N

N

Describing Dynamic and Variable Software Architecture
Based on Identified Services From Object-Oriented
Legacy Applications
Seza Adjoyan

» To cite this version:

Seza Adjoyan. Describing Dynamic and Variable Software Architecture Based on Identified Services
From Object-Oriented Legacy Applications. Software Engineering [cs.SE]. Université Montpellier;
Lirmm, University of Montpellier, 2016. English. NNT: . tel-01693061v1

HAL Id: tel-01693061
https://hal-lirmm.ccsd.cnrs.fr/tel-01693061v1
Submitted on 25 Jan 2018 (v1), last revised 28 Mar 2019 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/tel-01693061v1
https://hal.archives-ouvertes.fr

"Collége THESIS
Docto ral to obtain the title of
@ du Languedoc-Roussillon Ph D of Science

Granted by the UNIVERSITY OF MONTPELLIER

Prepared at the doctoral school 12S
and the research unit LIRMM

Specialty: Computer Science

Presented by Seza ADJOYAN

Describing Dynamic and Variable

Software Architecture Based on
Identified Services From
Object-Oriented Legacy

Applications

Defended on the 30th of June 2016 in front of the jury composed of:

Mr. Philippe ANTIORTE Prof. Univ. of Pau and Pays de ’Adour Reviewer
Mr. Henri BASSON Prof. Univ. of the Littoral Opal Coast Reviewer
Mr. Mourad OUSSALAH Prof. Univ. of Nantes Examinator
Mr. Fabien MICHEL Dr., HDR Univ. of Montpellier Examinator
Mr. Roland DUCOURNAU Prof. Univ. of Montpellier Advisor

Mr. Abdelhak SERIAI Dr. Univ. of Montpellier Co-Advisor

iii

Acknowledgments

First and foremost, I would like to express my gratitude to the members of my dis-
sertation committee, Mr. Philippe Aniorté, Mr. Henri Basson, Mr. Mourad
Oussalah, and Mr. Fabien Michel for having accepted to judge my thesis work. I
highly appreciate your patience as well as the time you took out of your busy sched-
ule to read and evaluate my thesis work. Thank you for having provided me your
constructive comments and inspiring remarks which definitely improve the quality
of the conducted research and its results.

I would like to thank my thesis advisor, Mr. Roland Ducournau, for hav-
ing trusted in me and for having given me the freedom to develop my initiatives
throughout the PhD years. Moreover, you have always supported me and received
me with patience and kindness.

I would also like to thank my thesis co-advisor, Mr. Abdelhak-Djamel Seriai,
for his continuous investment in my thesis, for his remarkable human qualities and
for his pointed advices as much on the methodological side as on the technical side.
Mr. Seriai, indeed, you have supported me from my first arrival at LIRMM until
the final completion of my dissertation. Completing this thesis would not have been
possible without your help and encouragement, whether on the academic or personal
level, for which I will always remain grateful.

I would like to extend my sincere thanks to every permanent member of
MaREL team for having welcomed me in their team over these last few years.
You have granted me support every time I needed it. Simply, I appreciate to have
known you and hope to meet you again during further scientific events and/or to
continue coordination with you.

More generally, I would like to thank the laboratory LIRMM for giving me
the opportunity to work and complete my PhD degree under the best working
conditions. Likewise, I would like to thank the teaching staff of the Faculty of
Sciences of the University of Montpellier, who put their confidence in me and
wholeheartedly supported me to accomplish my teaching missions.

I would like to thank Erasmus Mundus program for providing me the op-
portunity as well as the scholarship to integrate and eventually obtain my PhD
degree from such a high-quality EU institution as the University of Montpellier. I
would also like to convey my appreciation to Calouste Gulbenkian foundation
for providing me the fund to complete my research in favourable conditions.

I would like to thank my friends / colleagues (current and former PhD stu-
dents) at LIRMM for the wonderful time I spent with their company. Thank you
for the quality moments and for the enriching scientific discussions we had together
as well as for sharing together the everyday concerns of a PhD student. I wish each
and everyone of you the best of luck and success in your future endeavors and look
forward to meeting you again. I share my success with you!

I would like to thank my beloved husband Yenovk Tokatelian for all the sacri-

iv

fices he has made on my behalf. Your generosity, love, patience and encouragements
were the only way forward for me to overcome all obstacles and challenges. I owe a
lot to you!

Thank you my lovely daughter Lia for her unconditional love and innocent smile
that always lifted my spirit. Thank you for letting mom work on her dissertation
late at nights whenever you slept. For the source of inspiration you have been for
me, [dedicate this thesis to you, my dear Lia.

Lastly, I would like to sincerely thank my parents and my parents-in-law
for having transmitted to me the taste and interest in studies and research. Thank
you for the important moral support you provided to me during my PhD adventure,
despite all the suffering and difficulties you have experienced. Your choice and
determination to stay and not quit your homeland Syria in this difficult period
taught me, among others, braveness and courage. Although, I wished you could
attend my PhD defense, however I wish you can survive and continue living in
peace. I love you and miss you very much.

Thanks to my professors, family and friends who helped me along the way; [am
lucky to have you in my life.

Describing Dynamic and Variable Software Architecture Based on
Identified Services From Object-Oriented Legacy Applications

Abstract: Service Oriented Architecture (SOA) is an architectural design paradigm
which facilitates building and composing flexible, extensible and reusable service-
oriented assets. These latter are encapsulated behind well-defined and published
interfaces that can be dynamically discovered by third-party services. Before the
advent of SOA, several software systems were developed using older technologies.
Many of these systems still afford a business value, however they suffer from evo-
lution and maintenance problems. It is advantageous to modernize those software
systems towards service-based ones. In this sense, several re-engineering techniques
propose migrating object-oriented applications towards SOA. Nonetheless, these
approaches rely on ad-hoc criteria to correctly identify services in object-oriented
legacy source code.

Besides, one of the most distinguishing features of a service-oriented application
is the ability to dynamically reconfigure and adjust its behavior to cope with chang-
ing environment during execution. However, in existing architecture description
languages handling this aspect, reconfiguration rules are represented in an ad-hoc
manner; reconfiguration scenarios are often implicit. This fact hinders a full man-
agement of dynamic reconfiguration at architecture level. Moreover, it constitutes
a challenge to trace dynamic reconfiguration description/ management at different
levels of abstraction.

In order to overcome the aforementioned problems, our contributions are pre-
sented in two axes: First, in the context of migrating legacy software towards SOA,
we propose a service identification approach based on a quality measurement model,
where service characteristics are considered and refined to metrics in order to mea-
sure the semantic correctness of identified services. The second axis is dedicated to
an Architecture Description Language (ADL) proposition that describes a variant-
rich service-based architecture. In this modular ADL, dynamic reconfigurations are
specified at architecture level. Moreover, the description is enriched with context
and variability information, in order to enable a variability-based self-reconfiguration
of architecture in response to context changes at runtime.

Keywords: Service-Oriented Architecture (SOA), re-engineering, variability, Ar-
chitecture Description Language (ADL), reconfiguration, dynamic architecture

vii

Architecture Dynamique Basée sur la Description de la Variabilité
et des Services Identifiés Depuis des Applications Orientées Objet

Résumé: L’Orienté Service (SOA) est un paradigme de conception qui facilite la
construction d’applications extensibles et reconfigurables basées sur des artefacts
réutilisables qui sont les services. Ceux-ci sont structurés via des interfaces bien
définies et publiables et qui peuvent étre dynamiquement découvertes. Les appli-
cations SOA peuvent étre concues selon deux démarches différentes. La premiére
est la démarche classique qui concoit le systéme & partir de spécification de besoin
(i.e. forward engineering en anglais). La deuxiéme démarche consiste a créer le sys-
téme SOA par la réingénierie d’un systéme existant (i.e. re-engineering en anglais).
Beaucoup d’approches ont été proposées dans la littérature pour la réingénierie
d’applications existantes développées dans des paradigmes pré-services, principale-
ment l'orienté objet, vers SOA. L’objectif est de permettre de sauvegarder la valeur
métier de ces d’applications tout en leur permettant de bénéficier des avantages de
SOA. Le probléme est que ces approches s’appuient sur des critéres ad-hoc pour
identifier correctement des services dans le code source des applications existantes.

Par ailleurs, 'une des caractéristiques les plus distinctives d’une application ori-
entée service est sa capacité de se reconfigurer dynamiquement et d’adapter son
comportement en fonction de son contexte d’exécution. Cependant, dans les lan-
gages de description d’architecture (ADL) existants dont ['aspect de reconfiguration
et pris en compte, les régles de reconfiguration sont représentées d’'une maniére ad-
hoc; en général, elles ne sont pas modélisées d’une maniére explicite mais enfouillées
dans la description de ’architecture. D’une part, ceci engendre une difficulté de
la gestion de la reconfiguration dynamique au niveau de ’architecture et d’autre
part, la tracgabilité de la description de la reconfiguration dynamique & travers les
différents niveaux d’abstraction est difficile & représenter et & gérer.

Afin de surmonter les problémes précédents, nous proposons dans le cadre de
cette thése deux contributions. D’abord, nous proposons une approche d’identification
de services basée sur un modéle de qualité oul les caractéristiques des services sont
étudiées, raffinées et réifiées en une fonction que nous utilisons pour mesurer la valid-
ité sémantique de ces services. La deuxiéme contribution consiste en une proposition
d’un langage de description d’architecture orientée service (ADL) qui intégre la de-
scription de la variabilité architecturale. Dans cet ADL les services qui peuvent
constituer ’architecture, les éléments de contexte dont les changements d’état sont
a l'origine des changements architecturaux, les variantes des éléments architecturaux
sélectionnées en fonction des états des éléments de contexte et le comportement ar-
chitectural dynamique sont ainsi spécifiés de fagon modulaire.

Mots-clés: Architecture orientée service, réingénierie, variabilité, langage de de-
scription d’architecture, reconfiguration, architecture dynamique

Contents

1 Introduction

1.1

1.2
1.3
14

Context e
1.1.1 Service Oriented Architecture’s Support to Self-Adaptive Sys-

tems o
1.1.2 Variability Modeling as a Support to Self-Adaptive Systems .
Problem Statement
Thesis Contributions
Thesis Organization o

2 State of the Art

2.1
2.2

2.3

Outline
Context and Main Concepts
2.2.1 Legacy Software
2.2.1.1 Evolution of Technologies

2.2.1.2 Legacy Software Modernization Towards SOA
2.2.2 Dynamic and Variable Software Architecture
2.2.2.1 Software Architecture
2.2.2.2 Service Oriented Architecture
2.2.2.3 Variabilityo
Related Workso
2.3.1 Classification of Migration Approaches Towards Service- Ori-
ented Architecture L.
2.3.1.1 General Classification
2.3.1.2 Classifying Migration Approaches Regarding Service
Identification oL,
2.3.1.3 Classifying Migration Approaches Regarding Service
Packaging oo
2.3.1.4 Other Related Migration Approaches
2.3.2 Dynamicity and Variability Representation and Management
at Architectural Level
2.3.2.1 Classifying Architecture Description Languages Com-
pared to Structural Description
2.3.2.2 Classifying Architecture Description Languages Sup-
porting Dynamicity
2.3.2.3 Classifying Architecture Description Languages Sup-
porting Variability
2.3.2.4 Classifying Architecture Description Languages Com-
pared to Variability and Dynamicity Support

—

QU = W N DN

© 00 =1 ~1 -1

10
10
12
13
15

15
15

20

21
23

24

25

27

31

33

Contents

2.3.2.5 Summary of Architecture Description Classifications 34
2.4 Conclusion 34

Service Identification from Legacy Software Based on Quality Met-

rics 37
3.1 Introductiono 37
3.2 Object-to-Service Mapping Model 38
3.3 Quality Measurement Model of Services 39
3.3.1 Characteristics of Services 40
3.3.2 Characteristics of Web Services 41
3.3.3 Service Characteristics Classification 42
3.3.4 Refinement of Service Characteristics 43
3.3.5 Quality Metrics 44
3.3.6 Fitness Function Definition 46
3.3.7 Service Clustering L. 46
3.4 Service Packaging and Deployment 47
3.4.1 Service Deployment L. 49
3.4.2 Service Annotation L oL 51
3.4.3 Service Interface Generation 53
3.4.4 Service Registration L. 54
3.5 Conclusion. 56

Variable-Architecture Centric Reconfiguration of Service-Oriented

Systems 59
4.1 Introduction L 59
4.1.1 Context and Motivation 29
4.1.2 Tustrative Example 60
4.1.3 Chapter Organization 61
4.2 Dynamic Architecture Description Language Based on Variability
Specification Lo 61
4.2.1 DSOPL: A modular ADL for Describing Dynamicity Based
on Variability o oo 62
4.2.2 DSOPL Structure Description 64
4.2.3 DSOPL Variability Description 66
4.2.3.1 Variability Description Specification 66
4.2.3.2 Variable Artifacts L. 67
4.2.3.3 Constraints Related to Alternative’s Instantiation . 70
4.24 DSOPL Context Description 71
4.2.5 DSOPL Reconfiguration Description 72
4.2.5.1 Behavioral Activities. 73
4.2.5.2 Configuration Description 74

4.3 Concrete Architecture and Executable Code Generation 82

Contents xi
4.3.1 Concrete Architecture Generation 82

4.3.2 Executable Code Generation 82

4.4 Conclusion. 85

5 Experimentation/ Validation 87
5.1 Imntroductiono 87
5.2 Service Identification from Object-Oriented Classes 87
5.2.1 Service Identification Results 88

5.2.2 Results and Validation L. 88

5.3 Service Packaging and Deployment 90
5.3.1 Preparing Service Creation 90

5.3.2 Service Annotation 94

5.3.3 Service Interface Generation L. 94

5.4 Concrete Architecture Generation of DSOPL-ADL 97
5.5 Transformation to Executable Language 98

6 Conclusion and Future Perspectives 103
6.1 Outline 103
6.2 Contributions oL 103
6.3 Future Perspectives L Lo 105
6.3.1 Short-term Perspectives 105

6.3.2 Long-term Perspectives 106
Bibliography 109

2.1
2.2
2.3
2.4
2.5

2.6

3.1
3.2

4.1

5.1
9.2
2.3

List of Tables

Migration to SOA related work classification 20
Service identification related work classification 22
Service packaging related work classification 23
Architecture’s structural specifications’ classification 26
Classifying related works according to their nature and main struc-

tural elemento 26
Supported dynamic actions in existing dynamic ADLs 29
Characteristics of services L. 42
Binding functionality characteristic to properties 44
DSOPL-ADL to BPEL mapping 85
Case studies information L L. 88
Service identification results Lo Lo oL 89

Java Calculator Suite services’ identification results 95

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

0.1
0.2
5.3

List of Figures

Positioning thesis’ contributions within a re-engineering process to-

wards SOA . . . L 5
Evolution of software architecture design methodology 9
Feature model of mobile phone 14
SOA development methodologies 16
Legacy to SOA migration framework 17
Some of S3 layers [Arsanjani 2007]o 25
Panorama of existing ADLs L. 35
Object to service mapping model L. 39
ISO/IEC 25010 software product quality model 40
Refinement model of service characteristics. 45
Dendrogram with set of services L. 48
Transforming OO dependencies to interface-based dependencies . . . 49
Delegation design pattern L 50
Service interface development Lo 92
WSDL generation L 55
Web service invocation procedure L. 56
Tlustrative example: On-line sales scenario architecture 61
Modular DSOPL-ADL 63
Structural description meta-model of DSOPL-ADL 65
Variability description meta-model of DSOPL-ADL 67
Example of service variability in sales scenario 68
Example of connection variability in sales scenario 69
Example of composition variability in sales scenario 70
Context description meta-model of DSOPL-ADL 72
Inter-service communicating activity types 74
Configuration description meta-model of DSOPL-ADL 78
On-line sales scenario behavioral description 80
Concrete architecture generation 83
Sales order activities’ sequence Lo 84
Transformation to BPEL - sales order example 86
Java Calculator Suite service identification result 89
Java Calculator Suite partial call graph 92
Sales order implementation in BPEL 99

CHAPTER 1

Introduction

Contents
1.1 ComteXt . . v v v i i i i e e e e e e e e e e e e e e e e e e e 1

1.1.1 Service Oriented Architecture’s Support to Self-Adaptive Sys-
TEIMS e e e e e e e e e e e e

1.1.2 Variability Modeling as a Support to Self-Adaptive Systems .
1.2 Problem Statement,
1.3 Thesis Contributions v v,

CU W NN N

1.4 Thesis Organization « ¢« v v v o v v o v v v v 0 v o o o

1.1 Context

Human supervision to reconfigure the behavior of software systems which are subject
to environment changes is considered a costly and time-consuming task [Salehie 2009].
To keep pace with the increasing development of such systems notably in terms of
their size and complexity and to guarantee the quality of system’s adaptation and
its efficiency, availability and responsiveness against changing external conditions,
rendering the system self-configurable and dynamically adaptable could be an effec-
tive solution.

Self-configurable (or self-adaptive) systems aim to adapt their various artifacts (at-
tributes or their behavior) autonomously in response to changes in the operating
environment (i.e. context changes) without human interaction [Classen 2008]. Such
systems are capable to dynamically adapt their configuration. This allows improving
flexibility and responsiveness to users’ preferences or varying operating conditions
[Jaggernauth 2015|, [Fiadeiro 2013]. The notion of dynamicity indicates that any
adaptation occurs during system’s execution. This is a required property in systems
where stopping the execution to make modifications on it might cause dramatic
effects. Self-configurable and dynamically adaptable systems are used in different
domains of application such as natural catastrophe prevention (flood warning), traf-
fic control system, e-commerce applications, etc.

2 Chapter 1. Introduction

1.1.1 Service Oriented Architecture’s Support to Self-Adaptive Sys-
tems

Service Oriented Architecture (SOA), whose main bricks are services [Lewis 2005|,
has become a trend of computing paradigm to describe business functionalities
and application logics [Chen 2005], [Zhang 2005]. In SOA, a system is structured
into a set of loosely coupled [Chen 2009|, [Nakamura 2009], [Papazoglou 2007] and
interoperable business services that can be easily composed [Lewis 2005|, reused
[Lewis 2005] and shared |[Corporation 2008] regardless of their physical location.
Services could either be entirely deployed on a single machine, residing on several
machines of company’s internal network, or even distributed on several systems over
Internet [Brown 2002]. Moreover, having solid service-oriented architecture in place
will provide the infrastructure needed to successfully deploy services in a cloud en-
vironment. SOA enables the composition of heterogeneous third-party sub-systems
that run in a varying execution environment |Griffiths 2010]. As a framework, SOA
facilitates the creation of flexible, extensible and reusable assets (i.e. services) with
different granularities hidden behind well-defined interfaces that describe service’s
functionality. This activity is called service encapsulation [Endrei 2004]. Realizing
Service-Oriented Architecture (SOA) system via Web service technology can provide
the required dynamicity and flexibility [Papazoglou 2008] and hence support the de-
sign of dynamically self-adaptive systems. Using Web service technology offers many
advantages for implementing a distributed system; particularly the possibility to
provide interoperability across heterogeneous software artifacts [Papazoglou 2008|.

1.1.2 Variability Modeling as a Support to Self-Adaptive Systems

Variability modeling, which is one of the key activities of Software Product Lines
(SPL), explicitly represents the variation among software products of the same prod-
uct family in terms of features [Abu-Matar 2011]. It defines which features are
mandatory, optional or alternative in a system in addition to specifying the cross-
cutting conditions of requiring and exclusion between those features [Capilla 2014].
As a matter of fact, SPL aims to build a collection of similar products from a sin-
gle core asset [Bachmann 2005]. This is achieved by identifying commonalities and
variations of a product family at different levels of abstraction and representing
them in a variability model. This variability model represents commonalities and
variations of a product family at different levels of abstraction such as requirement,
architecture, or implementation level. In dynamically self-adaptive systems, vari-
ability modeling can be applied in order to define system’s runtime adaptations to
environment changes and to reconfigure its composition accordingly [Classen 2008].

1.2. Problem Statement 3

1.2 Problem Statement

Self and dynamic adaptability is a required property to realize various kind of sys-
tems. Service-Oriented Architecture is one of the preferred technology to materialize
this property.

On the one hand, many software applications have been developed using older
and out-to-dated technologies. Those applications are designated as legacy soft-
ware. Despite the fact that business-critical legacy software still probably affords
a great business value for its users, it suffers from a particularly complex evolution
and maintenance problem. Indeed, the core functionalities which the legacy sys-
tem provides do not change over time but rather the technology and platform on
which it was developed is changed. From software evolution concerns, those core
functionalities of legacy software should first be identified within the source code
and separated from platform-specific code. This is a challenging task, since legacy
Object-Oriented (OO) applications are not necessarily built applying separation of
concerns [Wahler 2015|. Even more, a complete documentation of such legacy soft-
ware might also be missing, thus making the evolution complicated.

In software development, SOA has advantages over object-oriented programming
due to the dynamic discovery and flexible combining of its structural elements in
heterogeneous computing environments. Moreover, the advent of Web services to
realize SOA has offered a larger facility to design and implement flexible, interop-
erable and portable services. In this regard, re-engineering OO software to SOA
and particularly implementing it as Web services has become a major topic of in-
terest during the recent years. Additionally, re-engineering legacy software towards
SOA contributes in building self-adaptive systems. In this context, several service
identification solutions from object-oriented legacy source code have been proposed.
These approaches rely on ad-hoc criteria; they lack a clear mapping between object-
oriented concepts and service ones and thus fail to correctly identify relevant ser-
vices. Moreover, several approaches perform the re-engineering manually or in a
semi-automatic manner, thus, are considered as expensive solutions.

On the other hand, self-adaptive systems evolve during system’s execution against
changes in operating environment. In existing software applications that apply SOA
architectural style, dynamic reconfiguration of structural elements is achieved in an
ad-hoc manner. This implies that the reconfiguration of software system is often
discussed only at implementation level. Such a late reconfiguration hinders the
traceability of configuration aspects and consistency between different levels of the
software development life cycle. However, there are some approaches that discuss
reconfiguration issues at early stages of development process, for example at ar-
chitecture or design levels. Those approaches lack of an explicit representation of
configurable elements; they model configuration but not configurable elements. In

4 Chapter 1. Introduction

other words, these approaches do not provide explicit support for capturing variation
of structural elements, consequently they do not represent variability at architecture
level. This makes the configuration description hard to understand and the reconfig-
uration hard to implement. It also constitutes a barrier for a flexible management of
reconfiguration at architecture level as well as traceability issues between a dynamic
description given at the architectural level and its counterpart at other abstraction
levels.

Architectural reconfiguration can be specified at architecture level using a syntacti-
cal expressive language such as Architecture Description Languages (ADL)s. Vari-
ability modeling is an excellent instrument to model variations of software artifacts
and their behavior within a self-adaptive system. However, existing ADLs that sup-
port dynamic reconfiguration do not explicitly model variation points, on which the
reconfiguration is based.

1.3 Thesis Contributions

In this thesis, we treat the problems identified in section 1.2 and propose the fol-
lowing contributions:

1. We propose an approach to migrate Object-Oriented (OO) legacy code to-
wards Service-Oriented Architecture (SOA). Therefore, we propose solutions
for service identification and packaging problems.

(a) First, we propose a correspondence between object concepts in OO
paradigm and service concepts in SOA paradigm. Meanwhile, we con-
duct a rigorous study built on service characteristics and then propose
a semantic model that refines those characteristics into measurable met-
rics. Finally, those metrics are used to evaluate the quality of candidate
services.

(b) We apply a set of activities related to service packaging. First, we deploy
identified services using a wrapping technique. Meanwhile, we annotate
those services and finally generate a service interface that describes ser-
vice’s functionality.

2. To obtain a dynamic reconfigurable service-based self-adaptive system, we
propose a modular Architecture Description Language (ADL) called Dynamic
Service Oriented Product Lines (DSOPL-ADL).

(a) In addition to specifying structural information, we distinguish three vari-
ability types and manage them at architecture level.

(b) We enrich the static description by specifying reconfiguration aspects.
This enables a self-reconfiguration of system at runtime in response to a
context change.

1.4. Thesis Organization 5

(¢c) We propose a preliminary process to generate, among several variable
configurations described in reference architecture, one concrete configu-
ration based on context values. Furthermore, we automatically generate
an executable implementation code from our architectural description.

We position these contributions within a re-engineering and engineering processes
towards respectively SOA and SOA-based self-adaptable systems, as demonstrated
in figure 1.1. Our contributions are annotated and highlighted in yellow boxes.

Dynamic SOA engineering
process
. Transformation @
to Executable
Executable

. Process
Mapping Rules Process

process
|
¥ Identification
{}

Object-Oriented
~ Service
4 Packaging

Context-Aware
Concrete Architecture

9°Z UonNQLIU0D

€’ uonnqlLiuod

Classes

Context-Aware ,
~ Concrete (}
¥ Architecture £l

Generation Context

g’} uolNQUIU0d

o
. =] = 2
. -] </> &
L] ’) g
Services Service Dynamic variant-rich 3y_nam|:j; ger\élce- o
Interfaces service-oriented architecture Oriented Product 2
Lines Architecture o,
Description N
Language S
Software [il
s Variability

Figure 1.1: Positioning thesis’ contributions within a re-engineering process towards

SOA

1.4 Thesis Organization

The thesis is organized as follows. In chapter 2 - State of the Art, we present the
main underlying concepts used in our work and investigate the related approaches
that handle the problems discussed in section 1.2. In this regard, we propose a
classification of SOA migration approaches mainly compared to service identifica-
tion and packaging activities. We also propose a classification of ADLs compared

6 Chapter 1. Introduction

to their support to dynamicity and variability.

In chapter 3 - Service Identification from Legacy Software Based on Qual-
ity Metrics, we propose a migration approach towards SOA. Therefore, we propose
a service quality measurement model in order to identify services in legacy object-
oriented source code.

In chapter 4 - Variable-Architecture Centric Reconfiguration of Service-
Oriented Systems, we propose a modular ADL that describes structural, variabil-
ity, context and behavioral aspects of software architecture. The purpose of such
exhaustive specifications is to enable a variability-based dynamic self-reconfiguration
of software system at architecture level.

As part of validating our contribution, in chapter 5 - Experimentation/ Vali-
dation, we demonstrate some case studies on which we have evaluated our service
identification and packaging approaches and interpret obtained results. We also
demonstrate a concrete architecture generation as well as an executable process
generation from our architectural description.

In chapter 6 - Conclusion and Future Perspectives, we resume the work
realized in this thesis and give some perspectives and future directions.

CHAPTER 2

State of the Art

Contents
2.1 Outline. i i i i i i i e e e e e e e e e e e 7
2.2 Context and Main Concepts
2.2.1 Legacy Software 7
2.2.2 Dynamic and Variable Software Architecture 10
2.3 Related Works 0 v v i i i i i i i ittt i i 15
2.3.1 Classification of Migration Approaches Towards Service- Ori-
ented Architectureo oo oL 15
2.3.2 Dynamicity and Variability Representation and Management
at Architectural Level oo 0oL 24
24 Conclusionttt 34

2.1 Outline

In chapter 1, we have presented the problem that we treat in this thesis. To provide
a better understanding of this problem, in this chapter, we first present in section
2.2 the context as well as the main concepts related to the problem statement. In
section 2.3, we present the related work mainly classified in two aspects: section
2.3.1 presents a classification of existing migration approaches towards Service Ori-
ented Architecture (SOA). Moreover, we classify approaches that support service
identification and service packaging activities. In section 2.3.2 we classify existing
ADLs according to their structural description, their support to variability as well
as dynamicity.

2.2 Context and Main Concepts

2.2.1 Legacy Software

Any software which has been developed using outdated technology [Sneed 2006],
but still brings great value to the organization that uses it, is considered as a legacy
software |Stehle 2008], [Sneed 2006]. [Sneed 2006] has even restricted the age of a
software to turn into legacy software to five years. While current trend in building

8 Chapter 2. State of the Art

applications is based on developing small entities which can be easily composed
together and even reused in other applications, legacy software, in contrast, suffers
from being formed of a single large block and often very complex to maintain. This
is the reason of why upgrading a legacy system is considered a hard task. Overall,
legacy software suffers from several disadvantages, such as:

e high cost of maintenance and upgrading

e lack of understanding

e lack of security

e difficulty to integrate with new systems that use recent technologies

However, despite above mentioned disadvantages, legacy software can neither be
ignored due to its important business value nor easily converted to new technolo-
gies due to its complex infrastructure and its probably unstructured architecture
[Cetin 2007]. Thus, a middle ground would be to re-engineer its architecture and
put a migration plan towards a modern and flexible technology.

2.2.1.1 Evolution of Technologies

Software architecture methodologies are evolving in parallel to the growing size of
systems. In figure 2.1 inspired from [Audrey 2008]|, we display the evolution of
software architecture design methodologies. Among existing software architecture
methodologies, we focus only on those who build complex systems from simple sep-
arate entities.

First, in late 1960s and in 1970s, modular programming methodology was com-
mon in programming languages such as Turbo Pascal, Ada, etc., where common
functionalities were written in one module and later composed with other modules
to build an executable application [Lindsey 1978]. The biggest challenge in this type
of programming was how to manage parts of the code to render it reusable. Another
disadvantage of modular programming was that each module was used at most once
in the application and thus could have one single state.

To overcome the problems of modular programming, in 1970s, Object-Oriented
Programming (OOP) paradigm was introduced and became widely used in 1980s
and early 1990s in languages such as C++, Java and Delphi. The main features of
this paradigm are object composition, class inheritance, abstraction, encapsulation
and polymorphism [Cox 1986|. However, the main problem with OOP languages is
related to interoperability and platform independence.

2.2. Context and Main Concepts 9

In component-based development, components are independently deliverable
entities of functionalities [Szyperski 2002| that provide access through their inter-
faces |Brown 2000|. Independently deliverable entity means that it can be bought,
downloaded and deployed as a standalone executable package of software. A com-
ponent can also be subject to composition with other components. Most impor-
tant characteristics of component are; reusability of software components in other
systems, interoperability between several technologies and encapsulation (i.e. com-
ponent acts as a black box, whose implementation is completely hidden behind a
well-defined interface).

Finally, Service-Oriented Architecture (SOA) is a methodology for building
systems, which recommends using independent components (named services), which
communicate by exchanging messages, and whose interfaces are well-described in a
platform independent manner [Kuba 2007]. SOA is not a totally new concept; it
has been built as an evolution of other previous concepts such as component or even
object. Further information of its characteristics and features is detailed in section
2.2.2.2.

Granularity
A

E“S companerty |—I>—E—?_| components |

.
deta Service-
h oriented
SHed SBjecty . Component- architecture
data data data based

development

mud\m modules
data + datay data + data Oblect Qriented

programming

|prncedure1 | FFO cadureg| Procedureg|

® Modular
programming

Time

Figure 2.1: Evolution of software architecture design methodology

2.2.1.2 Legacy Software Modernization Towards SOA

The modernization of legacy software towards SOA is promising, given that SOA
methodology allows the reuse of the core functionalities of the legacy software while

10 Chapter 2. State of the Art

exposing larger visibility to clients through published and discoverable service in-
terfaces [Khadka 2013b|. SOA concepts are given in more details in section 2.2.2.2.
Several strategies have been proposed in literature in the context of modernizing an
object-oriented system towards SOA. |Almonaies 2010|, |[Bisbal 1999], [Stehle 2008]
and [Khadka 2013a| propose a classification of those existing modernization strate-
gies. The conventional strategies of modernization are:

e Replacement: a complete rewrite of code from scratch is performed to re-
place the existing legacy code. Replacement is considered the least desirable
solution for modernization to SOA [Almonaies 2010].

e Wrapping: an additional layer of interface wraps the legacy code and as-
sures its accessibility by external entities. A significant work using wrapping
technique was carried out in [Sneed 2006], which represents the functionality
within the legacy code in form of Web services wrapped in XML shell. Wrap-
ping, by far the most widely used modernization technique [Khadka 2013b],
is considered to be as a quick and cost effective solution in case the code is
relatively small but too expensive to completely re-write.

e Migration: a modernization technique that moves the legacy system to a
more flexible and new environment while retaining system’s data and func-
tionality [Bisbal 1999]. It internally restructures and modifies legacy systems.
This technique is further discussed in section 2.3.1.1.

It is worth noting that it does not exist any perfect solution for modernization
[Almonaies 2010]. In some cases, more than one strategy could be chosen to mod-
ernize legacy software depending on the available resources, time and budget.

2.2.2 Dynamic and Variable Software Architecture
2.2.2.1 Software Architecture

Software architecture describes a computational system by specifying its structure
which comprise software elements, interactions between them, and properties of
both [Clements 2010]. A software architecture can be constructed from one or more
viewpoints. Viewpoint signifies the perspective from which a view is constructed
[Hilliard 1999]. Two well-known viewpoints that are used to describe a software
architecture are structural and behavioral views.

1. Structural viewpoint defines the computational elements of a system and
their organization [Oquendo 2008|. In particular, it describes the following
information:

e Components: The principal processing elements that comprise a sys-
tem. Components might be services, processes, clients and servers, etc...

2.2. Context and Main Concepts 11

e Connectors: The interconnections among the elements of the system

e Configuration: The mechanism of composing components and connec-
tors altogether

2. Behavioral viewpoint defines the functional aspect and the dynamic re-
configuration of the system. It allows specifying different operational modes
for a dynamic system to adapt its behavior at runtime according to either
environment changing conditions or different property values [Oquendo 2008|.
Behavioral viewpoint is mainly specified in terms of:

e Action: a fundamental unit in behavioral specification that comprises a
set of activities that the system executes

e Runtime configurations: different runtime configurations of architec-
tural artifacts

Software architecture can be documented using several representations varying from
informal notations (e.g. general purpose diagrams, views, natural language, etc.),
textual languages (e.g. architecture description languages ADLS) or graphical repre-
sentation (e.g. modeling languages) [Clements 2010]. A classification of architecture
documenting notations are given in [Clements 2010]. We mainly classify these ar-
chitecture documentation representations into two categories, syntactic expressive
languages and graphical models:

e Syntactic expressive languages: usually specify software architecture us-
ing statements of a textual language. They describe and document software ar-
chitecture at a high-level of abstraction rather than specifying implementation
details [Vestal 1993]. Architecture Description Languages (ADLs) are feasible
solution for such architectural documentation. ADL is a formalism that al-
lows the specification of system’s conceptual architecture [Medvidovic 2000].
It describes the high-level structure of the system rather than implementa-
tion details and techniques. It enables architects to describe and validate
systems against stakeholders’ requirements from one side, and ease the devel-
opment and implementation process of complex systems, from another side.
It often has a plain text syntax optionally accompanied with a graphical rep-
resentation. Conventional ADLs support only static architecture description
[Medvidovic 1996], [Deiters 2011]. Some ADLs provide a special formalism for
SOA to describe service dynamicity [Jia 2007], [Oquendo 2008].

e Graphical models: use graphical notation or add meta-tags to already ex-
isting standardized models or views to represent major functional and non-
functional requirements of the system [Abu-Matar 2011], [Niiyama 2008] and
|[Kruchten 1995|. Such models are used to describe a software system from the
viewpoint of different stakeholders such as end-users, developers, or project

12 Chapter 2. State of the Art

managers. Due to its understandable notation, this solution is usually pre-
ferred for communications with non-technical people (e.g. project managers,
end-users).

The definition of software architectural concepts and behavior using ADLs is more
precise and detailed, in addition to the fact that ADL renders automatic code veri-
fication during development easier.

2.2.2.2 Service Oriented Architecture

Several definitions to Service-Oriented Architecture (SOA) have been proposed in
literature either by researches or standard organizations. [Footen 2012] defines SOA
as "an architecture of independent, wrapped services communicating via published in-
terfaces over a common middle-ware layer”. [Papazoglou 2008] defines SOA as "a
logical way of designing a software system to provide services to either end-user
applications or to other services distributed in a network, via published and discov-
erable interfaces”. Both definitions insist that SOA is not a product but rather an
architecture style. One of the keys of applying SOA is that it adds a new layer
of abstraction [Brown 2002] on top of existing layers in order to enable services to
operate independently and in heterogeneous and distributed environment.

In addition to taking all aforementioned advantages of previous technologies which
SOA was built on, we resume the main characteristics and features of SOA:

e Service granularity: SOA’s main composing elements are coarse-grained
and loosely-coupled autonomous services, thus modifying service’s implemen-
tation does not require modifying other services as well as a service can
be deployed by itself without other services [Brown 2002|, [Clements 2010],
[Zhang 2004], [Nakamura 2009], [Griffiths 2010].

e Platform independent: services in SOA communicate with each other
through their interfaces and via standard messages. This standard messaging
protocol [Papazoglou 2007] renders SOA a platform and language independent
[Stehle 2008] architectural style.

e Reuse: SOA enables sharing services between several applications and con-
sequently reduces development and maintenance costs [Griffiths 2010].

e Composition: system in SOA is built by aggregating and orchestrating mul-
tiple services in a distributed process [Papazoglou 2007].

e Discoverable: Services are discoverable at design-time as well as run-time
[Brown 2002| by service brokers or end-user applications.

2.2. Context and Main Concepts 13

2.2.2.3 Variability

Variability Definition

Several definitions of variability have been given in the literature. According to
|Galster 2011], variability is the ability of a software artifact to quickly change and
adapt for a specific context in a preplanned manner. [Weiss 1999| defines variabil-
ity as "an assumption about how members of a family may differ from each other”.
[Svahnberg 2005] defines variability as "the ability of a software system or artifact
to be efficiently extended, changed, customized or configured for use in a particular
context”. [Pohl 2005] defines variability in time as "the ezistence of different ver-
stons of an artifact that are valid at different times” and the variability in space as
"the existence of an artifact in different shapes at the same time".

Variability is usually attached to Software Product Line (SPL) domain and is a
core property to develop complex adaptable software systems such as telecommu-
nication, pervasive, crisis management, surveillance and security systems. In such
systems, due to environment changes, a dynamic re-configuration should be carried
out without having to re-deploy the whole system. A great majority of approaches
capture variability in a feature model, where commonalities and variabilities of a
family of software products are modeled in addition to representing constraints and
dependencies among those features [Lee 2012].

Variability Classification

Sources of variation vary and so do their representations vary. According to Bach-
mann [Bachmann 2001], variability has several sources: variability in function, where
a particular function may or may not exist in a given product; variability in data
structure, where a certain data structure may vary from a product to another; vari-
ability in control flow, where a sequence of control flow may change from a product
to another; vartability in environment or technology, where the operating system or
hardware may vary, etc. [Svahnberg 2005] proposes another classification of variabil-
ity; variability may occur at different levels: product-line level, architecture level,
component level, sub-component level and code level.

Variability Representation and Management

Variability management is the key feature that distinguishes SPL engineering from
conventional software engineering. It includes activities such as identifying, design-
ing, implementing and tracing variable artifacts in product families [Voelter 2007].
It captures variant and common artifacts during software lifecycle and promotes the
reuse of common assets across products to produce several distinct products of a
SPL. Feature modeling is the most famous formalism for that purpose [Clements 2001].
It is a de-facto standard to model the common and variable features of a family of
software products and their relationships [Kang 1990]. [Apel 2013] defines feature

14 Chapter 2. State of the Art

as "a characteristic or end-user-visible behavior of a software system. Features are
used in product-line engineering to specify and communicate commonalities and dif-
ferences of the products between stakeholders, and to guide structure, reuse, and
variation across all phases of the software life cycle”. Feature model is a tree-like
hierarchy of features and constraints between those features [Czarnecki 2006]. Each
feature (node), except root, has one parent and one or more child features. There
are two types of relations between features: parent-child relationship and cross-tree
constraints. In the first type of relationship, features might be either mandatory,
optional, alternative inclusive (at least one variant should be chosen if parent fea-
ture is chosen) and alternative exclusive (only one variant among children must be
chosen). As to the cross-tree constraints, require and ezclude are typical examples of
cross-dependencies between features. If feature A requires a feature B, this implies
that feature B has to be included whenever feature A is included. If two features
are in an ezclude relation, this implies that only one of these features might exist in
any valid product configuration.

Figure 2.2 depicts a simplified feature model of constructing a mobile phone. Ac-
cording to the example, any mobile phone must support calling feature and must
have a screen. This latter can either be a basic screen, a colored screen or a high
resolution screen. Furthermore, the mobile phone can optionally have a GPS nav-
igation system as well as a multimedia support. As a media feature, any mobile
phone can either have a camera or a MP3 or both. However, equipping the mobile
phone with camera requires the screen to be a high resolution screen, since there is
a required constraint from camera to high resolution feature. Finally, both features
GPS and basic screen cannot be part of a same product since they are incompatible
together (exclude constraint).

Mobile Phone

Screen

:-——I Basic H Colour ”High reso\ution| [Camera | | MP3 |
_________ i
* Mandatory /o\ Alternative ===+ Requires
.J; Optional /’\ Qr =—-= Excludes

Figure 2.2: Feature model of mobile phone

2.3. Related Works 15

2.3 Related Works

In the large context of service identification from object-oriented legacy applications
and the representation of service-based dynamically reconfigurable and variable soft-
ware architecture, we investigate and classify, in the following sections, existing rel-
evant approaches. In section 2.3.1, we show the classical steps of object-oriented
application migration towards SOA with a focus on the service identification and
packaging phases. In section 2.3.2, we classify existing architectural representations
in general, and ADLs in particular, mainly according to their structural descriptions
and their support to dynamicity and/or variability.

2.3.1 Classification of Migration Approaches Towards Service- Ori-
ented Architecture

Migrating legacy applications towards SOA allows systems to remain internally un-
changed while exposing their functionality publicly through well-defined interfaces
[Cetin 2007]. In this section, we demonstrate the related works for service identi-
fication and packaging within the context of migrating towards SOA and propose
classifications of these works.

2.3.1.1 General Classification

Three methodologies, in general, are followed for creating SOA-based systems, as
displayed in figure 2.3, inspired from [Audrey 2008]:

1. Top-down SOA development: which considers designing the target ar-
chitecture and the orchestration of services having business rules and re-
quirements as main input. This technique is advisable to apply for devel-
oping new systems since it does not consider the reuse of existing systems
[Nakamura 2009].

2. Bottom-up SOA development: which adopts reverse engineering tech-
niques and describes services in SOA by reusing at maximum existing software
source code [Nakamura 2009]. Here, the input is existing legacy source code.

3. Hybrid SOA development: depending on available inputs and desired out-
puts, a combination of top-down and bottom-up methodologies can be adopted
to achieve an improved service-based architecture. Here, existing legacy source
code from one side and information of target system requirements from other
side form the input of this type of migration towards SOA.

The migration process towards SOA can be seen as a re-engineering horseshoe model
(see figure 2.4). The existing legacy system is represented on the left side of the
figure and the target system on the right side. The model is also horizontally di-
vided to two abstraction layers: implementation and design. In order to recover

16 Chapter 2. State of the Art

10
01

Legacy Application

<

N\
\'4

/

Reusable
Code

—
— .

Requirements Business
Process
Analysis

Business
Process
Model

10
01

Legacy Application

<

N\
\"4

/

Reusable
Code

Figure 2.3: SOA development methodologies

Target
System
Requirements

2.3. Related Works

17

Existing system

Service

architecture model

Target system

Legacy I Integrate
architecture I e =ee
—
@ recovery processrules
> |
€ 1
2 Legacy composite e
o gacy P 1 orchestration
elements P
(=] B I specification
1
[
=] Composition | eniurda:mn
B identification e
= |
59 . .
= Legacy service migijtion Deployable
o= entities I services
[« % —_— —_—
£ I
= Code analysis
= Candidate service _|_
identification
|
Legacy 1 Service
source 1 implementation
code 1 code
Legend:
process handled
step artifact

Figure 2.4: Legacy to SOA migration framework

18 Chapter 2. State of the Art

the architecture of a legacy system, reverse engineering techniques are applied on
legacy source code. First, existing legacy source code is analyzed and candidate
services are evaluated to identify services. Then, the composition of those services
are recovered and hence represented in an architecture model. On the side, in order
to develop the architecture and generate deployable services and their orchestration,
forward engineering techniques are applied. Architecture is restructured in terms of
abstract services and some new requirements may be added.

Several approaches for legacy system migration towards SOA have been reported in
literature [Sneed 2006], [Chen 2005], [Khadka 2013a|, [Lewis 2005], [Khadka 2011],
[Cetin 2007], [Channabasavaiah 2004], [Stehle 2008], [Matos 2009], [O’Brien 2005],
[Zhang 2004]. Some of these approaches handle only the left part of the horseshoe
process focusing on recovering the architecture of existing legacy software in term
of services, whereas other migration approaches apply a full-circle re-engineering
model. We mainly classify migration approaches into two categories:

e Migration approaches that are based on understanding and analyzing existing
legacy system without considering target system requirements. These ap-
proaches follow the bottom-up SOA development methodology. [Matos 2009],
[O’Brien 2005], [Nakamura 2009] and [Sneed 2006] are examples of such mi-
gration approaches.

e Migration approaches that are based on analyzing existing legacy software in
parallel to understanding the requirements of the target system in order to
match between existing artifacts and required functionalities and hence better
guide the SOA system development. These approaches follow the hybrid SOA
development methodology. Examples of such approaches include [Cetin 2007],
[Chen 2009] and [Khadka 2013a].

Table 2.1 classifies existing migration towards SOA approaches. We demonstrate
the different techniques used for both legacy and target systems’ understanding. We
also underline whether approaches that understand legacy system provide service
identification and service packaging phases. Some approaches do not handle target
system understanding, that is why their corresponding field of technique is marked
with a ’-”. [Khadka 2013b] summarizes existing legacy to SOA migration approaches
through conducting a systematic literature review. Migration of legacy software to-
wards a modern system is considered a hard and complicated task due to the lack
of tools and available approaches to automate the process [Marchetto 2008]. We
notice that the majority of migration approaches use the hybrid methodology, such
as [Lewis 2005], [Cetin 2007], [Fuhr 2013].

In [Lewis 2005], authors present an initial migration approach called Service-Oriented
Migration and Reuse Technique (SMART). It assists businesses to analyze the ca-
pacity of their legacy code that may be exposed as services in a SOA environment

2.3. Related Works 19

by providing preliminary analysis of feasibility, strategy, cost and risk for the legacy
migration to the SOA. It uses a hybrid migration methodology (combined top-down
and bottom-up methodologies) to achieve the migration of legacy system towards
SOA. The key activities of their approach are: identifying system’s stakeholders,
identifying expectations of future system and identifying migration concerns. Mean-
while, a list of candidate services is identified in existing legacy code. Finally, as
a gap analysis, the results of those two phases are reconciled to identify a list of
potential services. However, the proposed approach requires several sources of infor-
mation (e.g. documentation) to support the analysis of the legacy system. Besides,
the approach largely relies on human interaction; System analysts, maintenance
programmers, etc. gather information through interviewing stakeholders in order
to fill the gap between existing legacy system and target architecture. No techni-
cal details of legacy code extraction and service deployment is given in this approach.

An architecture-driven approach for migrating legacy systems to Service-Oriented
Computing SOC, referred as mashup, has been proposed in [Cetin 2007|. This strat-
egy consists of six steps: (1) model the target business requirements, (2) analyze
existing legacy system, (3) identify services by mapping the target enterprise model
to legacy components, (4) design concrete mashup server architecture, (5) define
service level agreement, (6) implement and deploy services. This work is another
good example of using hybrid migration methodology; top-down technique is used
during the first step to analyze business requirements of the target system and model
them, whereas bottom-up technique is applied in the second step to understand and
recover valuable assets from existing legacy system.

In [Fuhr 2013], an architecture-based and requirement-driven service-oriented reengi-
neering method is discussed, where services are identified by domain analysis and
business function identification on the requirements abstraction level from one side
and on the source code level from other side. On the source code level, legacy code is
analyzed, architectural elements are identified and similar architectural elements are
grouped into a component using hierarchical clustering algorithm. Later a matching
is performed between business functionalities and legacy functionalities in order to
determine the reusable legacy services. Since this approach is based on both re-
quirements abstraction and source code levels, thus, it needs both architectural and
requirement information to be available.

In order to evolve a legacy software towards a SOA, we have identified two ma-
jor phases that are common in existing approaches that follow either bottom-up or
hybrid SOA development methodologies: (1) service identification (or sometimes
called service extraction or in more general term called legacy system analysis),
where available software artifacts are analyzed to identify provided services and (2)
service packaging and deployment, that leverages extracted legacy code as usable

20 Chapter 2. State of the Art

services, wraps them by interfaces and orchestrates their operations.

Criteria/ Legacy system understanding Target syst.em Case Tool
Approach = = - understandfng stud support
PP Yes/No| Technique Service Service Yes/No| Technique Y PP
iden- Pack-
tifica- aging
tion
[Cetin 2007] Yes analyze legacy Yes Yes Yes modeling busi- Yes Yes
system, ex- ness needs us-
tract com- ing BPMN
ponents and
architecture
[Matos 2009] Yes source code Yes No No - Yes Yes
analysis,
service ex-
traction and
architecture
representation
[Chen 2009] Yes static and dy- Yes Yes Yes Application Yes No
namic source domain analy-
code analysis sis
[O’Brien 2005] Yes code anal- Yes No No - Yes Yes
ysis and
architecture
reconstruction
[Nakamura 2009] Yes reverse engi- Yes No No - Yes No
neering legacy
source code
[Sneed 2006] Yes data flow anal- Yes Yes No - Yes Yes
ysis
[Khadka 2013a] [Yes reverse engi- Yes Yes Yes SOAP based Yes Yes
neering web service

Table 2.1: Migration to SOA related work classification

2.3.1.2 Classifying Migration Approaches Regarding Service Identifica-
tion

Many approaches have been proposed in literature to identify services by analyz-
ing legacy software artifacts. The first major phase of migration is the identifi-
cation of services in existing system. This phase becomes crucial, especially with
the unavailability of certain resources (e.g. developers, architects) and poor docu-
mentation [Khadka 2013a], [Lewis 2005]. Even more, it is a challenging task, since
legacy systems are not necessarily built with the vision of service. Service identifica-
tion approaches mainly vary in terms of their source of information (input), service
identification technique and degree of automation (human interaction). Table 2.2
summarizes some well-known existing SOA migration approaches with a particular
focus on what service identification technique they apply.

As sources of information, several artifacts can be handled; Some researches rely
only on source code while others need further artifacts such as documentation,
system architecture or business requirements. Accordingly, legacy system under-
standing and modern architecture construction can be realized either by bottom-up
reverse engineering techniques using source code as an input or a hybrid bottom-
up and top-down techniques which is mostly the case [Lewis 2005], [Cetin 2007],
|[Fuhr 2013].

2.3. Related Works 21

As to the source of information, we observe that most approaches assume the ex-
istence of large range of information about legacy systems such as their documen-
tation, architecture and design documents |Lewis 2005], [O’Brien 2005|, see table
2.2. Therefore, they are applicable to systems where such information is avail-
able. They cannot be applied to systems where only the source code is available
[Nakamura 2009].

In regard to human interaction during the service identification phase, we ob-
serve that the majority of service identification approaches are carried out manually
[Sneed 2006], [Lewis 2005|, [Khadka 2011] as displayed in table 2.2. These solu-
tions are considered as expensive in terms of expertise. Thus, some automatic or
quasi-automatic approaches were proposed [Chen 2005], [Zhang 2005], [Chen 2009],
[Matos 2009], [O’Brien 2005].

The main process in service identification is to evaluate candidate services. A de-
tailed survey of all service identification methods is discussed in [Khadka 2013b].
In object-oriented legacy systems, candidate services are considered as groups of
object-oriented classes evaluated in terms of development, maintenance and esti-
mated replacement costs. There are several approaches to evaluate services. For
example, [Sneed 2006] proposes an automatic approach to evaluate candidate ser-
vices. It calculates a service’s value based on cost analysis of the development costs,
the maintenance costs, the estimated replacement costs and the annual business
value contributed by that service.

Other service identification techniques propose to evaluate services either by code
pattern matching and graph transformation [Matos 2009], feature location [Chen 2005]
or formal concept analysis [Chen 2009]. In [Chen 2005] a feature location technique
is proposed to identify features in the source code and to map them to services. It
claims that services and features have many characteristics in common.

By observing existing service identification techniques and approaches, we notice
that almost all existing approaches rely on ad-hoc criteria for evaluating candidate
services. Therefore, they fail to identify relevant service. This results in a gap
between identified services and expected ones.

2.3.1.3 Classifying Migration Approaches Regarding Service Packaging

Several terms are used to name the phase of deploying identified services, such
as service implementation, service packaging, service wrapping, determining service
interface, etc. However, the process is almost identical. Service packaging phase
concerns with the deploying, describing and publishing activities of an identified
service. Describing the functionality of the service serves to make the service visible

22

Chapter 2. State of the Art

Criteria / Source of infor- | Technique used | Case study Human interac-
Approach mation (input) for service iden- tion
tification
[Lewis 2005] architecture high level require- | pilot application | manual (system
data, design | ment driven of early version | analysts)
data, source of SMART is
code, interview applied at U.S.
stake-holders, etc. Department of
Defense
[Sneed 2006] procedural source | data flow analy- | from roadmap to | automatic code
code sis and code strip- | case study extraction
ping (identifying
variables and re-
turned functions)
[Zhang 2005] source code feature identifica- | Virtual Learn- | human supervi-

tion, Hierarchical
clustering of com-

ing Environment
Web-based system

sion for selecting
cutting point in

ponents dendrogram
[Chen 2005] object-oriented feature analysis library Manage- | developers decide
source code ment Information | which identified

system

classes to choose
to generate Web
services

[Khadka 2011]

source code

concept slicing,
source code visu-
alization, design

case studies in
financial domain
implemented in

semi-automated
service identifi-
cation (manual

pattern recovery COBOL and | investigation of
C++ source code)
[Fuhr 2013] legacy code, busi- | domain analysis, | GanttProject semi-automated
ness processes, ar- | business function | 2009 (service design-
chitecture descrip- | identification ers for business
tion model and in- | and legacy code modeling)
terviews analysis and
transformation
to a TGraph
representation
(model)
[Cetin 2007] business require- | N/A financial gateway | manual
ments of target product line and
system and exist- black list manage-
ing legacy compo- ment
nents
[Chen 2009] source code, busi- | formal concept | e-Workforce Man- | semi-automated

ness requirements

analysis and on-
tology techniques
for source code
analysis

agement product
originally imple-
mented in CH++
and later rede-
veloped in NET
framework

[Matos 2009]

object-oriented
source code

annotating func-
tionality in source

small banking ap-
plication in Java

largely automated
with some human

code based on interaction during
pattern matching code annotation
rules, reverse en- phase
gineering, graph
transformation
at architecture
level, forward
engineering
[O’Brien 2005] source code, doc- | architecture Command and | automated
umentation, inter- | reconstruction Control (C2)
views implemented in
C++
[Nakamura 2009] | procedural source | reverse engineer- | liquor shop inven- | manual
code ing, hierarchical | tory control sys-

data flow analysis

tem implemented
in C

Table 2.2: Service identification related work classification

2.3. Related Works 23

to service consumers from one side, meanwhile, it serves to hide the service’s internal
implementation details from external clients.

In addition to the aforementioned phases which almost any service packaging tech-
nique performs, there are some additional improvements that can be carried out to
the extracted services during service packaging phase. Examples of such improve-
ments include refining the extracted reusable legacy code of the service extraction
phase, constructing missing components and bridging legacy components to newly-
built components [Zhang 2005].

[Khadka 2013b] has conducted a detailed literature review on service packaging tech-
niques and tools. Among packaging techniques there are wrapping, code transfor-
mation, code generation and program slicing techniques. However, wrapping is the
most widely used approach, where the functionalities of the legacy code are exposed
through interfaces without altering nor transforming the legacy code to another lan-
guage. There are several approaches or commercial tools that automatically wrap
legacy code written in COBOL, PL/T and C++ without manual interaction. As for
Web services, there exist some description languages and technologies that anno-
tate Web services with ontologies e.g. OWL-S [Martin 2004], WSMO [Lausen 2005],
WSDL-S [Akkiraju 2005] and SAWSDL [Farrell 2007]. Table 2.3 summarizes exist-
ing approaches that package extracted services within the process of legacy system
migration towards SOA.

Approach Packaging technique Tool support
[Cetin 2007] wrapping service, customizing existing No

components and develop new services
[Chen 2005] wrapping service operations using del- | Web Service Wrapper (WSW)
egation classes

[Zhang 2006] | wrapping Web service and implement- Java Native Interface (JNT)
ing a common interface

Sneed 2006] | wrapping "Softwrap" tool

Zhang 2004] | legacy code refinement, new service- Axis SOAP processor

oriented components integration, de-
veloping glue code and service com-
plexity reduction

Table 2.3: Service packaging related work classification

2.3.1.4 Other Related Migration Approaches

In previous sections, we have presented related migration approaches towards SOA.
However, other existing approaches can also be considered related to this problem,
especially approaches focusing on migration towards component. The main differ-
ence behind both migration techniques relies on the difference between service and
component concepts. Services in SOA and components in component-based archi-

24 Chapter 2. State of the Art

tecture have several principles in common. Service-based systems and component-
based systems are composed of services and components respectively that are in-
terconnected to each other and can be decomposed to finer structural elements.
However, there is a conceptual difference in designing both architectures. SOA
aims at designing business processes and encapsulating them in services, whereas
component-based development are implementation oriented which does not neces-
sarily respects a given business rule.

Both services and components are self-contained and autonomous entities and whose
functionalities are accessible through well-defined interfaces. In contrast to com-
ponents, services are platform-independent entities that are distributed over net-
work. Services are logical evolution of software components [Karastoyanova 2003]
and middle-ware.

In fact, services are in a higher abstraction level than components |Tosic 2003|; ser-
vices are built over an additional application architecture layer and components are
the best way to implement those services [Brown 2002|. Likewise, Arsanjani et al.
[Arsanjani 2007] define a nine-layer model for SOA called S3, where the "services”
layer is above "service components” layer and followed by "business process” layer.
A clear separation of concerns is implemented in their SOA solution, as demon-
strated in figure 2.5, where three of those nine S3 layers are displayed. A "service
component” is the realization of a "service” and represents the functionality of that
service, whereas the "service” has a more abstract nature who exposes sufficient

s operation. Another difference between com-

description about "business process
ponent and service is the instantiation time. While components are instantiated as

needed, services are running instances that the client invokes [Brown 2002].

Despite the differences between service and component, services and software com-
ponents have several characteristics in common, in particular, those related to their
nature, structure and behavior. Both have the same main architectural properties;
loosely coupled and coarse grained services (software components), interfaces and
configuration (connection between architectural elements). Even more, Web service
composition and component-based development have several practices in common
[Iribarne 2004]. For that obvious reason, component identification techniques from
object oriented legacy system could be considered as related to our research.

2.3.2 Dynamicity and Variability Representation and Management
at Architectural Level

As we have mentioned in chapter 1, our goal is to propose a reconfiguration of
system that comprises variability at architecture level. Being able to modify the ar-
chitecture of a running system at such a high level of abstraction renders the system

2.3. Related Works 25

Business — <:§ >,1?
Processes F@

Services

Service
Components % ‘ % ‘

N 2/

Figure 2.5: Some of S3 layers [Arsanjani 2007]

highly extensible, customizable and powerful [Medvidovic 1996]. For that reason,
we present, in the following subsections, a classification of different approaches that
handle dynamicity and/or variability issues at architecture level. In fact, both vari-
ability and dynamicity properties concern the architectural elements, that is why
we first classify in section 2.3.2.1, existing architecture representations following
their structural elements. Then, we investigate in section 2.3.2.2 some ADLs that
provide special formalism to describe dynamicity. Likewise, we investigate existing
ADLs that describe variability in section 2.3.2.3. In section 2.3.2.4, we investigate
approaches that handle both variability and dynamicity issues.

2.3.2.1 Classifying Architecture Description Languages Compared to
Structural Description

Regardless of whether existing ADLs in literature describe variability and/or dy-
namicity, all ADLs provide structural specifications of system’s architecture that
they represent. Table 2.4 lists the structural specifications of each existing ap-
proach. We also distinguish whether an ADL supports a composite hierarchical
description of architecture or not. Traditionally all architectural descriptions have
more or less the same structural specifications regardless of their names: compos-
ing element (component or service), provided/ required interfaces (or ports) and
connectors (connection between those elements). Some architecture descriptions
also specify hierarchical compositions such as [Magee 1995|, [van Ommering 2000],
[Barbosa 2011], [Jia 2007], [Medvidovic 1996], [Oquendo 2004] etc. Some ADLs, in
addition to a syntactical expressive language, have a graphical representation to
visualize the structural architecture. Table 2.5 lists some architectural descriptions,
classifies them to ADLs and non-ADLs, indicates whether they have a graphical

26 Chapter 2. State of the Art

visual support and classifies whether those representations are used for component-
based systems or service-based systems.

composite
Approach structural specifications element
description
ADL

Darwin [Magee 1995] | component, required/provided interfaces (called services), | Yes

binding, component instantiation, hierarchy
KOALA component, required/ provided interfaces, connects, configu- | Yes
[van Ommering 2000] ration
Dynamic ACME component, port (interface), connector, systems (configura- | No

tions)
PL- component, connector, role (provider/consumer), port, at- | Yes
AspectualACME tachments
[Barbosa 2011]
Dynamic-WRIGHT | component, port and role (as interface), connector, glue (as | No
[Allen 1998] behavior), constraint
m-ADL for . .
WS-Composition service, connection, port No
[Oquendo 2008]
m-ADL component, port & connection (interface), protocol, connec- | Yes
[Oquendo 2004] tor, architecture, behavior, compose
C2 SAD(E)L | component, connector, port, topology Yes
[Medvidovic 1996]
SOADL [Jia 2007] service, provider/ requester port (interface), operation, mes- | Yes

sage, behavior, sequence, receive/ send
xADL [Dashofy 2002] component, connector, interface, sub-architecture, link Yes
Plastik [Joolia 2005] component, connector, port No

non-ADL

BPEL |BPE 2007] service (partnerLink), interface (WSDL), operation, port No
VxBPEL service (partnerLink), interface (WSDL), operation, port No
[Koning 2009]

Table 2.4: Architecture’s structural specifications’ classification

Criteria/Approach gf‘aph%cal. mair.l structural element
visualization service [component
ADL
Darwin [Magee 1995] Yes No Yes
Koala [van Ommering 2000] Yes No Yes
PL-Aspectual ACME Yes No Yes
Dynamic Wright [Allen 1998| Yes No Yes
Rapide [Luckham 1995| Yes No Yes
Plastik [Joolia 2005] No No Yes
m-ADL [Cavalcante 2015] Yes No Yes
SOADL |[Jia 2007] Yes Yes No
m-ADL for WS-Composition [Oquendo 2008] | Yes - BPMN Yes No
m-ADL [Oquendo 2004] No No Yes
C2 SAD(E)L [Medvidovic 1996] Yes No Yes
xADL [Dashofy 2002] Yes No Yes
non-ADL
[Abu-Matar 2011] Yes Yes No
BPEL [BPE 2007] Yes Yes No
VxBPEL [Koning 2009| Yes Yes No

Table 2.5: Classifying related works according to their nature and main structural
element

2.3. Related Works 27

2.3.2.2 Classifying Architecture Description Languages Supporting Dy-
namicity

Static versus Dynamic ADL

A software architecture can be classified in terms of its capability of evolution into
two categories: static and dynamic [Oquendo 2008]. A static architecture specifies
system’s structure at design time. Traditional static ADLs describe in particular
the set of composing elements that encapsulate a functionality and their connectors
that coordinate the communication between those composing elements.

While ADLs have more or less agreed on what elements to represent regarding
structural specifications, there is not yet a common agreement of what dynamic
ADLs shall represent from behavioral point of view. It may happen that soft-
ware architecture evolves after its deployment |Clements 2010]. Such architecture
is called dynamic architecture. Several different definitions of dynamic architec-
ture have been proposed in literature. For example, [Bradbury 2004] considers that
dynamic software architecture modifies itself and adopts modifications during sys-
tem’s execution. In Rapide language |Luckham 1995], one of the earliest ADLs that
tackle dynamicity, dynamic architecture has the capability of modeling an architec-
ture in which the number of components, connectors, and bindings may vary while
system’s execution. Dynamic architectures, in addition to specifying the system in
terms of components, connectors and configurations, they should also specify how
these components and connectors are evolved or reconfigured at architectural level
during system’s execution. Defining those specifications in an ADL is considered a
challenging task. Having dynamic architecture is considered crucial in several do-
mains such as in air-traffic control, high safety-critical systems, etc. where stopping,
reconfiguring and then restarting the system may cause catastrophic effects. Hence
the importance to modify the architecture during system execution.

Dynamicity Management Types

It is evident that dynamicity is differently considered and perceived in different
research communities, hence the importance to classify those literature works ac-
cording to our own understanding and in accordance to our contribution. We mainly
clagsify dynamic architecture descriptions, whether described in ADLs or other for-
malisms, into two types:

1. centralized dynamicity management: where all instructions of modifying
system’s architectural behavior are defined in a central configurator. Hence
the behavioral description is independent from architectural elements’ func-
tionality definition. Various approaches have emerged to explicitly describe the
interaction between architecture’s structural elements in form of a sequence of

activities such as in [Oquendo 2008|, [Jia 2007], [BPE 2007].

28 Chapter 2. State of the Art

2. event-driven dynamicity: where constraints in form of triggers or events
are defined inside each architectural element of the ADL. Here, an internal
observer listens to environment’s changes and modifies elements’ behavior (e.g.
its connection with other elements) only if a pre-defined constraint or condition
is satisfied. Darwin [Magee 1995], Plastik [Joolia 2005] and Dynamic Wright
[Allen 1998] are examples that use this technique.

In global, the reconfiguration of architecture at runtime may happen through several
dynamic actions:

e creating (instantiating) / removing an architectural elements from the archi-
tecture

e binding / unbinding architectural elements to the architecture

e reconfiguring architecture (modifying connections between architectural ele-
ments)

e upgrading existing architectural elements (substitution of architectural ele-
ments)

Dynamic Component-Based ADL

Among existing ADLs in the literature, only few of them support dynamic recon-
figuration such as C2 SAD(E)L [Medvidovic 1996], Darwin [Magee 1995], m-ADL
|Oquendo 2004], Rapide [Luckham 1995], Plastik [Joolia 2005] and Dynamic Wright
[Allen 1998]. We classify in table 2.6 existing dynamic ADLs according to their sup-
port of the aforementioned dynamic actions. [Minora 2012| investigates four ADL’s
support to dynamic reconfiguration. These languages are: w-ADL, Plastik, C2
SAD(E)L and Dynamic Wright. It differentiates between foreseen reconfiguration
and unforeseen once. The foreseen reconfiguration is programmed at design time
but executed at runtime, whereas unforeseen reconfiguration concerns an ad-hoc
and unplanned modification of architecture at runtime.

Our conviction is that component and services as structural entities have several
principles in common. That is why during related work classification, we study
the dynamicity (behavioral) aspects not only in service-based ADLs but also in
component-based ones, such as Rapide, Koala [van Ommering 2000| and Dynamic
Wright [Allen 1998], Darwin [Magee 1995|. Following, a brief description of how
each ADL tackles dynamicity.

Plastik [Joolia 2005] has the following structural elements: component, connector
and port. As to dynamic elements to describe behavior (a specific configuration), the
expression "on condition do operations" is used to toggle between different choices at
runtime. To replace an instance of component at runtime, detach and attachment

2.3. Related Works 29

reference

dynamic action

create architectural element

remove architectural element

bind architectural element to architecture
unbind architectural element to architecture
reconfigure architecture (modify connections)
substitute architectural element (upgrade)

z|z|z|<|2z| 2| mADL for WS-Composition [Oquendo 2008]

| | | <| < <| Dynamic Wright [Allen 1998]
<| | <|<| </ <«| C2 SAD(E)L [Medvidovic 1996]

z|Z| 2| <|Z|~<| Darwin [Magee 1995|
z|Z| 2| <|2Z|<| mADL [Oquendo 2004]

<<= =|2z|2 SOADL [Jia 2007]
|| =] <] < <| Plastik [Joolia 2005]

Table 2.6: Supported dynamic actions in existing dynamic ADLs

statements are used in operations’ part in order to respectively unlink and link com-
ponents and thus replace an instance of component at runtime.

Darwin [Magee 1995], one of the earliest languages addressing dynamicity aspect
in ADL, is a configuration language that models in addition to static structure (i.e.
component, interface, binding and component instantiation / composition) also some
properties of dynamic architectures. It offers component dynamic instantiation and
binding facilities but does not handle the creation or destruction of connections be-
tween component instances. It also uses the subclass concept to build more specific
classes from generic ones. Operation model is described in m-calculus.

Dynamic Wright [Allen 1998] supports the description of architecture from both
structural (static) and behavioral (dynamic) viewpoint. Its structural description
contains the following elements: component, component’s interface named port,
connector and connector interface (role). As to dynamicity specification, system’s
behavior is specified separately in a configuror. Configuror is in charge of reconfig-
uring architecture’s workflow by using attach and detach instructions. Configuror
is composed of two sections:

1. An initializalion section, where initial structural elements are instantiated us-
ing new and attach instructions followed by a definition of an initial sequence
of actions.

30 Chapter 2. State of the Art

2. A reconfiguration section that contains several alternative configurations. One
of those alternative configurations are executed if its constraint is satisfies.

Koala [van Ommering 2000] is also an example of a component model, where all
run-time reconfigurations are predefined at design-time. The dynamicity of this
language is restricted only to "switching” between components according to prede-
fined rules in order to bind selected component at run-time.

Dynamic Service-Based ADL

All ADLs that were previously detailed in this section are ADLs that describe a
component-based architecture. There are also several ADLs that handle service-
based architectures. For example, m-ADL for WS-Composition [Oquendo 2008] is a
service-oriented ADL for Web Service (WS) composition that has the same roots as
m-ADL [Oquendo 2004] and highly relies on BPMN’s visual notation. It formally de-
scribes service-oriented dynamic architectures from both structural and behavioral
viewpoints. m-ADL for WS-Composition is considered as dynamic ADL because
some third party services can be discovered and bound to service broker at runtime
while some other services are already bound at design-time. The definition of the
architecture is divided in two parts:

e Behavior, where the instances of components, and connectors are defined
abstractly and also the link between each component and connector

e Structure definition, where each component is defined (e.g ports)

Another example of service-based ADL supporting dynamicity is SOADL [Jia 2007],
a service-oriented architecture description language which is used for modeling
service-oriented architecture in an abstract level. Technically, SOADL adopts XML
notation and is therefore independent of the platform and technologies. It speci-
fies the architecture in terms of services, interfaces, behavior, semantics and quality
properties. It also supports architecture-based service composition. By observing
the pseudo-schema syntax of SOADL, we can distinguish four main parts:

e Port is the interaction point of service. It plays a provider or requester role

e Behavior consists of a sequence of actions, either a basic action or a composite
one

e subArchitecture part describes the structure of the (sub)system of a com-
posite service. More precisely this part includes three parts:

— Dependency part declares local or external service types that the (sub)
system may use

— Configuror part specifies all possible configurations for the given system.
Each configuration is triggered by an event. However, all configurations
treat foreseen events (i.e. unforeseen events are not discussed).

2.3. Related Works 31

— Constraint part defines a set of temporal constraints between opera-
tions in one or more ports. [t determines how an architectural design is
permitted to evolve over time.

e Properties part describes properties of security, transaction, load balance,
version, or information related to implementation

However, in SOADL the dynamic reconfiguration of services discusses only the sub-
stitution of service instances in case of unavailability of a main service. Substituting
services are statically defined at design-time in the configuror part of SubArchitec-
ture element.

All previously mentioned approaches provide certain dynamicity according to either
planned (predefined) or unplanned changes in a given architecture [Oquendo 2008|.
However, there are other paradigms than ADLs that tackle dynamicity particularly
in Web service composition. In order to describe the composition of Web services
and to create executable business processes, many languages have been proposed
in literature. Among them, BPEL4AWS (or referred as BPEL) [BPE 2007], an OA-
SIS standard executable language based on XML notation for specifying executable
and abstract business processes. A process is the ordering of activities, it has in-
puts and provides outputs. The composition of Web services is called "process"
which contains a set of "activities" that communicate with each other through
"messages". The involved services in BPEL process are called "partners" which
are invoked through their WSDL interfaces. In BPEL, it is possible to define vari-
ables, create loops and conditions, create parallel or sequential activities and assign
values. BPEL has two types of activities: primitive and structured. Primitive
are single activities such as assign, receive, invoke, reply, while structured
instructions (e.g. sequence, flow) regroup several primitive activities.

2.3.2.3 Classifying Architecture Description Languages Supporting Vari-
ability

The notion of variability in the context of software architecture seems to be poorly
discussed in literature. In software architecture and its representation, variabil-
ity management is not often explicitly described, on the contrary to product lines
domain, where variability is a first-class concern |Galster 2011]. Only few exist-
ing approaches were concerned about representing an architecture that encom-
passes variability [Nakagawa 2012] at architectural level such as [Dashofy 2002],
[van Ommering 2000], [Zhu 2011], [Barbosa 2011], [Capilla 2014], [Abu-Matar 2011].
Among these approaches, [Dashofy 2002|, [van Ommering 2000] and [Barbosa 2011]
integrate variability notions directly within their proposed ADL, while other ap-
proaches manage runtime variability at architecture level in general.

32 Chapter 2. State of the Art

Among existing ADLs that handle variability, xADL [Dashofy 2002] is an ADL
for modeling runtime and design-time architectural elements of software systems. It
is defined as a set of XML schemas. This gives xADL a full extensibility and flexi-
bility, as well as basic support from many available commercial XML tools. xADL
2.0 integrates product lines concepts in the form of three schemas: versions, options,
and variants schemas. Concerning the integration of product lines concepts within
xADL; this approach suffers from the limitation of expressing constraints (i.e. re-
quires, excludes) between elements of different variation points.

Koala [van Ommering 2000] is a component model with an architecture descrip-
tion language that supports product-line modeling by modeling variation points in
architecture. Inspired by Darwin [Magee 1995| language, and implemented in C. Its
main elements are interfaces (provided/ required), components and a configuration.
Its dynamic reconfiguration is limited to using a switch to bind a component’s in-
terface to the system based on a statically defined condition. The main limitation
in Koala is its static nature; any deployed configuration cannot be changed at run-
time and will require application recompilation, thus it is not suitable for dynamic
architectures.

PL-Aspectual ACME [Barbosa 2011] enriches Aspectual ACME description language
by adding a variability dimension description at architecture level. Structural el-
ements are described in terms of type of components, connectors, and ports.
Variabilities are modeled using representation elements for identifying product
variations, whereas port elements are used for representing the mechanism of vari-
ability selection. Features are described as component Type elements.

In a related context, Dynamic Software Product Line (DSPL) extends conventional
SPL perspective by delaying the binding time of product’s composing elements (i.e.
features) to runtime, a feature called late variability [Baresi 2012|. It produces au-
tonomous and reconfigurable products that are able to reconfigure themselves to
select a valid configuration during runtime [Cetina 2008]. Even though there is no
concrete agreement of what aspects a dynamic SPL should exactly treat, most ap-
proaches agree that the main characteristic of any dynamic SPL framework is the
runtime variability, which provides the following common activities at runtime:

e managing the dynamic selection of variants

e autonomous activation/ deactivation of composing elements

e substitution of composing elements

e dependency and constraint checking of changed elements [Capilla 2014]

Except previously described approaches that address variability at architecture level,

2.3. Related Works 33

we notice that variability management is not often described neither in the con-
text of service-based systems nor at architecture level, therefore we investigate at
other levels of abstraction how variability is described. For example, in implementa-
tion (business process) level, [Koning 2009] extends the process description language
grammar in BPEL to provide explicit variability support. New elements are added to
BPEL to support the dynamic reconfiguration of variants during system’s execution.
Those elements are variation points to indicate the place where an adaptation
may occur and variants which describe a BPEL activity that will be executed if
a variant is selected. It is worth noting that VxBPEL supports several variability
actions in particular describing service replacement and the possibility to modify
system’s composition at runtime. However, it does not provide any mechanism to
check constraints among different variants or different variation points.

2.3.2.4 Classifying Architecture Description Languages Compared to
Variability and Dynamicity Support

So far, we were mainly interested in classifying Architecture Description Languages
(ADLs) according to their support to dynamicity or variability. However, we have
also noticed that the reconciliation between SPL and SOA to model software ar-
chitecture could have a different nature than a syntactical expressive language (e.g.
ADL). In this section, we present other approaches that treat dynamicity and/or
variability. However, these existing approaches have different nature than an ADL.

Variability modeling of service-family architecture is not necessarily always ex-
pressed in an ADL. For example, [Abu-Matar 2011| presents a service variability
model by applying SPL concepts to model SOA systems as service families. It inte-
grates feature modeling with service views using UML and SoaML. In this approach,
feature modeling is the unifying view that provides added dimension to the variabil-
ity in service-oriented product line architecture. The multi-view SOA variability
model consists of two requirements views (service contract and business process)
and two architectural views (service interface and service coordination). Each view
is modeled using an UML diagram which is extended by stereotypes to express vari-
ability notions. Unfortunately, the repartition of information in multi-views renders
it difficult to convert it to a formal language that can be converted to executable
system.

[Zhu 2011] proposes a model of product line architecture. It describes variability
at architecture level using the following elements: components, connectors, inter-
faces and links. Variability in product lines architecture is usually represented
by optional and alternative architecture elements. However in this approach, re-
garding alternative elements, it discusses only components’ alternativeness. Rather
than representing architecture-level variability of each architecture element sepa-

34 Chapter 2. State of the Art

rately (fine-grained variability), it identifies a configuration of variation elements
and groups them as a bigger grain variation constructs.

2.3.2.5 Summary of Architecture Description Classifications

First, we have classified existing architecture description approaches to syntactical
expressive languages (i.e. ADL) and graphical models. We have also classified these
architectural descriptions regarding to their support to dynamicity and variability.
Concerning architecture descriptions (whether as an ADL or other formalisms), we
have noticed that the level of dynamicity varies ranging from only binding an ar-
chitectural element at runtime up to specifying a complete dynamic behavior of
the architecture where structural elements can be bound/ unbound, and the whole
architecture can be reconfigured at run-time without the need to re-compile the sys-
tem. In what concerns variability, we have noticed that only few number of works
were interested in describing it at architecture level and as an ADL.

We have also noticed that most existing works use components as a main com-
posing architectural element. We could only find few service-based ADLs. Basically
all ADLs describe the structural specifications of the architecture before treating
variability or dynamicity aspects. Dynamic and variability aspects may either be
embedded in the structural specification of the architecture or it can be specified
in a separate section assuring the concept of separation of concerns. For example,
for dynamicity specification, in the first case, each architectural composing element
is a self-managing entity which is responsible for its connections to other entities.
Whereas in the second case, there is a orchestrator which is in charge of communi-
cation between several entities. In is worth noting, that one of the advantages of
separating the behavior specification from the structural specification is the possi-
bility to define more than one configuration for the same set of structural elements.

2.4 Conclusion

In this chapter, we have first presented existing approaches in relation to SOA mi-
gration. We have observed that a migration process towards SOA goes through two
main phases: service identification and service packaging. As to the service iden-
tification phase, we have found a lack of using SOA quality properties to guide the
selection of good candidate service. Existing approaches have either used ad-hoc
criteria to evaluate candidate services or candidate services were extracted depend-
ing on previous knowledge on expected software services and their functionalities.
Ad-hoc means that characteristics of services are not used to identify relevant ser-
vices. As to service packaging phase, some migration approaches do not handle
the deployment and packaging of identified services. Existing packaging approaches
widely use wrapping technique to expose service’s provided functionality.

2.4. Conclusion 35

Second, from the point of view of an architecture and its representation, we have
clagsified different approaches according to their support to dynamicity and vari-
ability. Figure 2.6 sumimarizes studied ADLs by distinguishing them into two major
classifications, their support to dynamicity and their support to variability.
Even more, among ADLs that support dynamicity, we distinguish two groups, those
who consider service as a main structural element and those who handle other
forms of structures (often components). Approaches that handle services as a
main architectural element are considered dynamic, since services are dynamic by
nature. Nevertheless, these ADLs are not able to describe service variants. From
another side, existing approaches that describe architectural elements’ variations at
architecture level such as xADL [Dashofy 2002], Koala [van Ommering 2000], etc.
are not based on service-oriented systems. Approaches that reconcile SOA and SPL
were also studied, but those approaches were not designated at architecture level,
but rather at requirement level.

ADL supporting
dynamicreconfiguratio

ACME/Plastik ootz

C2 SAD(E)L Medvidovic]

XADL [Dashofy]

Rapide [Luckham]
7-ADL for WS

composition

[Qquendo]

Koala [van Omrmering]

'.TE-ADL [Oquenda]

SOADL =
Dynamic Wright @/ /

Darwin Mageel

PL-Aspectual
f\ CM E [Barbosa)

ADL supporting
variability

Service-based ADLs

Figure 2.6: Panorama of existing ADLs

To resume, we have not found any approach that handles dynamic reconfigura-
tion of service variability at architecture level hence the idea to propose such an
architecture description language in chapter 4.

CHAPTER 3
Service Identification from Legacy
Software Based on Quality Metrics

Contents
3.1 Introductionttt 37
3.2 Object-to-Service Mapping Model 38
3.3 Quality Measurement Model of Services 39
3.3.1 Characteristics of Services 40
3.3.2 Characteristics of Web Services 41
3.3.3 Service Characteristics Classification 42
3.3.4 Refinement of Service Characteristics 43
3.3.5 Quality Metrics Lo 44
3.3.6 Fitness Function Definition 46
3.3.7 Service Clustering 46
3.4 Service Packaging and Deployment 47
3.4.1 Service Deployment oo 0oL 49
3.4.2 Service Annotation oL oo 51
3.4.3 Service Interface Generation 0oL 53
3.4.4 Service Registration 54
3.5 Conclusion ittt e 56

3.1 Introduction

Service Oriented Architecture (SOA), as a design philosophy, fulfills the require-
ments of modern systems, such as providing encapsulated and loosely coupled busi-
ness units, which can be dynamically bound or unbound to the system at runtime.
Moreover, services, which are the fundamental building blocks of SOA, are indepen-
dently developed but can be flexibly composed with each other.

Unfortunately legacy object-oriented software cannot be blindly transferred to SOA
paradigm. As a consequence, a migration towards SOA is the best way forward to

Chapter 3. Service Identification from Legacy Software Based on
38 Quality Metrics

follow new technological advances and yet to conserve the business value of existing
legacy object-oriented software. One of the most common approach to realize SOA
is to implement it using Web services.

Our contribution in this chapter is a migration approach that comprises of two
main phases: service identification and service packaging. Our service identifica-
tion proposition automatically identifies services as groups of classes from legacy
software object-oriented source code. We base our legacy system analysis on the
source code, since it is the only resource that is always available, while other re-
sources such as documentation or software architect could often be missing. Unlike
other existing approaches that identify candidate services in source code manually
or in an ad-hoc manner, we propose an automatic identification method of candidate
services. In our approach, we refine well-known service characteristics to measur-
able metrics and define a fitness function that measures semantic correctness of each
group of source code elements to be considered as a service.

Service identification is followed by a set of processes that are regrouped in a service
packaging phase. This phase serves as a preparation to make services deployable.
It includes activities such as making each cluster become interface-based by raising
the dependencies between classes into dependencies between clusters that commu-
nicate via their interfaces. Meanwhile, we apply an annotation algorithm to name
identified clusters. Finally, an interface is generated for each class which exposes
services’ functionalities.

This chapter is organized as follows: In section 3.2, we present a mapping model
between concepts of Object Oriented Programming (OOP) and Service Oriented Ar-
chitecture (SOA). In section 3.3, we specify service characteristics and refine them
to measurable quality metrics to evaluate potential services. We also group simi-
lar classes to form coarse-grained and loosely-coupled services. In section 3.4, we
present the packaging steps towards deploying those identified services.

3.2 Object-to-Service Mapping Model

In order to be capable to identify services from object-oriented source code, we
define a mapping between object-oriented and SOA concepts as presented in figure
3.1. We consider a service as a group of classes defined in object-oriented source
code. Among these classes, some define the operations provided by the service,
whereas others are internal classes. Internal classes are those which only have
internal connections to other classes of the same service. Classes that define the
operations provided by the service are the classes that define its interface. Internal
classes do not define operations provided by the service. Operations provided by

3.3. Quality Measurement Model of Services 39

the service are class’s public methods.

Object elements Mapping elements Service elements

Internal class

|
|
|
1 i maps 1
<! contains p W1 P : {_service
|
1

1|1 !
|
| @
| <
| v
|
| N
|
|
|
|
|
|

—_—
Interface class

maps

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
public method ;

Figure 3.1: Object to service mapping model

3.3 Quality Measurement Model of Services

As we have mentioned earlier, a service is identified from a group of object-oriented
clagses. Initially, each group of classes is considered as a candidate service. A
qualified service is selected from candidate ones based on a function that measures
its quality. Diverse studies have been proposed in literature for measuring quali-
tative properties of SOA systems. Most of these works either assess systems that
are already service based or evaluate systems only after their implementation. Un-
fortunately, such approaches are not adapted to the context of re-engineering an
object-oriented system towards service oriented system. For example, [Aldris 2013]
proposes a framework to measure the degree of service orientation in SOA systems.
It focuses on the internal SOA attribute, decomposes a selected attribute to a set
of factors and maps each factor to a set of measurable criteria. Each criterion is
typically evaluated by a set of software metrics, though no dedicated metrics are
defined for each criterion.

As to our approach, we adopt the ISO standard for software quality ISO/IEC
25010:2011 [ISO 2011] to evaluate identified services. ISO/IEC 25010 has defined

Chapter 3. Service Identification from Legacy Software Based on
40 Quality Metrics

eight software product quality characteristics which are refined to thirty-one sub-
characteristics, as demonstrated in figure 3.2. FEach sub-characteristic is further
divided into properties. These properties are attributes which can be measured or
verified for any software product evaluation. Likewise, we define a quality func-
tion of services based on a set of service characteristics that are mapped to a set
of properties. Each property is later measured using a set of metrics. In the next
subsections, we will study different service and Web service characteristics, classify
them, refine them to properties and then into measurable metrics. These metrics
will form a fitness function by which candidate services will be evaluated. Finally,
similar classes will be grouped in a cluster using a clustering algorithm.

| Software Product Quality |

Performance

Compatibility ‘ Portability ‘

Functional A - R)
suitability ‘ Reliability efficiency ‘ R auiy | ‘Ma'ma'"a"""y Security
cgz?a?;iggz‘ss ~{ M sturity Time behavior %ﬁ%@g;};ﬂ;;‘ = Modularity (= Confidertiality Co-existence Adaptability
JFunctioral -{ vl ability fimeouree {Leamabilﬂv - Reusahility — Integrity Interoperabilty In st bty
app%gﬂqtglg\:elss -{ lDlFE?;II"}CB ‘ Capacity { Cperahility = Analyzability ul rapudla‘tmn Feplaceahility
{Recwerabim\« % Ef;éi{rgr: - Modifiability - Accountshility
{“Sazgﬂ‘;[f? - Testaility - muthenticity
+ Accessibility
Figure 3.2: ISO/IEC 25010 software product quality model
e 4. .
3.3.1 Characteristics of Services

We deduct the quality characteristics of services based on the analysis of the most
commonly used definitions of services in literature.

In literature, there are several definitions of services |Brown 2002|, |Zhang 2005|,
[Nakamura 2009]. According to [Zhang 2005], a service is an abstract resource that
performs a coherent and functional task. [Nakamura 2009] considers a service as a
process that has an open interface, self-containedness and coarse granularity. 1t can
be easily composed and decomposed to implement various business workflows. W3C
[Booth 2004] defines a service as "an abstract resource that represents a capability

3.3. Quality Measurement Model of Services 41

of performing tasks that represents a coherent functionality from the point of view of
provider entities and requester entities". [Brown 2002] defines the service in terms
of its characteristics: A service is a coarse-grained and discoverable software entity
that interacts with applications and other services through a loosely coupled, often
asynchronous, message-based communication model.

o Coarse-grained means that services implement more than one functionality
and operate on larger data sets.

e Discoverable means that services can be found at both design time and run
time, not only by unique identity but also by interface identity and by service
kind.

e Self-contained refers to the self-sufficiency a service has, where context or
state information is not required from other services.

o For loosely coupled, services are connected to other services and clients using
standard, dependency-reducing, decoupled message-based methods such as
XML document exchanges.

3.3.2 Characteristics of Web Services

The most common form of realizing a SOA system is via Web services [Lewis 2005].
Web services are special types of services that are built via XML grammar in or-
der to expose their functionality over Internet (or private network). Web services
use a standard XML messaging system to communicate to each other, therefore
they are independent from any operating system or programming language. All the
characteristics mentioned for services in the section 3.3.1 such as loosely-coupled,
self-contained and coarse-grained entities that interact dynamically, apply to Web
services. However, Web services have some other specific characteristics which
worth to be studied. |[Papazoglou 2008] defines Web service as "a self-describing,
self-contained software module available via a network, such as the Internet, which
completes tasks, solves problems, or conducts transactions on behalf of a user or
application.” Web services also have the following characteristics:

e state property: Web services could either be stateful or stateless. Stateful
services maintain state information, whereas in stateless services, the Web
service does not have any memory to preserve state information. It simply
performs a requested operation without keeping any track of that invocation.

e synchronization: we can distinguish between two principal messaging styles
among Web services: synchronous and asynchronous; Synchronous is a request-
response operation. In synchronous communication, the client sends its re-
quest as a method call with a set of arguments and the synchronous Web
service responds in a return value. The client requires an immediate response

Chapter 3. Service Identification from Legacy Software Based on
42 Quality Metrics

from the other service. Whereas in asynchronous communication, client in-
vokes a Web service and does not wait for the response. Once the latter
completes processing, it sends the result to the client. Asynchronous commu-
nication is a key factor in enabling loosely coupled services.

e well-definedness: The functionalities which a Web service provide are de-
scribed in a service interface using Web Service Description Language (WSDL).
In addition, this description specifies the rules of how to interact with the ser-
vice. Service interface will render service’s functionality visible to external
services without the need to expose its internal implementation details. So
in Web services there is a clear distinction between service’s interface and its
implementation.

3.3.3 Service Characteristics Classification

Table 3.1 lists the characteristics of services as mentioned in the definitions above.
We have categorized them into two categories: those related to the structure and be-
havior of services and others related to the SOA platform. Structural and behavior
characteristics (such as coarse-grained, loosely-coupled and composable) reflect the
semantic properties of service and thus they could be measured in object-oriented
legacy source code, whereas characteristics that depend on SOA platform (such as
discoverable) do not reflect any semantic property of service. Thus we could not
base our identification metrics on that type of characteristics. Consequently, in or-
der to measure the semantic correctness of candidate services, we select from the
aforementioned characteristics the ones that define service’s structure and behav-
ior. These characteristics are: self-containment, composability and coarse-grained
(functionality).

. s Type

Characteristic Structural and | SOA platform
behavioral

coarse-grained = functionality v
discoverable v
self-contained = loosely-coupled v
dynamic-binding v
composable v
message-based v
synchronous / asynchronous v
well-defined v
stateful / stateless v

Table 3.1: Characteristics of services

3.3. Quality Measurement Model of Services 43

3.3.4 Refinement of Service Characteristics

The former selected characteristics are refined to measurable quality properties.

e A service can be completely self-contained if it does not require any interface,
i.e. it can be deployed as a single unit without depending on other services
[Nakamura 2009]. Thus, the property number of interfaces the service requires
gives us a good indication on the self-containment of the service. The higher
the number of required interfaces is, the less the service is self-contained.

e A service is subject to composition with other services. This composition
is realized without internal modifications but through service interface. A
decomposition of the legacy system will be effective with the principle of com-
posing those services with high cohesion and loose coupling, i.e. two services
are composed with each other if their interfaces are cohesive. Thus, the aver-
age of services’ cohesion within an interface gives us a good indication on the
composability of the service.

e A service is more likely to be coarse-grained and hence represent complex,
rich and high-level business functionality. However, it may sometimes be fine-
grained [Channabasavaiah 2004] and hence represent low-level primitive func-
tionality. Choosing the right level of granularity is the key for a successful
service reuse. The bigger the service grains are, the less the service becomes
reusable. It is relatively difficult to determine from source code the exact
number of functionalities that the service provides. However, several factors
can help measuring the functionality of a service:

1. A service that provides several interfaces may provide numerous function-
alities, thus the higher the number of interfaces is, the more the service
provides functionalities.

2. An interface whose services are highly cohesive probably provide single
functionality.

3. A group of interfaces with high cohesion are most favorable to provide
single or limited number of functionalities.

4. When the extracted code of candidate service is highly coupled, this
means that the service probably provides very few or single functionality.

5. When the extracted code of candidate service is highly cohesive, this

means that the service probably provides very few or single functionality.

Thus, we suggest binding the functionality characteristic to properties as in-
dicated in table 3.2.

Chapter 3. Service Identification from Legacy Software Based on
44 Quality Metrics

Functionality Characteristic Property

A service that provides several interfaces may | Number of provided interfaces
provide numerous functionalities, thus the
higher the number of interfaces is, the more the
service provides functionality.

An interface whose services are highly cohesive | Average of service’s interface
probably provide single functionality. cohesion within the interface

A group of interfaces with high cohesion are | Cohesion between interfaces
most favorable to provide single or limited
number of functionality.

When the extracted code of candidate service is | Coupling inside a service
highly coupled, this means<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>