
HAL Id: tel-01959029
https://hal-lirmm.ccsd.cnrs.fr/tel-01959029v1

Submitted on 18 Dec 2018 (v1), last revised 25 Jun 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Cycle-approximate Simulation Techniques for
Manycore Architecture Exploration

Anastasiia Butko

To cite this version:
Anastasiia Butko. Fast Cycle-approximate Simulation Techniques for Manycore Architecture Explo-
ration. Embedded Systems. Universitté de Montpellier, 2015. English. �NNT : 2015MONTS144�.
�tel-01959029v1�

https://hal-lirmm.ccsd.cnrs.fr/tel-01959029v1
https://hal.archives-ouvertes.fr

Délivré par Université Montpellier

Préparée au sein de l’école doctorale Information,

Structures, Systèmes (I2S)

Et de l’unité de recherche Laboratoire d’Informatique,

de Robotique et de Microélectronique de Montpellier

(LIRMM)

Spécialité : Microélectronique

Présentée par BUTKO Anastasiia

Soutenue le 1 decembre 2015 devant le jury composé de

M. Leonardo SOARES INDRUSIAK, Senior Lecturer,

University of York, UK

Rapporteur

M. Jean-François MEHAUT, Professeur, Laboratoire

d’Informatique de Grenoble, FRANCE

Rapporteur

M. Yann THOMA, Professeur, Institut REDS at HEIG-

VD, Geneva, SWITZERLAND

Examinateur

M. Chris ADENIYI-JONES, Principal Engineer,

ARM Ltd., Cambridge, UK

Examinateur

M. Michel ROBERT, Professeur, Université de

Montpellier, FRANCE

Examinateur

M. Gilles SASSATELLI, Directeur de Recherche au

CNRS, LIRMM/Université de Montpellier, FRANCE

Directeur de Thèse

M. Abdoulaye GAMATE, Directeur de Recherche au

CNRS, LIRMM/Université de Montpellier, FRANCE

Co-encadrant

Fast Cycle-approximate Simulation

Techniques for Manycore Architecture

Exploration

[Tapez une citation prise dans le

document ou la synthèse d'un passage

intéressant. Vous pouvez placer la

zone de texte n'importe où dans le

document. Utilisez l'onglet Outils de

zone de texte pour modifier la mise en

forme de la zone de texte de la

citation.]

Abstract

Since the computational needs precipitously grow each year, HPC technology becomes a

driving force for numerous scientific and consumer areas. The most powerful supercom-

puter has been progressing from TFLOPS to PFLOPS throughout the last ten years.

However, the extremely high power consumption and therefore the high cost pushed

researchers to explore more energy-efficient technologies, such as the use of low-power

embedded SoCs.

The evolution of emerging manycore systems, forecasted to feature hundreds of cores by

the end of the decade calls for efficient solutions for the design space exploration and

debugging. Available industrial and academic simulators differ in terms of simulation

speed/accuracy trade-offs. Cycle-approximate simulators are popular and attractive

for architectural exploration. Even though enabling flexible and detailed architecture

evaluation, cycle-approximate simulators entail slow simulation speeds, thereby limiting

their scope of applicability for systems with hundreds of cores. This calls for alternative

approaches capable of providing high simulation speed while preserving accuracy that

is crucial to architectural exploration.

In this thesis, we evaluate cycle-approximate simulation techniques for fast and accurate

exploration of multi- and manycore architecture exploration. Expecting to significantly

reduce simulation time still preserving the accuracy at the cycle-approximate level, we

propose a hybrid trace-oriented approach to enable flexible manycore architecture sim-

ulation. We design a set of simulation techniques to overcome the main weaknesses of

the trace-oriented approach. The trace synchronization technique aims to manage con-

trol and data dependencies arising from the abstraction of processor cores. The trace

replication technique is proposed to simulate manycore architectures using a finite set of

pre-collected traces. The computation phase scaling technique is designed to enable flex-

ible switching between multiple processor models without considering microarchitectural

difference but taking into account the computation speed ratio.

Based on the proposed simulation environment, we explore several manycore architec-

tures in terms of performance and energy-efficiency trade-offs.

Keywords: High-performance computing, energy-efficiency, manycore, heterogeneous,

big.LITTLE, modeling, gem5, trace-driven.

Résumé

Le calcul intensif joue un rôle moteur de premier plan pour de nombreux domaines

scientifiques. La croissance en puissance crôte des supercalculateurs a évolué du téraflops

au pétaflops en l’espace d’une décennie. Toutefois, la consommation d’énergie associée

extrômement élevée ainsi le coût associé ont motivé des recherches vers des technologies

plus efficaces énergétiquement comme l’utilisation de processeurs issus du domaine des

systèmes embarqués à faible puissance. Selon les prévisions, les systèmes multicoeurs

émergents seront constitués de centaines de coeurs d’ici la fin de la décennie. Cette

évolution nécessite des solutions efficaces pour l’exploration de l’espace de conception et

le débogage. Les simulateurs industriels et académiques disponibles à ce jour diffèrent

en termes de compromis entre vitesse de simulation et précision. Les simulateurs quasi

cycle-précis sont populaires et attrayants pour l’exploration architecturale. En outre,

bien que permettant une évaluation flexible et détaillée de l’architecture, les simulateurs

quasi cycle-précis entrâınent des vitesses de simulation lentes ce qui limite leur champ

d’application pour des systèmes avec des centaines de cœurs. Cela exige des approches

alternatives capables de fournir des simulations rapides tout en préservant une précision

élevée ce qui est cruciale pour l’exploration architecturale.

Dans cette thèse, des modèles d’architectures multicœurs complexes ont été développés

et évalués en utilisant des systèmes de simulation quasi cycle-précis pour l’exploration

de la performance et de la puissance. Sur cette base, une approche hybride orientée

traces d’exécution a été proposée pour permettre une exploration rapide, flexible et

précise des architectures multicoeurs à grande échelle. Sur la base de l’environnement de

simulation proposé, plusieurs configurations de systèmes manycoeurs ont été construites

et estimées en évaluant le passage à l’échelle des performances. Enfin, des configurations

alternatives d’architectures multicoeurs hétérogènes ont été proposées et ont montré des

améliorations significatives en termes d’efficacité énergétique.

Mots-clés: calcul à haute performance, efficacité énergétique, multicoeurs, hétérogène,

big.LITTLE, modélisation, gem5, simulation orientée trace.

Acknowledgements

The acknowledgements will be present in the final version of this thesis.

iii

Contents

Abstract i

Résumé ii

Acknowledgements iii

Contents iii

List of Figures vii

List of Tables ix

Abbreviations x

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Thesis objectives and contributions . 5

1.3 Thesis organization . 7

2 State-of-the-art 8

2.1 Computer architecture simulation . 8

2.2 Simulation frameworks . 10

2.3 Accuracy evaluation of gem5 and McPAT simulation frameworks 14

2.4 Approaches to accelerate the simulation 16

3 Evaluation of multicore architecture models in cycle-approximate sim-
ulation frameworks 23

3.1 Introduction . 23

3.2 Background . 24

3.2.1 gem5 for performance modeling . 24

3.2.2 McPAT for power modeling . 26

3.3 Methodology . 27

3.3.1 Validation and accuracy assessment 27

3.3.2 Evaluation metrics . 29

3.4 Accuracy assessments of gem5 and McPAT versus real platforms 30

3.4.1 Performance modeling: Dual-core SMP architecture 30

3.4.1.1 Experimental setup . 30

iv

Contents v

3.4.1.2 Accuracy assessments . 33

3.4.2 Performance modeling: Heterogeneous multicore architecture . . . 37

3.4.2.1 Experimental setup . 39

3.4.2.2 Accuracy assessments . 43

3.4.3 Power modeling: Heterogeneous multicore architecture 47

3.4.3.1 Experimental setup . 48

3.4.3.2 Accuracy assessments . 49

3.5 Discussion . 51

4 Hybrid trace-oriented approach for fast and accurate simulation of
manycore architectures 54

4.1 Introduction . 54

4.2 Background . 56

4.2.1 Abstraction levels of computer architecture exploration 58

4.2.2 From in-order to out-of-order processor 60

4.2.3 From single-core to multicores processors 61

4.3 Methodology . 63

4.3.1 From collection to simulation . 64

4.3.1.1 Synchronization traces 65

4.3.1.2 Trace replication . 66

4.3.1.3 Computation phase scaling 67

4.3.2 Case studies . 68

4.3.3 Evaluation metrics . 69

4.4 Trace-driven implementation in gem5 . 73

4.4.1 Trace collection and reduction . 73

4.4.2 Trace simulation . 74

4.5 Evaluation . 77

4.5.1 Experimental setup . 77

4.5.2 Simulation accuracy . 79

4.5.3 Simulation speedup . 84

4.5.4 Simulation cost . 86

4.6 Application to compute accelerators exploration 88

4.7 Discussion . 90

5 Single-ISA heterogeneous architecture exploration 91

5.1 Introduction . 91

5.2 Background . 92

5.2.1 Single-ISA Heterogeneous multicore architecture 92

5.2.2 OpenMP programming model . 93

5.2.3 ARM big.LITTLE technology . 94

5.2.3.1 Hardware support . 94

5.2.3.2 Software support . 95

5.3 Evaluation of the Exynos 5 Octa SoC . 97

5.3.1 Experimental setup . 97

5.3.2 Performance analysis . 98

5.3.3 Energy-to-solution analysis . 101

5.4 Alternative big.LITTLE architectures exploration 102

Contents vi

5.4.1 Experimental setup . 102

5.4.2 Exploration results . 103

5.5 big.LITTLE architecture scaling via trace-driven simulation 104

5.5.1 Experimental setup . 105

5.5.2 Exploration results . 106

5.6 Single-ISA heterogeneous multicore granularity evaluation 108

5.7 Discussion . 113

6 Conclusions 115

6.1 Contributions . 116

6.2 Future work . 119

6.3 Publications . 120

A Performance accuracy evaluation results 123

B Power accuracy evaluation results 125

Bibliography 127

List of Figures

1.1 Performance development in the TOP500 list 2

1.2 The Green500’s energy-efficient supercomputers ranked from 1 to 5 in
June 2015 . 2

2.1 The related work on accuracy evaluation 15

3.1 Validation and accuracy assessments flow 28

3.2 Accuracy assessments flow for ARM Dual-core architecture 31

3.3 ARM Cortex-A9 Dual-core block diagram 31

3.4 Benchmarks execution time comparison 34

3.5 Analysis of the LU factorization execution 35

3.6 Analysis of the Radix sort kernel execution 36

3.7 Accuracy assessments flow for ARM big.LITTLE architecture 39

3.8 ARM big.LITTLE architecture . 40

3.9 Execution time comparison for LITTLE Cortex-A7 cluster 44

3.10 Execution time comparison for big.LITTLE performance model 46

3.11 Execution time error distribution of simulated Rodinia benchmark 46

3.12 Accuracy assessments flow for ARM big.LITTLE power model 48

3.13 Power consumption error percentage summary 50

3.14 Energy-to-solution comparison for ARM big.LITTLE architecture model . 50

3.15 Error percentage summary for performance, power and energy-to-solution 51

4.1 Trace-driven exploration flow . 58

4.2 Computer architecture exploration levels 59

4.3 In-order versus out-of-order processor execution 60

4.4 Memory organization . 61

4.5 Three phases of trace-driven approach . 64

4.6 Shared memory programming . 66

4.7 Distributed memory programming . 66

4.8 Replication trace pattern . 67

4.9 Computation phase acceleration . 68

4.10 Trace-driven simulation case studies . 69

4.11 Comparing event-driven and trace–driven simulations. 70

4.12 Dynamic allocation of the trace-drive simulation events 72

4.13 An example of collected trace file extract 74

4.14 An example of collected synchronization traces 75

4.15 Trace arbiter . 75

4.16 Trace injector block diagram . 76

vii

List of Figures viii

4.17 Execution time comparison between full system and trace-driven modes . 80

4.18 Cache miss pattern comparison between full system and trace-driven ex-
ecution for Radix kernel . 80

4.19 Execution time comparison by varying the internal architectural parameters 81

4.20 Execution time comparison by including L2 cache memory 82

4.21 Replication technique: correlation coefficient and execution time error
analysis . 82

4.22 Replication technique: address map of MJPEG 1 core 1 thread 83

4.23 Replication technique: address map of MJPEG 8 cores replication 84

4.24 Simulation time comparison between full system and trace-driven modes . 85

4.25 Simulation time scaling: comparison between full system and trace-driven
modes . 86

4.26 Simulation time scaling up to 256 trace injectors system 87

4.27 Simulation time distribution for trace-driven simulation 87

4.28 Memory consumption variation for trace-driven simulation 88

4.29 Different evaluated memory mappings . 89

4.30 Execution time for different memory mappings and vSMP cluster sizes . . 89

4.31 Normalized execution time averaged for all benchmarks 90

5.1 ARM big.LITTLE technology . 94

5.2 ARM big.LITTLE Cache Coherent Interconnect 95

5.3 Software execution models for ARM big.LITTLE architecture 96

5.4 ARM big.LITTLE exploration flow . 97

5.5 Normalized measured speedup . 98

5.6 Runtime breakdown for the Rodinia benchmark 100

5.7 Runtime behavior analysis for srad v1 and nn 100

5.8 Runtime behavior: lud executed on HMP big.LITTLE Cortex-A7/A15
running at 200MHz/2GHz . 101

5.9 Normalized measured energy-to-solution 102

5.10 Execution time and energy-to-solution comparison between existing and
proposed configurations . 103

5.11 Hotspot parallel region runtime behavior running on the Odroid XU3 board105

5.12 Hotspot parallel region trace pattern . 106

5.13 Execution time and speedup evaluation using trace-driven simulation . . . 107

5.14 Alternative big.LITTLE-based network-on-chip manycore architecture . . 107

5.15 ARM Cortex-A series performance/power ratios 109

5.16 Analytical model functioning . 110

5.17 Example of abstract application execution with 10 tasks distribution . . . 111

5.18 Heterogeneous architectures energy/delay comparison for equivalent tasks
application . 112

5.19 Heterogeneous architectures energy/delay comparison for random tasks
application . 113

List of Tables

2.1 Simulation frameworks comparison. 13

2.2 Comparison of trace-driven implementations. 21

3.1 Benchmark set description. 33

3.2 Analysis of the LU factorization execution. 35

3.3 Analysis of the Radix sort kernel execution. 36

3.4 Memory bandwidth when executing STREAM benchmark. 37

3.5 Exynos Octa 5422 chip specification. 39

3.6 Rodinia benchmark description. 43

3.7 Cortex-A7 in-order model execution time error summary. 44

3.8 Application different stage comparison. 47

3.9 big.LITTLE McPAT parameters. 49

4.1 Applications description. 78

4.2 Application problem size impact on correlation coefficients. 83

5.1 ARM big.LITTLE execution model comparison. 96

5.2 big.LITTLE proposed configurations. 103

5.3 Architecture Configuration . 108

A.1 Execution time comparison (gem5 versus Exynos Octa 5422). 123

B.1 Power consumption comparison (gem5/McPAT versus Exynos Octa 5422). 125

ix

Abbreviations

ALU Arithmetic Logic Unit

API Application Programming Interface

ASV Adaptive Supply Voltage

BSD Berkeley Software Distribution license

CCI Cache Coherence Interface

CMP Chip MultiProcessor

CPU Central Processing Unit

CSM Centralized Shared Memory

DDR Double Data Rate memory

DES Discrete-Event Simulation

DSM Distributed Shared Memory

DVFS Dynamic Voltage and Frequency Scaling

EtoS Energy-to-Solution

FFT Fast Fourier Transform

FPU Floating-Point Unit

FS Full System

GPU Graphics Processing Unit

GTS Global Task Scheduling

HMP Heterogeneous MultiProcessing

HPC High-Performance Computing

HPL High-Performance Linpack

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

IPS Instructions Per Second

ISA Instruction Set Architecture

x

Abbreviations xi

ISS Instruction Set Simulator

JIT Just-In-Time

LPDDR Low Power Double Data Rate memory

MESI Modified Exclusive Shared Invalid protocol

MJPEG Motion Joint Photographic Experts Group

MPI Message Passing Interface

MPSoC MultiProcessor System-on-Chip

NA Not Available

NoC Network-on-Chip

OpenMP Open Multi-Processing

OS Operating System

PE Processing Element

PGAS Partitioned Global Address Space

PoP Package on Package

Pthread POSIX thread

RAM Random Access Memory

RTL Register-Transfer Level

SCU Snoop Control Unit

SMP Symmetric MultiProcessor

SMT Simultaneous MultiThreading

SoC System-on-Chip

SPALSH-2 Stanford ParalleL Applications of SHared memory

SPM ScratchPad Memory

TA Trace Arbiter

TBS Time-Based Sampling

TCI Trace Collection Interface

TD Trace-Driven

TI Trace Injector

TLB Translation Look aside Buffers

TLM Transaction-Level Modeling

VHDL VHSIC Hardware Description Language

XML eXtensible Markup Language

Chapter 1

Introduction

1.1 Context and Motivation

High-performance computing is a field of computational science intended to perform par-

ticularly difficult tasks in the shortest time. Supercomputer is the principal component

of an high-performance computing system and has been designed to solve complex high-

level computational issues in various scientific domains, e.g. climate research, quantum

mechanics, chemical and biological modeling, airplane and spacecraft dynamics simu-

lations, etc. Since the computational needs quickly grow each year, HPC technology

becomes a driving force for numerous scientific and consumer areas.

The first supercomputer was built in 1960s by Seymour Cray and since then it undergone

a lot of changes and improvements. While at the beginning, supercomputers contained

only a few specific purpose processors, current massively parallel samples consist of tens

of thousands processors. The TOP500 is a list which ranks the most powerful super-

computers in the world since 1993 [1]. Figure 1.1 illustrates performance development

reported by the TOP500 list [2]. The most powerful supercomputer, characterized by

the dotted-curve labeled “N = 1”, has been progressing from GFLOPS to PFLOPS

throughout last twenty years. The current leader of the list is the Tianhe-2 with 54.9

PFLOPS peak performance.

The next frontier in high-performance computing refers to computing systems perform-

ing at least one exaFLOPS, i.e. a quintillion floating point operations per second. Ac-

cording to projections, such a system is expected by 2018 with a 20MW power budget

1

Chapter 1. Introduction 2

Fig. 2

Citation
Roger Dangel, Jens Hofrichter, Folkert Horst, Daniel Jubin, Antonio La Porta, Norbert Meier, Ibrahim Murat Soganci, Jonas Weiss, Bert Jan Offrein, "Polymer waveguides for
electro-optical integration in data centers and high-performance computers," Opt. Express 23, 4736-4750 (2015);
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-23-4-4736

Image © 2015 Optical Society of America and may be used for noncommercial purposes only. Report a copyright concern regarding this image.

Figure 1.1: Performance development in the TOP500 list [2].

[3]. Future exascale computing systems face a number of challenges, such as system

reliability, energy-efficiency, scalability of software, etc. Energy consumption of HPC

systems is an important research field that calls for intense exploration of alternative

‘green’ technologies.

The Green500 list contains the most energy-efficient supercomputers [4]. Unlike the

TOP500 list, it shows the computation rate delivered by a supercomputer per watt.

Figure 1.2 shows the list of supercomputers ranked from 1 to 5 in June 2015 [4]. The

current leader of the list is the Shoubu supercomputer located at the RIKEN Advanced

Institute for Computational Science in Japan. This supercomputer as well as other top

representatives is based on the Intel Xeon E5 processor and the InfinityBand communi-

cation technology.

Figure 1.2: The Green500’s energy-efficient supercomputers ranked from 1 to 5 in
June 2015 [4].

Nevertheless, to achieve the expected one ExaFLOPS per 20MW a future green su-

percomputer must provide the 50 GFLOPS/W performance rate. That is seven times

Chapter 1. Introduction 3

higher than the current most energy-efficient supercomputer is able to produce. Consid-

ering the magnitude of the task, researchers have turned to explore low-power embedded

system-on-chips as an attractive solution to apply for energy-efficient supercomputing

[5].

Being designed to minimize the power consumption, embedded processors feature poor

performance versus supercomputer’s nodes. The idea to combine multiple SoCs in a

large-scale clustered system looks unrealistic due to the potentially vast interconnect

traffic. Therefore, embedded processor performance is a key factor to make a substantial

progress in that direction.

Looking for ways to improve the performance, embedded systems switched from the op-

erating frequency scaling towards the increasing of on-chip parallelism. The amount of

parallelism on a single processor is forecasted to reach hundreds of cores by the end of the

decade. Moreover, several alternative architecture configurations arouse the researcher

interest revealing a number of budding opportunities. Among them, single-ISA hetero-

geneous multicore technology [6], which allows operating system to explicitly manage

processor load balancing for fine control over performance and power consumption. In

the mobile market, several SoC platforms operating on that principle already exist, such

as Nvidia Tegra 3/4 SoC [7] and Samsung Exynos 5/7 Octa SoC [8] based on ARM

big.LITTLE technology. Despite some important contributions to heterogeneous mul-

tiprocessing [6] [9] [10] [11] [12], an adequate solution has not been proposed yet and

remains a wide area for further exploration.

Exploration of computer architectures is mainly carried out by means of simulation.

Architectural simulators are widely used in academic and industry research. They allow

avoiding costly prototyping of real hardware and provide usable environment for design

trade-off evaluation. There are three key aspects, which define a computer architecture

simulator: accuracy, speed and flexibility.

The accuracy level is determined by the error that the given simulation model produces

compared to the reference system. The validation process aims to identify the error

value and is a substantiation that the model within its domain of applicability generates

results with a satisfactory level of veracity [13]. As high simulation error may lead to

wrong conclusions, exploration model validation is strongly required [14].

Chapter 1. Introduction 4

The simulation speed depends on the abstraction level, which extends between par-

ticularly slow cycle-accurate models and imprecise analytical models with simulation

time close to real execution. Simulation time remains the major obstacle for efficient

architecture exploration forcing researchers to raise the level of abstraction.

In recent years, the computer architecture complexity has grown rapidly, caused by the

increasing number of cores, advanced interconnect and memory hierarchy. The desired

architectural simulator is expected to provide the environment flexible enough to explore

a complete set of design configurations. Debugging capabilities also plays an important

role in architecture simulator usability.

Among the existing architecture simulators, cycle-approximate models are of particular

interest providing suitable level of accuracy and a wide modeling scope. However, in the

context of large-scale manycore architecture exploration, traditional cycle-approximate

simulators yet entail slow simulation speed. This calls for alternative approaches capable

of providing high simulation speed while preserving the sufficient level of accuracy.

There are various techniques designed to reduce simulation time. They can be classified

into two fundamental groups. The first group focuses on increasing computational power

[15], i.e. increasing the number of simulated events per second. It is usually achieved

by distributing the simulation across multiple host machines. Because of its concurrent

nature, distributed simulation faces synchronization issues. To insure simulation consis-

tency, a process running on one host machine might take into consideration the past of

other processes. This issue can be addressed either by using looking mechanisms or by

allowing synchronization error and applying a rollback procedure [16].

The second group includes approaches designed to reduce the number of simulation

events required for accurate results [15]. Trace-driven approach is one of the commonly

used solutions. Depending on the target exploration level, it allows abstracting a large

number of unnecessary events yet providing relevant results. Namely, for multicore

architecture simulation an approach of processor computation abstraction is usually

applied. However, such a trace-driven approach has several considerable limitations.

Due to the abstraction of operating system and application execution, synchronization

mechanisms dedicated to guarantee data and control flow consistency are left out of

Chapter 1. Introduction 5

consideration. Meanwhile these mechanisms are crucial for manycore architecture ex-

ploration.

One more limitation concerns data-dependent applications, i.e. applications in which

control flow and memory access pattern are determined by the input datasets. Data-

dependent conditionals of such applications cannot be reproduced in the correct order

by a trace-driven simulation.

Generally, trace-driven simulation is easy to implement. Nevertheless, the need to

deal with the inherent limitations affect its usability. In addition, when computa-

tion phase abstraction is used, simulation speedup largely depends on the computation-

communication ratio, which is determined by the application nature.

1.2 Thesis objectives and contributions

This thesis is conducted within the Mont-Blanc European project [17]. The main goal

of the project is to design a new energy-efficient supercomputer based on the low-power

embedded technologies.

This thesis focuses on two interconnected research directions. The first direction aims

to develop a fast, flexible and accurate environment for efficient architecture simulation.

The second direction is dedicated to multi- and manycore architectures exploration using

the proposed simulation environment.

Objective 1 The first objective of this thesis is to answer the following questions:

Q: How accurate are performance and power models implemented in cycle-appro

ximate full system simulation frameworks? What are the main sources of error

in these models? Can these models be used to realistically predict important

exploration metrics?

For this purpose, we implement performance models of two multicore SoCs in gem5

cycle-approximate simulation framework [18] and a power model in McPAT simulation

framework [19]. These models are then validated against the real hardware. Based on

the simulation results we analyze sources of error in the proposed models and summarize

whether these models can be used in architecture exploration and under what conditions.

Chapter 1. Introduction 6

The main contributions of this work are the first-published evaluation and detailed anal-

ysis of multicore performance/power models implemented in gem5/McPAT simulation

frameworks. Moreover, the evaluated models are made to be freely available online for

the research community. This work is supported by the following publications:

• [20] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy evaluation of

gem5 simulator system. In Reconfigurable Communication-centric Systems-on-

Chip (ReCoSoC), 2012 7th International Workshop on, pages 1–7, July 2012

• [21] A. Butko, A. Gamatié, G. Sassatelli, L. Torres, and M. Robert. Design explo-

ration for next generation high-performance manycore on-chip systems: Applica-

tion to big.little architectures. In VLSI (ISVLSI), 2015 IEEE Computer Society

Annual Symposium on, July 2015

Objective 2 The second objective of this thesis is to develop a flexible framework

enabling fast and yet accurate simulation for manycore architecture exploration. Under

this study, we address the following questions:

Q: How can simulation time can be reduced while preserving the accuracy level?

What are the limitations of the existing approaches and how can they be avoided?

Is the proposed approach efficient enough to enable future manycore architecture

exploration?

Our contribution differs from all previous works by proposing a novel hybrid trace-

oriented simulation approach suitable for an efficient exploration of entire manycore

system. It includes fully simulated memory infrastructure, trace synchronization tech-

nique, trace replication technique and computation phase scaling technique. Altogether,

the proposed approach demonstrates significantly reduced simulation time and high ac-

curacy level compared to reference full system simulation. Also, the source code of the

proposed approach implementation is freely available on the project webpage [22]. This

work is supported by the following publication:

• [23] A. Butko, R. Garibotti, L. Ost, V. Lapotre, A. Gamatié, G. Sassatelli, and

C. Adeniyi-Jones. A trace-driven approach for fast and accurate simulation of

manycore architectures. In Design Automation Conference (ASP-DAC), 2015 20th

Asia and South Pacific, pages 707–712, Jan 2015

Chapter 1. Introduction 7

In addition, the proposed approach has been applied to investigate the performance

scalability of alternative memory mappings techniques running on compute accelerators.

This work has been presented in the PhD thesis of R. Garibotti [24].

Objective 3

The third objective of this thesis is to explore multi- and manycore architectures in terms

of performance and energy-efficiency trade-offs. At this stage, the following questions

are raised:

Q: What are the promising directions in computer architecture design? How can

the existing programming models be used to benefit from heterogeneous multi-

and manycore architectures? Which configurations of single-ISA heterogeneous

architectures can significantly enhance the system energy-efficiency?

In this context, we consider single-ISA heterogeneous multicore architectures as a promis-

ing solution. Based on the detailed analysis and using the described simulation environ-

ment, we propose alternative architecture configurations, which demonstrate significant

enhancements in energy-efficiency. The publications related to this work are currently

under submission.

1.3 Thesis organization

This thesis is organized as follows: Chapter 2 presents the state-of-the-art concerning

computer architecture simulation techniques, existing simulation frameworks, accuracy

evaluations of performance and power models and existing solutions for large-scale many-

core architecture simulations. In Chapter 3 the implementation, validation and analysis

of performance and power models are described. The hybrid trace-driven approach, the

synchronization and replication techniques and also the computation phase scaling tech-

nique are described in Chapter 4. The detailed analysis of existing ARM big.LITTLE

SoC and exploration of relevant alternative configurations are presented in Chapter 5.

Chapter 6 draws conclusions and discusses possible directions for future work.

Chapter 2

State-of-the-art

This chapter presents a survey of the areas relevant for the thesis. Section 2.1 provides

a general background of computer architecture simulation techniques. Section 2.2 de-

scribes the existing simulation frameworks. The accuracy evaluations of performance

and power models are presented in Section 2.3. In Section 2.4 we discuss the existing

solutions for large-scale manycore architecture simulations.

2.1 Computer architecture simulation

The computer architecture simulator or architectural simulator is a software tool that

models a computer architecture in order to predict a required set of output metrics, e.g.

performance, power, architectural statistics, etc. Architectural simulators have been

widely used since the beginning of the computer era for many reasons. It allows eval-

uating various architecture designs without building expensive real hardware systems.

Unlimited access to architecture component description provides the possibility to eval-

uate non-existing implementations. Moreover, a large set of output metrics can be easily

obtained by static or dynamic collection. This also greatly simplifies the debugging of

the evaluated system.

Time progress management. Talking about simulation, a notion of simulation time

appears and it inherently differs from the continuous time of reality. There are three

conceptual time advancement strategies: activity scanning, event scheduling and process

interaction [25].

8

Chapter 2. State-of-the-art 9

Under the activity scanning, time is divided into tiny increments and a simulator con-

tinuously tracks system dynamics over time. Naturally, for most time increments, no

changes in system state will happen and activity tracking will needlessly waste sim-

ulation time. For this reason, the activity scanning strategy is very time consuming.

Several works however implement this time simulation strategy [26] [27].

In event scheduling which is also known as event-driven simulation, time advances dis-

continuously from one event to another. This time management strategy is more efficient

because it does not require computations to be performed during inactive periods. The

credibility of the algorithm of next-event scheduling determines the simulation accuracy.

For process interaction paradigm each simulation activity is modeled by a process. Often

the process-oriented view is internally implemented on the top of an event-oriented

framework [28]. Compared to the event scheduling simulation, it is much slower, and

more difficult to implement and debug [27].

Simulation scope. The other way to classify computer architecture simulators is based

on simulation scope. Simulation scope refers to the architecture exploration level and

can cover either microarchitecture or entire system simulation.

An instruction set or instruction set architecture specifies a set of basic instructions that

a processor supports. It also includes the size of main memory, number of registers and

instruction format.

An instruction set simulator is used to emulate the processor behavior by using the

instruction set and maintaining internal variables which represent processor registers

[29].

A full system simulation models the entire system, making target software, e.g. OS and

application, believe that it is running on a real physical hardware.

Abstraction level. Depending on the level of details, architectural simulators are

also classified on different abstraction levels. The golden point design is an approach

to specify architectures in a very detailed level using hardware description languages

like VHDL or Verilog. This limited RTL abstraction gives high timing accuracy, but

in turn poses severe limitations on design space exploration, extremely time consuming

and difficult to debug.

Chapter 2. State-of-the-art 10

Cycle-accurate simulator is a software model, usually coded in a high-level programming

language. It reproduces the cycle-by-cycle system behavior. Furthermore, cycle-accurate

models facilitate analysis iterations around various architectural options as well as soft-

ware execution, which gives flexibility to explore more features than in a low-level ab-

straction model. Such simulators also may contain components with different accuracy

levels. In this case, it is referred as qausi cycle-accurate or cycle-approximate simulator.

Following this direction, there are function-accurate models, instruction-accurate models

and others high-level abstraction models, which result in faster simulation at the cost of

a loss of accuracy.

An analytical model is a mathematical model which contains a set of equations describing

the performance of a computer system. Despite the low level of accuracy, analytical

modeling remains a highly practical method of analysis because of its relative simplicity

and high simulation speed [30].

2.2 Simulation frameworks

This section provides a survey of the most popular computer architecture simulators,

according to different criteria: accuracy, simulation speed, supported processor archi-

tectures, licensing, development activity and other simulation features.

PTLsim [31] is a cycle-accurate full system x86 microprocessor simulator that has an

out-of-order pipelined model. PTLsim also supports modeling of multi-processor or

simultaneous multithreading machines. The error of PTLsim compared to the reference

silicon (AMD Athlon 64 at 2.2 GHz) is within 5% across major parameters. Micro-

operation (uops) metric differs in 31%. Simulation speed is around 270 KIPS. PTLsim

presents two main drawbacks, only x86 architectures are supported and the tool suite is

not actively maintained anymore.

MARSSx86 [32] is based on PTLsim with extensive enhancements for improved simu-

lation accuracy and performance. It complements PTLsim key features with unmodified

operating system running, detailed models for coherent caches, on-chip interconnections

Chapter 2. State-of-the-art 11

and advanced multiprocessing simulation. Simulation speed is around 200 KIPS. Ac-

curacy validation results are not available. As PTLsim, MARSS focuses only on x86

architecture.

Simics is a functionally-accurate full system simulator that enables unmodified target

software (e.g. operating system, applications) to run on the virtual platform similar to

the physical hardware [33]. Simics supports a wide range of processor architectures (e.g.

Alpha, ARM, MIPS, PowerPC, SPARC, x86), as well as operating systems (e.g. Linux,

VxWorks, Solaris, FreeBSD, QNX, RTEMS). Simics is composed of an instruction-set

simulator, memory-management units models, as well as all memories and devices found

in the memory map of the processors. Simics has two main disadvantages, it is not

claimed to be cycle-accurate and a commercial license is required (marketed by Wind

River Systems [34]). Besides the general functional-accurate class, other information

about accuracy validation is not available. Simulation speed is around 300 KIPS for a

detailed out-of-order architecture simulation and 6.6 MIPS for a fast simulation.

Flexus [35] is a computer architecture simulator based on Virtutech Simics. In contrast

to Simics, it is open source but supports only SPARC ISA. Simulation speed varies from

20-25 KIPS for a detailed simulation to 30-90 MIPS for a fast simulation. Accuracy

validation results are not available.

SimpleScalar is an open source infrastructure for simulation and architectural model-

ing. It supports several processor architectures including Alpha, ARM, PowerPC and

x86. Moreover, it features a large range of CPU models, which varies from simple un-

pipelined processors to detailed dynamically scheduled microarchitectures with multiple-

level memory hierarchies [36]. The IPC accuracy had been validated against the SA-1110

platform and showed 3% of error. It provides two simulation modes, which differ in de-

tails and speed. Sim-OutOrder detailed mode runs at 350 KIPS, Sim-Fast mode runs at

10 MIPS simulation speed. SimpleScalar features were widely improved in the past, but

it seems that both development and support have slowed down significantly. Indeed,

the last update is more than four years ago at the time of this writing. Multiple Sim-

pleScalar extensions have been implemented to support multiprocessing/multithreading

and thermal models, e.g. SSMT [37], M-Sim [38], SMTSim [39], HotSpot [40].

Multi2Sim is a CPU-GPU heterogeneous computing simulation framework [41]. It has

been developed integrating models for superscalar, multithreaded, multicore CPUs/GPU

Chapter 2. State-of-the-art 12

architectures, as well as cache coherence, multi-level cache hierarchy and interconnec-

tion networks. ARM, MIPS, NVIDIA Fermi and AMD GPU models are supported by

Multi2Sim. It is classified as application-only emulator that focuses on user-level ap-

plication execution, removing operating system and device drivers. Thereby, simulation

speed is around tens of MIPS. However, neither accuracy validation nor simulation speed

results are available.

ESESC, i.e. enhanced SESC [42], is an open source implementation of time-based sam-

pling. Authors claim that the proposed framework is the first to enable sampling in

simulation of multicore processors with virtually no limitation in terms of application

type, number of cores, homogeneity or heterogeneity of the simulated configuration. It

is also the first TBS to enable integrated power and temperature evaluation in statisti-

cally sampled simulation of multicore systems [43]. The reported error of performance

evaluation is within 5% compared to full system simulation. The power and maximum

temperature model errors are 5.5% and 2.4% respectively. The sampling technique al-

lows up to 9 MIPS of simulation speed to be reached. Actually, only ARM architecture

is available in the ESESC simulator.

gem5 [18] is a modular discrete event-driven full system simulator, under BSD license.

This simulator supports different instruction set architectures, such as Alpha, ARM,

x86, SPARC, PowerPC and MIPS. The simulator provides a flexible, modular simulation

system that makes it possible exploring multiprocessor architecture features by offering

a diverse set of CPU models, system execution modes, and memory system models.

Moreover, this simulator has an active development and support team. Simulation

speed is classified into three classes depending on the simulation mode: 1 KIPS for

detailed simulation, 25 KIPS for simplified timing simulation and up to 5 MIPS for

fast simulation, e.g. emulation. At the beginning of this thesis, no material has been

published that reports gem5 accuracy in terms of performance estimation.

Table 2.1 summarizes the presented simulation frameworks according to such criteria

as ISAs support, accuracy level, simulation speed and key simulation and exploration

features.

Chapter 2. State-of-the-art 13

Table 2.1: Simulation frameworks comparison.

Simulator ISAs Accuracy Speed Key Features

(Error) FS OS L MA MP C M

PTLsim x86 CA 270 KIPS X * X X * * *

Cycles -4.3%

Uops - 30.99%

MARSS x86 CA 200 KIPS X X X X X X X

b.o. PTLsim NA

Simics Alpha FA F: 6.6 MIPS X X 5 X X * *

ARM N/A D: 300 KIPS

MIPS

PowerPC

SPARC

x86

Flexus SPARC FA F: 30-60 MIPS X X X X X X X

b.o. Simics N/A D: 20-25 KIPS

SimpleScalar Alpha CA F: 10 MIPS 5 5 X * X X *

ARM IPC - 3% D: 350 KIPS

PowerPC

x86

Multi2Sim ARM CA N/A 5 5 X X X X X

MIPS N/A

x86

GPUs

ESESC ARM CA E: 90 MIPS 5 5 X X X X *

b.o. SESC FS ± 11% F: 9 MIPS

D: 500 KIPS

gem5 Alpha CA E: 5 MIPS X X X X X X X

ARM N/A F: 25 KIPS

MIPS D: 1 KIPS

PowerPC

SPARC

x86

GPUs

CA - cycle-accurate, FA - function-accurate, N/A - not available

b.o. - based on, E - emulation, F - fast, D - detailed

‘X’ - fully supported, ‘*’ - partially supported, ‘5’ - not supported

FS - full system, OS - operating system, L - licensing, MA - microarchitecture,

MP - multiprocessing, C - cache hierarchy, M - memory infrastructure

Chapter 2. State-of-the-art 14

Analyzing the summary table, we observe a considerable advantage of the gem5 simu-

lation framework. Fully supporting all key features, it provides seven ISAs and three

simulation speed modes. The only characteristic that has been unclear at the beginning

of this thesis was the accuracy evaluation.

2.3 Accuracy evaluation of gem5 and McPAT simulation

frameworks

The accuracy of the simulation framework is a critical aspect for design space explo-

ration. The lack of accuracy knowledge may lead to wrong conclusions. Not only the

total runtime error is important, but also the detailed analysis of error sources [14]. In

this section, we present an overview of the previously published works as well as works

that are based on the proposed accuracy evaluation and have been published throughout

the advancement of this thesis.

Authors in [44] evaluate the accuracy of the M5 full system simulator for TCP/IP

based network-intensive workloads, using only two benchmarks that were executed on a

single Alpha CPU model. By using a relatively imprecise model they achieve reasonable

accuracy - the network bandwidth mismatch against real system is reported within 15%.

Authors in [45] design a gem5 model of CoreTile Express system-on-chip and estimate

the accuracy of Cortex-A15 core, memory system and interconnect. They deeply explore

the microarchitectural simulation for the homogeneous dual-core system. This work has

been done in collaboration with ARM Research in Austin, TX. By thoroughly tuning

the ARM CPU model, authors achieve a mean absolute percentage runtime error of 15%

(SPEC CPU2006 and PARSEC benchmarks) and an error of 20% on average for several

key microarchitectural metrics. Authors conclude that these errors are acceptable and

are not a hindrance to evaluating research ideas.

The work presented in [46] deals with the calibration and simulation of Cortex-A8 and

Cortex-A9 cores in gem5. A comparison in terms of execution time is achieved against

a real hardware execution and based on ten benchmarks. Authors claim that their core

models are more accurate than similar microarchitectural simulators. For both models,

the average absolute error is within 17%.

Chapter 2. State-of-the-art 15

A similar study has been achieved for Cortex-A7 and Cortex-A15 cores in [47] by focusing

on the microarchitectural simulation of these cores. The gem5 and McPAT frameworks

have been combined to validate area and energy/performance trade-offs against the

published datasheet information. However, this work does not aim to evaluate multicore

configurations. It only demonstrates the difference between Cortex-A7 and Cortex-A15

cores running single-threaded applications.

Xi et al. in [48] present the first assessment of McPAT’s core power and area models.

The results show that McPAT’s models can provide significant error due to abstraction

and modeling errors. They also discuss ways to avoid such errors and improve the

architectural power models.

To summarize the related work on accuracy evaluation of gem5 and McPAT, Figure

2.1 depicts the publications appeared throughout the time. This thesis works are also

presented in the time scale. In [20], we evaluated the accuracy of the performance model

for ARM multicore processors exploration. This work is the first that reports and dis-

cusses the accuracy of gem5 framework in terms of performance estimation. The work

published in [21] addresses performance model validation of single-ISA heterogeneous

big.LITTLE architecture. It covers the comparison of multiple Cortex-A7 in-order im-

plementations as well as multicore simulations in heterogeneous multiprocessing mode.

The future publication, which is currently under submission complements the ARM

big.LITTLE exploration with power modeling.

This work

Related work

2012

Hsu et al.

[43]
Gutierrez et al.

[44]

Mar 20142005

Endo et al.

[45]

Jul 2014 Jan 2015

Endo et al.

[46]

Butko et al.

[26]

Jul 2015 Sep 2015

Butko et al.

[27]

Butko et al.

[submitted]

Xi et al.

[47]

Feb 2015

Figure 2.1: The related work on accuracy evaluation.

Chapter 2. State-of-the-art 16

2.4 Approaches to accelerate the simulation

Traditional cycle-approximate simulation frameworks entail slow simulation speed, there-

fore limiting its scope of applicability for systems with hundreds of cores. This calls for

alternative approaches capable of providing high simulation speed while preserving accu-

racy. Over the past decades, various simulation speedup approaches have been presented

by researches. All existing techniques can be classified into two fundamental groups de-

pending on the main principle of simulation time reduction approach [15].

The first group focuses on the increasing of computational power, e.g. increasing the

number of simulated events per second. Usually it is achieved by running the simulation

distributed across multiple host machines [35], [49], [50].

Distributed simulation. Graphite [51] is a distributed simulator using dynamic binary

translation to deal with functional behavior. It minimizes synchronization overhead by

abstracting away events ordering along the simulation. Therefore, while decreasing

simulation costs, such a relaxed synchronization vision limits architectural explorations

such as communication bottlenecks.

ZSIM [52] improves simulation speed by parallelizing the simulation on x86 multicore

hosts performing CPU work using instruction-driven timing models that rely on dynamic

binary translation. Authors claim about 2/3 and 4 orders of magnitude speedup than

respectively Graphite and gem5. ZSIM supports only x86 ISA-compatible microproces-

sors.

More generally, the use of distributed simulators is delicate in the sense that users have to

carefully deal with simulation partitioning and synchronization among available CPUs,

which limits simulation speedup.

JIT dynamic binary translation. The other approach to accelerate the simulation

is just-in-time dynamic binary translation, e.g. OVP [53] and QEMU [54]. JIT-based

simulators are instrumented with timing models so that basic architecture block models

and their inter-operations can be driven according to the annotated timing information.

For instance, in the pipeline model included in QEMU [55], authors propose a two-

phase approach to estimate the application performance. In the offline phase, a cycle

pre-estimation of the application execution time is performed. It is then exploited adap-

tively in the online phase according to the CPU status and execution time of critical

Chapter 2. State-of-the-art 17

instructions, improving the approach accuracy with a mismatch around 10%. A sim-

ilar approach [56] combines worst-case execution time analysis and QEMU. Here, the

offline phase is composed of four steps producing a timing database used online. These

approaches miss expressive modeling supports such as those related to cache hierarchies

and coherency protocols. Such simulators can achieve speeds close to thousands MIPS

[57] at the cost of a limited accuracy. They often focus on functional validation rather

than those of architectural exploration.

The second group includes approaches designed to reduce the number of simulation

events required for accurate results. It concentrates on optimizing component descrip-

tions (e.g. CPUs, interconnect infrastructure) following the transaction-level modeling

strategy [58] or by using trace-driven simulation [59].

Transaction-level modeling. In TLM, details of communication are separated from

the details of computation components. Communication is modeled as channels using

SystemC interface classes. Communication requests are performed by calling interface

functions.

A trace-based simulation method using transaction level SystemC modeling technique

has been proposed in [60]. The proposed simulator is used for system performance

evaluation on a high abstraction level. It provides high simulation efficiency at the cost

of accuracy. Nevertheless, simulation speed comparison and accuracy validation results

are not available.

Another trace-based SystemC TLM simulator is described in [61]. The work focuses on

scheduling policies and mappings of the target applications. Simulation accuracy results

show 5% execution time mismatch compared to a PPC e200z6 processor model on VaST

CoMET tool [62].

While reducing the number of simulation events, the use of TLM for architecture explo-

ration is strongly penalized by the poor performance of SystemC kernel and the lack of

accurate microarchitecture modeling capabilities [63].

Trace-driven modeling. Trace-driven modeling on the other hand, is a relevant ap-

proach in high-performance and embedded computing for reducing simulation cost. A

Chapter 2. State-of-the-art 18

various number of works have been proposed over the past decades. They target dif-

ferent system components evaluation, e.g. processor microarchitecture, cache hierarchy,

network interconnect, multi-/manycore platforms.

Processor simulation: ReSim is a trace-driven reconfigurable ILP processor simulator

[64]. It achieves simulation speed up to 28 MIPS and demonstrates an enhancement by

at least a factor of 5 enhancement over the reported ILP processor hardware simulators

[65] [66].

Cache simulation: An uniprocessor cache simulator based on trace-driven approach

has been proposed in [67]. It has been developed to simulate a memory hierarchy

consisting of various caches. The simulator produces a set of performance metrics,

such as traffic to and from memory. In [68] Dinero IV has been used to predict the

performance of a 3D processor-memory chip stack.

The work in [69] presents a trace-driven tool for cache simulation and memory perfor-

mance studies. Authors report performance improvements of MetaSim Tracer [70] by

using techniques developed in SimPoint [71]. The work reduces the cache simulation

overhead by decreasing the number of instructions that must be reproduced during the

simulation.

NoC simulation: In [72], authors propose a trace model called self-related traces

for network-on-chip simulation. The self-related traces are independent on the timing

parameter of the network. Each trace includes a dependency field, thus it depends only

on the previous message. They demonstrate a simulation time reduction about 75%

by comparing a trace-driven model with a relevant GEMS full system simulation. The

accuracy of the proposed model is validated by using a statistical hypothesis test. The

reported test shows that their trace-driven model is valid.

A trace-based network simulation methodology is presented in [73]. It captures de-

pendencies between network messages and focuses on multithreaded applications. The

methodology is implemented in Netrace simulation library for efficient NoC evaluation.

Authors demonstrate that Netrace can be orders of magnitude faster than the corre-

sponding full system simulation. The accuracy aspect is outside the scope of their work.

Chapter 2. State-of-the-art 19

Authors in [74] propose a traffic generation model for fast and effective NoC evaluation.

They show a factor of two improvement in simulation time and almost 100% accuracy

compared to a complete system simulation.

Platform simulation: In [75], a combination of trace-driven simulation and virtual

synchronization techniques is proposed to improve simulation performance and allow

exploring the dynamic behavior of application and OS execution. Authors focus on the

multi-task software execution and the resolution of communication conflicts. The pro-

posed trace-driven co-simulation performs trace generation and co-simulation simulta-

neously. Thus, a small amount of storage space is required. The simulation performance

and the accuracy level have been evaluated in [76]. The results show up to 38% per-

formance gain and an error within 7.3% compared to the time-accurate instruction set

simulator.

ManySim is a trace-based simulation framework for the performance and scalability

evaluation of large-scale CMP architectures [77]. It contains four general modules: the

core, the cache, the interconnect and the memory. Instruction traces are collected on a

single-core real system and fed into a cycle-accurate simulator. To enable the simulation

of manycore architectures, authors propose to replicate the traces collected on a single-

core system. Data sharing and trace synchronization issues are not discussed in this

work. The accuracy level is not reported, but authors mention that a simplistic queuing

model of memory module is used.

In [78], the ManySim simulator is used to evaluate memory models for 16-cores archi-

tectures. Authors demonstrate that the use of simplistic memory models may lead to

wrong conclusions both in absolute performance numbers and in relative performance

comparison. The reported results show a difference in performance of up to 65% between

the simplistic models and the accurate model of the memory controller.

Tsim is a multi-/manycore processor event-driven simulator which is based on the two-

phase trace-driven framework [79]. Authors address two essential issues using trace-

driven simulation: the out-of-order processor modeling and the multithreaded workload

synchronization. It achieves 150x simulation speed w.r.t the reference Simics-based

simulator. CPI error is around 3.2% in average. Tsim demonstrates a simulation speed

of 146 MIPS.

Chapter 2. State-of-the-art 20

A trace-based simulation framework presented in [80] targets the performance analysis

of stream-oriented applications on complex MPSoC architectures. Collected application

traces are forwarded to subsequently connected virtual machines, which model target

system architecture. The proposed framework considers such important aspects as re-

source sharing, memory allocation and data dependencies. Compared to the CoWare

VPA (a commercial instruction-accurate simulator, now part of Synopsys [62]) frame-

work, the evaluation demonstrates a gain in simulation time of 900x times and 97%

accuracy in average.

TaskSim is a trace-based event-driven simulator targeting large-scale accelerator-based

architectures [81]. The simulator abstracts the computation phase and focuses on the

data transfer simulation. A validation against Cell B.E. demonstrates that the execution

time mismatch ranges from 1% to 65%. The simulation slowdown of TaskSim compared

to the execution of the real Cell B.E. varies from 5-10x to 400-600x depending on the

computation-communication ratio of the application. In [59], authors concentrate on

exploring multithreaded application behaviors using TaskSim. The application traces,

which contain sections of sequential code and parallel work management operations, are

distributed diversely among multiple cores to predict application scalability.

The problem of simulating parallel multithreaded applications using the trace-driven

approach is also discussed in [82]. Additional synchronization traces are inserted among

memory traces. Authors demonstrate a potential error of up to 10.22% by enabling and

disabling the implemented synchronization mechanism.

MacSim is a trace-driven and cycle-level architecture simulator [83]. It supports x86

and NVIDIA PTX instruction set architectures. MacSim simulates detailed a pipeline

microarchitecture, a memory infrastructure including multi-level caches, a NoC, mem-

ory controllers and homogeneous as well as heterogeneous multicore architectures. No

accuracy validation or simulation speed results have been published yet.

In a recent work [84], authors present SynchroTrace, a trace-based multithreaded simu-

lation methodology. The tool for capturing computation, communication and synchro-

nization traces is based on the Valgrind Dynamic Binary Instrumentation framework

[85]. They also present a trace compression algorithm that reduces the trace file sizes

by 63% on average but produces around 10% difference in execution cycles. The trace

Chapter 2. State-of-the-art 21

filtering technique based on the non-shared data hits filtering is demonstrated. Simu-

lation speed evaluation shows a peak speedup of up to 18.4x over simulation in Gem5

full system mode. Such poor simulation time gain is caused by the fact that not only

communication but also computation events are simulated.

In Table 2.2 we compare the existing trace-driven implementations, which target multi-

/manycore platform exploration with the proposed trace-driven approach. The imple-

mentation field reports the corresponding trace-driven simulator and the environment

it is based on. The error percentage is a relative value as in each case it is compared

to different bases, e.g. cycle-accurate or instruction-accurate simulations. Speed values

are absolute and speedup values are relative. The key features field summarizes such

capabilities of trace-driven simulations as core microarchitecture (in-order, out-of-order

execution), system architecture (e.g. cache hierarchy, interconnect, memory), multi-

threading or multitasking, trace synchronization, trace reduction and trace replication.

Table 2.2: Comparison of trace-driven implementations.

Reference Implementation Error Speed(-up) Key Features

MA A MT S RD RP

[75], 2005 ARMulator, ModelSim 7.3% 38% 5 * X X * 5

[77], 2007 ManySim, ASPEN 65% 25 KIPS 5 X * 5 5 X

[79], 2008 Tsim (TPTS) 5-10% 150x X X X X 5 5

[80], 2009 TSim, SystemC, 3% 900x 5 * * X 5 5

Virtual machines

[81], 2010 TaskSim 1-65% 100 KIPS 5 * X X 5 5

2 MIPS

[82], 2012 Pin 10% N/A 5 5 X X 5 5

[83], 2012 MacSim (x86, NVidia) N/A N/A X X * 5 5 5

[84], 2015 gem5, Valgrind 10% 18x 5 X X X X 5

[23], 2015 gem5 14% 800x * X X X X X

‘X’ - fully supported, ‘*’ - partially supported, ‘5’ - not supported

MA - microarchitecture, A - architecture, MT - multithreading/multitasking

S - synchronization, RD - reduction, RP - replication

Chapter 2. State-of-the-art 22

Our contribution differs from all previous works by proposing a novel hybrid trace-driven

simulation approach suitable for an efficient exploration of an entire manycore system.

The great advantage of the proposed simulation is related to its hybrid nature. That

means that the trace-driven simulation is embedded into an event-driven environment

so that the system architecture including cache, interconnect and memory is dynam-

ically simulated at runtime. The proposed approach includes a trace synchronization

technique, which allows managing control and data dependencies as well as a trace

reduction technique related to event filtering. Among its strengths is the ability to accu-

rately simulate a computer architecture made of M cores based on traces captured in a

reference simulation on a system comprising N cores, with M ≥ N , thanks to the trace

replication. The proposed implementation demonstrates a simulation speedup compared

to the reference full system simulation of up to 800x. The average performance metric

error is 14% in the worst case architecture exploration scenario.

Chapter 3

Evaluation of multicore

architecture models in

cycle-approximate simulation

frameworks

3.1 Introduction

There is a wide range of approaches from the use of high-level models to hardware

prototyping each of which entails different simulation speed/accuracy trade-offs. Some

simulation frameworks devoted to CPU-centric systems have been developed over the

past decade, that either feature a near real-time simulation speed or moderate to high

speed with quasi-cycle level accuracy, often by means of instruction-set simulators or

binary translation techniques.

To maintain a reasonable balance between simulation time and accuracy, we put focus

on the gem5 simulation framework, which is an event-driven full system simulator. It

provides a flexible, modular simulation system that makes it possible exploring multicore

architecture features by offering a diverse set of ISAs, CPU models, system execution

modes, and memory system models. Furthermore, gem5 has an open source license,

a good object-oriented infrastructure and an active mailing list. While the simulation

speed is trivially observed, the claimed level of accuracy of the system remains unclear.

23

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 24

Authors in [86] show that the error magnitude in common simulators is often larger than

the performance gains yielded by new architecture ideas. A fine tuning of the evaluated

model and a detailed analysis of the simulator accuracy are strongly required. The lack

of knowledge about the simulation error magnitude may lead to wrong conclusions.

At the moment the proposed accuracy evaluation has been published, there existed

no published material that reported and discussed gem5 error magnitude in terms of

performance estimation. The following works [45] [46] [47] refer to the proposed accuracy

evaluation. The work presented in Section 3.4.2 and 3.4.3 advances the state-of-the-art

by addressing the complex performance and power simulation of the heterogeneous ARM

big.LITTLE processor.

This chapter presents the accuracy evaluation of two simulation frameworks, gem5 for

performance and McPAT for power estimation. It is organized as follow: Section 3.2

presents gem5 and McPAT frameworks and describes their key features. Section 3.3

describes the validation and the accuracy assessment methodology. Section 3.4 demon-

strates the accuracy evaluation of performance and power models in gem5/McPAT sim-

ulation frameworks by comparing them with real hardware. Section 3.5 summarizes the

results of the chapter.

3.2 Background

3.2.1 gem5 for performance modeling

gem5 was created with the best features of two projects, one is focused on a full system

simulation (M5 [87]) and another in memory systems (GEMS [88]). It is a modular

discrete event-driven simulator running under BSD license. gem5 provides various sim-

ulation modes characterized in accuracy and speed namely full system simulation and

system call emulation. The system call mode emulates most operating system-level ser-

vices through stubs on the simulation workstation, which include the operating system

services and devices, resulting in a significant simulation speedup at the cost of limited

support for some functionalities, such as multithreading. On the other hand, the full

system mode performs complete system simulation, including the OS, thread scheduler

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 25

and peripheral devices that run on both user-level and kernel-level instructions, provid-

ing high simulation accuracy and penalizing the simulation time. The key features of

gem5 framework in terms of architecture simulation are:

• Multiple CPU models: gem5 provides four interchangeable CPU models. The

simplest model is called AtomicSimpleCPU. It is a functional in-order model that

uses atomic memory accesses. The TimingSimpleCPU is a variation of the Sim-

pleCPU model, which however uses timed memory accesses. The MinorCPU and

InOrderCPU models are developed for detailed in-order microachitecture simu-

lation. And the DerivO3CPU model presents full out-of-order microarchitecture

simulation.

• Multiple ISAs: gem5 supports a variety of common platforms. ALPHA is the

most used ISA on gem5. This architecture based on a DEC Tsunami system

boots unmodified Linux 2.4/2.6 kernels and FreeBSD, and can be extended for up

to 64 cores. ARM models an ARMv7 A-profile ISA, including support for Thumb,

Thumb-2, VFPv3 and NEON instruction set extensions. x86 models a generic x86

CPU (64-bit) that boots unmodified Linux kernel in a SMP configuration. SPARC

models an UltraSPARC T1 processor (single core) that boots Solaris. PowerPC

models a 32-bit processor based on the POWER ISA v2.06 B. MIPS models a

32-bit processor.

• Memory subsystem: gem5 provides two different memory systems which are

inherited from the M5 (Classic model) and GEMS (Ruby model) projects. The

simplest is the Classic model, which provides a fast and easily configurable memory

system, whereas the Ruby model focuses on accuracy, interconnect and supports

various cache coherency protocols.

• Multiprocessor/multi-system: gem5 supports both symmetric and asymmet-

ric multiprocessor systems within a single simulation process.

Moreover, gem5 provides strong debugging capabilities, runs on most operating systems

and architectures and has active development/support activity.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 26

3.2.2 McPAT for power modeling

McPAT is a power, area and timing modeling framework for multithreaded, multicore,

and manycore architectures. It is developed as integrated framework that works with a

variety of performance and thermal simulators via an XML-based interface. This inter-

face describes the microarchitecture specification and is used to communicate dynamic

activity statistics generated from the performance/thermal simulator side [19].

The McPAT hierarchy includes three simulation levels [89]:

• Architectural level. It represents the multicore processor configuration decom-

posed into major architectural components as cores, networks-on-chips, caches,

memory controllers, and clocking. A core can be in-order or out-of-order and is

composed of multiple units such as instruction fetch, execution, load and store

units. It also supports multithreading.

• Circuit level. In this level, the architectural components are mapped into four

basic circuit structures as hierarchical repeated wires, arrays, complex logic, and

clock distribution network.

• Technology level. This level uses data from the ITRS roadmap to calculate the

physical parameters of devices and wires, such as unit resistance, capacitance, and

current densities. The current implementation of McPAT includes data for the

90nm, 65nm, 45nm, 32nm, and 22nm technology nodes, which covers the ITRS

roadmap through 2016.

The output simulation file contains two groups of values per each architectural compo-

nent: (i) area, peak dynamic power, sub-threshold leakage power and gate leakage power,

which are calculated based on the chosen architecture and (ii) technology parameters

and runtime dynamic power that depend on the activity statistics.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 27

3.3 Methodology

3.3.1 Validation and accuracy assessment

gem5 and McPAT simulators together propose a promising exploration environment

which allows predicting with a cycle-approximate accuracy architecture performance

and power characteristics. However, depending on the complexity and on the modeling

details the accuracy level can vary from one system architecture to another. The best

solution to validate an implemented architecture model is to compare it with the real

hardware and identify the simulation error.

Simulation of advanced complex systems expectedly comprises multiple sources of error.

Black and Shen [14] distinguished three separate categories of error sources:

1. Modeling errors occur when the simulator functionality is implemented erroneously

due to the developer fault.

2. Specification errors occur when the simulator developer has untruthful information

or has no access to the relevant information. Therefore, the desired functionality

shows wrong behavior.

3. Abstraction errors occur when developer decides to raise the abstraction level of

component implementation. It can significantly reduce simulation time but brings

the additional mismatch.

Validation and accuracy assessment flow is illustrated in Figure 3.1. The flow is com-

posed of two phases: calibration phase and experimental phase.

The calibration phase is intended to analyze the specification and behavior of the target

platform in order to most closely implement it on the top of the simulation environment.

Generally, it includes three steps, which are marked in the figure with numbers.

In the first step, we study the hardware system and capture component configurations.

In this step, the specification error may be found if the hardware specification is not

described in detail. It is often the case when academics have no access to commercial

architecture information. The second step (highlighted by a dotted line) occurs when the

desired component or functionality is not implemented on the simulation environment.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 28

Hardware system specification Simulated system calibration

Component analysis Component implementation

System software specification System software calibration

Configurations

Component

behavior

OS/benchmark

configuration

Real platform Simulated platform

CALIBRATION PHASE

Benchmark suite

Real system execution Simulated system execution

Evaluation metrics Evaluation metrics
Error %

Real platform Simulated platform

Analysis

EXPERIMENTAL PHASE

Feedback

1

2

3

Figure 3.1: Validation and accuracy assessments flow.

Thus, we have to analyze the component behavior and implement it properly. Usually,

the modeling error relates to this calibration step. The third step concerns the system

software specification, namely operating system and benchmark suite choices. The OS

features can be used to turn-off some specific components or functionality, which are

not implemented in the simulator and thereby prevent their impact on the final error.

A significant error may be caused by non-representative benchmark input sets.

The experimental phase consists in benchmark suite execution on both the real and the

simulated platforms. The resulting evaluation metrics are compared and the final error

percentage is calculated. The number of measurements should be defined in order to

obtain statistical significance [90].

Additional error analysis may be done to produce a useful feedback for enhancing the

calibration phase.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 29

3.3.2 Evaluation metrics

For our evaluation we used a set of measurement metrics which can be classified into the

following groups: (i) performance, (ii) power, (iii) accuracy and (iv)speed. Accuracy and

speed metrics are related to the simulation framework properties. We used performance

and power metrics, which are usually used to evaluate the architecture itself for accuracy

assessment.

Performance. To evaluate the performance of simulated systems we chose two com-

monly used metrics: execution time and speedup.

Execution time of a given task is defined as the time spent by the system executing that

task from the beginning to the end.

Speedup of a given task is defined as the relative performance improvement by executing

that task. The notion of speedup is commonly used in the context of parallel computing

and is instituted by Amdahl’s law [91]. For execution time values, the speedup is defined

by the formula 3.1:

Speedup =
Execution timeold
Execution timenew

(3.1)

Power. To analyze the system power consumption and energy-efficiency we used the

following metrics: power consumption (Watt) and energy-to-solution (Joule).

Energy-to-solution of a given task is defined as the amount of energy spent to execute

that task. This metric is used to describe the optimization criteria of investigated

systems and is calculated by the formula 3.2.

EtoS =

∫ Execution time

0
P (t)dt (3.2)

Accuracy. The accuracy is expressed in error percentage. To assess the accuracy of the

proposed performance and power models, we calculate the error for performance and

power metrics described above namely execution time, power and energy-to-solution.

The absolute error percentage is defined by the formula 3.3.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 30

Error =
|Evaluated value −Reference value|

Reference value
∗ 100% (3.3)

Speed The last metric is instruction per second that is commonly used by the computer

architecture research community and shows the simulation speed. There are several

numerical reduction developed to simplify the perception: thousand instructions per

second (KIPS), million instructions per second (MIPS) and others.

3.4 Accuracy assessments of gem5 and McPAT versus real

platforms

In this section, we validate our performance and power models implemented in gem5

and McPAT simulation frameworks against the real hardware. Two evaluation scenarios

are considered.

In the first scenario, we model a simple dual-core ARM based architecture using already

implemented features to validate the gem5 simulator itself. In the second scenario, we

focus on the complex heterogeneous ARM big.LITTLE architecture evaluation, which

requires the implementation of additional functionalities. Both, performance and power

models are considered.

3.4.1 Performance modeling: Dual-core SMP architecture

Figure 3.2 illustrates the accuracy assessment flow for the ARM dual-core performance

model validation. Chosen benchmark sets, e.g. SPLASH-2, ALPBench and STREAM,

are executed on the real reference platform and on the simulated platform. The execution

time error percentage is calculated. To identify the source of error we correlate the error

with the statistics generated by gem5, namely the number of cache misses.

3.4.1.1 Experimental setup

Reference platform. The Snowball SKY-S9500-ULP-C01 board [92] is used as refer-

ence platform. It is equipped with the ST-Ericsson Nova A9500 SoC. As illustrated in

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 31

SPLASH-2/ALPBench/STREAM Benchmarks

Pthread implementation

STE Nova A9500

Snowball SKY-S9500-ULP-C01
gem5 ARM Dual-core

Full-System simulation

Execution

time

Execution

time

Error %

Real platform Simulated platform

EXPERIMENTAL PHASE

Statistic

Correlation

Figure 3.2: Accuracy assessments flow for ARM Dual-core architecture.

Figure 3.3, the ST-Ericsson Nova A9500 SoC is built around a dual-core ARM Cortex-

A9 processor. It also features a number of DSP and ASIP cores along with a Mali-400

GPU, which will not be used in the experiments.

Cortex-A9

Core 0

Cortex-A9

Core 1

32 kB

Instruction

Cache

32 kB

Data

Cache

32 kB

Instruction

Cache

32 kB

Data

Cache

Bus Interface

512 kB L2 Cache

DDR

Figure 3.3: ARM Cortex-A9 Dual-core block diagram.

This device as most in its class support DVFS, the CPU frequency can be scaled from

200MHz up to 1GHz according to a given policy implemented at kernel-level, and a

given set of parameters (e.g. board temperature, battery level and drain, etc.). Because

of the difficulty of modeling physical sensor information this feature was disabled, this

will ensure the system runs at constant frequency (1GHz).

Performance model. The hardware characteristics are extracted and used for con-

figuring the gem5 model, as follows: (i) ARM dual-core model, (ii) CPU core running

at 1 GHz, (iii) Linux Kernel 2.6.38, (iv) 32-kB private L1 data and instruction caches,

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 32

(v) 512-kB shared L2 cache, (vi) 64 bits channel width and (vii) DDR physical memory

running at 400MHz.

The reference platform features a dual-core ARM Cortex-A9 out-of-order processor.

During the calibration phase, our preliminary experiments have demonstrated that De-

rivO3CPU, the out-of-order model delivered by gem5 developers together with ARM so-

ciety, provides an essential discrepancy compared to the reference platform. According to

ARM developers, the microarchitectural configuration of the model has been changed for

the commercial security reason. In the early stages of our study, the detailed description

of the corresponding microarchitecture, which has been published recently in [93] and

[46], was not available. Therefore, we decided to use the more simple TimingSimpleCPU

model that has showed better accuracy results.

Benchmarks. A set of scientific and multimedia benchmarks are chosen to evaluate the

performance model accuracy. The first benchmark is ALPBench [94]. This image- and

video-centric media benchmark suite is composed of five complex media applications:

speech recognition (CMU Sphinx 3), face recognition (CSU), race tracing (Tachyon),

MPEG-2 encode (MPG2enc), and MPEG-2 decode (MPG2dec). Among these, were

used the two most frequently used applications: MPEG-2 encoder and decoder.

The SPLASH-2 [95] is the second benchmark suite used from the area of scientific and en-

gineering computing, targeted at cache coherent shared address space machines. Eight

complete applications kernels were selected: barnes, fmm, ocean (contiguous/noncon-

tiguous partitions), radiosity, water-spatial, fft, lu and radix. The methodology and the

considered features of each SPLASH-2 workload are described by Woo in [95].

These two benchmarks are implemented using POSIX Threads Programming [96]. There-

fore, each benchmark is executed with two parallel threads.

The third used benchmark suite is the STREAM benchmark, which is a simple synthetic

program that measures the memory bandwidth (in MB/s) and calculates the correspond-

ing rate for simple vector kernels [97]. This benchmark is a serial implementation.

The complete set of used benchmarks, their domain and detailed description are pre-

sented in Table 3.1. The benchmarks source code was compiled using a cross-compiler

tool-chain for ARM Linux.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 33

Table 3.1: Benchmark set description.

Benchmark Application Domain Description

SPLASH-2

Barnes

Scientific

Simulates the interaction of a system of bodies us-
ing the Barnes-Hut hierarchical N-body method.

Fmm Simulates a system of bodies over a number of
timesteps.

Ocean Studies large-scale ocean movements based on
eddy and boundary currents.

Radiosity Computes the equilibrium distribution of light in
a scene using the iterative hierarchical diffuse ra-
diosity method.

Water-Spatial Evaluates forces and potentials that occur over
time in a system of water molecules.

FFT A complex 1-D version of the radix-
√
n six-step

FFT algorithm.
LU A kernel that factors a dense matrix into the

product of a lower triangular and an upper tri-
angular matrix.

Radix An integer radix sort kernel.

ALPBench
MPG2dec

Media
Decompresses a compressed MPEG-2 bit-stream.

MPG2enc Converts video frames into a compressed MPEG-
2 bit-stream.

STREAM Stream Engineering Measures sustainable memory bandwidth and the
corresponding computation rate for simple vector
kernels.

3.4.1.2 Accuracy assessments

Benchmark execution. Selected benchmark input sets provide significant difference

in execution time, which ranges from milliseconds to tens of seconds. Therefore, the

impact of the workload duration on the simulation error can be observed. The operating

system TIME library is used as the mechanism to measure the execution time of the target

benchmark. The settimeofday() system call is inserted into the application source code

to accurately determine the measuring points. In order to obtain statistically significant

results each workload is executed five times. Preliminary experiments showed that such

quantity covers the execution time discrepancy and is sufficient for accuracy evaluation.

The results are then calculated as average values.

The execution time measured on the reference platform and simulated on gem5 as well

as the calculated error percentage are presented in Figure 3.4.

The results show that the mismatch between the real platform and the simulated system

varies between 1.39% and 17.94%. Besides, we observe that the error percentage does not

depend on the benchmark duration. Simulation of the most time consuming workload,

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 34

5.08% 1.39% -3.26% 1.23% -14.53%-16.12%4.49% -7.58% -20.55%17.94% 0.57% 1.87% 0.48%

Real System Gem5

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

1

10

100

1000

104

B
ar

ne
s

FM
M

O
ce

an
 1

O
ce

an
 2

R
ad

io
si

ty

W
at

er
-S

pa
tia

l

FF
T

LU
1

LU
2

R
ad

ix

bz
ip

2

M
PG

2d
ec

M
PG

2e
nc

Figure 3.4: Benchmarks execution time comparison between the real system and
gem5 model.

e.g. MPG2dec, provides only 1.87% of error. While the similar in terms of execution

time radiosity workload shows 14.53% of error.

To investigate this effect and identify the source of error, we chose two representative ap-

plications which produce different errors (i) lu factorization (noncontiguous blocks) and

(ii) radix sort kernel. The implementation of these two applications allows easily chang-

ing the input parameters, e.g. processed data size, thus the memory communication

impact can be analyzed.

The LU application behavior exploration. lu factorization of a dense matrix is a

part of SPLASH-2 benchmark. It can be performed efficiently if the dense n×n matrix

A is divided into an N ×N array of B×B blocks. Blocking is performed to explore the

temporal locality on sub-matrix elements [95].

The default lu configurations which were used in the previous experiment are: matrix

size is 512×512, the block size is 16. We vary the matrix size between 8×8 and 512×512

in increments of 2, then we compare the execution on both real and simulated systems.

The results are presented in Table 3.2 and are shown in Figure 3.5.

In Figure 3.5 a) we observe that as the input matrix size varies from 8 × 8 to 256 ×

256, the application execution mismatch remains around 6%. Small fluctuations could

be explained by the scheduling of various processes in the Linux OS during program

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 35

Table 3.2: Analysis of the LU factorization execution.

Matrix size 8x8 16x16 32x32 64x64 128x128 256x256 512x512

Execution time (s)
RP 0.99 1.02 1.28 2.26 8.17 54.05 527.6

gem5 0.95 0.95 1.23 2.30 8.38 54.75 397.4
Error (%) 3.73 6.21 4.05 1.81 2.57 1.29 23.38

L2 cache misses 23617 23784 23891 24399 26205 55027 789451

execution. However, the error percentage rapidly rises to 23% when the matrix size is

increased up to 512× 512.

Mismatch
L2 Cache Misses

Matrix size

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2 N

um
be

r o
f o

ve
ra

ll
m

is
se

s (
L2

 c
ac

he
)

0

2×105

4×105

6×105

8×105

0

5

10

15

20

25
Real System
Gem5 System
Mismatch

Matrix size

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

M
is

m
at

ch
 (%

)

0

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

1

10

100

1000

Figure 3.5: Analysis of the LU factorization execution.

According to the developer’s description, the block size B must be large enough to keep

the cache miss rate low, and small enough to maintain good load balancing. Fairly

small block sizes (B=16) strike a good balance in practice [95]. When the matrix size

changes, it produces a critical condition thus the gem5 model provides the error that is

more significant. One reason lies in the increased size of the processed data that makes

external memory access latencies prominent. Figure 3.5 b) confirms this hypothesis,

showing the number of overall misses into L2 cache memory.

Thus, a change of matrix size from 256 × 256 to 512 × 512 results into an increased

L2 cache miss rate. At the same time, there is a significant mismatch increased in

the reported performance metric between the real board and gem5 simulator. This

originates from a somewhat inaccurate model of the external DDR memory used in

these experiments. It models latency for each access and an optional random spread

factor, therefore abstracting the actual DDR complex access patterns.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 36

Radix application behavior exploration. Another benchmark chosen to explore

the mismatch effect is the integer radix sort kernel that exhibits the highest mismatch

(17.94%). Table 3.3 presents the execution results by varying the number of keys to sort

as the input application parameter.

Table 3.3: Analysis of the Radix sort kernel execution.

Number of keys 512 1024 2048 4096 8192 16384 32768

Execution time (s)
RP 1.587 1.74 2.014 2.502 3.632 5.616 10.10

gem5 1.434 1.497 1.647 1.951 2.607 3.926 6.53
Error (%) 9.64 10.79 18.22 22.02 28.22 30.09 35.31

L2 cache misses 26103 26547 26802 27109 28264 31229 37414

Mismatch
L2 Cache Misses

Number of keys to sort

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

N
um

be
r o

f o
ve

ra
ll

m
is

se
s (

L2
 c

ac
he

)

2.6×104

2.8×104

3×104

3.2×104

3.4×104

3.6×104

3.8×104

10

15

20

25

30

35Real System
Gem5 System
Mismatch

Number of keys to sort

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

M
is

m
at

ch
 (%

)

5

10

15

20

25

30

35

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

2

4

6

8

10

Figure 3.6: Analysis of the Radix sort kernel execution.

This originates from the integer radix sort kernel that requires the movement of bulk

data (the keys being sorted) from the memory, where each core is assigned with an

equal fraction of the N sorted keys [98]. Thus, a large number of keys produces a

greater communication volume and increases the mismatch.

Figure 3.6 b) shows the L2 cache miss rate, which again confirms the assumption con-

cerning an inaccurate modeling of the DDR memory.

STREAM benchmark exploration. In order to further explore the memory model

issue discussed above, we use the STREAM benchmark that makes it possible to measure

the memory bandwidth.

Each of the four tests adds independent information to the results:

• “Copy” measures transfer rates in the absence of arithmetic operations.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 37

• “Scale” adds a simple arithmetic operation.

• “Sum” adds a third operand to allow multiple load/store ports on vector machines

to be tested.

• “Triad” allows chained/overlapped/fused multiply/add operations [97].

The results presented in Table 3.4 show that the memory rate of the copy function for

both systems is quite similar, the scale function reports faster real board transfers, add

and triad functions demonstrate that the gem5 memory rate is twice the rate on the

board.

Table 3.4: Memory bandwidth when executing STREAM benchmark.

Function System Rate (MB/s) Average Minimum Maximum
time (s) time (s) time (s)

Copy
Board 1054.9 0.0304 0.0303 0.0307
gem5 1058.4 0.0303 0.0302 1.3

Error % 0.3 0.3 0.3 0.0303

Scale
Board 937.9 0.0341 0.0341 0.0367
gem5 835.8 0.0383 0.0383 0.0384

Error % 10.9 12.3 12.3 4.6

Sum
Board 555.6 0.0868 0.0864 0.0873
gem5 916.2 0.0524 0.0524 0.0524

Error % 64.9 39.6 39.4 40

Triad
Board 468.7 0.1025 0.1024 0.1027
gem5 882.4 0.0544 0.0544 0.0545

Error % 88.3 47 46.9 46.9

We explain these results by the fact that the two last benchmarks manipulate larger

data sets (three arrays instead of two) that are likely stored in different pages of the

DDR memory. This is confirmed by a lower bandwidth on the physical system (DDR

penalty for opening/closing pages, etc.) compared to the gem5 model, which does not

account for DDR behavior.

3.4.2 Performance modeling: Heterogeneous multicore architecture

Heterogeneous multicore architectures usually consist of different cores that differ from

each other in their instruction set architectures, their execution paradigms, e.g. in-order

and out-of-order, their cache size and other fundamental characteristics. Single-ISA het-

erogeneous multicore [6] processors are of particular interest because of being software-

agnostic i.e. a unique standard SMP operating system may be used, taking advantage

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 38

of load-balancing features for fine control over performance and power consumption.

In the mobile market, several SoC platforms operating on that principle exist, such

as Nvidia Tegra 3/4 SoC [7] and ARM big.LITTLE technology integrated to Samsung

Exynos 5/7 Octa SoC [8]. ARM big.LITTLE processor features two clusters, “big” and

“LITTLE”, each of which consists of advanced high-performance cores and low-power

cores respectively.

In particular, ARM big.LITTLE processors have three main software execution models

[99]. The first and simplest model is called cluster migration. A single cluster is active

at a time, and migration is triggered on a given workload threshold. The second mode

named CPU migration relies on pairing every “big” core with a “LITTLE” core. Each

pair of cores acts as a virtual core in which only one actual core among the combined

two is powered up and running at a time. Only four physical cores at most are active.

The main difference between clustered migration and CPU migration models is that

the four actual cores running at a time are identical in the former while they can be

different in the latter. The heterogeneous multiprocessing mode, also known as global

task scheduling allows using all of the cores together. A strong argument in favor of

HMP is that it provides a fine-grained control of workloads and consequently opens a

promising direction for additional performance/energy trade-offs.

Figure 3.7 illustrates the accuracy assessment flow for the ARM big.LITTLE perfor-

mance model validation. The OpenMP implementation of the Rodinia benchmark suite

is used throughout this study. In contrast with previous work, the present study covers

several particular points. The target big.LITTLE architecture is evaluated in two oper-

ation modes. In the first mode, either big or LITTLE cluster is used at the same time.

Thereby, the system represents a symmetric multiprocessing architecture. The second

mode involves that both clusters are running simultaneously. Thus, the system becomes

an asymmetric or heterogeneous multiprocessing architecture. These two modes are

considered in the present validation and accuracy assessment study.

Due to the lack of information, previous work has not introduced the microarchitecture

modeling aspects. In contrast, this study is focused on different execution models, e.g.

in-order and out-of-order, as well as their impact on the accuracy level.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 39

Rodinia Benchmark

OpenMP implementation

Exynos 5422

Odroid XU3 board
gem5 big.LITTLE

Full-System simulation

Execution

time

Error %

Real platform Simulated platform

EXPERIMENTAL PHASE

HMP

big

LITTLE

HMP

big

LITTLE

Simple Detailed Custom

Execution

time
Execution

time

Execution

time
Execution

time
Execution

time

Figure 3.7: Accuracy assessments flow for ARM big.LITTLE architecture.

Table 3.5: Exynos Octa 5422 chip specification.

Parameters Cortex-A7 Cortex-A15
(in-order) (out-of-order)

Number of cores 4 4
Core clocks 200 MHz - 1.4 GHz 200 MHz - 2 GHz

L1 D/I
Size 32 kB 32 kB
Assoc. 2-way 2-way
Latency 4 ns 4 ns

L2
Size 512 kB 2 MB
Assoc. 8-way 16-way
Latency 21 ns 21 ns

Coherent Interconnect CCI-400 64-bit
Memory 2 GB LPDDR3 RAM

933 MHz, 14.9 GB/s, 32-bit, 2 channels

3.4.2.1 Experimental setup

Reference platform. As a real reference platform, we use the Odroid XU3 board. It

is equipped with the Exynos Octa 5422 chip. The general architecture parameters are

taken from the product web page [8] and are presented in Table 3.5.

The block diagram of Exynos Octa 5422 chip is shown in Figure 3.8. It features two

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 40

clusters, big and LITTLE, each of which consists of quad Cortex-A15 and quad Cortex-

A7 cores respectively. Each cluster operates at different frequencies, from 200MHz up

to 1.4GHz for the LITTLE and up to 2GHz for the big. Each core has its private

instruction (I) and data (D) caches. Both clusters own private L2 cache that is shared

among their cores. Cache sizes differ: the Cortex-A7 cluster has a smaller 512kB L2

cache and the Cortex-A15 has a 2MB L2 cache. L1 as well as L2 sizes, associativity and

latency are taken from the recently published works [93] [47]. L2 caches are connected

to the DRAM memory via the 64-bit cache coherent interconnect CCI-400 [100]. As

a system memory, Exynos Octa 5422 chip contains 2GB LPDDR3 package on package

(PoP) RAM. It runs at 933MHz frequency and with 2x32 bit bus achieves a 14.9GB/s

memory bandwidth.

It is important to note, that the configurations listed above are further inconsistent de-

pending on the sources. Furthermore, Samsung has an ARM architecture license, thus

the actual chip architecture (including cache coherent interconnect and microarchitec-

ture) may significantly deviate from ARM ‘reference design’ and therefore participates

in the specification error.

To avoid the error caused by the lack of DVFS and thermal throttling implementation

on the simulated system, we disable these features on the reference board. The GPU

component is not used in the experiments.

Cortex-A7

in-order

Cortex-A7

in-order

Cortex-A7

in-order

Cortex-A7

in-order

Cortex-A15

out-of-order

Cortex-A15

out-of-order

Cortex-A15

out-of-order

Cortex-A15

out-of-order

L2

L2

C
o

h
er

en
t

In
te

r
co

n
n

ec
t

D
R

A
M

LITTLE cluster

big cluster

Figure 3.8: ARM big.LITTLE heterogeneous multicore processor architecture.

Performance model. We configure our simulation system following the reference

platform specification. The gem5 framework provides a set of CPU models, among which

are in-order and out-of-order models. The in-order ARM ISA CPU model currently is

not supported. This issue is often discussed in the research community and according to

gem5 developers there are three solutions: (i) TimingSimpleCPU model, (ii) MinorCPU

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 41

model and (iii) DerivO3CPU model, which can be modified to produce quasi-in-order

execution behavior [46] [47].

The actual gem5 full system mode has a number of limitations. To overcome these

limitations, we realize a set of enhancements:

• Support of eight ARM cores: the first limitation is related to the available

ARM MPCore processor model that supports only four ARM v7 cores. To run

eight ARM-cores system we modify the description of the snoop control unit reg-

ister. Thus, the SCU count contains no masked number of cores. The diff patch

is illustrated below.

diff -u a/src/dev/arm//a9scu.cc b/src/dev/arm// a9scu.cc

--- a/src/dev/arm// a9scu.cc

+++ b/src/dev/arm//a9scu.cc

@@ -63,11 +63,12 @@

pkt ->set (1); // SCU already enabled

break;

case Config:

- assert(sys ->numContexts () <= 4);

+ assert(sys ->numContexts () <= 8);

int smp_bits , core_cnt;

smp_bits = power(2,sys ->numContexts ()) - 1;

core_cnt = sys ->numContexts () - 1;

- pkt ->set(smp_bits << 4 | core_cnt);

+ pkt ->set(core_cnt);

break;

default:

• Heterogeneous multicore: to build the cluster-based quad ARM Cortex-A15

core together with the quad ARM Cortex-A7 core system, the creation script is

enriched by the possibility to merge various CPU models, e.g. in-order and out-

of-order, throughout all full system simulation modes.

• Multiple frequency domains: to get the big and the LITTLE clusters operate

at different frequencies we supply the full system simulation mode with the ability

to separately assign distinct clocks to cores.

• Multiple shared L2 caches: another gem5 limitation concerns multiple L2

caches that are individually shared among clusters. We add the option to identify

the L2 cache number to full system simulation mode. The big.LITTLE technology

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 42

assumes cache coherency even when all eight cores are working simultaneously.

This sophisticated task is performed at the hardware level by means of a coherent

interconnect. Because the particular ARM CCI-400 is not implemented in gem5,

we use the CoherentXBar component. This coherent crossbar connects a number

of (potentially) snooping masters and slaves, and routes the requests and responses

based on the address, also forwards all requests to the snoopers and deals with the

snoop responses. It can be used as a template for modeling QPI, HyperTransport,

ACE and coherent OCP buses, and is typically used for the L1-to-L2 buses and as

the main system interconnect [101].

System Software. The reference Odroid XU3 board runs the latest Ubuntu 14.04 OS

on Linux kernel LTS 3.10, which supports global task scheduling. Note that throughout

all our experiments we do not use the embedded graphical processing unit. Several

modifications are performed in the kernel source code to enable gem5 full system support.

These modifications are summarized as follows:

• Ability to boot eight cores simultaneously. This modification relates to

that described previously and aims at enabling a higher core count in the hard-

ware model, at the SCU-level. The corresponding function fetching the number

of available cores from the hardware register has been modified accordingly. The

corresponding diff patch is presented below.

diff --git arch/arm/kernel/smp_scu.c arch/arm/kernel/smp_scu.c

--- a/linux -2.8.38/ arch/arm/kernel/smp_scu.c

+++ b/linux -2.8.38/ arch/arm/kernel/smp_scu.c

@@ -26,7 +26,8 @@

unsigned int __init scu_get_core_count(void __iomem *scu_base)

{

unsigned int ncores = __raw_readl(scu_base + SCU_CONFIG);

- return (ncores & 0x03) + 1;

+ return ncores + 1;

}

• Global Interrupt Controller support: The cpu logical map function presented

in Linux kernel 3.10 is posing problem, the former implementation (Linux kernel

3.7) is used here.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 43

Benchmark. The Rodinia benchmark suite [102] is used throughout the rest of the sec-

tion. It is composed of applications and kernels from different domains such as bioinfor-

matics, image processing, data mining, medical imaging and physics simulation. It also

includes simpler compute-intensive kernels such as LU decomposition and graph traver-

sal. Rodinia is designed for heterogeneous computing, for that reason CUDA, OpenMP

and OpenCL implementations are available. The OpenMP implementation is here cho-

sen, with four threads per cluster, i.e. one thread per core. Also, the GOMP CPU AFFINITY

variable is used to ensure identical thread scheduling on the board and on the gem5 sys-

tem. The following subset of applications is selected for the investigations: backprop,

bfs, heartwall, hotspot, kmeans openmp/serial, lud, nn, nw and srad v1/v2. The problem

size for each application is presented in Table 3.6.

Table 3.6: Rodinia benchmark description.

Application/Kernel Abbreviation Domain Problem size

Back Propagation backprop Pattern Recognition 65536
Breadth-First Search bfs Graph Algorithms 4096
Heart Wall heartwall Medical Imaging test.avi, 1 frame
HotSpot hotspot Physics Simulation 64 x 64
K-means openmp/serial kmeans Data Mining 100
Lower Upper Decomposition lud Linear Algebra 256
k-Nearest Neighbors nn Data Mining 42760
Needleman-Wunsch nw Bioinformatics 1024
Speckle Reducing Anisotropic srad v1 Image Processing 1 x 502 x 458
Diffusion srad v2 512 x 512

3.4.2.2 Accuracy assessments

In-order Cortex-A7 model. We explore three available options to model the ARM

in-order processor and to identify the accuracy of each one:

1. TimingSimpleCPU is the simplest purely functional in-order model, which uses

timing memory accesses.

2. MinorCPU is an in-order processor model with a fixed pipeline but configurable

data structures and execution behavior. It supports the Fetch (1,2), Decode and

Execute pipeline stages.

3. DerivO3CPU (modified) is the most complex out-of-order model which has Fetch,

Decode, Rename, Issue/Execute/Writeback and Commit pipeline stages.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 44

The comparative results are presented in Figure 3.9. Note that the scale for the execution

time is logarithmic. The figure shows the execution time for eleven Rodinia applications

and kernels executed on the Cortex-A7 cluster running at 200MHz on: (i) reference

board, (ii) gem5 TimingSimpleCPU model, (iii) gem5 MinorCPU and (iv) modified

gem5 DerivO3CPU model.

Board gem5 (TimingSimple) gem5 (Minor) gem5 (DerivO3 mod) 0% error gem5 (TimingSimple) gem5 (Minor) gem5 (DerivO3 mod)
Board gem5 (TimingSimple) gem5 (Minor) gem5 (DerivO3 mod) 0% error gem5 (TimingSimple) gem5 (Minor) gem5 (DerivO3 mod)

Er
ro

r (
%

)

−50
−25

0
25
50

Ex
ec

ut
io

n
tim

e
(m

s)

10

100

1000

ba
ck

pr
op bf

s

he
ar

tw
al

l

ho
ts

po
t

km
ea

ns
 o

m
p

km
ea

ns
 se

ria
l

lu
d

nn

nw

sr
ad

v1

sr
ad

v2

Figure 3.9: Execution time comparison for LITTLE Cortex-A7 cluster running at
200MHz.

The absolute error percentage varies between 1% and 50%. The minimum and maxi-

mum errors as well as the absolute average error for each scenario are listed in Table

3.7. The results show that the execution time absolute error for all three models is

around 22%. Thus, we conclude that for performance evaluation it is enough to use

the TimingSimpleCPU model. However, for microarchitectural and power consumption

explorations we suggest to use detailed CPU models.

Table 3.7: Cortex-A7 in-order model execution time error summary.

CPU model Minimum Maximum Absolute
error error average error

TimingSimpleCPU 0.6% 43.9% 21.4%
MinorCPU 5.7% 39.7% 22.5%
DerivO3CPU (mod) 2.2% 48.7% 21.6%

SMP and HMP modes. We compare the execution time observed on the board

to that given by our gem5 model executing the same workloads. The reported values

are averaged over five subsequent runs for ensuring consistency. In order to assess the

impact of core frequency, the following configurations are considered:

1. SMP mode: LITTLE Cortex-A7 cluster running at 200MHz, 800MHz and 1.4GHz

with 4 threads,

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 45

2. SMP mode: big Cortex-A15 cluster running at 200 MHz, 1.1GHz and 2GHz with

4 threads,

3. HMP mode: big.LITTLE Cortex-A7 and Cortex-A15 clusters running at 200/200MHz,

200MHz/2GHz, 1.4 GHz/200MHz and 1.4/2GHz with 8 threads.

The comparison results are presented in Appendix A Table A.1. For each configuration,

three rows provide the execution time obtained on the board (indicated as ‘B’) and with

gem5 simulator (indicated as ‘S’), and the corresponding absolute error (indicated as

‘%’). The comparison results are visualized in Figure 3.10. Each scenario has eleven

points that correspond to the chosen Rodinia kernels and applications. Their execution

time varies between milliseconds and seconds thus the scale is logarithmic. Two large-

dotted lines show the -50% and 50% error edges. The absolute error varies significantly

depending on the configuration, ranging from 1% to 57%.

To analyze the variability of the measurement the box-plot graphic representation is

proposed. Box-plot is a visualization tool, which allows summarizing of the distribution

of a dataset [103]. It provides a 5-number summary consisting of the minimum and

maximum range values, the upper and lower quartiles, and the median. There are

several modifications of the box-plot, for example 2/98 percentile, which provides seven

values, e.g. 2/10/25/50/75/90/98 [104].

Figure 3.11 shows a box-plot with 2/98 percentile reporting the observed mean error

between the model and the board. The extremes correspond to the bfs as a minimum

and the lud as a maximum outliers for the Cortex-A7 cluster, and to the backprop as

a minimum and the lud as a maximum for the Cortex-A15 cluster. We summarize the

observed errors:

• The average absolute error of the Cortex-A7 cluster running at 200MHz, 800MHz

and 1.4GHz ranges from 17% to 20%.

• The average error of the Cortex-A15 cluster running at 200MHz, 1.1GHz and 2GHz

ranges from 18% to 21%, worsening at higher frequencies.

• The average error of the system in HMP mode with Cortex-A7/A15 clusters run-

ning at 200/200MHz, 1.4/2GHz, 200 MHz/2GHz and 1.4 GHz/200MHz are 22.7%,

19.5%, 26.0% and 23.3% respectively.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 46

log

big.LITTLE (HMP)

A7/A15@200/200MHz
A7/A15@1.4/2GHz
A7/A15@200MHz/2GHz
A7/A15@1.4GHz/200MHz
0% error
+/- 50% error

Si
m

ul
at

ed
 e

xe
cu

tio
n

tim
e

(m
s)

1

10

100

1000

Measured execution time (ms)
1 10 100 1000

log

big cluster (SMP)

A15@200MHz
A15@1.1GHz
A15@2GHz
0% error
+/- 50% error

Si
m

ul
at

ed
 e

xe
cu

tio
n

tim
e

(m
s)

1

10

100

1000

Measured execution time (ms)
1 10 100 1000

log

LITTLE cluster (SMP)

A7@200MHz
A7@800MHz
A7@1.4GHz
0% error
+/- 50% error

Si
m

ul
at

ed
 e

xe
cu

tio
n

tim
e

(m
s)

1

10

100

Measured execution time (ms)
1 10 100 1000

Figure 3.10: Execution time comparison for big.LITTLE performance model.

+ Mean Outliers

HMPbig clusterLITTLE cluster
A

15
 @

 2
00

 M
H

z
A

7
@

 1
.4

 G
H

z/

A
15

 @
 2

 G
H

z
A

7
@

 2
00

 M
H

z/

A
15

 @
 2

00
 M

H
z

A
7

@
 1

.4
 G

H
z/

A
15

 @
 2

 G
H

z

A
7

@
 2

00
 M

H
z/

Er
ro

r (
%

)

−60
−40
−20

0
20
40
60

A
7

@
 2

00
 M

H
z

A
7

@
 8

00
 M

H
z

A
7

@
 1

.4
 G

H
z

A
15

 @
 2

00
 M

H
z

A
15

 @
 1

.1
 G

H
z

A
15

 @
 2

 G
H

z

Figure 3.11: Execution time error distribution of simulated Rodinia benchmark.

According to the previous accuracy investigations published in [45] and presented in the

previous section, the observed errors have multiple sources. The first and foremost source

relates to a non-fully cycle-accurate modeling of the in-order and out-of-order execution

pipelines of the Cortex-A7 and Cortex 15 respectively. The memory subsystem model

also plays an important role, especially regarding the memory controller and the specific

timings of the used DDR memory.

Sources of error investigation. For a more detailed analysis of sources of error,

we consider the application output information over the time spent in different stages,

e.g. initial setup, I/O, kernel execution, etc. We chose three applications: bfs, lud and

srad v1. The comparative results between the measured and the modeled Cortex-A15

cluster running at 1.1GHz are shown in Table 3.8. We notice that the execution time

error varies dramatically between 5% and 90% depending on the execution stage. The

total execution time is compensated. In the presented examples, we observe that the

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 47

Table 3.8: Application different stage comparison.

Stage Execution time (ms) Error
Board gem5

bfs
Read graph 0.58 0.04 -93.7%
Allocate memory 3.7 4.5 21.5%
Kernel 33.7 41.5 23%
Store results 5.1 3.3 -35.1%
Total 44.0 49.6 12.7%

lud
Kernel 79.476 72.384 -8.9%
Verify 216.514 347.586 60.5%
Total 295.99 419.976 41.9%

srad v1
Initial setup 0.31 0.06 -79.4%
Read image from file 140.5 259.4 84.6%
Resize image 3.5 3.3 -5.4%
Allocate memory 0.12 0.09 -29.5%
Extract image 90.3 8.8 -90.3%
Compute 14.4 11.1 -22.9%
Compress image 38.8 23.3 -40%
Save image into file 170.8 111.1 -35%
Free memory 2.4 0.9 -62.3%
Total 461.1 418.5 -9.2%

error of the computation stage is low and amounts to around 20%. At the same time,

stages related to memory operations, e.g. Store results, Read image from file, Save

image into file, etc., produce high error percentage. Thus, we conclude that the main

source of error in the proposed model is the memory system. The actual modeling of

the cache coherency in gem5 is probably not fully accounting for all advanced features

of the ARM cache coherent interconnect [105]. This observation can also explain the

slight error increase when switching to the HMP mode. In this mode, the memory

communications are more complex and inaccurate cache coherency protocol provides a

noticeable discrepancy.

3.4.3 Power modeling: Heterogeneous multicore architecture

Figure 3.12 depicts the accuracy assessment flow for the validation of the ARM big.LITTLE

power model. This study is related to the performance model evaluation in Section 3.4.2.

The power model includes the architecture description obtained from the architecture

simulator, i.e the gem5 performance model, the statistics file generated by the full system

simulation and the technology specification described in McPAT environment.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 48

Rodinia Benchmark

OpenMP implementation

Exynos 5422

Odroid XU3 board

gem5 big.LITTLE

Full System simulation

Error %

Real platform Simulated platform

EXPERIMENTAL PHASE

Power

McPAT

Power model

HMP big LITTLE

Execution

time

HMP big LITTLE

Power

Statistic
Execution

time

EtoS

Error %

EtoS

~ 22 %

Figure 3.12: Accuracy assessments flow for ARM big.LITTLE power model.

As well as in the performance model study, we consider three scenarios, that are big

cluster only in SMP mode, LITTLE cluster only in SMP mode and big.LITTLE ar-

chitecture in HMP mode. Besides the power metric comparison, we also calculate the

energy-to-solution mismatch by using the execution time results which have been re-

ported in Section 3.4.2 and presented in Appendix B Table A.1.

3.4.3.1 Experimental setup

The McPAT framework allows accurately calculating power consumption based on the

statistics collected through the gem5 simulation. The general architecture parameters

are configured according to Table 3.5. The additional McPAT parameters, which are

related to the manufacturing technology are presented in Table 3.9.

The Exynos Octa 5422 SoC is built using a 28nm manufacturing process. The Vdd

and temperatures are experimentally measured on the Odoid XU3 board by means of

the internal sensors. The Vdd values depend on the Linux kernel configuration and are

related to the adaptive supply voltage technique used in Samsung SoCs. The operating

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 49

Table 3.9: big.LITTLE McPAT parameters.

Parameters Cortex-A7 Cortex-A15
(in-order) (out-of-order)

Technology 28 nm
Vdd @ 200/200 MHz 0.91 V 0.91 V
Vdd @ 1.4/2 GHz 1.24 V 1.3 V
Temperature @ 200/200 MHz 310-320 K 310-320 K
Temperature @ 1.4/2 GHz 310-320 K 320-330 K

temperature strongly depends on the cluster architecture and application nature. For

the Cortex-A7 cluster, the temperature is always below 323K and the board fan is never

used to cool down the chip. For the Cortex-A15 cluster, the temperature strongly rises

above 323K and the board fan is configured to cool down the chip.

3.4.3.2 Accuracy assessments

The McPAT framework [19] provides the following results: area, peak dynamic, sub-

threshold leakage, gate leakage and runtime dynamic power estimations. To evaluate the

accuracy of the McPAT big.LITTLE model we compare the average power consumption

measured on the Odroid XU3 board to the average runtime power estimated in the

McPAT. The considered runtime power equals the sum of runtime dynamic power and

leakage power.

The following three scenarios are investigated: (i) Cortex-A7 cluster only running at

200 MHz and 1.4 GHz, (ii) Cortex-A15 cluster only running at 200MHz and 2GHz, (iii)

Cortex-A7 and Cortex-A15 running at 200/200MHz, 200 MHz/2GHz, 1.4 GHz/200MHz

and 1.4/2GHz respectively. The comparison results are presented in Table B.1. The re-

ported total power consumption equals the sum of the Cortex-A7 cluster power, Cortex-

A15 cluster power and the DDR memory power. Other peripherals such as storage,

network and cooling are therefore here not accounted for.

The error percentage distribution including the negative values is shown in Figure 3.13

in the form of box-plot. The highest error percentage is provided by the memory compo-

nent. The external memory model is the most influenced by the cache and interconnect

inaccuracy. These results allow estimating the power consumption that ranges between

tens and thousands of mW.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 50

Outliers+ MeanMemoryCortex A15Cortex A7

HMPbig clusterLITTLE cluster

A
15

 @
 2

00
 M

H
z

A
7

@
 1

.4
 G

H
z/

A
15

 @
 2

 G
H

z

A
7

@
 2

00
 M

H
z/

A
7

@
 2

00
 M

H
z

A
7

@
 1

.4
 G

H
z

A
15

 @
 2

00
 M

H
z

A
15

 @
 2

 G
H

z

Er
ro

r (
%

)
−40
−20

0
20
40
60

Figure 3.13: Power consumption error percentage summary.

The corresponding total power error percentage is 12.7%, 11.7% and 10.8% for the

LITTLE cluster, for the big cluster and for the HMP big.LITTLE respectively.

Based on the simulated execution time presented in Section 3.4.2 and the above total

power results we calculate the EtoS and compare it with the values measured on the

Exynos Octa 5422 chip. The comparison results among all applications are shown in

Figure 3.14. The average absolute error percentage is 21.9%, 27.9% and 22.1% for the

LITTLE cluster, the big cluster and HMP big.LITTLE respectively.

f) HMP (A7@1.4GHz / A15@2 GHz)

ba
ck

pr
op bf

s

he
ar

tw
al

l

ho
ts

po
t

km
ea

ns
om

p

lu
d nn nw

sr
ad

v1

-58.2%
13.2% 15.7% -3.5% -10% -29.3%

40.7%
-32.2% -2.5%

Er
ro

r (
%

)

Et
oS

 (m
J)

0
250
500
750

1000
1250

e) HMP (A7@200 / A15@200MHz)

ba
ck

pr
op bf

s

he
ar

tw
al

l

ho
ts

po
t

km
ea

ns
om

p

lu
d nn nw

sr
ad

v1

-33.5%
31.2% 0.1% -37.7%

10.5% -10.3%
33.4%

-36.2% 0.1%

Er
ro

r (
%

)

Et
oS

 (m
J)

0
250
500
750

1000
1250

d) big cluster (A15@2GHz)

-51.9%
33.3% 41.40%67.03% 16.4% 50.57% 27.3% -5.0% 16.4%

Er
ro

r (
%

)

Et
oS

 (m
J)

0
250
500
750

1000
1250

c) big cluster (A15@200MHz)

-43.3%
25.6% 29.3% 26.8% 12.1% 27.2%

-17.6% -7% -12.2%

Er
ro

r (
%

)

Et
oS

 (m
J)

0
250
500
750

1000
1250

b) LITTLE cluster (A7@1.4GHz)

-18.2% 25.1% 32.7% 14.3% -3.9% 23.4% -11.1% -7.7% 14.5%

Er
ro

r (
%

)

Et
oS

 (m
J)

0
100
200
300
400

a) LITTLE cluster (A7@200MHz)

Exynos 5422 gem5 + McPAT

-1.8%
44.4% 37.8% 45.7% 12.9%

59.5%
12.4% 14.5% 22.8%

Er
ro

r (
%

)

Et
oS

 (m
J)

0
100
200
300
400

Figure 3.14: Energy-to-solution comparison for ARM big.LITTLE architecture
model.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 51

The summary of error percentage for the execution time, power and EtoS is shown in

Figure 3.15. The EtoS error percentage includes both, the gem5 execution time error and

the McPAT power consumption error. Therefore, such scenarios as Cortex-A7 cluster

running at 200MHz and Cortex-A15 cluster running at 2GHz cumulates the error and

show a higher mismatch. On the other hand, the HMP scenarios have negative execution

time error and as a result a compensated EtoS.

HMPbig ClusterLITTLE Cluster

A
15

 @
 2

 G
H

z
A

7@
1.

4
G

H
z/

A
15

@
20

0
M

H
z

A
7@

20
0

M
H

z/

Execution time Power EtoS

Er
ro

r (
%

)

−20
−10

0
10
20
30
40

A
7@

20
0M

H
z

A
7@

1.
4G

H
z

A
15

@
20

0M
H

z

A
15

@
2G

H
z

Figure 3.15: Error percentage summary for performance, power and energy-to-
solution.

3.5 Discussion

In this chapter, we evaluated the accuracy of multicore architecture performance and

power models implemented in gem5 and McPAT simulation frameworks. Within this

study, three scenarios were investigated: (i) the performance model of the ARM dual-

core symmetric multiprocessor architecture, (ii) the performance model and (iii) the

power model of the ARM big.LITTLE heterogeneous multiprocessor architecture.

First scenario. This study focused on the performance metric evaluation, e.g. ex-

ecution time. The microarchitecture as well as the power consumption aspects were

out of the scope. We used an extensive set of multithreaded and serial benchmarks,

which represents a variety of scientific workloads (SPLASH-2 benchmark suite), media

applications (ALPBench) and memory bandwidth benchmark (STREAM). The accu-

racy evaluation showed that the error varies from 1.39% to 17.94%. No visible relation

between error and workload durations had been observed.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 52

Two applications, namely lu factorization and radix sort kernel, with different error

percentages were chosen to explore the accuracy dependency on the input problem size.

In both cases, the execution time mismatch has been growing with the application

problem size. These observations were also correlated with the number of L2 cache

misses which showed similar in direct ratio behavior.

We assume that these results are caused by an inaccurate model of the external DDR

memory together with the unrealistic model of the cache coherency protocol [105]. To

conclude, due to the lack of available architecture description information and overly

simple memory model, our performance model provides specification and abstraction

errors between 1% and 35%.

Second scenario. This study is related to the ARM big.LITTLE heterogeneous mul-

tiprocessor architecture performance and power models evaluation. The models have

been calibrated and validated w.r.t. the Exynos 5 Octa 5422 chip.

Within the performance model validation, the in-order Cortex-A7 model evaluated. The

results demonstrated the averaged error around 22% for all three considered scenarios,

i.e. TimingSimpleCPU, MinorCPU and DerivO3CPU (modified) models. As the au-

thors in [45] concluded, architectural simulators are not microarchitectural simulators.

If the main goal of the study is performance exploration and not the microarchitec-

ture components study, the choice of the model does not affect the results. Thus for

faster, yet accurate execution time analysis, the use of TimingSimpleCPU is sufficient.

For more detailed exploration of microarchitecture the MinorCPU may be used. Fi-

nally, for power consumption or are estimation, it is important to model each processor

component in detail thus the DerivO3CPU would be the best solution.

For this reason, the rest of the experiments were performed with DerivO3CPU (modi-

fied) Cortex-A7 model. The big.LITTLE performance model evaluation results demon-

strated around 20% of absolute error percentage in average. We observed that the

switching from SMP (either big or LITTLE cluster) to HMP mode does not affect the

error.

The additional analysis of the outputs of several applications showed, that the execution

stages related to the memory operations, e.g. image reading or results store, produce

high errors. While the kernel computation stage errors are less than 20%.

Chapter 3. Evaluation of multicore architecture models in cycle-approximate
simulation frameworks 53

Based on these observations we conclude that the ARM big.LITTLE performance model

also contains an inaccurate memory system. The first reason is the CoherentXBar

component that replaces the CCI-400 cache coherent interconnect. The second point is

the LPDDR3 memory controller, which timing settings are different from the real board

PoP RAM.

The last part of this chapter concerns the ARM big.LITTLE power model assessment.

The McPAT/gem5 simulation showed 13% of the total power consumption error in

average and 24% of the combined energy-to-solution error.

The accuracy evaluation results confirmed that the performance and power models im-

plemented in cycle-approximate simulation frameworks can be used to realistically pre-

dict desired exploration metrics. Nevertheless, these models are too slow for large scale

manycore architecture exploration. In this context, we followed to the approaches that

allow accelerating the simulation still preserving a suitable level of accuracy.

Chapter 4

Hybrid trace-oriented approach

for fast and accurate simulation

of manycore architectures

4.1 Introduction

Efficient exploration of complex manycore systems requires fast, flexible and yet accurate

simulators. Available industrial and academic simulators differ in terms of simulation

speed and accuracy trade-offs, and their adoption is usually defined by desired explo-

ration level. Cycle-accurate simulators are popular and attractive for computer archi-

tecture exploration. gem5 environment is a popular event-driven full system simulator

that provides a large number of simulation capabilities, such as a rich set of ISAs, CPU

models, system execution modes and memory system models. In Chapter 3 we evaluated

the accuracy level of gem5 simulator by modeling homogeneous and heterogeneous mul-

ticore architectures. According to the results, the performance model provides around

20% of error in average throughout all considered scenarios. Even though enabling flexi-

ble and detailed multicore architecture exploration, gem5 entails slow simulation speed,

thereby limiting its scope of applicability for large-scale manycore systems. This calls

for alternative approaches capable of providing high simulation speed while preserving

accuracy that is crucial to architectural exploration.

54

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 55

Within event-driven simulation paradigm there are two fundamental groups of simula-

tion time reduction approaches. The first group approaches allow increasing the number

of simulated events per second. It can be achieved by running the simulation distributed

across multiple host machines [35], [49], [50]. Just-in-time dynamic binary translation,

e.g. OVP [53] and QEMU [54], also refers to that category. JIT-based simulators are

instrumented with timing models so that basic architecture block models and their in-

teroperations can be driven according to annotated timing information. Such simulators

can achieve speeds close to thousands MIPS at the cost of limited accuracy. They often

focus on functional validation rather than those of architectural exploration.

The second group includes approaches designed to reduce the number of simulation

events required for accurate results. It concentrates on optimizing component descrip-

tions following the transaction-level modeling strategy [58] or by using trace-driven sim-

ulation [59]. While reducing the number of simulation events, the use of TLM for ar-

chitecture exploration is strongly penalized by the poor performance of SystemC kernel

and the lack of accurate microarchitecture modeling capabilities citeAutomaticTLM. A

various number of works that implement trace-driven approach have been proposed over

the past decades. Depending on the exploration target these approaches focus on simu-

lation of processor microarchitecture [65] [66], cache memory [67] [69], network-on-chip

[72] [73] or entire multi-/manycore architecture [75] [77] [79] [80] [81] [82] [83] [84].

Single-core architecture exploration has been successfully maintained by trace-driven

simulation over the last decades. However, its applicability to multicore architecture

exploration strongly requires complementary mechanisms to manage resource sharing,

memory allocation and data dependencies. In [75] and [81] authors focus on task distri-

bution exploration among multiple cores. Virtual synchronization techniques are there-

fore proposed. In [83] multithreading programming is considered but trace synchro-

nization mechanisms are not discussed. Focusing on manycore architecture exploration

authors in [77] propose to collect traces on single-core system and then replicate a sin-

gle trace on multiple cores. Trace synchronization is also out of the published work

scope. The existing multicore simulation works [79] [80] [82] [84] do not cover large-scale

manycore architecture exploration.

The presented work aims at proposing a novel hybrid trace-oriented simulation approach

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 56

for event-driven computer architecture simulators such as gem5. The fundamental prin-

ciple of the approach lies in decreasing simulation complexity by abstracting away core

execution into traces, as follows:

1. core execution traces, i.e. incoming/outgoing memory transactions, are captured

in a full system simulation;

2. these traces are augmented with synchronization semantics, then replicated into

so-called augmented vector traces to simulate systems made of a higher core count;

3. augmented vector traces are replayed into a final event-driven simulation through

traffic injectors; only interconnect and memory subsystem are actually simulated

thereby resulting in significant performance boost.

This approach is implemented in gem5 simulation framework and is validated on ARM

ISA (it operates however on other ISAs). Known limitations lie in the trace-driven nature

of the approach: threads are pinned to cores and runtime features such as load balanc-

ing are not modeled any further. Our solution advances state-of-the-art in trace-driven

simulation through its ability to fast and yet accurately simulate a computer architec-

ture made of M cores based on traces captured in a reference simulation on a system

comprising N cores, with M ≥ N , thanks to trace replication and synchronization.

This chapter is organized as follow: Section 4.2 introduces the general concepts of the

trace-driven simulation approach. In Section 4.3 we describe the proposed methodol-

ogy. Section 4.4 presents the implementation of the proposed trace-driven approach in

gem5 simulator. In Section 4.5 we evaluate the speedup and accuracy comparing to

the full system mode. An alternative implementation of trace simulation phase in RTL

framework and memory mapping investigations are presented in Section 4.6. Section 5.7

summarizes the results of the chapter.

4.2 Background

To define the trace-driven simulation concept the notion of trace is used. Trace is a time

ordered record of events on real system. We distinguish tree fundamental phases of the

trace-driven approach: trace collection, trace reduction and trace simulation.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 57

Trace collection. The first phase, which is devoted to trace collection may be divided

into two basic classes. The class determines what kind of reference system is used to

collect the traces: hardware-based or software-based. The hardware-based class is an

older approach and is complicated by the runtime perturbation and severely restricted

trace size issues. At the same time, the active development of software tools has pushed

researches toward software-based trace collection. Namely, the use of diverse emulation

and simulation frameworks breaks the wall of trace collection complexity and makes it

much easier. Nonetheless, the trace representativeness and completeness are still under

developer’s responsibility. It is the well-known fact that the output of any model is only

as good as the input to that model. Therefore, the accuracy issue is directly related to

the trace quality.

Trace reduction. Here we highlight the second common issue, which concerns the size

and interoperability of the collected traces. Depending on the assigned tasks the trace

size may reach hundreds of gigabytes per one workload. Even with the rapidly growing

disk space such amounts of data are unacceptable. As a result yet another intermediate

trace reduction phase occurs and is intended to reduce the size of the collected traces.

There are three essential groups of reduction techniques [106]: (i) compression, (ii)

sampling and (iii) filtering. Each of them is estimated according to such effectiveness

indicators as reduction factor and accuracy loss.

The compression technique involves the use of some compression algorithm [107] [106].

The effectiveness of compression depends not only on the reduction factor, but also

on the compression/decompression slowdown, which can wipe the achieved simulation

speedup. In general, this technique yields to no loss of accuracy.

The sampling technique focuses on the experiments with a large data set and is intended

to obtain a smaller representative set of traces [108] [109]. It has a number of restric-

tions concerning cache simulation. Due to the prediction methods used in the sampling

technique, the accuracy loss can be significant [110].

The filtering technique stores only the significant-event traces and filters the other. One

of the example of this technique is cache filtering [111] that stores only miss traces

ignoring the hits. The restrictions in this case concern cache size, lines and associativity,

which should be fixed. According to the trace-driven memory simulation survey [110],

the error of the filtering techniques is less than 5%.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 58

Trace Collection

Hardware-based Software-based

Full traces

Trace Reduction

FilteringSamplingCompression

Reduced traces

Trace Simulation

Simulation Emulation

Results Results

12

Figure 4.1: Trace-driven exploration flow.

Trace simulation. When the traces are collected and ready to be used the final phase,

e.g. trace simulation, begins. This is the key exploration stage, which should produce

essential results. Indeed, the trace collection and simulation phases can be performed

in the different environments. For example, traces collected on detailed full system

simulator then are injected into RTL simulator. The environment is often dictated by

the design space and expected accuracy.

Figure 4.1 illustrates the general concepts of trace-driven exploration flow. Notice, that

there are two exploration flow loops. The first loop (highlighted as ‘1’ in the figure)

presents the main path, which is traversed at least once during an exploration. The

short loop (highlighted as ‘2’ in the figure) addresses the design space exploration and

is the main source of benefits from the trace-driven approach. Depending on the chosen

implementation, the design space exploration may require multiple main loop iterations

that, obviously, reduce the efficiency of the trace-driven approach.

4.2.1 Abstraction levels of computer architecture exploration

The trace-driven approach have been widely used since the first publication in 1969

[112]. With the increasing complexity of explored architectures, the variety of trace-

driven approach application became more important. We classified them based on the

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 59

system abstraction levels.

Figure 4.2 schematically illustrates the various levels at which exploration can be con-

ducted in a typical computer architecture.

Control
Unit

Interface
Unit Registers

I Cache D Cache

Interconnection

Memory
Network
Interface

ALU

System Level
Node LevelProcessor Level

..

Figure 4.2: Computer architecture exploration levels.

The first level relates to processor microarchitecture study. Usually, it focuses on the

internal pipeline organization and instruction set architecture. At the processor level

simulation uses the instruction traces which may contain instruction opcodes, inter-

rupts, memory reference addresses. Authors in [113] [114] [64] investigate processor

microarchitecture using trace-driven simulation.

Node level explorations focus on memory hierarchy organization. As the basic perfor-

mance scaling issue in today computer architecture is memory bottleneck, this abstrac-

tion level is commonly used. The explored architecture may include multi-level cache

memory, interconnect, main memory. Memory or address traces are typically used on the

node-level exploration. They may contain virtual/physical address, memory reference

type, etc. Works [84] [82] [59] [61] focus on node-level exploration.

At system level, explorations relate to cluster behavior in which participating nodes

exchange messages via an arbitrary communication network. These messages are in-

troduced than by the I/O traces. This is the highest exploration level abstraction. It

targets machines with a very large number of processors, which communicate their par-

allel activities via MPI. Examples of system-level exploration have been published in

[35] [115] [116].

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 60

4.2.2 From in-order to out-of-order processor

Processor microarchitecture has undergone major changes. A variety of implementa-

tion concepts are used nowadays to achieve better performance at lower cost. Most of

them aim at instruction parallelization in order to hide usually much slower memory

communication latency. The following techniques for increasing the program execution

speed have been developed over the past decades: instruction pipelining, cache memory,

branch prediction, superscalar, out-of-order execution, register renaming. Each of them

brings more challenges into the trace-driven simulation.

In Figure 4.3 the in-order and out-of-order processor execution difference is demon-

strated. In both cases, the program executes three instructions. In the first line when

loading the value a cache miss occurs. In the case of the in-order execution illustrated in

Figure 4.3 a), the processor waits until the miss is satisfied to continue program execu-

tion. Instead, if the out-of-order execution is allowed, processor executes the following

independent instruction during the cache miss waiting. Thus, it achieves a significant

program execution speedup.

In-order execution

lw $3, 100($4)

add $2, $3, $4

sub $5, $6, $7

Out-of-order execution

lw $3, 100($4)

sub $5, $6, $7

add $2, $3, $4

cache miss

waits until the miss is satisfied

waits for the add

cache miss

executes sub during the cache miss

waits until the miss is satisfied

a) In-order processor execution example

b) Out-of-order processor execution example

Figure 4.3: In-order versus out-of-order processor execution.

While the in-order execution is easily reproducible by trace-driven simulation, the de-

pendency between load and add instructions in out-of-order processor requires a deeper

analysis. It is called the microdependency issue. In the node-level exploration when

the processor is abstracted away, the microdependency analysis plays an important role.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 61

The lack of accuracy in instruction order execution may lead into false memory accesses

and consequently may lead to significant runtime error.

4.2.3 From single-core to multicores processors

The crucial landmark in computer architecture, which is related to the switching from

single-core to multi-core processing sparked a wave of challenges throughout all rele-

vant community. Since, a field of parallel programming keeps pace with the rapidly

evolving multiprocessing architecture design. Two fundamental categories of architec-

ture/programming model couple are characterized by the memory organization. Figure

4.4 illustrates these principally different memory organizations: shared memory and

distributed memory [117].

PE PE PE

M

M PE MPE

MPEM PE

a) Shared memory b) Distributed memory

Figure 4.4: Memory organization: how processing elements (PEs) communicate and
access memory (M).

Shared memory architecture presented in Figure 4.4 a) implies that all processing

elements share the same address space and communicate through global memory reading

and writing operations. The main problem of shared memory architecture is performance

scaling degradation which is due to two factors:

1. The contention problem occurs when several processing elements try to access the

same memory location. The use of complex cache memory hierarchy became the

typical solution for this issue.

2. The presence of multiple copies of the same data in caches may cause coherence

problems. To ensure data consistency a variety of cache coherency protocols have

been developed.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 62

A great advantage of shared memory architecture is a simple programming model. It is

built on three main constructs: (i) task creation, (ii) communication and (iii) synchro-

nization. There are several most commonly used shared memory programming.

The POSIX Threads [96] is a standardized C language threads programming interface for

UNIX systems. Pthreads are defined as a set of programming types and procedure calls.

The library is supported by the most hardware vendors in addition to their proprietary

API’s.

The Open Multi-Processing API specification [118] defines a portable and scalable

shared-memory parallel programming model. It supports multi-platform programming

in C, C++ and FORTRAN on most processor architectures and operating systems from

the standard desktop computer to the supercomputer. OpenMP consists of a set of

compiler directives, library routines and environment variables for developing parallel

applications.

Another programming language for multithreaded parallel computing based on the C

and C++ is Cilk with its later commercialized versions Cilk++ and Cilk Plus [119]

[120]. Design in Cilk language assumes that the programmer is responsible to identify

parallel regions. While the decision how to actually divide the work between processors

is done by the runtime environment.

Distributed memory architecture presented in Figure 4.4 b) refers to a computer

system in which each processing element has its own private memory. Unlike the shared

memory architecture, there is no global memory that eliminates the race condition issue.

However, to access remote memory locations processing elements have to communicate

data to each other. Communication is performed through the interconnection network,

which is a key factor of the multi-processor architecture scaling.

Distributed memory programming model is based on the parallel task execution which

typically communicates by send/receive message passing. The key issue in distributed

memory programming is the complexity of data distribution schemes. It forces program-

mers to explicitly manage data location.

The Message Passing Interface (MPI) is a standardized communications protocol

that consists of a set of routines for implementing message-passing programs in different

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 63

programming languages such as FORTRAN, C, C++. MPI remains the dominant model

used in high-performance computing.

In addition to described basic memory organizations there are also adjacent scenarios. In

distributed shared memory the physically distributed memories are logically shared

and can be addressed as a global address space.

The multi-core/processor programming complexity which includes thread synchroniza-

tion, control and data dependencies, memory allocation brings new challenges to trace-

driven simulation.

In the case of node-level exploration when cores are abstracted away, extra mechanisms

that allow managing resource sharing and application control flow are required.

4.3 Methodology

In this section, we present the methodology based on the previously described general

concepts of the proposed hybrid trace-oriented approach. Here we define the key features

of the proposed approach:

• Abstraction level: We focus on the node-level exploration thus processor cores

are replaced by trace injectors and memory traces are used in the proposed trace-

driven simulation.

• Target system: Multi-/manycore architectures exploration is the primary goal

of this research.

• Trace reduction: Cache miss filtering technique is applied in order to reduce

trace file sizes and speedup the simulation.

• Synchronization: To ensure control and data dependencies a trace synchroniza-

tion technique is proposed. It is based on the complementary synchronization

traces collected from the annotations at application source code.

• Trace replication: To enable simulation of manycore architecture made of M

cores based on traces captured in a reference simulation on a system comprising

N cores, with M ≥ N using trace replication technique.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 64

• Microarchitecture: Microarchitecture details are hidden inside the trace injector

architecture. The out-of-order instruction execution is not the target of the current

study. Computation phase acceleration technique is proposed to emulate different

processor models.

4.3.1 From collection to simulation

We define the target system as consisting of the hardware architecture and executed

software. In Figure 4.5 (a), the hardware architecture comprises N cores, each one

having its private instruction (I) and data (D) caches. Communications between cores

and external memory is achieved via an arbitrary communication infrastructure that

may comprise caches (L2, L3).

... ...

Trace File #1 Trace File #M

Core #1

Memory Infrastructure

Communication

Infrastructure

Trace Collection Interface

Core #N

I$ D$ I$ D$

Trace

Injector #1

vI$ vD$

Communication

Infrastructure

Trace

Injector #M

vI$ vD$

Memory Infrastructure

(a) Trace Collection (b) Trace Processing (c) Trace Simulation

Trace Files

#1 .. #N

Reference Memory System Simulated Memory System

Trace Files

#1 .. #M

Figure 4.5: Three phases of trace-driven approach.

Figure 4.5 depicts communications as a stream of request and response events via the

communication and memory infrastructures. The structure of a trace associated with a

request event is a record of the time at which the event occurs, the memory access type

(read or write), destination address and data value. The structure of a trace associated

with a response event is a record of the time when the associated request event is satisfied.

The trace collection interface shown in Figure 4.5 (a) tracks and stores all request and

response traces. It is located at the interface of each private cache memory. This allows

capturing information on the core side memory requests and corresponding memory side

responses. As a global output of collection phase a trace-set consisting of one trace-file

for each core is obtained.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 65

The trace-driven reduction phase is intended to prepare the collected traces for further

use. To reduce the trace file size our approach applies trace filtering technique therefore

only traces related to cache miss event are considered. This technique allows significantly

improving simulation speed as not only processor computation events are abstracted but

also these related to cache hits. Simulation speedup obtained by cache miss filtering

inversely depends on the cache miss rate. According to [110], filtering techniques show

good accuracy. However, such aspects of cache memory behavior as cold start bias,

replacement policies, writebacks should be taken into account.

The trace-driven simulation phase depicted in Figure 4.5 (c) takes the augmented vector

traces as inputs, and per-core traces are injected in the communication and memory

subsystem by trace injectors. I$ and D$ are replaced by their virtual implementation

(vI$ and vD$) to manage cache misses only and therefore anticipate false hits caused by

empty registers.

4.3.1.1 Synchronization traces

Software system includes applications and an operating system. Collected memory traces

contain computation-to-communication application behavior but does not provide syn-

chronization mechanisms supported by operating system.

In multithreading programming model which is dedicated to shared memory multicore

architecture, multiple threads exist within the same process and share resources. Each

core executes a separate thread simultaneously. As a trace set of one trace-file per each

core is obtained after the collection phase we assume that each trace-file corresponds to

one thread. Multithreading programs contains synchronization points therefore making

execution behavior non-deterministic. That is, between two synchronization points task

execution depends on the multiple runtime factors, e.g. cache misses, interconnect traffic,

memory bandwidth. Once traces are collected, nothing can guarantee that tasks will be

executed in the same way.

Figure 4.6 illustrates the basic points of multithreading program execution. The syn-

chronization points (barriers and join) introduce control-flow dependencies, which are

typically managed by programming APIs. We propose the trace synchronization tech-

nique which allows to control the trace simulation flow according to the runtime factors.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 66

The additional synchronization traces are collected at the moments of APIs call and

then are inserted into memory traces.

main thread

thread 1

thread 2

thread 3
cr

ea
te

 t
hr

ea
d

0

cr
ea

te
 t
hr

ea
d

1

cr
ea

te
 t
hr

ea
d

2

cr
ea

te
 t
hr

ea
d

3

th
re

ad
 b

ar
ri

er
th

re
ad

 b
ar

ri
er

th
re

ad
 j

oi
n

ex
ec

ex
ec

ex
ec

ex
ec

Task1 Task2 Task3

Figure 4.6: Shared memory programming.

For the target system with distributed memory organization, the same mechanism of

synchronization traces collection can be applied. Figure 4.7 illustrates the basic points of

MPI program execution. In this case synchronization traces are collected at the moment

of message passing.

Task A

Task B

MP MP

MP – message passing

waiting

Figure 4.7: Distributed memory programming.

4.3.1.2 Trace replication

To enable efficient manycore architecture exploration the proposed approach features

the trace replication technique. It implies collection of traces on a reference system

comprising N cores and simulation of replicated traces on a target system comprising

M cores, with M ≥ N .

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 67

Figure 4.8 illustrates how the trace pattern looks like when a multithreaded application is

executed. In regular applications, computation and communication phases alternate or-

derly within each thread. In the case of data-dependent application, computation phases

depend on the input-data size therefore trace pattern cannot be correctly replicated.

If the application is not data-dependent, computation phases are deterministic and com-

munication phases are not-deterministic, e.g. depend on the interconnect traffic. Repli-

cating such trace pattern, we multiply the virtual size of processed data. During commu-

nication phase multiple memory operations, e.g. read or write, are performed. Accesses

may be either to shared or to private memory blocks. Distribution of memory oper-

ations is related to application nature. This aspect must be taken into account when

replicating the trace pattern.

Initialization Computation Communication Trace pattern

Thread 1

Thread 2

R/W to shared/private

Figure 4.8: Replication trace pattern.

4.3.1.3 Computation phase scaling

In some cases, traces collection or replay for a specific CPU model can be challenging. In

order to emulate different CPU model behavior using traces collected on reference system

we propose the technique for computation phase scaling. The proposed approach implies

application of an approximately estimated coefficient to computation phase duration as

shown in Figure 4.9. ‘CPU model 1’ represents the reference trace simulation and ‘CPU

model 2’ is the target trace simulation where an acceleration coefficient k = 1.8 is applied

to reference computation phases.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 68

Such technique does not guarantee high accuracy level because a computation phase

usually includes various operations (e.g. floating point, integer) which execution ratio

may severely differ. Therefore, it requires detailed analysis for each target application.

CPU model 1

Computation Communication Trace pattern

CPU model 2

k =1.8

Figure 4.9: Computation phase acceleration.

4.3.2 Case studies

In this section, we present the design space exploration which the proposed trace-driven

simulation covers. Figure 4.10 illustrates how the collected on the reference system

traces can be used. In the left side of the figure, two collection cases are presented:

reference system which is combined on four processing elements executes four-threaded

Application A and Appication B. Figure 4.10 b) shows exploration scenarios, which

are based on two trace sets. We divided them into four groups. They also can be

combined in a different way.

1. First group focuses on interconnect and memory system exploration. Processing

elements are replaced by trace injectors, their number and type remain the same

as in reference system. Only interconnect/memory configurations are modified.

2. Second group addresses multitasking execution exploration where two trace sets

are merged under one simulation. This group targets application and OS studies.

3. Third group concerns heterogeneous multicore exploration. Heterogeneity in this

case is achieved by applying an acceleration coefficient at trace injection mecha-

nism. This approach is used in order to emulate different core architectures.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 69

PE

Reference System

PE PE PE

PE

Reference System

PE PE PE

TI

Target System

TI TI TI

TI

Target System

TI TI TI

TI

Target System

TI TI TI

TI TI TI TI

TI

Target System

TI TI TI

a) Trace Collection b) Trace Simulation

Application A

Application B

1. Interconnect/Memory exploration

2. Multitask execution exploration

3. Heterogeneous multicore exploration

4. Manycore replication exploration

Application A traces

Application B traces

Exploration target

Replicated traces

Figure 4.10: Trace-driven simulation case studies.

4. Last simulation group aims at manycore architecture exploration through trace

replication technique. This technique lies in actual duplication of collected traces

in order to emulate larger number of cores as the reference system contains. This

exploration scenario allows to extend the collection system capabilities and to

switch from multicore to manycore architectures.

4.3.3 Evaluation metrics

We evaluate the proposed trace-driven approach on two criteria: simulation speedup

and accuracy.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 70

Simulation speedup. To identify the gain in terms of simulation speed of the trace-

driven approach, we consider simulation process from two perspectives: full event-driven

simulation and corresponding trace-driven simulation. These perspectives are illustrated

in Figure 4.11, where a target architecture consists of four communicating layers cor-

responding to processing elements/trace injectors, private cache memory, interconnect

and external memory. The time intervals T1 and T2 respectively represent the induced

durations in case of cache miss and cache hit.

Time

PE

Cache L1

Interconnect

Memory

computation communication computation

Time

TI

Cache L1

Interconnect

Memory

communication

Memory Request Memory Response

(a) event-driven simulation

(b) trace-driven simulation
- computation events - interconnect and external memory events

- L1 cache memory events - trace injector events

T1 T2

Figure 4.11: Comparing event-driven and trace–driven simulations. Events represent
inter-communication activity between components.

In order to quantify the speedup of the trace-driven approach compared to a full event-

driven simulation, the following event sets are considered: (set EPE) for all events related

to PE computation, Ecache same for cache memory access events composed of cache hit

events (set Ehit) and cache miss events (set Emiss), Ecomm same for communication

events (covering the interconnection and external memory) and ETI same for trace

injector events. In addition, we denote by ξED the set of all possible events occurring

during the full event-driven simulation. This set is defined as the union of (EPE), Ecache

and Ecomm. Given a set E, the denotation |E| represents the cardinality of E.

The trace-driven simulation which is shown in Figure 4.11 (b) replaces PEs of Figure

4.11 (a) by TIs. The PE events are therefore replaced by TI events. Due to trace

reduction, the set ETI only includes cache miss events.

Then, the set ξTD of events composing trace-driven simulation is defined as the union

of ETI , Emiss and Ecomm.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 71

To identify the gain in terms of speedup obtained with the proposed trace-driven simu-

lation, we first observe that the full event-driven simulation time TED equals to TPE +

Tcache+Tcomm (i.e., the simulation time corresponding to PE, cache and communication),

while the trace-driven simulation time TTD is TTI + Tmiss + Tcomm (i.e., the simulation

time corresponding to TI, cache miss and communication). Then, we need to establish

a relation between the simulation time and the number of simulated events. For a set

E of events, where tE is the simulation time for each event in E, the total simulation

time TE of all events of E is tE ∗ |E|. Here, we consider that this simulation time is

proportional to the number of events according to event-driven paradigm.

Hence, the gain G in terms of speedup is given by the ratio between the simulation

durations in the two simulation modes, as follows:

G =
TED

TTD
≈ tEPE ∗ |EPE |+ tEcache ∗ |Ecache|+ tEcomm ∗ |Ecomm|

tETI ∗ |ETI |+ tEmiss ∗ |Emiss|+ tEcomm ∗ |Ecomm|
(4.1)

The above gain is implicitly related to numbers of events in the two simulation modes.

For computation-intensive applications, |EPE | is significantly greater than |Ecache| +

|Ecomm|. Then, the gain provided by the trace-driven approach is observed by the fact

that the events related to PEs are abstracted away via |ETI |, which accelerates the

simulation. For communication-intensive applications, the gain is less important since

we only keep the events related to cache miss, which reduces the simulation time in a

smaller proportion.

Simulation accuracy The main metric that we use to evaluate an architecture per-

formance is execution time (see Chapter 3). For the trace-driven simulation, execution

time is calculated as time between the first trace record and the last simulated event

that is last response arrival.

Let us consider a reference trace collected from the trace collection phase in Figure

4.5. We replay this trace according to the trace processing phase. First, we configure

the memory and/or communication infrastructures in a different way compared to the

initial system in trace collection phase. The resulting trace injector has to deal with the

fact that memory responses may arrive at different moments compared to the timeline

recorded in the reference simulation. This is illustrated in Figure 4.12. Trace injector

sends a request at time t1, which reaches the memory at time t′2, while in the reference

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 72

simulation this request was expected at t2 (represented by bullets with dashed borders).

This implies a shifting delay that will postpone the response to the injector at time t′3

instead of t3. As a result, observed temporal behavior changes. The shifting delay is

determined by the trace injector during the simulation. It is used online to dynamically

adjust the occurrence times of subsequent events.

Time

TI

L1 Cache

Interconnect

Memory

shifting delay

- trace injector events
- L1 cache memory events

- expected trace events
- actual simulation events

t1 t2 t3t2 t3

shifting delay

Figure 4.12: Dynamic allocation of the trace-drive simulation events in case of mem-
ory system modification.

The accuracy of the proposed trace-driven simulation is reflected by the observed varia-

tions of the temporal behaviors of a system upon different memory and communication

configuration settings. To assess this accuracy, we consider the full event-driven simula-

tion as the reference result. Given the execution time xED captured from event-driven

simulation and the corresponding execution time xTD obtained from trace-driven simu-

lation, we define accuracy as follows:

xTD/xED ∗ 100%, xED > 0

100%, xED = xTD = 0

(4.2)

The error percentage of the event-driven simulation regarding the reference result is:

(xED − xTD)/xED ∗ 100%, xED > 0

0%, xED = xTD = 0

(4.3)

Now, to define the relative error, we consider the number of events within a time slot

δ of execution, which results from an arbitrary partitioning of the total execution time.

Assuming Emiss = Emiss req
⋃
Emiss resp, the number of cache miss request events from

a set Emiss req, observed during δ is noted as |Emiss req|δ|.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 73

Restricting the simulation to cache miss requests, the relative error percentage of the

event-driven simulation regarding the reference result, is:


∣∣∣EEDmiss req|δ∣∣∣−∣∣∣ETDmiss req|δ∣∣∣∣∣∣EED

miss req|δ

∣∣∣ ∗ 100%,
∣∣EED

miss req|δ
∣∣ > 0

0%,
∣∣EED

miss req|δ
∣∣ = ∣∣ETD

miss req|δ
∣∣ = 0

(4.4)

where
∣∣∣EEDmiss req|δ∣∣∣ and

∣∣∣ETDmiss req|δ∣∣∣ respectively denote the number of cache miss request

events in full event-driven and trace-driven simulations.

4.4 Trace-driven implementation in gem5

We present the implementation of the proposed trace-driven simulation approach in

gem5 according to the three main phases already distinguished in the previous section.

4.4.1 Trace collection and reduction

The first two phases, i.e. trace collection and reduction are treated at the same time.

To implement the trace collection interface gem5 already has the necessary functionality

that is part of its trace-based debugging which contains DPRINTF statements. Each

DPRINTF is associated with a debug flag and refers to architecture components such as a

bus, a cache, Ethernet controller, etc. To obtain specific information regarding memory

requests/responses, it is enough to slightly modify the gem5 simulator code by adding

new debug flags. It provides a flexible text-format file, which can be in some cases

sub-optimal in terms of space and processing time.

The gem5 memory subsystem is based on the notions of port, packet and request/re-

sponse. Ports connect memory components to each other. They support three types

of accesses: (i) timing access, which is designed for the realistic timing modeling; (ii)

atomic access, which is used for fast forwarding and is processed instantaneously, and

(iii) functional access, which is leveraged for a specific purpose. A packet is used to

encapsulate a transfer between two memory objects. Requests and responses are used

to encapsulate CPU or I/O device messages. Our implementation of trace collection

interface relies on these notions. Figure 4.13 (a) shows an extract of the collected trace

file. Each memory access is introduced by the pair of events: request send and response

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 74

receipt. The request event record contains the following set of information: time when

the event occurred, request source, i.e. core number and instruction/data cache port,

memory access type (Read or Write), cache coherency flags, target physical address,

packet size (8, 16, 32 or 64 bits) and value. The response event record contains only

time and destination information.

2902097628000: system.cpu0.icache: ReadReq f: 1 1 a: fffd018 s: 4 v: 4043833472

2902097674000: system.cpu0.icache: resp

Time tick Event source Type Flags Address Size Value

(a) Memory request/response traces collected via debug flags

 Thread id 0 create tick: 2901449500000

 Thread id 0 barrier tick: 2908594414000

 Thread id 0 join tick: 2927322559000

(b) Dependency traces collected via macros

Figure 4.13: An example of collected trace file extract.

In this implementation, we consider a multithreading programming model and the de-

pendencies management is maintained by synchronization traces together with trace

arbiter. The first step of our synchronization mechanism consists in collecting addi-

tional synchronization traces. For that purpose, we add macros to input application

source code to capture synchronization points. The gem5 specific operation rpns() re-

turns the time at which it has been invoked in the format of internal time count, e.g.

ticks. We create three macros, CREATE, BARRIER and JOIN, based on POSIX thread API

and the rpns() operation of gem5 as shown in Figure 4.14 (a). The execution output of

an application annotated with such macros is presented in Figure 4.14 (b). This makes

it possible to automatically append in the execution trace synchronization information

that are later used.

4.4.2 Trace simulation

For the simulation of the augmented vector traces, two main components are imple-

mented in gem5 simulator: (i) Trace Injector and (ii) Trace Arbiter.

The trace injector consists of two fundamental modules: the first is dedicated to parse

a trace file and to provide request/response structures, whereas the second triggers

request injection and time interval management, i.e. time shifting of upcoming requests

according to response times.

The second important component is trace arbiter. It is connected to each injector and

has a global view of the entire system. Arbiter deals with dependency traces collected

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 75

#define PTHREAD_CREATE(...) pthread_create(&threads[i], 0,func,(void *) ¶ms);

 printf(“Thread id %i create tick: %lu\n”, ID, rpns());

#define PTHREAD_BARRIER(...) pthread_barrier_wait(barrier);

 printf(“Thread id %i barrier tick: %lu\n”, ID, rpns());

#define PTHREAD_JOIN(...) pthread_join(threads[i], 0);

printf(“Thread id %i join tick: %lu\n”, ID, rpns());

 Thread id 0 create tick: 1627449500

 Thread id 1 create tick: 1627690378

 Thread id 1 barrier tick: 1628594414

 Thread id 0 barrier tick: 1628632384

 Thread id 0 join tick: 1727194499

 Thread id 1 join tick: 1727322559

(a) Application macros for dependency management

(b) Dependency traces collected via macros

Figure 4.14: An example of collected synchronization traces.

via the macros. Communications between the arbiter and injectors are achieved via a

simple protocol. Trace injector has two basic states: LOCK and UNLOCK. As soon as

the trace injector reaches a synchronization entry in the trace, it sends a corresponding

signal to the arbiter. The arbiter sets the injector to LOCK state and waits until all the

other injectors reach the same synchronization point. Once it happens, the locked arbiter

unlocks all injectors and the simulation continues. Exchange of messages between the

arbiter and the injectors is carried by atomic packets and does not affect the runtime.

Arbiter and injector connections are shown in Figure 4.15.

Trace
Injector #0

Trace
Injector #1

Trace
Injector #2

Trace
Injector #3

0
1
2
3
LOCK

UNLOCK

UNLOCK

LOCK
LOCK

LOCK# STATE
Arbiter

Figure 4.15: Trace arbiter.

Figure 4.16 shows the block diagram of trace injector internal logic.

After initialization, trace injector parse the trace file and identifies the trace type. If

the trace corresponds to the memory access, trace injector inserts the Send event into

global event queue. The request will be sent automatically by the framework. Then the

trace injector is waiting until the memory request arrives. This time is not deterministic

and depends on the runtime factors.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 76

TI Initialization

Read trace file

Trace type

Send packet to TA

Synchronization trace

Get command from TA

Waiting interrupt (0 s)

Command type

Waiting interrupt (N s)

LOCK

Calculate shift

UNLOCK

Correct event time

Memory trace

Insert Send into EQ

Get memory response

Waiting interrupt (N s)

Calculate shift

Exit simulation

EOF?

Yes

No

Figure 4.16: Trace injector block diagram.

In the case of synchronization traces trace injector sends an Atomic packet to trace

arbiter and at the same cycle receives the command. If the command is LOCK, it will

wait until the UNLOCK arrives. This time is also not deterministic.

The calculate shift blocks indicate where the runtime shift is calculated. It is then used

to correct the next event time.

Yet another important modification concerns the cache. Since the trace-driven simu-

lation starts with a cold (empty) memory, it causes a form of bias. This problem is

usually referred to as cold-start bias [121]. For private caches, we exploit the fact that

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 77

all memory requests are cache misses and are declared as such for the trace-driven sim-

ulation. This solution eliminates cold-start error, but brings a new restriction: each

individual trace file collected through one cache size cannot be simulated with other

cache sizes. For the other levels of cache, e.g. L2, there are a few methods, discussed in

[121], reducing the problem.

Limitations. The proposed approach has three main constraints. The first is related

to the core and L1 cache abstraction. It requires recollecting traces and changing their

configuration, e.g. core frequency, L1 cache size, etc. The second constraint concerns

the nature of considered applications. The proposed trace replication approach does

not support applications in which the computation phase cannot be statically bounded,

e.g. data-dependent applications for which this phase depends on input data. The third

constraint concerns simulation host machine capabilities. Indeed some traces could

take tens of gigabytes disk space and tens of gigabytes operating memory for 512 cores

simulation. Thus, considered machines should provide enough storage space.

4.5 Evaluation

In this section we evaluate the following aspects of the proposed approach and its im-

plementation:

• simulation accuracy assessment throughout several case studies compared to the

reference full system simulation;

• evaluation of achieved simulation speed gain in comparison to the corresponding

full system simulation;

• simulation cost evaluation in terms of hard disk space required for traces, simula-

tion runtime distribution among trace-driven system components and host machine

memory occupancy depending on the number of components.

4.5.1 Experimental setup

We validate the proposed trace-driven approach by providing a detailed analysis of the

simulation process. The reference platform is built on the top of gem5 framework in

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 78

full system simulation mode. In Chapter 3 we provided a detailed analysis of the gem5

simulator by evaluating the accuracy level against the real hardware. We assume that

in addition to the previous validation, the comparison to the full system simulation

provides an acceptable vision of the proposed approach accuracy.

Our reference platform is characterized by a set of architecture parameters: (i) 1-,2-

,4-,8-cores processor running at 500 MHz, (ii) 4-kB private L1 D/I caches, (iii) 64 bits

channel width, (iv) 30 ns DDR memory latency and (v) Linux Kernel 2.6.38. The fastest

ARM ISA TimingSimpleCPU (in-order) model is used. The processors are connected

to the DDR memory via a coherent bus.

Benchmark. We consider a set of applications from scientific and multimedia comput-

ing domain, implemented in POSIX Threads. Some of them come from the SPLASH-2

benchmark suite [95]: radix, barnes, lu and ocean, which are relevant due to the presence

of multiple dependencies in the corresponding algorithms. In addition, we adopt further

applications: Motion JPEG (MJPEG), encoding video streams H.264, Finite Impulse

Filter (FIR), Smith Waterman (SW), histogram for histogram graph computing (hist),

Merge Sort, N-body for simulating a dynamical system of particles, Reduction of vectors

(reduct), Vector Operations (VO) and Fast Fourier Transform (FFT).

The list of applications, their detailed description, problem size per thread and collected

trace size are presented in Table 4.1.

Table 4.1: Applications description.

Application Domain Problem size Trace size (Gb) Execution time (ms)
FS TD

SPLASH-2
Barnes Scientific 512 1.04 161.7 161.3

LU Scientific 64 2.51 479 484
Ocean Scientific 16 2.48 602.7 602.5
Radix Scientific 16 384 0.99 18.8 19.1

Mont-Blanc
Hist Scientific 2 * 1024 * 1024 0.06 267.2 264.9

Merge Sort Scientific 512 5.48 48169 48150
N-body Scientific 1024 0.66 881.1 880.9

Reduction Scientific 4 * 1024 * 1024 2.49 371.6 371.5
VO Scientific 128 * 1024 0.92 301 300.9
FFT Scientific 1 * 512 * 1024 11.6 1745 1852

Adopted
MJPEG Multimedia 203 kB 0.04 26.4 26.2

FIR Scientific 1024 0.87 454.9 454.6
SW Scientific 6 x 2 0.05 18.6 17.8

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 79

4.5.2 Simulation accuracy

Since the proposed approach provides multiple case studies that are described in Section

4.3, we propose to consider several accuracy evaluation scenarios:

• The first scenario is intended to validate the trace injection functionality and

identify the possible modeling and abstraction errors.

• The second scenario evaluates the accuracy of interconnect and memory system

exploration.

• The third scenario assesses the trace replication technique.

Functionality validation. The trace files are collected from the above reference plat-

form with eight cores, and then are executed in the proposed trace-driven simulator

without any architectural changes. The comparison results are shown in Figure 4.17.

These results include the execution time obtained on the reference platform and on

the evaluated trace-driven system, as well as the comparative error percentage. Note

that the execution time scale is logarithmic. The execution time error of the proposed

trace-driven simulation compared to the corresponding full system simulation is within

0.1% and 5.8%. The execution time of chosen applications varies from tens of millisec-

onds to thousands of seconds thus we can guarantee that the error does not depend on

the duration and is not accumulated. The evaluated applications combine these with-

out dependency issues and applications which contains multiple synchronization points,

namely radix, lu, ocean and barnes.

The mechanism that we defined for addressing the trace synchronization issue has been

presented in Sections 4.3. The dynamic behavior of the trace execution is illustrated on

the integer radix sort kernel.

In the trace collection phase, the reference platform contains four cores and radix kernel

is executed with four threads. For each core, the numbers of cache misses observed during

a given time slot and the induced error are illustrated in Figure 4.18. The moments at

which synchronization barriers occur are highlighted by dashed vertical lines. We observe

a fluctuation of the error on barriers occurrences. However, the observed peaks in the

error are compensated during the entire simulation, so that the cumulated error is only

1.39%.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 80

Log

0.2%
0.1%1.1%

1.8%

5.8%
0.1%

0.1%

0.1%

0.1%

0.9%

4.3%1%

0.1%

Full System Trace Driven
Ex

ec
ut

io
n

tim
e

(S
ec

on
ds

)

0.1

1

10

100

1000

Benchmarks

fir

m
jp

eg sw

hi
st

og
ra

m

m
er

ge
-s

or
t

n-
bo

dy vo

re
du

ct ff
t

ra
di

x lu

oc
ea

n

ba
rn

es

Figure 4.17: Execution time comparison between full system and trace-driven modes
among all applications.

Barriers

(b) Core 2

E
rr
or

(%
)

−100
0

100

Time Slots
0 25 50 75 100 125

500
1000
1500
2000

500
1000
1500
2000

E
rr
or

(%
)

−100
0

100

(a) Core 1

Trace Driven

500
1000
1500
2000

Full System

500
1000
1500
2000

Figure 4.18: Cache miss pattern comparison between full system and trace-driven
execution for Radix kernel.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 81

Memory exploration validation. We evaluate the trace-driven simulation consis-

tency by varying the internal architectural parameters just after the trace collection

phase. Five memory latency values are used: 5ns, 15ns, 30ns, 45ns and 55ns. Their

impact on two applications (MJPEG and fft) execution time is evaluated, as illustrated

in Figure 4.19. The results show that the error in terms of execution time is around

6%. Thus, the proposed trace-driven simulation reproduces the application behavior

properly even when architectural parameters change.

6.07%5.17%
4.51% 5.79%

2.78%

ET
 F

FT
 (S

ec
on

ds
)

0.5
1
1.5
2
2.5

0.43%0.39%
0.02%

0.45%
0.60%

FS (MJPEG) TD (MJPEG) FS (FFT) TD (FFT)

ET
 M

JP
EG

 (S
ec

on
ds

)

0.03

0.035

0.04

0.045

Memory latency
5ns 15ns 30ns 45ns 55ns

Figure 4.19: Execution time comparison between full system and trace-driven modes
by varying the internal architectural parameters.

In another experiment, we used the captured traces to evaluate system configurations

including components that were not present during the original trace collection phase.

To illustrate this evaluation, traces are collected from our reference platform with eight

cores running mjpeg, and then transferred to a trace-driven system, which includes an

L2 cache shared between all trace-injectors.

Here, in order to minimize the error in terms of execution time, we must address the

cold-start bias issue as discussed in Section 4.4. We propose to warm up L2 cache by

considering traces captured before application execution phase. We collect and compare

three traces: (i) execution time traces (ET), (ii) execution time with initialization phase

traces (ET + init) and (iii) execution time with initialization and OS boot phases. The

results are presented in Figure 4.20. The traces in (i) lead to 14.01% of absolute error

on average. By using the traces in (ii), we obtain an absolute error of 7.88% on average,

which is two times less than provided by (i). The traces in (iii) give 6.60% of absolute

error on average, which is the best.

Trace replication validation. We evaluate the opportunity of simulating the repli-

cation of a given trace set on more processing elements than those used to collect this

trace set. A preliminary observation about cache miss behaviors is that they are similar.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 82

7.39%
8.38%

18.49%
8.09% 13.89%

15.18%

0.30%
1.17%

7.51%

8.24% 10.48%

14.86%0.04%

Full system
Trace-driven (ET)

Trace-driven (ET and initialization)
Trace-driven (ET and OS boot)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14

L2 cache size
Reference 256kB 1MB 8MB 16MB

Figure 4.20: Execution time comparison between full system and trace-driven modes
by including L2 cache memory.

The cache misses of all cores follow the same memory access time pattern. Then, such

a pattern can be used as a possible trace template to be replicated among more cores.

We explore different scenarios for identifying such a pattern by considering the mjpeg

application, where traces are collected from: (i) 1-core reference platform, (ii) 2-cores

reference platform, (iii) 4-cores reference platform and (iv) 8-cores reference platform.

The traces obtained from these scenarios are replicated on a platform with eight trace

injectors. We use normalized correlation function to produce an accurate estimation.

Correlation is made between the number of cache misses obtained through the 8-cores

gem5 full system simulation and the number of cache misses obtained via the above four

scenarios. The obtained correlation coefficients for each scenario are shown in Figure

4.21.

1

2

4

8

x 8

x 4

x 2

8 8x 1

Cores TIs Correlation Coefficient Execution time error

0.77

0.80

0.76

0.99

3.34%

2.93%

0.92%

0.98%

Figure 4.21: Replication technique: correlation coefficient and execution time error
analysis.

These results show that the three scenarios provide very similar behaviors regardless

of the number of cores used. The produced execution time error comparing to the full

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 83

Table 4.2: Application problem size impact on correlation coefficients.

Application Radix LU Ocean Barnes

Problem size 1 0.82 0.65 0.57 0.59

Problem size 2 0.87 0.75 0.66 0.73

Problem size 3 0.90 0.90 0.80 0.80

system simulation is under 4%. Thus, the 2-cores scenario is relevant enough for a

meaningful replication targeting up to hundreds of injectors.

In order to improve the correlation coefficients, we study the impact of application

problem size on these coefficients. We focus on four applications: radix, lu, ocean and

barnes. For each of these applications, we chose three problem sizes, where Size 1 <

Size 2 < Size 3. Here, size means the amount of processed data. Then, we collected

their corresponding traces on the reference platform with four cores and four threads.

Table 4.2 shows the average correlation coefficients calculated for each application trace

according to the three problem sizes. Note the significant increase in correlation with

larger problem sizes, originating from the increased pressure to memory subsystem: a

higher dynamics in the cache miss rate over time results in more prominent correlation.

The correlation studies concern only time component of the trace pattern. However,

the second important aspect of trace replication technique is memory access address

distribution. As the physical address field is directly accessed by the trace injector it

provides a powerful tool to memory mapping exploration.

Figure 4.22: Replication technique: address map of MJPEG 1 core 1 thread.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 84

a) I$ Memory Access map

b) D$ Memory Access map

Figure 4.23: Replication technique: address map of MJPEG 8 cores replication.

In Figure 4.22 we presented the timing memory access map for a single-core one-threaded

mjpeg execution. By replicating that trace we applied the following principle: instruc-

tion cache accesses are replicated with the same address map, data cache addresses are

randomly shifted for each trace injector. The resulting timing memory access maps for

instruction and data caches are demonstrated in Figure 4.23 a) and b) respectively.

Such distribution allows emulating the shared and private thread data distribution.

More complex algorithms can be applied for data mapping exploration.

4.5.3 Simulation speedup

To demonstrate the achieved simulation speed gain we run a set of applications on gem5

full system and trace-driven systems with eight cores/trace injectors. The simulation

time comparison as well as relative speedup are shown in Figure 5.5.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 85

log

20x6x38x
36x

8.5x734x
33x79x

366x

800x

122x136x
21x

Full system Trace-driven

Si
m

ul
at

io
n

tim
e

(S
ec

on
ds

)

10

100

1000

104

105

106

107

Benchmarks

fir

m
jp

eg sw

hi
st

og
ra

m

m
er

ge
-s

or
t

n-
bo

dy vo

re
du

ct ff
t

ra
di

x lu

oc
ea

n

ba
rn

es

Figure 4.24: Simulation time comparison between full system and trace-driven modes.

The results provided by the trace-driven simulation show that the gain in terms of

speedup is in a fairly wide range of 6x−800x. Such discrepancy is due to the application

nature. That is computation-intensive applications provide higher simulation time gain

than communication-intensive applications.

We chose two applications, e.g. mjpeg and h.264, in order to illustrate the simulation

speed dynamics when changing the number of cores in system architecture. The sim-

ulation time comparison among three scenarios are shown in Figure 4.25: full system

simulation of an application with Linux kernel boot, only application full system simu-

lation and corresponding trace-driven simulation.

With the increasing number of cores, the simulation time in full system modes rises

significantly, while in trace-driven mode it varies slightly.

Simulation scaling issue required further analysis. For that reason, we apply our trace

replication technique to demonstrate the simulation time behavior for up to 256 injec-

tors. The results are shown in Figure 4.26. Note that the scale for the simulation time

is logarithmic. We tested mjpeg application with 1 kB, 4kB and 16 kB L1 cache sizes,

histogram, vo and sw applications with 4 kB L1 cache size. While on a small scale

trace-driven mode provides an imperceptible simulation time growth on a large scale we

observe a significant simulation slowdown. Such behavior is caused by the architecture

component simulation. As the number of injectors increases the accompanying memory

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 86

b) x264 application

a) MJPEG application

Si
m

ul
at

io
n

tim
e

(S
ec

on
ds

)

0

500

1000

1500

2000

of cores/TIs

1 2 3 4 5 6 7 8

FS + boot FS Trace driven

Si
m

ul
at

io
n

tim
e

(S
ec

on
ds

)

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Figure 4.25: Simulation time scaling: comparison between full system and trace-
driven modes.

traffic that includes cache coherency protocol messages also increases. We expect a simi-

lar behavior for full system mode simulation as well. However, the most time consuming

simulation for 256 injectors takes 6 hours that is still acceptable.

4.5.4 Simulation cost

We here analyze the breakdown of the simulation effort on the host machine for the

following components: trace injector, cache, bus, memory and gem5 simulator itself.

A single core full system simulation is also given for reference. From the achieved

experiments, we observed similar distributions that can be instantiated as in Figure

4.27 for the mjpeg decoder. We replicate the gem5 full systam simulation trace of this

application into up to 256 injectors. The analysis is performed with the standard gprof

profiling tool [122]. For comparison, the simulation percentage of a single CPU is 70%

of simulation runtime while for a single trace injector it only takes 25%. The percentage

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 87

MJPEG 1 kB L1 cache size
MJPEG 4 kB L1 cache size
MJPEG 16 kB L1 cache size
Hist 4 kB L1 cache size
VO 4 kB L1 cache size
SW 4 kB L1 cache size

Si
m

ul
at

io
n

tim
e

(S
ec

on
ds

)

1

10

100

1000

104

of injectors
1 2 4 8 16 32 64 128 256

Figure 4.26: Simulation time scaling up to 256 trace injectors system.

of the cache simulation time increases with the number of injectors. For 256 injectors it

amounts to 90%. The most part of simulation time is spent on cache coherency snooping

protocol simulation. Since the target system is bus-based, the memory traffic congestion

and performance degradation is induced by increasing processors and injectors.

TDFS

1

Cache
Bus

TI
Memory

GEM5 Simulator
CPU

Si
m

ul
at

io
n

R
un

tim
e

(%
)

0

20

40

60

80

100

of CPUs/Injectors
1 2 4 8 16 32 64 128 256

Figure 4.27: Simulation time distribution among cache, bus, memory and gem5 sim-
ulator for trace-driven simulation.

The last simulation characteristic that we explore is host machine memory occupancy.

The main goal is to identify the impact of trace file size on host memory occupancy.

For this experiment, we selected two applications with strongly different trace file sizes:

mjpeg with 40Mb and vo with 1 GB. To analyze the simulation we used the Valgrind tool

for memory debugging and profiling [85]. By replicating and running these applications,

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 88

the memory occupancy is same for both. The functions that consume the memory

belong to the gem5 simulator itself. This is illustrated by Figure 4.28, where the memory

occupancy is evaluated w.r.t. the number of injectors.

3200

932.4
305.1

125.064.042.534.130.228.2

M
em

or
y

O
cc

up
an

cy
 (M

B
)

0

1k

2k

3k

4k

of injectors
1 2 4 8 16 32 64 128 256

Figure 4.28: Memory consumption variation for trace-driven simulation.

4.6 Application to compute accelerators exploration

In this section, we demonstrate how the proposed trace-driven approach is applied to

compute accelerators exploration. This work has been done in collaboration with R.

Garibotti and has been presented in [24]. In [24], author aims to discover a compute

accelerator configuration that achieves the best trade-off performance scalability versus

power consumption. He propose a scalable and memory-efficient solution for compute

accelerators explored through centralized shared memory and then distributed shared

memory approaches.

The proposed trace-driven simulation approach has been adapted for this purpose so that

collected traces are not injected in gem5 simulation framework but rather in a cycle-

accurate simulation that contains SystemC NoC and memory models. Trace injectors

read trace files and, according to the given memory mapping, construct the memory

request transactions that are then fed into the NoC.

Figure 4.29 shows the five evaluated memory mappings. Two mappings are considered

for CSM, denoted Long Hops. The other mapping, referred to as Short Hops consists

in assigning all of the shared memory in a central PE for better reachability. Three

mappings are evaluated for DSM. Contiguous mapping is the default mapping used in

the initial DSM investigations. Interleaved mapping consists in assigning every other

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 89

memory position (32 bit word size) to another PE in a cyclic fashion. Distributed

mapping assigns memory blocks on the sole basis of their nature: microkernel and

applications. Within a category (i.e. OS or APP), contiguous mapping is used.

MEM

MEM

APP OS APP

OS APP OS

APP OS APP

Long HOPS Short HOPS Continuous mapping Interleaved mapping Distributed mapping

CSM mode DSM mode

1 2 3 4 5

Figure 4.29: Different evaluated memory mappings.

A set of twelve application kernels has been used for benchmarking the presented map-

pings. Figure 4.30 shows the CSM long hops-normalized execution time for different

vSMP cluster sizes ranging from 8 to 64 processing elements. CSM short-hops mapping

leads to no visible improvement performance-wise. This originates from the memory

bottleneck not addressed by this mapping, which only relocates all of the shared data

to a central processing element (Figure 4.29). Conversely, interleaved and distributed

mappings yield to significant speedup for most applications, especially for large array

sizes.

DSM mode (Distributed mapping)
DSM mode (Interleaved mapping)
DSM mode (Contiguous mapping)

CSM mode (Short HOPS)
CSM mode (Long HOPS) - reference

d) 8x8 (reference CSM mode Long HOPS)

0
1
2
3
4
5
6

fft fir

m
jp

eg sw

re
du

ct vo so
rt

hi
st

ba
rn

es ffm ra
di

x

oc
ea

n

c) 8x4 (reference CSM mode Long HOPS)

N
or

m
al

iz
ed

 sp
ee

du
p

0
1
2
3
4
5
6

fft fir

m
jp

eg sw

re
du

ct vo so
rt

hi
st

ba
rn

es ffm ra
di

x

oc
ea

n

b) 4x4 (reference CSM mode Long HOPS)

0
0.5

1
1.5

2
2.5

3

fft fir

m
jp

eg sw

re
du

ct vo so
rt

hi
st

ba
rn

es ffm ra
di

x

oc
ea

n

a) 4x2 (reference CSM mode Long HOPS)

N
or

m
al

iz
ed

 sp
ee

du
p

0
0.5

1
1.5

2
2.5

3

fft fir

m
jp

eg sw

re
du

ct vo so
rt

hi
st

ba
rn

es ffm ra
di

x

oc
ea

n

Figure 4.30: Execution time for different memory mappings and vSMP cluster sizes.

Chapter 4. Hybrid trace-oriented approach for fast and accurate simulation 90

Figure 4.31 depicts the same information averaged over the entire set of benchmarks.

For 8x8 PE array size, up to 3-fold reduction in execution time is observed which shows

the criticality of memory access for such workloads.

DSM modeCSM mode

4x2
4x4

8x4
8x8

N
or

m
al

iz
ed

 sp
ee

du
p

0

1

2

3

4

Lo
ng

 H
O

PS

Sh
or

t H
O

PS

C
on

tig
uo

us

In
te

rle
av

ed

D
is

tri
bu

te
d

Figure 4.31: Normalized execution time averaged for all benchmarks.

4.7 Discussion

In this chapter we presented the hybrid trace-oriented approach for fast and accurate

manycore simulation. We provided a detailed description of the approach implementa-

tion on the top of gem5 simulator. The comparison to the reference full system simu-

lation showed the expected speed gain in a wide range of 6x − 800x depending on the

application nature.

The great advantage of the proposed approach is related to its hybrid nature. That

means that the trace-driven simulation is embedded into an event-driven environment

so that the system architecture including cache, interconnect and memory is dynamically

simulated at runtime. The trace-driven implementation was validated versus the cycle-

approximate full system simulation. The results showed a 14% of average execution time

error in the worst case architecture exploration scenario.

The proposed approach includes a set of techniques designed to enable accurate and

flexible simulation. They includes: the trace synchronization technique, which allows

managing control and data dependencies, the trace replication technique, which in tan-

dem with the trace synchronization allows us to emulate a parallel application behavior

for up to hundreds cores architecture and the computation phase scaling technique ded-

icated to fast and flexible switching between different CPU models.

Chapter 5

Single-ISA heterogeneous

architecture exploration

5.1 Introduction

Among the popular initiatives, the use of low-power embedded SoCs to build energy-

efficient supercomputers is regarded as a promising solution [5]. In this context, the

use of mobile heterogeneous processor technology for further benefits in term of energy-

efficiency appears attractive. Single-ISA heterogeneous multicore [6] processors are of

particular interest because of being software-agnostic i.e. a unique standard SMP oper-

ating system may be used, taking advantage of load-balancing features for fine control

over performance and power consumption.

In this thesis we explore performance and power trade-offs of popular single-ISA hetero-

geneous multicore ARM big.LITTLE processor. Detailed analysis of the existing Exynos

5 Octa SoC provides useful insight allowing us to infer alternative ARM big.LITTLE

inspired architecture configurations that perform better energy-wise. For doing this

the validated gem5 models in Chapter 3 and the proposed in Chapter 4 trace-driven

simulation approach are used.

This chapter presents the ARM big.LITTLE architecture exploration. Section 5.2 intro-

duces the background in heterogeneous single-ISA multicore architectures. In Section 5.3

we analyze performance and energy-efficiency of the existing Exynos 5 Octa SoC. Alter-

native big.LITTLE configurations are proposed in Section 5.4. Their performance and

91

Chapter 5. Single-ISA heterogeneous architecture exploration 92

power evaluation by using previously validated gem5/McPAT models are also shown in

this section. Section 5.5 demonstrates the big.LITTLE architecture scaling by means of

the proposed trace-driven simulation. Section 5.7 summarizes the results of the chapter.

5.2 Background

5.2.1 Single-ISA Heterogeneous multicore architecture

Heterogeneous multicore architectures usually consist of multiple cores that differ from

each other from their instruction set architectures, their execution paradigms, e.g. in-

order and out-of-order, their cache size and other fundamental characteristics. In single-

ISA heterogeneous multicore architecture [6] all cores execute the same instruction set

but differ in terms of performance and energy consumption.

In the mobile market, several SoC platforms operating on that principle exist, such as

Nvidia Tegra 3/4 system-on-chip [7] and the ARM big.LITTLE technology integrated

to Samsung Exynos 5/7 Octa SoC [8] as well as other SoCs from other vendors.

Possessing non-uniform computing environment under a unique standard SMP operat-

ing system, single-ISA heterogeneous multicores enable various adaptive software im-

plementations. A large part of studies on single-ISA heterogeneous multicores focuses

on efficient task scheduling for performance and power trade-offs. In [10] the authors

propose a hierarchical power management framework for heterogeneous multicores, in

particular for ARM big.LITTLE architecture, in order to minimize energy consump-

tion within the thermal design power constraint. Yu et al. in [11] evaluates ARM

big.LITTLE power-aware task scheduling, via power saving techniques such as dynamic

voltage and frequency scaling and dynamic hot plug. Tan et al. in [12] implement

a computation approximation-aware scheduling framework in order to minimize energy

consumption and maximize quality of service, while preserving performance and thermal

design power constraints.

Chapter 5. Single-ISA heterogeneous architecture exploration 93

5.2.2 OpenMP programming model

In order to take advantage of a single-ISA heterogeneous multicore architecture, an

appropriate strategy to manage computation task distribution is required. Within a

multithreading programming model, it refers to efficient thread scheduling.

The OpenMP [118] is a popular shared memory parallel programming interface. OpenMP

features thread-based fork-join task allocation model. It consists of a set of compiler

directives, library routines and environment variables for developing parallel applica-

tions. The OpenMP loop scheduling allows determining the way in which iterations of

a parallel loop are assigned to threads. Iterations can be assigned in chunks, e.g. the

number of contiguous iterations. There are three general loop scheduling types:

• Static: it is a default loop scheduling algorithm, which divides the loop into equal

or almost equal chunks. Chunk size therefore is calculated as

number of interations/number of threads. Simple static scheduling provides

the lowest overhead, but the potential load imbalance can cause significant syn-

chronization delays.

• Dynamic: it allows assigning chunks at runtime once threads complete previously

assigned iterations. The internal work queue of chunk-sized blocks is used. By

default, the chunk size is ‘1’ and can be explicitly specified by a programmer at

compile time. Dynamic scheduling allows better balancing the load among threads,

but provides higher overhead costs.

• Guided: it is similar to dynamic scheduling, but the chunk size exponentially de-

creases from the value calculated as number of interations/number of threads

to ‘1’ by default or to value explicitly specified by a programmer at compile time.

There are two loop scheduling types, which combine the general algorithms: auto del-

egates the decision to the compiler and runtime uses the OMP schedule environment

variable.

Chapter 5. Single-ISA heterogeneous architecture exploration 94

5.2.3 ARM big.LITTLE technology

The ARM big.LITTLE technology implements two sets of cores: low power energy-

efficient cluster that is called ‘LITTLE’ and power hungry high performance cluster

which is called ‘big’. Having a large number of suitable architectures, ARM provides

multiple combinations. In current work, we focus on the Cortex-A7/Cortex-A15 core

cluster pair. As demonstrated in Figure 5.1, chosen combination covers significant per-

formance/power area. Manufacturers promise to achieve ∼50% energy saving together

with better performance [123]. Heterogeneity causes tough technical challenges, which

concern hardware cache coherency and programming.

Performance

P
ow
er

Figure 5.1: ARM big.LITTLE technology [123].

5.2.3.1 Hardware support

In general, big.LITTLE architecture contains the following set of components:

• CPU includes two clusters each of which has a set of cores and L2 cache memory.

• Interconnect component manages hardware cache coherency.

• Memory and periphery interfaces.

The interconnect component plays an essential role in architecture performance. To

demonstrate how the cache coherence interconnect works we consider two implementa-

tions which are shown in Figure 5.2. Figure a) illustrates the timing diagram of cluster

Chapter 5. Single-ISA heterogeneous architecture exploration 95

switching in the case of AXI (AMBA3) interconnect. In this case, the cache clean op-

eration that writes back the up-to-date data into DRAM is required. For example, for

2 MB L2 cache this operation takes around 1.4 ms. ARM also released the CCI-400

interconnect, which is shown in Figure b). It allows reducing core switching time to

around 30 us [123].

big cluster operation Cache clean

LITTLE cluster operation

big cluster operation

LITTLE cluster operation

Operation time

Operation time

a) AXI (AMBA3) interconnect

b) CCI (AMBA4) interconnect

Figure 5.2: ARM big.LITTLE Cache Coherent Interconnect.

5.2.3.2 Software support

In particular, ARM big.LITTLE processors have three main software execution models

[99] which are illustrated in Figure 5.3.

The first and simplest model is called cluster migration. A single cluster is active at a

time, and migration is triggered on a given workload threshold.

The second mode named CPU migration relies on pairing every “big” core with a “LIT-

TLE” core. Each pair of cores acts as a virtual core in which only one actual core among

the combined two is powered up and running at a time. Only four physical cores at most

are active. The main difference between clustered migration and CPU migration models

is that the four actual cores running at a time are identical in the former while they can

be different in the latter.

Chapter 5. Single-ISA heterogeneous architecture exploration 96

A7 A7

A7 A7

A15 A15

A15 A15

A7 A7

A7 A7

A15 A15

A15 A15

A7 A7

A7 A7

A15 A15

A15 A15

A7 A7

A7 A7

A15 A15

A15 A15

A7 A7

A7 A7

A15 A15

A15 A15

A7 A7

A7 A7

A15 A15

A15 A15

a) Cluster Migration

b) CPU Migration

c) Global Task Scheduling

LITTLE Cluster big Cluster LITTLE Cluster big Cluster

LITTLE Cluster big Cluster LITTLE Cluster big Cluster

LITTLE Cluster big Cluster LITTLE Cluster big Cluster

Per-cluster switching

Per-core switching

No switching

Figure 5.3: Software execution models for ARM big.LITTLE architecture.

The heterogeneous multi-processing mode, also known as global task scheduling allows

using all of the cores together. A strong argument in favor of HMP is that it provides

a fine-grained control of workloads and consequently opens a promising direction for

additional performance/energy trade-offs.

We summarize the key features of presented ARM big.LITTLE execution models in

Table 5.1. We assume that both, performance and power saving depend on the switching

granularity. Thus the most promising and yet little studied HMP execution mode is our

target research in this chapter.

Table 5.1: ARM big.LITTLE execution model comparison.

Cluster migration Core migration HMP

Switching Low flexibility Medium flexibility High flexibility
granularity
Maximum Medium: Medium: High:

performance N ‘big’ cores N ‘big’ cores N ‘big’ + M ‘LITTLE’ cores
Power saving Low: coarse granularity Medium High: fine granularity

Chapter 5. Single-ISA heterogeneous architecture exploration 97

5.3 Evaluation of the Exynos 5 Octa SoC

5.3.1 Experimental setup

In this section, we present a detailed analysis of the heterogeneous big.LITTLE archi-

tecture. Figure 5.4 pictures the used exploration flow. As shown on the right-hand

side of the figure, we first design a gem5 big.LITTLE processor model for performance

evaluation and a McPAT model for power consumption estimation. The accuracy in

both performance and power estimations was assessed in Section 3.4 by comparing to

that measured on the reference Exynos Octa 5422 SoC system, a Odroid XU3 computer

board as represented in the left-hand side of the figure. This study is conducted using

the Rodinia benchmark suite through its OpenMP implementation [124] executed on

both the board and in the gem5 full system environment. Furthermore, a detailed anal-

ysis of the Rodinia kernels and applications runtime behavior is conducted using the

Scalasca/Score-P instrumentation [125] and Vampir event trace data visualization tool

[126]. This analysis provides useful insight allowing us to infer new ARM big.LITTLE

inspired architecture configurations that perform better energy-wise.

Rodinia Benchmark

OpenMP implementation

Scalasca/Score-P

Instrumentation

Exynos 5422

Odroid XU3 board

Gem5 big.LITTLE

Full-System simulation

Event trace

data

Vampir

Visualization

Runtime

behavior

 Statistic

McPAT

Execution

time

Power

Execution

time

Power

%

%

Feedback

Measurement flow Modeling flow

Figure 5.4: ARM big.LITTLE exploration flow.

System software. The reference Odroid XU3 board runs the latest Ubuntu 14.04 OS

on Linux kernel LTS 3.10, which supports global task scheduling. Note that throughout

all experiments we did not use the embedded GPU.

Chapter 5. Single-ISA heterogeneous architecture exploration 98

The Rodinia benchmark is used throughout the rest of the chapter. The OpenMP

implementation is here chosen, with four threads per cluster, i.e. one thread per core.

The following subset of applications is selected: backprop, bfs, heartwall, hotspot, kmeans

openmp/serial, lud, nn, nw and srad v1/v2. Detailed description of selected applications

and kernels including the problem size have been presented in Table 3.6.

We consider the following scenarios:

• Cortex-A7 cluster running at 200MHz, 800MHz and 1.4GHz;

• Cortex-A15 cluster running at 200MHz, 800MHz and 2GHz;

• HMP Cortex-A7/A15 running at 200/200MHz, 800/800MHz, 1.4/2GHz, 200MHz/2GHz

and 1.4GHz/200MHz.

5.3.2 Performance analysis

Reported execution times are normalized against the slowest configuration, i.e. Cortex-

A7 running at 200MHz. Observed speedup is shown in Figure 5.5 using logarithmic

scale.

lud

A15
@80

0M
Hz

A7@
80

0M
Hz/

A15
@20

0M
Hz

A7@
1.4

GHz/

A15
@2G

Hz

A7@
1.4

GHz/

A15
@2G

Hz

A7@
20

0M
Hz/

A15
@20

0M
Hz

A7@
20

0M
Hz/

A15
@2G

Hz

A15
@80

0M
Hz

A15
@20

0M
Hz

A7@
1.4

GHz

A7@
80

0M
Hz

srad v2srad v1nwnnkmeans serialkmeans openmphotspotheartwallbfsbackprop

N
or

m
al

iz
ed

 S
pe

ed
up

 (r
ef

 A
7@

20
0M

H
z)

0.5
1
2

5
10
20

Figure 5.5: Normalized measured speedup.

Based on these results the following observations can be made:

• Speedup strongly depends on application nature.

• Best performance is in most cases achieved by Cortex-A15 running at 2GHz. A

speedup of 21x is observed for kmeans openmp in big cluster.

Chapter 5. Single-ISA heterogeneous architecture exploration 99

• HMP mode exhibits similar performance compared to A15 cluster, despite four

additional actives cores. For some applications (kmeans openmp, lud, nw) worse

performance is obtained. A significant penalty is further observed in this mode

when operating the LITTLE cluster at low frequency, notably for lud, nn and nw

applications.

• The Cortex-A15 cluster shows speedups ranging from 1.4 to 10, possibly originated

from the out-of-order microarchitecture and larger L2 cache size.

Further investigations were carried out with Scalasca [125] and Vampir [126] software

tools that permit instrumenting the code and then make it possible to visualize low-

level behavior based on collected execution traces. The original Rodinia source code

was instrumented and executed on the Odroid XU3 board. We selected three repre-

sentative configurations: (i) the reference LITTLE cluster running at 200MHz, (ii) the

most efficient big cluster running at 2GHz and (iii) the HMP big.LITTLE running at

200MHz/2GHz previously observed as underperforming.

Figure 5.6 depicts the runtime breakdown between master thread, parallel regions and

OMP barriers for the selected Rodinia benchmarks. Figure 5.6.a) shows that information

for the LITTLE cluster, observed behaviors may be categorized as follows:

1. Rather serial implementations in which over 90% of execution time is spent

in the master thread: bfs, heartwall, hotspot and kmeans serial.

2. Moderate parallel implementations in which 20-50% of execution time is spent

in the parallel regions: backprop, srad v1 and srad v2. An example of srad v1

runtime behavior is demonstrated in Figure 5.7.a).

3. Parallel implementations in which over 50% of time is spent in the parallel

regions. This group includes kmeans openmp, lud, nn and nw. An example of nn

runtime behavior is demonstrated in Figure 5.7.b).

Note that the above classification applies to the implementations related to problem

sizes listed in Table 3.6: though chosen problem sizes were deemed adequate for this

study, different problem sizes would possibly move members across identified categories.

The observed runtime behavior is correlated to the published Rodinia analysis [102].

Chapter 5. Single-ISA heterogeneous architecture exploration 100

c) HMP (A7@200MHz/A15@2GHz)

0
20
40
60
80

100

ba
ck

pr
op bf

s
he

ar
tw

al
l

ho
ts

po
t

km
ea

ns
op

en
m

p

km
ea

ns
se

ria
l

lu
d nn nw

sr
ad

v1

sr
ad

v2

b) big cluster (A15@2GHz)

0
20
40
60
80

100

ba
ck

pr
op bf

s
he

ar
tw

al
l

ho
ts

po
t

km
ea

ns
op

en
m

p

km
ea

ns
se

ria
l

lu
d nn nw

sr
ad

v1

sr
ad

v2

master thread parallel region OMP barrier

a) LITTLE cluster (A7@200MHz)

Fu
nc

tio
n

Su
m

m
ar

y
(%

)

0
20
40
60
80

100

ba
ck

pr
op bf

s
he

ar
tw

al
l

ho
ts

po
t

km
ea

ns
op

en
m

p

km
ea

ns
se

ria
l

lu
d nn nw

sr
ad

v1

sr
ad

v2

Figure 5.6: Runtime breakdown between master thread, parallel regions and OMP
barriers for the Rodinia benchmark.

Figure 5.6.b) shows the execution time breakdown for the big cluster running at 2GHz.

Similar distributions are logically observed in that configuration.

Master thread

OMP thread 1

OMP thread 2

OMP thread 3

0s 0.1s 0.2s 0.3s Time

a) srad v1 – average-parallelized

Master thread

OMP thread 1

OMP thread 2

OMP thread 3

0s 0.2s 0.4s 0.6s 0.8s Time

b) nn – well-parallelized

Figure 5.7: Runtime behavior: a) srad v1 executed on Cortex-A7 cluster running at
200MHz, b) nn executed on Cortex-A7 cluster running at 200MHz.

When operating in HMP mode with the previously discussed configuration (LITTLE

and big clusters running at 200MHz and 2GHz), rather different behavior is observed as

depicted in Figure 5.6.c). A substantial increase of the OMP barrier is reported, often

accounting for over 50% of the execution time. Figure 5.8 shows a snapshot of the exe-

cution trace of the lud application alongside a zoom on two consecutive parallel-for loop

constructs. It is clearly visible the OpenMP runtime spawned eight threads that were as-

signed to all eight cores. Those four threads assigned to the Cortex-A15 cores completed

execution in far less time compared to the other four executed on the Cortex-A7 cores.

This results in significant time wasted idling: the slowest cores are on the execution crit-

ical path and thereby bridle system performance. These experiments were performed

with the default static schedules for OpenMP. Using dynamic schedules by means of

Chapter 5. Single-ISA heterogeneous architecture exploration 101

modifying OpenMP pragmas in the application source code led to some improvements

varying from application to application. Overall, the OMP barrier time remained in the

order of 30%. OpenMP API therefore poses some performance issues when using HMP

mode, because of the thread-oriented synchronization mode that requires well-balanced

workload across cores.

Master thread

OMP thread 1

OMP thread 2

OMP thread 3

0.4755s

OMP thread 4

OMP thread 5

OMP thread 6

OMP thread 7

0.4760s 0.4765s Time

Cortex-A7

Cortex-A7

Cortex-A7

Cortex-A7

Cortex-A15

Cortex-A15

Cortex-A15

Cortex-A15

Complete

runtime

zoom

Master thread

OMP worker thread

OMP barrier (idle)

Figure 5.8: Runtime behavior: lud executed on HMP big.LITTLE Cortex-A7/A15
running at 200MHz/2GHz.

5.3.3 Energy-to-solution analysis

Figure 5.9 shows the normalized EtoS for all configurations, measured on the Odroid

XU3 board. Results are again normalized against the reference Cortex-A7 running at

200MHz. The following observations can be made:

1. The Cortex-A7 cluster is overall more energy-efficient than the Cortex-A15. Best

energy-efficiency is achieved when operating at 800MHz.

2. For certain applications (bfs, kmeans serial, srad v1) the Cortex-A15 running at

800MHz provides better EtoS than the reference Cortex-A7 cluster. These appli-

cations benefit the most from the A15 out-of-order architecture with the largest

speedups, thereby resulting in energy savings.

3. In HMP mode, some outliers exhibiting much elevated EtoS are observed: this con-

cerns the configuration Cortex-A7/A15 running at 200MHz/2GHz, when running

lud and nn applications. This finds roots in the behavior identified in previous

Chapter 5. Single-ISA heterogeneous architecture exploration 102

section where slower cores are observed to create a critical path in the applica-

tion execution. This is particularly prominent in that configuration for which the

A7 cluster is clocked at the slowest frequency whereas power hungry A15 cluster

spends over 60% of execution time at synchronization barriers.

lud srad v2srad v1nwnnkmeans serialkmeans openmphotspotheartwallbfsbackprop

A15
@80

0M
Hz

A7@
80

0M
Hz/

A15
@20

0M
Hz

A7@
1.4

GHz/

A15
@2G

Hz

A7@
1.4

GHz/

A15
@2G

Hz

A7@
20

0M
Hz/

A15
@20

0M
Hz

A7@
20

0M
Hz/

A15
@2G

Hz

A15
@80

0M
Hz

A15
@20

0M
Hz

A7@
1.4

GHz

A7@
80

0M
Hz

N
or

m
al

iz
ed

 E
to

S
(r

ef
 A

7@
20

0M
H

z)

0.5
1
2
5

10
20
50

Figure 5.9: Normalized measured energy-to-solution.

5.4 Alternative big.LITTLE architectures exploration

5.4.1 Experimental setup

The previous analysis of Rodinia kernels shows a significant penalty in terms of energy-

efficiency caused by the presence of critical sequential code section in kernels. Given

the fact the Cortex-A7 core proves more energy-efficient for most workloads, it can be

beneficial to increase Cortex-A7 core count while maintaining a single Cortex-A15 for

efficient handling of serial code section (namely OpenMP master thread). Three kernels

are chosen for exploring the gain of such new architecture configuration: backprop, srad

v1 and srad v2. These three kernels exhibit a balanced distribution between the assumed

serial and parallel sections.

Table 5.2 summarizes the five proposed asymmetric configurations (C1-C5) in which we

varied the ratio of cores between the two clusters, core clocks as well as the L2 cache

size. Execution time and EtoS are shown in Figure 5.10.

Chapter 5. Single-ISA heterogeneous architecture exploration 103

Table 5.2: big.LITTLE proposed configurations.

Cortex-A7 cluster Cortex-A15 cluster
Count Clock Count Clock L2

C1 4 800 MHz 1 800 MHz 2 MB
C2 4 800 MHz 1 2 GHz 2 MB
C3 7 800 MHz 1 800 MHz 2 MB
C4 7 800 MHz 1 2 GHz 2 MB
C5 7 800 MHz 1 800 MHz 512 kB

5.4.2 Exploration results

Reported results show that configurations C3 and C5 provide up to 27% of improve-

ment in energy-efficiency compared to the best existing configuration used as reference

(Cortex-A7 cluster running at 800MHz). Furthermore, configuration C5 with smaller

L2 cache demonstrates better execution time and EtoS than the similar configuration

C3. According to the collected statistics, configuration C5 smaller cache size leads to an

average miss latency reduction of 30%. This finds root in rather cache-unfriendly access

patterns for these applications as well as the L2 cache architecture specifics: transaction

processing time increases with cache size [127] and is not counterbalanced by lower cache

miss rate for such workloads.

Existing configurations Proposed configurations (HMP)
SMP (cluster A7@800MHz)
SMP (cluster A15@2GHz)
HMP (clusters A7@800/A15@800MHz)

logEx
ec

ut
io

n
tim

e
(m

s)

100
200

500
1000

27%
17%26%

16%
12%5%

C1
C2
C3
C4
C5

log
backprop sradv1 sradv2

Et
oS

 (m
J)

50
100
200
500

1000

Figure 5.10: Execution time and energy-to-solution comparison between existing and
proposed configurations.

The exploration of alternative configurations of heterogeneous architecture considered

above indicates that best performance and energy-efficiency trade-off is obtained with

few big cores and many LITTLE cores. Indeed, the sequential code section (mainly

Chapter 5. Single-ISA heterogeneous architecture exploration 104

the “main” thread in OpenMP program) in the considered kernels benefits from the

single Cortex-A15 core whereas the parallel data-intensive region (i.e. OpenMP par-

allel threads) has been executed across the multiple Cortex-A7 cores. Reducing the

number of power-hungry big cores that severely degrade processor energy-efficiency and

by increasing the number of LITTLE cores, we observe up to 27% of improvement in

energy-efficiency compared to the best existing configuration used as reference. More-

over, according to [47] and [128], typical silicon footprint for Cortex-A7 and Cortex-A15

clusters are respectively 3.8mm2 and 19mm2. This 1:5 ratio further suggests configura-

tions such as 1 Cortex-A15/16 Cortex-A7 cores would likely be implementable on a die

area similar to that of existing big.LITTLE SoCs. The improved performance and en-

ergy trade-off observed in those new hetererogeous architecture configurations suggests

that the equal core count found in the two clusters of the considered Exynos 5422 chip is

not necessarily the most efficient configuration for OpenMP scientific workloads. Such

configurations are often suggested in the litterature as in [?], in which authors promote

a sequential accelerator associated with several simpler cores (for parallel code regions)

as a very attractive design solution. Beyond the assessment of energy efficiency gains,

this study further demonstrate that software-friendly single-ISA heterogeneous systems

achieve signifiant gains, despite their shared-memory architecture.

5.5 big.LITTLE architecture scaling via trace-driven sim-

ulation

The presented big.LITTLE gem5 model allows us exploring such important parameters

as cache size, interconnect width, memory infrastructure. However, due to current

limitation of gem5 to simulate more than eight ARM cores, exploring large-scale ARM-

based system models is not feasible. Thus to evaluate the scalability of the Rodinia

benchmark running on the big.LITTLE heterogeneous manycore we used the proposed

trace-driven approach presented in Chapter 4. To demonstrate the exploration flow we

chose hotspot application described in Table 3.6 with the problem size equal to 1024.

Chapter 5. Single-ISA heterogeneous architecture exploration 105

5.5.1 Experimental setup

To collect the Cortex-A7 traces we use the TimingSimpleCPU. As we showed in Chap-

ter 3 Section 3.4 this model is suitable for performance evaluation and in addition it

provides well-organized traces where each request is always followed by a response. The

Cortex-A15 trace-driven simulation is a tedious task. The out-of-order nature at times

complicates trace injections and requires extra micro-dependency analysis. More in de-

tail this challenge is discussed in Chapter 4 Section 4.2.2. To emulate the Cortex-A15

processor behavior we use the computation phase scaling technique described in Section

4.3.1.3.

In Figure 5.11 we illustrate the hotspot kernel runtime behavior captured on the Odroid

XU3 board with Scalasca/Score-p instrumentation [125] and analyzed with Vampir tool

[126]. The figure represents execution of four threads under two Cortex-A7 and two

Cortex-A15 cores running at the same frequency. The Cortex-A15 duration is less than

the Cortex-A7 corresponding to 0.16s and 0.23s respectively. Based on these values we

calculate an acceleration factor as 1.45x and applied it to the trace-driven simulation of

the Cortex-A15 cluster.

Cortex-A7

Cortex-A7

Cortex-A15

Cortex-A15

0.16s

0.23s

Kernel execution

OMP barrier

Figure 5.11: Hotspot parallel region runtime behavior running on the Odroid XU3
board.

Trace replication technique (see Chapter 4) relies on overlapping trace patterns with

the increasing number of TIs. To obtain the replication pattern we capture the parallel

region traces presented in Figure 5.12. The initialization phase of the application is not

considered in these experiments. We illustrate the trace pattern collected at the core#0

(Figure 5.12 a)) and at the core#1 (Figure 5.12 b)) on the system with four cores and

four threads. Each kernel iteration is composed on two pragma omp parallel for:

(i) compute temperature and (ii) store results. We observe the results storage region

provide a high number of cache misses comparing to the compute temperature region.

Chapter 5. Single-ISA heterogeneous architecture exploration 106

b) trace pattern for core#1/4

of

 c
ac

he
 m

is
se

s

0
500

1000
1500
2000
2500
3000

Time slots
0 50 100 150 200 250

Compute temperature
Store results

a) trace pattern for core#0/4

of

 c
ac

he
 m

is
se

s

0
500

1000
1500
2000
2500
3000

Figure 5.12: Hotspot parallel region trace pattern.

5.5.2 Exploration results

We evaluated three scenarios:

• LITTLE cluster with 4, 8, 16, 32, 64 and 128 cores (injectors),

• big cluster with 4, 8, 16, 32, 64 and 128 cores (injectors),

• big.LITTLE in HMP mode with 4/4, 8/8, 16/16, 32/32 and 64/64 cores (injectors).

The execution time and speedup for each scenario are presented in Figure 5.13. The best

execution time, as well as the speedup shows big cluster. The LITTLE cluster provides

the worst execution time. The big.LITTLE speedup is normalized by the faster big

cluster. We observe that the execution time in HMP mode is worse than in the big

cluster and slightly better than in the LITTLE cluster. It explained by the OpenMP

programming nature that we observed in Figure 5.11: the slower Cortex-A7 cores slow

down the execution. For all three scenarios, the speedup reaches the plateau around 64

cores (injectors). It explained by the memory/interconnect saturation. The figure a)

also contains three values measured on the board. The comparison shows the high level

of simulation accuracy: the error percentage is around 15%.

To address this common issue we propose to explore the big.LITTLE architecture with

alternative network-based Ruby memory subsystem [105]. System includes two-level

cache hierarchy. The consistency of the memory is maintained by the MESI coherence

Chapter 5. Single-ISA heterogeneous architecture exploration 107

b) Normalized speedup

XY
LITTLE cluster
big cluster
HMP
LITTLE cluster (Ruby)

Sp
ee

du
p

0

25

50

75

100

125

Number of injectors
4 8 16 32 64 128

a) Execution time depending on the number of injectors

Board LITTLE cluster
Board big cluster
Board HMP

gem5 LITTLE cluster
gem5 big cluster
gem5 HMP

Ex
ec

ut
io

n
tim

e
(m

s)

0

25

50

75

100

125

150

4 8 16 32 64 128

Figure 5.13: Execution time and speedup evaluation using trace-driven simulation.

protocol. This protocol models inclusion between the L1 and L2 caches and has four

stable states, M, E, S and I, hence the name. The interconnection network has the

following features: Mesh topology, XY routing algorithm and detailed GARNET net-

work microarchitecture model (16-byte links, 10 virtual networks, 4 virtual channels per

virtual network, 4 buffers per virtual channel, 1 cycle on-chip link latency). The block

diagram of the proposed architecture and detailed description of their parameters are

presented in Figure 5.14 and in Table 5.3.

TI

L1

R

TI

L1

R

TI

L1

R

TI

L1

R

TI

L1

R

TI

L1

R

L2

R

DDR

R ...

TI - Trace Injector

L1
- L1 Cache memory

d controller

R - Interconnect Router

L2 - L2 Cache memory

d controller

DDR - DDR memory controller

Figure 5.14: Alternative big.LITTLE-based network-on-chip manycore architecture.

Chapter 5. Single-ISA heterogeneous architecture exploration 108

Table 5.3: Architecture Configuration

Collection

Number of CPUs 4

CPU ISA ARMv7-a

CPU frequency 2 GHz

L1 D/I Caches 32 kB, 4-way associativity, 32 B/line

Interconnect Bus

Benchmark/Programming Model Rodinia/OpenMP

Replication

Number of traces 4

Number of injectors 8, 16, 32, 64, 128, 256

Address distribution Random

Processing

L2 Cache 512 kB

Cache Coherent Protocol MESI

Interconnect Mesh, XY routing, GARNET,
16-byte links, 10 virtual networks,

4 virtual channels per virtual network,
4 buffers per virtual channel,
1 cycle on-chip link latency

Memory double channel, DDR3

Figure 5.13 b) shows the achieved speedup for the LITTLE cluster (Ruby) up to 128

cores. Application shows a plateau, which originates from saturation of the external

memory bandwidth that according to the gem5 statistic file is about 200 million DDR

accesses per second. Hotspot parallel region investigation shows that system scalability

can be improved by efficient network interconnect on around 30% of execution time

speedup.

5.6 Single-ISA heterogeneous multicore granularity evalu-

ation

The evaluated ARM big.LITTLE architecture features two types of clusters, e.g. Cortex-

A7 and Cortex-A15. There are also chips which contain Cortex-A17/Cortex-A7 pair

(MediaTek MT6595 series [129]) and Cortex-A57/Cortex-A53 pair (Qualcomm Snap-

dragon 808 and 810 [130]). The important strength of big/LITTLE clusters combining

is high granularity provided by HMP mode as shown in Table 5.1. However, the level of

Chapter 5. Single-ISA heterogeneous architecture exploration 109

granularity can be further raised. To the best of our knowledge, this aspect of single-ISA

heterogeneous architectures has not been investigated.

We propose to explore the heterogeneity of ARM single-ISA architecture. In Figure

5.15 a set of most commonly used processors of ARM Cortex-A series are compared.

The comparison is averaged and based on the published information [123] [46] [47]. The

performance and power ratios are normalized by Cortex-A9.

1,00

1,80

0,87

0,75

1,00

2,25

0,55

0,40

0,00 0,50 1,00 1,50 2,00 2,50

CORTEX-A9

CORTEX-A15

CORTEX-A7

CORTEX-A5

Performance/Power Comparison

Power Performance

Figure 5.15: ARM Cortex-A series performance/power ratios.

Obviously, the ratios may vary for different operations (e.g. integer or floating point

computation), frequencies and technologies. Actual comparison includes Cortex-A5,

Cortex-A7 and Cortex-A15 at 28 nm technology and Cortex-A9 at 40 nm technology.

All processors run at the same 1 GHz frequency.

Our goal is to analyze the possible combination of the presented set of cores. As we

demonstrated in Section 5.4, changing the ratio between different types of cluster cores

may bring significant energy improvements.

In order to predict approximate performance/power results we implement an analytical

model in MATLAB tool [131]. The model is based on the illustrated in Figure 5.15

performance and power ratios.

Chapter 5. Single-ISA heterogeneous architecture exploration 110

The model executes an abstract application in parallel. Application contains a set of

tasks, which are dynamically distributed among the cores. The algorithm of distribution

reproduces the one implemented in OpenMP dynamic scheduler. That is each core grabs

a task from the common queue one by one. The execution time and power consumption

of each task is calculated according to the performance and power ratios.

The model functioning is illustrated in Figure 5.16. The input of the model contains a

set of cores, Scores, which represents architecture configuration and a set of tasks, Stasks,

as an application to execute. The output results of the model are total energy, Etotal,

and application execution delay Dtime.

Analytical Model

Scores

Stasks

Etotal

Dtime

1

2

3

4

.
.
.

Task Queue

C#1

C#2

.
.

.

C#N

Set of cores

1 × (Wdelay, Wenergy)

2

3

4

× (Wdelay, Wenergy)

× (Wdelay, Wenergy)

× (Wdelay, Wenergy)

Application execution

Time

Figure 5.16: Analytical model functioning.

Set of cores is an array of Core(Wdelay,Wenergy) where Wdelay is a weight which corre-

sponds to task execution delay and Wenergy is a weight which corresponds to task energy

spent. Set of tasks is an array of tasks duration.

Inside the model, Stasks is transformed into a task queue. The model captures tasks

one by one and assigns them to cores according to the implemented algorithm. Cores

delay and energy weights are then applied to those tasks. The proposed model calcu-

lates the potential load imbalance, but does not consider inter-core dependencies and

communications.

Chapter 5. Single-ISA heterogeneous architecture exploration 111

An example of 10-tasks application modeling on 3-cores system is illustrated in Figure

5.17. Example demonstrate perfectly parallelized application execution. As Cortex-A7

core is the slowest one, it executes only two tasks. Cortex-A9 manages to perform three

tasks. The most powerful Cortex-A15 performs five tasks.

T#1

T#2

T#3

T#7

T#5 T#9

T#4 T#6 T#8 T#10

Cortex-A7

Cortex-A9

Cortex-A15

Time

Figure 5.17: Example of abstract application execution with 10 tasks distribution.

Using the proposed model we explore a set of alternative configurations. Evaluated

system always contains eight cores, only the types of cores and their number change.

We consider five scenarios:

• Existing big.LITTLE configuration with Cortex-A7 and Cortex-A15 clusters. The

number of cores in both clusters varies from 8A7/0A15 to 0A7/8A15.

• Alternative two-cluster configuration with Cortex-A9 and Cortex-A15 pair. The

number of cores in both clusters varies from 8A9/0A15 to 0A9/8A15.

• Another alternative two-cluster configuration with Cortex-A5 and Cortex-A15

pair. The number of cores in both clusters varies from 8A5/0A15 to 0A5/8A15.

• Three-cluster configuration that we called big.M.LITTLE (big.Medium.LITTLE)

contains Cortex-A7, Cortex-A9 and Cortex-A15. We believe that yet another

medium cluster which further raises the level of granularity may bring essential im-

provements. We iterate through all core number combinations from 6A7/1A9/1A15

to 1A7/1A9/6A15.

• Four-cluster configuration with Cortex-A5, Cortex-A7, Cortex-A9 and Cortex-A15

cores.

Figure 5.18 presents the results comparison. For this experiments we chose 100 equiva-

lent tasks application. We highlighted several interesting points. The point 4A7/4A15

Chapter 5. Single-ISA heterogeneous architecture exploration 112

demonstrates where the actual ARM big.LITTLE architecture is. The point 7A7/1A15

shows the proposed in Section 5.4 alternative configuration. According to the analytical

model results, 7A7/1A15 configuration provides 17% energy improvement. The perfor-

mance degradation is around 8%. We are also interested by the point 6A7/1A9/1A15

as it shows both energy and performance improvements.

6A7/1A9/1A15

7A7/1A15

4A7/4A15

Cortex-A9/Cortex-A15
Cortex-A7/Cortex-A15 (big.LITTLE)
Cortex-A5/Cortex-A15
Cortex-A7/Cortex-A9/Cortex-A15 (big.M.LITTLE)
Cortex-A5/Cortex-A7/Cortex-A9/Cortex-A15

Ex
ec

ut
io

n
tim

e

60

80

100

120

140

160

Energy
750 1000 1250 1500 1750 2000

Figure 5.18: Heterogeneous architectures Energy/Delay comparison for equivalent
tasks application.

In the next experiment we demonstrate the 100-tasks application with non-equivalent

duration but with random distribution. Such application introduces the class of non-

regular benchmarks. The results are shown in Figure 5.19. We observe the similar

behavior. However, several points changed their positions relative to each other. For

example, the points 4A7/4A15 and 6A7/1A9/1A15 now are closer. Thus the expected

performance and energy enhancements became 6% and 1% respectively. We assume

that the gain for different applications significantly varies.

The accuracy of such analytical model estimation does not allow drawing final conclu-

sions. Nonetheless, it demonstrates the high interest for further explorations. Especially,

with three- and more-cluster heterogeneous multicores.

Chapter 5. Single-ISA heterogeneous architecture exploration 113

6A7/1A9/1A15

7A7/1A15

4A7/4A15

Cortex-A9/Cortex-A15
Cortex-A7/Cortex-A15 (big.LITTLE)
Cortex-A5/Cortex-A15
Cortex-A7/Cortex-A9/Cortex-A15 (big.M.LITTLE)
Cortex-A5/Cortex-A7/Cortex-A9/Cortex-A15

Ex
ec

ut
io

n
tim

e

300

400

500

600

700

800

Energy
4000 5000 6000 7000 8000 9000 104

Figure 5.19: Heterogeneous architectures Energy/Delay comparison for random tasks
application.

5.7 Discussion

In this chapter, we explored the design of single-ISA heterogeneous multiprocessor ar-

chitecture. The investigations were conducted on the ARM big.LITTLE technology.

Beyond the actual configuration of the chosen SoC, further configurations were evaluated

by using its performance and power models implemented in gem5 and McPAT simula-

tion frameworks. We proposed alternative heterogeneous configurations with one high-

performance core dedicated to sequential code sections and multiple low-power cores for

parallel code section execution. The results demonstrated up to 27% of energy-efficiency

improvement compared to the best existing configuration used as reference.

Due to the limitation of the gem5 full system mode, we applied the proposed trace-

driven approach for explore the heterogeneous nature of big.LITTLE systems including

more than one hundred of cores. The scalability of such systems was addressed and

compared to that of homogeneous systems. Hotspot parallel region investigation showed

that system scalability can be improved by efficient network interconnect on around 30%

of execution time speedup.

Chapter 5. Single-ISA heterogeneous architecture exploration 114

To investigate the ARM big.LITTLE heterogeneity and granularity, an analytical model

was implemented in MATLAB tool. The model takes architecture configurations, i,e.

number of clusters and cores, as input and generates the execution time and the total

energy as output. Evaluating 140 architecture configurations, the proposed analytical

model demonstrated high interest for exploration of three- and more clusters heteroge-

neous multicore architectures.

Chapter 6

Conclusions

The next step in high-performance computing evolution refers to computing systems

performing at least one exaFLOPS, i.e. a quintillion floating point operations per second.

According to projections, such a system is expected by 2018 with a 20MW power budget

[3]. A number of projects, which target to deliver exascale computing systems, have been

announced. This thesis was conducted within the European Mont-Blanc project [17].

The aim of the project is to design a new energy-efficient exascale computing system

using low-power embedded technologies.

The research was set out to explore multi- and manycore architectures for future scalable

and energy-efficient supercomputers. For efficient design space exploration a fast and

accurate simulation environment is mandatory. This thesis therefore was looking to

answer several groups of questions:

Q: How accurate are performance and power models implemented in cycle-approximate

full system simulation frameworks? What are the main sources of error in these

models? Can these models be used to realistically predict important exploration

metrics?

Q: How can simulation time can be reduced while preserving the accuracy level?

What are the limitations of the existing approaches and how can they be avoided?

Is the proposed approach efficient enough to enable future manycore architecture

exploration?

115

Chapter 6. Conclusions 116

Q: What are the promising directions in computer architecture design? How can

the existing programming models be used to benefit from heterogeneous multi-

and manycore architectures? Which configurations of single-ISA heterogeneous

architectures can significantly enhance the system energy-efficiency?

This chapter is organized as follow: Section 6.1 discusses the scientific contributions of

this thesis. Section 6.2 proposes several future research directions. In Section 6.3 the

list of publications is presented.

6.1 Contributions

Contribution 1 The first objective of this thesis was to evaluate the accuracy of the per-

formance and power models implemented in cycle-approximate simulation frameworks.

Two multicore processors were chosen for model calibration and validation: (i) ARM

dual-core STE Nova A9500 processor and (ii) ARM big.LITTLE Exynos 5422 proces-

sor. gem5 event-driven simulator together with McPAT framework were combined into

a suitable simulation environment for model implementation and evaluation. To obtain

a high model confidence, a large set of parameters including architecture configurations

and representative benchmark suites were considered.

The results of the comparison between the proposed models and real hardware execution

demonstrated that the absolute error varies significantly depending on the configuration,

ranging from 1% to 57%. The proposed performance and power models have been made

freely available online for research community [22].

Based on the detailed analysis of the sources of error we conclude:

• Detailed implementation of core microarchitecture is not mandatory if the aim is

to explore the performance of the entire system. Memory infrastructure, especially

the main memory component, can provide a harmful discrepancy in the case of

inaccurate or unrealistic implementation. Thus if a researcher is looking for a way

to simplify the performance model, we suggest to use a less detailed core model

but keep a detailed model of the memory infrastructure.

Chapter 6. Conclusions 117

• If the target is power or area exploration, each system component must be as

detailed as possible. Indeed, in that case, the mismatch between a simplified and

a detailed CPU power models is significant. Moreover, the execution time error,

which is already present in performance model simulation directly affects the power

model accuracy. Therefore, we suggest using of both models being implemented

in detail for power consumption exploration.

Contribution 2 The second objective of this thesis was to study the existing approaches

for simulation acceleration. The main challenge was to significantly reduce the simula-

tion speed in order to enable manycore architecture exploration and preserve a suitable

accuracy level. The proposed hybrid trace-oriented approach was implemented in the

event-driven simulation framework. It included a fully simulated memory system, the

trace synchronization mechanism for dependency management, the trace replication

technique allowing manycore architecture simulation and the technique of computa-

tion phase scaling. The comparison of the proposed approach with the reference full

system simulation demonstrated a performance error around 14% in the worst case

scenario and a speedup greatly varied between tens and hundreds times depending on

the computation-communication nature of the applications. The implementation of the

proposed approach has been made freely available online for research community [22].

The proposed approach advanced the state-of-the-art by achieving a suitable trade-off

between simulation speed and accuracy level, as well as enabling trace replication and

synchronization (see Table 2.2). However it demonstrated a number of vulnerabilities:

• The chosen cache miss filtering technique is very sensitive to cache coherency pro-

tocol. The cache outbound traffic may contain not only missed memory accesses,

but also writebacks and snooping packets. Without taking into account these

communications, the simulator risks to miss a significant share of interconnect

traffic. Thus making the simulation results unreliable. This issue particularly

affects manycore architecture simulations where the interconnect traffic is much

more important.

• The trace replication technique has two key points: it is not applicable to data-

dependent applications and it requires an address mapping algorithm to manage

private and shared data accesses.

Chapter 6. Conclusions 118

• The technique of computation phase scaling allows flexible switching between mul-

tiple core models. Nonetheless, a detailed analysis of application computations is

mandatory to accurately reproduce the behavior of target processor.

Contribution 3 The third objective of this thesis was to explore performance and

energy-efficiency of future multi- and manycore architectures. Single-ISA heterogeneous

multicore architecture was chosen as a promising direction to achieve a suitable bal-

ance between performance and energy-efficiency. The proposed performance and power

models, as well as the proposed trace-driven simulation were used for architecture ex-

ploration. Among other, we considered the efficiency of the OpenMP task scheduling

running on ARM big.LITTLE heterogeneous architecture. We also explored the mul-

ticore architecture heterogeneity by implementing an analytical model and analyzing

potential load imbalance.

Based on the architecture exploration results we observed:

• On ARM big.LITTLE-like heterogeneous multicore processors the task scheduling

is a key factor for system performance and energy-efficiency. The traditional equal

distribution of tasks among cores is inefficient. This is what OpenMP static loop

scheduling demonstrated. The cursory analysis of dynamic and guided schedul-

ing did not demonstrate significant improvements as well. We assume that more

research and experiments are required to achieve satisfactory results.

• The exploration of alternative configurations of heterogeneous architecture indi-

cated that best performance and energy-efficiency trade-off is obtained with few

high-performance cores and many low-power cores. Indeed, the sequential code

section (mainly the “main” thread in OpenMP program) benefits from the single

big core whereas the parallel data-intensive region (i.e. OpenMP parallel threads)

has been executed across the multiple LITTLE cores. Alternative configurations

with one power-hungry big cores and multiple low-power LITTLE cores showed

up to 27% of improvement in energy-efficiency compared to the best existing con-

figuration used as reference. This approach is also beneficial in terms of area due

to the significant ratio between the silicon footprints of big and LITTLE cores.

Chapter 6. Conclusions 119

• The exploration of multicore heterogeneity with three and more core types demon-

strated the high prospects of this research direction. Raising the level of system

granularity provides more flexibility for task scheduling.

6.2 Future work

According to the work presented in this thesis, the following research directions are

proposed as future work:

• Trace-oriented approach for data-dependent applications. Many algo-

rithms from various scientific domains employ input data-dependent behavior

[132], e.g. data mining, optimization theory, meshing, etc. This fact points to

high importance of resolving the appropriate limitation in the trace-oriented sim-

ulation. We believe that the problem can be solved by using the annotations in

the source code similarly to the synchronization traces. Identifying the points of

branching, a decision to replay different trace segments can be taken. To predict

the correct application behavior we propose to use a methodology for application

arterial structure detection [133].

• Alternative memory organization exploration. The exploration results demon-

strated the performance scalability limitation of the considered shared memory

manycore architectures (see Section 5.5.2). The coherency protocol underlying

hardware cache functionality generates additional interconnect traffic to ensure

the single-writer, multiple-reader invariant [134]. Using current technologies, cache

coherence cannot scale to the large number of cores. One of the solution is to use

a software cache, i.e. a scratchpad memory explicitly managed by a programmer.

While the main advantage of the hardware cache that it is transparent to the ap-

plication software, the software cache requires great efforts from a programmer to

efficiently manage data coherency. This task is often delegated to the compiler

and the runtime library [135] [136] [137] [138]. In this context, we propose to

explore the manycore architecture that employ scratchpad memory organization

by using the proposed trace-oriented approach. It will allow us to study different

data placement algorithms avoiding complex and time-consuming implementation

of appropriate software mechanisms.

Chapter 6. Conclusions 120

The explicitly memory management also opens up the possibility of using alterna-

tive technologies, such as non-volatile memories. Recent studies have demonstrated

the low leakage power consumption and high density of NVM that allow achieving

a significant energy saving [139] [140] [141]. A hybrid on-chip SPM combining both

NVM and SRAM [142] [143] [144] became a promising research direction. Using

the proposed trace-oriented approach we expect to explore smart data placement

algorithms allow moving the most-written data into SRAM and the most-read

data into NVM.

• Exploration of single-ISA heterogeneous manycore architectures. In Sec-

tion 5 we determined several promising directions for future research. The ana-

lytical model results demonstrated the high interest in evaluating heterogeneous

multicore architectures with more than two core types. To confirm the potential

gain we plan to explore the performance and power models of these architectures

in cycle-approximate simulation frameworks. It will also allow us to analyze how

different applications behave on heterogeneous multicore architectures with high

level of granularity.

Efficient task scheduling algorithm is crucial for heterogeneous multicore architec-

ture. The preliminary analysis of OpenMP loop scheduling algorithms showed

the necessity of further explorations. We also expect to investigate different

task-oriented programming models, such as OmpsS [145] whose semantics enable

smarter dynamic scheduling.

6.3 Publications

The list of publications includes:

Journals

1. Luciano Ost, Rafael Garibotti, Gilles Sassatelli, Gabriel Marchesan Almeida, Remi

Busseuil, Anastasiia Butko, Michel Robert, and Jurgen Becker. Novel Tech-

niques for Smart Adaptive Multiprocessor SoCs. In IEEE Transactions on Com-

puters, March 2013.

International Conferences

Chapter 6. Conclusions 121

1. Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres and Michel

Robert. Design Exploration For Next Generation High-Performance Manycore On-

chip Systems: Application To big.LITTLE Architectures. In 2015 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), Montpellier, France, July 2015.

2. Anastasiia Butko, Rafael Garibotti, Luciano Ost, Vianney Lapotre, Abdoulaye

Gamatié, Gilles Sassatelli, and Chris Adeniyi-Jones. A trace-driven approach for

fast and accurate simulation of manycore architectures. In 2015 20th Asia and

South Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, pages

707–712, January 2015.

3. Sophiane Senni, Lionel Torres, Gilles Sassatelli, Anastasiia Butko and Bruno

Mussard. Exploration of Magnetic RAM Based Memory Hierarchy for Multi-

core Architecture. In 2014 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Tampa, United States, July 2014.

4. Sophiane Senni, Lionel Torres, Gilles Sassatelli, Anastasiia Butko and Bruno

Mussard. Power efficient Thermally Assisted Switching Magnetic memory based

memory systems. In 2014 9th International Symposium on Reconfigurable and

Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, May

2014.

5. Anastasiia Butko, Rafael Garibotti, Luciano Ost and Gilles Sassatelli. Accuracy

Evaluation of GEM5 Simulator System. In 2012 7th International Workshop on

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), York, UK,

July 2012.

National Workshops

1. Anastasiia Butko, Rafael Garibotti, Luciano Ost and Gilles Sassatelli. Accuracy

Evaluation of GEM5 Simulator System. In Colloque National 2012 du GDR SOC-

SIP (GDR SOC-SIP’12), Paris, France, June 2012.

Under submission

1. Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Lionel Torres and Michel

Robert. Exploration of Performance and Energy Trade-offs for Heterogeneous Mul-

ticore Architectures. [Under submission].

Chapter 6. Conclusions 122

2. Rafael Garibotti, Anastasiia Butko, Luciano Ost, Abdoulaye Gamatié, Gilles

Sassatelli, and Chris Adeniyi-Jones. Efficient Embedded Software Migration to-

wards Clusterized Distributed-Memory Architectures. In IEEE Transactions on

Computers, 2015. [Accepted].

Appendix A

Performance accuracy evaluation

results

Table A.1: Execution time comparison (gem5 versus Exynos Octa 5422).

backprop bfs heartwall hotspot kmeans kmeans lud nn nw srad srad

openmp serial v1 v2

Cortex-A7 @ 200 MHz

B 1895 384 415 190 35 30 2708 668 970 3689 981

S 1708 531 523 245 34 29 3784 788 1139 4531 880

% 9.9 38.3 26 28.6 2.2 2.5 39.7 17.9 17.4 22.8 10.3

Cortex-A7 @ 800 MHz

B 662 96 112 49 8.9 7.8 666 168 297 940 262

S 507 140 138 55 8.7 7.9 952 192 326 1086 196

% 23.3 45.6 23.5 12.3 2.4 2 42.9 14.6 9.7 15.5 25.1

Cortex-A7 @ 1.4 GHz

B 474 61 70 30 7 5 392 100 209 561 166

S 334 80 84 31 6 5 544 112 213 630 117

% 29.6 32.3 19.4 5.8 4.9 1 38.7 11.6 1.8 12.1 29.5

Cortex-A15 @ 200 MHz

B 1889 218 320 129 15 16 1658 651 637 2412 1028

S 1188 265 371 145 16 14 2315 669 603 1977 754

% 37.1 21.8 16.2 11.9 5.9 11.4 39.6 2.7 5.4 18 25.6

Cortex-A15 @ 1.1 GHz

B 456 42 58 23 2.7 2.8 292 165 147 455 201

Continued on next page

123

Appendix A . Performance accuracy evaluation results 124

Table A.1 – Continued from previous page

backprop bfs heartwall hotspot kmeans kmeans lud nn nw srad srad

openmp serial v1 v2

S 243 50 71 26 3.3 2.6 420 192 163 419 147

% 46.7 16.7 22.2 13.3 21.2 5.8 43.6 16.3 11.1 8 26.9

Cortex-A15 @ 2 GHz

B 338 28 35 13 1.66 1.65 161 128 110 276 125

S 153 34 48 16 1.67 1.47 231 149 111 270 90

% 57.8 17.9 37.5 22.7 0.9 10.8 43.2 16.4 0.9 2.2 27.8

Cortex-A7 @ 200 MHz / Cortex-A15 @ 200 MHz

B 1938 265 325 175 69 16 1559 1298 667 2594 1053

S 1182 279 309 106 50 20 1342 1316 411 2327 606

% 39 5.4 4.9 39.6 27.7 28.2 13.9 1.4 38.5 10.3 42.5

Cortex-A7 @ 1.4 GHz / Cortex-A15 @ 2 GHz

B 336 34.2 37 17.5 10 1.6 201 137 164 278 129

S 145 34.4 48 17.8 7 2.1 149 172 120 303 93

% 56.9 0.8 30.9 1.7 31.9 26.8 25.8 25.6 27 9 27.7

Cortex-A7 @ 200 MHz / Cortex-A15 @ 2 GHz

B 367 37 40 19 10.5 1.6 628 1084 337 290 134

S 228 38 33 15 10.7 2.1 824 1425 392 375 135

% 37.8 2.1 16.7 17.5 2 28.7 31.3 31.5 16.5 29.5 0.9

Cortex-A7 @ 1.4 GHz / Cortex-A15 @ 200 MHz

B 1910 262 318 169 63 15 1517 771 587 2425 1019

S 987 290 339 160 62 21 938 1013 350 1720 620

% 48.3 10.9 6.8 5.2 2.4 34.5 38.1 31.4 40.4 29.1 39.1

Appendix B

Power accuracy evaluation results

Table B.1: Power consumption comparison (gem5/McPAT versus Exynos Octa 5422).

A
7

A
1
5

M
em

A
7

A
15

M
em

A
7

A
15

M
em

A
7

A
15

M
em

A
7

A
15

M
em

backprop bfs heartwall hotspot kmeans

Cortex-A7 @ 200 MHz

B 35 - 65 36 - 53 33 - 83 37 - 41 41 - 48

S 37 - 72 42 - 68 36 - 58 38 - 50 37 - 66

% 5.1 - 11 16.7 - 27.5 8 - 10.2 2.8 - 22.7 11.2 - 38.6

Cortex-A7 @ 1.4 GHz

B 341 - 93 409 - 44 367 - 70 400 - 44 425 - 63

S 411 - 93 494 - 72 412 - 74 423 - 58 394 - 70

% 20.6 - 0 20.8 - 62.7 12.2 - 5.6 5.6 - 29.6 7.3 - 11.5

Cortex-A15 @ 200 MHz

B - 227 145 - 224 41 - 191 49 - 195 35 - 223 39

S - 231 181 - 233 60 - 236 56 - 233 49 - 225 56

% - 1.8 20.2 - 4 30.4 - 19 12.6 - 16 28.2 - 0.9 30.8

Cortex-A15 @ 2 GHz

B - 2537 81 - 2737 41 - 2495 77 - 2397 37 - 2065 47

S - 2698 90 - 3256 76 - 2844 81 - 3559 54 - 2374 61

% - 6.3 10.6 - 15.9 46.2 - 12.3 4.7 - 32.7 30.2 - 13 22.6

Cortex-A7 @ 200 MHz / Cortex-A15 @ 200 MHz

B 19 184 64 18 211 42 18 213 52 19 233 43 26 264 45

S 21 188 83 20 243 73 19 214 65 22 223 59 19 202 67

% 10.4 2 28.8 15 15.3 74.7 7.3 0.2 25.7 16 4.2 37.7 25.4 23.5 50.3

Continued on next page

125

Appendix B. Power accuracy evaluation results 126

Table B.1 – Continued from previous page

A
7

A
1
5

M
em

A
7

A
1
5

M
em

A
7

A
1
5

M
em

A
7

A
1
5

M
em

A
7

A
1
5

M
em

Cortex-A7 @ 1.4 GHz / Cortex-A15 @ 2 GHz

B 198 2822 79 210 210 46 209 3188 77 214 2995 45 224 3792 49

S 240 2680 84 303 3489 77 294 2542 65 230 3551 64 232 3254 61

% 20.8 5 5.8 44.6 9.4 67.1 40.7 15.1 16.7 7.8 6.4 42.6 3.7 31.1 24.4

lud nn nw srad Average

Cortex-A7 @ 200 MHz

B 45 - 41 62 - 43 48 - 52 39 - 34

S 37 - 61 44 - 56 38 - 60 38 - 56

% 16.8 - 47.2 29.6 - 31.6 21 - 14.5 4.2 - 65.6 12.8 - 29.9

Cortex-A7 @ 1.4 GHz

B 503 - 43 788 - 54 441 - 123 421 - 64

S 429 - 56 613 - 57 420 - 92 423 - 71

% 14.8 - 31.6 22.2 - 5.2 4.8 - 25.7 0.6 - 12 12.1 - 20.5

Cortex-A15 @ 200 MHz

B - 256 38 - 308 39 - 254 61 - 211 53

S - 234 55 - 232 56 - 234 77 - 230 58

% - 9.6 31.8 - 33.1 30.1 - 8.7 21.3 - 8 8.1 - 11.2 23.7

Cortex-A15 @ 2 GHz

B - 4451 31 - 5853 45 - 4701 183 - 2889 66

S - 4648 66 - 6385 66 - 4465 135 - 3435 85

% - 4.2 53.3 - 8.3 32.7 - 5.3 35.8 - 15.9 22.7 - 12.7 28.7

Cortex-A7 @ 200 MHz / Cortex-A15 @ 200 MHz

B 34 271 42 50 316 42 38 293 50 19 228 51

S 29 270 62 51 424 63 31 289 76 24 235 74

% 15 0.1 47.7 1.7 33.9 49.1 18.6 1.4 50.7 24.8 3.1 11.1 14.9 9.3 45.4

Cortex-A7 @ 1.4 GHz / Cortex-A15 @ 2 GHz

B 365 5246 42 589 5490 61 385 5812 108 206 3177 67

S 346 4985 58 461 6360 60 317 5431 101 241 3056 67

% 5.2 5 38.7 21.8 15.8 2 17.7 6.5 6 16.9 3.8 0.6 19.9 10.9 22.7

Bibliography

[1] TOP500 Supercomputing Sites, 2015. URL http://top500.org/.

[2] Roger Dangel, Jens Hofrichter, Folkert Horst, Daniel Jubin, Antonio La Porta,

Norbert Meier, Ibrahim Murat Soganci, Jonas Weiss, and Bert Jan Offrein.

Polymer waveguides for electro-optical integration in data centers and high-

performance computers. Opt. Express, 23(4):4736–4750, Feb 2015. doi: 10.

1364/OE.23.004736. URL http://www.opticsexpress.org/abstract.cfm?URI=

oe-23-4-4736.

[3] Patrick Thibodeau. Scientists, it community await exascale computers. December

2009.

[4] Ranking the World’s Most energy-efficient supercomputers, 2015. URL http:

//www.green500.org/.

[5] Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez,

and Mateo Valero. Supercomputing with commodity cpus: Are mobile socs ready

for hpc? In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’13, pages 40:1–40:12, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2378-9. doi: 10.1145/2503210.

2503281. URL http://doi.acm.org/10.1145/2503210.2503281.

[6] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi,

and Keith I. Farkas. Single-isa heterogeneous multi-core architectures for mul-

tithreaded workload performance. In Proceedings of the 31st Annual Interna-

tional Symposium on Computer Architecture, ISCA ’04, pages 64–, Washing-

ton, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2143-6. URL

http://dl.acm.org/citation.cfm?id=998680.1006707.

127

http://top500.org/
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-4-4736
http://www.opticsexpress.org/abstract.cfm?URI=oe-23-4-4736
http://www.green500.org/
http://www.green500.org/
http://doi.acm.org/10.1145/2503210.2503281
http://dl.acm.org/citation.cfm?id=998680.1006707

Bibliography 128

[7] NVIDIA Corporation. Nvidia tegra mobile processors, 2015. URL http://www.

nvidia.com.

[8] Samsung. Exynos Octa 5422 SoC, 2015. URL https://http://www.samsung.

com/.

[9] Tong Li, Dan Baumberger, David A. Koufaty, and S. Hahn. Efficient operating

system scheduling for performance-asymmetric multi-core architectures. In Su-

percomputing, 2007. SC ’07. Proceedings of the 2007 ACM/IEEE Conference on,

pages 1–11, Nov 2007. doi: 10.1145/1362622.1362694.

[10] T.S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin.

Hierarchical power management for asymmetric multi-core in dark silicon era. In

Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, pages

1–9, May 2013.

[11] Kisoo Yu, Donghee Han, Changhwan Youn, Seungkon Hwang, and Jaechul

Lee. Power-aware task scheduling for big.little mobile processor. In SoC De-

sign Conference (ISOCC), 2013 International, pages 208–212, Nov 2013. doi:

10.1109/ISOCC.2013.6864009.

[12] Cheng Tan, T.S. Muthukaruppan, T. Mitra, and Lei Ju. Approximation-aware

scheduling on heterogeneous multi-core architectures. In Design Automation Con-

ference (ASP-DAC), 2015 20th Asia and South Pacific, pages 618–623, Jan 2015.

doi: 10.1109/ASPDAC.2015.7059077.

[13] R.G. Sargent. Verification and validation of simulation models. In Simulation

Conference (WSC), Proceedings of the 2010 Winter, pages 166–183, Dec 2010.

doi: 10.1109/WSC.2010.5679166.

[14] B. Black and J.P. Shen. Calibration of microprocessor performance models. Com-

puter, 31(5):59–65, May 1998. ISSN 0018-9162. doi: 10.1109/2.675637.

[15] Poul E. Heegaard. Speed-up techniques for simulation. TELEKTRONIKK, 91:

85–7130, 1995.

[16] Richard Fujimoto. Distributed simulation challenges in sensor networks and the

cloud. Presented as the NSF Workshop on Simulation Methodology, 2012.

[17] Mont-Blanc project, 2015. URL www.montblanc-project.eu.

http://www.nvidia.com
http://www.nvidia.com
https://http://www.samsung.com/
https://http://www.samsung.com/
www.montblanc-project.eu

Bibliography 129

[18] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit.

News, 39(2):1–7, aug 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL

http://doi.acm.org/10.1145/2024716.2024718.

[19] L.P. Hewlett-Packard Development Company. Mcpat, 2008. URL http://www.

hpl.hp.com/research/mcpat/.

[20] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy evaluation of gem5

simulator system. In Reconfigurable Communication-centric Systems-on-Chip (Re-

CoSoC), 2012 7th International Workshop on, pages 1–7, July 2012.

[21] A. Butko, A. Gamatié, G. Sassatelli, L. Torres, and M. Robert. Design exploration

for next generation high-performance manycore on-chip systems: Application to

big.little architectures. In VLSI (ISVLSI), 2015 IEEE Computer Society Annual

Symposium on, July 2015.

[22] Anastasiia Butko. ADAptive Computing group, 2015. URL http://www.lirmm.

fr/ADAC/.

[23] A. Butko, R. Garibotti, L. Ost, V. Lapotre, A. Gamatié, G. Sassatelli, and

C. Adeniyi-Jones. A trace-driven approach for fast and accurate simulation of

manycore architectures. In Design Automation Conference (ASP-DAC), 2015 20th

Asia and South Pacific, pages 707–712, Jan 2015.

[24] Rafael Garibotti. Exploration of Compute Accelerators for High Performance

Computing. PhD thesis, University Montpellier II, 2014.

[25] Osman Balci. The implementation of four conceptual frameworks for simulation

modeling in high-level languages. In Proceedings of the 20th Conference on Winter

Simulation, WSC ’88, pages 287–295, New York, NY, USA, 1988. ACM. ISBN 0-

911801-42-1. doi: 10.1145/318123.318204. URL http://doi.acm.org/10.1145/

318123.318204.

[26] A. Muzy, J.J. Nutaro, B.P. Zeigler, and P. Coquillard. Modeling and simula-

tion of fire spreading through the activity tracking paradigm. Ecological Mod-

elling, 219(1–2):212 – 225, 2008. ISSN 0304-3800. doi: http://dx.doi.org/10.

http://doi.acm.org/10.1145/2024716.2024718
http://www.hpl.hp.com/research/mcpat/
http://www.hpl.hp.com/research/mcpat/
http://www.lirmm.fr/ADAC/
http://www.lirmm.fr/ADAC/
http://doi.acm.org/10.1145/318123.318204
http://doi.acm.org/10.1145/318123.318204

Bibliography 130

1016/j.ecolmodel.2008.08.017. URL http://www.sciencedirect.com/science/

article/pii/S0304380008004134.

[27] N. Matloff. Introduction to discrete-event simulation and the simpy language. 2008.

URL http://heather.cs.ucdavis.edu/~{}matloff/156/PLN/.

[28] Antonio Cuomo, Massimiliano Rak, and Umberto Villano. Process-oriented

discrete-event simulation in java with continuations:quantitative performance eval-

uation. In International Conference on Simulation and Modeling Methodolo-

gies, Technologies and Applications (SIMULTECH) - Rome, 28-31 July 2012,

volume 2nd International Conference on Simulation and Modeling Methodolo-

gies,Technologies and Applications, pages 87–96. SciTePress, 2012. doi: 10.5220/

0004014500870096. URL http://deal.ing.unisannio.it/perflab/assets/

papers/simultech2012.pdf.

[29] I. Almasri, G. Abandah, A. Shhadeh, and A. Shahrour. Universal isa simulator

with soft processor fpga implementation. In Applied Electrical Engineering and

Computing Technologies (AEECT), 2011 IEEE Jordan Conference on, pages 1–6,

Dec 2011. doi: 10.1109/AEECT.2011.6132512.

[30] Gregory V. Caliri. Introduction to analytical modeling. In Int. CMG Confer-

ence, pages 31–36. Computer Measurement Group, 2000. URL http://dblp.

uni-trier.de/db/conf/cmg/cmg2000.html.

[31] M.T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural sim-

ulator. In Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE

International Symposium on, pages 23–34, April 2007. doi: 10.1109/ISPASS.2007.

363733.

[32] Computer Architecture and Power Aware Systems Research Group. State Uni-

versity of New York at Binghamton. Micro-ARchitectural and System Simulator

for x86-based Systems, 2015. URL http://marss86.org/~marss86/index.php/

Home.

[33] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system sim-

ulation platform. Computer, 35(2):50–58, Feb 2002. ISSN 0018-9162. doi:

10.1109/2.982916.

http://www.sciencedirect.com/science/article/pii/S0304380008004134
http://www.sciencedirect.com/science/article/pii/S0304380008004134
http://heather.cs.ucdavis.edu/~{}matloff/156/PLN/
http://deal.ing.unisannio.it/perflab/assets/papers/simultech2012.pdf
http://deal.ing.unisannio.it/perflab/assets/papers/simultech2012.pdf
http://dblp.uni-trier.de/db/conf/cmg/cmg2000.html
http://dblp.uni-trier.de/db/conf/cmg/cmg2000.html
http://marss86.org/~marss86/index.php/Home
http://marss86.org/~marss86/index.php/Home

Bibliography 131

[34] WIND An Intel Company. WIND RIVER SIMICS. Simulate Anything, Chip to

System, 2015. URL http://www.windriver.com/products/simics/.

[35] Gengbin Zheng, Gunavardhan Kakulapati, and L.V. Kale. Bigsim: a parallel

simulator for performance prediction of extremely large parallel machines. In Par-

allel and Distributed Processing Symposium, 2004. Proceedings. 18th International,

pages 78–, April 2004. doi: 10.1109/IPDPS.2004.1303013.

[36] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer

system modeling. Computer, 35(2):59–67, Feb 2002. ISSN 0018-9162. doi: 10.

1109/2.982917.

[37] Dominik Madon, Eduardo Sanchez, and Stefan Monnier. A study of a simultaneous

multithreaded processor implementation. In Euro-Par ’99: Proceedings of the 5th

International Euro-Par Conference on Parallel Processing, pages 716–726, London,

UK, 1999. Springer-Verlag. ISBN 3-540-66443-2.

[38] Joseph J. Sharkey, Dmitry Ponomarev, and Kanad Ghose. Abstract m-sim: A

flexible, multithreaded architectural simulation environment. Technical report,

Department of Computer Science, State University of New York at Binghamton,

2005.

[39] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: Max-

imizing on-chip parallelism. In Computer Architecture, 1995. Proceedings., 22nd

Annual International Symposium on, pages 392–403, June 1995.

[40] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivaku-

mar Velusamy, and David Tarjan. Temperature-aware microarchitecture: Model-

ing and implementation. ACM Trans. Archit. Code Optim., 1(1):94–125, March

2004. ISSN 1544-3566. doi: 10.1145/980152.980157. URL http://doi.acm.org/

10.1145/980152.980157.

[41] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez. Multi2sim: A simulation frame-

work to evaluate multicore-multithreaded processors. In Computer Architecture

and High Performance Computing, 2007. SBAC-PAD 2007. 19th International

Symposium on, pages 62–68, Oct 2007. doi: 10.1109/SBAC-PAD.2007.17.

[42] Pablo Montesinos Ortego, Paul Sack. SESC: SuperESCalar Simulator, 2004. URL

http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/.

http://www.windriver.com/products/simics/
http://doi.acm.org/10.1145/980152.980157
http://doi.acm.org/10.1145/980152.980157
http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/

Bibliography 132

[43] Ehsan K. Ardestani and Jose Renau. Esesc: A fast multicore simulator using time-

based sampling. In in International Symposium on High Performance Computer

Architecture, page 19, 2013.

[44] Lisa R. Hsu Ali G. Saidi, Nathan L. Binkert and Steven K. Reinhardt. Performance

validation of network-intensive workloads on a full-system simulator. In Proceed-

ings of the First Annual Workshop on Interaction between Operating System and

Computer Architecture (IOSCA), pages 33–38, 2005.

[45] A. Gutierrez, J. Pusdesris, R.G. Dreslinski, T. Mudge, C. Sudanthi, C.D. Emmons,

M. Hayenga, and N. Paver. Sources of error in full-system simulation. In Per-

formance Analysis of Systems and Software (ISPASS), 2014 IEEE International

Symposium on, pages 13–22, March 2014. doi: 10.1109/ISPASS.2014.6844457.

[46] F.A. Endo, D. Courousse, and H.-P. Charles. Micro-architectural simulation of

in-order and out-of-order arm microprocessors with gem5. In Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014 Interna-

tional Conference on, pages 266–273, July 2014.

[47] Fernando A. Endo, Damien Couroussé, and Henri-Pierre Charles. Micro-

architectural simulation of embedded core heterogeneity with gem5 and mcpat.

In Proceedings of the 2015 Workshop on Rapid Simulation and Performance Eval-

uation: Methods and Tools, RAPIDO ’15, pages 7:1–7:6, New York, NY, USA,

2015. ACM. ISBN 978-1-60558-699-1. doi: 10.1145/2693433.2693440. URL

http://doi.acm.org/10.1145/2693433.2693440.

[48] Sam Likun Xi, H. Jacobson, P. Bose, Gu-Yeon Wei, and D. Brooks. Quantify-

ing sources of error in mcpat and potential impacts on architectural studies. In

High Performance Computer Architecture (HPCA), 2015 IEEE 21st International

Symposium on, pages 577–589, Feb 2015. doi: 10.1109/HPCA.2015.7056064.

[49] Jianwei Chen, Murali Annavaram, and Michel Dubois. Slacksim: a platform for

parallel simulations of cmps on cmps. SIGARCH Comput. Archit. News, 37(2):

20–29, July 2009. ISSN 0163-5964. doi: 10.1145/1577129.1577134. URL http:

//doi.acm.org/10.1145/1577129.1577134.

http://doi.acm.org/10.1145/2693433.2693440
http://doi.acm.org/10.1145/1577129.1577134
http://doi.acm.org/10.1145/1577129.1577134

Bibliography 133

[50] Mieszko Lis, Pengju Ren, Myong Hyon Cho, Keun Sup Shim, Christopher W.

Fletcher, Omer Khan, and Srinivas Devadas. Scalable, accurate multicore simu-

lation in the 1000-core era., 2011. URL http://dblp.uni-trier.de/db/conf/

ispass/ispass2011.html.

[51] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for mul-

ticores. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th

International Symposium on, pages 1–12, 2010. doi: 10.1109/HPCA.2010.5416635.

[52] Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitec-

tural simulation of thousand-core systems. In Proceedings of the 40th Annual In-

ternational Symposium on Computer Architecture, ISCA ’13, pages 475–486, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5. doi: 10.1145/2485922.

2485963. URL http://doi.acm.org/10.1145/2485922.2485963.

[53] OVP. Open virtual platforms, 2013. URL http://www.ovpworld.org/.

[54] QEMU. Qemu open source processor emulator, 2013. URL http://wiki.qemu.

org/Main_Page.

[55] D. Thach, Y. Tamiya, S. Kuwamura, and A. Ike. Fast cycle estimation method-

ology for instruction-level emulator. In Design, Automation Test in Europe Con-

ference Exhibition (DATE), 2012, pages 248–251, 2012. doi: 10.1109/DATE.2012.

6176470.

[56] S. Stattelmann, S. Ottlik, A. Viehl, O. Bringmann, and W. Rosenstiel. Combining

instruction set simulation and wcet analysis for embedded software performance

estimation. In Industrial Embedded Systems (SIES), 2012 7th IEEE International

Symposium on, pages 295–298, 2012. doi: 10.1109/SIES.2012.6356600.

[57] Imperas. Quantumleap simulation synchronization, 2013. URL http://www.

ovpworld.org/.

[58] L. Cai and D. Gajski. Transaction level modeling: an overview. In Hardware/Soft-

ware Codesign and System Synthesis, 2003. First IEEE/ACM/IFIP International

Conference on, pages 19–24, Oct 2003. doi: 10.1109/CODESS.2003.1275250.

http://dblp.uni-trier.de/db/conf/ispass/ispass2011.html
http://dblp.uni-trier.de/db/conf/ispass/ispass2011.html
http://doi.acm.org/10.1145/2485922.2485963
http://www.ovpworld.org/
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://www.ovpworld.org/
http://www.ovpworld.org/

Bibliography 134

[59] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero. Trace-

driven simulation of multithreaded applications. In Performance Analysis of Sys-

tems and Software (ISPASS), 2011 IEEE International Symposium on, pages 87–

96, April 2011. doi: 10.1109/ISPASS.2011.5762718.

[60] T. Wild, A. Herkersdorf, and R. Ohlendorf. Performance evaluation for system-

on-chip architectures using trace-based transaction level simulation. In Design,

Automation and Test in Europe, 2006. DATE ’06. Proceedings, volume 1, pages

1–6, March 2006. doi: 10.1109/DATE.2006.244111.

[61] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty, and A. Herkersdorf. High-level

timing analysis of concurrent applications on mpsoc platforms using memory-aware

trace-driven simulations. In VLSI System on Chip Conference (VLSI-SoC), 2010

18th IEEE/IFIP, pages 229–234, Sept 2010. doi: 10.1109/VLSISOC.2010.5642665.

[62] Synopsys, Inc. Synopsys Silicon to Software, 2015. URL http://www.synopsys.

com.

[63] S. Abdi, G. Schirner, Yonghyun Hwang, D.D. Gajski, and Lochi Yu. Automatic

tlm generation for early validation of multicore systems. Design Test of Computers,

IEEE, 28(3):10–19, 2011. ISSN 0740-7475. doi: 10.1109/MDT.2010.117.

[64] S. Fytraki and D. Pnevmatikatos. Resim, a trace-driven, reconfigurable ilp pro-

cessor simulator. In Design, Automation Test in Europe Conference Exhibition,

2009. DATE ’09., pages 536–541, April 2009. doi: 10.1109/DATE.2009.5090722.

[65] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel

Emer. A-ports: An efficient abstraction for cycle-accurate performance models

on fpgas. In Proceedings of the 16th International ACM/SIGDA Symposium on

Field Programmable Gate Arrays, FPGA ’08, pages 87–96, New York, NY, USA,

2008. ACM. ISBN 978-1-59593-934-0. doi: 10.1145/1344671.1344685. URL http:

//doi.acm.org/10.1145/1344671.1344685.

[66] D. Chiou, Dam Sunwoo, Joonsoo Kim, N. Patil, W.H. Reinhart, D.E. Johnson,

and Zheng Xu. The fast methodology for high-speed soc/computer simulation. In

Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Confer-

ence on, pages 295–302, Nov 2007. doi: 10.1109/ICCAD.2007.4397280.

http://www.synopsys.com
http://www.synopsys.com
http://doi.acm.org/10.1145/1344671.1344685
http://doi.acm.org/10.1145/1344671.1344685

Bibliography 135

[67] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simula-

tor, 2015. URL http://pages.cs.wisc.edu/~markhill/DineroIV/.

[68] P. Jacob, O. Erdogan, A. Zia, P.M. Belemjian, R.P. Kraft, and J.F. McDonald.

Predicting the performance of a 3d processor-memory chip stack. Design Test of

Computers, IEEE, 22(6):540–547, Nov 2005. ISSN 0740-7475. doi: 10.1109/MDT.

2005.151.

[69] Michael Laurenzano, Beth Simon, Allan Snavely, and Meghan Gunn. Low cost

trace-driven memory simulation using simpoint. SIGARCH Comput. Archit. News,

33(5):81–86, December 2005. ISSN 0163-5964. doi: 10.1145/1127577.1127593.

URL http://doi.acm.org/10.1145/1127577.1127593.

[70] A. Snavely, N. Wolter, and L. Carrington. Modeling application performance by

convolving machine signatures with application profiles. In Workload Character-

ization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 149–156,

Dec 2001. doi: 10.1109/WWC.2001.990754.

[71] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Auto-

matically characterizing large scale program behavior. SIGPLAN Not., 37(10):

45–57, October 2002. ISSN 0362-1340. doi: 10.1145/605432.605403. URL

http://doi.acm.org/10.1145/605432.605403.

[72] F. Trivino, F.J. Andujar, F.J. Alfaro, J.L. Sanchez, and A. Ros. Self-related traces:

An alternative to full-system simulation for nocs. In High Performance Computing

and Simulation (HPCS), 2011 International Conference on, pages 819–824, July

2011. doi: 10.1109/HPCSim.2011.5999914.

[73] Joel Hestness, Boris Grot, and Stephen W. Keckler. Netrace: Dependency-driven

trace-based network-on-chip simulation. In Proceedings of the Third International

Workshop on Network on Chip Architectures, NoCArc ’10, pages 31–36, New York,

NY, USA, 2010. ACM. ISBN 978-1-4503-0397-2. doi: 10.1145/1921249.1921258.

URL http://doi.acm.org/10.1145/1921249.1921258.

[74] Shankar Mahadevan, Federico Angiolini, Michael Storgaard, and Ras-

mus Grøndahl Olsen. A network traffic generator model for fast network-on-chip

simulation. In In Proceedings of the conference on Design, Automation and Test

in Europe, pages 780–785. IEEE Computer Society, 2005.

http://pages.cs.wisc.edu/~markhill/DineroIV/
http://doi.acm.org/10.1145/1127577.1127593
http://doi.acm.org/10.1145/605432.605403
http://doi.acm.org/10.1145/1921249.1921258

Bibliography 136

[75] Dohyung Kim, Youngmin Yi, and Soonhoi Ha. Trace-driven hw/sw cosimulation

using virtual synchronization technique. In Design Automation Conference, 2005.

Proceedings. 42nd, pages 345–348, June 2005. doi: 10.1109/DAC.2005.193830.

[76] Youngmin Yi, Dohyung Kim, and Soonhoi Ha. Fast and time-accurate cosimula-

tion with os scheduler modeling. Design Autom. for Emb. Sys., 8(2-3):211–228,

2003. URL http://dblp.uni-trier.de/db/journals/dafes/dafes8.html.

[77] Li Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell. Exploring

large-scale cmp architectures using manysim. Micro, IEEE, 27(4):21–33, July

2007. ISSN 0272-1732. doi: 10.1109/MM.2007.66.

[78] Sadagopan Srinivasan, Li Zhao, Brinda Ganesh, Bruce Jacob, Mike Espig, and

Ravi Iyer. Cmp memory modeling: How much does accuracy matter? In Fifth

Annual Workshop on Modeling, Benchmarking and Simulation, pages 24–33, June

2009.

[79] Sangyeun Cho, Socrates Demetriades, Shayne Evans, Lei Jin, Hyunjin Lee, Kiyeon

Lee, and Michael Moeng. Tpts: A novel framework for very fast manycore proces-

sor architecture simulation. In Int’l Conf. on Parallel Processing (ICPP), pages

446–453, 2008.

[80] Kai Huang, I. Bacivarov, Jun Liu, and W. Haid. A modular fast simulation

framework for stream-oriented mpsoc. In Industrial Embedded Systems, 2009.

SIES ’09. IEEE International Symposium on, pages 74–81, July 2009. doi: 10.

1109/SIES.2009.5196198.

[81] A. Quesada M. Pavlovic A. J. Vega Y. Etsion A. Rico, F. Cabarcas and A. Ramirez.

Scalable simulation of decoupled accelerator architectures. Technical report, Uni-

versitat Politecnica de Catalunya, 2010.

[82] Pengfei Zhu, Mingyu Chen, Yungang Bao, Licheng Chen, and Yongbing Huang.

Trace-driven simulation of memory system scheduling in multithread applica-

tion. In Proceedings of the 2012 ACM SIGPLAN Workshop on Memory Sys-

tems Performance and Correctness, MSPC ’12, pages 30–37, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1219-6. doi: 10.1145/2247684.2247691. URL

http://doi.acm.org/10.1145/2247684.2247691.

http://dblp.uni-trier.de/db/journals/dafes/dafes8.html
http://doi.acm.org/10.1145/2247684.2247691

Bibliography 137

[83] Nagesh B. Lakshminarayana Jaewoong Sim Jieun Lim Tri Pho Hyesoon Kim,

Jaekyu Lee. MacSim: A CPU-GPU Heterogeneous Simulation Framework.

HPArch research group.

[84] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin, and M. Hempstead.

Synchrotrace: synchronization-aware architecture-agnostic traces for light-weight

multicore simulation. In Performance Analysis of Systems and Software (ISPASS),

2015 IEEE International Symposium on, pages 278–287, March 2015. doi: 10.

1109/ISPASS.2015.7095813.

[85] ValgrindTM Developers. Valgrind, 2013. URL http://valgrind.org/.

[86] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Measuring experi-

mental error in microprocessor simulation. In Proceedings of the 28th Annual In-

ternational Symposium on Computer Architecture, ISCA ’01, pages 266–277, New

York, NY, USA, 2001. ACM. ISBN 0-7695-1162-7. doi: 10.1145/379240.565338.

URL http://doi.acm.org/10.1145/379240.565338.

[87] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Rein-

hardt. The m5 simulator: Modeling networked systems. Micro, IEEE, 26(4):

52–60, July 2006. ISSN 0272-1732. doi: 10.1109/MM.2006.82.

[88] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,

Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.

Wood. Multifacet’s general execution-driven multiprocessor simulator (gems)

toolset. SIGARCH Comput. Archit. News, 33(4):92–99, nov 2005. ISSN 0163-5964.

doi: 10.1145/1105734.1105747. URL http://doi.acm.org/10.1145/1105734.

1105747.

[89] Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.

Jouppi. Mcpat: An integrated power, area, and timing modeling framework for

multicore and manycore architectures. In Microarchitecture, 2009. MICRO-42.

42nd Annual IEEE/ACM International Symposium on, pages 469–480, Dec 2009.

[90] R.A. Fisher. Statistical methods for research workers. Edinburgh Oliver & Boyd,

1925.

http://valgrind.org/
http://doi.acm.org/10.1145/379240.565338
http://doi.acm.org/10.1145/1105734.1105747
http://doi.acm.org/10.1145/1105734.1105747

Bibliography 138

[91] David P. Rodgers. Improvements in multiprocessor system design. SIGARCH

Comput. Archit. News, 13(3):225–231, June 1985. ISSN 0163-5964. doi: 10.1145/

327070.327215. URL http://doi.acm.org/10.1145/327070.327215.

[92] SKY-S9500-ULP-CXX (aka Snowball PDK-SDK). Hardware Reference Manual.

Calao-Systems, July 1 2011. Revision 1.0.

[93] Igor Pavlov. 7-zip lzma benchmark samsung exynos 5250 arm cortex-a15, 2015.

URL http://7-cpu.com/.

[94] Man-Lap Li, R. Sasanka, S.V. Adve, Yen-Kuang Chen, and E. Debes. The alp-

bench benchmark suite for complex multimedia applications. In Workload Charac-

terization Symposium, 2005. Proceedings of the IEEE International, pages 34–45,

Oct 2005. doi: 10.1109/IISWC.2005.1525999.

[95] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The splash-2 programs:

characterization and methodological considerations. In Computer Architecture,

1995. Proceedings., 22nd Annual International Symposium on, pages 24–36, June

1995.

[96] Posix threads programming, 2015. URL https://computing.llnl.gov/

tutorials/pthreads/.

[97] John D. McCalpin. Memory bandwidth and machine balance in current high per-

formance computers. IEEE Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, pages 19–25, December 1995.

[98] M.A. Richards. The rapid prototyping of application specific signal processors

(rassp) program: overview and status. In Rapid System Prototyping, 1994. Short-

ening the Path from Specification to Prototype. Proceedings., Fifth International

Workshop on, pages 1–6, Jun 1994. doi: 10.1109/IWRSP.1994.315915.

[99] Brian Jeff. big.little technology moves towards fully heterogeneous global task

scheduling. November 2013. URL http://www.arm.com/files/pdf/.

[100] CoreLink CCI-400 Cache Coherent Interconnect Technical Reference Manual.

ARM, November 16 2012. Revision r1p1.

[101] CoherentXBar Class Reference, 2015. URL http://www.gem5.org/docs/.

http://doi.acm.org/10.1145/327070.327215
http://7-cpu.com/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://www.arm.com/files/pdf/
http://www.gem5.org/docs/

Bibliography 139

[102] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee,

and K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium

on, pages 44–54, Oct 2009. doi: 10.1109/IISWC.2009.5306797.

[103] Martin Krzywinski and Naomi Altman. Points of Significance: Visualizing samples

with box plots. Nature Methods, 11(2):119–120, January 2014. ISSN 1548-7091.

doi: 10.1038/nmeth.2813. URL http://dx.doi.org/10.1038/nmeth.2813.

[104] Kristin Potter. Methods for presenting statistical information: The box plot. Hans

Hagen, Andreas Kerren, and Peter Dannenmann (Eds.), Visualization of Large

and Unstructured Data Sets, GI-Edition Lecture Notes in Informatics (LNI), S-4:

97–106, 2006.

[105] gem5. Classic Memory System, 2015. URL http://www.m5sim.org.

[106] E.E. Johnson, Jiheng Ha, and M. Baqar Zaidi. Lossless trace compression. Com-

puters, IEEE Transactions on, 50(2):158–173, Feb 2001. ISSN 0018-9340. doi:

10.1109/12.908991.

[107] E.E. Johnson and Jiheng Ha. Pdats lossless address trace compression for reducing

file size and access time. In Computers and Communications, 1994., IEEE 13th

Annual International Phoenix Conference on, pages 213–, Apr 1994. doi: 10.1109/

PCCC.1994.504117.

[108] N.C. Thornock and J.K. Flanagan. Facilitating level three cache studies using set

sampling. In Simulation Conference, 2000. Proceedings. Winter, volume 1, pages

471–479 vol.1, 2000. doi: 10.1109/WSC.2000.899754.

[109] John W.C. Fu and J.H. Patel. Trace driven simulation using sampled traces. In

System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International

Conference on, volume 1, pages 211–220, Jan 1994. doi: 10.1109/HICSS.1994.

323170.

[110] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation: A

survey. ACM Comput. Surv., 29(2):128–170, June 1997. ISSN 0360-0300. doi:

10.1145/254180.254184. URL http://doi.acm.org/10.1145/254180.254184.

http://dx.doi.org/10.1038/nmeth.2813
http://www.m5sim.org
http://doi.acm.org/10.1145/254180.254184

Bibliography 140

[111] Wen-Hann Wang and Jean-Loup Baer. Efficient trace-driven simulation methods

for cache performance analysis. ACM Trans. Comput. Syst., 9(3):222–241, August

1991. ISSN 0734-2071. doi: 10.1145/128738.128740. URL http://doi.acm.org/

10.1145/128738.128740.

[112] P.S. Cheng. Trace-driven system modeling. IBM Systems Journal, 8(4):280–289,

1969. ISSN 0018-8670. doi: 10.1147/sj.84.0280.

[113] Bryan Black, Andrew S. Huang, Mikko H. Lipasti, and John Paul Shen. Can

trace-driven simulators accurately predict superscalar performance? pages 478–

485, 1996.

[114] Eric Larson and Saugata Chatterjee. Mase: A novel infrastructure for detailed mi-

croarchitectural modeling. In in Proceedings of the 2001 International Symposium

on Performance Analysis of Systems and Software, pages 1–9, 2001.

[115] M.M. Tikir, M.A. Laurenzano, L. Carrington, and A. Snavely. Psins: An open

source event tracer and execution simulator. In DoD High Performance Computing

Modernization Program Users Group Conference (HPCMP-UGC), 2009, pages

444–449, June 2009. doi: 10.1109/HPCMP-UGC.2009.73.

[116] Sergi Girona, Jesús Labarta, and Rosa M. Badia. Validation of dimemas com-

munication model for MPI collective operations. In Recent Advances in Parallel

Virtual Machine and Message Passing Interface, 7th European PVM/MPI Users’

Group Meeting, Balatonfüred, Hungary, September 2000, Proceedings, pages 39–

46, 2000. doi: 10.1007/3-540-45255-9 9. URL http://dx.doi.org/10.1007/

3-540-45255-9_9.

[117] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer Architecture

and Parallel Processing (Wiley Series on Parallel and Distributed Computing).

Wiley-Interscience, 2005. ISBN 0471467405.

[118] OpenMP Architecture Review Board. The openmp api specification for parallel

programming, 2015. URL http://openmp.org/wp/.

[119] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded run-

time system. SIGPLAN Not., 30(8):207–216, August 1995. ISSN 0362-1340. doi:

10.1145/209937.209958. URL http://doi.acm.org/10.1145/209937.209958.

http://doi.acm.org/10.1145/128738.128740
http://doi.acm.org/10.1145/128738.128740
http://dx.doi.org/10.1007/3-540-45255-9_9
http://dx.doi.org/10.1007/3-540-45255-9_9
http://openmp.org/wp/
http://doi.acm.org/10.1145/209937.209958

Bibliography 141

[120] Intel. Intel cilk plus, 2013. URL https://www.cilkplus.org/.

[121] Richard A Uhlig. Trap-driven Memory Simulation. PhD thesis, University of

Michigan, 1995.

[122] gprof. Gnu gprof, 2013. URL http://sourceware.org/binutils/docs/gprof.

[123] ARM. big.little technology, 2015. URL http://www.arm.com/products/

processors/technologies.

[124] Kevin Skadron and Ke Wang. Rodinia:accelerating compute-intensive applications

with accelerators, 2014. URL http://lava.cs.virginia.edu/Rodinia/.

[125] Scalasca, 2015. URL http://www.scalasca.org/.

[126] Vampir - performance optimization, 2015. URL https://www.vampir.eu/.

[127] Ching-Long Su and Alvin M. Despain. Cache design trade-offs for power and

performance optimization: A case study. In Proceedings of the 1995 International

Symposium on Low Power Design, ISLPED ’95, pages 63–68, New York, NY,

USA, 1995. ACM. ISBN 0-89791-744-8. doi: 10.1145/224081.224093. URL http:

//doi.acm.org/10.1145/224081.224093.

[128] S. Sarma and N. Dutt. Cross-layer exploration of heterogeneous multicore proces-

sor configurations. In VLSI Design (VLSID), 2015 28th International Conference

on, pages 147–152, Jan 2015. doi: 10.1109/VLSID.2015.30.

[129] MediaTek Inc. MT6595 Octa-core LTE platform, 2015. URL http://www.

mediatek.com/en/products/mobile-communications/smartphone1/mt6595/.

[130] Qualcomm Technologies, Inc. Qualcomm Snapdragon Processors, 2015. URL

https://www.qualcomm.com/products/snapdragon/processors.

[131] The MathWorks, Inc. MATLAB The Language of Technical Computing, 2015.

URL www.mathworks.com/products/matlab/.

[132] M.A. O’Neil and M. Burtscher. Microarchitectural performance characterization

of irregular gpu kernels. In Workload Characterization (IISWC), 2014 IEEE In-

ternational Symposium on, pages 130–139, Oct 2014. doi: 10.1109/IISWC.2014.

6983052.

https://www.cilkplus.org/
http://sourceware.org/binutils/docs/gprof
http://www.arm.com/products/processors/technologies
http://www.arm.com/products/processors/technologies
http://lava.cs.virginia.edu/Rodinia/
http://www.scalasca.org/
https://www.vampir.eu/
http://doi.acm.org/10.1145/224081.224093
http://doi.acm.org/10.1145/224081.224093
http://www.mediatek.com/en/products/mobile-communications/smartphone1/mt6595/
http://www.mediatek.com/en/products/mobile-communications/smartphone1/mt6595/
https://www.qualcomm.com/products/snapdragon/processors
www.mathworks.com/products/matlab/

Bibliography 142

[133] P. Fritzsche, C. Roig, A. Ripoll, E. Luque, and A. Hernandez. A performance

prediction methodology for data-dependent parallel applications. In Cluster Com-

puting, 2006 IEEE International Conference on, pages 1–8, Sept 2006. doi:

10.1109/CLUSTR.2006.311879.

[134] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Con-

sistency and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

ISBN 1608455645, 9781608455645.

[135] Robert Pyka, Christoph Fassbach, Manish Verma, Heiko Falk, and Peter Mar-

wedel. Operating system integrated energy aware scratchpad allocation strate-

gies for multiprocess applications. In Proceedingsof the 10th International Work-

shop on Software &Amp; Compilers for Embedded Systems, SCOPES ’07, pages

41–50, New York, NY, USA, 2007. ACM. doi: 10.1145/1269843.1269850. URL

http://doi.acm.org/10.1145/1269843.1269850.

[136] Carlos Villavieja, Yoav Etsion, Alex Ramirez, and Nacho Navarro. Feli: Hw/sw

support for on-chip distributed shared memory in multicores. In Emmanuel

Jeannot, Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Paral-

lel Processing, volume 6852 of Lecture Notes in Computer Science, pages 282–

294. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-23399-9. doi: 10.1007/

978-3-642-23400-2 27. URL http://dx.doi.org/10.1007/978-3-642-23400-2_

27.

[137] Yibo Guo, Qingfeng Zhuge, Jingtong Hu, Juan Yi, Meikang Qiu, and E.H.-M.

Sha. Data placement and duplication for embedded multicore systems with scratch

pad memory. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 32(6):809–817, June 2013. ISSN 0278-0070. doi: 10.1109/TCAD.

2013.2238990.

[138] Janmartin Jahn Joerg Henkel Nikil Dutt Hossein Tajik, Bryan Donyanavard. Spm-

pool: Runtime spm management for embedded many-cores. Technical report, Cen-

ter for Embedded Computer Systems University of California, Irvine, USA, May

2014.

[139] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient

main memory using phase change memory technology. SIGARCH Comput. Archit.

http://doi.acm.org/10.1145/1269843.1269850
http://dx.doi.org/10.1007/978-3-642-23400-2_27
http://dx.doi.org/10.1007/978-3-642-23400-2_27

Bibliography 143

News, 37(3):14–23, June 2009. ISSN 0163-5964. doi: 10.1145/1555815.1555759.

URL http://doi.acm.org/10.1145/1555815.1555759.

[140] Jingtong Hu, C.J. Xue, Wei-Che Tseng, Y. He, Meikang Qiu, and E.H.M. Sha.

Reducing write activities on non-volatile memories in embedded cmps via data

migration and recomputation. In Design Automation Conference (DAC), 2010

47th ACM/IEEE, pages 350–355, June 2010.

[141] Wei-Che Tseng, C.J. Xue, Qingfeng Zhuge, Jingtong Hu, and E.H.M. Sha. Optimal

scheduling to minimize non-volatile memory access time with hardware cache. In

VLSI System on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP, pages 131–

136, Sept 2010. doi: 10.1109/VLSISOC.2010.5642609.

[142] Jingtong Hu, C.J. Xue, Qingfeng Zhuge, Wei-Che Tseng, and E.H.-M. Sha. To-

wards energy efficient hybrid on-chip scratch pad memory with non-volatile mem-

ory. In Design, Automation Test in Europe Conference Exhibition (DATE), 2011,

pages 1–6, March 2011. doi: 10.1109/DATE.2011.5763127.

[143] Luis Angel Bathen and Nikil Dutt. Havoc: A hybrid memory-aware virtualization

layer for on-chip distributed scratchpad and non-volatile memories. In Proceedings

of the 49th Annual Design Automation Conference, DAC ’12, pages 447–452, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1199-1. doi: 10.1145/2228360.

2228438. URL http://doi.acm.org/10.1145/2228360.2228438.

[144] Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, and Edwin H.-M.

Sha. Management and optimization for nonvolatile memory-based hybrid scratch-

pad memory on multicore embedded processors. ACM Trans. Embed. Comput.

Syst., 13(4):79:1–79:25, March 2014. ISSN 1539-9087. doi: 10.1145/2560019. URL

http://doi.acm.org/10.1145/2560019.

[145] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Mar-

tinell, Xavier Martorell, and Judit Planas. Ompss: a Proposal for Programming

Heterogeneous Multi-Core Architectures. Parallel Processing Letters, 21(2):173–

193, 2011. doi: 10.1142/S0129626411000151. URL http://dx.doi.org/10.1142/

S0129626411000151.

http://doi.acm.org/10.1145/1555815.1555759
http://doi.acm.org/10.1145/2228360.2228438
http://doi.acm.org/10.1145/2560019
http://dx.doi.org/10.1142/S0129626411000151
http://dx.doi.org/10.1142/S0129626411000151

