from legacy OO source code and their packaging. First, we have iden-

ti�ed services in OO source code based on service quality characteristics. For this

purpose, we �rst set a mapping model between object and service concepts. Then,

we have studied service and in particular Web service characteristics and classi�ed

those characteristics to two categories; those describing structure or behavior and

those describing the environment (i.e. SOA platform). We have noticed that only

structural and behavioral characteristics would help to extract services in an exist-

ing legacy code. Therefore, we used those characteristics as measurement metrics.

Unlike most ad-hoc service identi�cation approaches, we introduced a �tness func-

tion that measures the quality of identi�ed services. The measurement metrics of

�tness function are based on a re�nement model of service's semantic characteristics.

In a second phase, we have grouped classes with similar functionalities in one cluster

using hierarchical agglomerative algorithm and introduced a delegator class which

exposes the provided methods of one cluster to public, while hiding service's inter-

nal implementation and reducing the inter cluster coupling. This delegator class

3.5. Conclusion 57

helped us to automatically generate from its methods' signatures an interface in

SOA paradigm. As a result, we obtained an interface (WSDL document) for each

cluster, describing its functionality.

It is worth noting that this approach is especially applicable to modernize legacy

systems for which no software assets but the source code is available.

In chapter 5, we will demonstrate experimentation of proposed service identi�ca-

tion and packaging approaches.

Chapter 4

Variable-Architecture Centric

Recon�guration of

Service-Oriented Systems

Contents

4.1 Introduction . 59

4.1.1 Context and Motivation . 59

4.1.2 Illustrative Example . 60

4.1.3 Chapter Organization . 61

4.2 Dynamic Architecture Description Language Based on Vari-

ability Speci�cation . 61

4.2.1 DSOPL: A modular ADL for Describing Dynamicity Based on

Variability . 62

4.2.2 DSOPL Structure Description 64

4.2.3 DSOPL Variability Description 66

4.2.4 DSOPL Context Description 71

4.2.5 DSOPL Recon�guration Description 72

4.3 Concrete Architecture and Executable Code Generation . . 82

4.3.1 Concrete Architecture Generation 82

4.3.2 Executable Code Generation 82

4.4 Conclusion . 85

4.1 Introduction

4.1.1 Context and Motivation

Software systems are growing in terms of size and complexity. Accordingly, the need

for software systems to become �exible and to support dynamic recon�guration is

increasing. In dynamic recon�guration, parts of the system can evolve to cope with

changing environment during system's execution. Throughout the life cycle of soft-

ware development, architecture provides the required level of abstraction to deal

60
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

with those dynamic recon�guration and adaptability issues; this eases managing

recon�guration as well as facilitates traceability between dynamic descriptions at

architecture level and their counterparts at other abstraction levels.

In the context of describing dynamically recon�gurable software architecture, dif-

ferent Architecture Description Languages (ADLs) have been proposed to specify

recon�gurable artifacts of a dynamic architecture. However, the recon�guration

decisions within these ADLs are expressed in an ad-hoc manner. On the other

side, variability modeling allows an explicit speci�cation of con�gurable artifacts.

Combining variability modeling to context and recon�guration descriptions allows

software systems to systematically adapt their behavior at runtime in respond to

surrounding context changes without an explicit external or manual intervention.

This increases system's autonomy, usability and e�ectiveness.

Our contribution in this chapter is to describe, through a speci�c ADL called

Dynamic Service-Oriented Product Lines (DSOPL), the dynamic architecture of

a self-recon�gurable software system in which recon�guration scenario is based on

variability descriptions. This allows the architecture to adapt its behavior to con-

text information which itself is subject to change. We propose an XML-based ADL

that allows describing four main types of information:

• architecture's structural description in terms of services, operations, interfaces

and service composition

• an architectural variability description (i.e. variability points and alterna-

tives), on which system's recon�guration is based

• context information, to which service recon�gurations adapt

• an architectural con�guration description (i.e. recon�guration rules based on

context and variability information)

We choose to use XML as a description language to facilitate understandability and

analysis of the described architecture. In addition, XML-based description facilitates

tool-support design and interoperability.

4.1.2 Illustrative Example

We will use throughout this chapter an illustrative example to exemplify concepts

related to our proposed approach. This example is about a simpli�ed on-line sales

scenario between four actors; customer, retailer, warehouse and shipment services, as

modeled in �gure 4.1. The customer accesses retailer's website, browses the catalog,

selects some items and commands an order. The retailer ful�lls customer's order

request and inquires the warehouse to prepare all items of the order. Once the order

is prepared, the shipping service handles the delivery of items to the customer.

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 61

Figure 4.1: Illustrative example: On-line sales scenario architecture

4.1.3 Chapter Organization

The rest of this chapter is organized as follows: In section 4.2, we present the ar-

chitectural language speci�cations; In subsection 4.2.1, we introduce our modular

ADL. In subsection 4.2.2, we present the structural elements that our ADL speci-

�es. In subsection 4.2.3, we investigate di�erent types of variability and integrate

its elements to our ADL. In subsection 4.2.4, we model context information and

integrate it as a separate concern to our ADL. In subsection 4.2.5, we present the

behavioral aspect of our ADL. Here, we demonstrate the di�erent communication

activities between services and di�erentiate between common and variable con�gu-

rations. We end up, in section 4.3, with a concrete architecture generation and a

transformation of this concrete architecture to an executable language. Finally, in

section 4.4, we present a conclusion to the chapter.

4.2 Dynamic Architecture Description Language Based

on Variability Speci�cation

In basic Architecture Description Languages (ADLs), services can be selected and

composed at design time. Such ADLs are considered static by default. The archi-

tecture of a static system is speci�ed basically in terms of architectural composing

elements (components, services, etc.), connections between those elements (links,

connectors, etc.) and composition of those elements (one con�guration and sub-

architecture). Static architecture has only one con�guration which is de�ned at

design time.

In contrast, Service-oriented or context-aware architectures, have a dynamic na-

ture and are composed of loosely coupled architectural elements that should be

62
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

recon�gurable at runtime, thus a special ADL should specify, in addition to struc-

tural elements' information, also the dynamic behavior of the system that can be

recon�gured at runtime due to a context and environment changes. In dynamic envi-

ronment, parts of the software can be instantiated or evolved at runtime. Therefore,

we need to describe behavioral information of the running system at architecture

level. Furthermore, behavioral information is described and con�gured based on

variability information, thus the need to specify also variability information as �rst-

class elements at architecture level.

4.2.1 DSOPL: A modular ADL for Describing Dynamicity Based

on Variability

A fundamental element of developing dynamic recon�gurable system is its architec-

ture description. We adopt the reference architecture term to refer to architecture

in which variation points are modeled at architecture level and in which recon�gu-

rations are based on those variation points. Recon�guring a reference architecture

and generating a concrete architecture from it is based on context changes. The

context consists of any element that in�uences the behavior and/or the structure

of the architecture. It can be related either to system's environment (e.g. escalator

state in the case of crisis management software), evaluated quality of service (e.g.

time to response to a query), hardware architecture changes (e.g. server failure),

etc. Thus, context element needs to be described in a dynamic ADL. We include

these context description as a �rst-class architectural element to allow context-aware

con�gurations (i.e. autonomous run-time adaptation according to context changes).

Variability description is an excellent solution to specify dynamically recon�gurable

architectures and hence manage artifacts and their interconnection variations. In

fact, the advantage of integrating variability description at architecture level can be

twofold:

• A consistent management of artifacts' variances at early stages of design fa-

cilitates fast and correct development of software system that incorporates

variability.

• Easier control of any modi�cation and its re�ections on later development

phases, since architecture plays a reference role for all development activities

of software system life cycle.

In order to describe the dynamic recon�guration of a service-based system that

encompasses variability and at architecture level, we propose an ADL that is struc-

tured in four parts. A detailed description of each of those four parts is given in the

following sections.

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 63

Figure 4.2: Modular DSOPL-ADL

1. Structural element description: de�nes all types of the abstract structural

entities of the system (services, interfaces, operations).

2. Variability description: here, variation points are de�ned and also all al-

ternative services of each variation point with the constraints related to each

alternative.

3. Context description: variability and con�guration descriptions are based

on information about context. Thus, information about context elements is

described in a speci�c section of the ADL.

4. Con�guration description: here, the rules used to create concrete services

and connections are speci�ed to describe how to con�gure (generate) concrete

architectures based on structural, variability and context elements.

Our approach implicitly separates the four aforementioned architectural concerns

from each other as it is summarized in �gure 4.2. This modular separation of archi-

tecture description in four sections, each of them specifying one type of architectural

description, has above all the following advantages:

X It facilitates the modi�cation and re-utilization of each of the four sections of

ADL.

X It allows the description and analysis of the architecture by separating the

four concerns (structure, variability, context and con�guration).

X It allows controlling the traceability links of each type of information among

several abstraction levels. For example, the variability described in feature

model at requirement level is translated at architecture level through its vari-

ability section.

64
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

4.2.2 DSOPL Structure Description

Structural information can be speci�ed independently from recon�guration or vari-

ability information. In structural description, we specify the structure of all artifacts

that make part of the architecture, whereas in con�guration, we specify which arti-

facts are instantiated and their behavior, and in variability description, we describe

which structural artifacts are alternatives of one variation point.

As structural description, we represent the main artifacts of service-based system:

a service is an encapsulated and self-contained unit. It interacts with other services

through interfaces. The system itself is a composite service and is hierarchically

decomposed into �ner-grained services. We call leaf services as atomic services. All

other services in the hierarchical tree, that are composed of at least one leaf service,

are considered composite. A composite service does not execute or implement any

functionality by itself, but it delegates this task to one of its child services. Each

composite service is described as sub-architecture.

Each service has a number of provided interfaces and may require a number of

required interfaces. Interfaces de�ne a collection of methods or operations that are

supported by the service. Since services are developed independently from their fu-

ture exploiting systems, they should have well-de�ned interfaces that describe their

functionalities and operations. Interfaces are two types, either provided interface or

required interface. Provided interface of a service is an interface that the service

realizes, whereas required interface is an interface that the service needs in order

to operate. Services communicate to each other through provides/ consumes re-

lationship via their provided/ required interfaces. Hence an interface has a set of

operations.

A service is described based on the following architectural attributes, as displayed

in �gure 4.3. Every service has:

1. a name speci�ed by service_name attribute

2. a textual_description that explains in plain text the main functionalities of

the service, its inputs and expected outputs. This information could be used

by service clients that would like to invoke a the service

3. is_atomic has a Boolean value to indicate whether the service is atomic or

composite

Listing 4.1 shows the structural section description of the architecture related to

our illustrative on-line sales example. The example is composed of the follow-

ing atomic services: retailer_service, warehouse_service, customer_service,

relay_point_shipping_service and home_delivery_shipping_service.

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 65

retailer_service and warehouse_service are grouped in a composite service

named supply_chain_management_service. Each service has some interfaces. For

example, retailer_service has two interfaces; a provider interface named i_order

and a required interface named i_goods_request. We also notice that two oper-

ations named submit_order_request and get_catalog are provided by retailer

_service through i_order interface.

Figure 4.3: Structural description meta-model of DSOPL-ADL

Listing 4.1: Structural Description of Sales Scenario

<DSOPL-ADL>

<structural_description>

<service name="supply_chain_management_service" textual_description="this is a

composite service that provides sales ordering functionalities to customers

" is_atomic="N">

<interfaces>...</interfaces>

<sub-architecture>

<service name="retailer_service" ... is_atomic="Y">

<interfaces>

<interface name="i_order" role="provides">

66
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

<operations>

<operation name="submit_order_request" ...> </operation>

<operation name="get_catalog" ...> </operation>

</operations>

</interface>

<interface name="i_goods_request" role="consumes"> ... </interface>

</interfaces>

</service>

<service name="warehouse_service" ... is_atomic="Y">

<interfaces> ... </interfaces>

</service>

</sub-architecture>

</service>

<service name="customer_service" ... is_atomic="Y">

...

</service>

<service name="relay_point_shipping_service" ... is_atomic="Y">

...

</service>

<service name="home_delivery_shipping_service" ... is_atomic="Y">

...

</service>

</structural_description>

<variability_description> ... </variability_description>

<context_description> ... </context_description>

<configuration_description> ... </configuration_description>

</DSOPL-ADL>

4.2.3 DSOPL Variability Description

In our variability description of DSOPL-ADL, we inspire from the variability mod-

eling at requirements level through feature models and re�ect it in our ADL as

variability management at architecture level.

4.2.3.1 Variability Description Speci�cation

We specify in this section the di�erent variation points that exist in the system at

architectural level. The meta-model of variability description is given in �gure 4.4.

A variation point speci�es the part of the architecture that can be variable. Each

variation point has the following attributes:

1. variation_name indicating its unique name.

2. variation_type that speci�es the type of this variation. Possible values of

variation_type are either service, connection or composition.

3. variation_time speci�es whether this variation may occur at compile-time

(i.e. before runtime) or at runtime. Contrary to traditional SPL approaches

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 67

where variability is clearly and entirely speci�ed at design time [Galster 2010],

variation_time attribute is important in SOA systems, where selection of an

alternative during runtime is totally possible. However, some variation points

could be speci�ed at compile-time. This reduces the overhead of loading the

entire con�guration at runtime.

Each variation point has several alternatives, which are possible elements to �ll

the selected variation point. Each alternative has a unique name alternative_name,

reference_element which refers to a structural element and an order of priority.

This attribute helps the system automatically determine which architectural element

is chosen in case there is more than one valid con�guration at a given time. The

alternative with the highest priority priority="1" is the preferred one in a variation

point.

Figure 4.4: Variability description meta-model of DSOPL-ADL

4.2.3.2 Variable Artifacts

Variation and their possible choices may occur on di�erent structural artifacts.

Therefore, we distinguish three types of variabilities:

1. Service Variability Description:

It represents binding an alternative service that satis�es pre-conditioned con-

straints on runtime. Back to our sales example, there are two alternatives of

68
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

shipment; either a relay point shipment or home delivery shipment, as shown

in �gure 4.5. The decision of which alternative to choose is taken automatically

at runtime depending on customer's selection in addition to other environmen-

tal conditions such as the existence of a relay point service in customer's city,

as depicted in listing 4.2.

Figure 4.5: Example of service variability in sales scenario

Listing 4.2: Service variability description example

<variability_description>

<variation_point name="shipping_variation_point" variation_type="service"

variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative" reference_element="

home_delivery_shipping_service" priority="1">

<constraints> ... </constraints>

</alternative>

<alternative name="relay_point_delivery_alternative" reference_element="

relay_point_shipping_service" priority="2">

<constraints> ... </constraints>

</alternative>

</alternatives>

</variation_point>

</variability_description>

2. Connection Variability Description:

It may exist several alternative connections between services. An appropriate

connection is selected according to constraints' satisfaction. For example,

the customer service in �gure 4.6 can access the retailer service and thus

command an order via two di�erent connections; either a connection for a

regular customer or a connection for a VIP customer which normally has

some extra privileges. The variation_point customer_variation_point in

listing 4.3 is an example of variability of connection. It has two alternatives,

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 69

either regular_customer_alternative which connects customer and retailer

services via i_order interface or VIP_customer_alternative which connects

customer and retailer services via i_VIP_order interface.

Figure 4.6: Example of connection variability in sales scenario

Listing 4.3: Connection variability description example

<variability_description>

<variation_point name="customer_variation_point" variation_type="connection"

variation_time="runtime">

<alternatives>

<alternative name="regular_customer_alternative" reference_element="

i_customer_order" priority="1"> ... </alternative>

<alternative name="VIP_customer_alternative" reference_element="

i_VIP_customer_order" priority="2"> ... </alternative>

</alternatives>

</variation_point> ...

</variability_description>

3. Composition Variability Description:

This type of variability concerns replacing not only a service or a connection,

but replacing a set of interconnected services by another set of interconnected

services within a composite architecture. Figure 4.7 illustrates another al-

ternative composition of supply_chain_management_service than the one

in �gure 4.1. Here, in addition to the roles of retailer and warehouse ser-

vices, the manufacturer service realizes requested items and returns them to

the warehouse service. Listing 4.4 displays this composition variability de-

scription example. supply_chain_composition_variation_point has two

alternatives, either a supply chain composition with manufacturing option or

another composition excluding manufacturing.

Listing 4.4: Composition variability description example

<variability_description>

<variation_point name="supply_chain_composition_variation_point"

variation_type="composition" variation_time="compile_time">

70
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

Figure 4.7: Example of composition variability in sales scenario

<alternatives>

<alternative name="supply_chain_without_manufacturing_alternative"

reference_element="supply_chain_management_service" priority="1">

<constraints> ... </constraints>

</alternative>

<alternative name="supply_chain_with_manufacturing_alternative"

reference_element="supply_chain_management_service2" priority="2">

<constraints> ... </constraints>

</alternative>

</alternatives>

</variation_point>

</variability_description>

4.2.3.3 Constraints Related to Alternative's Instantiation

Each alternative has a set of constraints, in forms of pre-conditions and post-

conditions, to operate properly.

• Pre-condition speci�es a group of conditions that should be satis�ed be-

fore selecting a given alternative (i.e. alternative can be selected, only if all

constraints of pre-conditions are satis�ed).

• Post-condition represents desirable outcomes when given alternative is se-

lected successfully.

Pre- and Post-conditions are the equivalent of crosscutting "requires", "excludes"

and "and" constraints in Feature Model FM in SPL paradigm. For example, the pre-

condition that states that in order to choose the alternative "relay_point_delivery

_alternative", the service "relaying_point_service_in_city" should be avail-

able (see listing 4.5), this statement is equivalent in FM to a "requires" constraint

from "relay_point _delivery" feature to "relaying_point_in_city" feature. On

the contrary, condition="unavailable" is equivalent to "excludes" constraint in

FM.

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 71

Listing 4.5: Variability description of sales scenario

<variability_description>

<variation_point name="shipping_variation_point" variation_type="service"

variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative" reference_element="

home_delivery_shipping_service" priority="1">

<constraints> ... </constraints>

</alternative>

<alternative name="relay_point_delivery_alternative" reference_element="

relay_point_shipping_service" priority="2">

<constraints>

<pre-conditions>

<pre-condition element_type="service" element="

relaying_point_service_in_city" condition="available"/>

</pre-conditions>

<post-condidtions>

<post-condition element_type="method" element="re-

calculculate_total_amount" condition="execute"/>

</post-condidtions>

</constraints>

</alternative>

</alternatives>

</variation_point>

</variability_description>

4.2.4 DSOPL Context Description

A context element could capture raw data from a single information source such as

a GPS locator that locates customer's current location to search for a nearby relay

point for the shipping service in our sales example. In this case, context element is

considered as a primitive_context. In some other cases, a single information source

could not be su�cient to take decisions; in that case, di�erent atomic information

sources' values are collected, combined and analyzed in order to give su�cient and

more accurate information about the context value. We call this context as com-

posite_context. We can consider the weather forecast example, where the weather

is considered hot when both temperature and humidity sensors exceed a certain

threshold.

A simpli�ed meta-model of context is illustrated in �gure 4.8. A context element

can be described with the following attributes:

• a unique name

• a context_type to indicate to which family of contexts it belongs (e.g. con-

texts related to environment, user preferences, etc.)

72
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

• values_type that indicates the type of its values, either primitive types such

as integer, double, etc. or user-de�ned types

• an actual_value

In listing 4.6, we show two primitive context descriptions from our sales scenario.

Figure 4.8: Context description meta-model of DSOPL-ADL

Listing 4.6: Some context descriptions from sales scenario

<context_description>

<context_type name="environment">

<context is_aggregate="N">

<name> location </name>

<values_type> double </values_type>

<actual_value> Montpellier </actual_value>

</context>

<context is_aggregate="N">

<name> shipping </name>

<values_type> enumeration </values_type>

<permitted_values>

<possible_value> home </possible_value>

<possible_value> relay_point </possible_value>

</permitted_values>

<actual_value> relay_point </actual_value>

</context> ...

</context_type> ...

</context_description>

4.2.5 DSOPL Recon�guration Description

The con�guration section of DSOPL-ADL allows describing all the con�guration

rules to generate a valid architecture. A valid architecture is a concrete architecture

whose services and connections comply with con�guration rules.

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 73

4.2.5.1 Behavioral Activities

In order to treat the dynamic recon�guration at architecture level, the ADL should

describe the order in which involved services are composed. To capture the be-

havioral aspect of a dynamic architecture we represent the �ow from one operation

to another. However, we focus only on the interaction between services (i.e. mes-

sage �ow from a service to another one). Interactions between services can be either

single-directional invocations (receive and respond) or bi-directional invocations (in-

voke).

The inter-service communication (message �ow) is realized through message pass-

ing. A message carries data between two services and has a textual format. Message

passing is supported by three communication activities: receive, respond and invoke.

In order for two services to communicate with each other, the requester service sends

a message to provider service which receives it with the receive activity. Once the

provider service �nishes the required operation's execution, it returns a message to

the requester with the respond activity.

Communication Message types

1. receive: In this type of communication, a consumer service (i.e. client)

sends a message to the service provider without expecting any instant re-

sponse. The uni-directional receive communication de�nes only an input mes-

sage and requires no output message. The <receive> element speci�es the

consumer service using consumer_instance attribute and its interface using

consumer_interface attribute. provider_instance re�ects the name of the

provider service and provider_interface re�ects its interface. The consumer

service triggers the execution of a speci�c operation at the provider's side in

the operation attribute. Finally, the arguments passed to the operation are

carried on input_message variable.

2. respond communication is used to reply to a message that was previously

received through a <receive> activity. In that case, values of consumer

_instance, consumer_interface, provider_instance and provider_inter-

face attributes match the same attributes' values of the corresponding <receive>

communication. The response message is passed on the output_message vari-

able.

3. invoke: In invoke communication, the service provider receives a message

from the service consumer and should in his turn return a message in re-

sponse. The receiving message is carried on the input message, whereas

the response is returned the output message. In order to invoke a provider

service, <invoke> element is used. Here, the consumer service is identi�ed

74
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

by the consumer_instance and its respective consumer interface consumer

_interface, whereas the provider service is identi�ed by provider_instance

and its respective provider_interface. The concrete operation which is

called at the provider's side is speci�ed by the <operation> element. The

invoke element as a bi-directional activity, speci�es both input and output

variables by respectively input_message and output_message attributes.

Figure 4.9 illustrates the three communication message types. In (a) and (b), the

uni-directional communications (send / receive) are displayed, whereas in (c) the

bi-directional invoke communication is displayed between two services.

Figure 4.9: Inter-service communicating activity types

4.2.5.2 Con�guration Description

The description of recon�guration in DSOPL-ADL is based on the description of

variability. This implies three issues:

• The variability of a system (variation points with all alternatives and their

constraints) is described separately in an independent manner.

• In the re-con�guration section, in addition to describing the behavior of the

common part of the architecture, all possible con�gurations of variation points

are described. This architecture is called a reference architecture.

• A concrete dynamic architecture is generated from the reference architecture

according to context changes.

The con�guration description section of DSOPL-ADL has a (i) common con�gura-

tion description part, where common services of the architecture are instantiated

and bound with a certain behavior and a (ii) variable con�guration description part,

where partial con�gurations describe the behavior of variation points. Next, each

of these parts are detailed. Figure 4.10, presents the meta-model of con�guration

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 75

description and listing 4.7 de�nes the con�guration description language's speci�-

cation.

Common Con�guration Description

Common con�guration description section contains two subsections: initialization

and behavior. The initialization sub-section describes the entire structural informa-

tion about the common services of the architecture. Here, all common services (i.e.

those that are not subject to variability), are instantiated in services element and

bound through binding elements. deployable service instance is used to create

an instance with a name (referred as service_instance in the listing 4.8) from a

particular service (referred as service in the listing 4.8). The binding part has two

references to two di�erent service instance interfaces, the one that calls an operation

consumer_interface and the one that provides the operation provider_interface.

In the behavior sub-section, we describe the work�ow of the entire architecture

and shade the parts of the architecture that are subject to variability. The work�ow

is described in form of a sequence of activities between services. We distinguish

3 types of activities: receive, respond and invoke. The di�erences between those

activities are explained in section 4.2.5.1. In each activity we identify the direction

of �ow by identifying consumer and provider instances and specifying the interfaces

that will communicate from each side of consumer and provider instances in order

to execute a particular operation. The information that is exchanged between con-

sumer and provider services are carried through messages.

Variable Con�guration Description

The second part of the con�guration description is the variable con�guration de-

scription which contains several partial con�gurations. Each partial con�guration

refers to an alternative point that is de�ned in the variability description module.

A variable partial con�guration is triggered by conditions that are speci�ed in the

condition part of the partial con�guration rule. Any partial_configuration has

two sections:

1. condition part: where we specify the condition that is driven by context el-

ements. Once the condition satis�ed, a given behavior is selected. In case

several conditions are satis�ed, alternative with higher priority is privileged to

integrate.

2. behavior part: where we specify all dynamic activities that will be executed

in order to integrate the concerning alternative to the existing architecture.

The behavior part of variable con�guration description will �rst instantiate an in-

stance of the reference alternative service, bind it to the existing common architec-

ture and �nally interact with the system by executing certain activities. In case

76
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

several conditions are satis�ed, alternative with higher priority is privileged to inte-

grate.

The speci�cation of con�guration description is given in listing 4.7. We choose to

specify it in REgular LAnguage for XML, New Generation (RELAX NG) [Clark 2001],

an OASIS standard schema language for XML. Relax NG comes in two versions; an

XML syntax version and a compact non-XML syntax version. We choose to spec-

ify the DSOPL-ADL con�guration description using RELAX NG compact version

due to its simplicity and expressiveness; unlike other schema languages (e.g. XML

Schema) it has a clean formal model.

Listing 4.7: Con�guration description Speci�cation

start =

element configuration_description {

element common_configuration_description {

element initialization { services, bindings },

element behavior {(invoke | receive | respond | element decision_point {

attribute variability_reference})+ }

},

element variable_configuration_description {

element partial_configuration {

element condition {

element context { element name, element value }

},

element behavior { services, bindings, (invoke | receive | respond)+ }

}+

}

}

services =

element services {

element deployable_service_instance {

attribute service,

attribute service_instance

}+

}

bindings =

element bindings {

element binding {

attribute consumer_instance,

attribute consumer_interface,

attribute provider_instance,

attribute provider_interface

}+

}

receive =

element receive {

attribute consumer_instance,

attribute consumer_interface,

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 77

attribute input_message,

attribute name,

attribute operation,

attribute provider_instance,

attribute provider_interface

}

respond =

element respond {

attribute consumer_instance,

attribute consumer_interface,

attribute name,

attribute operation,

attribute output_message,

attribute provider_instance,

attribute provider_interface

}

invoke =

element invoke {

attribute consumer_instance,

attribute consumer_interface,

attribute input_message,

attribute name,

attribute operation,

attribute output_message,

attribute provider_instance,

attribute provider_interface

}

Dynamic Re-con�guration - Illustrative Example

In our illustrative on-line sales example of �gure 4.1, both "customer" and composite

"supply chain management" services make part of the common architecture, since

they are not subject to any variation. This implies that their instantiations and

bindings can be speci�ed at design time, as depicted in the common_configuration

_description part of listing 4.8. In fact, instances of their services are instanti-

ated using the <deployable_service_instance> element. Whereas in <variable

_configuration_description> part, either "relay point shipping" service or "home

delivery shipping" service is dynamically instantiated at run-time depending on the

context value of shipping.

In the <common_configuration_description> part, next, instantiated services are

bound together through their interfaces in the <binding> part. In the <behavior>

part, the work�ow starts by a trigger activity from the "customer" service, which

makes a sales order. The "supply chain management" service receives the ordered

items from the input_message = "receive_order_items" of <receive> activity.

The operation operation = "prepare_order" is called in the "supply chain man-

agement" service.

78
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

Figure 4.10: Con�guration description meta-model of DSOPL-ADL

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 79

Next, a <decision_point> indicates the existence of a variation point with a ref-

erence to the "shipping_variation_point" which is explicitly de�ned in the vari-

ability description part of DSOPL-ADL. The <decision_point> part of the be-

havior will not be executed at design time but at run-time. The di�erent par-

tial con�gurations related to each variation point are described in the <variable

_configuration_description> part of the con�guration description of DSOPL-

ADL. All related instructions of instantiating and binding either "home delivery

shipping" service or "relay point shipping" service to the "supply chain manage-

ment" service will be performed only at run-time according to the context value of

"shipping" in the <condition> part of each <partial_configuration>. Once the

corresponding shipping service is bound, "supply chain management" service will

invoke one of these shipping services and execute either "order_delivery_to_home"

or "order_delivery_to_relay_point" operations. Obviously, information about or-

dered items are passed from the "supply chain management" service to selected

shipping service through the message input_message = "in_ship_order". Like-

wise, shipping information (such as shipping delays and costs) are returned through

the message output_message = "out_ship_order".

Finally, as a respond to customer's initial order request, the "supply chain manage-

ment" service executes the "prepare_order" operation and sends the order details

to the "customer" service through an output_message = "out_order_details"

within a <respond> activity. Here, both service instances (consumer_instance and

provider_instance) as well as their interfaces (consumer_interface and provider

_interface) are the same of the <receive> activity, since it is a respond to that

request. Listing 4.8 displays in detail sales example's con�guration and behavioral

description and �gure 4.11 displays graphically the sequence of activities and mes-

sage communications between involved services.

Listing 4.8: Con�guration description of sales scenario

<configuration_description>

<common_configuration_description>

<initialization>

<services>

<deployable_service_instance service="customer_service" service_instance="

customer_service_instance"/>

<deployable_service_instance service="supply_chain_management_service" .../>

</services>

<bindings>

<binding consumer_instance="customer_service_instance" consumer_interface="

i_customer_order" provider_instance="

supply_chain_management_service_instance" provider_interface="

i_order_delegation" />

</bindings>

</initialization>

80
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

Figure 4.11: On-line sales scenario behavioral description

4.2. Dynamic Architecture Description Language Based on Variability
Speci�cation 81

<behavior>

<receive name="receive_customer_request" consumer_instance="

customer_service_instance" consumer_interface="i_customer_order"

provider_instance="supply_chain_management_service_instance"

provider_interface="i_order_delegation" operation="prepare_order"

input_message="receive_order_items">

</receive>

<decision_point variability_reference="shipping_variation_point"/>

<respond name="send_order_details" consumer_instance="customer_service_instance"

consumer_interface="i_customer_order" provider_instance="

supply_chain_management_service_instance" provider_interface="

i_order_delegation" operation="prepare_order" output_message="

out_order_details">

</respond>

</behavior>

</common_configuration_description>

<variable_configuration_description>

<partial_configuration>

<condition>

<context>

<name> shipping </name>

<value> home </value>

</context>

</condition>

<behavior>

<services>

<deployable_service_instance service="home_delivery_shipping_service"

service_instance="home_delivery_shipping_service_instance" />

</services>

<bindings>

<binding consumer_instance="supply_chain_management_service_instance"

consumer_interface="i_shipment_ready_delegation" provider_instance="

home_delivery_shipping_service_instance" provider_interface="

i_home_delivery" />

</bindings>

<invoke name="invoke_home_delivery_service" consumer_instance="

supply_chain_management_service_instance" consumer_interface="

i_shipment_ready_delegation" provider_instance="

home_delivery_shipping_service_instance" provider_interface="

i_home_delivery" operation="order_delivery_to_home" input_message="in_ship-

order" output_message="out_ship_order">

</invoke>

</behavior>

</partial_configuration>

<partial_configuration>

<condition>

<context>

<name> shipping </name>

82
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

<value> relay_point </value>

</context>

</condition>

<behavior>

...

<deployable_service_instance service="relay_point_delivery_shipping_service

" ... />

<bindings .../>

<invoke .../>

</behavior>

</partial_configuration>

</variable_configuration_description>

</configuration_description>

4.3 Concrete Architecture and Executable Code Gener-

ation

4.3.1 Concrete Architecture Generation

A concrete architecture is generated from a given reference architecture

<configuration_description> through the following consecutive steps:

1. The <common_configuration_description> part of the con�guration descrip-

tion is copied to the concrete architecture description without any modi�ca-

tions, except copying <decision_point> which is treated di�erently in step 2.

2. Each variation point called <decision_point> in the <common_configuration

_description> part of our ADL is replaced by an appropriate <partial

_configuration> according to context value satisfaction of that partial con-

�guration.

3. Consequently, all service instances related to that partial con�guration in ad-

dition to their bindings both described in <services> and <binding> sub-

sections of <partial_configuration> are integrated to the concrete archi-

tecture to <services> and <binding> sections, respectively.

Figure 4.12 demonstrates how a concrete architecture is generated after integrating

a partial con�guration to the common con�guration part.

4.3.2 Executable Code Generation

In this section, we demonstrate the generation of an executable business process from

the DSOPL concrete architecture speci�cations. Among existing business process

speci�cation languages, we choose to generate DSOPL's architectural description by

means of Business Process Execution Language (BPEL), since it is the most dom-

inant language [Gri�ths 2010] and has become a de-facto standard for specifying

4.3. Concrete Architecture and Executable Code Generation 83

Figure 4.12: Concrete architecture generation

work�ow in a service-oriented environment and hence executing business processes

for web services composition [Albreshne 2009]. BPEL de�nes in principle two main

types of activities: basic activities to interact with external services (invoke, receive,

reply) and structural activities to control the internal business work�ow by condi-

tional choices, parallel activities and looping.

The most challenging part in BPEL's code generation is the work�ow transforma-

tion of DSOPL-ADL's behavior into BPEL's activities within the sequence section

due to the di�erence of work�ow realization between both paradigms. Conceptu-

ally, there are two di�erent perspectives of realizing a work�ow: choreography and

orchestration. In choreography, the con�guration is realized between autonomous

peer-to-peer collaborations, whereas in orchestration a single central work�ow engine

coordinates the execution �ow between all involved Web services. In DSOPL-ADL,

con�guration is speci�ed following the choreography perspective; i.e. con�guration

is realized through message passing from one service to another one without inter-

mediaries. Figure 4.13 demonstrates the sequence of activities for the sales order

concrete architecture. BPEL, in contrast, supports both choreography and orches-

tration perspectives [Juric 2007]. However, in order to obtain an executable process,

orchestration perspective should be followed [Juric 2007]. That is why an adapta-

tion should be done and transformation rules should be de�ned to accompany the

transformation of DSOPL to orchestration perspective.

84
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

Figure 4.13: Sales order activities' sequence

The activities of behavioral description of DSOPL-ADL are similar to those of

BPEL. Therefore, we propose a mapping between DSOPL-ADL concepts at archi-

tecture level and BPEL concepts at implementation level. Table 4.1 displays the con-

cepts of our DSOPL-ADL and their corresponding concepts in BPEL paradigm. The

purpose of this mapping is to generate a BPEL skeleton from DSOPL-ADL descrip-

tion. We can notice the existence of one-to-one mapping between both paradigms

(such as the structural element "deployable_service_instance" in DSOPL-ADL is

mapped to "partnerLink" in BPEL), one-to-many mapping (such as the activity

"receive" in DSOPL-ADL is mapped to four consecutive activities in BPEL) and

unfortunately there are concepts that do not have any correspondence in one of the

two paradigms (such as the "binding" which does not have any correspondence in

BPEL or "variables" in BPEL which do not have any correspondence in DSOPL-

ADL).

According to the mapping rules presented in table 4.1, the group of sequential

activities in the concrete architecture of sales order example (represented graphi-

cally in �gure 4.13) are transformed to BPEL activities as demonstrated in �gure

4.14. We can notice that a new actor is added called "Sales Order Process" which

is a central process that coordinates the message passing and order of �ow between

services called "Partner Links". This central process must be either a consumer or

provider part in all BPEL activities, this explains why each DSOPL-ADL activity is

mapped to one or more activities in BPEL. The "receive" activity in DSOPL-ADL

(designated by number 1) which receives customer's order and prepares it is repre-

sented by four activities in "Sales Order Process": receive, assign_customerRequest,

invoke_prepareOrder and assign_orderInformation (all designated by number 1

too). The bi-directional activity "invoke" in DSOPL-ADL (designated by num-

4.4. Conclusion 85

ber 2 in �gure 4.13) is transformed to two activities in "Sales Order Process": in-

voke_OrderDeliveryToRelayPoint and assign_CustomerOutput. This latter copies

the content of returned message from relay_point_delivery_shipping_service and

assigns it to a local temporary variable. Finally, the "respond" activity (designated

by number 3 in �gure 4.13), which is in charge to return order's con�rmation and

information about shipping to the customer, is transformed to the "reply" activity

in BPEL (designated by 3 in �gure 4.14).

DSOPL-ADL
behavioral concepts

BPEL concepts

structural elements

deployable_service_instance partnerLink

operation role's name & invoke's name

behavior sequence

interactive activities

receive 4 consecutive activities: receive, assign,
invoke and assign

invoke 2 consecutive activities: invoke and as-
sign

respond reply

examples of missing correspondence

binding -

- variables

Table 4.1: DSOPL-ADL to BPEL mapping

4.4 Conclusion

We have presented DSOPL-ADL, an architecture description language that allows

the recon�guration of a software architecture at runtime based on variability de-

scription. To manage the runtime recon�guration at architectural level, we have

proposed a modular language called DSOPL-ADL which is structured in and com-

posed of four sections; structural, variability, context and con�guration. For each

part, its meta-model was presented and discussed in detail through an illustrative

example. Moreover the architecture can adapt its behavior to environment changes

that are speci�ed as context elements and consequently generate at runtime an ade-

quate concrete architecture from a given reference architecture. Finally, the concrete

architecture is transformed to an executable language (BPEL).

In chapter 5, we demonstrate the generated concrete architecture of sales order

example. Furthermore, we demonstrate the transformation of that concrete archi-

tecture to executable business process (BPEL).

86
Chapter 4. Variable-Architecture Centric Recon�guration of

Service-Oriented Systems

Figure 4.14: Transformation to BPEL - sales order example

Chapter 5

Experimentation/ Validation

Contents

5.1 Introduction . 87

5.2 Service Identi�cation from Object-Oriented Classes 87

5.2.1 Service Identi�cation Results 88

5.2.2 Results and Validation . 88

5.3 Service Packaging and Deployment 90

5.3.1 Preparing Service Creation 90

5.3.2 Service Annotation . 94

5.3.3 Service Interface Generation 94

5.4 Concrete Architecture Generation of DSOPL-ADL 97

5.5 Transformation to Executable Language 98

5.1 Introduction

In this chapter, we present the experimentation done on case studies to validate our

service identi�cation and packaging approach. This chapter is organized as follows:

in section 5.2, we validate our service identi�cation approach on four small and

medium-sized case studies of Java OO applications. In section 5.3, we present the

service packaging and deployment steps from service deployment until its interface

generation. In section 5.4, we demonstrate the results of a concrete architecture and

�nally its transformation to BPEL in section 5.5.

5.2 Service Identi�cation from Object-Oriented Classes

In order to demonstrate the applicability of our proposed approach, we evaluate it

on the following Java OO applications as case studies:

• Java Calculator Suite [Fegler 2013], which is a small system with 17 classes, is

an open-source calculator implemented in Java. It performs basic mathemati-

cal operations, has a graphic interface and supports Booleans, large numbers,

machine numbers, and about 25 di�erent operations.

88 Chapter 5. Experimentation/ Validation

• MobileMedia [Figueiredo 2007], which is a small sized system with 51 classes,

is an open-source Java application used for managing media (photo, music,

and video) on mobile devices.

• Galleon TiVo Media Server [Nicholls 2009] is a home media server. It is an

open source project distributed under the GNU GPL.

• Log4j [Grobmeier 2015] is a popular logging package which is widely adopted

and used in many applications. This audit framework is certi�ed by the open

source initiative.

Table 5.1 displays the case studies in terms of their used versions, number of

classes and KLOC (thousands of lines of code).

Case Study Version Number
of classes

Code Size
(KLOC)

Java Calculator Suite 2013-04-10 17 2,360

MobileMedia R7 51 3,016

Galleon TiVo Media
Server

2.5.5 137 26

Log4j 1.2.17 220 21

Table 5.1: Case studies information

5.2.1 Service Identi�cation Results

In this phase, we partition the source code of each case study into a set of clusters.

Each cluster is composed of one or more classes. Each resulting cluster corresponds

to one service. Table 5.2 shows the results in terms of number of obtained services

for each case study and the corresponding average service quality value for each

of the three characteristics: functionality, composability and self-containment. The

distribution rate of classes to services is 17/7= 2,4 classes per service for Java Cal-

culator Suite and 3,9 for MobileMedia. Even more, we notice that almost all classes

of same service are grouped to o�er single functionality. For example, in Java Cal-

culator Suite case study, "Entries", "GuiCommandLine" and "ResultList" handle

I/O issues.

5.2.2 Results and Validation

We validate the consistency of our proposed service identi�cation approach either

by comparing resulting services with the known architectural design or by analyzing

the relevance of the identi�ed services. We will give an example of the usage of each

of these techniques on our studied use cases.

5.2. Service Identi�cation from Object-Oriented Classes 89

Case study Number
of ser-
vices

Functionality Composability Self-
containment

Java Calcula-
tor Suite

7 0,73 0,88 0,41

MobileMedia 13 0,60 0,79 0,59

Galleon TiVo
Media Server

16 0,73 0,62 0,43

Log4j 23 0,69 0,56 0,39

Table 5.2: Service identi�cation results

For example, in Java Calculator Suite use case, since no architecture design was

available to compare it with our results, we have manually identi�ed the architec-

ture based on our knowledge about the system and its functionalities. Then, we

compared services of this architecture with our automatic service identi�cation re-

sults. We noticed that classes that provided similar functionalities were grouped in

the same cluster. Figure 5.1 displays our obtained results of partitioning java classes

into clusters by applying our service identi�cation approach. For example, "Entries",

"GuiCommandLine" and "ResultList" are three classes that were grouped in one

cluster.

Figure 5.1: Java Calculator Suite service identi�cation result

The case study of MobileMedia has a known architecture model, we therefore apply

90 Chapter 5. Experimentation/ Validation

the technique of comparing our identi�cation results with the architecture design. In

[Figueiredo 2008], the authors presented aspect oriented architecture for MobileMe-

dia. We manually compare our extracted services with the modules of this design,

after excluding aspect modules. We have found out that some services were directly

mapped to one corresponding module in the architecture, such as the service that

includes two classes "MediaListScreen" and "MediaData" was mapped to the mod-

ule named "MediaListScreen". In total, 5 services were successfully mapped to 5

modules. Some other extracted services could be mapped to more than one module.

This category can be divided to two types. The �rst type is one module with closely

related functionalities such as the service named "Video Media Util Screen Play

Capture Music" was mapped to three modules "PlayMediaScreen", "VideoAcces-

sor" and "VideoAlbumData". These three modules are in fact functionally related

and the resulted service was more coarse-grained than the architecture design. The

second type is modules that are weakly related. For this case, we have found two

services that each of them was mapped to respectively 3 and 4 modules of the ar-

chitecture. Some services that are functionally closely related (in our case study, 4

services related to the functionality of transferring media via SMS) were mapped to

many modules of the architecture (in our case study, 2 modules related to media

transfer functionality). These extracted services were �ner-grained than their cor-

responding modules. Finally, one service that groups exception classes is missing

from the architectural design since in the architecture, non-functional modules are

not represented.

The results show that 77% (10/13) of extracted services were successfully mapped

in the architectural design.

5.3 Service Packaging and Deployment

After having presented, in section 5.2, the experimentation related to the service

identi�cation phase, we present in this section our experimentation related to the

packaging and deployment of the identi�ed services. As a reminder, the packaging

phase includes transforming clusters to become interface-based through setting up

a delegator class for each identi�ed cluster (i.e. service), annotating this delegator

class and building a service interface.

5.3.1 Preparing Service Creation

We have considered that our deployable units are Web services. Web service is a

particular type of service, where its description is published in Web service Descrip-

tion Language (WSDL). We used Eclipse environment to create the corresponding

WSDL �le of each delegator class �le and deploy it using Apache Axis 1.4 server. A

WSDL interface can be created automatically only from one class which represents

5.3. Service Packaging and Deployment 91

the service implementation. Thus, we need to create for each cluster, a new class

that exposes all provided methods of its composing classes.

For each cluster, we created a new java class in form of a "delegator class" (see

�gure 5.2b). We placed in this class all provided methods' signatures of interface

classes. As a reminder, an interface class is a class of which at least one method is in-

voked from other classes outside the cluster's boundaries. Methods of this delegator

class do not implement the functionality, instead, they only delegate its execution

to the same method of the appropriate class after instantiating an object of that

class (see �gure 5.2b). Listing 5.1 displays the implementation of "GuiResultsEntri-

esCommandList" delegator class in Java Calculator Suite case study. This cluster

regroups three classes: "Entries", "GuiCommandLine" and "ResultList", as you can

notice in table 5.3 (cluster number 7) and �gure 5.2. In this delegator class, we �rst

instantiated objects from each interface class, therefore we called the constructors of

"Entries" and "ResultsList" classes. Then, we added the signatures of methods that

are invoked from outside this cluster. In listing 5.1 we can note that six methods

of "Entries" class were invoked from "Calculator" class, and one method "setCom-

mandLine" from "ResultsList" was invoked by "jcalc" class. Some methods within

"GuiCommandLine" class were invoked by "ResultsList" class, but since these two

classes are part of the same cluster, we do not represent this method invocation in

the delegator class. "GuiCommandLine" has no other connections, that is why it

is considered as internal class and not as an interface class. In the implementation

of each provided method of the delegator class, we invoke the same method of the

interface class using an instance of that interface class, as you can notice in listing

5.1.

Figure 5.2a displays the dependencies between two clusters of Java Calculator Suite

before setting up a delegator class, whereas in �gure 5.2b we display the connec-

tions using the delegation class "GuiResultsEntriesCommandList". Dotted arrows

between delegator class and delegatee classes in �gure 5.2b represent the delegation

of execution to concrete implementation classes.

Listing 5.1: GuiResultsEntriesCommandList delegator class implementation

public class GuiResultsEntriesCommandList {

private Calculator c;

// instantiations of interface classes

Entries entries = new Entries();

ResultsList results = new ResultsList(c);

92 Chapter 5. Experimentation/ Validation

Figure 5.2: Java Calculator Suite partial call graph

5.3. Service Packaging and Deployment 93

// provided methods of ResultsList class

public void setCommandLine(GuiCommandLine cl){

}

// provided methods of Entries class

public void clear(){

entries.clear();

}

public void delete(int i) throws CalculatorException {

entries.delete(i);

}

public String getAns(int i) throws CalculatorException {

return entries.getAns(i);

}

public String getEntry(int i) throws CalculatorException {

return entries.getEntry(i);

}

public Vector getAllEntries(){

return entries.getAllEntries();

}

public void addEntry(String equation, String results){

entries.addEntry(equation, results);

}

// GuiCommandLine

// has no provided methods to external clusters

}

As to the classes that invoke those provided methods, we manually transformed

the references from the interface class to the newly created delegator class. For

example, in listing 5.2, we demonstrate a portion of "Calculator" class. This class

was previously instantiating an object of "Entries". After setting up the "GuiRe-

sultsEntriesCommandList" delegator class, we changed the declaration of object

instantiation to become an instantiation of "GuiResultsEntriesCommandList" class.

It is worth noting that we consider that services are stateless and not stateful,

94 Chapter 5. Experimentation/ Validation

this implies that for each request of an operation from a Web service client, a new

instance is created.

Listing 5.2: Calculator class implementation

public class Calculator {

...

public GuiResultsEntriesCommandList entries = new

GuiResultsEntriesCommandList();

// the rest of the implementation remains unchanged

...

}

5.3.2 Service Annotation

We document the resulting components by assigning a name based on the anno-

tation algorithm with most frequent terms. In table 5.3, we display the classes'

names of Java Calculator Suite case study distributed in clusters. We extracted the

frequent terms and calculated the number of occurrence of each term (this number

is displayed beside each term between parentheses). For example, in cluster 3, the

term "Calculator" is repeated three times on the �rst position, this is why the clus-

ter name will �rst be composed of that term. In the same cluster, "Exception" and

"Tester" are programming language special words, that is why they were excluded

during the terms extraction. We also notice that in cluster 7 that all terms occur

once. We compose the cluster name with terms that are on the �rst position "Gui",

"Results" and "Entries", followed by terms that are on the second position "Com-

mand" and "List". We �xed the maximum number of terms to compose to �ve,

that is why the term "Line" was ignored within the cluster annotation.

5.3.3 Service Interface Generation

We automatically generated Web service interface in WSDL for each service us-

ing Eclipse Web service plug-ins. Listing 5.3 displays a simpli�ed Web service in-

terface generation in WSDL for "GuiResultsEntriesCommandList" service of Java

Calculator Suite case study. All seven methods of delegator class are exposed as

operations in WSDL such as <wsdl:operation name="getAllEntries"> which rep-

resents public Vector getAllEntries() method of "GuiResultsEntriesComman-

dList" class.

5.3. Service Packaging and Deployment 95

Cluster
Num-
ber

Composing Classes Frequent terms Cluster Name

1 CalcMachineNumber Calc(1) Machine(1) Num-
ber(1)

CalcMachineNumber

2 OperatorControlCenter Operator(1) Control(1) Cen-
ter(1)

OperatorControlCenter

3

Calculator
CalculatorException
CalculatorTester
jcalc
jcalc_applet

Calculator(3)
jcalc_applet(1) jcalc(1)

Calculatorjcalc_appletjcalc

4

E
jcalc_math
jcalc_trig
variable_interface

E(1) variable_interface(1)
jcalc_math(1) jcalc_trig(1)

Evariable_interface
jcalc_mathjcalc_trig

5
VariableTable
operatorChecker

Variable(1) operator(1)
Checker(1) Table(1)

VariableoperatorCheckerTable

6 PI PI(1) PI

7
Entries
GuiCommandLine
ResultsList

Gui(1) Line(1) Results(1)
Entries(1) Command(1)
List(1)

GuiResultsEntries Comman-
dList

Table 5.3: Java Calculator Suite services' identi�cation results

Listing 5.3: A simpli�ed WSDL description for GuiResultsEntriesCommandList

Web service

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://service7" xmlns:apachesoap="http://xml.

apache.org/xml-soap" xmlns:impl="http://service7" xmlns:intf="http://service7"

xmlns:tns1="http://cal" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3

.org/2001/XMLSchema">

<wsdl:types>

<schema elementFormDefault="qualified" targetNamespace="http://service7" xmlns="

http://www.w3.org/2001/XMLSchema">

<import namespace="http://cal"/>

<import namespace="http://xml.apache.org/xml-soap"/>

<element name="clear">...</element>

<element name="clearResponse">...</element>

<element name="delete">...</element>

<element name="deleteResponse">...</element>

<element name="fault" type="tns1:CalculatorException"/>

<element name="addEntry">...</element>

<element name="addEntryResponse">...</element>

<element name="getEntry">...</element>

<element name="getEntryResponse">...</element>

<element name="getAllEntries">...</element>

<element name="getAllEntriesResponse">...</element>

<element name="setCommandLine">...</element>

<element name="setCommandLineResponse">...</element>

<element name="getAns">...</element>

<element name="getAnsResponse">...</element>

96 Chapter 5. Experimentation/ Validation

</schema>

<schema elementFormDefault="qualified" targetNamespace="http://cal" xmlns="http:

//www.w3.org/2001/XMLSchema">

<import namespace="http://xml.apache.org/xml-soap"/>

<complexType name="CalculatorException">

<sequence>

<element name="location" type="xsd:int"/>

</sequence>

</complexType>

</schema>

...

</wsdl:types>

<wsdl:message name="deleteRequest">

<wsdl:part element="impl:delete" name="parameters"></wsdl:part>

</wsdl:message>

<wsdl:message name="clearResponse">...</wsdl:message>

<wsdl:message name="getEntryResponse">...</wsdl:message>

<wsdl:message name="getEntryRequest">...</wsdl:message>

<wsdl:message name="deleteResponse">...</wsdl:message>

<wsdl:message name="getAnsRequest">...</wsdl:message>

<wsdl:message name="setCommandLineRequest">...</wsdl:message>

<wsdl:message name="getAllEntriesResponse">...</wsdl:message>

<wsdl:message name="addEntryResponse">...</wsdl:message>

<wsdl:message name="addEntryRequest">...</wsdl:message>

<wsdl:message name="setCommandLineResponse">...</wsdl:message>

<wsdl:message name="getAllEntriesRequest">...</wsdl:message>

<wsdl:message name="getAnsResponse">...</wsdl:message>

<wsdl:message name="clearRequest">...</wsdl:message>

<wsdl:message name="CalculatorException">...</wsdl:message>

<wsdl:portType name="GuiResultsEntriesCommandList">

<wsdl:operation name="clear">

<wsdl:input message="impl:clearRequest" name="clearRequest"></wsdl:input>

<wsdl:output message="impl:clearResponse" name="clearResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="delete">...</wsdl:operation>

<wsdl:operation name="addEntry">...</wsdl:operation>

<wsdl:operation name="getEntry">...</wsdl:input>...</wsdl:operation>

<wsdl:operation name="getAllEntries">...</wsdl:operation>

<wsdl:operation name="setCommandLine">...</wsdl:operation>

<wsdl:operation name="getAns">...</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="GuiResultsEntriesCommandListSoapBinding" type="

impl:GuiResultsEntriesCommandList">

<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/

http"/>

<wsdl:operation name="clear">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="clearRequest">

5.4. Concrete Architecture Generation of DSOPL-ADL 97

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="clearResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="delete">...</wsdl:operation>

<wsdl:operation name="addEntry">...</wsdl:operation>

<wsdl:operation name="getEntry">...</wsdl:operation>

<wsdl:operation name="getAllEntries">...</wsdl:operation>

<wsdl:operation name="setCommandLine">...</wsdl:operation>

<wsdl:operation name="getAns">...</wsdl:operation>

</wsdl:binding>

<wsdl:service name="GuiResultsEntriesCommandListService">

<wsdl:port binding="impl:GuiResultsEntriesCommandListSoapBinding" name="

GuiResultsEntriesCommandList">

<wsdlsoap:address location="http://localhost:7537/HelloTest/services/

GuiResultsEntriesCommandList"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

5.4 Concrete Architecture Generation of DSOPL-ADL

We generated a concrete architecture of the on-line sales scenario example. The

inputs of this phase were:

1. the reference architecture that comprises two possible partial recon�gura-

tions of shipment, either shipment to home or shipment to a relay point.

These partial con�gurations are based on a variation point description named

shipping_variation_point, which is a service variation that has two alter-

native services, either home_delivery_shipping_service or

relay_point_delivery_shipping_service.

2. a given context information which states that user requests a sales order with

a relay point shipment.

Listing 5.4 demonstrates the concrete architecture that was generated from the

con�guration description that was described in listing 4.8 of chapter 4. We can

notice that this concrete architecture does not contain any variability description or

recon�guration description anymore that is why it is called a concrete architecture.

When a context information changes, the same reference architecture is recon�gured

to produce another concrete architecture.

98 Chapter 5. Experimentation/ Validation

Listing 5.4: Concrete Architecture Generation of sales scenario

<concrete_architecture_description>

<services>

<deployable_service_instance service="customer_service" service_instance="

customer_service_instance"/>

<deployable_service_instance service="supply_chain_management_service" .../>

<deployable_service_instance service="relay_point_delivery_shipping_service"

service_instance="relay_point_delivery_shipping_service_instance" />

</services>

<bindings>

<binding consumer_instance="customer_service_instance" consumer_interface="

i_customer_order" provider_instance="supply_chain_management_service_instance

" provider_interface="i_order_delegation" />

<binding consumer_instance="supply_chain_management_service_instance"

consumer_interface="i_shipment_ready_delegation" provider_instance="

relay_point_delivery_shipping_service_instance" provider_interface="

i_relay_point_delivery" />

</bindings>

<behavior>

<receive name="receive_customer_request" consumer_instance="

customer_service_instance" consumer_interface="i_customer_order"

provider_instance="supply_chain_management_service_instance"

provider_interface="i_order_delegation" operation="prepare_order"

input_message="receive_order_items">

</receive>

<invoke name="invoke_relay_point_delivery_service" consumer_instance="

supply_chain_management_service_instance" consumer_interface="

i_shipment_ready_delegation" provider_instance="

relay_point_delivery_shipping_service_instance" provider_interface="

i_relay_point_delivery" operation="order_delivery_to_relay_point"

input_message="in_ship-order" output_message="out_ship_order">

</invoke>

<respond name="send_order_details" consumer_instance="customer_service_instance"

consumer_interface="i_customer_order" provider_instance="

supply_chain_management_service_instance" provider_interface="

i_order_delegation" operation="prepare_order" output_message="

out_order_details">

</respond>

</behavior>

</concrete_architecture_description>

5.5 Transformation to Executable Language

In order to transform a concrete con�guration speci�ed in DSOPL-ADL to an ex-

ecutable language (e.g. BPEL), we apply the concepts' mapping between DSOPL-

ADL and BPEL paradigms. Figure 5.3 displays the sales order concrete architecture

implementation result in BPEL process. The skeleton of BPEL code is demon-

5.5. Transformation to Executable Language 99

Figure 5.3: Sales order implementation in BPEL

100 Chapter 5. Experimentation/ Validation

strated in listing 5.5. We can notice that <services> elements of listing 5.4 are

transformed to <partnerLinks>. <variables> section de�nes input and output

variable for each partnerLink. For example, Order _delivery_to_relay_pointOut

and Order_delivery_to_relay_pointIn are variables to communicate with relay

_point_delivery_shipping_service partnerLink. Finally, in <sequence>, we spec-

ify the work�ow between partnerLinks and the process itself.

Listing 5.5: BPEL skeleton of sales order example

<?xml version="1.0" encoding="UTF-8"?>

<process name="SalesOrder" ...>

<documentation>...</documentation>

...

<!-- import all partner links -->

<import namespace="http://.../supply_chain_management_WSDL" location="

supply_chain_management_WSDL.wsdl" importType="http://schemas.xmlsoap.org/

wsdl/"/>

<partnerLinks>

...

<partnerLink name="supply_chain_management_service" ... partnerRole="

order_request"/>

<partnerLink name="relay_point_delivery_shipping_service" ... partnerRole="

order_delivery_request"/>

<partnerLink name="customer_service" ... myRole="request_order" partnerRole=

"prepare_order"/>

</partnerLinks>

<!-- define all variables -->

<variables>

<variable name="Order_delivery_to_relay_pointOut" ... />

<variable name="Order_delivery_to_relay_pointIn" ... />

<variable name="Process_orderOut" ... />

<variable name="Process_orderIn" ... />

<variable name="inputVar" ... />

<variable name="outputVar" ... />

</variables>

<sequence>

...

</sequence>

</process>

As to the sequence section, the transformation result of <receive> activity is demon-

strated in listing 5.6. It is composed of four activities: receive, assign, invoke and

assign.

Listing 5.6: Transformation result of receive activity

5.5. Transformation to Executable Language 101

<sequence>

<receive name="start" partnerLink="customer_service" ... operation="

asyncOperation" variable="inputVar" createInstance="yes">

</receive>

<assign name="assign1">

<copy>

<from variable="inputVar" ... />

<to variable="Process_orderIn" ...></to>

</copy>

</assign>

<invoke name="prepare_order" partnerLink="supply_chain_management_service"

operation="prepare_order" ... inputVariable="Process_orderIn" outputVariable

="Process_orderOut"/>

<assign name="assign2">

<copy>

<from variable="Process_orderOut" ... />

<to variable="Order_delivery_to_relay_pointIn" ... />

</copy>

</assign>

</sequence>

Chapter 6

Conclusion and Future

Perspectives

Contents

6.1 Outline . 103

6.2 Contributions . 103

6.3 Future Perspectives . 105

6.3.1 Short-term Perspectives . 105

6.3.2 Long-term Perspectives . 106

6.1 Outline

In this chapter, we draw up an overview of the contributions that we have proposed

within the frame of this thesis. Additionally, we outline future research directions

that may arise from this work.

6.2 Contributions

This work supports describing highly reusable dynamically self-recon�gurable and

variant-rich service based software architecture. In this sense, we applied a migration

strategy that is divided into two main processes: reverse engineering and forward

engineering. As a big picture, we �rst used reverse engineering techniques to analyze

existing legacy system. Once the legacy architecture model identi�ed, we then used

forward engineering techniques to describe a new architecture and proceed to obtain

executable business processes, which we consider as service implementation. More

concretely, we proposed the following contributions:

• Service identi�cation from legacy source code: We �rst identi�ed ser-

vices embedded in an existing legacy object-oriented system using reverse en-

gineering techniques. On the basis that a service represents one or a group

104 Chapter 6. Conclusion and Future Perspectives

of classes, we de�ned a mapping model between object and service concepts

in object-oriented and SOA paradigms respectively. Then, in order to iden-

tify the best group of disjoint classes that provides a coherent functionality

and that is at the same time loosely coupled to other groups of classes, we

introduced a measurement function based on service characteristics. Those

characteristics were re�ned to quality properties and then to measurable met-

rics in order to measure the quality of those identi�ed candidate services.

Finally, both clustering and depth �rst search algorithms were applied respec-

tively to partition legacy classes in services by respecting the fact that classes

with a maximized �tness function value were grouped in the same cluster (i.e

service). The output of this step was a number of identi�ed services who

regrouped each a number of object-oriented classes. It is worth noting that

service implementation remained implemented in legacy code. This contribu-

tion was experimented on four case studies and obtained results were satisfying

in terms of relevancy of identi�ed services to architectural designs.

• Service packaging: In order to prepare identi�ed services to become deploy-

able, we adapted clusters to become interface-based. This means that depen-

dencies between classes of di�erent services were lifted to become dependencies

between services by setting up for each cluster a new class which acted as an

interface and exposed cluster's provided functionalities. We also annotated

each cluster and generated its interface. This step was experimented using

a case study implemented in Java and Web service interfaces were generated

and published in WSDL.

• Dynamic service-oriented product lines architecture: We identi�ed

a new language grammar of a software architecture that described service-

based and variant-rich software artifacts at architecture abstraction level. We

called the language "Dynamic Service-Oriented Product Lines Architecture

Description Language" (DSOPL-ADL). The goal behind modeling variability

description as a �rst-class element in a service-based architecture was to enable

a variability-based recon�guration of architecture.

• Dynamic architecture self-recon�guration based on variability: Within

the process of forward engineering, we composed and con�gured services us-

ing DSOPL-ADL. Building the right composition of services at runtime was

subject to environment changes. That is why we also integrated context infor-

mation to our ADL. This rendered our ADL context-aware. We also described

at design time a common architecture in addition to a series of possible service

con�gurations based on variable artifacts in what called a "reference architec-

ture". During system's execution at runtime, a concrete architecture was

generated by integrating an appropriate partial con�guration to the common

architecture part. This concrete architecture satis�ed context related con-

6.3. Future Perspectives 105

straints. Finally, in order to generate a service composition implementation,

we mapped DSOPL concrete architecture's concepts to BPEL concepts and

transformed architecture to business process language. As to the experimen-

tation, we have generated a concrete architecture of sales order example and

then transformed this architecture to a BPEL skeleton.

6.3 Future Perspectives

As a part of future work, our proposed migration process can be either improved

or extended in several directions. We classify the future perspectives according to

their importance into short-term and long-term perspectives.

6.3.1 Short-term Perspectives

Current work improvements:

• Considering non-functional characteristics for service identi�cation:
So far, during the service identi�cation phase from legacy source code, only

functional characteristics were taken into account for measuring candidate

service's quality. We would like to take into account additional service char-

acteristics, in particular related to non-functional service characteristics such

as reliability and maintainability.

• Evaluating our approach with more complex case studies: Our service
identi�cation approach was evaluated on four case studies from which the

largest one initially contained 220 classes. We plan to evaluate our approach

using real industrial complex case studies. In addition, all case studies that

we have used were implemented in Java. We plan to generalize our approach

on other case studies implemented in other programming languages.

• Automating service packaging process: Currently, in service packaging

phase of legacy software migration, preparing interface-based clusters was car-

ried out manually, whereas service interface generation step was automated.We

were able to manually package identi�ed services in a delegate class and it was

out of our direct interests to automate the transformation of code to make

inter-service communications pass through the delegate class of each service.

Manual service packaging would have become de�nitely more complex in terms

of time and e�ort if we had applied it on sophisticated and large legacy sys-

tems. Therefore, as a short-term perspective, we would like to automate the

transformation steps in order to reduce cost and errors.

• Automating transformation to BPEL: The transformation from archi-

tecture level to implementation level was so far achieved manually. BPEL

skeleton was later manually completed by concepts for which no mapping was

106 Chapter 6. Conclusion and Future Perspectives

found in DSOPL-ADL. We would like to automate the transformation proce-

dure as well as the auto-generation of missing code segments.

current work extension:

• Extract context and variability information from legacy source code

using dynamic analysis: So far, our service identi�cation technique from

legacy source code was based on the static analysis of object-oriented classes.

This enabled us to extract services and their con�guration. Whereas variabil-

ity and context information was injected by the architect at architecture level.

In order to extract variability and context information directly from source

and avoid their manual injection, we would like to perform a dynamic anal-

ysis on the legacy source code objects during system's execution in order to

capture variability and context information. Every service in the legacy sys-

tem which is present during all snapshots is a mandatory service, while every

service which appears in certain snapshots is represented as a variant in the

DSOPL architecture. Its conditions of taking part in system's architecture is

also captured, analyzed and documented as context and constraint informa-

tion. This renders the migration process more automatic without architect's

intervention.

6.3.2 Long-term Perspectives

• Transform DSOPL architecture into cloud-based architecture: Cloud

computing has recently gained signi�cant importance for the fact that it moved

the platform power from local devices into the cloud. The software as a service

is from now on hosted on the cloud and runs in user's browser smoothly with-

out any installation overhead or infrastructure cost. Consequently, availability

of resources within the cloud is subject to continuous change. In order to de-

liver solutions as high-quality cloud-services, service providers should dispose

complex software architectures to adapt their dynamic recon�guration to suit

the availability of current resources. As a long-term perspective, we would

like to draw attention on the aspects that are required to change in current

service-oriented architectures in order to port them on cloud.

6.3. Future Perspectives 107

List of Publications

International and European Conferences:

• Seza Adjoyan, Abdelhak-Djamel Seriai, "Recon�gurable Service-Based Archi-

tecture Based on Variability Description". 10th European Conference on Soft-

ware Architecture - Track on Woman in Software Architecture ECSA 2016,

Istanbul, Turkey, 5-9 September, 2016. (submitted)

• Seza Adjoyan, Abdelhak-Djamel Seriai, "An Architecture Description Lan-

guage for Dynamic Service-Oriented Product Lines". 27th International Con-

ference on Software Engineering and Knowledge Engineering SEKE 2015,

Pittsburgh, USA, 6-8 July, 2015.

• Seza Adjoyan, Abdelhak-Djamel Seriai, Anas Shatnawi, "Service Identi�cation

Based on Quality Metrics - Object-Oriented Legacy System Migration Towards

SOA". 26th International Conference on Software Engineering and Knowledge

Engineering SEKE 2014, Vancouver, BC, Canada, 1-3 July, 2014.

National Conference:

• Seza Adjoyan, Abdelhak-Djamel Seriai, Anas Shatnawi, Service Identi�cation

Based on Quality Metrics - Object-Oriented Legacy System Migration Towards

SOA. accepted article at SEKE 2014. 3ème Conférence en IngénieriE du Logi-

ciel CIEL et 8ème Conférence francophone sur l'Architecture Logicielle CAL,

Paris, 10-12 June, 2014.

Bibliography

[Abu-Matar 2011] M. Abu-Matar and H. Gomaa. Feature Based Variability for

Service Oriented Architectures. In Software Architecture (WICSA), 2011

9th Working IEEE/IFIP Conference on, pages 302�309, June 2011. (Cited

on pages 2, 11, 26, 31 and 33.)

[Akkiraju 2005] Rama Akkiraju and Farrell Joel. Web Service Semantics - WSDL-

S. https://www.w3.org/Submission/WSDL-S/, 2005. [Online; accessed 06-

May-2016]. (Cited on page 23.)

[Albreshne 2009] Abdaladhem Albreshne, Patrik Fuhrer and Jacques Pasquier. Web

Services Orchestration and Composition, 2009. (Cited on page 83.)

[Aldris 2013] A. Aldris, A. Nugroho, P. Lago and J. Visser. Measuring the Degree

of Service Orientation in Proprietary SOA Systems. In Service Oriented

System Engineering (SOSE), 2013 IEEE 7th International Symposium on,

pages 233�244, March 2013. (Cited on page 39.)

[Allen 1998] Robert Allen, Remi Douence and David Garlan. Specifying and analyz-

ing dynamic software architectures. In Fundamental Approaches to Software

Engineering, pages 21�37. Springer, 1998. (Cited on pages 26, 28 and 29.)

[Almonaies 2010] Asil A Almonaies, James R Cordy and Thomas R Dean. Legacy

System Evolution towards Service-Oriented Architecture. In International

Workshop on SOA Migration and Evolution, IEEE, pages 53�62. Citeseer,

2010. (Cited on page 10.)

[Alshara 2015] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine,

Hinde Lilia Bouziane, Christophe Dony and Anas Shatnawi. Migrating Large

Object-oriented Applications into Component-based Ones: Instantiation and

Inheritance Transformation. In Proceedings of the 2015 ACM SIGPLAN

International Conference on Generative Programming: Concepts and Expe-

riences, GPCE 2015, pages 55�64, New York, NY, USA, 2015. ACM. (Cited

on page 51.)

[Apel 2013] Sven Apel, Don Batory, Christian Kästner and Gunter Saake. Feature-

oriented software product lines: concepts and implementation. Springer Sci-

ence & Business Media, 2013. (Cited on page 13.)

[Arsanjani 2007] Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam and

Kishore Channabasavaiah. S3: A Service-Oriented Reference Architecture.

IT Professional, vol. 9, no. 3, pages 10�17, 2007. (Cited on pages xv, 24

and 25.)

https://www.w3.org/Submission/WSDL-S/

110 Bibliography

[Audrey 2008] Occello Audrey. Introduction à l'Architecture Orientée Service- mod-

ule SAR O3 SI3 MIAGE. http://www.academia.edu/5995272/cours_

architecture_orientée_services_SOA, 2008. [Online; accessed 27-August-

2015]. (Cited on pages 8 and 15.)

[Bachmann 2001] Felix Bachmann and Len Bass. Managing Variability in Software

Architectures. SIGSOFT Softw. Eng. Notes, vol. 26, no. 3, pages 126�132,

May 2001. (Cited on page 13.)

[Bachmann 2005] Felix Bachmann and Paul Clements. Variability in Software Prod-

uct Lines. Rapport technique CMU/SEI-2005-TR-012, Software Engineer-

ing Institute, Carnegie Mellon University, Pittsburgh, PA, 2005. (Cited on

page 2.)

[Barbosa 2011] Eiji Adachi Barbosa, Thais Batista, Alessandro Garcia and Eduardo

Silva. PL-AspectualACME: An Aspect-oriented Architectural Description

Language for Software Product Lines. In Proceedings of the 5th European

Conference on Software Architecture, ECSA'11, pages 139�146, Berlin, Hei-

delberg, 2011. Springer-Verlag. (Cited on pages 25, 26, 31 and 32.)

[Baresi 2012] Luciano Baresi, Sam Guinea and Liliana Pasquale. Service-Oriented

Dynamic Software Product Lines. Computer, vol. 45, no. 10, pages 42�48,

2012. (Cited on page 32.)

[Bieman 1995] James M Bieman and Byung-Kyoo Kang. Cohesion and reuse in

an object-oriented system. In ACM SIGSOFT Software Engineering Notes,

volume 20, pages 259�262. ACM, 1995. (Cited on page 44.)

[Bisbal 1999] Jesús Bisbal, Deirdre Lawless, Bing Wu and Jane Grimson. Legacy

Information Systems: Issues and Directions. IEEE Softw., vol. 16, no. 5,

pages 103�111, September 1999. (Cited on page 10.)

[Booth 2004] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael

Champion, Chris Ferris and David Orchard. Web Services Architecture, W3C

Working Group. http://www.w3.org/TR/ws-arch/, 11 February 2004. [On-

line; accessed 27-August-2015]. (Cited on pages 40 and 48.)

[BPE 2007] Web Services Business Process Execution Language Version 2.0, 2007.

(Cited on pages 26, 27 and 31.)

[Bradbury 2004] Jeremy S Bradbury. Organizing de�nitions and formalisms for

dynamic software architectures. In In Proceedings of the 1st ACM SIG-

SOFT workshop on Self-managed systems Newport. Citeseer, 2004. (Cited

on page 27.)

http://www.academia.edu/5995272/cours_architecture_orient�e_services_SOA
http://www.academia.edu/5995272/cours_architecture_orient�e_services_SOA
http://www.w3.org/TR/ws-arch/

Bibliography 111

[Brown 2000] Alan W Brown. Large-scale, component-based development, volume 1

of Object and component technology series. Prentice Hall PTR Englewood

Cli�s, 2000. (Cited on page 9.)

[Brown 2002] Alan Brown, Simon Johnston and Kevin Kelly. Using service-oriented

architecture and component-based development to build web service applica-

tions. 2002. (Cited on pages 2, 12, 24, 40, 41 and 48.)

[Capilla 2014] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés and

Mike Hinchey. An Overview of Dynamic Software Product Line Architec-

tures and Techniques: Observations from Research and Industry. Journal of

Systems and Software, vol. 91, pages 3�23, May 2014. (Cited on pages 2, 31

and 32.)

[Cavalcante 2015] E. Cavalcante, T. Batista and F. Oquendo. Supporting Dynamic

Software Architectures: From Architectural Description to Implementation.

In Software Architecture (WICSA), 2015 12th Working IEEE/IFIP Confer-

ence on, pages 31�40, May 2015. (Cited on page 26.)

[Cetin 2007] S. Cetin, N. Ilker Altintas, H. Oguztuzun, A.H. Dogru, O. Tufekci and

S. Suloglu. Legacy Migration to Service-Oriented Computing with Mashups.

In Software Engineering Advances, 2007. ICSEA 2007. International Con-

ference on, pages 21�21, Aug 2007. (Cited on pages 8, 15, 18, 19, 20, 22

and 23.)

[Cetina 2008] Carlos Cetina, Vicente Pelechano and Pablo Trinidad. An Architec-

tural Discussion on DSPL. In In 2nd International Workshop on Software

Product Lines, pages 59�68, 2008. (Cited on page 32.)

[Channabasavaiah 2004] Kishore Channabasavaiah, Kerrie Holley and Edward Tug-

gle. Migrating to a service-oriented architecture. IBM DeveloperWorks,

vol. 16, 2004. (Cited on pages 18 and 43.)

[Chen 2005] Feng Chen, Shaoyun Li, Hongji Yang, Ching-Huey Wang and William

Cheng-Chung Chu. Feature analysis for service-oriented reengineering. In

Software Engineering Conference, 2005. APSEC'05. 12th Asia-Paci�c, pages

8�pp. IEEE, 2005. (Cited on pages 2, 18, 21, 22 and 23.)

[Chen 2009] Feng Chen, Zhuopeng Zhang, Jianzhi Li, Jian Kang and Hongji Yang.

Service identi�cation via ontology mapping. In Computer Software and Appli-

cations Conference, 2009. COMPSAC'09. 33rd Annual IEEE International,

volume 1, pages 486�491. IEEE, 2009. (Cited on pages 2, 18, 20, 21 and 22.)

[Clark 2001] James Clark and Makoto Murata. RELAX NG Speci�cation. http://

relaxng.org/spec-20011203.html, 2001. [Online; accessed 06-May-2016].

(Cited on page 76.)

http://relaxng.org/spec-20011203.html
http://relaxng.org/spec-20011203.html

112 Bibliography

[Classen 2008] Andreas Classen, Arnaud Hubaux, Franciscus Sanen, Eddy Truyen,

Jorge Vallejos, Pascal Costanza, Wolfgang De Meuter, Patrick Heymans and

Wouter Joosen. Modelling variability in self-adaptive systems: Towards a re-

search agenda. In Proceedings of international workshop on modularization,

composition and generative techniques for product-line engineering, pages

19�26, 2008. (Cited on pages 1 and 2.)

[Clements 2001] Paul Clements and Linda Northrop. Software product lines: Prac-

tices and patterns. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001. (Cited on page 13.)

[Clements 2010] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James

Ivers, Reed Little, Paulo Merson, Robert Nord and Judith Sta�ord. Docu-

menting Software Architectures: Views and Beyond (2nd Edition). Addison-

Wesley Professional, 2 édition, 2010. (Cited on pages 10, 11, 12 and 27.)

[Corporation 2008] Oracle Corporation. Measuring the Degree of Service Orienta-

tion in Proprietary SOA Systems. In Business process management, service-

oriented architecture, and web 2.0: Business transformation or train wreck?

Oracle Corporation, 2008. (Cited on page 2.)

[Cox 1986] Brad J Cox. Object-oriented programming: an evolutionary approach.

1986. (Cited on page 8.)

[Czarnecki 2006] Krzysztof Czarnecki, Chang Hwan, Peter Kim and KT Kalleberg.

Feature models are views on ontologies. In Software Product Line Conference,

2006 10th International, pages 41�51. IEEE, 2006. (Cited on page 14.)

[Dashofy 2002] Eric M. Dashofy, André van der Hoek and Richard N. Taylor. An

Infrastructure for the Rapid Development of XML-based Architecture De-

scription Languages. In Proceedings of the 24th International Conference on

Software Engineering, ICSE '02, pages 266�276, New York, NY, USA, 2002.

ACM. (Cited on pages 26, 31, 32 and 35.)

[Deiters 2011] Constanze Deiters and Andreas Rausch. A Constructive Approach

to Compositional Architecture Design. In Ivica Crnkovic, Volker Gruhn

and Matthias Book, editeurs, Software Architecture, volume 6903 of Lec-

ture Notes in Computer Science, pages 75�82. Springer Berlin Heidelberg,

2011. (Cited on page 11.)

[Endrei 2004] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte,

Pål Krogdahl, Min Luo and Tony Newling. Patterns: Service-Oriented Ar-

chitecture and Web Services. IBM Redbooks, 1 édition, April 2004. (Cited

on page 2.)

Bibliography 113

[Farrell 2007] Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and

XML Schema. https://www.w3.org/TR/sawsdl/, 2007. [Online; accessed

06-May-2016]. (Cited on page 23.)

[Fegler 2013] Brian Fegler. Java Calculator Suite. https://sourceforge.net/

projects/bfegler/, 2013. [Online; accessed 04-May-2016]. (Cited on

page 87.)

[Fiadeiro 2013] José Luiz Fiadeiro and Antónia Lopes. A model for dynamic recon-

�guration in service-oriented architectures. Software & Systems Modeling,

vol. 12, no. 2, pages 349�367, 2013. (Cited on page 1.)

[Figueiredo 2007] Eduardo Figueiredo. Mobile Media. http://homepages.dcc.

ufmg.br/~figueiredo/spl/icse08/, 2007. [Online; accessed 04-May-2016].

(Cited on page 88.)

[Figueiredo 2008] Eduardo Figueiredo, Nelio Cacho, Claudio Sant'Anna, Mario

Monteiro, Uira Kulesza, Alessandro Garcia, Sérgio Soares, Fabiano Ferrari,

Safoora Khan, Fernando Castor Filho and Francisco Dantas. Evolving Soft-

ware Product Lines with Aspects: An Empirical Study on Design Stability.

In Proceedings of the 30th International Conference on Software Engineer-

ing, ICSE '08, pages 261�270, New York, NY, USA, 2008. ACM. (Cited on

page 90.)

[Footen 2012] J. Footen and J. Faust. The service-oriented media enterprise: Soa,

bpm, and web services in professional media systems. Taylor & Francis, 2012.

(Cited on page 12.)

[Fuhr 2013] Andreas Fuhr, Tassilo Horn, Volker Riediger and Andreas Winter.

Model-driven software migration into service-oriented architectures. Com-

puter Science - Research and Development, vol. 28, no. 1, pages 65�84, 2013.

(Cited on pages 18, 19, 20 and 22.)

[Galster 2010] Matthias Galster. Describing Variability in Service-oriented Soft-

ware Product Lines. In Proceedings of the Fourth European Conference on

Software Architecture: Companion Volume, ECSA '10, pages 344�350, New

York, NY, USA, 2010. ACM. (Cited on page 67.)

[Galster 2011] Matthias Galster, Paris Avgeriou, Danny Weyns and Tomi Männistö.

Variability in Software Architecture: Current Practice and Challenges. SIG-

SOFT Softw. Eng. Notes, vol. 36, no. 5, pages 30�32, 2011. (Cited on pages 13

and 31.)

[Gri�ths 2010] Nathan Gri�ths and Kuo-Ming Chao. Agent-based service-oriented

computing. Springer Publishing Company, Incorporated, 1st édition, 2010.

(Cited on pages 2, 12 and 82.)

https://www.w3.org/TR/sawsdl/
https://sourceforge.net/projects/bfegler/
https://sourceforge.net/projects/bfegler/
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/

114 Bibliography

[Grobmeier 2015] Christian Grobmeier. Log4j. https://logging.apache.org/

log4j/1.2/download.html, 2015. [Online; accessed 04-May-2016]. (Cited

on page 88.)

[Hilliard 1999] Rich Hilliard. Using the UML for Architectural Description. In

Robert France and Bernhard Rumpe, editeurs, �UML�99 � The Uni�ed

Modeling Language, volume 1723 of Lecture Notes in Computer Science,

pages 32�48. Springer Berlin Heidelberg, 1999. (Cited on page 10.)

[Iribarne 2004] Luis Iribarne. Web Components: A Comparison between Web Ser-

vices and Software Components. Revista Colombiana de Computación, vol. 5,

no. 1, 2004. (Cited on page 24.)

[ISO 2011] Systems and software engineering - Systems and software Quality Re-

quirements and Evaluation (SQuaRE) - System and software quality models.

Rapport technique, ISO/IEC 25010:2011, 2011. (Cited on page 39.)

[Jaggernauth 2015] Camille Jaggernauth, Bozena Kaminska and Douglas Gubbe.

Context-Aware Model for Dynamic Adaptability of Software for Embedded

Systems. International Journal of Computer (IJC), vol. 19, no. 1, pages

91�113, 2015. (Cited on page 1.)

[Jia 2007] Xiangyang Jia, Shi Ying, Honghua Cao and D. Xie. A New Architecture

Description Language for Service-Oriented Architec. In Grid and Cooperative

Computing, 2007. GCC 2007. Sixth International Conference on, pages 96�

103, Aug 2007. (Cited on pages 11, 25, 26, 27, 29 and 30.)

[Joolia 2005] A. Joolia, T. Batista, G. Coulson and A.T.A. Gomes. Mapping ADL

Speci�cations to an E�cient and Recon�gurable Runtime Component Plat-

form. In Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP

Conference on, pages 131�140, 2005. (Cited on pages 26, 28 and 29.)

[Juric 2007] Matjaz B. Juric. A Hands-on Introduction to BPEL. http:

//www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html,

2007. [Online; accessed 06-May-2016]. (Cited on page 83.)

[Kang 1990] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak and

A Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility

study. Rapport technique, DTIC Document, 1990. (Cited on page 13.)

[Karastoyanova 2003] Dimka Karastoyanova and Alejandro P Buchmann. Compo-

nents, Middleware and Web Services. In ICWI, pages 967�970, 2003. (Cited

on page 24.)

[Khadka 2011] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen and J. Hage. A method

engineering based legacy to SOA migration method. In Software Maintenance

https://logging.apache.org/log4j/1.2/download.html
https://logging.apache.org/log4j/1.2/download.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html

Bibliography 115

(ICSM), 2011 27th IEEE International Conference on, pages 163�172, Sept

2011. (Cited on pages 18, 21 and 22.)

[Khadka 2013a] R. Khadka, A. Saeidi, S. Jansen and J. Hage. A structured legacy

to SOA migration process and its evaluation in practice. In Maintenance and

Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2013

IEEE 7th International Symposium on the, pages 2�11, Sept 2013. (Cited

on pages 10, 18 and 20.)

[Khadka 2013b] Ravi Khadka, Amir Saeidi, Andrei Idu, Jurriaan Hage and Slinger

Jansen. Legacy to SOA evolution: A systematic literature review. In A.

D. Ionita, M. Litoiu, G. Lewis (Eds.) Migrating Legacy Applications: Chal-

lenges in Service Oriented Architecture and Cloud Computing Environments:

Challenges in Service Oriented Architecture and Cloud Computing Environ-

ments, page 40, 2013. (Cited on pages 10, 18, 21 and 23.)

[Koning 2009] Michiel Koning, Chang-ai Sun, Marco Sinnema and Paris Avgeriou.

VxBPEL: Supporting variability for Web services in BPEL. Information and

Software Technology, vol. 51, no. 2, pages 258�269, 2009. (Cited on pages 26

and 33.)

[Kruchten 1995] Philippe B Kruchten. The 4+ 1 view model of architecture. Soft-

ware, IEEE, vol. 12, no. 6, pages 42�50, 1995. (Cited on page 11.)

[Kuba 2007] Martin Kuba and Ondrej Krajícek. Literature search on SOA, Web

Services, OGSA and WSRF. Institute of Computer Science, Masaryk Uni-

verity, 2007. (Cited on page 9.)

[Lausen 2005] Holger Lausen, Axel Polleres and Dumitru Roman. Web Service Mod-

eling Ontology (WSMO). https://www.w3.org/Submission/WSMO/, 2005.

[Online; accessed 06-May-2016]. (Cited on page 23.)

[Lee 2012] Jaejoon Lee, G. Kotonya and D. Robinson. Engineering Service-Based

Dynamic Software Product Lines. Computer, vol. 45, no. 10, pages 49�55,

Oct 2012. (Cited on page 13.)

[Lewis 2005] Grace Lewis, Edwin Morris, Liam O'Brien, Dennis Smith and Lutz

Wrage. SMART: The Service-Oriented Migration and Reuse Technique.

Rapport technique CMU/SEI-2005-TN-029, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 2005. (Cited on pages 2, 18, 20,

21, 22 and 41.)

[Lindsey 1978] CH Lindsey and HJ Boom. A modules and separate compilation fa-

cility for Algol 68:(preprint). Stichting Mathematisch Centrum. Informatica,

no. IW 105/78, pages 1�42, 1978. (Cited on page 8.)

https://www.w3.org/Submission/WSMO/

116 Bibliography

[Luckham 1995] David C. Luckham, John J. Kenney, Larry M. Augustin, James

Vera, Doug Bryan and Walter Mann. Speci�cation and analysis of system ar-

chitecture using Rapide. IEEE Transactions on Software Engineering, vol. 21,

pages 336�355, 1995. (Cited on pages 26, 27 and 28.)

[Magee 1995] Je� Magee, Naranker Dulay, Susan Eisenbach and Je� Kramer. Speci-

fying Distributed Software Architectures. In Proceedings of the 5th European

Software Engineering Conference, pages 137�153, London, UK, UK, 1995.

Springer-Verlag. (Cited on pages 25, 26, 28, 29 and 32.)

[Marchetto 2008] Alessandro Marchetto and Filippo Ricca. Transforming a Java

application in an equivalent Web-services based application: Toward a tool

supported stepwise approach. In Web Site Evolution, 2008. WSE 2008. 10th

International Symposium on, pages 27�36. IEEE, 2008. (Cited on page 18.)

[Martin 2004] David Martin. OWL-S: Semantic Markup for Web Services. https:

//www.w3.org/Submission/OWL-S/, 2004. [Online; accessed 06-May-2016].

(Cited on page 23.)

[Matos 2009] Carlos Matos and Reiko Heckel. Migrating legacy systems to service-

oriented architectures. Electronic Communications of the EASST, vol. 16,

2009. (Cited on pages 18, 20, 21 and 22.)

[Medvidovic 1996] Nenad Medvidovic. ADLs and Dynamic Architecture Changes.

In Joint Proceedings of the Second International Software Architecture

Workshop (ISAW-2) and International Workshop on Multiple Perspectives in

Software Development (Viewpoints '96) on SIGSOFT '96 Workshops, ISAW

'96, pages 24�27, New York, NY, USA, 1996. ACM. (Cited on pages 11, 25,

26, 28 and 29.)

[Medvidovic 2000] N. Medvidovic and R.N. Taylor. A classi�cation and comparison

framework for software architecture description languages. Software Engi-

neering, IEEE Transactions on, vol. 26, no. 1, pages 70�93, Jan 2000. (Cited

on page 11.)

[Minora 2012] Leonardo Minora, Jérémy Buisson, Flávio Oquendo and Thaís Vas-

concelos Batista. Issues of Architectural Description Languages for Han-

dling Dynamic Recon�guration. CoRR, vol. abs/1205.4699, 2012. (Cited on

page 28.)

[Nakagawa 2012] Elisa Yumi Nakagawa. Reference Architectures and Variability:

Current Status and Future Perspectives. In Proceedings of the WICSA/ECSA

2012 Companion Volume, WICSA/ECSA '12, pages 159�162, New York, NY,

USA, 2012. ACM. (Cited on page 31.)

https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/

Bibliography 117

[Nakamura 2009] Masahide Nakamura, Hiroshi Igaki, Takahiro Kimura and Ken-

ichi Matsumoto. Extracting service candidates from procedural programs

based on process dependency analysis. In Services Computing Conference,

2009. APSCC 2009. IEEE Asia-Paci�c, pages 484�491. IEEE, Dec 2009.

(Cited on pages 2, 12, 15, 18, 20, 21, 22, 40 and 43.)

[Nicholls 2009] Leon Nicholls and John Kohl. Galleon TiVo Media Server. https:

//sourceforge.net/projects/galleon/, 2009. [Online; accessed 04-May-

2016]. (Cited on page 88.)

[Niiyama 2008] Craig Niiyama, Sam Chung, Donald Chinn and Sergio Davolos.

Service-oriented software reengineering methodology for composite services.

TCSS 702 Design Project in Computing and Software Systems, 2008. (Cited

on page 11.)

[O'Brien 2005] L. O'Brien, D. Smith and G. Lewis. Supporting Migration to Services

using Software Architecture Reconstruction. In Software Technology and En-

gineering Practice, 2005. 13th IEEE International Workshop on, pages 81�91,

2005. (Cited on pages 18, 20, 21 and 22.)

[Oquendo 2004] Flavio Oquendo. π-ADL: an Architecture Description Language

based on the higher-order typed pi-calculus for specifying dynamic and mobile

software architectures. SIGSOFT Softw. Eng. Notes, pages 1�14, 2004. (Cited

on pages 25, 26, 28, 29 and 30.)

[Oquendo 2008] Flavio Oquendo. π-ADL for WS-Composition: A Service-Oriented

Architecture Description Language for the Formal Development of Dynamic

Web Service Compositions. In Second Brazilian Symposium on Software

Components, Architectures, and Reuse (SBCARS 2008), pages 1�14, Porto

Alegre, Brazil, August 2008. (Cited on pages 10, 11, 26, 27, 29, 30 and 31.)

[Papazoglou 2007] Mike P. Papazoglou and Willem-Jan Heuvel. Service Oriented

Architectures: Approaches, Technologies and Research Issues. The VLDB

Journal, vol. 16, no. 3, pages 389�415, July 2007. (Cited on pages 2 and 12.)

[Papazoglou 2008] Michael Papazoglou. Web services: Principles and technology.

Pearson Education. Pearson Prentice Hall, 2008. (Cited on pages 2, 12

and 41.)

[Patidar 2013] Mr Kailash Patidar, R Gupta and Gajendra Singh Chandel. Coupling

and cohesion measures in object oriented programming. International Journal

of Advanced Research in Computer Science and Software Engineering, vol. 3,

no. 3, 2013. (Cited on page 44.)

https://sourceforge.net/projects/galleon/
https://sourceforge.net/projects/galleon/

118 Bibliography

[Pohl 2005] Klaus Pohl, Günter Böckle and Frank J van Der Linden. Software

product line engineering: foundations, principles and techniques. Springer

Science & Business Media, 2005. (Cited on page 13.)

[Salehie 2009] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-

scape and research challenges. ACM Transactions on Autonomous and Adap-

tive Systems (TAAS), vol. 4, no. 2, page 14, 2009. (Cited on page 1.)

[Sneed 2006] Harry M Sneed. Integrating legacy software into a service oriented

architecture. In Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on, pages 11�pp. IEEE, 2006.

(Cited on pages 7, 10, 18, 20, 21, 22 and 23.)

[Stehle 2008] Edward Stehle, Brian Piles, Jonathan Max-Sohmer and Kevin Lynch.

Migration of Legacy Software to Service Oriented Architecture. Department

of Computer Science Drexel University Philadelphia, PA, vol. 19104, pages

2�5, 2008. (Cited on pages 7, 10, 12 and 18.)

[Svahnberg 2005] Mikael Svahnberg, Jilles van Gurp and Jan Bosch. A Taxonomy of

Variability Realization Techniques: Research Articles. Softw. Pract. Exper.,

vol. 35, no. 8, pages 705�754, July 2005. (Cited on page 13.)

[Szyperski 2002] Clemens Szyperski. Component software: Beyond object-oriented

programming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2nd édition, 2002. (Cited on page 9.)

[Tosic 2003] Vladimir Tosic, David Mennie and Bernard Pagurek. Software Con�g-

uration Management Related to the Management of Distributed Systems and

Service-Oriented Architectures. In Bernhard Westfechtel and André van der

Hoek, editeurs, Software Con�guration Management, volume 2649 of Lecture

Notes in Computer Science, pages 54�69. Springer Berlin Heidelberg, 2003.

(Cited on page 24.)

[van Ommering 2000] R. van Ommering, F. van der Linden, J. Kramer and

J. Magee. The Koala component model for consumer electronics software.

Computer, vol. 33, no. 3, pages 78�85, Mar 2000. (Cited on pages 25, 26,

28, 30, 31, 32 and 35.)

[Vestal 1993] Steve Vestal. A cursory overview and comparison of four architecture

description languages. Rapport technique, Citeseer, 1993. (Cited on page 11.)

[Voelter 2007] Markus Voelter and Iris Groher. Product line implementation using

aspect-oriented and model-driven software development. In Software Product

Line Conference, 2007. SPLC 2007. 11th International, pages 233�242. IEEE,

2007. (Cited on page 13.)

Bibliography 119

[Wahler 2015] M. Wahler, R. Eidenbenz, C. Franke and Y. A. Pignolet. Migrating

legacy control software to multi-core hardware. In Software Maintenance and

Evolution (ICSME), 2015 IEEE International Conference on, pages 458�466,

Sept 2015. (Cited on page 3.)

[Weiss 1999] David M. Weiss and Chi Tau Robert Lai. Software product-line en-

gineering: A family-based software development process. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999. (Cited on page 13.)

[Zhang 2004] Zhuopeng Zhang and H. Yang. Incubating services in legacy systems

for architectural migration. In Software Engineering Conference, 2004. 11th

Asia-Paci�c, pages 196�203, Nov 2004. (Cited on pages 12, 18 and 23.)

[Zhang 2005] Zhuopeng Zhang, Ruimin Liu and Hongji Yang. Service identi�ca-

tion and packaging in service oriented reengineering. In In Proceedings of

the 7th International Conference on Software Engineering and Knowledge

Engineering (SEKE, pages 241�249, 2005. (Cited on pages 2, 21, 22, 23

and 40.)

[Zhang 2006] Zhuopeng Zhang, H. Yang and W.C. Chu. Extracting Reusable Object-

Oriented Legacy Code Segments with Combined Formal Concept Analysis and

Slicing Techniques for Service Integration. In Quality Software, 2006. QSIC

2006. Sixth International Conference on, pages 385�392, Oct 2006. (Cited

on page 23.)

[Zhu 2011] Jiayi Zhu, Xin Peng, Stan Jarzabek, Zhenchang Xing, Yinxing Xue and

Wenyun Zhao. Improving Product Line Architecture Design and Customiza-

tion by Raising the Level of Variability Modeling. In Klaus Schmid, editeur,

Top Productivity through Software Reuse, volume 6727 of Lecture Notes in

Computer Science, pages 151�166. Springer Berlin Heidelberg, 2011. (Cited

on pages 31 and 33.)

	Introduction
	Context
	Service Oriented Architecture's Support to Self-Adaptive Systems
	Variability Modeling as a Support to Self-Adaptive Systems

	Problem Statement
	Thesis Contributions
	Thesis Organization

	State of the Art
	Outline
	Context and Main Concepts
	Legacy Software
	Evolution of Technologies
	Legacy Software Modernization Towards SOA

	Dynamic and Variable Software Architecture
	Software Architecture
	Service Oriented Architecture
	Variability

	Related Works
	Classification of Migration Approaches Towards Service- Oriented Architecture
	General Classification
	Classifying Migration Approaches Regarding Service Identification
	Classifying Migration Approaches Regarding Service Packaging
	Other Related Migration Approaches

	Dynamicity and Variability Representation and Management at Architectural Level
	Classifying Architecture Description Languages Compared to Structural Description
	Classifying Architecture Description Languages Supporting Dynamicity
	Classifying Architecture Description Languages Supporting Variability
	Classifying Architecture Description Languages Compared to Variability and Dynamicity Support
	Summary of Architecture Description Classifications

	Conclusion

	Service Identification from Legacy Software Based on Quality Metrics
	Introduction
	Object-to-Service Mapping Model
	Quality Measurement Model of Services
	Characteristics of Services
	Characteristics of Web Services
	Service Characteristics Classification
	Refinement of Service Characteristics
	Quality Metrics
	Fitness Function Definition
	Service Clustering

	Service Packaging and Deployment
	Service Deployment
	Service Annotation
	Service Interface Generation
	Service Registration

	Conclusion

	Variable-Architecture Centric Reconfiguration of Service-Oriented Systems
	Introduction
	Context and Motivation
	Illustrative Example
	Chapter Organization

	Dynamic Architecture Description Language Based on Variability Specification
	DSOPL: A modular ADL for Describing Dynamicity Based on Variability
	DSOPL Structure Description
	DSOPL Variability Description
	Variability Description Specification
	Variable Artifacts
	Constraints Related to Alternative's Instantiation

	DSOPL Context Description
	DSOPL Reconfiguration Description
	Behavioral Activities
	Configuration Description

	Concrete Architecture and Executable Code Generation
	Concrete Architecture Generation
	Executable Code Generation

	Conclusion

	Experimentation/ Validation
	Introduction
	Service Identification from Object-Oriented Classes
	Service Identification Results
	Results and Validation

	Service Packaging and Deployment
	Preparing Service Creation
	Service Annotation
	Service Interface Generation

	Concrete Architecture Generation of DSOPL-ADL
	Transformation to Executable Language

	Conclusion and Future Perspectives
	Outline
	Contributions
	Future Perspectives
	Short-term Perspectives
	Long-term Perspectives

	Bibliography

